1
|
Duan Y, Guo Z, Zhong W, Chen J, Xu S, Liu J, Xu J. An updated review of small-molecule HPK1 kinase inhibitors (2016-present). Future Med Chem 2024; 16:2431-2450. [PMID: 39582317 PMCID: PMC11622775 DOI: 10.1080/17568919.2024.2420630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/18/2024] [Indexed: 11/26/2024] Open
Abstract
Hematopoietic progenitor kinase 1 (HPK1) is a serine-threonine kinase specific to hematopoiesis and a member of the MAP4K family of Ste20-related protein kinases. Targeting HPK1 to ameliorate T cell exhaustion and enhance T cell functions is a promising strategy for clinical immunotherapies. Numerous studies have reported the progress in developing effective HPK1 inhibitors and elucidating their mechanisms of action. However, most inhibitors affect multiple signaling pathways, resulting in unintended side effects that limit their clinical development and application. Herein, we reviewed HPK1-related signaling pathways, clinical candidates and recent advances in small-molecule inhibitors targeting HPK1. Additionally, we present our perspectives on current challenges and potential future research field, hoping to provide inspiration for the development of novel HPK1 inhibitors.
Collapse
Affiliation(s)
- Yiping Duan
- Department of Medicinal Chemistry, China Pharmaceutical University, School of Pharmacy, Nanjing, Jiangsu, 211198, Peoples Republic China
| | - Zhichao Guo
- Department of Medicinal Chemistry, China Pharmaceutical University, School of Pharmacy, Nanjing, Jiangsu, 211198, Peoples Republic China
| | - Wenyi Zhong
- Department of Organic Chemistry, China Pharmaceutical University, School of Science, Nanjing, Jiangsu, 211198, Peoples Republic China
| | - Jichao Chen
- Nanjing University Chinese Medicine, School of Pharmacy, Nanjing, Jiangsu, 210023, Peoples Republic China
| | - Shengtao Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, School of Pharmacy, Nanjing, Jiangsu, 211198, Peoples Republic China
| | - Jie Liu
- Department of Organic Chemistry, China Pharmaceutical University, School of Science, Nanjing, Jiangsu, 211198, Peoples Republic China
| | - Jinyi Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, School of Pharmacy, Nanjing, Jiangsu, 211198, Peoples Republic China
| |
Collapse
|
2
|
Zhang R, Yu Y, Yang Y, Zhang M, Zhang X, Chang Y, Wang S, Hu L, Li J, Zheng X, Zhao R, Guo Y, Ni X. Therapeutic targeting of TNIK in papillary thyroid carcinoma: a novel approach for tumor growth suppression. Med Oncol 2024; 41:160. [PMID: 38763968 DOI: 10.1007/s12032-024-02380-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/04/2024] [Indexed: 05/21/2024]
Abstract
Papillary thyroid carcinoma (PTC) is a common endocrine malignancy. The pathology of PTC is far from clear. As a kinase that can be targeted, the role of TNIK in PTC has not been investigated. This study was focused on the effects and molecular mechanisms of TNIK in PTC. Both public datasets and clinical specimens were used to verify TNIK expression. The effects of TNIK were investigated in both cell lines and mice models. Transcriptome analysis was used to explore the underlying mechanism of TNIK. Immunofluorescence, wound healing, and qRT-PCR assays were used to validate the mechanism of TNIK in PTC. The therapeutic effects of TNIK inhibitor NCB-0846 were evaluated by flow cytometry, western blot, and subcutaneous xenografts mice. TNIK expression was upregulated in PTC tissues. TNIK knockdown could suppress cell proliferation and tumor growth in no matter cell models or nude mice. The transcriptome analysis, GO enrichment analysis, and GSEA analysis results indicated TNIK was highly correlated with cytoskeleton, cell motility, and Wnt pathways. The mechanistic studies demonstrated that TNIK regulated cytoskeleton remodeling and promoted cell migration. NCB-0846 significantly inhibited TNIK kinase activity, induced cell apoptosis, and activated apoptosis-related proteins in a dose-dependent manner. In addition, NCB-0846 inhibited tumor growth in tumor-bearing mice. In summary, we proposed a novel regulatory mechanism in which TNIK-mediated cytoskeleton remodeling and cell migration to regulate tumor progression in PTC. TNIK is a therapeutic target in PTC and NCB-0846 would act as a novel targeted drug for PTC therapy.
Collapse
Affiliation(s)
- Ruqian Zhang
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, China
| | - Yongbo Yu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, China
- Biobank for Clinical Data and Samples in Pediatrics, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, 100045, China
| | - Yeran Yang
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, China
| | - Meng Zhang
- Department of Pathology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, China
| | - Xuan Zhang
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, China
| | - Yan Chang
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, China
| | - Shengcai Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, 100045, People's Republic of China
| | - Linfei Hu
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jiali Li
- Department of Otolaryngology Head and Neck Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiangqian Zheng
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ruili Zhao
- Department of Otolaryngology Head and Neck Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yongli Guo
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, China.
- Biobank for Clinical Data and Samples in Pediatrics, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, 100045, China.
| | - Xin Ni
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, China.
- Biobank for Clinical Data and Samples in Pediatrics, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, 100045, China.
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing, 100045, People's Republic of China.
| |
Collapse
|
3
|
Chen H, Guan X, He C, Lu T, Lin X, Liao X. Current strategies for targeting HPK1 in cancer and the barriers to preclinical progress. Expert Opin Ther Targets 2024; 28:237-250. [PMID: 38650383 DOI: 10.1080/14728222.2024.2344697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
INTRODUCTION Hematopoietic progenitor kinase 1 (HPK1), a 97-kDa serine/threonine Ste20-related protein kinase, functions as an intracellular negative regulator, primarily in hematopoietic lineage cells, where it regulates T cells, B cells, dendritic cells, and other immune cells. Loss of HPK1 kinase activity results in exacerbated cytokine secretion, enhanced T cell signaling, improved viral clearance, and thus increased restraint of tumor growth. These findings highlight HPK1 as a promising target for immuno-oncology treatments, culminating in the advancement of candidate compounds targeting HPK1 to clinical trials by several biotech enterprises. AREAS COVERED Through searching PubMed, Espacenet-patent search, and clinicaltrials.gov, this review provides a comprehensive analysis of HPK1, encompassing its structure and roles in various downstream signaling pathways, the consequences of constitutive activation of HPK1, and potential therapeutic strategies to treat HPK1-driven malignancies. Moreover, the review outlines the patents issued for small molecule inhibitors and clinical investigations of HPK1. EXPERT OPINION To enhance the success of tumor immunotherapy in clinical trials, it is important to develop protein degraders, allosteric inhibitors, and antibody-drug conjugates based on the crystal structure of HPK1, and to explore combination therapy approaches. Although several challenges remain, the development of HPK1 inhibitors display promising in preclinical and clinical studies.
Collapse
Affiliation(s)
- Hui Chen
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Science, Tsinghua University, Beijing, China
| | - Xiangna Guan
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Science, Tsinghua University, Beijing, China
| | - Chi He
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Science, Tsinghua University, Beijing, China
| | - Tingting Lu
- Zhuhai Yufan Biotechnologies Co., Ltd, Zhuhai, Guangdong, China
| | - Xingyu Lin
- Zhuhai Yufan Biotechnologies Co., Ltd, Zhuhai, Guangdong, China
| | - Xuebin Liao
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Science, Tsinghua University, Beijing, China
| |
Collapse
|
4
|
Zhou L, Wang T, Zhang K, Zhang X, Jiang S. The development of small-molecule inhibitors targeting HPK1. Eur J Med Chem 2022; 244:114819. [DOI: 10.1016/j.ejmech.2022.114819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022]
|
5
|
Zhu Q, Chen N, Tian X, Zhou Y, You Q, Xu X. Hematopoietic Progenitor Kinase 1 in Tumor Immunology: A Medicinal Chemistry Perspective. J Med Chem 2022; 65:8065-8090. [PMID: 35696642 DOI: 10.1021/acs.jmedchem.2c00172] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hematopoietic progenitor kinase 1 (HPK1), a hematopoietic cell-restricted member of the serine/threonine Ste20-related protein kinases, is a negative regulator of the T cell receptor, B cell receptor, and dendritic cells. Loss of HPK1 kinase function increases cytokine secretion and enhances T cell signaling, virus clearance, and tumor growth inhibition. Therefore, HPK1 is considered a promising target for tumor immunotherapy. Several HPK1 inhibitors have been reported to regulate T cell function. In addition, HPK1-targeting PROTACs, which can induce the degradation of HPK1, have also been developed. Here, we provide an overview of research concerning HPK1 protein structure, function, and inhibitors and propose perspectives and insights for the future development of agents targeting HPK1.
Collapse
Affiliation(s)
- Qiangsheng Zhu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Nannan Chen
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xinjian Tian
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yeling Zhou
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - QiDong You
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoli Xu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
6
|
Kazemein Jasemi NS, Reza Ahmadian M. Allosteric regulation of GRB2 modulates RAS activation. Small GTPases 2022; 13:282-286. [PMID: 35703160 DOI: 10.1080/21541248.2022.2089001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
RAS activation is a multiple-step process in which linkage of the extracellular stimuli to the RAS activator SOS1 is the main step in RAS activation. GRB2 adaptor protein is the main modulator in SOS1 recruitment to the plasma membrane and its activation. This interaction is well studied but the exact mechanism of GRB2-SOS1 complex formation and SOS1 activation has yet remained obscure. Here, a new allosteric mechanism for the GRB2 regulation is described as a prerequisite for the modulation of SOS1 activation. This regulatory mechanism comprises a series of intramolecular interactions which are potentiated by GRB2 interaction with upstream ligands.Abbreviations: GRB2, growth factor receptor-bound protein 2; SOS1, son of sevenless 1; RAS, Rat Sarcoma; GEF, guanine nucleotide exchange factor; GAP, GTPase-activating protein; HER2, human epidermal growth factor receptor; SH3, SRC Homology 3; SH2, SRC Homology 2; PRD, proline-rich domain; PRM, proline-rich motif; PRP, proline-rich peptide; RTK, receptor tyrosine kinases.
