1
|
Saleh NK, Farrag SM, El-Yamany MF, Kamel AS. Exploring Dapagliflozin's Influence on Autophagic Flux in Mania-like Behaviour: Insights from the LKB1/AMPK/LC3 Pathway in a Mouse Model. J Neuroimmune Pharmacol 2025; 20:57. [PMID: 40402300 PMCID: PMC12098488 DOI: 10.1007/s11481-025-10218-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/30/2025] [Indexed: 05/23/2025]
Abstract
Mania-like episodes are neuropsychiatric disturbances associated with bipolar disorder (BD). Autophagic flux disturbance evolved as one of the molecular mechanisms implicated in mania. Recently, Dapagliflozin (DAPA) has corrected autophagic signaling in several neurological disorders. Yet, no endeavours examined the autophagic impact of DAPA in mania-like behaviours. This study aimed to investigate the effect of DAPA on disrupted autophagic pathways in a mouse model of mania-like behaviour. Mania-like behaviour was induced through paradoxical sleep deprivation (PSD) using the multiple-platform method for a duration of 36 h. Mice were divided into three groups, with DAPA (1 mg/kg/day, orally) administered for one week. Behavioural assessments were conducted on the 7th day. DAPA mitigated anxiety-like behaviour in the open field test and improved motor coordination and muscle tone in the rotarod test. Mechanistically, DAPA activated hippocampal autophagy-related markers; liver kinase B1/AMP-activated protein kinase (LKB1/AMPK) pathway, autophagy related gene 7 (ATG7), and microtubule-associated protein light chain 3II (LC3II). This was associated with reduced levels of the autophagosome receptor p62 protein, which subsequently enhanced GABAA receptor-associated protein (GABARAP), facilitating the surface presentation of GABAA receptors. Additionally, DAPA upregulated the GABAB receptor R2 subunit through trophic factors such as brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF). Furthermore, DAPA mitigated elevated serum stress hormones and restored the balance between proinflammatory and anti-inflammatory cytokines in both cortical and hippocampal tissues. These findings highlight the role of autophagic flux modulation by DAPA and its therapeutic potential in mitigating mania-like behaviours.
Collapse
Affiliation(s)
- Nada K Saleh
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Sama M Farrag
- Pharmacology and Toxicology Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), Giza, Egypt
| | - Mohamed F El-Yamany
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Ahmed S Kamel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
2
|
Gurok MG, Aksoy DB, Mermi O, Korkmaz S, Tabara MF, Yildirim H, Atmaca M. Hippocampus and amygdala volumes are reduced in patients with schizoaffective disorder. Psychiatry Res Neuroimaging 2024; 342:111840. [PMID: 38875767 DOI: 10.1016/j.pscychresns.2024.111840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Abstract
We aimed to examine the hippocampus and amygdala volumes in patients with schizoaffective disorder with the notion that schizoaffective disorder has strong resemblance of clinical presentation with schizophrenia and bipolar disorder and that there have been studies on regions of interest volumes in patients with schizophrenia and bipolar disorder but not in patients with schizoaffective disorder. Eighteen patients with schizoaffective disorder and nineteen healthy controls were included into the study. Hippocampus and amygdala volumes were examined by using the MRI. Both hippocampus and amygdala volumes were statistically significantly reduced in patients with schizoaffective disorder compared to those of the healthy control comparisons (p<0.001 for the hippocampus and p<0.001 for the amygdala). In summary, our findings of the present study suggest that patients with schizoaffective disorder seem to have smaller volumes of the hippocampus and amygdala regions and that our results were in accordance with those obtained both in patients with schizophrenia and bipolar disorder, considering that schizoaffective disorder might have neuroanatomic similarities with both schizophrenia and bipolar disorder. Beacuse of some limitations aforementioned especially age, it is required to replicate our present results in this patient group.
Collapse
Affiliation(s)
- M Gurkan Gurok
- Firat University School of Medicine Department of Psychiatry, Elazig, Turkey.
| | - Dilek Bakis Aksoy
- Firat University School of Medicine Department of Psychiatry, Elazig, Turkey
| | - Osman Mermi
- Firat University School of Medicine Department of Psychiatry, Elazig, Turkey.
| | - Sevda Korkmaz
- Firat University School of Medicine Department of Psychiatry, Elazig, Turkey.
| | | | - Hanefi Yildirim
- Firat University School of Medicine Department of Radiology, Elazig, Turkey.
| | - Murad Atmaca
- Firat University School of Medicine Department of Psychiatry, Elazig, Turkey.
| |
Collapse
|
3
|
Petruso F, Giff A, Milano B, De Rossi M, Saccaro L. Inflammation and emotion regulation: a narrative review of evidence and mechanisms in emotion dysregulation disorders. Neuronal Signal 2023; 7:NS20220077. [PMID: 38026703 PMCID: PMC10653990 DOI: 10.1042/ns20220077] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Emotion dysregulation (ED) describes a difficulty with the modulation of which emotions are felt, as well as when and how these emotions are experienced or expressed. It is a focal overarching symptom in many severe and prevalent neuropsychiatric diseases, including bipolar disorders (BD), attention deficit/hyperactivity disorder (ADHD), and borderline personality disorder (BPD). In all these disorders, ED can manifest through symptoms of depression, anxiety, or affective lability. Considering the many symptomatic similarities between BD, ADHD, and BPD, a transdiagnostic approach is a promising lens of investigation. Mounting evidence supports the role of peripheral inflammatory markers and stress in the multifactorial aetiology and physiopathology of BD, ADHD, and BPD. Of note, neural circuits that regulate emotions appear particularly vulnerable to inflammatory insults and peripheral inflammation, which can impact the neuroimmune milieu of the central nervous system. Thus far, few studies have examined the link between ED and inflammation in BD, ADHD, and BPD. To our knowledge, no specific work has provided a critical comparison of the results from these disorders. To fill this gap in the literature, we review the known associations and mechanisms linking ED and inflammation in general, and clinically, in BD, ADHD, and BD. Our narrative review begins with an examination of the routes linking ED and inflammation, followed by a discussion of disorder-specific results accounting for methodological limitations and relevant confounding factors. Finally, we critically discuss both correspondences and discrepancies in the results and comment on potential vulnerability markers and promising therapeutic interventions.
Collapse
Affiliation(s)
| | - Alexis E. Giff
- Department of Neuroscience, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Beatrice A. Milano
- Sant’Anna School of Advanced Studies, Pisa, Italy
- University of Pisa, Pisa, Italy
| | | | - Luigi Francesco Saccaro
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Switzerland
- Department of Psychiatry, Geneva University Hospital, Switzerland
| |
Collapse
|
4
|
Ossani GP, Riudavets MA, D'Annunzio V, Uceda AM, Ponzo O, Lago NR, Martino DJ. Effect of lithium in pyramidal neurons of Cornu Ammonis in an animal model. J Psychiatr Res 2023; 167:33-36. [PMID: 37826875 DOI: 10.1016/j.jpsychires.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/05/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023]
Abstract
Bipolar disorder has been associated with a decrease in hippocampal size, and lithium appears to reverse this neuroanatomical abnormality. The objective of this work was to evaluate, at a cellular level, the size of both cell body and nucleus of pyramidal neurons located throughout the Cornu Ammonis (CA1 to CA4 regions). To perform this duty, we used 16 rats that were randomized into two groups: control and dietary lithium-treated. After one month, they were sacrificed and their brains removed for histopathological analysis. Serial photos of the entire Cornu Ammonis were taken and, after dividing them into 4 regions of interest, we measured the cell body and nucleus on each pyramidal neuron belonging to the first 5 photos of each region of interest. As a result of this histological analysis, cell body area and nuclear area were significantly larger in the experimental group in a specific area of the Cornu Ammonis that could correspond to CA2 or the transition between CA1 and CA2. These results suggest that the effect of lithium is not homogeneous throughout the hippocampus and allows directing future studies to a specific area of this structure.
Collapse
Affiliation(s)
- G P Ossani
- Centre of Experimental and Applied Pathology, Department of Pathology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina; Laboratory of Experimental Medicine, Hospital Alemán, Buenos Aires, Argentina; National Council of Scientific and Technical Research (CONICET), Argentina.
| | - M A Riudavets
- Office of the Chief Medical Examiner, Supreme Court of Justice. Buenos Aires, Argentina
| | - V D'Annunzio
- National Council of Scientific and Technical Research (CONICET), Argentina; Institute of Cardiovascular Physiopathology, Department of Pathology and Institute of Biochemistry and Molecular Medicine (IBIMOL UBA-CONICET), School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - A M Uceda
- Centre of Experimental and Applied Pathology, Department of Pathology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina; Laboratory of Experimental Medicine, Hospital Alemán, Buenos Aires, Argentina
| | - O Ponzo
- Department of Physiology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - N R Lago
- Centre of Experimental and Applied Pathology, Department of Pathology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - D J Martino
- National Council of Scientific and Technical Research (CONICET), Argentina; Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| |
Collapse
|
5
|
Cao P, Chen C, Si Q, Li Y, Ren F, Han C, Zhao J, Wang X, Xu G, Sui Y. Volumes of hippocampal subfields suggest a continuum between schizophrenia, major depressive disorder and bipolar disorder. Front Psychiatry 2023; 14:1191170. [PMID: 37547217 PMCID: PMC10400724 DOI: 10.3389/fpsyt.2023.1191170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Objective There is considerable debate as to whether the continuum of major psychiatric disorders exists and to what extent the boundaries extend. Converging evidence suggests that alterations in hippocampal volume are a common sign in psychiatric disorders; however, there is still no consensus on the nature and extent of hippocampal atrophy in schizophrenia (SZ), major depressive disorder (MDD) and bipolar disorder (BD). The aim of this study was to verify the continuum of SZ - BD - MDD at the level of hippocampal subfield volume and to compare the volume differences in hippocampal subfields in the continuum. Methods A total of 412 participants (204 SZ, 98 MDD, and 110 BD) underwent 3 T MRI scans, structured clinical interviews, and clinical scales. We segmented the hippocampal subfields with FreeSurfer 7.1.1 and compared subfields volumes across the three diagnostic groups by controlling for age, gender, education, and intracranial volumes. Results The results showed a gradual increase in hippocampal subfield volumes from SZ to MDD to BD. Significant volume differences in the total hippocampus and 13 of 26 hippocampal subfields, including CA1, CA3, CA4, GC-ML-DG, molecular layer and the whole hippocampus, bilaterally, and parasubiculum in the right hemisphere, were observed among diagnostic groups. Medication treatment had the most effect on subfields of MDD compared to SZ and BD. Subfield volumes were negatively correlated with illness duration of MDD. Positive correlations were found between subfield volumes and drug dose in SZ and MDD. There was no significant difference in laterality between diagnostic groups. Conclusion The pattern of hippocampal volume reduction in SZ, MDD and BD suggests that there may be a continuum of the three disorders at the hippocampal level. The hippocampus represents a phenotype that is distinct from traditional diagnostic strategies. Combined with illness duration and drug intervention, it may better reflect shared pathophysiology and mechanisms across psychiatric disorders.
Collapse
Affiliation(s)
- Peiyu Cao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Congxin Chen
- Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Qi Si
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
- Huai’an No. 3 People’s Hospital, Huai’an, China
| | - Yuting Li
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Fangfang Ren
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Chongyang Han
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Jingjing Zhao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Xiying Wang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Guoxin Xu
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Yuxiu Sui
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| |
Collapse
|
6
|
Wolter JM, Le BD, Matoba N, Lafferty MJ, Aygün N, Liang D, Courtney K, Song J, Piven J, Zylka MJ, Stein JL. Cellular Genome-wide Association Study Identifies Common Genetic Variation Influencing Lithium-Induced Neural Progenitor Proliferation. Biol Psychiatry 2023; 93:8-17. [PMID: 36307327 PMCID: PMC9982734 DOI: 10.1016/j.biopsych.2022.08.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/22/2022] [Accepted: 08/18/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND Bipolar disorder is a highly heritable neuropsychiatric condition affecting more than 1% of the human population. Lithium salts are commonly prescribed as a mood stabilizer for individuals with bipolar disorder. Lithium is clinically effective in approximately half of treated individuals, and their genetic backgrounds are known to influence treatment outcomes. While the mechanism of lithium's therapeutic action is unclear, it stimulates adult neural progenitor cell proliferation, similar to some antidepressant drugs. METHODS To identify common genetic variants that modulate lithium-induced proliferation, we conducted an EdU incorporation assay in a library of 80 genotyped human neural progenitor cells treated with lithium. These data were used to perform a genome-wide association study to identify common genetic variants that influence lithium-induced neural progenitor cell proliferation. We manipulated the expression of a putatively causal gene using CRISPRi/a (clustered regularly interspaced short palindromic repeats interference/activation) constructs to experimentally verify lithium-induced proliferation effects. RESULTS We identified a locus on chr3p21.1 associated with lithium-induced proliferation. This locus is also associated with bipolar disorder risk, schizophrenia risk, and interindividual differences in intelligence. We identified a single gene, GNL3, whose expression temporally increased in an allele-specific fashion following lithium treatment. Experimentally increasing the expression of GNL3 led to increased proliferation under baseline conditions, while experimentally decreasing GNL3 expression suppressed lithium-induced proliferation. CONCLUSIONS Our experiments reveal that common genetic variation modulates lithium-induced neural progenitor proliferation and that GNL3 expression is necessary for the full proliferation-stimulating effects of lithium. These results suggest that performing genome-wide associations in genetically diverse human cell lines is a useful approach to discover context-specific pharmacogenomic effects.
Collapse
Affiliation(s)
- Justin M Wolter
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Brandon D Le
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nana Matoba
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael J Lafferty
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nil Aygün
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Dan Liang
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kenan Courtney
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Juan Song
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Joseph Piven
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Mark J Zylka
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jason L Stein
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
7
|
Hørlyck LD, Jespersen AE, King JA, Ullum H, Miskowiak KW. Impaired allocentric spatial memory in patients with affective disorders. J Psychiatr Res 2022; 150:153-159. [PMID: 35378488 DOI: 10.1016/j.jpsychires.2022.01.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Memory disturbances are frequent in unipolar depression (UD) and bipolar disorder (BD) and may comprise important predisposing and maintaining factors. Previous studies have demonstrated hippocampal abnormalities in UD and BD but there is a lack of studies specifically assessing hippocampus-dependent memory. METHODS We used a virtual task to assess hippocampus-dependent (allocentric) vs non-hipppocampal (egocentric) spatial memory in remitted and partially remitted patients with UD or BD (N = 22) and a healthy control group (N = 32). Participants also completed a range of standard neuropsychological and functional assessments. RESULTS Participants in the UD/BD group showed selective impairments on high-load hippocampal (allocentric) memory compared to egocentric memory and this effect was independent of residual mood symptoms. Across both samples, both allocentric and egocentric spatial memory correlated with more general measures of memory and other aspects of cognition measured on standard neuropsychological tests but only high-load allocentric memory showed a significant relationship with functional capacity. CONCLUSION Results show a selective impairment in high-load allocentric spatial memory compared to egocentric memory in the patient group, suggesting impaired hippocampal functioning in patients with remitted UD/BD.
