1
|
Huang M, Liu C, Shao Y, Zhou S, Hu G, Yin S, Pu W, Yu H. Anti-tumor pharmacology of natural products targeting mitosis. Cancer Biol Med 2022; 19:j.issn.2095-3941.2022.0006. [PMID: 35699421 PMCID: PMC9257311 DOI: 10.20892/j.issn.2095-3941.2022.0006] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cancer has been an insurmountable problem in the history of medical science. The uncontrollable proliferation of cancer cells is one of cancer’s main characteristics, which is closely associated with abnormal mitosis. Targeting mitosis is an effective method for cancer treatment. This review summarizes several natural products with anti-tumor effects related to mitosis, focusing on targeting microtubulin, inducing DNA damage, and modulating mitosis-associated kinases. Furthermore, the main disadvantages of several typical compounds, including drug resistance, toxicity to non-tumor tissues, and poor aqueous solubility and pharmacokinetic properties, are also discussed, together with strategies to address them. Improved understanding of cancer cell mitosis and natural products may pave the way to drug development for the treatment of cancer.
Collapse
Affiliation(s)
- Manru Huang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Caiyan Liu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yingying Shao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shiyue Zhou
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Gaoyong Hu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuangshuang Yin
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Weiling Pu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Haiyang Yu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
2
|
Uzun M, Oztopuz O, Eroglu HA, Doganlar O, Doganlar ZB, Ovali MA, Demir U, Buyuk B. Melatonin Improves Left Ventricular Mitochondrial Dynamics in Rats. CYTOL GENET+ 2022. [DOI: 10.3103/s0095452722020116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Das R, Fernandez JG. Biomaterials for Mimicking and Modelling Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1379:139-170. [DOI: 10.1007/978-3-031-04039-9_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
4
|
García-Galindo G, Castro J, Matés J, Bravo M, Ribó M, Vilanova M, Benito A. The Selectivity for Tumor Cells of Nuclear-Directed Cytotoxic RNases Is Mediated by the Nuclear/Cytoplasmic Distribution of p27 KIP1. Molecules 2021; 26:molecules26051319. [PMID: 33801209 PMCID: PMC7957890 DOI: 10.3390/molecules26051319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/03/2022] Open
Abstract
Although single targeted anti-cancer drugs are envisaged as safer treatments because they do not affect normal cells, cancer is a very complex disease to be eradicated with a single targeted drug. Alternatively, multi-targeted drugs may be more effective and the tumor cells may be less prone to develop drug resistance although these drugs may be less specific for cancer cells. We have previously developed a new strategy to endow human pancreatic ribonuclease with antitumor action by introducing in its sequence a non-classical nuclear localization signal. These engineered proteins cleave multiple species of nuclear RNA promoting apoptosis of tumor cells. Interestingly, these enzymes, on ovarian cancer cells, affect the expression of multiple genes implicated in metabolic and signaling pathways that are critic for the development of cancer. Since most of these targeted pathways are not highly relevant for non-proliferating cells, we envisioned the possibility that nuclear directed-ribonucleases were specific for tumor cells. Here, we show that these enzymes are much more cytotoxic for tumor cells in vitro. Although the mechanism of selectivity of NLSPE5 is not fully understood, herein we show that p27KIP1 displays an important role on the higher resistance of non-tumor cells to these ribonucleases.
Collapse
Affiliation(s)
- Glòria García-Galindo
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, Maria Aurèlia Capmany 40, 17003 Girona, Spain; (G.G.-G.); (J.C.); (J.M.); (M.B.); (M.R.)
| | - Jessica Castro
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, Maria Aurèlia Capmany 40, 17003 Girona, Spain; (G.G.-G.); (J.C.); (J.M.); (M.B.); (M.R.)
- Institut d’Investigació Biomèdica de Girona Josep Trueta (IdIBGi), 17003 Girona, Spain
| | - Jesús Matés
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, Maria Aurèlia Capmany 40, 17003 Girona, Spain; (G.G.-G.); (J.C.); (J.M.); (M.B.); (M.R.)