Collapse
Affiliation(s)
- Neda S Kazemein Jasemi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitaetsstrasse 1, Building 22.03, 40255 Düsseldorf, Germany
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitaetsstrasse 1, Building 22.03, 40255 Düsseldorf, Germany
| |
Collapse
|
7
|
Zhang Q, Ding S, Zhang H. Interactions between hematopoietic progenitor kinase 1 and its adaptor proteins. Mol Med Rep 2017; 16:6472-6482. [DOI: 10.3892/mmr.2017.7494] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 07/31/2017] [Indexed: 11/06/2022] Open
|
8
|
Cho CY, Lee KT, Chen WC, Wang CY, Chang YS, Huang HL, Hsu HP, Yen MC, Lai MZ, Lai MD. MST3 promotes proliferation and tumorigenicity through the VAV2/Rac1 signal axis in breast cancer. Oncotarget 2016; 7:14586-604. [PMID: 26910843 PMCID: PMC4924737 DOI: 10.18632/oncotarget.7542] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 01/02/2016] [Indexed: 12/15/2022] Open
Abstract
MST3 (mammalian STE20-like kinase 3) belongs to the Ste20 serine/threonine protein kinase family. The role of MST3 in tumor growth is less studied; therefore, we investigates the function of MST3 in breast cancer. Here, we demonstrate that MST3 is overexpressed in human breast tumors. Online Kaplan-Meier plotter analysis reveals that overexpression of MST3 predicts poor prognosis in breast cancer patients. Knockdown of MST3 with shRNA inhibits proliferation and anchorage-independent growth in vitro. Downregulation of MST3 in triple-negative MDA-MB-231 and MDA-MB-468 breast cancer cells decreases tumor formation in NOD/SCID mice. MST3 interacts with VAV2, but not VAV3, as demonstrated by co-immunoprecipitation and confocal microscopy. By domain mapping of MST3, we determine that the proline-rich region of MST3 (353KDIPKRP359) interacts with the SH3 domain of VAV2. Mutation of the two proline residues in this domain significantly attenuates the interaction between MST3 and VAV2. Overexpression of wild-type MST3 (WT-MST3), but not proline-rich-deleted MST3 (âP-MST3), enhances the proliferation rate and anchorage-independent growth of MDA-MB-468 cells. Overexpression of MST3 increases VAV2 phosphorylation and GTP-Rac1, whereas downregulation of MST3 or delivery of âP-MST3 results in a reduction of VAV2 and Rac1 activation. Knockdown of MST3 inhibits cyclin D1 protein expression. The Rac1 inhibitor EHop-016 attenuates cell proliferation induced by WT-MST3. Finally, Knockdown of MST3 or Rac1 inhibitor decreases cyclin D protein expression, which is important for tumor growth. These results indicate that MST3 interacts with VAV2 to activate Rac1 and promote the tumorigenicity of breast cancer.
Collapse
Affiliation(s)
- Chien-Yu Cho
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan, Taiwan, ROC
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan, ROC
- Center for Infectious Diseases and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Kuo-Ting Lee
- Department of Surgery, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Wei-Ching Chen
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan, Taiwan, ROC
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Chih-Yang Wang
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan, Taiwan, ROC
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Yung-Sheng Chang
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan, Taiwan, ROC
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Hau-Lun Huang
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan, Taiwan, ROC
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Hui-Ping Hsu
- Department of Surgery, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Meng-Chi Yen
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Ming-Zong Lai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC
- Graduate Institute of Immunology, National Taiwan University, Taipei, Taiwan, ROC
| | - Ming-Derg Lai
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan, Taiwan, ROC
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan, ROC
- Center for Infectious Diseases and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| |
Collapse
|
9
|
|
10
|
Braiman A, Isakov N. The Role of Crk Adaptor Proteins in T-Cell Adhesion and Migration. Front Immunol 2015; 6:509. [PMID: 26500649 PMCID: PMC4593252 DOI: 10.3389/fimmu.2015.00509] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/18/2015] [Indexed: 12/27/2022] Open
Abstract
Crk adaptor proteins are key players in signal transduction from a variety of cell surface receptors. They are involved in early steps of lymphocyte activation through their SH2-mediated transient interaction with signal transducing effector molecules, such as Cbl, ZAP-70, CasL, and STAT5. In addition, they constitutively associate, via their SH3 domain, with effector molecules, such as C3G, that mediate cell adhesion and regulate lymphocyte extravasation and recruitment to sites of inflammation. Recent studies demonstrated that the conformation and function of CrkII is subjected to a regulation by immunophilins, which also affect CrkII-dependent T-cell adhesion to fibronectin and migration toward chemokines. This article addresses mechanisms that regulate CrkII conformation and function, in general, and emphasizes the role of Crk proteins in receptor-coupled signaling pathways that control T-lymphocyte adhesion and migration to inflammatory sites.
Collapse
Affiliation(s)
- Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, The Cancer Research Center, Ben Gurion University of the Negev , Beer Sheva , Israel
| | - Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, The Cancer Research Center, Ben Gurion University of the Negev , Beer Sheva , Israel ; School of Pharmacy, University of Otago , Dunedin , New Zealand
| |
Collapse
|
11
|
Proteomic analysis of proteins surrounding occludin and claudin-4 reveals their proximity to signaling and trafficking networks. PLoS One 2015; 10:e0117074. [PMID: 25789658 PMCID: PMC4366163 DOI: 10.1371/journal.pone.0117074] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/18/2014] [Indexed: 01/15/2023] Open
Abstract
Tight junctions are complex membrane structures that regulate paracellular movement of material across epithelia and play a role in cell polarity, signaling and cytoskeletal organization. In order to expand knowledge of the tight junction proteome, we used biotin ligase (BioID) fused to occludin and claudin-4 to biotinylate their proximal proteins in cultured MDCK II epithelial cells. We then purified the biotinylated proteins on streptavidin resin and identified them by mass spectrometry. Proteins were ranked by relative abundance of recovery by mass spectrometry, placed in functional categories, and compared not only among the N- and C- termini of occludin and the N-terminus of claudin-4, but also with our published inventory of proteins proximal to the adherens junction protein E-cadherin and the tight junction protein ZO-1. When proteomic results were analyzed, the relative distribution among functional categories was similar between occludin and claudin-4 proximal proteins. Apart from already known tight junction- proteins, occludin and claudin-4 proximal proteins were enriched in signaling and trafficking proteins, especially endocytic trafficking proteins. However there were significant differences in the specific proteins comprising the functional categories near each of the tagging proteins, revealing spatial compartmentalization within the junction complex. Taken together, these results expand the inventory of known and unknown proteins at the tight junction to inform future studies of the organization and physiology of this complex structure.
Collapse
|
12
|
Wang H, Chen Y, Lin P, Li L, Zhou G, Liu G, Logsdon C, Jin J, Abbruzzese JL, Tan TH, Wang H. The CUL7/F-box and WD repeat domain containing 8 (CUL7/Fbxw8) ubiquitin ligase promotes degradation of hematopoietic progenitor kinase 1. J Biol Chem 2013; 289:4009-17. [PMID: 24362026 DOI: 10.1074/jbc.m113.520106] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
HPK1, a member of mammalian Ste20-like serine/threonine kinases, is lost in >95% pancreatic cancer through proteasome-mediated degradation. However, the mechanism of HPK1 loss has not been defined. The aims of this study are to identify the ubiquitin ligase and to examine the mechanisms that targets HPK1 degradation. We found that the CUL7/Fbxw8 ubiquitin ligase targeted HPK1 for degradation via the 26 S proteasome. The ubiquitination of HPK1 required its kinase activity and autophosphorylation. Wild-type protein phosphatase 4 (PP4), but not the phosphatase-dead PP4 mutant, PP4-RL, inhibits the interaction of Fbxw8 with HPK1 and Fbxw8-mediated ubiquitination of HPK1. In addition, we showed that Thr-355 of HPK1 is a key PP4 dephosphorylation site, through which CUL7/Fbxw8 ubiquitin ligase and PP4 regulates HPK1 stability. Knockdown of Fbxw8 restores endogenous HPK1 protein expression and inhibits cell proliferation of pancreatic cancer cells. Our study demonstrated that targeted degradation of HPK1 by the CUL7/Fbxw8 ubiquitin ligase constitutes a negative-feedback loop to restrain the activity of HPK1 and that CUL7/Fbxw8 ubiquitin ligase promotes pancreatic cancer cell proliferation. CUL7/Fbxw8 ubiquitin ligase-mediated HPK1 degradation revealed a direct link and novel role of CUL7/Fbxw8 ubiquitin ligase in the MAPK pathway, which plays a critical role in cell proliferation and differentiation.
Collapse
Affiliation(s)
- Hua Wang
- From the Departments of Gastrointestinal Medical Oncology
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
The adaptor protein Crk in immune response. Immunol Cell Biol 2013; 92:80-9. [PMID: 24165979 DOI: 10.1038/icb.2013.64] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 09/02/2013] [Accepted: 09/23/2013] [Indexed: 12/17/2022]
Abstract
The adaptor proteins Crk (CT10 (chicken tumor virus number 10) regulator of kinase), including CrkI, CrkII and Crk-like, are important signal molecules that regulate a variety of cellular processes. Considerable progress has been made in understanding the roles of the Crk family proteins in signal transduction, with a focus on cellular transformation and differentiation. However, since Crk was identified in 1988, very few studies have addressed how Crk regulates the immune response. Recent work demonstrates that Crk proteins function as critical signal molecules in regulating immune cell functions. Emerging data on the roles of Crk in activation and inhibitory immunoreceptor signaling suggest that Crk proteins are potential immunotherapeutic targets in cancer and infectious diseases. The aim of this review is to summarize recent key findings regarding the role of Crk in immune responses mediated by T, B and natural killer (NK) cells. In particular, the roles of Crk in NK cell functions are discussed.