Collapse
Affiliation(s)
- Lone D Hørlyck
- Neurocognition and Emotion in Affective Disorder (NEAD) Group, Copenhagen Affective Disorder Research Centre (CADIC), Copenhagen Psychiatric Centre, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark; Department of Psychology, University of Copenhagen, Øster Farimagsgade 2A, DK-1353, Copenhagen, Denmark
| | - Andreas E Jespersen
- Neurocognition and Emotion in Affective Disorder (NEAD) Group, Copenhagen Affective Disorder Research Centre (CADIC), Copenhagen Psychiatric Centre, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark; Department of Psychology, University of Copenhagen, Øster Farimagsgade 2A, DK-1353, Copenhagen, Denmark
| | - John A King
- Department of Clinical and Health Psychology, University College London, 1-19 Torrington Place, London, WC1E 7HB, United Kingdom
| | - Henrik Ullum
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Kamilla W Miskowiak
- Neurocognition and Emotion in Affective Disorder (NEAD) Group, Copenhagen Affective Disorder Research Centre (CADIC), Copenhagen Psychiatric Centre, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark; Department of Psychology, University of Copenhagen, Øster Farimagsgade 2A, DK-1353, Copenhagen, Denmark.
| |
Collapse
|
8
|
Digiovanni A, Ajdinaj P, Russo M, Sensi SL, Onofrj M, Thomas A. Bipolar spectrum disorders in neurologic disorders. Front Psychiatry 2022; 13:1046471. [PMID: 36620667 PMCID: PMC9811836 DOI: 10.3389/fpsyt.2022.1046471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Psychiatric symptoms frequently predate or complicate neurological disorders, such as neurodegenerative diseases. Symptoms of bipolar spectrum disorders (BSD), like mood, behavioral, and psychotic alterations, are known to occur - individually or as a syndromic cluster - in Parkinson's disease and in the behavioral variant of frontotemporal dementia (FTD). Nonetheless, due to shared pathophysiological mechanisms, or genetic predisposition, several other neurological disorders show significant, yet neglected, clinical and biological overlaps with BSD like neuroinflammation, ion channel dysfunctions, neurotransmission imbalance, or neurodegeneration. BSD pathophysiology is still largely unclear, but large-scale network dysfunctions are known to participate in the onset of mood disorders and psychotic symptoms. Thus, functional alterations can unleash BSD symptoms years before the evidence of an organic disease of the central nervous system. The aim of our narrative review was to illustrate the numerous intersections between BSD and neurological disorders from a clinical-biological point of view and the underlying predisposing factors, to guide future diagnostic and therapeutical research in the field.
Collapse
Affiliation(s)
- Anna Digiovanni
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Paola Ajdinaj
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Mirella Russo
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Stefano L Sensi
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Marco Onofrj
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Astrid Thomas
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
9
|
Lee S, Kim TD, Kim RY, Joo Y, Chung YA, Lim SM, Lyoo IK, Kim J, Yoon S. Hippocampal subregional alterations and verbal fluency in the early stage of type 2 diabetes mellitus. Eur J Neurosci 2021; 54:7550-7559. [PMID: 34687097 DOI: 10.1111/ejn.15505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/16/2021] [Accepted: 10/21/2021] [Indexed: 11/30/2022]
Abstract
Growing evidence indicates that type 2 diabetes mellitus (T2DM)-related cognitive dysfunction may develop in the early stage of the disease and is often accompanied by hippocampal structural alterations. In the current study, we investigated volume and shape alterations of the hippocampus at a subregional level in patients with T2DM. With the use of high-resolution brain structural images that were obtained from 30 T2DM patients with less than 5 years of disease duration and 30 healthy individuals, volumetric and shape analyses were performed. We also assessed the relationship between T2DM-related hippocampal structural alterations and performance on verbal fluency. In volumetric analysis, total hippocampal volume was smaller in the T2DM group, relative to the control group. At a subregional level, T2DM patients showed significant inward deformation and volume reduction of the right dentate gyrus and cornu ammonis 2/3 subregions as compared with healthy individuals. In particular, T2DM patients with lower performance on verbal fluency had smaller right dentate gyrus volumes relative to those with higher performance. These findings suggest that the hippocampus may undergo atrophy at a subregional level even in the early stage of T2DM, and this subregion-specific atrophy may be associated with reduced performance on verbal fluency.
Collapse
Affiliation(s)
- Suji Lee
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
| | - Tammy D Kim
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
| | - Rye Young Kim
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea.,Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Yoonji Joo
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea.,Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Yong-An Chung
- Department of Radiology, Incheon St. Mary's Hospital, The Catholic University of Korea College of Medicine, Incheon, South Korea
| | - Soo Mee Lim
- Department of Radiology, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - In Kyoon Lyoo
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea.,Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea.,The Brain Institute and Department of Psychiatry, University of Utah, Salt Lake City, Utah, USA
| | - Jungyoon Kim
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - Sujung Yoon
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
10
|
Guimond S, Gu F, Shannon H, Kelly S, Mike L, Devenyi GA, Chakravarty MM, Sweeney JA, Pearlson G, Clementz BA, Tamminga C, Keshavan M. A Diagnosis and Biotype Comparison Across the Psychosis Spectrum: Investigating Volume and Shape Amygdala-Hippocampal Differences from the B-SNIP Study. Schizophr Bull 2021; 47:1706-1717. [PMID: 34254147 PMCID: PMC8530385 DOI: 10.1093/schbul/sbab071] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVE Brain-based Biotypes for psychotic disorders have been developed as part of the B-SNIP consortium to create neurobiologically distinct subgroups within idiopathic psychosis, independent from traditional phenomenological diagnostic methods. In the current study, we aimed to validate the Biotype model by assessing differences in volume and shape of the amygdala and hippocampus contrasting traditional clinical diagnoses with Biotype classification. METHODS A total of 811 participants from 6 sites were included: probands with schizophrenia (n = 199), schizoaffective disorder (n = 122), psychotic bipolar disorder with psychosis (n = 160), and healthy controls (n = 330). Biotype classification, previously developed using cognitive and electrophysiological data and K-means clustering, was used to categorize psychosis probands into 3 Biotypes, with Biotype-1 (B-1) showing reduced neural salience and severe cognitive impairment. MAGeT-Brain segmentation was used to determine amygdala and hippocampal volumetric data and shape deformations. RESULTS When using Biotype classification, B-1 showed the strongest reductions in amygdala-hippocampal volume and the most widespread shape abnormalities. Using clinical diagnosis, probands with schizophrenia and schizoaffective disorder showed the most significant reductions of amygdala and hippocampal volumes and the most abnormal hippocampal shape compared with healthy controls. Biotype classification provided the strongest neuroanatomical differences compared with conventional DSM diagnoses, with the best discrimination seen using bilateral amygdala and right hippocampal volumes in B-1. CONCLUSION These findings characterize amygdala and hippocampal volumetric and shape abnormalities across the psychosis spectrum. Grouping individuals by Biotype showed greater between-group discrimination, suggesting a promising approach and a favorable target for characterizing biological heterogeneity across the psychosis spectrum.
Collapse
Affiliation(s)
- Synthia Guimond
- Department of Psychiatry, The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
- Department of Psychoeducation and Psychology, Université du Québec en Outaouais, Gatineau, QC, Canada
- Department of Psychiatry, Massachusetts Mental Health Center and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Feng Gu
- Department of Psychiatry, The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Holly Shannon
- Department of Psychiatry, The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Sinead Kelly
- Department of Psychiatry, Massachusetts Mental Health Center and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Luke Mike
- Department of Psychiatry, Massachusetts Mental Health Center and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Gabriel A Devenyi
- Department of Psychiatry, McGill University, Montréal, QC, Canada
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Verdun, QC, Canada
| | - M Mallar Chakravarty
- Department of Psychiatry, McGill University, Montréal, QC, Canada
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Verdun, QC, Canada
| | - John A Sweeney
- Department of Psychiatry, University of Cincinnati, Cincinnati, OH, USA
| | - Godfrey Pearlson
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Brett A Clementz
- Department of Psychology, BioImaging Research Center, University of Georgia, Athens, GA, USA
- Department of and Neuroscience, BioImaging Research Center, University of Georgia, Athens, GA, USA
| | - Carol Tamminga
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Matcheri Keshavan
- Department of Psychiatry, Massachusetts Mental Health Center and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Kuang L, Gao W, Long Z, Cao W, Cui D, Guo Y, Jiao Q, Qiu J, Su L, Lu G. Common and Specific Characteristics of Adolescent Bipolar Disorder Types I and II: A Combined Cortical Thickness and Structural Covariance Analysis. Front Psychiatry 2021; 12:750798. [PMID: 35126192 PMCID: PMC8814452 DOI: 10.3389/fpsyt.2021.750798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND By calculating cortical thickness (CT) and cortical structural covariance (SC), we aimed to investigate cortical morphology and cortical inter-regional correlation alterations in adolescent bipolar disorder type I (BD-I) and type II (BD-II) patients. METHODS T1-weighted images from 36 BD-I and 22 BD-II patients and 19 healthy controls (HCs) were processed to estimate CT. CT values of the whole brain were compared among three groups. Cortical regions showing CT differences in groups were regarded as seeds for analyzing cortical SC differences between groups. The relationship between CT and clinical indices was further assessed. RESULTS Both BD groups showed cortical thinning in several frontal and temporal areas vs. HCs, and CT showed no significant difference between two BD subtypes. Compared to HCs, both BD groups exhibited reduced SC connections between left superior frontal gyrus (SFG) and right postcentral gyrus (PCG), left superior temporal gyrus (STG) and right pars opercularis, and left STG and right PCG. Compared with HCs, decreased SC connections between left STG and right inferior parietal gyrus (IPG) and right pars opercularis and right STG were only observed in the BD-I group, and left PCG and left SFG only in the BD-II group. CT of right middle temporal gyrus was negatively correlated with number of episodes in BD-II patients. CONCLUSIONS Adolescent BD-I and BD-II showed commonly decreased CT while presenting commonly and distinctly declined SC connections. This study provides a better understanding of cortical morphology and cortical inter-regional correlation alterations in BD and crucial insights into neuroanatomical mechanisms and pathophysiology of different BD subtypes.
Collapse
Affiliation(s)
- Liangfeng Kuang
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Weijia Gao
- Department of Child Psychology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiliang Long
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Weifang Cao
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Dong Cui
- Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Yongxin Guo
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Qing Jiao
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Jianfeng Qiu
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Linyan Su
- Mental Health Institute of The Second Xiangya Hospital, Central South University, Changsha, China
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, China
| |
Collapse
|
12
|
Athey TL, Ceritoglu C, Tward DJ, Kutten KS, DePaulo JR, Glazer K, Goes FS, Kelsoe JR, Mondimore F, Nievergelt CM, Rootes-Murdy K, Zandi PP, Ratnanather JT, Mahon PB. A 7 Tesla Amygdalar-Hippocampal Shape Analysis of Lithium Response in Bipolar Disorder. Front Psychiatry 2021; 12:614010. [PMID: 33664682 PMCID: PMC7920967 DOI: 10.3389/fpsyt.2021.614010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/19/2021] [Indexed: 11/15/2022] Open
Abstract
Research to discover clinically useful predictors of lithium response in patients with bipolar disorder has largely found them to be elusive. We demonstrate here that detailed neuroimaging may have the potential to fill this important gap in mood disorder therapeutics. Lithium treatment and bipolar disorder have both been shown to affect anatomy of the hippocampi and amygdalae but there is no consensus on the nature of their effects. We aimed to investigate structural surface anatomy changes in amygdala and hippocampus correlated with treatment response in bipolar disorder. Patients with bipolar disorder (N = 14) underwent lithium treatment, were classified by response status at acute and long-term time points, and scanned with 7 Tesla structural MRI. Large Deformation Diffeomorphic Metric Mapping was applied to detect local differences in hippocampal and amygdalar anatomy between lithium responders and non-responders. Anatomy was also compared to 21 healthy comparison participants. A patch of the ventral surface of the left hippocampus was found to be significantly atrophied in non-responders as compared to responders at the acute time point and was associated at a trend-level with long-term response status. We did not detect an association between response status and surface anatomy of the right hippocampus or amygdala. To the best of our knowledge, this is the first shape analysis of hippocampus and amygdala in bipolar disorder using 7 Tesla MRI. These results can inform future work investigating possible neuroimaging predictors of lithium response in bipolar disorder.
Collapse
Affiliation(s)
- Thomas L Athey
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD, United States.,Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, United States.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Can Ceritoglu
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD, United States
| | - Daniel J Tward
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD, United States.,Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, United States.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Kwame S Kutten
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD, United States
| | - J Raymond DePaulo
- Department of Psychiatry and Behavioral Science, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Kara Glazer
- Department of Occupational Therapy, Boston University, Boston, MA, United States
| | - Fernando S Goes
- Department of Psychiatry and Behavioral Science, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - John R Kelsoe
- Department of Psychiatry, VA San Diego Healthcare System, La Jolla, CA, United States.,Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Francis Mondimore
- Department of Psychiatry and Behavioral Science, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Caroline M Nievergelt
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Kelly Rootes-Murdy
- Department of Psychology, Georgia State University, Atlanta, GA, United States
| | - Peter P Zandi
- Department of Psychiatry and Behavioral Science, Johns Hopkins School of Medicine, Baltimore, MD, United States.,Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - J Tilak Ratnanather
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD, United States.,Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, United States.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Pamela B Mahon
- Department of Psychiatry and Behavioral Science, Johns Hopkins School of Medicine, Baltimore, MD, United States.,Department of Psychiatry, Brigham & Women's Hospital, Boston, MA, United States.,Department of Psychiatry, Harvard School of Medicine, Boston, MA, United States
| |
Collapse
|
13
|
Haukvik UK, Gurholt TP, Nerland S, Elvsåshagen T, Akudjedu TN, Alda M, Alnæs D, Alonso‐Lana S, Bauer J, Baune BT, Benedetti F, Berk M, Bettella F, Bøen E, Bonnín CM, Brambilla P, Canales‐Rodríguez EJ, Cannon DM, Caseras X, Dandash O, Dannlowski U, Delvecchio G, Díaz‐Zuluaga AM, Erp TGM, Fatjó‐Vilas M, Foley SF, Förster K, Fullerton JM, Goikolea JM, Grotegerd D, Gruber O, Haarman BCM, Haatveit B, Hajek T, Hallahan B, Harris M, Hawkins EL, Howells FM, Hülsmann C, Jahanshad N, Jørgensen KN, Kircher T, Krämer B, Krug A, Kuplicki R, Lagerberg TV, Lancaster TM, Lenroot RK, Lonning V, López‐Jaramillo C, Malt UF, McDonald C, McIntosh AM, McPhilemy G, Meer D, Melle I, Melloni EMT, Mitchell PB, Nabulsi L, Nenadić I, Oertel V, Oldani L, Opel N, Otaduy MCG, Overs BJ, Pineda‐Zapata JA, Pomarol‐Clotet E, Radua J, Rauer L, Redlich R, Repple J, Rive MM, Roberts G, Ruhe HG, Salminen LE, Salvador R, Sarró S, Savitz J, Schene AH, Sim K, Soeiro‐de‐Souza MG, Stäblein M, Stein DJ, Stein F, Tamnes CK, Temmingh HS, Thomopoulos SI, Veltman DJ, Vieta E, Waltemate L, Westlye LT, Whalley HC, Sämann PG, Thompson PM, Ching CRK, Andreassen OA, Agartz I. In vivo hippocampal subfield volumes in bipolar disorder—A mega‐analysis from The Enhancing Neuro Imaging Genetics through
Meta‐Analysis
Bipolar Disorder Working Group. Hum Brain Mapp 2020; 43:385-398. [PMID: 33073925 PMCID: PMC8675404 DOI: 10.1002/hbm.25249] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/18/2020] [Accepted: 10/06/2020] [Indexed: 01/02/2023] Open
Abstract
The hippocampus consists of anatomically and functionally distinct subfields that may be differentially involved in the pathophysiology of bipolar disorder (BD). Here we, the Enhancing NeuroImaging Genetics through Meta‐Analysis Bipolar Disorder workinggroup, study hippocampal subfield volumetry in BD. T1‐weighted magnetic resonance imaging scans from 4,698 individuals (BD = 1,472, healthy controls [HC] = 3,226) from 23 sites worldwide were processed with FreeSurfer. We used linear mixed‐effects models and mega‐analysis to investigate differences in hippocampal subfield volumes between BD and HC, followed by analyses of clinical characteristics and medication use. BD showed significantly smaller volumes of the whole hippocampus (Cohen's d = −0.20), cornu ammonis (CA)1 (d = −0.18), CA2/3 (d = −0.11), CA4 (d = −0.19), molecular layer (d = −0.21), granule cell layer of dentate gyrus (d = −0.21), hippocampal tail (d = −0.10), subiculum (d = −0.15), presubiculum (d = −0.18), and hippocampal amygdala transition area (d = −0.17) compared to HC. Lithium users did not show volume differences compared to HC, while non‐users did. Antipsychotics or antiepileptic use was associated with smaller volumes. In this largest study of hippocampal subfields in BD to date, we show widespread reductions in nine of 12 subfields studied. The associations were modulated by medication use and specifically the lack of differences between lithium users and HC supports a possible protective role of lithium in BD.