- Institut d’Investigació Biomèdica de Girona Josep Trueta (IdIBGi), 17003 Girona, Spain
| | - Marlon Bravo
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, Maria Aurèlia Capmany 40, 17003 Girona, Spain; (G.G.-G.); (J.C.); (J.M.); (M.B.); (M.R.)
- Institut d’Investigació Biomèdica de Girona Josep Trueta (IdIBGi), 17003 Girona, Spain
| | - Marc Ribó
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, Maria Aurèlia Capmany 40, 17003 Girona, Spain; (G.G.-G.); (J.C.); (J.M.); (M.B.); (M.R.)
- Institut d’Investigació Biomèdica de Girona Josep Trueta (IdIBGi), 17003 Girona, Spain
| | - Maria Vilanova
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, Maria Aurèlia Capmany 40, 17003 Girona, Spain; (G.G.-G.); (J.C.); (J.M.); (M.B.); (M.R.)
- Institut d’Investigació Biomèdica de Girona Josep Trueta (IdIBGi), 17003 Girona, Spain
- Correspondence: (M.V.); (A.B.); Tel.: +34-972418173 (M.V.); +34-630415072 (A.B.)
| | - Antoni Benito
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, Maria Aurèlia Capmany 40, 17003 Girona, Spain; (G.G.-G.); (J.C.); (J.M.); (M.B.); (M.R.)
- Institut d’Investigació Biomèdica de Girona Josep Trueta (IdIBGi), 17003 Girona, Spain
- Correspondence: (M.V.); (A.B.); Tel.: +34-972418173 (M.V.); +34-630415072 (A.B.)
| |
Collapse
|
5
|
E2F1 sumoylation as a protective cellular mechanism in oxidative stress response. Proc Natl Acad Sci U S A 2020; 117:14958-14969. [PMID: 32541040 DOI: 10.1073/pnas.1921554117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Oxidative stress is a ubiquitous threat to all aerobic organisms and has been implicated in numerous pathological conditions such as cancer. Here we demonstrate a pivotal role for E2F1, a cell cycle regulatory transcription factor, in cell tolerance of oxidative stress. Cells lacking E2F1 are hypersensitive to oxidative stress due to the defects in cell cycle arrest. Oxidative stress inhibits E2F1 transcriptional activity, independent of changes in association with Rb and without decreasing its DNA-binding activity. Upon oxidative insult, SUMO2 is extensively conjugated to E2F1 mainly at lysine 266 residue, which specifically modulates E2F1 transcriptional activity to enhance cell cycle arrest for cell survival. We identify SENP3, a desumoylating enzyme, as an E2F1-interacting partner. Oxidative stress inhibits the interaction between E2F1 and SENP3, which leads to accumulation of sumoylated E2F1. SENP3-deficient cells exhibit hypersumoylation of E2F1 and are resistant to oxidative insult. High levels of SENP3 in breast cancer are associated with elevated levels of E2F targets, high tumor grade, and poor survival. Given the prevalence of elevated levels of SENP3 across numerous cancer types, the SENP3-E2F1 axis may serve as an avenue for therapeutic intervention in cancer.