Collapse
|
14
|
Wang X, Li JP, Chiu LL, Lan JL, Chen DY, Boomer J, Tan TH. Attenuation of T cell receptor signaling by serine phosphorylation-mediated lysine 30 ubiquitination of SLP-76 protein. J Biol Chem 2012; 287:34091-100. [PMID: 22902619 DOI: 10.1074/jbc.m112.371062] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SLP-76 (SH2 domain-containing leukocyte protein of 76 kDa) is an adaptor protein that is essential for T cell development and T cell receptor (TCR) signaling activation. Previous studies have identified an important negative feedback regulation of SLP-76 by HPK1 (hematopoietic progenitor kinase 1; MAP4K1)-induced Ser-376 phosphorylation. Ser-376 phosphorylation of SLP-76 mediates 14-3-3 binding, resulting in the attenuation of SLP-76 activation and downstream signaling; however, the underlying mechanism of this action remains unknown. Here, we report that phosphorylated SLP-76 is ubiquitinated and targeted for proteasomal degradation during TCR signaling. SLP-76 ubiquitination is mediated by Ser-376 phosphorylation. Furthermore, Lys-30 is identified as a ubiquitination site of SLP-76. Loss of Lys-30 ubiquitination of SLP-76 results in enhanced anti-CD3 antibody-induced ERK and JNK activation. These results reveal a novel regulation mechanism of SLP-76 by ubiquitination and proteasomal degradation of activated SLP-76, which is mediated by Ser-376 phosphorylation, leading to down-regulation of TCR signaling.
Collapse
Affiliation(s)
- Xiaohong Wang
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
PAK1 kinase promotes cell motility and invasiveness through CRK-II serine phosphorylation in non-small cell lung cancer cells. PLoS One 2012; 7:e42012. [PMID: 22848689 PMCID: PMC3407072 DOI: 10.1371/journal.pone.0042012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 06/29/2012] [Indexed: 12/20/2022] Open
Abstract
The role of c-Crk (CRK) in promoting metastasis is well described however the role of CRK phosphorylation and the corresponding signaling events are not well explained. We have observed CRK-II serine 41 phosphorylation is inversely correlated with p120-catenin and E-cadherin expressions in non-small cell lung cancer (NSCLC) cells. Therefore, we investigated the role of CRK-II serine 41 phosphorylation in the down-regulation of p120-catenin, cell motility and cell invasiveness in NSCLC cells. For this purpose, we expressed phosphomimetic and phosphodeficient CRK-II serine 41 mutants in NSCLC cells. NSCLC cells expressing phosphomimetic CRK-II seine 41 mutant showed lower p120-catenin level while CRK-II seine 41 phosphodeficient mutant expression resulted in higher p120-catenin. In addition, A549 cells expressing CRK-II serine 41 phosphomimetic mutant demonstrated more aggressive behavior in wound healing and invasion assays and, on the contrary, expression of phosphodeficient CRK-II serine 41 mutant in A549 cells resulted in reduced cell motility and invasiveness. We also provide evidence that PAK1 mediates CRK-II serine 41 phosphorylation. RNAi mediated silencing of PAK1 increased p120-catenin level in A549 and H157 cells. Furthermore, PAK1 silencing decreased cell motility and invasiveness in A549 cells. These effects were abrogated in A549 cells expressing phosphomimetic CRK-II serine 41. In summary, these data provide evidence for the role of PAK1 in the promotion of cell motility, cell invasiveness and the down regulation of p120-catenin through CRK serine 41 phosphorylation in NSCLC cells.
Collapse
|
16
|
Abstract
The growth factor receptor-bound protein 2 (Grb2) is a ubiquitously expressed and evolutionary conserved adapter protein possessing a plethora of described interaction partners for the regulation of signal transduction. In B lymphocytes, the Grb2-mediated scaffolding function controls the assembly and subcellular targeting of activating as well as inhibitory signalosomes in response to ligation of the antigen receptor. Also, integration of simultaneous signals from B-cell coreceptors that amplify or attenuate antigen receptor signal output relies on Grb2. Hence, Grb2 is an essential signal integrator. The key question remains, however, of how pathway specificity can be maintained during signal homeostasis critically required for the balance between immune cell activation and tolerance induction. Here, we summarize the molecular network of Grb2 in B cells and introduce a proteomic approach to elucidate the interactome of Grb2 in vivo.
Collapse
Affiliation(s)
- Konstantin Neumann
- Institute of Cellular and Molecular Immunology, Georg August University of Göttingen, Göttingen, Germany
| | | | | | | |
Collapse
|
17
|
Kroczek C, Lang C, Brachs S, Grohmann M, Dütting S, Schweizer A, Nitschke L, Feller SM, Jäck HM, Mielenz D. Swiprosin-1/EFhd2 controls B cell receptor signaling through the assembly of the B cell receptor, Syk, and phospholipase C gamma2 in membrane rafts. THE JOURNAL OF IMMUNOLOGY 2010; 184:3665-76. [PMID: 20194721 DOI: 10.4049/jimmunol.0903642] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Compartmentalization of the BCR in membrane rafts is important for its signaling capacity. Swiprosin-1/EFhd2 (Swip-1) is an EF-hand and coiled-coil-containing adaptor protein with predicted Src homology 3 (SH3) binding sites that we identified in membrane rafts. We showed previously that Swip-1 amplifies BCR-induced apoptosis; however, the mechanism of this amplification was unknown. To address this question, we overexpressed Swip-1 and found that Swip-1 amplified the BCR-induced calcium flux in WEHI231, B62.1, and Bal17 cells. Conversely, the BCR-elicited calcium flux was strongly attenuated in Swip-1-silenced WEHI231 cells, and this was due to a decreased calcium mobilization from intracellular stores. Complementation of Swip-1 expression in Swip-1-silenced WEHI231 cells restored the BCR-induced calcium flux and enhanced spleen tyrosine kinase (Syk) tyrosine phosphorylation and activity as well as SLP65/BLNK/BASH and phospholipase C gamma2 (PLCgamma2) tyrosine phosphorylation. Furthermore, Swip-1 induced the constitutive association of the BCR itself, Syk, and PLCgamma2 with membrane rafts. Concomitantly, Swip-1 stabilized the association of BCR with tyrosine-phosphorylated proteins, specifically Syk and PLCgamma2, and enhanced the constitutive interaction of Syk and PLCgamma2 with Lyn. Interestingly, Swip-1 bound to the rSH3 domains of the Src kinases Lyn and Fgr, as well as to that of PLCgamma. Deletion of the predicted SH3-binding region in Swip-1 diminished its association and that of Syk and PLCgamma2 with membrane rafts, reduced its interaction with the SH3 domain of PLCgamma, and diminished the BCR-induced calcium flux. Hence, Swip-1 provides a membrane scaffold that is required for the Syk-, SLP-65-, and PLCgamma2-dependent BCR-induced calcium flux.
Collapse
Affiliation(s)
- Carmen Kroczek
- Division of Molecular Immunology, Department of Medicine III, Nikolaus Fiebiger Center, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hrincius ER, Wixler V, Wolff T, Wagner R, Ludwig S, Ehrhardt C. CRK adaptor protein expression is required for efficient replication of avian influenza A viruses and controls JNK-mediated apoptotic responses. Cell Microbiol 2010; 12:831-43. [DOI: 10.1111/j.1462-5822.2010.01436.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Lettau M, Pieper J, Janssen O. Nck adapter proteins: functional versatility in T cells. Cell Commun Signal 2009; 7:1. [PMID: 19187548 PMCID: PMC2661883 DOI: 10.1186/1478-811x-7-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 02/02/2009] [Indexed: 01/16/2023] Open
Abstract
Nck is a ubiquitously expressed adapter protein that is almost exclusively built of one SH2 domain and three SH3 domains. The two isoproteins of Nck are functionally redundant in many aspects and differ in only few amino acids that are mostly located in the linker regions between the interaction modules. Nck proteins connect receptor and non-receptor tyrosine kinases to the machinery of actin reorganisation. Thereby, Nck regulates activation-dependent processes during cell polarisation and migration and plays a crucial role in the signal transduction of a variety of receptors including for instance PDGF-, HGF-, VEGF- and Ephrin receptors. In most cases, the SH2 domain mediates binding to the phosphorylated receptor or associated phosphoproteins, while SH3 domain interactions lead to the formation of larger protein complexes. In T lymphocytes, Nck plays a pivotal role in the T cell receptor (TCR)-induced reorganisation of the actin cytoskeleton and the formation of the immunological synapse. However, in this context, two different mechanisms and adapter complexes are discussed. In the first scenario, dependent on an activation-induced conformational change in the CD3epsilon subunits, a direct binding of Nck to components of the TCR/CD3 complex was shown. In the second scenario, Nck is recruited to the TCR complex via phosphorylated Slp76, another central constituent of the membrane proximal activation complex. Over the past years, a large number of putative Nck interactors have been identified in different cellular systems that point to diverse additional functions of the adapter protein, e.g. in the control of gene expression and proliferation.
Collapse
Affiliation(s)
- Marcus Lettau
- University Hospital Schleswig-Holstein Campus Kiel, Institute of Immunology, Molecular Immunology, Arnold-Heller-Str 3, Bldg 17, D-24105 Kiel, Germany.
| | | | | |
Collapse
|
20
|
Li T, Yu XJ, Zhang GY. Tyrosine phosphorylation of HPK1 by activated Src promotes ischemic brain injury in rat hippocampal CA1 region. FEBS Lett 2008; 582:1894-900. [PMID: 18498770 DOI: 10.1016/j.febslet.2008.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 05/08/2008] [Accepted: 05/08/2008] [Indexed: 11/23/2022]
Abstract
Hematopoietic progenitor kinase 1 (HPK1) is a hematopoietic cell-restricted member of the Ste20 serine/threonine kinase super family. We recently reported that HPK1 is involved in c-Jun NH2-terminal kinase (JNK) signaling pathway by sequential activation of MLK3-MKK7-JNK3 after cerebral ischemia. Here, we used 4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo [3,4-d] pyrimidine (PP2) and MK801 to investigate the events upstream of HPK1 in ischemic brain injury. Immunoprecipitation and immunoblot results showed that PP2 and MK801 significantly decreased the activation of Src, HPK1, MLK3, JNK3 and c-Jun, respectively, during ischemia/reperfusion. Histology and TUNEL staining showed PP2 or MK801 protects against neuron death after brain ischemia. We speculate that this unique signaling pathway through the tyrosine phosphorylation of HPK1 promotes ischemic brain injury by activated Src via N-methyl-d-aspartate receptor and, ultimately, the activation of the MLK3-MKK7-JNK3 pathway after cerebral ischemia.