Collapse
Affiliation(s)
- Unn K. Haukvik
- Department of Adult Mental Health Institute of Clinical Medicine, University of Oslo Oslo Norway
- Norwegian Centre for Mental Disorders Research (NORMENT) Division of Mental Health and Addiction, Oslo University Hospital Oslo Norway
| | - Tiril P. Gurholt
- Norwegian Centre for Mental Disorders Research (NORMENT) Division of Mental Health and Addiction, Oslo University Hospital Oslo Norway
- Norwegian Centre for Mental Disorders Research (NORMENT) Institute of Clinical Medicine, University of Oslo Oslo Norway
- Department of Psychiatric Research Diakonhjemmet Hospital Oslo Norway
| | - Stener Nerland
- Norwegian Centre for Mental Disorders Research (NORMENT) Institute of Clinical Medicine, University of Oslo Oslo Norway
- Department of Psychiatric Research Diakonhjemmet Hospital Oslo Norway
| | - Torbjørn Elvsåshagen
- Norwegian Centre for Mental Disorders Research (NORMENT) Division of Mental Health and Addiction, Oslo University Hospital Oslo Norway
- Department of Neurology Oslo University Hospital Oslo Norway
- Institute of Clinical Medicine University of Oslo Oslo Norway
| | - Theophilus N. Akudjedu
- Centre for Neuroimaging & Cognitive Genomics (NICOG) Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway Galway Ireland
- Institute of Medical Imaging & Visualisation Faculty of Health & Social Sciences, Bournemouth University Bournemouth UK
| | - Martin Alda
- Department of Psychiatry Dalhousie University Halifax Nova Scotia Canada
- National Institute of Mental Health Klecany Czech Republic
| | - Dag Alnæs
- Norwegian Centre for Mental Disorders Research (NORMENT) Division of Mental Health and Addiction, Oslo University Hospital Oslo Norway
- Norwegian Centre for Mental Disorders Research (NORMENT) Institute of Clinical Medicine, University of Oslo Oslo Norway
| | - Silvia Alonso‐Lana
- FIDMAG Germanes Hospitalàries Research Foundation CIBERSAM Barcelona Spain
| | - Jochen Bauer
- Institute of Clinical Radiology University of Münster Münster Germany
| | - Bernhard T. Baune
- Department of Psychiatry University of Münster Münster Germany
- Department of Psychiatry Melbourne Medical School, The University of Melbourne Melbourne Australia
- The Florey Institute of Neuroscience and Mental Health The University of Melbourne Parkville Australia
| | - Francesco Benedetti
- Psychiatry and Clinical Psychobiology Scientific Institute Ospedale San Raffaele Milan Italy
- University Vita‐Salute San Raffaele Milan Italy
| | - Michael Berk
- Deakin University IMPACT, the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health Geelong Victoria Australia
- Orygen, The National Centre of Excellence in Youth Mental Health and Centre for Youth Mental Health, the Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health The University of Melbourne Melbourne Victoria Australia
| | - Francesco Bettella
- Norwegian Centre for Mental Disorders Research (NORMENT) Division of Mental Health and Addiction, Oslo University Hospital Oslo Norway
| | - Erlend Bøen
- Psychosomatic and CL Psychiatry Division of Mental Health and Addiction, Oslo University Hospital Oslo Norway
| | - Caterina M. Bonnín
- Barcelona Bipolar Disorders and Depressive Unit Hospital Clinic, Institute of Neurosciences, University of Barcelona, IDIBAPS, CIBERSAM Barcelona Spain
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan Italy
- Department of Pathophysiology and Transplantation University of Milan Milan Italy
| | | | - Dara M. Cannon
- Centre for Neuroimaging & Cognitive Genomics (NICOG) Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway Galway Ireland
| | - Xavier Caseras
- MRC Centre for Neuropsychiatric Genetics and Genomics, Department of Psychological Medicine and Clinical Neurosciences Cardiff University Cardiff UK
| | - Orwa Dandash
- Brain, Mind and Society Research Hub, Turner Institute for Brain and Mental Health, School of Psychological Sciences Monash University Clayton Victoria Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry University of Melbourne and Melbourne Health Melbourne Victoria Australia
| | - Udo Dannlowski
- Department of Psychiatry University of Münster Münster Germany
| | - Giuseppe Delvecchio
- Department of Pathophysiology and Transplantation University of Milan Milan Italy
| | - Ana M. Díaz‐Zuluaga
- Research Group in Psychiatry, Department of Psychiatry Faculty of Medicine, Universidad de Antioquia Medellín Antioquia Colombia
| | - Theo G. M. Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior University of California Irvine Irvine California USA
- Center for the Neurobiology of Learning University of California Irvine and Memory Irvine California USA
| | - Mar Fatjó‐Vilas
- FIDMAG Germanes Hospitalàries Research Foundation CIBERSAM Barcelona Spain
| | - Sonya F. Foley
- Cardiff University Brain Research Imaging Centre (CUBRIC) Cardiff University Cardiff UK
| | | | - Janice M. Fullerton
- Neuroscience Research Australia Randwick New South Wales Australia
- School of Medical Sciences The University of New South Wales Sydney New South Wales Australia
| | - José M. Goikolea
- Barcelona Bipolar Disorders and Depressive Unit Hospital Clinic, Institute of Neurosciences, University of Barcelona, IDIBAPS, CIBERSAM Barcelona Spain
| | | | - Oliver Gruber
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry Heidelberg University Hospital Heidelberg Germany
| | - Bartholomeus C. M. Haarman
- Department of Psychiatry University Medical Center Groningen, University of Groningen Groningen The Netherlands
| | - Beathe Haatveit
- Norwegian Centre for Mental Disorders Research (NORMENT) Division of Mental Health and Addiction, Oslo University Hospital Oslo Norway
- Norwegian Centre for Mental Disorders Research (NORMENT) Institute of Clinical Medicine, University of Oslo Oslo Norway
| | - Tomas Hajek
- Department of Psychiatry Dalhousie University Halifax Nova Scotia Canada
- National Institute of Mental Health Klecany Czech Republic
| | - Brian Hallahan
- Centre for Neuroimaging & Cognitive Genomics (NICOG) Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway Galway Ireland
| | - Mathew Harris
- Division of Psychiatry University of Edinburgh Edinburgh UK
| | | | - Fleur M. Howells
- Department of Psychiatry and Mental Health University of Cape Town Cape Town Western Cape South Africa
- Neuroscience Institute University of Cape Town Cape Town Western Cape South Africa
| | - Carina Hülsmann
- Department of Psychiatry University of Münster Münster Germany
| | - Neda Jahanshad
- Imaging Genetics Center USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California Marina del Rey California USA
| | - Kjetil N. Jørgensen
- Norwegian Centre for Mental Disorders Research (NORMENT) Institute of Clinical Medicine, University of Oslo Oslo Norway
- Department of Psychiatric Research Diakonhjemmet Hospital Oslo Norway
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy Philipps‐University Marburg Marburg Germany
- Center for Mind Brain and Behavior (CMBB) Marburg Germany
| | - Bernd Krämer
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry Heidelberg University Hospital Heidelberg Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy Philipps‐University Marburg Marburg Germany
- Center for Mind Brain and Behavior (CMBB) Marburg Germany
- Department of Psychiatry and Psychotherapy University of Bonn Bonn Germany
| | - Rayus Kuplicki
- Laureate Institute for Brain Research Tulsa Oklahoma USA
| | - Trine V. Lagerberg
- Norwegian Centre for Mental Disorders Research (NORMENT) Division of Mental Health and Addiction, Oslo University Hospital Oslo Norway
| | - Thomas M. Lancaster
- Cardiff University Brain Research Imaging Centre (CUBRIC) Cardiff University Cardiff UK
- School of Psychology Bath University Bath UK
| | - Rhoshel K. Lenroot
- Neuroscience Research Australia Randwick New South Wales Australia
- School of Psychiatry University of New South Wales Sydney New South Wales Australia
- University of New Mexico Albuquerque New Mexico USA
| | - Vera Lonning
- Norwegian Centre for Mental Disorders Research (NORMENT) Institute of Clinical Medicine, University of Oslo Oslo Norway
- Department of Psychiatric Research Diakonhjemmet Hospital Oslo Norway
| | - Carlos López‐Jaramillo
- Research Group in Psychiatry, Department of Psychiatry Faculty of Medicine, Universidad de Antioquia Medellín Antioquia Colombia
- Mood Disorders Program Hospital Universitario San Vicente Fundación Medellín Antioquia Colombia
| | - Ulrik F. Malt
- Institute of Clinical Medicine University of Oslo Oslo Norway
| | - Colm McDonald
- Centre for Neuroimaging & Cognitive Genomics (NICOG) Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway Galway Ireland
| | | | - Genevieve McPhilemy
- Centre for Neuroimaging & Cognitive Genomics (NICOG) Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway Galway Ireland
| | - Dennis Meer
- Norwegian Centre for Mental Disorders Research (NORMENT) Institute of Clinical Medicine, University of Oslo Oslo Norway
- School of Mental Health and Neuroscience Faculty of Health, Medicine and Life Sciences, Maastricht University Maastricht The Netherlands
| | - Ingrid Melle
- Norwegian Centre for Mental Disorders Research (NORMENT) Division of Mental Health and Addiction, Oslo University Hospital Oslo Norway
- Norwegian Centre for Mental Disorders Research (NORMENT) Institute of Clinical Medicine, University of Oslo Oslo Norway
| | - Elisa M. T. Melloni
- Psychiatry and Clinical Psychobiology Scientific Institute Ospedale San Raffaele Milan Italy
- University Vita‐Salute San Raffaele Milan Italy
| | - Philip B. Mitchell
- School of Psychiatry University of New South Wales Sydney New South Wales Australia
- Black Dog Institute Sydney New South Wales Australia
| | - Leila Nabulsi
- Centre for Neuroimaging & Cognitive Genomics (NICOG) Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway Galway Ireland
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy Philipps‐University Marburg Marburg Germany
- Center for Mind Brain and Behavior (CMBB) Marburg Germany
| | - Viola Oertel
- Department of Psychiatry Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt Frankfurt am Main Germany
| | - Lucio Oldani
- Department of Neurosciences and Mental Health Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan Italy
| | - Nils Opel
- Department of Psychiatry University of Münster Münster Germany
| | - Maria C. G. Otaduy
- LIM44, Department of Radiology and Oncology University of São Paulo São Paulo Brazil
| | - Bronwyn J. Overs
- Neuroscience Research Australia Randwick New South Wales Australia
| | - Julian A. Pineda‐Zapata
- Research Group in Psychiatry, Department of Psychiatry Faculty of Medicine, Universidad de Antioquia Medellín Antioquia Colombia
- Research Group Instituto de Alta Tecnología Médica Medellín Antioquia Colombia
| | | | - Joaquim Radua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM Barcelona Spain
- Department of Psychosis Studies Institute of Psychiatry, Psychology and Neuroscience, King's College London London UK
- Department of Clinical Neuroscience Centre for Psychiatry Research, Karolinska Institutet Stockholm Sweden
| | - Lisa Rauer
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry Heidelberg University Hospital Heidelberg Germany
| | - Ronny Redlich
- Department of Psychiatry University of Münster Münster Germany
| | - Jonathan Repple
- Department of Psychiatry University of Münster Münster Germany
| | - Maria M. Rive
- Psychiatry Amsterdam UMC, Location AMC Amsterdam The Netherlands
| | - Gloria Roberts
- School of Psychiatry University of New South Wales Sydney New South Wales Australia
- Black Dog Institute Sydney New South Wales Australia
| | - Henricus G. Ruhe
- Psychiatry Amsterdam UMC, Location AMC Amsterdam The Netherlands
- Donders Institute for Brain, Cognition and Behavior Radboud University Nijmegen The Netherlands
- Department of Psychiatry Radboudumc Nijmegen The Netherlands
| | - Lauren E. Salminen
- Imaging Genetics Center USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California Marina del Rey California USA
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research Foundation CIBERSAM Barcelona Spain
| | - Salvador Sarró
- FIDMAG Germanes Hospitalàries Research Foundation CIBERSAM Barcelona Spain
| | - Jonathan Savitz
- Laureate Institute for Brain Research Tulsa Oklahoma USA
- Oxley College of Health Sciences The University of Tulsa Tulsa Oklahoma USA
| | - Aart H. Schene
- Donders Institute for Brain, Cognition and Behavior Radboud University Nijmegen The Netherlands
- Department of Psychiatry Radboudumc Nijmegen The Netherlands
| | - Kang Sim
- West Region/Institute of Mental Health Singapore Singapore
- Yong Loo Lin School of Medicine/National University of Singapore Singapore Singapore
- Lee Kong Chian School of Medicine/Nanyang Technological University Singapore Singapore
| | | | - Michael Stäblein
- Department of Psychiatry Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt Frankfurt am Main Germany
| | - Dan J. Stein
- Department of Psychiatry and Mental Health University of Cape Town Cape Town Western Cape South Africa
- Neuroscience Institute University of Cape Town Cape Town Western Cape South Africa
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry & Neuroscience Institute University of Cape Town Cape Town Western Cape South Africa
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy Philipps‐University Marburg Marburg Germany
- Center for Mind Brain and Behavior (CMBB) Marburg Germany
| | - Christian K. Tamnes
- Norwegian Centre for Mental Disorders Research (NORMENT) Division of Mental Health and Addiction, Oslo University Hospital Oslo Norway
- Norwegian Centre for Mental Disorders Research (NORMENT) Institute of Clinical Medicine, University of Oslo Oslo Norway
- Department of Psychiatric Research Diakonhjemmet Hospital Oslo Norway
- PROMENTA Research Center, Department of Psychology University of Oslo Oslo Norway
| | - Henk S. Temmingh
- Department of Psychiatry and Mental Health University of Cape Town Cape Town Western Cape South Africa
- General Adult Psychiatry Division Valkenberg Hospital Cape Town Western Cape South Africa
| | - Sophia I. Thomopoulos
- Imaging Genetics Center USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California Marina del Rey California USA
| | - Dick J. Veltman
- Department of Psychiatry Amsterdam UMC, Location VUMC Amsterdam The Netherlands
- Amsterdam Neuroscience Amsterdam UMC Amsterdam The Netherlands
| | - Eduard Vieta
- Hospital Clinic University of Barcelona, IDIBAPS, CIBERSAM Barcelona Catalonia Spain
| | - Lena Waltemate
- Department of Psychiatry University of Münster Münster Germany
| | - Lars T. Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT) Division of Mental Health and Addiction, Oslo University Hospital Oslo Norway
- Department of Psychology University of Oslo Oslo Norway
| | | | | | - Paul M. Thompson
- Imaging Genetics Center USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California Marina del Rey California USA
| | - Christopher R. K. Ching
- Imaging Genetics Center USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California Marina del Rey California USA
| | - Ole A. Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT) Division of Mental Health and Addiction, Oslo University Hospital Oslo Norway
- Norwegian Centre for Mental Disorders Research (NORMENT) Institute of Clinical Medicine, University of Oslo Oslo Norway
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research (NORMENT) Institute of Clinical Medicine, University of Oslo Oslo Norway
- Department of Psychiatric Research Diakonhjemmet Hospital Oslo Norway
- Department of Clinical Neuroscience Centre for Psychiatric Research, Karolinska Institutet Stockholm Sweden
| | | |
Collapse
|
14
|
Mancuso L, Fornito A, Costa T, Ficco L, Liloia D, Manuello J, Duca S, Cauda F. A meta-analytic approach to mapping co-occurrent grey matter volume increases and decreases in psychiatric disorders. Neuroimage 2020; 222:117220. [PMID: 32777357 DOI: 10.1016/j.neuroimage.2020.117220] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
Numerous studies have investigated grey matter (GM) volume changes in diverse patient groups. Reports of disorder-related GM reductions are common in such work, but many studies also report evidence for GM volume increases in patients. It is unclear whether these GM increases and decreases are independent or related in some way. Here, we address this question using a novel meta-analytic network mapping approach. We used a coordinate-based meta-analysis of 64 voxel-based morphometry studies of psychiatric disorders to calculate the probability of finding a GM increase or decrease in one region given an observed change in the opposite direction in another region. Estimating this co-occurrence probability for every pair of brain regions allowed us to build a network of concurrent GM changes of opposing polarity. Our analysis revealed that disorder-related GM increases and decreases are not independent; instead, a GM change in one area is often statistically related to a change of opposite polarity in other areas, highlighting distributed yet coordinated changes in GM volume as a function of brain pathology. Most regions showing GM changes linked to an opposite change in a distal area were located in salience, executive-control and default mode networks, as well as the thalamus and basal ganglia. Moreover, pairs of regions showing coupled changes of opposite polarity were more likely to belong to different canonical networks than to the same one. Our results suggest that regional GM alterations in psychiatric disorders are often accompanied by opposing changes in distal regions that belong to distinct functional networks.