Collapse
|
6
|
Leu WJ, Wang CT, Hsu JL, Chen IS, Chang HS, Guh JH. Ascleposide, a natural cardenolide, induces anticancer signaling in human castration-resistant prostatic cancer through Na + /K + -ATPase internalization and tubulin acetylation. Prostate 2020; 80:305-318. [PMID: 31905252 DOI: 10.1002/pros.23944] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Cardiac glycosides, which inhibit Na+ /K+ -ATPase, display inotropic effects for the treatment of congestive heart failure and cardiac arrhythmia. Recent studies have suggested signaling downstream of Na+ /K+ -ATPase action in the regulation of cell proliferation and apoptosis and have revealed the anticancer activity of cardiac glycosides. The study aims to characterize the anticancer potential of ascleposide, a natural cardenolide, and to uncover its primary target and underlying mechanism against human castration-resistant prostate cancer (CRPC). METHODS Cell proliferation was examined in CRPC PC-3 and DU-145 cells using sulforhodamine B assay, carboxyfluorescein succinimidyl ester staining assay and clonogenic examination. Flow cytometric analysis was used to detect the distribution of cell cycle phase, mitochondrial membrane potential, intracellular Na+ and Ca2+ levels, and reactive oxygen species production. Protein expression was examined using Western blot analysis. Endocytosis of Na+ /K+ -ATPase was determined using confocal immunofluorescence microscopic examination. RESULTS Ascleposide induced an increase of intracellular Na+ and a potent antiproliferative effect. It also induced a decrease of G1 phase distribution while an increase in both G2/M and apoptotic sub-G1 phases, and downregulated several cell cycle regulator proteins, including cyclins, Cdk, p21, and p27 Cip/Kip proteins, Rb and c-Myc. Ascleposide decreased the expression of antiapoptotic Bcl-2 members (eg, Bcl-2 and Mcl-1) but upregulated proapoptotic member (eg, Bak), leading to a significant loss of mitochondrial membrane potential and activation of both caspase-9 and caspase-3. Ascleposide also dramatically induced tubulin acetylation, leading to inhibition of the catalytic activity of Na+ /K+ -ATPase. Notably, extracellular high K+ (16 mM) significantly blunted ascleposide-mediated effects. Furthermore, ascleposide induced a p38 MAPK-dependent endocytosis of Na+ /K+ -ATPase and downregulated the protein expression of Na+ /K+ -ATPase α1 subunit. CONCLUSION Ascleposide displays antiproliferative and apoptotic activities dependent on the inhibition of Na+ /K+ -ATPase pumping activity through p38 MAPK-mediated endocytosis of Na+ /K+ -ATPase and downregulation of α1 subunit, which in turn cause tubulin acetylation and cell cycle arrest. Cell apoptosis is ultimately triggered by the activation of caspase cascade attributed to mitochondrial damage through the downregulation of Bcl-2 and Mcl-1 protein expressions while upregulation of Bak protein levels. The data also suggest the potential of ascleposide in anti-CRPC development.
Collapse
Affiliation(s)
- Wohn-Jenn Leu
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Ching-Ting Wang
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Jui-Ling Hsu
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Ih-Sheng Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung, Taiwan, Kaohsiung, Taiwan
| | - Hsun-Shuo Chang
- School of Pharmacy, College of Pharmacy, Kaohsiung, Taiwan, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jih-Hwa Guh
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
7
|
Aerobic endurance training status affects lymphocyte apoptosis sensitivity by induction of molecular genetic adaptations. Brain Behav Immun 2019; 75:251-257. [PMID: 30790541 DOI: 10.1016/j.bbi.2018.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/27/2018] [Accepted: 10/23/2018] [Indexed: 12/27/2022] Open
Abstract
Apoptosis is a genetically regulated form of programmed cell death which promotes the elimination of potentially detrimental immune cells. However, exercise-associated apoptosis is thought to induce a temporarily decline of the adaptive immune competence in the early post-exercise period. The purpose of the present study was to investigate if the aerobic endurance training status affects the sensitivity of human peripheral blood lymphocytes towards different types of apoptosis inducers and secondly, if this is mediated by the modulation of apoptosis-associated proteins and microRNAs. Collected at resting conditions, isolated lymphocytes of endurance trained athletes (ET) and healthy untrained subjects were either exposed to phytohemagglutinin-L (PHA-L), hydrogen peroxide (H2O2), or dexamethasone (DEX) as apoptosis inducer. Results revealed no significant differences between ET and UT in terms of lymphocyte apoptosis immediately following isolation as determined by flow cytometry using annexin V staining. After 24 h of ex vivo cultivation, lymphocytes of ET showed a reduced sensitivity to PHA-L-induced lymphocyte apoptosis which was accompanied by a noticeably up-regulation of the prominent apoptosis inhibitor genes X-linked inhibitor of apoptosis (XIAP) and Cyclin dependent kinase inhibitor 1B (CDKN1B) as analyzed by quantitative real-time PCR. Moreover, a trend was observed for the suppression of the corresponding pro-apoptotic miR-221. Lymphocyte apoptosis in control, H2O2 and DEX treated cells was not affected by aerobic endurance training status. However, distinct molecular signatures could be identified in un-treated control samples characterized by a counterbalanced modulation of pro- and anti-apoptotic mediators in ET. The results of the current study suggest that lymphocytes adapt to repetitive endurance exercise training by promoting lymphocyte homeostasis and increasing their resistance to apoptosis. This could be based on an up-regulation of anti-apoptotic proteins and a reduction in pro-apoptotic microRNAs which together tightly regulate the genetically defined apoptotic pathways governed by the type of apoptosis stimuli. Thus, the lymphocytes of endurance-trained athletes may be primed to counteract the transient immune suppression post-exercise.