Collapse
Affiliation(s)
- Ting Li
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, 84 West Huaihai Road, Xuzhou, Jiangsu 221002, China
| | | | | |
Collapse
|
21
|
Sawasdikosol S, Pyarajan S, Alzabin S, Matejovic G, Burakoff SJ. Prostaglandin E2 activates HPK1 kinase activity via a PKA-dependent pathway. J Biol Chem 2007; 282:34693-9. [PMID: 17895239 DOI: 10.1074/jbc.m707425200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Hematopoietic progenitor kinase 1 (HPK1) is a hematopoietic cell-restricted member of the Ste20 serine/threonine kinase super family. We recently reported that the immunosuppressive eicosanoid, prostaglandin E(2) (PGE(2)), is capable of activating HPK1 in T cells. In this report, we demonstrate that unlike the TCR-induced activation of HPK1 kinase activity, the induction of HPK1 catalytic activity by PGE(2) does not require the presence of phosphotyrosine-based signaling molecules such as Lck, ZAP-70, SLP-76, and Lat. Nor does the PGE(2)-induced HPK1 activation require the intermolecular interaction between its proline-rich regions and the SH3 domain-containing adaptor proteins, as required by the signaling from the TCR to HPK1. Instead, our study reveals that PGE(2) signal to HPK1 via a 3' -5 '-cyclic adenosine monophosphate-regulated, PKA-dependent pathway. Consistent with this observation, changing the serine 171 residue that forms the optimal PKA phosphorylation site within the "activation loop" of HPK1 to alanine completely prevents this mutant from responding to PGE(2)-generated stimulation signals. Moreover, the inability of HPK1 to respond to PGE(2) stimulation in PKA-deficient S49 cells further supports the importance of PKA in this signaling pathway. We speculate that this unique signaling pathway enables PGE(2) signals to engage a proven negative regulator of TCR signal transduction pathway and uses it to inhibit T cell activation.
Collapse
Affiliation(s)
- Sansana Sawasdikosol
- New York University School of Medicine, New York University Cancer Institute, New York, New York 10016-6402, USA.
| | | | | | | | | |
Collapse
|
22
|
Abstract
Exoenzyme T (ExoT) is a bifunctional type III cytotoxin of Pseudomonas aeruginosa that possesses both Rho GTPase-activating protein and ADP-ribosyltransferase activities. The ADP-ribosyltransferase activity of ExoT stimulated depolymerization of the actin cytoskeleton independent of Rho GTPase-activating protein function, and ExoT was subsequently shown to ADP-ribosylate Crk (CT10 regulator of kinase)-I and Crk-II. Crk proteins are eukaryotic adaptor proteins comprising SH2 and SH3 domains that are components of the integrin signaling pathway leading to Rac1 and Rap1 functions. Mass spectroscopic analysis identified Arg20 as the site of ADP-ribosylation by ExoT. Arg20 is a conserved residue located within the SH2 domain that is required for interactions with upstream signaling molecules such as paxillin and p130cas. Glutathione S-transferase pull-down and far Western assays showed that ADP-ribosylated Crk-I or Crk-I(R20K) failed to bind p130cas or paxillin. This indicates that ADP-ribosylation inhibited the direct interaction of Crk with these focal adhesion proteins. Overexpression of wild-type Crk-I reduced cell rounding by ExoT, whereas expression of dominant-active Rac1 interfered with the ability of ExoT to round cells. Thus, the ADP-ribosylation of Crk uncouples integrin signaling by direct inhibition of the binding of Crk to focal adhesion proteins.
Collapse
Affiliation(s)
- Qing Deng
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | |
Collapse
|
23
|
Abstract
Hematopoietic progenitor kinase 1 (HPK1 or MAP4K1) is a hematopoietic-specific mammalian STE20-like protein serine/threonine kinase, comprised of a STE20-like kinase domain in its N-terminus, four proline-rich motifs, a caspase cleavage site, and a distal C-terminal Citron homology domain. HPK1 is involved in many cellular signaling cascades that include MAPK signaling, antigen receptor signaling, apoptosis, growth factor signaling, and cytokine signaling. HPK1 binds many adaptor proteins including members of the Grb2 family, Nck family, Crk family, SLP-76 family, and actin-binding adaptors like HIP-55. HPK1 tyrosine phosphorylation and kinase activation depend on the presence of adaptor proteins. Adaptor proteins are required not only for linking HPK1 to cell surface receptors like the EGFR, but also for downstream gene transcription like NFAT, AP-1 and IL-2. The HPK1 association with Crk, CrkL, and HIP-55 mediate HPK1-dependent c-Jun N-terminal kinase (JNK) activation, while the association of HPK1 with SLP-76, Gads, CrkL, Grb2, and Grap affect T- and B-cell dependent gene transcription. Interestingly, HPK1 has been implicated in both increasing and decreasing NFAT, AP-1, and IL-2 gene transcription in T-cells where adaptor proteins play a key role. Lastly, HPK1 will phosphorylate Crk and CrkL, in vitro, which presents a novel possibility for the regulation of adaptor proteins and downstream signaling events.
Collapse
Affiliation(s)
- Jonathan S Boomer
- Department of Immunology, Baylor College of Medicine, Houston, Texas 77030-3498, USA
| | | |
Collapse
|
24
|
Arnold R, Patzak IM, Neuhaus B, Vancauwenbergh S, Veillette A, Van Lint J, Kiefer F. Activation of hematopoietic progenitor kinase 1 involves relocation, autophosphorylation, and transphosphorylation by protein kinase D1. Mol Cell Biol 2005; 25:2364-83. [PMID: 15743830 PMCID: PMC1061595 DOI: 10.1128/mcb.25.6.2364-2383.2005] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adaptive immune signaling can be coupled to stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK) and NF-kappaB activation by the hematopoietic progenitor kinase 1 (HPK1), a mammalian hematopoiesis-specific Ste20 kinase. To gain insight into the regulation of leukocyte signal transduction, we investigated the molecular details of HPK1 activation. Here we demonstrate the capacity of the Src family kinase Lck and the SLP-76 family adaptor protein Clnk (cytokine-dependent hematopoietic cell linker) to induce HPK1 tyrosine phosphorylation and relocation to the plasma membrane, which in lymphocytes results in recruitment of HPK1 to the contact site of antigen-presenting cell (APC)-T-cell conjugates. Relocation and clustering of HPK1 cause its enzymatic activation, which is accompanied by phosphorylation of regulatory sites in the HPK1 kinase activation loop. We show that full activation of HPK1 is dependent on autophosphorylation of threonine 165 and phosphorylation of serine 171, which is a target site for protein kinase D (PKD) in vitro. Upon T-cell receptor stimulation, PKD robustly augments HPK1 kinase activity in Jurkat T cells and enhances HPK1-driven SAPK/JNK and NF-kappaB activation; conversely, antisense down-regulation of PKD results in reduced HPK1 activity. Thus, activation of major lymphocyte signaling pathways via HPK1 involves (i) relocation, (ii) autophosphorylation, and (iii) transphosphorylation of HPK1 by PKD.
Collapse
Affiliation(s)
- Rüdiger Arnold
- Max Planck Institute for Molecular Biomedicine, Von-Esmarch-Strasse 56, D-48149 Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
25
|
Zhou G, Boomer JS, Tan TH. Protein Phosphatase 4 Is a Positive Regulator of Hematopoietic Progenitor Kinase 1. J Biol Chem 2004; 279:49551-61. [PMID: 15364934 DOI: 10.1074/jbc.m410317200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hematopoietic progenitor kinase 1 (HPK1) is a hematopoietic specific mammalian Ste20-like protein kinase and has been implicated in many cellular signaling pathways including T cell receptor (TCR) signaling. However, little is known about the in vivo regulation of HPK1. We present evidence that HPK1 is positively regulated by protein phosphatase 4 (PP4; also called PPX and PPP4), a serine/threonine phosphatase. We found that PP4 interacted with HPK1 and that the proline-rich region of HPK1 was necessary and sufficient for this interaction. We also found that PP4 had phosphatase activity toward HPK1 in vivo and that co-transfection of PP4 with HPK1 resulted in specific kinase activation of HPK1. Moreover, we found that the PP4-induced HPK1 kinase activation was accompanied by an increase in protein expression of HPK1. Pulse-chase analysis showed that PP4 increased the half-life of HPK1. Further studies showed that HPK1 was subject to regulation by ubiquitination and ubiquitin-targeted degradation and that PP4 inhibited HPK1 ubiquitination. In addition, we found that TCR stimulation enhanced the PP4-HPK1 interaction and that wild-type PP4 enhanced, whereas a phosphatase-dead PP4 mutant inhibited, TCR-induced activation of HPK1 in Jurkat T cells. Combined with the observation that PP4 enhanced HPK1-induced JNK activation, our studies identify PP4 as a positive regulator for HPK1 and the HPK1-JNK signaling pathway.
Collapse
Affiliation(s)
- Guisheng Zhou
- Department of Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
26
|
Lewitzky M, Harkiolaki M, Domart MC, Jones EY, Feller SM. Mona/Gads SH3C binding to hematopoietic progenitor kinase 1 (HPK1) combines an atypical SH3 binding motif, R/KXXK, with a classical PXXP motif embedded in a polyproline type II (PPII) helix. J Biol Chem 2004; 279:28724-32. [PMID: 15100220 DOI: 10.1074/jbc.m402745200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hematopoietic progenitor kinase 1 (HPK1) is implicated in signaling downstream of the T cell receptor. Its non-catalytic, C-terminal half contains several prolinerich motifs, which have been shown to interact with different SH3 domain-containing adaptor proteins in vitro. One of these, Mona/Gads, was also shown to bind HPK1 in mouse T cells in vivo. The region of HPK1 that binds to the Mona/Gads C-terminal SH3 domain has been mapped and shows only very limited similarity to a recently identified high affinity binding motif in SLP-76, another T-cell adaptor. Using isothermal titration calorimetry and x-ray crystallography, the binding of the HPK1 motif to Mona/Gads SH3C has now been characterized in molecular detail. The results indicate that although charge interactions through an RXXK motif are essential for complex formation, a PXXP motif in HPK1 strongly complements binding. This unexpected binding mode therefore differs considerably from the previously described interaction of Mona/Gads SH3C with SLP-76. The crystal structure of the complex highlights the great versatility of SH3 domains, which allows interactions with very different proteins. This currently limits our ability to categorize SH3 binding properties by simple rules.