Collapse
Affiliation(s)
- Lorenzo Mancuso
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy; GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Alex Fornito
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University,Victoria, Australia; Monash Biomedical Imaging, Monash University,Victoria, Australia
| | - Tommaso Costa
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy; GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.
| | - Linda Ficco
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy; GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Donato Liloia
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy; GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Jordi Manuello
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy; GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Sergio Duca
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Franco Cauda
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy; GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
15
|
Assmann A, Richter A, Schütze H, Soch J, Barman A, Behnisch G, Knopf L, Raschick M, Schult A, Wüstenberg T, Behr J, Düzel E, Seidenbecher CI, Schott BH. Neurocan genome-wide psychiatric risk variant affects explicit memory performance and hippocampal function in healthy humans. Eur J Neurosci 2020; 53:3942-3959. [PMID: 32583466 DOI: 10.1111/ejn.14872] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/04/2020] [Accepted: 06/15/2020] [Indexed: 12/26/2022]
Abstract
Alterations of the brain extracellular matrix (ECM) can perturb the structure and function of brain networks like the hippocampus, a key region in human memory that is commonly affected in psychiatric disorders. Here, we investigated the potential effects of a genome-wide psychiatric risk variant in the NCAN gene encoding the ECM proteoglycan neurocan (rs1064395) on memory performance, hippocampal function and cortical morphology in young, healthy volunteers. We assessed verbal memory performance in two cohorts (N = 572, 302) and found reduced recall performance in risk allele (A) carriers across both cohorts. In 117 participants, we performed functional magnetic resonance imaging using a novelty-encoding task with visual scenes. Risk allele carriers showed higher false alarm rates during recognition, accompanied by inefficiently increased left hippocampal activation. To assess effects of rs1064395 on brain morphology, we performed voxel-based morphometry in 420 participants from four independent cohorts and found lower grey matter density in the ventrolateral and rostral prefrontal cortex of risk allele carriers. In silico eQTL analysis revealed that rs1064395 SNP is linked not only to increased prefrontal expression of the NCAN gene itself, but also of the neighbouring HAPLN4 gene, suggesting a more complex effect of the SNP on ECM composition. Our results suggest that the NCAN rs1064395 A allele is associated with lower hippocampus-dependent memory function, variation of prefrontal cortex structure and ECM composition. Considering the well-documented hippocampal and prefrontal dysfunction in bipolar disorder and schizophrenia, our results may reflect an intermediate phenotype by which NCAN rs1064395 contributes to disease risk.
Collapse
Affiliation(s)
- Anne Assmann
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Department of Neurology, Otto von Guericke University, Magdeburg, Germany.,German Center for Neurodegenerative Diseases, Magdeburg, Germany
| | - Anni Richter
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Hartmut Schütze
- German Center for Neurodegenerative Diseases, Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University, Magdeburg, Germany
| | - Joram Soch
- German Center for Neurodegenerative Diseases, Göttingen, Germany.,Bernstein Center for Computational Neuroscience, Humboldt University, Berlin, Germany
| | | | | | - Lea Knopf
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Department of Neurology, Otto von Guericke University, Magdeburg, Germany
| | - Matthias Raschick
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Department of Neurology, Otto von Guericke University, Magdeburg, Germany
| | - Annika Schult
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Department of Neurology, Otto von Guericke University, Magdeburg, Germany
| | - Torsten Wüstenberg
- Department of Psychiatry and Psychotherapy, Charité University Medicine, Berlin, Germany.,Department of Clinical Psychology and Psychotherapy, Institute of Psychology, University of Heidelberg, Heidelberg, Germany
| | - Joachim Behr
- Department of Psychiatry and Psychotherapy, Charité University Medicine, Berlin, Germany.,Department of Psychiatry and Psychotherapy, Medical School Brandenburg, Neuruppin, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases, Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Constanze I Seidenbecher
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Björn H Schott
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,German Center for Neurodegenerative Diseases, Göttingen, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, University Medicine Göttingen, Germany
| |
Collapse
|
16
|
Overlapping mechanisms linking insulin resistance with cognition and neuroprogression in bipolar disorder. Neurosci Biobehav Rev 2020; 111:125-134. [PMID: 31978440 DOI: 10.1016/j.neubiorev.2020.01.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/26/2022]
Abstract
Cognitive impairment is highly prevalent in the progression of both diabetes mellitus and bipolar disorder. The relationship between insulin resistance in diabetes and the risk of developing major neurocognitive disorders such as Alzheimer's disease has been well described. Insulin resistance and the associated metabolic deficiencies lead to biochemical alteration which hasten neurodegeneration and subsequent cognitive impairment. For bipolar disorder, some patients experience a cyclical, yet progressive course of illness. These patients are also more likely to have medical comorbidities such as cardiovascular disease and diabetes, and insulin resistance in particular may precede the neuroprogressive course. Diabetes and bipolar disorder share epidemiological, biochemical, and structural signatures, as well as cognitive impairment within similar domains, suggesting a common mechanism between the two conditions. Here we describe the association between insulin resistance and cognitive changes in bipolar disorder, as well as potential implications for therapeutic modulation of neuroprogression.
Collapse
|
17
|
Zhang L, Mak E, Reilhac A, Shim HY, Ng KK, Ong MQW, Ji F, Chong EJY, Xu X, Wong ZX, Stephenson MC, Venketasubramanian N, Tan BY, O'Brien JT, Zhou JH, Chen CLH. Longitudinal trajectory of Amyloid-related hippocampal subfield atrophy in nondemented elderly. Hum Brain Mapp 2020; 41:2037-2047. [PMID: 31944479 PMCID: PMC7267893 DOI: 10.1002/hbm.24928] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 01/03/2020] [Accepted: 01/05/2020] [Indexed: 01/07/2023] Open
Abstract
Hippocampal atrophy and abnormal β‐Amyloid (Aβ) deposition are established markers of Alzheimer's disease (AD). Nonetheless, longitudinal trajectory of Aβ‐associated hippocampal subfield atrophy prior to dementia remains unclear. We hypothesized that elevated Aβ correlated with longitudinal subfield atrophy selectively in no cognitive impairment (NCI), spreading to other subfields in mild cognitive impairment (MCI). We analyzed data from two independent longitudinal cohorts of nondemented elderly, including global PET‐Aβ in AD‐vulnerable cortical regions and longitudinal subfield volumes quantified with a novel auto‐segmentation method (FreeSurfer v.6.0). Moreover, we investigated associations of Aβ‐related progressive subfield atrophy with memory decline. Across both datasets, we found a converging pattern that higher Aβ correlated with faster CA1 volume decline in NCI. This pattern spread to other hippocampal subfields in MCI group, correlating with memory decline. Our results for the first time suggest a longitudinal focal‐to‐widespread trajectory of Aβ‐associated hippocampal subfield atrophy over disease progression in nondemented elderly.
Collapse
Affiliation(s)
- Liwen Zhang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Center for Cognitive Neuroscience, Neuroscience and Behavioural Disorders Program, Duke-National University of Singapore Medical School, Singapore.,Memory Ageing and Cognition Centre, National University Health System, Singapore, Singapore
| | - Elijah Mak
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Anthonin Reilhac
- Clinical Imaging Research Center, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Hee Y Shim
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Center for Cognitive Neuroscience, Neuroscience and Behavioural Disorders Program, Duke-National University of Singapore Medical School, Singapore
| | - Kwun K Ng
- Center for Sleep and Cognition, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Center for Cognitive Neuroscience, Neuroscience and Behavioural Disorders Program, Duke-National University of Singapore Medical School, Singapore
| | - Marcus Q W Ong
- Center for Sleep and Cognition, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Center for Cognitive Neuroscience, Neuroscience and Behavioural Disorders Program, Duke-National University of Singapore Medical School, Singapore
| | - Fang Ji
- Center for Sleep and Cognition, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Center for Cognitive Neuroscience, Neuroscience and Behavioural Disorders Program, Duke-National University of Singapore Medical School, Singapore
| | - Eddie J Y Chong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Memory Ageing and Cognition Centre, National University Health System, Singapore, Singapore
| | - Xin Xu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Memory Ageing and Cognition Centre, National University Health System, Singapore, Singapore
| | - Zi X Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Memory Ageing and Cognition Centre, National University Health System, Singapore, Singapore
| | - Mary C Stephenson
- Clinical Imaging Research Center, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | | | - Boon Y Tan
- St. Luke's Hospital, Singapore, Singapore
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Juan H Zhou
- Center for Sleep and Cognition, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Center for Cognitive Neuroscience, Neuroscience and Behavioural Disorders Program, Duke-National University of Singapore Medical School, Singapore.,Clinical Imaging Research Center, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Christopher L H Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Memory Ageing and Cognition Centre, National University Health System, Singapore, Singapore
| | | |
Collapse
|
18
|
Wang X, Luo Q, Tian F, Cheng B, Qiu L, Wang S, He M, Wang H, Duan M, Jia Z. Brain grey-matter volume alteration in adult patients with bipolar disorder under different conditions: a voxel-based meta-analysis. J Psychiatry Neurosci 2019; 44:89-101. [PMID: 30354038 PMCID: PMC6397036 DOI: 10.1503/jpn.180002] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The literature on grey-matter volume alterations in bipolar disorder is heterogeneous in its findings. METHODS Using effect-size differential mapping, we conducted a meta-analysis of grey-matter volume alterations in patients with bipolar disorder compared with healthy controls. RESULTS We analyzed data from 50 studies that included 1843 patients with bipolar disorder and 2289 controls. Findings revealed lower grey-matter volumes in the bilateral superior frontal gyri, left anterior cingulate cortex and right insula in patients with bipolar disorder and in patients with bipolar disorder type I. Patients with bipolar disorder in the euthymic and depressive phases had spatially distinct regions of altered grey-matter volume. Meta-regression revealed that the proportion of female patients with bipolar disorder or bipolar disorder type I was negatively correlated with regional grey-matter alteration in the right insula; the proportion of patients with bipolar disorder or bipolar disorder type I taking lithium was positively correlated with regional grey-matter alterations in the left anterior cingulate/paracingulate gyri; and the proportion of patients taking antipsychotic medications was negatively correlated with alterations in the anterior cingulate/paracingulate gyri. LIMITATIONS This study was cross-sectional; analysis techniques, patient characteristics and clinical variables in the included studies were heterogeneous. CONCLUSION Structural grey-matter abnormalities in patients with bipolar disorder and bipolar disorder type I were mainly in the prefrontal cortex and insula. Patients' mood state might affect grey-matter alterations. Abnormalities in regional grey-matter volume could be correlated with patients' specific demographic and clinical features.
Collapse
Affiliation(s)
- Xiuli Wang
- From the Department of Psychiatry, the Fourth People’s Hospital of Chengdu, Chengdu, China (Duan, He, H. Wang, S. Wang, X. Wang); the Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China (Luo, Jia); the Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China (Tian, Jia); the Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu, China (Cheng); and the Department of Radiology, the Second People’s Hospital of Yibin, Yibin, China (Qiu)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Fateh AA, Long Z, Duan X, Cui Q, Pang Y, Farooq MU, Nan X, Chen Y, Sheng W, Tang Q, Chen H. Hippocampal functional connectivity-based discrimination between bipolar and major depressive disorders. Psychiatry Res Neuroimaging 2019; 284:53-60. [PMID: 30684896 DOI: 10.1016/j.pscychresns.2019.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 01/14/2023]
Abstract
Despite the impressive advancements in the neuropathology of mood disorders, patients with bipolar disorder (BD) are often misdiagnosed on the initial presentation with major depressive disorder (MDD). With supporting evidence from neuroimaging studies, the abnormal functional connectivity (FC) of the hippocampus has been associated with various mood disorders, including BD and MDD. However, the features of the hippocampal FC underlying MDD and BD have not been directly compared. This study aims to investigate the hippocampal resting-state FC (rsFC) analyses to distinguish these two clinical conditions. Resting-state functional magnetic resonance imaging (fMRI) data was collected from a sample group of 30 patients with BD, 29 patients with MDD and 30 healthy controls (HCs). One-way ANOVA was employed to assess the potential differences of the hippocampus FC across all subjects. BD patients exhibited increased FC of the bilateral anterior/posterior hippocampus with lingual gyrus and inferior frontal gyrus (IFG) relative to patients MDD patients. In comparison with HCs, patients with BD and MDD had an increased FC between the right anterior hippocampus and lingual gyrus and a decreased FC between the right posterior hippocampus and right IFG. The results revealed a distinct hippocampal FC in MDD patients compared with that observed in BD patients. These findings may assist investigators in attempting to distinguish mood disorders by using fMRI data.
Collapse
Affiliation(s)
- Ahmed Ameen Fateh
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuro-Information, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhiliang Long
- Sleep and Neuroimaging Center, Faculty of Psychology, Southwest University, Chongqing, China
| | - Xujun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuro-Information, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qian Cui
- School of Political Science and Public Administration, University of Electronic Science and Technology of China, Chengdu, China
| | - Yajing Pang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuro-Information, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Muhammad Umar Farooq
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, China
| | - Xiaoyu Nan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuro-Information, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China; School of Political Science and Public Administration, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuyan Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuro-Information, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Sheng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuro-Information, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qin Tang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuro-Information, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuro-Information, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
20
|
Teixeira AL, Colpo GD, Fries GR, Bauer IE, Selvaraj S. Biomarkers for bipolar disorder: current status and challenges ahead. Expert Rev Neurother 2018; 19:67-81. [PMID: 30451546 DOI: 10.1080/14737175.2019.1550361] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Bipolar disorder (BD) is a chronic psychiatric disorder marked by clinical and pathophysiological heterogeneity. There is a high expectation that personalized approaches can improve the management of patients with BD. For that, identification and validation of potential biomarkers are fundamental. Areas covered: This manuscript will critically review the current status of different biomarkers for BD, including peripheral, genetic, neuroimaging, and neurophysiological candidates, discussing the challenges to move the field forward. Expert commentary: There are no lab or complementary tests currently recommended for the diagnosis or management of patients with BD. Panels composed by multiple biomarkers will probably contribute to stratifying patients according to their clinical stage, therapeutic response, and prognosis.