Collapse
|
8
|
Nguyen HH, Tilton SC, Kemp CJ, Song M. Nonmonotonic Pathway Gene Expression Analysis Reveals Oncogenic Role of p27/Kip1 at Intermediate Dose. Cancer Inform 2017; 16:1176935117740132. [PMID: 29162974 PMCID: PMC5692148 DOI: 10.1177/1176935117740132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 09/16/2017] [Indexed: 11/15/2022] Open
Abstract
The mechanistic basis by which the level of p27Kip1 expression influences tumor aggressiveness and patient mortality remains unclear. To elucidate the competing tumor-suppressing and oncogenic effects of p27Kip1 on gene expression in tumors, we analyzed the transcriptomes of squamous cell papilloma derived from Cdkn1b nullizygous, heterozygous, and wild-type mice. We developed a novel functional pathway analysis method capable of testing directional and nonmonotonic dose response. This analysis can reveal potential causal relationships that might have been missed by other nondirectional pathway analysis methods. Applying this method to capture dose-response curves in papilloma gene expression data, we show that several known cancer pathways are dominated by low-high-low gene expression responses to increasing p27 gene doses. The oncogene cyclin D1, whose expression is elevated at an intermediate p27 dose, is the most responsive gene shared by these cancer pathways. Therefore, intermediate levels of p27 may promote cellular processes favoring tumorigenesis-strikingly consistent with the dominance of heterozygous mutations in CDKN1B seen in human cancers. Our findings shed new light on regulatory mechanisms for both pro- and anti-tumorigenic roles of p27Kip1. Functional pathway dose-response analysis provides a unique opportunity to uncover nonmonotonic patterns in biological systems.
Collapse
Affiliation(s)
- Hien H Nguyen
- Department of Computer Science, New Mexico State University, Las Cruces, NM, USA
| | - Susan C Tilton
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Christopher J Kemp
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Mingzhou Song
- Department of Computer Science, New Mexico State University, Las Cruces, NM, USA
- Mingzhou Song, Department of Computer Science, New Mexico State University, Las Cruces, NM 88003, USA.
| |
Collapse
|
9
|
Podmirseg SR, Jäkel H, Ranches GD, Kullmann MK, Sohm B, Villunger A, Lindner H, Hengst L. Caspases uncouple p27(Kip1) from cell cycle regulated degradation and abolish its ability to stimulate cell migration and invasion. Oncogene 2016; 35:4580-90. [PMID: 26829051 PMCID: PMC4854979 DOI: 10.1038/onc.2015.524] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 10/27/2015] [Accepted: 11/06/2015] [Indexed: 01/12/2023]
Abstract
In addition to their role in programmed cell death, caspases exert non-lethal functions in diverse developmental processes including cell differentiation or tissue remodeling. Terminal cell cycle exit and differentiation can be promoted by increased level of the CDK inhibitor p27Kip1. Activated caspases cause proteolytic processing of p27, and we identified a novel caspase cleavage site in human p27 that removes a C-terminal fragment of 22 amino acids from the CDK inhibitor, including a phosphodegron. Thereby, caspases protect the inhibitor from SCF-Skp2-mediated degradation in S, G2 and M phases of the cell cycle. As a consequence, p27 becomes stabilized and remains an efficient nuclear inhibitor of cell cycle progression. Besides controlling cyclin/CDK kinase activity, p27 also regulates cytoskeletal dynamics, cell motility and cell invasion. Following processing by caspases, p27 fails to bind to RhoA and to inhibit its activation, and thereby abolishes the ability of p27 to stimulate cell migration and invasion. We propose that the stabilization of the CDK inhibitor and elimination of RhoA-induced cytoskeletal remodeling upon caspase processing could contribute to cell cycle exit and cytoskeletal remodeling during non-lethal caspase controlled differentiation processes.