Collapse
Affiliation(s)
- Marc Lewitzky
- Cancer Research UK Cell Signalling Group, Molecular Oncology Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | | | | | | | | |
Collapse
|
27
|
Yustein JT, Xia L, Kahlenburg JM, Robinson D, Templeton D, Kung HJ. Comparative studies of a new subfamily of human Ste20-like kinases: homodimerization, subcellular localization, and selective activation of MKK3 and p38. Oncogene 2003; 22:6129-41. [PMID: 13679851 DOI: 10.1038/sj.onc.1206605] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Sterile-20 or Ste20 family of serine/threonine kinases is a group of signaling molecules whose physiological roles within mammalian cells are just starting to be elucidated. Here, in this report we present the characterization of three human Ste20-like kinases with greater than 90% similarity within their catalytic domains that define a novel subfamily of Ste20s. Members of this kinase family include rat thousand and one (TAO1) and chicken KFC (kinase from chicken). For the lack of a consensus nomenclature in the literature, in this report, we shall call this family hKFC (for their homology to chicken KFC) and the three members hKFC-A, hKFC-B, and hKFC-C, respectively. These kinases have many similarities including an aminoterminal kinase domain, a serine-rich region, and a coiled-coil configuration within the C-terminus. All three kinases are able to activate the p38 MAP kinase pathway through the specific activation of the upstream MKK3 kinase. We also offer evidence, both theoretical and biochemical, showing that these kinases can undergo self-association. Despite these similarities, these kinases differ in tissue distribution, apparent subcellular localization, and feature structural differences largely within the carboxyl-terminal sequence.
Collapse
Affiliation(s)
- Jason T Yustein
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106-4960, USA
| | | | | | | | | | | |
Collapse
|
28
|
Miller CT, Chen G, Gharib TG, Wang H, Thomas DG, Misek DE, Giordano TJ, Yee J, Orringer MB, Hanash SM, Beer DG. Increased C-CRK proto-oncogene expression is associated with an aggressive phenotype in lung adenocarcinomas. Oncogene 2003; 22:7950-7. [PMID: 12970743 DOI: 10.1038/sj.onc.1206529] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The C-CRK gene, cellular homolog of the avian v-crk oncogene, encodes two alternatively spliced adaptor signaling proteins, CRKI (28 kDa) and CRKII (40 kDa). Both CRKI and CRKII have been shown to activate kinase signaling and anchorage-independent growth in vitro and CRKI transformed cells readily form tumors in nude mice. Affymetrix oligonucleotide arrays were used to analyse 86 lung adenocarcinomas and 10 uninvolved lung tissues. C-CRK mRNA expression was increased in more advanced (stage III versus stage I), larger (T(2-4) versus T(1)), and poorly differentiated tumors and in tumors from patients demonstrating poor survival (P=0.00034). An overlapping series of 93 lung adenocarcinomas (64 stage I and 29 stage III) and 10 uninvolved lung specimens were measured for quantitative differences in CRKI and CRKII protein levels using 2-D PAGE. CRK protein spots were identified using mass spectrometry and 2-D Western blotting. A significant increase in levels of the CRKI oncoprotein and the phosphorylated isoform of CRKII was observed in tumors (P<0.05). No difference in protein level was evident between stages. Concordant with mRNA expression, CRKI and CRKII were increased in poorly differentiated tumors (P<0.05). CRK immunohistochemical analysis of tumor tissue arrays using the same tumor series also demonstrated increased abundance of nuclear and cytoplasmic CRK in more proliferative tumors (P<0.05). This study provides the first quantitative analysis of discrete CRKI and CRKII protein isoforms in human lung tumors and provides evidence that the C-CRK proto-oncogene may foment a more aggressive phenotype in lung cancers.
Collapse
Affiliation(s)
- Charles T Miller
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lauten M, Beger C, Gerdes K, Asgedom G, Kardinal C, Welte K, Schrappe M. Expression of heat-shock protein 90 in glucocorticoid-sensitive and -resistant childhood acute lymphoblastic leukaemia. Leukemia 2003; 17:1551-6. [PMID: 12886242 DOI: 10.1038/sj.leu.2403027] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Early reduction of leukaemic cells by chemotherapy is a strong predictor for treatment outcome in childhood acute lymphoblastic leukaemia (ALL). In ALL-(Berlin-Frankfurt-Münster) trials, early treatment response is assessed by the in vivo response to glucocorticoids (prednisone response, PR), the molecular background of which is unknown. The intracellular effects of glucocorticoids (GCs) are mediated by the glucocorticoid receptor (GR). In the absence of GC, the inactive GR resides within a multiprotein complex, consisting predominantly of the chaperone protein hsp90 (heat-shock protein 90). Until now, studies targeting GC resistance mainly focused on GR disorders and alterations of genes known to be associated with drug resistance. In addition, the GR multiprotein complex was associated with GC resistance in in vitro studies. We performed a case-control study for PR to investigate the association of in vivo GC resistance and hsp90 expression in childhood ALL. Hsp90 expression was assessed using a real-time PCR approach (Taqman technology) and Western blot technology. In this setting, we found no association of in vivo GC resistance and hsp90 expression. Therefore, we conclude that the expression of hsp90, the major component of the GR activating complex, is of minor importance for the in vivo GC resistance in childhood ALL.
Collapse
Affiliation(s)
- M Lauten
- Hannover Medical School, Paediatric Haematology and Oncology, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Feller SM, Tuchscherer G, Voss J. High affinity molecules disrupting GRB2 protein complexes as a therapeutic strategy for chronic myelogenous leukaemia. Leuk Lymphoma 2003; 44:411-27. [PMID: 12688310 DOI: 10.1080/1042819021000037930] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Chronic myelogenous leukaemia (CML) is one of the most intensively studied human malignancies. It has been the focus of major efforts to develop potent drugs for several decades, but until recently cure rates remained low. A breakthrough in CML therapy was very likely accomplished with the clinical introduction of STI-571 [imatinib mesylate; Gleevec (USA); Glivec (other countries)] in 2000/2001. Despite the hope that STI-571 has generated for many CML patients, development of resistance to this drug is already apparent in some cases, especially if the CML is diagnosed in its later stages. Therefore, novel drugs which can be used alone or in combination with STI-571 are highly desirable. This review briefly summarises the current understanding and therapy of CML and then discusses in more detail basic laboratory research that attempts to target Grb2, an adaptor protein known to directly interact with the Bcr portion of the Bcr-Abl fusion protein. Blocking the binding of Grb2 to the GDP-releasing protein SoS is well known to abrogate the activation of the GTPase Ras, a major driving force of the central mitogenic (MAP kinase) pathway. Additional Grb2 effector proteins may also contribute to the proliferation-inhibiting effects observed upon uncoupling Grb2 from its downstream signalling system. Since Grb2 is a known signal transducer for several major human oncogenes, this approach may have applications for a wider range of human cancers.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Benzamides
- Drug Design
- Enzyme Inhibitors/administration & dosage
- Enzyme Inhibitors/therapeutic use
- Fatty Acids, Unsaturated/pharmacology
- Forecasting
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/metabolism
- GRB2 Adaptor Protein
- Humans
- Imatinib Mesylate
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Macromolecular Substances
- Mice
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/metabolism
- Peptide Fragments/metabolism
- Phosphatidylinositol 3-Kinases/physiology
- Piperazines/administration & dosage
- Piperazines/therapeutic use
- Protein Binding/drug effects
- Proteins/antagonists & inhibitors
- Proteins/chemistry
- Proteins/metabolism
- Pyrimidines/administration & dosage
- Pyrimidines/therapeutic use
- Signal Transduction/drug effects
- Son of Sevenless Proteins/physiology
- Structure-Activity Relationship
- Transcription Factors/physiology
- ras Proteins/antagonists & inhibitors
- src Homology Domains
Collapse
Affiliation(s)
- Stephan M Feller
- Cell Signalling Group, Molecular Oncology Laboratory, Cancer Research UK, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK. stephan.feller@.cancer.org.uk
| | | | | |
Collapse
|
31
|
Abstract
SH2/SH3 domain-containing adapter proteins, such as the Nck family, play a major role in regulating tyrosine kinase signalling. They serve to recruit proline-rich effector molecules to tyrosine-phosphorylated kinases or their substrates. Initially, it was not clear why cells from nematodes to vertebrates contain redundant and closely related SH2/SH3 adapters, such as Grb2, Crk and Nck. Recent evidence suggests that their biological roles are clearly different, whereas, for example, Grb2 connects activated receptor tyrosine kinases to Sos and Ras, leading to cell proliferation. The proteins of Nck family are implicated in organisation of actin cytoskeleton, cell movement or axon guidance in flies. In this review, the author attempts to summarise signalling pathways in which Nck plays a critical role.
Collapse
Affiliation(s)
- László Buday
- Department of Medical Chemistry, Semmelweis University Medical School, 9 Puskin Str., 1088, Budapest, Hungary.
| | | | | |
Collapse
|
32
|
Wolf I, Jenkins BJ, Liu Y, Seiffert M, Custodio JM, Young P, Rohrschneider LR. Gab3, a new DOS/Gab family member, facilitates macrophage differentiation. Mol Cell Biol 2002; 22:231-44. [PMID: 11739737 PMCID: PMC134230 DOI: 10.1128/mcb.22.1.231-244.2002] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using the FDC-P1 cell line expressing the exogenous macrophage colony-stimulating factor (M-CSF) receptor, Fms, we have analyzed the role of a new mammalian DOS/Gab-related signaling protein, called Gab3, in macrophage cell development of the mouse. Gab3 contains an amino-terminal pleckstrin homology domain, multiple potential sites for tyrosine phosphorylation and SH2 domain binding, and two major polyproline motifs potentially interacting with SH3 domains. Among the growing family of Gab proteins, Gab3 exhibits a unique and overlapping pattern of expression in tissues of the mouse compared with Gab1 and Gab2. Gab3 is more restricted to the hematopoietic tissues such as spleen and thymus but is detectable at progressively lower levels within heart, kidney, uterus, and brain. Like Gab2, Gab3 is tyrosine phosphorylated after M-CSF receptor stimulation and associates transiently with the SH2 domain-containing proteins p85 and SHP2. Overexpression of exogenous Gab3 in FD-Fms cells dramatically accelerates macrophage differentiation upon M-CSF stimulation. Unlike Gab2, which shows a constant mRNA expression level after M-CSF stimulation, Gab3 expression is initially absent or low in abundance in FD cells expressing the wild-type Fms, but Gab3 mRNA levels are increased upon M-CSF stimulation. Moreover, M-CSF stimulation of FD-FmsY807F cells (which grow but do not differentiate) fails to increase Gab3 expression. These results suggest that Gab3 is important for macrophage differentiation and that differentiation requires the early phosphorylation of Gab2 followed by induction and subsequent phosphorylation of Gab3.