Collapse
Affiliation(s)
- Antonio L Teixeira
- a Department of Psychiatry & Behavioral Sciences , McGovern Medical School, UT Health , Houston , TX , USA.,b Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina , Universidade Federal de Minas Gerais (UFMG) , Belo Horizonte , Brazil
| | - Gabriela D Colpo
- a Department of Psychiatry & Behavioral Sciences , McGovern Medical School, UT Health , Houston , TX , USA
| | - Gabriel R Fries
- a Department of Psychiatry & Behavioral Sciences , McGovern Medical School, UT Health , Houston , TX , USA
| | - Isabelle E Bauer
- a Department of Psychiatry & Behavioral Sciences , McGovern Medical School, UT Health , Houston , TX , USA
| | - Sudhakar Selvaraj
- a Department of Psychiatry & Behavioral Sciences , McGovern Medical School, UT Health , Houston , TX , USA
| |
Collapse
|
21
|
Neuroimaging hippocampal subfields in schizophrenia and bipolar disorder: A systematic review and meta-analysis. J Psychiatr Res 2018; 104:217-226. [PMID: 30107268 DOI: 10.1016/j.jpsychires.2018.08.012] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/27/2018] [Accepted: 08/06/2018] [Indexed: 01/15/2023]
Abstract
The hippocampus is a complex structure consisting of subregions with specialized cytoarchitecture and functions. Magnetic resonance imaging (MRI) studies in psychotic disorders show hippocampal subfield abnormalities, but affected regions differ between studies. We here present an overview of hippocampal anatomy and function relevant to psychosis, and the first systematic review and meta-analysis of MRI studies of hippocampal subfield morphology in schizophrenia and bipolar disorder. Twenty-one MRI studies assessing hippocampal subfield volumes or shape in schizophrenia or bipolar disorder were included (n 15-887 subjects). Nine volumetric group comparison studies (total n = 2593) were included in random effects meta-analyses of group differences. The review showed mixed results, with volume reductions reported in most subfields in schizophrenia and bipolar disorder. Volumetric studies using ex-vivo based image analysis templates corresponded best with the shape studies, with CA1 as the most affected region. The meta-analyses showed volume reductions in all subfields in schizophrenia and bipolar disorder compared to healthy controls (all p < .005; schizophrenia: d = 0.28-0.49, bipolar disorder: d = 0.20-0.35), and smaller left CA2/3 and right subiculum in schizophrenia than bipolar disorder. In conclusion, the hippocampal subfields appear to be differently affected in psychotic disorders. However, due to the lack of control for putative confounders such as medication, alcohol and illicit substance use, and illness stage, the results from the meta-analysis should be interpreted with caution. Methodological subfield segmentation weaknesses should be addressed in future studies.
Collapse
|
22
|
Sex-related variation of neurocognitive functioning in bipolar disorder: Focus on visual memory and associative learning. Psychiatry Res 2018; 267:499-505. [PMID: 29980130 DOI: 10.1016/j.psychres.2018.06.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 05/05/2018] [Accepted: 06/13/2018] [Indexed: 12/19/2022]
Abstract
Bipolar disorder (BD) is associated with cognitive deficits in attention, verbal memory and executive functions. However, only few studies have examined sex effects on cognition despite their clinical relevance. Given that visual memory/ learning has been understudied the aim of our study was to investigate sex-related variation in cognition (executive functions and visual memory/ learning) in BD. Cognitive performance of 60 bipolar-I patients and 30 healthy controls was evaluated by using CANTAB battery tasks targeting spatial memory (SRM), paired associative learning (PAL) and executive functions. We fitted a multivariate analysis of covariance (MANCOVA), followed by task-specific ANCOVAs. A significant diagnosis by sex interaction effect was detected (MANCOVA); specifically, diagnosis-specific sex effects were found for SRM and PAL, as healthy males outperformed healthy females but this pattern was attenuated in BD patients. Patients' clinicodemographic characteristics, current psychopathology or medication status did not differ across sexes and were, therefore, unlikely to explain detected sex effects. Our study is one of few studies to assess sex-related variation in cognition in BD and the first to record a diagnosis-specific sex effect for two tasks of visuo-spatial memory/ learning, indicating that sex-related variation in healthy subjects is disrupted in BD.
Collapse
|
23
|
Mitchell RH, Metcalfe AW, Islam AH, Toma S, Patel R, Fiksenbaum L, Korczak D, MacIntosh BJ, Goldstein BI. Sex differences in brain structure among adolescents with bipolar disorder. Bipolar Disord 2018; 20:448-458. [PMID: 29956452 DOI: 10.1111/bdi.12663] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Bipolar disorder (BD) is twice as prevalent amongst female as amongst male adolescents. Thus far, little is known regarding the neurostructural substrates underlying this disparity. We therefore examined sex differences in neurostructural magnetic resonane imaging (MRI) phenotypes amongst adolescents with BD. METHODS T1-weighted structural MRI was acquired from 44 BD (25 female [F] and 19 male [M]) and 58 (28 F and 30 M) healthy control (HC) adolescents (13-21 years old). Whole-brain and region-of-interest (ROI) analyses examined structural volume and cortical thickness using FreeSurfer. ROIs included the ventrolateral prefrontal cortex (vlPFC), anterior cingulate cortex (ACC), amygdala and hippocampus. General linear models evaluated sex-by-diagnosis interactions, controlling for age and intracranial volume. RESULTS Whole-brain analysis revealed sex-by-diagnosis interactions in the left supramarginal gyrus (SMG) (P = .02, η2 = 0.02) and right inferior parietal lobule (IPL) volumes (P = .04, η2 = 0.01). Sex differences in HCs were found in the SMG (M > F) and IPL (F > M). In BD, sex differences were reversed and of smaller magnitude in the SMG (M < F) and of greater magnitude in the IPL (F > M), driven by trends towards smaller SMG and IPL in BD vs HC male participants (P = .05 and .14). Whole-brain analyses for cortical thickness, and ROI analyses for volume and cortical thickness, were not significant. CONCLUSIONS Normative sex differences may be disrupted in adolescent BD in the SMG and IPL, heteromodal association network hubs responsible for higher order integration of cognitive and emotional processing. Unexpectedly, these findings may inform our understanding of aberrant brain structure in adolescent BD male patients, rather than female patients. Future work should focus on replication, as well as the impact of puberty status and sex hormones on measures of brain structure and function.
Collapse
Affiliation(s)
- Rachel Hb Mitchell
- Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Canada
| | - Arron Ws Metcalfe
- Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Toronto, Canada
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Canada
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Alvi H Islam
- Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Pharmacology, University of Toronto, Toronto, Canada
| | - Simina Toma
- Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Ronak Patel
- Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Lisa Fiksenbaum
- Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Daphne Korczak
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Department of Psychiatry, Hospital for Sick Children, Toronto, Canada
| | - Bradley J MacIntosh
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Canada
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Physical Sciences, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Canada
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Pharmacology, University of Toronto, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| |
Collapse
|
24
|
Tannous J, Amaral-Silva H, Cao B, Wu MJ, Zunta-Soares GB, Kazimi I, Zeni C, Mwangi B, Soares JC. Hippocampal subfield volumes in children and adolescents with mood disorders. J Psychiatr Res 2018; 101:57-62. [PMID: 29550609 DOI: 10.1016/j.jpsychires.2018.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/01/2018] [Accepted: 03/09/2018] [Indexed: 01/04/2023]
Abstract
The hippocampus has been implicated in various mood disorders, with global volume deficits consistently found in patient populations. The hippocampus, however, consists of anatomically distinct subfields, and examination of specific subfield differences may elucidate the possible molecular mechanisms behind psychiatric pathologies. Indeed, adult studies have reported smaller hippocampal subfield volumes in regions within the cornu ammonis (CA1 and CA4), dentate gyrus (DG), and hippocampal tails in both patients with Major Depressive Disorder (MDD) and Bipolar Disorder (BD) compared to healthy controls. Subfield differences in pediatric patients with mood disorders, on the other hand, have not been extensively investigated. In the current study, magnetic resonance imaging scans were acquired for 141 children and adolescents between the ages of eight and eighteen (57 with BD, 30 with MDD, and 54 healthy controls). An automated segmentation method was then used to assess differences in hippocampal subfield volumes. Children and adolescents with BD were found to have significantly smaller volumes in the right CA1, CA4, and right subiculum, as well as the bilateral granule cell layer (GCL), molecular layer (ML), and hippocampal tails. The volume of the right subiculum in BD patients was also found to be negatively correlated with illness duration. Overall, the findings from this cross-sectional study provide evidence for specific hippocampal subfield volume differences in children and adolescents with BD compared to healthy controls and suggest progressive reductions with increased illness duration.
Collapse
Affiliation(s)
- Jonika Tannous
- Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, TX, USA.
| | - Henrique Amaral-Silva
- Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, TX, USA
| | - Bo Cao
- Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, TX, USA
| | - Mon-Ju Wu
- Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, TX, USA
| | - Giovana B Zunta-Soares
- Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, TX, USA
| | - Iram Kazimi
- Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, TX, USA
| | - Cristian Zeni
- Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, TX, USA
| | - Benson Mwangi
- Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, TX, USA
| | - Jair C Soares
- Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, TX, USA
| |
Collapse
|
25
|
Sani G, Simonetti A, Janiri D, Banaj N, Ambrosi E, De Rossi P, Ciullo V, Arciniegas DB, Piras F, Spalletta G. Association between duration of lithium exposure and hippocampus/amygdala volumes in type I bipolar disorder. J Affect Disord 2018; 232:341-348. [PMID: 29510351 DOI: 10.1016/j.jad.2018.02.042] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/17/2018] [Accepted: 02/16/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Prior studies on the effects of lithium on limbic and subcortical gray matter volumes are mixed. It is possible that discrepant findings may be explained by the duration of lithium exposure. We investigated this issue in individuals with type I bipolar disorder (BP-I). METHODS Limbic and subcortical gray matter volume was measured using FreeSurfer in 60 subjects: 15 with BP-I without prior lithium exposure [no-exposure group (NE)]; 15 with BP-I and lithium exposure < 24 months [short-exposure group (SE)]; 15 with BP-I and lithium exposure > 24 months [long-exposure group (LE)]; and 15 healthy controls (HC). RESULTS No differences in limbic and subcortical gray matter volumes were found between LE and HC. Hippocampal and amygdalar volumes were larger bilaterally in both LE and HC when compared to NE. Amygdalar volumes were larger bilaterally in SE when compared to NE but did not differ from LE. Hippocampal volumes were smaller bilaterally in SE when compared to LE and HC but did not differ from NE. No between-group differences on subcortical gray matter or other limbic structure volumes were observed. LIMITATIONS Cross-sectional design and concurrent treatment with other medications limit attribution of between-group differences to lithium exposure alone. CONCLUSIONS The effect of lithium exposure on limbic and subcortical gray matter volumes appears to be time-dependent and relatively specific to the hippocampus and the amygdala, with short-term effects on the amygdala and long-term effects on both structures. These results support the clinical importance of long-term lithium treatment in BP-I.
Collapse
Affiliation(s)
- Gabriele Sani
- NESMOS Department (Neurosciences, Mental Health, and Sensory Organs), Sapienza University of Rome, School of Medicine and Psychology, Sant'Andrea Hospital, Rome, Italy; Centro Lucio Bini, Rome, Italy; School of Medicine, Mood Disorder Program, Tufts University, Boston, MA, USA
| | - Alessio Simonetti
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy; Centro Lucio Bini, Rome, Italy; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Delfina Janiri
- Psychiatry Residency Training Program, Faculty of Medicine and Psychology, Sapienza University of Rome, Italy
| | - Nerisa Banaj
- IRCCS Santa Lucia Foundation, Laboratory of Neuropsychiatry, Rome, Italy
| | - Elisa Ambrosi
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA; IRCCS Santa Lucia Foundation, Laboratory of Neuropsychiatry, Rome, Italy
| | - Pietro De Rossi
- NESMOS Department (Neurosciences, Mental Health, and Sensory Organs), Sapienza University of Rome, School of Medicine and Psychology, Sant'Andrea Hospital, Rome, Italy; Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Valentina Ciullo
- IRCCS Santa Lucia Foundation, Laboratory of Neuropsychiatry, Rome, Italy; Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, 50139 Italy
| | - David B Arciniegas
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA; Departments of Neurology and Psychiatry, University of Colorado School of Medicine, Aurora, CO, USA
| | - Fabrizio Piras
- IRCCS Santa Lucia Foundation, Laboratory of Neuropsychiatry, Rome, Italy
| | - Gianfranco Spalletta
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA; IRCCS Santa Lucia Foundation, Laboratory of Neuropsychiatry, Rome, Italy.
| |
Collapse
|
26
|
Abstract
Bipolar disorder (BD) is a severe, recurrent mood disorder, associated with a significant morbidity and mortality, with high rates of suicides and medical comorbidities. There is a high risk of mood disorders among the first-degree relatives of patients with BD. In the current clinical practice, the diagnosis of BD is made by history taking, interview and behavioural observations, thereby lacking an objective, biological validation. This approach may result in underdiagnosis, misdiagnosis and eventually poorer outcomes. Due to the heterogeneity of BD, the possibility of developing a single, specific biomarker is still remote; however, there is a set of promising biomarkers which may serve as predictive, prognostic or treatment markers in the future. The review presents a critical appraisal and update on some of the most promising candidates for biomarkers, namely, neuroimaging markers, peripheral biomarkers and genetic markers, including a brief discussion on cognitive endophenotypes as indicative of genetic risk. The lessons learnt from other fields and specialties in medicine need to be applied to psychiatry to translate the knowledge from ‘bench to bedside’ by means of clinically useful biomarkers. Overall, the biomarkers may help in pushing the shift towards personalized medicine for psychiatric patients.
Collapse
Affiliation(s)
- Rajesh Sagar
- Department of Psychiatry, All Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|
27
|
|
28
|
Tournikioti K, Ferentinos P, Michopoulos I, Alevizaki M, Soldatos CR, Dikeos D, Douzenis A. Clinical and treatment-related predictors of cognition in bipolar disorder: focus on visual paired associative learning. Eur Arch Psychiatry Clin Neurosci 2017; 267:661-669. [PMID: 27783216 DOI: 10.1007/s00406-016-0743-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 10/17/2016] [Indexed: 11/29/2022]
Abstract
Bipolar disorder (BD) is associated with impairment in cognitive domains such as verbal memory and executive functions. However, visual paired associative learning (PAL) has been far less researched. Neurocognitive dysfunction in BD patients has been related to several clinical factors, but data on the effect of medication are relatively scarce and inconsistent. The aim of our study was to explore the effect of clinical and treatment-related parameters on executive functions and visual memory/learning, including PAL, in BD. Cognitive performance of 60 bipolar I patients and 30 healthy subjects was evaluated by using CANTAB battery tasks targeting spatial recognition memory, PAL and executive functions (set shifting, planning, inhibitory control). Bipolar patients showed poorer performance in PAL, set shifting, planning and inhibitory control than healthy subjects; however, only differences in PAL and planning survived correction for multiple comparisons. Number of previous manic episodes and illness duration predicted worse performance in set shifting and PAL, respectively, whereas current treatment with valproate predicted better performance in PAL. This is one of the first studies to assess clinical and treatment-related predictors of PAL in BD. We report a possibly beneficial effect of valproate on PAL, which warrants further investigation.