Collapse
Affiliation(s)
- S R Podmirseg
- Division of Medical Biochemistry; Biocenter; Innsbruck Medical University; Innsbruck, Austria
| | - H Jäkel
- Division of Medical Biochemistry; Biocenter; Innsbruck Medical University; Innsbruck, Austria
| | - G D Ranches
- Division of Medical Biochemistry; Biocenter; Innsbruck Medical University; Innsbruck, Austria
| | - M K Kullmann
- Division of Medical Biochemistry; Biocenter; Innsbruck Medical University; Innsbruck, Austria
| | - B Sohm
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), UMR 7360, Université de Lorraine, Metz, France.,CNRS, LIEC, UMR 7360, Metz, France
| | - A Villunger
- Division of Developmental Immunology; Biocenter; Innsbruck Medical University; Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - H Lindner
- Division of Clinical Biochemistry; Biocenter; Innsbruck Medical University; Innsbruck, Austria
| | - L Hengst
- Division of Medical Biochemistry; Biocenter; Innsbruck Medical University; Innsbruck, Austria
| |
Collapse
|
10
|
Perucho L, Artero-Castro A, Guerrero S, Ramón y Cajal S, LLeonart ME, Wang ZQ. RPLP1, a crucial ribosomal protein for embryonic development of the nervous system. PLoS One 2014; 9:e99956. [PMID: 24959908 PMCID: PMC4069005 DOI: 10.1371/journal.pone.0099956] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 05/20/2014] [Indexed: 12/22/2022] Open
Abstract
Ribosomal proteins are pivotal to development and tissue homeostasis. RP Large P1 (Rplp1) overexpression is associated with tumorigenesis. However, the physiological function of Rplp1 in mammalian development remains unknown. In this study, we disrupted Rplp1 in the mouse germline and central nervous system (Rplp1CNSΔ). Rplp1 heterozygosity caused body size reductions, male infertility, systemic abnormalities in various tissues and a high frequency of early postnatal death. Rplp1CNSΔ</emph> newborn mice exhibited perinatal lethality and brain atrophy with size reductions of the neocortex, midbrain and ganglionic eminence. The Rplp1 knockout neocortex exhibited progenitor cell proliferation arrest and apoptosis due to the dysregulation of key cell cycle and apoptosis regulators (cyclin A, cyclin E, p21CIP1, p27KIP1, p53). Similarly, Rplp1 deletion in pMEFs led to proliferation arrest and premature senescence. Importantly, Rplp1 deletion in primary mouse embryonic fibroblasts did not alter global protein synthesis, but did change the expression patterns of specific protein subsets involved in protein folding and the unfolded protein response, cell death, protein transport and signal transduction, among others. Altogether, we demonstrated that the translation “fine-tuning” exerted by Rplp1 is essential for embryonic and brain development and for proper cell proliferation.