Collapse
Affiliation(s)
- Ingrid Wolf
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Wenzel J, Sanzenbacher R, Ghadimi M, Lewitzky M, Zhou Q, Kaplan DR, Kabelitz D, Feller SM, Janssen O. Multiple interactions of the cytosolic polyproline region of the CD95 ligand: hints for the reverse signal transduction capacity of a death factor. FEBS Lett 2001; 509:255-62. [PMID: 11741599 DOI: 10.1016/s0014-5793(01)03174-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The CD95/Fas/Apo-1 ligand is expressed on activated lymphocytes, NK cells, platelets, certain immune-privileged cells and some tumor cells and induces apoptosis through the death receptor CD95/Fas/Apo-1. In murine T cells, membrane-bound CD95L (Fas ligand) also acts as a costimulatory receptor to coordinate activation and function in vivo. The molecular basis for this reverse signal transduction is yet unknown. In the present report, we identify individual interaction domains of enzymes and adapter molecules that selectively interact with full-length CD95L from transfectants and human T cells. These results may help to explain the costimulatory capacity of CD95L.
Collapse
Affiliation(s)
- J Wenzel
- Institute for Immunology, Christian-Albrechts-University, Michaelisstrasse 5, 24105 Kiel, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lin JL, Chen HC, Fang HI, Robinson D, Kung HJ, Shih HM. MST4, a new Ste20-related kinase that mediates cell growth and transformation via modulating ERK pathway. Oncogene 2001; 20:6559-69. [PMID: 11641781 DOI: 10.1038/sj.onc.1204818] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2001] [Revised: 07/05/2001] [Accepted: 07/09/2001] [Indexed: 11/09/2022]
Abstract
In this study, we report the cloning and characterization of a novel human Ste20-related kinase that we designated MST4. The 416 amino acid full-length MST4 contains an amino-terminal kinase domain, which is highly homologous to MST3 and SOK, and a unique carboxy-terminal domain. Northern blot analysis indicated that MST4 is highly expressed in placenta, thymus, and peripheral blood leukocytes. Wild-type but not kinase-dead MST4 can phosphorylate myelin basic protein in an in vitro kinase assay. MST4 specifically activates ERK but not JNK or p38 MAPK in transient transfected cells or in stable cell lines. Overexpression of dominant negative MEK1 or treatment with PD98059 abolishes MST4-induced ERK activity, whereas dominant-negative Ras or c-Raf-1 mutants failed to do so, indicating MST4 activates MEK1/ERK via a Ras/Raf-1 independent pathway. HeLa and Phoenix cell lines overexpressing wild-type, but not kinase-dead, MST4 exhibit increased growth rate and form aggressive soft-agar colonies. These phenotypes can be inhibited by PD98059. These results provide the first evidence that MST4 is biologically active in the activation of MEK/ERK pathway and in mediating cell growth and transformation.
Collapse
Affiliation(s)
- J L Lin
- Division of Molecular and Genomic Medicine, National Health Research Institutes, 128, Sec2, Yen-Chiu-Yuan RD, Taipei 11529, Taiwan
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Crk family adaptors are widely expressed and mediate the timely formation of signal transduction protein complexes upon a variety of extracellular stimuli, including various growth and differentiation factors. Selective formation of multi-protein complexes by the Crk and Crk-like (CRKL) proteins depends on specific motifs recognized by their SH2 and SH3 domains. In the case of the first SH3 domains [SH3(1)] a P-x-x-P-x-K motif is crucial for highly selective binding, while the SH2 domains prefer motifs which conform to the consensus pY-x-x-P. Crk family proteins are involved in the relocalization and activation of several different effector proteins which include guanine nucleotide releasing proteins like C3G, protein kinases of the Abl- and GCK-families and small GTPases like Rap1 and Rac. Crk-type proteins have been found not only in vertebrates but also in flies and nematodes. Major insight into the function of Crk within organisms came from the genetic model organism C. elegans, where the Crk-homologue CED-2 regulates cell engulfment and phagocytosis. Other biological outcomes of the Crk-activated signal transduction cascades include the modulation of cell adhesion, cell migration and immune cell responses. Crk family adaptors also appear to play a role in mediating the action of human oncogenes like the leukaemia-inducing Bcr-Abl protein. This review summarizes some key findings and highlights recent insights and open questions.
Collapse
Affiliation(s)
- S M Feller
- Cell Signalling Laboratory, Imperial Cancer Research Fund, University of Oxford, Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK.
| |
Collapse
|
36
|
Stam JC, Geerts WJ, Versteeg HH, Verkleij AJ, van Bergen en Henegouwen PM. The v-Crk oncogene enhances cell survival and induces activation of protein kinase B/Akt. J Biol Chem 2001; 276:25176-83. [PMID: 11323409 DOI: 10.1074/jbc.m009825200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The v-Crk oncogene encodes an adaptor protein containing an SH2 domain and an SH3 domain. v-Crk-transformed fibroblast cells display enhanced tyrosine phosphorylation levels, and the v-Crk protein localizes in focal adhesions, suggesting that transformation may be due to enhanced focal complex signaling. Here we investigated the mechanism of transformation and found that v-Crk-transformed NIH 3T3 cells display growth rates and serum requirements similar to control cells. However, v-Crk enhanced survival in conditions of serum starvation. Both an intact SH2 and SH3 domain are required; moreover, SH2 mutants displayed dominant interfering properties, enhancing cell death. Using other cell death-inducing stimuli, it appeared that v-Crk in general inhibits apoptosis and enhances cell survival. In search of the signaling pathways involved, we found that v-Crk-transformed cells show constitutively higher levels of phospho-protein kinase B (PKB)/Akt and PKB/Akt activity, especially in conditions of serum starvation. These data strongly suggest involvement of the phosphatidylinositol 3-kinase/PKB survival pathway in the v-Crk-induced protection against apoptosis. In accordance, inhibition of this pathway by wortmannin or LY924002 reduced protection against starvation-induced apoptosis. In addition to the phosphatidylinositol 3-kinase/PKB pathway, a MEK-dependent pathway and an unknown additional pathway are also implicated in resistance against apoptosis. Activation of survival pathways may be the most important function of v-Crk in its oncogenic properties.
Collapse
Affiliation(s)
- J C Stam
- Utrecht University, Utrecht Institute of Biomembranes, Molecular Cell Biology, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
37
|
Ling P, Meyer CF, Redmond LP, Shui JW, Davis B, Rich RR, Hu MC, Wange RL, Tan TH. Involvement of hematopoietic progenitor kinase 1 in T cell receptor signaling. J Biol Chem 2001; 276:18908-14. [PMID: 11279207 DOI: 10.1074/jbc.m101485200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hematopoietic progenitor kinase 1 (HPK1), a mammalian Ste20-related serine/threonine protein kinase, is a hematopoietic-specific upstream activator of the c-Jun N-terminal kinase. Here, we provide evidence to demonstrate the involvement of HPK1 in T cell receptor (TCR) signaling. HPK1 was activated and tyrosine-phosphorylated with similar kinetics following TCR/CD3 or pervanadate stimulation. Co-expression of protein-tyrosine kinases, Lck and Zap70, with HPK1 led to HPK1 activation and tyrosine phosphorylation in transfected mammalian cells. Upon TCR/CD3 stimulation, HPK1 formed inducible complexes with the adapters Nck and Crk with different kinetics, whereas it constitutively interacted with the adapters Grb2 and CrkL in Jurkat T cells. Interestingly, HPK1 also inducibly associated with linker for activation of T cells (LAT) through its proline-rich motif and translocated into glycolipid-enriched microdomains (also called lipid rafts) following TCR/CD3 stimulation, suggesting a critical role for LAT in the regulation of HPK1. Together, these results identify HPK1 as a new component of TCR signaling. T cell-specific signaling molecules Lck, Zap70, and LAT play roles in the regulation of HPK1 during TCR signaling. Differential complex formation between HPK1 and adapters highlights the possible involvement of HPK1 in multiple signaling pathways in T cells.
Collapse
Affiliation(s)
- P Ling
- Department of Immunology and the Interdepartmental Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Arnold R, Liou J, Drexler HC, Weiss A, Kiefer F. Caspase-mediated cleavage of hematopoietic progenitor kinase 1 (HPK1) converts an activator of NFkappaB into an inhibitor of NFkappaB. J Biol Chem 2001; 276:14675-84. [PMID: 11278403 DOI: 10.1074/jbc.m008343200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hematopoietic progenitor kinase 1 (HPK1), a mammalian Ste20-related protein kinase, is a potent stimulator of the stress-activated protein kinases (SAPKs/JNKs). Here we report activation of NFkappaB transcription factors by HPK1 that was independent of SAPK/JNK activation. Overexpression of a dominant-negative SEK1 significantly inhibited SAPK/JNK activation, whereas NFkappaB stimulation by HPK1 remained unaffected. Furthermore, activation of NFkappaB required the presence of full-length, kinase-active HPK1, whereas the isolated kinase domain of HPK1 was sufficient for activation of SAPK/JNK. We also demonstrate that overexpression of a dominant-negative IKKbeta blocks HPK1-mediated NFkappaB activation suggesting that HPK1 acts upstream of the IkappaB kinase complex. In apoptotic myeloid progenitor cells HPK1 was cleaved at a DDVD motif resulting in the release of the kinase domain and a C-terminal part. Although expression of the isolated HPK1 kinase domain led to SAPK/JNK activation, the C-terminal part inhibited NFkappaB activation. This dominant-negative effect was not only restricted to HPK1-mediated but also to NIK- and tumor necrosis factor alpha-mediated NFkappaB activation, suggesting an impairment of the IkappaB kinase complex. Thus HPK1 activates both the SAPK/JNK and NFkappaB pathway in hematopoietic cells but is converted into an inhibitor of NFkappaB activation in apoptotic cells.