Collapse
Affiliation(s)
- Kalliopi Tournikioti
- 2nd Department of Psychiatry, Attikon General Hospital, University of Athens, Medical School, Rimini 1, 12462, Athens, Greece.
| | - Panagiotis Ferentinos
- 2nd Department of Psychiatry, Attikon General Hospital, University of Athens, Medical School, Rimini 1, 12462, Athens, Greece
| | - Ioannis Michopoulos
- 2nd Department of Psychiatry, Attikon General Hospital, University of Athens, Medical School, Rimini 1, 12462, Athens, Greece
| | - Maria Alevizaki
- Endocrine Unit, Department of Medical Therapeutics, Alexandra Hospital, University of Athens, Medical School, Athens, Greece
| | - Constantin R Soldatos
- Mental Health Care Unit, Evgenidion Hospital, University of Athens, Medical School, Athens, Greece
| | - Dimitris Dikeos
- 1st Department of Psychiatry, Eginition Hospital, University of Athens, Medical School, Athens, Greece
| | - Athanasios Douzenis
- 2nd Department of Psychiatry, Attikon General Hospital, University of Athens, Medical School, Rimini 1, 12462, Athens, Greece
| |
Collapse
|
29
|
Cao B, Passos IC, Mwangi B, Amaral-Silva H, Tannous J, Wu MJ, Zunta-Soares GB, Soares JC. Hippocampal subfield volumes in mood disorders. Mol Psychiatry 2017; 22:1352-1358. [PMID: 28115740 PMCID: PMC5524625 DOI: 10.1038/mp.2016.262] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 12/08/2016] [Accepted: 12/19/2016] [Indexed: 01/01/2023]
Abstract
Volume reduction and shape abnormality of the hippocampus have been associated with mood disorders. However, the hippocampus is not a uniform structure and consists of several subfields, such as the cornu ammonis (CA) subfields CA1-4, the dentate gyrus (DG) including a granule cell layer (GCL) and a molecular layer (ML) that continuously crosses adjacent subiculum (Sub) and CA fields. It is known that cellular and molecular mechanisms associated with mood disorders may be localized to specific hippocampal subfields. Thus, it is necessary to investigate the link between the in vivo hippocampal subfield volumes and specific mood disorders, such as bipolar disorder (BD) and major depressive disorder (MDD). In the present study, we used a state-of-the-art hippocampal segmentation approach, and we found that patients with BD had reduced volumes of hippocampal subfields, specifically in the left CA4, GCL, ML and both sides of the hippocampal tail, compared with healthy subjects and patients with MDD. The volume reduction was especially severe in patients with bipolar I disorder (BD-I). We also demonstrated that hippocampal subfield volume reduction was associated with the progression of the illness. For patients with BD-I, the volumes of the right CA1, ML and Sub decreased as the illness duration increased, and the volumes of both sides of the CA2/3, CA4 and hippocampal tail had negative correlations with the number of manic episodes. These results indicated that among the mood disorders the hippocampal subfields were more affected in BD-I compared with BD-II and MDD, and manic episodes had focused progressive effect on the CA2/3 and CA4 and hippocampal tail.
Collapse
Affiliation(s)
- Bo Cao
- Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, Texas, USA
| | - Ives Cavalcante Passos
- Graduation Program in Psychiatry and Laboratory of Molecular Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Benson Mwangi
- Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, Texas, USA
| | - Henrique Amaral-Silva
- Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, Texas, USA
| | - Jonika Tannous
- Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, Texas, USA
| | - Mon-Ju Wu
- Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, Texas, USA
| | - Giovana B. Zunta-Soares
- Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, Texas, USA
| | - Jair C. Soares
- Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
30
|
Wilkinson ST, Sanacora G, Bloch MH. Hippocampal volume changes following electroconvulsive therapy: a systematic review and meta-analysis. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2017; 2:327-335. [PMID: 28989984 PMCID: PMC5627663 DOI: 10.1016/j.bpsc.2017.01.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Reduced hippocampal volume is one of the most consistent morphological findings in Major Depressive Disorder (MDD). Electroconvulsive therapy (ECT) is the most effective therapy for MDD, yet its mechanism of action remains poorly understood. Animal models show that ECT induces several neuroplastic processes, which lead to hippocampal volume increases. We conducted a meta-analysis of ECT studies in humans to investigate its effects on hippocampal volume. METHODS PubMed was searched for studies examining hippocampal volume before and after ECT. A random-effects model was used for meta-analysis with standardized mean difference (SMD) of the change in hippocampal volume before and after ECT as the primary outcome. Nine studies involving 174 participants were included. RESULTS Total hippocampal volumes increased significantly following ECT compared to pre-treatment values (SMD=1.10; 95% CI 0.80-1.39; z=7.34; p<0.001; k=9). Both right (SMD=1.01; 95% CI 0.72-1.30; z=6.76; p<0.001; k=7) and left (SMD=0.87; 95% CI 0.51-1.23; z=4.69; p<0.001; k=7) hippocampal volumes were also similarly increased significantly following ECT. We demonstrated no correlation between improvement in depression symptoms with ECT and change in total hippocampal volume (beta=-1.28, 95% CI -4.51-1.95, z=-0.78, p=0.44). CONCLUSION We demonstrate fairly consistent increases in hippocampal volume bilaterally following ECT treatment. The relationship among these volumetric changes and clinical improvement and cognitive side effects of ECT should be explored by larger, multisite studies with harmonized imaging methods.
Collapse
Affiliation(s)
- Samuel T. Wilkinson
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Connecticut Mental Health Center, New Haven, CT 06519
| | - Gerard Sanacora
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Connecticut Mental Health Center, New Haven, CT 06519
| | - Michael H. Bloch
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Connecticut Mental Health Center, New Haven, CT 06519
- Yale Child Study Center, Yale School of Medicine, New Haven, CT 06519
| |
Collapse
|
31
|
López-Jaramillo C, Vargas C, Díaz-Zuluaga AM, Palacio JD, Castrillón G, Bearden C, Vieta E. Increased hippocampal, thalamus and amygdala volume in long-term lithium-treated bipolar I disorder patients compared with unmedicated patients and healthy subjects. Bipolar Disord 2017; 19:41-49. [PMID: 28239952 DOI: 10.1111/bdi.12467] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 10/12/2016] [Accepted: 01/04/2017] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Magnetic resonance imaging (MRI) studies in bipolar I disorder (BD-I) suggest that lithium is associated with increased volumes of cortico-limbic structures. However, more rigorous control of confounding factors is needed to obtain further support for this hypothesis. The aim of the present study was to assess differences in brain volumes among long-term lithium-treated BD-I patients, unmedicated BD-I patients, and healthy controls. METHODS This was a cross-sectional study with 32 euthymic BD-I patients (16 on lithium monotherapy for a mean of 180 months, and 16 receiving no medication for at least the 2 months prior to the study) and 20 healthy controls. Patients were euthymic (Hamilton Depression Rating Scale [HDRS] <6 and Young Mania Rating Scale [YMRS] <7) and had not taken psychotropic medications other than lithium for at least 6 months. Brain images were acquired on a 1.5 Tesla MRI (Phillips, Amsterdam, The Netherlands) and segmented to generate volumetric measures of cortical and subcortical brain areas, ventricles and global brain. RESULTS Significant differences were found in the volumes of the left amygdala (P=.0003), right amygdala (P=.030), left hippocampus (P=.022), left thalamus (P=.022), and right thalamus (P=.019) in long-term lithium-treated BD-I patients, compared to unmedicated patients and controls, after multivariable adjustment. No differences were observed in global brain volume or in ventricular size among the three groups. Likewise, there was no correlation between serum lithium levels and the increase in size in the described brain areas. CONCLUSIONS The structural differences found among the three groups, and specifically those between long-term lithium-treated and unmedicated BD-I patients, indicate increased limbic structure volumes in lithium-treated patients.
Collapse
Affiliation(s)
- Carlos López-Jaramillo
- Research Group in Psychiatry GIPSI, Department of Psychiatry, Faculty of Medicine, Universidad de Antioquia, Medellin, Colombia
| | - Cristian Vargas
- Research Group in Psychiatry GIPSI, Department of Psychiatry, Faculty of Medicine, Universidad de Antioquia, Medellin, Colombia
| | - Ana M Díaz-Zuluaga
- Research Group in Psychiatry GIPSI, Department of Psychiatry, Faculty of Medicine, Universidad de Antioquia, Medellin, Colombia
| | - Juan David Palacio
- Research Group in Psychiatry GIPSI, Department of Psychiatry, Faculty of Medicine, Universidad de Antioquia, Medellin, Colombia
| | - Gabriel Castrillón
- Research Group, Instituto de Alta Tecnología Médica IATM, Medellin, Colombia
| | - Carrie Bearden
- Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA
| | - Eduard Vieta
- Department of Psychiatry, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| |
Collapse
|
32
|
Schaeffer EL, Catanozi S, West MJ, Gattaz WF. Stereological investigation of the CA1 pyramidal cell layer in untreated and lithium-treated 3xTg-AD and wild-type mice. Ann Anat 2017; 209:51-60. [DOI: 10.1016/j.aanat.2016.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/03/2016] [Accepted: 10/11/2016] [Indexed: 12/25/2022]
|
33
|
Flores-Ramos M, Leff P, Fernández-Guasti A, Becerra Palars C. Is it important to consider the sex of the patient when using lithium or valproate to treat the bipolar disorder? Pharmacol Biochem Behav 2017; 152:105-111. [DOI: 10.1016/j.pbb.2016.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 02/03/2016] [Accepted: 02/09/2016] [Indexed: 01/12/2023]
|
34
|
Deng M, Yu R, Wang L, Shi F, Yap PT, Shen D. Learning-based 3T brain MRI segmentation with guidance from 7T MRI labeling. Med Phys 2016; 43:6588. [PMID: 27908163 PMCID: PMC5123995 DOI: 10.1118/1.4967487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 10/25/2016] [Accepted: 10/28/2016] [Indexed: 01/19/2023] Open
Abstract
PURPOSE Segmentation of brain magnetic resonance (MR) images into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) is crucial for brain structural measurement and disease diagnosis. Learning-based segmentation methods depend largely on the availability of good training ground truth. However, the commonly used 3T MR images are of insufficient image quality and often exhibit poor intensity contrast between WM, GM, and CSF. Therefore, they are not ideal for providing good ground truth label data for training learning-based methods. Recent advances in ultrahigh field 7T imaging make it possible to acquire images with excellent intensity contrast and signal-to-noise ratio. METHODS In this paper, the authors propose an algorithm based on random forest for segmenting 3T MR images by training a series of classifiers based on reliable labels obtained semiautomatically from 7T MR images. The proposed algorithm iteratively refines the probability maps of WM, GM, and CSF via a cascade of random forest classifiers for improved tissue segmentation. RESULTS The proposed method was validated on two datasets, i.e., 10 subjects collected at their institution and 797 3T MR images from the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. Specifically, for the mean Dice ratio of all 10 subjects, the proposed method achieved 94.52% ± 0.9%, 89.49% ± 1.83%, and 79.97% ± 4.32% for WM, GM, and CSF, respectively, which are significantly better than the state-of-the-art methods (p-values < 0.021). For the ADNI dataset, the group difference comparisons indicate that the proposed algorithm outperforms state-of-the-art segmentation methods. CONCLUSIONS The authors have developed and validated a novel fully automated method for 3T brain MR image segmentation.
Collapse
Affiliation(s)
- Minghui Deng
- College of Electrical and Information, Northeast Agricultural University, Harbin 150030, China and Department of Radiology and BRIC, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Renping Yu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China and Department of Radiology and BRIC, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Li Wang
- Department of Radiology and BRIC, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Feng Shi
- Department of Radiology and BRIC, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Pew-Thian Yap
- Department of Radiology and BRIC, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina, Chapel Hill, North Carolina 27599 and Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, South Korea
| |
Collapse
|
35
|
Multidimensional heritability analysis of neuroanatomical shape. Nat Commun 2016; 7:13291. [PMID: 27845344 PMCID: PMC5116071 DOI: 10.1038/ncomms13291] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 09/21/2016] [Indexed: 12/11/2022] Open
Abstract
In the dawning era of large-scale biomedical data, multidimensional phenotype vectors will play an increasing role in examining the genetic underpinnings of brain features, behaviour and disease. For example, shape measurements derived from brain MRI scans are multidimensional geometric descriptions of brain structure and provide an alternate class of phenotypes that remains largely unexplored in genetic studies. Here we extend the concept of heritability to multidimensional traits, and present the first comprehensive analysis of the heritability of neuroanatomical shape measurements across an ensemble of brain structures based on genome-wide SNP and MRI data from 1,320 unrelated, young and healthy individuals. We replicate our findings in an extended twin sample from the Human Connectome Project (HCP). Our results demonstrate that neuroanatomical shape can be significantly heritable, above and beyond volume, and can serve as a complementary phenotype to study the genetic determinants and clinical relevance of brain structure.
Collapse
|
36
|
Abstract
PURPOSE OF THE REVIEW The purpose of this review is to critically assess the evidence for exercise as an adjunct intervention for major depressive disorder and bipolar disorder, chronic conditions characterized by frequent comorbid conditions as well as interepisodic symptoms with poor quality of life and impaired functioning. Individuals with these mood disorders are at higher risk of cardiovascular disease and premature death in part because of increased rates of obesity, inactivity, and diabetes mellitus compared to the general population. Exercise may not only mitigate the increased risk of cardiovascular disease, but could also potentially improve the long term outcomes of mood disorders. RECENT FINDINGS We conducted a literature review on the impact of exercise on mood disorders and associated comorbid conditions as well as possible biological mechanisms. We found that exercise impacts both the physical health parameters of mood disorders as well as mental health outcomes. Exercise also positively impacts conditions frequently comorbid with mood disorders (i.e. anxiety, pain, and insomnia). There are multiple candidate biomarkers for exercise, with brain-derived neurotrophic factor and oxidative stress as two main promising components of exercise's anti-depressant effect. SUMMARY Exercise appears to be a promising adjunct treatment for mood disorders. We conclude with recommendations for future research of exercise as an adjunct intervention for mood disorders.
Collapse
|
37
|
Porcu M, Balestrieri A, Siotto P, Lucatelli P, Anzidei M, Suri JS, Zaccagna F, Argiolas GM, Saba L. Clinical neuroimaging markers of response to treatment in mood disorders. Neurosci Lett 2016; 669:43-54. [PMID: 27737806 DOI: 10.1016/j.neulet.2016.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 09/01/2016] [Accepted: 10/06/2016] [Indexed: 12/22/2022]
Abstract
Mood disorders (MD) are important and frequent psychiatric illness. The management of patients affected by these conditions represents an important factor of disability as well as a significant social and economic burden. The "in-vivo" studies can help researchers to understand the first developmental events of the pathology and to identify the molecular and non-molecular targets of therapies. However, they have strong limitations due to the fact that human brain circuitry can not be reproduced in animal models. In addition, these neural pathways are difficult to be selectively studied with the modern imaging (such as Magnetic Resonance and Positron Emitted Tomography/Computed Tomography) and non-imaging (such as electroencephalography, magnetoencephalography, transcranial magnetic stimulation and evoked potentials) methods. In comparison with other methods, the "in-vivo" imaging investigations have higher temporal and spatial resolution compared to the "in-vivo" non-imaging techniques. All these factors make difficult to fully understand the aetiology and pathophysiology of these disorders, and consequently hinder the analysis of the effects of pharmacological and non-pharmacological therapies, which have been demonstrated effective in clinical settings. In this review, we will focus our attention on the current state of the art of imaging in the assessment of treatment efficacy in MD. We will analyse briefly the actual classification of MD; then we will focus on the "in vivo" imaging methods used in research and clinical activity, the current knowledge about the neural models at the base of MD. Finally the last part of the review will focus on the analysis of the main markers of response to treatment.
Collapse
Affiliation(s)
- Michele Porcu
- Department of Radiology, AOU of Cagliari, SS 554 Monserrato, CA, Italy
| | | | - Paolo Siotto
- Department of Radiology, AOB Azienda Ospedaliera Brotzu, CA, Italy
| | - Pierleone Lucatelli
- Vascular and Interventional Radiology Unit, Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Michele Anzidei
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Jasjit S Suri
- Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA, USA; Electrical Engineering Department, Idaho State University (Aff.), Pocatello, ID, USA
| | - Fulvio Zaccagna
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | | | - Luca Saba
- Department of Radiology, AOU of Cagliari, SS 554 Monserrato, CA, Italy.
| |
Collapse
|
38
|
Savalia NK, Agres PF, Chan MY, Feczko EJ, Kennedy KM, Wig GS. Motion-related artifacts in structural brain images revealed with independent estimates of in-scanner head motion. Hum Brain Mapp 2016; 38:472-492. [PMID: 27634551 PMCID: PMC5217095 DOI: 10.1002/hbm.23397] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/17/2016] [Accepted: 08/30/2016] [Indexed: 12/17/2022] Open
Abstract
Motion‐contaminated T1‐weighted (T1w) magnetic resonance imaging (MRI) results in misestimates of brain structure. Because conventional T1w scans are not collected with direct measures of head motion, a practical alternative is needed to identify potential motion‐induced bias in measures of brain anatomy. Head movements during functional MRI (fMRI) scanning of 266 healthy adults (20–89 years) were analyzed to reveal stable features of in‐scanner head motion. The magnitude of head motion increased with age and exhibited within‐participant stability across different fMRI scans. fMRI head motion was then related to measurements of both quality control (QC) and brain anatomy derived from a T1w structural image from the same scan session. A procedure was adopted to “flag” individuals exhibiting excessive head movement during fMRI or poor T1w quality rating. The flagging procedure reliably reduced the influence of head motion on estimates of gray matter thickness across the cortical surface. Moreover, T1w images from flagged participants exhibited reduced estimates of gray matter thickness and volume in comparison to age‐ and gender‐matched samples, resulting in inflated effect sizes in the relationships between regional anatomical measures and age. Gray matter thickness differences were noted in numerous regions previously reported to undergo prominent atrophy with age. Recommendations are provided for mitigating this potential confound, and highlight how the procedure may lead to more accurate measurement and comparison of anatomical features. Hum Brain Mapp 38:472–492, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Neil K Savalia
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas
| | - Phillip F Agres
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas
| | - Micaela Y Chan
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas
| | - Eric J Feczko
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon.,Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon
| | - Kristen M Kennedy
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas
| | - Gagan S Wig
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas.,Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
39
|
Haarman BCM'B, Burger H, Doorduin J, Renken RJ, Sibeijn-Kuiper AJ, Marsman JBC, de Vries EFJ, de Groot JC, Drexhage HA, Mendes R, Nolen WA, Riemersma-Van der Lek RF. Volume, metabolites and neuroinflammation of the hippocampus in bipolar disorder - A combined magnetic resonance imaging and positron emission tomography study. Brain Behav Immun 2016; 56:21-33. [PMID: 26348581 DOI: 10.1016/j.bbi.2015.09.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/11/2015] [Accepted: 09/04/2015] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The hippocampus is one of the brain regions that is involved in several pathophysiological theories about bipolar disorder (BD), such as the neuroinflammation theory and the corticolimbic metabolic dysregulation theory. We compared hippocampal volume and hippocampal metabolites in bipolar I disorder (BD-I) patients versus healthy controls (HCs) with magnetic resonance imaging (MRI) and spectroscopy (MRS). We post hoc investigated whether hippocampal volume and hippocampal metabolites were associated with microglial activation and explored if potential illness modifying factors affected these hippocampal measurements and whether these were associated with experienced mood and functioning. MATERIALS AND METHODS Twenty-two BD-I patients and twenty-four HCs were included in the analyses. All subjects underwent psychiatric interviews as well as an MRI scan, including a T1 scan and PRESS magnetic resonance spectroscopy (MRS). Volumetric analysis was performed with Freesurfer. MRS quantification was performed with LC Model. A subgroup of 14 patients and 11 HCs also underwent a successful [(11)C]-(R)-PK11195 neuroinflammation positron emission tomography scan. RESULTS In contrast to our hypothesis, hippocampal volumes were not decreased in patients compared to HC after correcting for individual whole-brain volume variations. We demonstrated decreased N-acetylaspartate (NAA)+N-acetyl-aspartyl-glutamate (NAAG) and creatine (Cr)+phosphocreatine (PCr) concentrations in the left hippocampus. In the explorative analyses in the left hippocampus we identified positive associations between microglial activation and the NAA+NAAG concentration, between alcohol use and NAA+NAAG concentration, between microglial activation and the depression score and a negative relation between Cr+PCr concentration and experienced occupational disability. Duration of illness associated positively with volume bilaterally. CONCLUSION Compared to HCs, the decreased NAA+NAAG concentration in the left hippocampus of BD-I patients suggests a decreased neuronal integrity in this region. In addition we found a positive relation between microglial activation and neuronal integrity in vivo, corresponding to a differentiated microglial function where some microglia induce apoptosis while others stimulate neurogenesis.
Collapse
Affiliation(s)
- Bartholomeus C M 'Benno' Haarman
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, Groningen, The Netherlands; Radiology Morphological Solutions, Berkel en Rodenrijs, The Netherlands.
| | - Huibert Burger
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, Department of General Practice, Groningen, The Netherlands
| | - Janine Doorduin
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen, The Netherlands
| | - Remco J Renken
- University of Groningen, Neuroimaging Center, Groningen, The Netherlands
| | | | | | - Erik F J de Vries
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen, The Netherlands
| | - Jan Cees de Groot
- University of Groningen, University Medical Center Groningen, Department of Radiology, Groningen, The Netherlands
| | - Hemmo A Drexhage
- Erasmus MC, Department of Immunology, Rotterdam, The Netherlands
| | - Richard Mendes
- Radiology Morphological Solutions, Berkel en Rodenrijs, The Netherlands
| | - Willem A Nolen
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, Groningen, The Netherlands
| | - Rixt F Riemersma-Van der Lek
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, Groningen, The Netherlands
| |
Collapse
|
40
|
Cao B, Bauer IE, Sharma AN, Mwangi B, Frazier T, Lavagnino L, Zunta-Soares GB, Walss-Bass C, Glahn DC, Kapczinski F, Nielsen DA, Soares JC. Reduced hippocampus volume and memory performance in bipolar disorder patients carrying the BDNF val66met met allele. J Affect Disord 2016; 198:198-205. [PMID: 27018938 PMCID: PMC5214589 DOI: 10.1016/j.jad.2016.03.044] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Previous studies investigated the impact of brain-derived neurotrophic factor (BDNF) val66met (rs6265) on hippocampus volumes and neurocognition in bipolar disorders (BD), but the results were not consistent. This study aimed to investigate the effect of BDNF polymorphism on hippocampus volumes and memory performance in well-characterized adult populations diagnosed with type I BD (BD-I) and major depressive disorder (MDD) compared with healthy controls (HC). METHODS 48 BD-I patients, 33 MDD patients and 60 HC were genotyped for BDNF rs6265 using DNA isolated from white blood cells. Individuals with val/met and met/met genotypes were grouped as met carriers and compared to those with the val/val. Brain segmentations were obtained from structural magnetic resonance imaging (MRI) using the Freesurfer. Memory performance was assessed with the California Verbal Learning Task (CVLT). RESULTS We found a significant diagnosis effect and marginal interaction between diagnosis and BDNF genotype group for both hippocampus volumes and memory performance. BDNF met allele carrier BD patients had smaller hippocampus volumes and reduced performance on multiple CVLT scores compared to MDD patients and HC. CONCLUSIONS We provide strong evidence for the BDNF val66met polymorphism as a putative biological signature for the neuroanatomical and cognitive abnormalities commonly observed in BD patients.
Collapse
Affiliation(s)
- Bo Cao
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States.
| | | | | | - Benson Mwangi
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Thomas Frazier
- The Center for Pediatric Behavioral Health and Center for Autism, Cleveland Clinic, Cleveland, OH, United States
| | - Luca Lavagnino
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Giovana B. Zunta-Soares
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Consuelo Walss-Bass
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - David C. Glahn
- The Olin Neuropsychiatry Research Center, Institute of Living, and Department of Psychiatry, Yale University School of Medicine, CT, United States
| | - Flavio Kapczinski
- Department of Psychiatry, Universidade Federal Rio Grande do Sul, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil
| | - David A. Nielsen
- Department of Psychiatry and Behavioral Sciences, Michael E. DeBakey V.A. Medical Center, Baylor College of Medicine, Houston, TX, United States
| | - Jair C. Soares
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
41
|
Simonetti A, Sani G, Dacquino C, Piras F, De Rossi P, Caltagirone C, Coryell W, Spalletta G. Hippocampal subfield volumes in short- and long-term lithium-treated patients with bipolar I disorder. Bipolar Disord 2016; 18:352-62. [PMID: 27237705 DOI: 10.1111/bdi.12394] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/19/2016] [Accepted: 04/22/2016] [Indexed: 01/23/2023]
Abstract
OBJECTIVES Patients diagnosed with bipolar disorder (BP) may experience hippocampal atrophy. Lithium exposure has been associated with increased hippocampal volumes. However, its effects on hippocampal subfields remain to be clarified. METHODS We investigated the effects of short- and long-term lithium exposure on the hippocampus and its subfields in patients affected by bipolar I disorder (BP-I). Hippocampal subfields and total hippocampal volumes were measured in 60 subjects divided into four groups: 15 patients with BP-I who were never exposed to lithium [no-exposure group (NE)], 15 patients with BP-I exposed to lithium for < 24 months [short-exposure group (SE)], 15 patients with BP-I exposed to lithium for > 24 months [long-exposure group (LE)], and 15 healthy control subjects (HC). RESULTS The SE and NE groups showed smaller total hippocampal volumes and smaller bilateral cornu ammonis CA2-3, CA4-dentate gyrus (DG), presubiculum, and subiculum volumes compared with HC. The LE group showed larger total hippocampal volumes and bilateral CA2-3, left CA4-DG, left presubiculum, and right subiculum volumes compared with the NE group, and larger volumes of the right CA2-3, left CA4-DG, left presubiculum, and right subiculum compared with the SE group. No differences were found between the LE group and HC or between the SE and NE groups. CONCLUSIONS Long-term, but not short-term, exposure to lithium treatment may exert neuroprotective effects on specific hippocampal subfields linked to disease progression.
Collapse
Affiliation(s)
- Alessio Simonetti
- NESMOS Department (Neurosciences, Mental Health and Sensory Organs), Sapienza University of Rome, School of Medicine and Psychology, Sant'Andrea Hospital, Italy, IA.,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia Foundation, Department of Clinical and Behavioral Neurology, Italy, IA.,Centro Lucio Bini, Italy, IA
| | - Gabriele Sani
- NESMOS Department (Neurosciences, Mental Health and Sensory Organs), Sapienza University of Rome, School of Medicine and Psychology, Sant'Andrea Hospital, Italy, IA.,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia Foundation, Department of Clinical and Behavioral Neurology, Italy, IA.,Centro Lucio Bini, Italy, IA
| | - Claudia Dacquino
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia Foundation, Department of Clinical and Behavioral Neurology, Italy, IA
| | - Fabrizio Piras
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia Foundation, Department of Clinical and Behavioral Neurology, Italy, IA.,Centro Studi e Ricerche Enrico Fermi, Compendio del Viminale, Italy, IA
| | - Pietro De Rossi
- NESMOS Department (Neurosciences, Mental Health and Sensory Organs), Sapienza University of Rome, School of Medicine and Psychology, Sant'Andrea Hospital, Italy, IA.,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia Foundation, Department of Clinical and Behavioral Neurology, Italy, IA.,Centro Lucio Bini, Italy, IA
| | - Carlo Caltagirone
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia Foundation, Department of Clinical and Behavioral Neurology, Italy, IA.,Department of Medicine of Systems, Tor Vergata University of Rome, Italy, IA
| | - William Coryell
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Gianfranco Spalletta
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia Foundation, Department of Clinical and Behavioral Neurology, Italy, IA.,Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
42
|
Ferensztajn-Rochowiak E, Rybakowski JK. The effect of lithium on hematopoietic, mesenchymal and neural stem cells. Pharmacol Rep 2016; 68:224-30. [DOI: 10.1016/j.pharep.2015.09.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/14/2015] [Accepted: 09/14/2015] [Indexed: 12/01/2022]
|
43
|
Cao B, Passos IC, Mwangi B, Bauer IE, Zunta-Soares GB, Kapczinski F, Soares JC. Hippocampal volume and verbal memory performance in late-stage bipolar disorder. J Psychiatr Res 2016; 73:102-107. [PMID: 26714201 PMCID: PMC4985176 DOI: 10.1016/j.jpsychires.2015.12.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/07/2015] [Accepted: 12/10/2015] [Indexed: 11/17/2022]
Abstract
Studies about changes in hippocampal volumes in subjects with bipolar disorder (BD) have been contradictory. Since the number of manic episodes and hospitalization has been associated with brain changes and poor cognitive outcomes among BD patients, we have hypothesized that these variables could clarify this issue. We stratified subjects with BD in early (BD-Early), intermediate (BD-intermediate) and late (BD-Late) stages as a function of number of manic episodes and prior hospitalization. Then, we compared their hippocampal volumes and California Verbal Learning Test-II (CVLT-II) scores with healthy controls (HC) using the general linear model. A total of 173 subjects were included in the study (112 HC, 15 BD-Early, 30 BD-Intermediate, and 16 BD-Late). We found a significant group effect on hippocampus volume (F(3,167) = 3.227, p = 0.024). Post-hoc analysis showed that BD-Late subjects had smaller hippocampus than HC (p = 0.017). BD-Early and BD-Intermediate subjects showed no significant difference in hippocampus volume compared to HC and BD-Late subjects. The CVLT trial 1 to 5 scores were significantly different across the groups (F(3,167) = 6.371, p < 0.001). Post-hoc analysis showed that BD-Intermediate (p = 0.006) and BD-Late (p = 0.017) subjects had worse memory performance during immediate recall than HC, while the performance difference between BD-Early subjects and HC was not significant (p = 0.208). These findings add to the notion that BD is a neuroprogressive disorder with brain changes and cognitive impairment according to prior morbidity (number of manic episodes and hospitalization). Also, they suggest that hippocampus is a brain marker and a potential therapeutic target for patients at late stage.
Collapse
Affiliation(s)
- Bo Cao
- UT Center of Excellence on Mood Disorder, Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, TX, USA
| | - Ives Cavalcante Passos
- UT Center of Excellence on Mood Disorder, Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, TX, USA
- Bipolar Disorder Program and Laboratory of Molecular Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Benson Mwangi
- UT Center of Excellence on Mood Disorder, Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, TX, USA
| | - Isabelle E. Bauer
- UT Center of Excellence on Mood Disorder, Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, TX, USA
| | - Giovana B. Zunta-Soares
- UT Center of Excellence on Mood Disorder, Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, TX, USA
| | - Flávio Kapczinski
- UT Center of Excellence on Mood Disorder, Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, TX, USA
- Bipolar Disorder Program and Laboratory of Molecular Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jair C. Soares
- UT Center of Excellence on Mood Disorder, Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, TX, USA
- Corresponding author. University of Texas Health Science Center at Houston, Biomedical and Behavioral Sciences Building (BBSB), 1941 East Rd Suite 3208 Houston, TX 77054, USA. (J.C. Soares)
| |
Collapse
|
44
|
Sabater A, García-Blanco AC, Verdet HM, Sierra P, Ribes J, Villar I, Lara MJ, Arnal P, Rojo L, Livianos L. Comparative neurocognitive effects of lithium and anticonvulsants in long-term stable bipolar patients. J Affect Disord 2016; 190:34-40. [PMID: 26480209 DOI: 10.1016/j.jad.2015.10.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 07/20/2015] [Accepted: 10/02/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND The aim of choosing a mood-stabilizing drug (lithium or anticonvulsants) or a combination of them with minimal neurocognitive effects is to stimulate the development of criteria for a therapeutic adequacy, particularly in Bipolar Disorder (BD) patients who are clinically stabilized. METHOD Three groups of BD patients were established according to their treatment: (i) lithium monotherapy (n=29); (ii) lithium together with one or more anticonvulsants (n=28); and (iii) one or more anticonvulsants (n=16). A group of healthy controls served as the control (n=25). The following tests were applied: Wechsler Adult Intelligence Scale, Trail Making Test, Wechsler Memory Scale, Rey Complex Figure Test, Stroop color-word test, Wisconsin Card Sorting Test, Tower of Hanoi, Frontal Assessment Battery, and Reading the Mind in the Eyes Test. RESULTS Relative to healthy controls, BD patients showed the following: (i) those on lithium monotherapy, but not other BD groups, had preserved short-term auditory memory, long-term memory, and attention; (ii) those who took only anticonvulsants showed worse findings in short-term visual memory, working memory, and several executive functions; and (iii) all BD patients showed worse performance in processing speed, resistance to interference, and emotion recognition. LIMITATIONS Medication alone cannot explain why all BD patients showed common cognitive deficits despite different pharmacological treatment. CONCLUSION The impairment on some executive functions and emotion recognition is an inherent trait in BD patients, regardless of their pharmacological treatment. However, while memory, attention, and most of the executive functions are preserved in long-term stable BD patients, these cognitive functions are impaired in those who take anticonvulsants.