Collapse
Affiliation(s)
- R Arnold
- Max-Planck Institute for Physiological and Clinical Research, W. G. Kerckhoff Institute, Parkstrasse 1, D-61231 Bad Nauheim, Germany
| | | | | | | | | |
Collapse
|
39
|
Ma W, Xia C, Ling P, Qiu M, Luo Y, Tan TH, Liu M. Leukocyte-specific adaptor protein Grap2 interacts with hematopoietic progenitor kinase 1 (HPK1) to activate JNK signaling pathway in T lymphocytes. Oncogene 2001; 20:1703-14. [PMID: 11313918 DOI: 10.1038/sj.onc.1204224] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2000] [Revised: 12/21/2000] [Accepted: 01/04/2001] [Indexed: 11/09/2022]
Abstract
Immune cell-specific adaptor proteins create various combinations of multiprotein complexes and integrate signals from cell surface receptors to the nucleus, modulating the specificity and selectivity of intracellular signal transduction. Grap2 is a newly identified adaptor protein specifically expressed in lymphoid tissues. This protein shares 40--50% sequence homology in the SH3 and the SH2 domain with Grb2 and Grap. However, the Grap2 protein has a unique 120-amino acid glutamine- and proline-rich domain between the SH2 and C-terminal SH3 domains. The expression of Grap2 is highly restricted to lymphoid organs and T lymphocytes. In order to understand the role of this specific adaptor protein in immune cell signaling and activation, we searched for the Grap2 interacting protein in T lymphocytes. We found that Grap2 interacted with the hematopoietic progenitor kinase 1 (HPK1) in vitro and in Jurkat T cells. The interaction was mediated by the carboxyl-terminal SH3 domain of Grap2 with the second proline-rich motif of HPK1. Coexpression of Grap2 with HPK1 not only increased the kinase activity of HPK1 in the cell, but also had an additive effect on HPK1 mediated JNK activation. Furthermore, over expression of Grap2 and HPK1 induced significant transcriptional activation of c-Jun in the JNK signaling pathway and IL-2 gene reporter activity in stimulated Jurkat T cells. Therefore, our data suggest that the hematopoietic specific proteins Grap2 and HPK1 form a signaling complex to mediate the c-Jun NH(2)-terminal kinase (JNK) signaling pathway in T cells.
Collapse
Affiliation(s)
- W Ma
- Department of Medical Biochemistry and Genetics, Center for Cancer Biology and Nutrition, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, 2121 W. Holcombe Blvd., Houston, Texas, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Lewitzky M, Kardinal C, Gehring NH, Schmidt EK, Konkol B, Eulitz M, Birchmeier W, Schaeper U, Feller SM. The C-terminal SH3 domain of the adapter protein Grb2 binds with high affinity to sequences in Gab1 and SLP-76 which lack the SH3-typical P-x-x-P core motif. Oncogene 2001; 20:1052-62. [PMID: 11314042 DOI: 10.1038/sj.onc.1204202] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2000] [Revised: 12/14/2000] [Accepted: 12/19/2000] [Indexed: 11/08/2022]
Abstract
The adapter Grb2 is an important mediator of normal cell proliferation and oncogenic signal transduction events. It consists of a central SH2 domain flanked by two SH3 domains. While the binding specificities of the Grb2 SH2 and N-terminal SH3 domain [Grb2 SH3(N)] have been studied in detail, binding properties of the Grb2 SH3(C) domain remained poorly defined. Gab1, a receptor tyrosine kinase substrate which associates with Grb2 and the c-Met receptor, was previously shown to bind Grb2 via a region which lacks a Grb2 SH3(N)-typical motif (P-x-x-P-x-R). Precipitation experiments with the domains of Grb2 show now that Gab1 can bind stably to the Grb2 SH3(C) domain. For further analyses, Gab1 mutants were generated by PCR to test in vivo residues thought to be crucial for Grb2 SH3(C) binding. The Grb2 SH3(C) binding region of Gab1 has significant homology to a region of the adapter protein SLP-76. Peptides corresponding to epitopes SLP-76, Gab1, SoS and other proteins with related sequences, as well as mutant peptides were synthesized and analysed by tryptophan-fluorescence spectrometry and by in vitro competition experiments. These experiments define a 13 amino acid sequence with the unusual consensus motif P-x-x-x-R-x-x-K-P as required for a stable binding to the SH3(C) domain of Grb2. Additional analyses point to a distinct binding specificity of the Grb2-homologous adapter protein Mona (Gads), indicating that the proteins of the Grb2 adapter family may have partially overlapping, yet distinct protein binding properties.
Collapse
Affiliation(s)
- M Lewitzky
- Laboratory of Molecular Oncology, MSZ, Universität Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Liu SK, Smith CA, Arnold R, Kiefer F, McGlade CJ. The adaptor protein Gads (Grb2-related adaptor downstream of Shc) is implicated in coupling hemopoietic progenitor kinase-1 to the activated TCR. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:1417-26. [PMID: 10903746 DOI: 10.4049/jimmunol.165.3.1417] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The hemopoietic-specific Gads (Grb2-related adaptor downstream of Shc) adaptor protein possesses amino- and carboxyl-terminal Src homology 3 (SH3) domains flanking a central SH2 domain and a unique region rich in glutamine and proline residues. Gads functions to couple the activated TCR to distal signaling events through its interactions with the leukocyte-specific signaling proteins SLP-76 (SH2 domain-containing leukocyte protein of 76 kDa) and LAT (linker for activated T cells). Expression library screening for additional Gads-interacting molecules identified the hemopoietic progenitor kinase-1 (HPK1), and we investigated the HPK1-Gads interaction within the DO11.10 murine T cell hybridoma system. Our results demonstrate that HPK1 inducibly associates with Gads and becomes tyrosine phosphorylated following TCR activation. HPK1 kinase activity is up-regulated in response to activation of the TCR and requires the presence of its proline-rich motifs. Mapping experiments have revealed that the carboxyl-terminal SH3 domain of Gads and the fourth proline-rich region of HPK1 are essential for their interaction. Deletion of the fourth proline-rich region of HPK1 or expression of a Gads SH2 mutant in T cells inhibits TCR-induced HPK1 tyrosine phosphorylation. Together, these data suggest that HPK1 is involved in signaling downstream from the TCR, and that SH2/SH3 domain-containing adaptor proteins, such as Gads, may function to recruit HPK1 to the activated TCR complex.
Collapse
Affiliation(s)
- S K Liu
- Department of Medical Biophysics and The Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children Research Institute, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
42
|
Sakkab D, Lewitzky M, Posern G, Schaeper U, Sachs M, Birchmeier W, Feller SM. Signaling of hepatocyte growth factor/scatter factor (HGF) to the small GTPase Rap1 via the large docking protein Gab1 and the adapter protein CRKL. J Biol Chem 2000; 275:10772-8. [PMID: 10753869 DOI: 10.1074/jbc.275.15.10772] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hepatocyte growth factor (HGF; scatter factor) is a multipotent protein with mitogenic, motogenic, and developmental functions. Upon activation, the HGF-receptor c-Met binds and phosphorylates the multisite docking protein Gab1. Besides binding motifs for phosphatidylinositol 3-kinase and Grb2, Gab 1 contains multiple Tyr-X-X-Pro (YXXP) motifs which, when phosphorylated, are potential binding sites for the adapter proteins c-Crk and Crk-like (CRKL). Stimulation of human embryonic kidney cells (HEK293) with HGF leads to Gab1 association with CRKL. The Gab1-CRKL interaction requires both, the SH2 domain of CRKL and the region containing the YXXP motifs in Gab1. CRKL binds via its first SH3 domain to several downstream signal transducers, including C3G an activator of the small GTPase Rap1. Indeed, Rap1 was rapidly activated after HGF stimulation of HEK293 cells. Rap1 activation through HGF was suppressed through transfection of a truncated C3G protein which only contains the SH3-binding motifs of C3G. Transfection of nonmutated Gab1 led to a strong increase of Rap1.GTP in the absence of HGF. In contrast, transfection of the GabDeltaYXXP mutant abolished the elevation of Rap1.GTP by HGF. A replating assay indicated that HGF decreases the adhesion of HEK293 cells. The results presented here delineate a novel signaling pathway from HGF to the GTPase Rap1 which depends on the interaction of the adapter protein CRKL with the exchange factor C3G and could be linked to cell migration.
Collapse
Affiliation(s)
- D Sakkab
- Laboratory of Molecular Oncology, MSZ-Institut für Medizinische Strahlenkunde und Zellforschung, Universität Würzburg, D-97078 Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
43
|
Voss J, Posern G, Hannemann JR, Wiedemann LM, Turhan AG, Poirel H, Bernard OA, Adermann K, Kardinal C, Feller SM. The leukaemic oncoproteins Bcr-Abl and Tel-Abl (ETV6/Abl) have altered substrate preferences and activate similar intracellular signalling pathways. Oncogene 2000; 19:1684-90. [PMID: 10763825 DOI: 10.1038/sj.onc.1203467] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inappropriate activation of Abl family kinases plays a crucial role in different human leukaemias. In addition to the well known oncoproteins p190Bcr-Abl and p210Bcr-Abl, Tel-Abl, a novel fusion protein resulting from a different chromosomal translocation, has recently been described. In this study, the kinase specificities of the Bcr-Abl and Tel-Abl proteins were compared to the physiological Abl family kinases c-Abl and Arg (abl related gene). Using short peptides which correspond to the target epitopes in known substrate proteins of Abl family kinases, we found a higher catalytic promiscuity of Bcr-Abl and Tel-Abl. Similar to Bcr-Abl, Tel-Abl was found in complexes with the adapter protein CRKL. In addition, c-Crk II and CRKL are tyrosine phosphorylated and complexed with numerous other tyrosine phosphorylated proteins in Tel-Abl expressing Ba/F3 cells. GTPase analysis with a Ras-GTP-specific precipitation assay showed constitutive elevation of GTP-loaded Ras in cells expressing the leukaemic Abl proteins. The mitogenic MAPK/Erk kinases as well as Akt/PKB, a kinase implicated to negatively regulate apoptosis, were also constitutively activated by both Bcr-Abl and Tel-Abl. The results indicate that the leukaemic Abl-fusion proteins have catalytic specificities different from the normal kinases c-Abl and Arg and that Tel-Abl is capable to activate at least some pathways which are also upregulated by Bcr-Abl.