Collapse
Affiliation(s)
- Ana Sabater
- Department of Psychiatry and Clinical Psychology, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Ana C García-Blanco
- Health Research Institute La Fe, Valencia, Spain; University of Valencia, Spain.
| | - Hélade M Verdet
- Department of Psychiatry and Clinical Psychology, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Pilar Sierra
- Department of Psychiatry and Clinical Psychology, La Fe University and Polytechnic Hospital, Valencia, Spain; University of Valencia, Spain; CIBERESP, Spain
| | - Josep Ribes
- Department of Psychiatry and Clinical Psychology, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Irene Villar
- Department of Psychiatry and Clinical Psychology, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Mª José Lara
- Department of Psychiatry and Clinical Psychology, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Pilar Arnal
- Department of Psychiatry and Clinical Psychology, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Luis Rojo
- Department of Psychiatry and Clinical Psychology, La Fe University and Polytechnic Hospital, Valencia, Spain; University of Valencia, Spain; CIBERESP, Spain
| | - Lorenzo Livianos
- Department of Psychiatry and Clinical Psychology, La Fe University and Polytechnic Hospital, Valencia, Spain; University of Valencia, Spain; CIBERESP, Spain
| |
Collapse
|
45
|
Quigley SJ, Scanlon C, Kilmartin L, Emsell L, Langan C, Hallahan B, Murray M, Waters C, Waldron M, Hehir S, Casey H, McDermott E, Ridge J, Kenney J, O'Donoghue S, Nannery R, Ambati S, McCarthy P, Barker GJ, Cannon DM, McDonald C. Volume and shape analysis of subcortical brain structures and ventricles in euthymic bipolar I disorder. Psychiatry Res 2015; 233:324-30. [PMID: 26254541 DOI: 10.1016/j.pscychresns.2015.05.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 04/11/2015] [Accepted: 05/19/2015] [Indexed: 12/17/2022]
Abstract
Previous structural magnetic resonance imaging (S-MRI) studies of bipolar disorder have reported variable morphological changes in subcortical brain structures and ventricles. This study aimed to establish trait-related subcortical volumetric and shape abnormalities in a large, homogeneous sample of prospectively confirmed euthymic bipolar I disorder (BD-I) patients (n=60), compared with healthy volunteers (n=60). Participants were individually matched for age and gender. Volume and shape metrics were derived from manually segmented S-MR images for the hippocampus, amygdala, caudate nucleus, and lateral ventricles. Group differences were analysed, controlling for age, gender and intracranial volume. BD-I patients displayed significantly smaller left hippocampal volumes and significantly larger left lateral ventricle volumes compared with controls. Shape analysis revealed an area of contraction in the anterior head and medial border of the left hippocampus, as well as expansion in the right hippocampal tail medially, in patients compared with controls. There were no significant associations between volume or shape variation and lithium status or duration of use. A reduction in the head of the left hippocampus in BD-I patients is interesting, given this region's link to verbal memory. Shape analysis of lateral ventricular changes in patients indicated that these are not regionally specific.
Collapse
Affiliation(s)
- Stephen J Quigley
- Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Cathy Scanlon
- Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Liam Kilmartin
- Electrical and Electronic Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
| | - Louise Emsell
- Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland; Translational MRI, Department of Imaging & Pathology, KU Leuven & Radiology, University Hospitals, Leuven, Belgium
| | - Camilla Langan
- Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Brian Hallahan
- Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Michael Murray
- Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Conor Waters
- Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Mairead Waldron
- Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Sarah Hehir
- Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Helen Casey
- Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Emma McDermott
- Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Jason Ridge
- Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Joanne Kenney
- Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Stefani O'Donoghue
- Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Rory Nannery
- Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Srinath Ambati
- Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Peter McCarthy
- Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Gareth J Barker
- Department of Neuroimaging, Institute of Psychiatry, King's College London, London SE5 8AF, United Kingdom
| | - Dara M Cannon
- Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Colm McDonald
- Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
46
|
Hartberg CB, Jørgensen KN, Haukvik UK, Westlye LT, Melle I, Andreassen OA, Agartz I. Lithium treatment and hippocampal subfields and amygdala volumes in bipolar disorder. Bipolar Disord 2015; 17:496-506. [PMID: 25809287 DOI: 10.1111/bdi.12295] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/25/2014] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Results from magnetic resonance imaging (MRI) studies are heterogeneous with regard to hippocampal and amygdala volume alterations in bipolar disorder (BD). Lithium treatment may influence both structures. It is unknown if lithium treatment has distinct effects on hippocampal subfield volumes and if subfield volumes change over the course of illness in BD. METHODS MRI scans were obtained for 34 lithium-treated patients with BD (Li+), 147 patients with BD who were not treated with lithium (Non-Li), and 300 healthy controls. Hippocampal total and subfield volumes and amygdala volumes were automatically estimated using Freesurfer. General linear models were used to investigate volume differences between groups and the effects of illness course and lithium treatment. RESULTS The Non-Li BD group displayed significantly smaller bilateral cornu ammonis (CA) 2/3 and CA4/dentate gyrus (DG) subfields, total hippocampal volumes, right CA1 and right subiculum subfields, and left amygdala volume compared to healthy controls. There were no differences between the Li+ BD and either the Non-Li BD or the healthy control groups. In patients with numerous affective episodes, Non-Li BD patients had smaller left CA1 and CA2/3 volumes compared to Li+ BD patients and healthy controls. There were positive associations between lithium treatment duration and left amygdala volume. CONCLUSIONS Hippocampal subfield and amygdala volumes were reduced in Non-Li BD patients compared to healthy controls, whereas the Li+ BD volumes were no different from those in Non-Li BD patients or healthy controls. Over the course of BD, lithium treatment might counteract reductions specifically in the left CA1 and CA2/3 hippocampal subfields and amygdala volumes, in accordance with the suggested neuroprotective effects of lithium.
Collapse
Affiliation(s)
- Cecilie Bhandari Hartberg
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway.,NORMENT/K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Kjetil Nordbø Jørgensen
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway.,NORMENT/K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Unn Kristin Haukvik
- NORMENT/K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Lars Tjelta Westlye
- NORMENT/K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway.,Department of Psychology, University of Oslo, Oslo, Norway
| | - Ingrid Melle
- NORMENT/K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Ole Andreas Andreassen
- NORMENT/K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway.,NORMENT/K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
47
|
Chakrabarty T, Kozicky JM, Torres IJ, Lam RW, Yatham LN. Verbal memory impairment in new onset bipolar disorder: Relationship with frontal and medial temporal morphology. World J Biol Psychiatry 2015; 16:249-60. [PMID: 25708742 DOI: 10.3109/15622975.2014.1000373] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVES Verbal memory (VM) impairment is a trait feature of bipolar I disorder (BDI) that is present at illness onset and associated with functional outcome. However, little is known about the morphological abnormalities underlying this deficit early in the disease course. This study examined the neurobiological correlates of VM impairment in euthymic newly diagnosed patients, with attention to frontal and medial temporal (MT) structures known to contribute to VM. METHODS Euthymic patients with BDI recently recovered from their first episode of mania (n = 42) were compared with healthy subjects (n = 37) using measures of the California Verbal Learning Test (CVLT-II) associated with frontal and MT functioning. A subset of participants had 3T MRI scan (n = 31 patient group, n = 30 healthy subject group). Hippocampal and prefrontal volumes were analyzed using FreeSurfer 5.1 and correlated with their corresponding CVLT-II subscores. RESULTS Patients showed decreased performance in total learning as well as short and long delay verbal recall. Consistent with MT dysfunction, they also showed deficits in recognition discriminability and learning slope. In the patient group only, left hippocampal volumes were negatively correlated with these measures. CONCLUSIONS These results suggest that anomalous MT functioning is involved with VM impairment early in the course of BDI.
Collapse
Affiliation(s)
- Trisha Chakrabarty
- Department of Psychiatry, University of British Columbia , Vancouver, BC , Canada
| | | | | | | | | |
Collapse
|
48
|
Hippocampal structure and function in individuals with bipolar disorder: a systematic review. J Affect Disord 2015; 174:113-25. [PMID: 25496759 DOI: 10.1016/j.jad.2014.11.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 10/15/2014] [Accepted: 11/02/2014] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Bipolar disorder (BD) is a psychiatric disorder accompanied by deficits in declarative memory. Given the importance of the hippocampus in declarative memory, it is not surprising that BD patients have been reported to show hippocampal abnormalities. OBJECTIVES Review evidence about structural and functional hippocampal abnormalities in BD. METHODS Systematic review of studies comparing BD patients and healthy controls with respect to hippocampal structure or function. RESULTS Twenty-five studies were included, together involving 1043 patients, 21 of which compared patients to controls. Decrease in hippocampal volume was found in four of 18 studies using adult samples, and two of three samples using adolescents. Four studies revealed localized hippocampal deficits. Meta-analysis revealed a significant but small effect with lower hippocampal volumes when comparing all BD patients with controls. Lithium treatment was associated with larger hippocampal volumes across studies. The three functional studies yielded contradictory evidence. LIMITATIONS Studies were only cross-sectional in nature and all used MRI or fMRI to investigate hippocampal volume or function. Heterogeneous patients groups and different methodologies for hippocampal segmentation, may have contributed to difficulties when comparing the different studies. CONCLUSIONS There seems to be a small reduction in hippocampal volume in BD, which perhaps is more pronounced in early-onset BD and is counteracted by a neuroprotective effect of lithium treatment. However, how these structural abnormalities relate to functional deficits is largely unclear. Given the few functional neuroimaging studies and given the lack of congruence in these results, further investigation of especially hippocampal function in BD is recommended.
Collapse
|
49
|
Rossi R, Lanfredi M, Pievani M, Boccardi M, Rasser PE, Thompson PM, Cavedo E, Cotelli M, Rosini S, Beneduce R, Bignotti S, Magni LR, Rillosi L, Magnaldi S, Cobelli M, Rossi G, Frisoni GB. Abnormalities in cortical gray matter density in borderline personality disorder. Eur Psychiatry 2015; 30:221-7. [PMID: 25561291 DOI: 10.1016/j.eurpsy.2014.11.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/14/2014] [Accepted: 11/14/2014] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND Borderline personality disorder (BPD) is a chronic condition with a strong impact on patients' affective, cognitive and social functioning. Neuroimaging techniques offer invaluable tools to understand the biological substrate of the disease. We aimed to investigate gray matter alterations over the whole cortex in a group of Borderline Personality Disorder (BPD) patients compared to healthy controls (HC). METHODS Magnetic resonance-based cortical pattern matching was used to assess cortical gray matter density (GMD) in 26 BPD patients and in their age- and sex-matched HC (age: 38 ± 11; females: 16, 61%). RESULTS BPD patients showed widespread lower cortical GMD compared to HC (4% difference) with peaks of lower density located in the dorsal frontal cortex, in the orbitofrontal cortex, the anterior and posterior cingulate, the right parietal lobe, the temporal lobe (medial temporal cortex and fusiform gyrus) and in the visual cortex (P<0.005). Our BPD subjects displayed a symmetric distribution of anomalies in the dorsal aspect of the cortical mantle, but a wider involvement of the left hemisphere in the mesial aspect in terms of lower density. A few restricted regions of higher density were detected in the right hemisphere. All regions remained significant after correction for multiple comparisons via permutation testing. CONCLUSIONS BPD patients feature specific morphology of the cerebral structures involved in cognitive and emotional processing and social cognition/mentalization, consistent with clinical and functional data.
Collapse
Affiliation(s)
- R Rossi
- Unit of Psychiatry, IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli, via Pilastroni 4, 25125 Brescia, Italy.
| | - M Lanfredi
- Unit of Psychiatry, IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli, via Pilastroni 4, 25125 Brescia, Italy
| | - M Pievani
- LENITEM, Laboratory of Epidemiology, Neuroimaging, & Telemedicine, Istituto Centro San Giovanni di Dio-Fatebenefratelli, Brescia, Italy
| | - M Boccardi
- LENITEM, Laboratory of Epidemiology, Neuroimaging, & Telemedicine, Istituto Centro San Giovanni di Dio-Fatebenefratelli, Brescia, Italy
| | - P E Rasser
- Centre for translational Neuroscience and Mental Health, The University of Newcastle, New South Wales, Australia; Schizophrenia Research Institute, Darlinghurst, Australia; Hunter Medical Research Institute, Newcastle, Australia
| | - P M Thompson
- Imaging Genetics Center, Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Los Angeles, CA, USA
| | - E Cavedo
- LENITEM, Laboratory of Epidemiology, Neuroimaging, & Telemedicine, Istituto Centro San Giovanni di Dio-Fatebenefratelli, Brescia, Italy; Cognition, neuroimaging and brain diseases Laboratory, Centre de Recherche de l'Insitut du Cerveau et de la Moelle (CRICM) UMRS_975, Université Pierre-et-Marie-Curie, Paris, France
| | - M Cotelli
- Unit of Neuropsychology, IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli, Brescia, Italy
| | - S Rosini
- Unit of Neuropsychology, IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli, Brescia, Italy
| | - R Beneduce
- Unit of Psychiatry, IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli, via Pilastroni 4, 25125 Brescia, Italy
| | - S Bignotti
- Unit of Psychiatry, IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli, via Pilastroni 4, 25125 Brescia, Italy
| | - L R Magni
- Unit of Psychiatry, IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli, via Pilastroni 4, 25125 Brescia, Italy
| | - L Rillosi
- Unit of Psychiatry, IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli, via Pilastroni 4, 25125 Brescia, Italy
| | - S Magnaldi
- Unit of Neuroradiology, Poliambulanza Hospital, Brescia, Italy
| | - M Cobelli
- Unit of Neuroradiology, Poliambulanza Hospital, Brescia, Italy
| | - G Rossi
- Unit of Psychiatry, IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli, via Pilastroni 4, 25125 Brescia, Italy
| | - G B Frisoni
- LENITEM, Laboratory of Epidemiology, Neuroimaging, & Telemedicine, Istituto Centro San Giovanni di Dio-Fatebenefratelli, Brescia, Italy; Memory Clinic and LANVIE, Laboratory of Neuroimaging of Aging, University Hospitals, University of Geneva, Geneva, Switzerland
| |
Collapse
|
50
|
Ghaemi SN, Dalley S, Catania C, Barroilhet S. Bipolar or borderline: a clinical overview. Acta Psychiatr Scand 2014; 130:99-108. [PMID: 24571137 DOI: 10.1111/acps.12257] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/23/2014] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To examine the empirical literature on diagnostic validators in borderline personality and bipolar illness. METHOD Using principles of evidence-based medicine, the highest levels of evidence were emphasized in interpretation of similarities or differences between bipolar illness and borderline personality on the five standard diagnostic validators in psychiatric nosology: symptoms, course, genetics, treatment response, and neurobiology. RESULTS Bipolar illness and borderline personality were found to be similar in the nosological validator of symptoms of mood lability and impulsivity, but differed notably on all other diagnostic validators, especially the course validator of past sexual abuse and the genetic validator of a bipolar family history. They also differ notably in the symptom validator of parasuicidal self-harm. Treatment response and neurobiological differences were also present and consistent. CONCLUSION This review of the literature indicates that these two conditions, bipolar illness and borderline personality, are different and can be distinguished. The much stronger biological and genetic evidence for bipolar illness in particular suggests that the two conditions can be reasonably seen as different kinds of clinical entities, namely a biological disease versus a psychosocially caused clinical picture. If this interpretation is correct, similarities between the two conditions, such as mood lability and impulsivity, are superficial, while differences are profound. Further, true comorbidity may be much less common than often presumed.
Collapse
Affiliation(s)
- S N Ghaemi
- Mood Disorders Program, Department of Psychiatry, Tufts Medical Center, Boston, MA, USA; Tufts University School of Medicine, Boston, MA, USA
| | | | | | | |
Collapse
|