Collapse
Affiliation(s)
- J Voss
- Laboratory of Molecular Oncology, Institut für Medizinische Strahlenkunde und Zellforschung, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yustein JT, Li D, Robinson D, Kung HJ. KFC, a Ste20-like kinase with mitogenic potential and capability to activate the SAPK/JNK pathway. Oncogene 2000; 19:710-8. [PMID: 10698516 DOI: 10.1038/sj.onc.1203342] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Sterile-20 (Ste20) family of serine-threonine kinases has been implicated in the activation of the stress-activated protein kinase pathways. However, the physiological role has remained ambiguous for most of the investigated mammalian Ste20's. Here we report the cloning of a novel Ste20-like kinase, from chicken embryo fibroblast (CEF) cells, which we have named KFC, for Kinase From Chicken. The 898 amino acid full-length KFC protein contains an amino-terminal kinase domain, an adjacent downstream serine-rich region, and a C-terminal tail containing a coiled-coil domain. Here we show that the coiled-coil domain of KFC negatively regulates the intrinsic kinase activity. We have also identified a splice variant of KFC in which there is a 207 nucleotide in-frame deletion. This deletion of 69 amino acids encompasses the serine-rich region. These two isoforms, called KFCL, for full-length, and KFCS for spliced (or short) form, not only differ in structure, but also in biological properties. Stable CEF cells overexpressing KFCL, but not KFCS, have a significant increase in growth rate when compared to parental cells. This mitogenic effect is the first such reported for this family of kinases. Finally, we found that KFC, when activated by truncation of the regulatory C-terminus, has a specific activation of the stress-activated protein kinase (SAPK/JNK) pathway.
Collapse
Affiliation(s)
- J T Yustein
- Case Western Reserve University School of Medicine, Department of Molecular Biology and Microbiology, Cleveland, Ohio 44106-4960, USA
| | | | | | | |
Collapse
|
45
|
Adaptor proteins CRK and CRKL associate with the serine/threonine protein kinase GCKR promoting GCKR and SAPK activation. Blood 2000. [DOI: 10.1182/blood.v95.3.776.003k23_776_782] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
STE20-related kinases play significant regulatory roles in a range of cellular responses to environmental stimuli. GCKR (also referred to as KHS1) is a serine/threonine protein kinase that has an STE20-like protein kinase domain and that stimulates the stress-activated protein kinase (SAPK, also referred to as Jun kinase or JNK) pathway. GCKR has a large C-terminal regulatory domain that provides sites for interactions with other proteins. Adaptor proteins mediate the interactions between signaling molecules. In this study we showed that the adaptor proteins Crk and CrkL associated with GCKR. When Crk-I, Crk-II, or CrkL was transiently expressed in HEK 293T cells along with GCKR, each coimmunoprecipitated with GCKR. Furthermore, in the Bcr-Abl transformed cell line, K562 endogenous GCKR and CrkL coimmunoprecipitated, indicating a constitutive association. Detection of the CrkL-GCKR interaction required the SH3 domains of CrkL and 2 regions in GCKR—1 between amino acids 387 and 395 that contains a consensus SH3 binding motif and the other between amino acids 599 and 696. Crk or CrkL overexpression increased GCKR catalytic activity. A dominant negative form of Ras abolished Crk- or CrkL-induced GCKR activation, suggesting a dependence on Ras activation for their activation of GCKR. Finally, we showed impairment of the known ability of CrkL to activate the SAPK pathway by a catalytically inactive form of GCKR or by a GCKR antisense construct. Thus, GCKR associates with other proteins through interactions mediated by SH2/SH3 adaptor proteins, which can lead to GCKR and SAPK activation.
Collapse
|
46
|
Chen YR, Meyer CF, Ahmed B, Yao Z, Tan TH. Caspase-mediated cleavage and functional changes of hematopoietic progenitor kinase 1 (HPK1). Oncogene 1999; 18:7370-7. [PMID: 10602493 DOI: 10.1038/sj.onc.1203116] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Activation of c-Jun N-terminal kinase (JNK) by Fas ligation is caspase-dependent, suggesting that caspases may regulate activators of the JNK pathway. Here, we report that an upstream activator of JNK, hematopoietic progenitor kinase 1 (HPK1), was cleaved during apoptosis. Cleavage of HPK1 was blocked by peptide inhibitors for caspases. HPK1 was efficiently processed by recombinant caspase 3 in vitro. A conserved caspase recognition site, DDVD (amino acids 382 - 385), was found in the HPK1 protein sequence. By testing HPK1 proteins with in vivo and in vitro cleavage assays, we showed that aspartic acid residue 385 is the target for caspases. HPK1 cleavage separated the amino N-terminal kinase domain from the carboxyl C-terminal regulatory domain, and enhanced HPK1 kinase activity. Unlike the full-length HPK1, the N-terminal cleaved product failed to bind adaptor molecules Grb2 (growth factor receptor-bound protein 2) and Crk (CT10 regulator of kinase). The C-terminal fragment, although having three proline-rich domains, bound to Grb2 and Crk less efficiently than the full-length HPK1 protein. Taken together, the cleavage of HPK1 by caspase profoundly changed its biochemical properties.
Collapse
Affiliation(s)
- Y R Chen
- Department of Microbiology and Immunology, Baylor College of Medicine, M929, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
47
|
Ensenat D, Yao Z, Wang XS, Kori R, Zhou G, Lee SC, Tan TH. A novel src homology 3 domain-containing adaptor protein, HIP-55, that interacts with hematopoietic progenitor kinase 1. J Biol Chem 1999; 274:33945-50. [PMID: 10567356 DOI: 10.1074/jbc.274.48.33945] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hematopoietic progenitor kinase 1 (HPK1) is a member of the mitogen-activated protein kinase kinase kinase kinase (MAP4K) family and an upstream activator of the c-Jun N-terminal kinase (JNK) signaling cascade. HPK1 interacts, through its proline-rich domains, with growth factor receptor-bound 2 (Grb2), CT10-regulated kinase (Crk), and Crk-like (CrkL) adaptor proteins. We identified a novel HPK1-interacting protein of 55 kDa (HIP-55), similar to the mouse SH3P7 protein, containing an N-terminal actin-binding domain and a C-terminal Src homology 3 domain. We found that HPK1 bound to HIP-55 both in vitro and in vivo. When co-transfected, HIP-55 increased HPK1's kinase activity as well as JNK1's kinase activity. A dominant-negative HPK1 mutant blocked activation of JNK1 by HIP-55 showing that HIP-55 activates the JNK1 signaling pathway via HPK1. Our results identify a novel protein, HIP-55, that binds to HPK1 and regulates the JNK1 signaling cascade.
Collapse
Affiliation(s)
- D Ensenat
- Department of Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Albrecht JC, Friedrich U, Kardinal C, Koehn J, Fleckenstein B, Feller SM, Biesinger B. Herpesvirus ateles gene product Tio interacts with nonreceptor protein tyrosine kinases. J Virol 1999; 73:4631-9. [PMID: 10233922 PMCID: PMC112504 DOI: 10.1128/jvi.73.6.4631-4639.1999] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpesvirus ateles is a gamma-2-herpesvirus which naturally infects spider monkeys (Ateles spp.) and causes malignant lymphoproliferative disorders in various other New World primates. The genomic sequence of herpesvirus ateles strain 73 revealed a close relationship to herpesvirus saimiri, with a high degree of variability within the left terminus of the coding region. A spliced mRNA transcribed from this region was detected in New World monkey T-cell lines transformed by herpesvirus ateles in vitro or derived from T cells of infected Saguinus oedipus. The encoded viral protein, termed Tio, shows restricted homology to the oncoprotein StpC and to the tyrosine kinase-interacting protein Tip, two gene products responsible for the T-cell-transforming and oncogenic phenotype of herpesvirus saimiri group C strains. Tio was detectable in lysates of the transformed T lymphocytes. Dimer formation was observed after expression of recombinant Tio. After cotransfection, Tio was phosphorylated in vivo by the protein tyrosine kinases Lck and Src and less efficiently by Fyn. Stable complexes of these Src family kinases with the viral protein were detected in lysates of the transfected cells. Binding analyses indicated a direct interaction of Tio with the SH3 domains of Lyn, Hck, Lck, Src, Fyn, and Yes. In addition, tyrosine-phosphorylated Tio bound to the SH2 domains of Lck, Src, or Fyn. Thus, herpesvirus ateles-encoded Tio may contribute to viral T-cell transformation by influencing the function of Src family kinases.
Collapse
Affiliation(s)
- J C Albrecht
- Institut für Klinische und Molekulare Virologie, Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | | | | | | | | | | | | |
Collapse
|
49
|
Zhou G, Lee SC, Yao Z, Tan TH. Hematopoietic progenitor kinase 1 is a component of transforming growth factor beta-induced c-Jun N-terminal kinase signaling cascade. J Biol Chem 1999; 274:13133-8. [PMID: 10224067 DOI: 10.1074/jbc.274.19.13133] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The c-Jun N-terminal kinase (JNK) signaling pathway is involved in transforming growth factor beta (TGF-beta) signaling in a variety of cell systems. We report here that hematopoietic progenitor kinase 1 (HPK1), a novel Ste20-like protein serine/threonine kinase, serves as an upstream mediator for the TGF-beta-activated JNK1 cascade in 293T cells. TGF-beta treatment resulted in a time-dependent activation of HPK1, which was accompanied by similar kinetics of JNK1 activation. The activation of JNK1 by TGF-beta was abrogated by a kinase-defective HPK1 mutant but not by a kinase-defective mutant of kinase homologous to Ste20/Sps1. This result indicates that HPK1 is specifically required for TGF-beta-induced activation of JNK1. We also found that TGF-beta-induced JNK1 activation was blocked by a kinase-defective mutant of TGF-beta-activated kinase 1 (TAK1). In addition, interaction between HPK1 and TAK1 was observed in transient transfection assays, and this interaction was enhanced by TGF-beta treatment. Both stress-activated protein kinase/extracellular signal-regulated kinase kinase (SEK) and mitogen-activated protein kinase kinase 7 (MKK7) are immediate upstream activators of JNK1. Although SEK and MKK7 acted downstream of TAK1, only a kinase-defective SEK mutant blocked TGF-beta-induced activation of JNK1, indicating that the TGF-beta signal is relayed solely through SEK, but not MKK7, in vivo. Furthermore, TGF-beta-induced activating protein 1 activation was blocked by a HPK1 mutant, as well as by TAK1 and SEK mutants. Taken together, these studies establish a potential cascade of TGF-beta-activated interacting kinases beginning with HPK1, a Ste20 homolog, and ending in JNK1 activation: HPK1 --> TAK1 --> SEK --> JNK1.
Collapse
Affiliation(s)
- G Zhou
- Department of Microbiology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|