Collapse
Affiliation(s)
- Laura Perucho
- Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Ana Artero-Castro
- Oncology and Pathology Group, Institut de Recerca Hospital Vall d'Hebron, Barcelona, Spain
| | - Sergi Guerrero
- Oncology and Pathology Group, Institut de Recerca Hospital Vall d'Hebron, Barcelona, Spain
| | - Santiago Ramón y Cajal
- Oncology and Pathology Group, Institut de Recerca Hospital Vall d'Hebron, Barcelona, Spain
| | - Matilde E. LLeonart
- Oncology and Pathology Group, Institut de Recerca Hospital Vall d'Hebron, Barcelona, Spain
- * E-mail:
| | - Zhao-Qi Wang
- Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), Jena, Germany
- Faculty of Biology and Pharmacy, Friedrich Schiller University of Jena, Jena, Germany
| |
Collapse
|
11
|
Kim YW, Kim EY, Jeon D, Liu JL, Kim HS, Choi JW, Ahn WS. Differential microRNA expression signatures and cell type-specific association with Taxol resistance in ovarian cancer cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:293-314. [PMID: 24591819 PMCID: PMC3938445 DOI: 10.2147/dddt.s51969] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Paclitaxel (Taxol) resistance remains a major obstacle for the successful treatment of ovarian cancer. MicroRNAs (miRNAs) have oncogenic and tumor suppressor activity and are associated with poor prognosis phenotypes. miRNA screenings for this drug resistance are needed to estimate the prognosis of the disease and find better drug targets. miRNAs that were differentially expressed in Taxol-resistant ovarian cancer cells, compared with Taxol-sensitive cells, were screened by Illumina Human MicroRNA Expression BeadChips. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to identify target genes of selected miRNAs. Kaplan–Meier survival analysis was applied to identify dysregulated miRNAs in ovarian cancer patients using data from The Cancer Genome Atlas. A total of 82 miRNAs were identified in ovarian carcinoma cells compared to normal ovarian cells. miR-141, miR-106a, miR-200c, miR-96, and miR-378 were overexpressed, and miR-411, miR-432, miR-494, miR-409-3p, and miR-655 were underexpressed in ovarian cancer cells. Seventeen miRNAs were overexpressed in Taxol-resistant cells, including miR-663, miR-622, and HS_188. Underexpressed miRNAs in Taxol-sensitive cells included miR-497, miR-187, miR-195, and miR-107. We further showed miR-663 and miR-622 as significant prognosis markers of the chemo-resistant patient group. In particular, the downregulation of the two miRNAs was associated with better survival, perhaps increasing the sensitivity of cancer cells to Taxol. In the chemo-sensitive patient group, only miR-647 could be a prognosis marker. These miRNAs inhibit several interacting genes of p53 networks, especially in TUOS-3 and TUOS-4, and showed cell line-specific inhibition effects. Taken together, the data indicate that the three miRNAs are closely associated with Taxol resistance and potentially better prognosis factors. Our results suggest that these miRNAs were successfully and reliably identified and would be used in the development of miRNA therapies in treating ovarian cancer.
Collapse
Affiliation(s)
- Yong-Wan Kim
- Cancer Research Institute of Medical Science, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Young Kim
- Cancer Research Institute of Medical Science, The Catholic University of Korea, Seoul, Republic of Korea
| | - Doin Jeon
- Cancer Research Institute of Medical Science, The Catholic University of Korea, Seoul, Republic of Korea
| | - Juinn-Lin Liu
- Brain Tumor Center, Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, TX, USA
| | | | - Jin Woo Choi
- Harvard Medical School and Wellman Center for Photomedicine, Cambridge, MA, USA
| | - Woong Shick Ahn
- Department of Obstetrics and Gynecology, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
12
|
Abstract
Since cancer is one of the leading causes of death worldwide, there is an urgent need to find better treatments. Currently, the use of chemotherapeutics remains the predominant option for cancer therapy. However, one of the major obstacles for successful cancer therapy using these chemotherapeutics is that patients often do not respond or eventually develop resistance after initial treatment. Therefore identification of genes involved in chemotherapeutic response is critical for predicting tumour response and treating drug-resistant cancer patients. A group of genes commonly lost or inactivated are tumour suppressor genes, which can promote the initiation and progression of cancer through regulation of various biological processes such as cell proliferation, cell death and cell migration/invasion. Recently, mounting evidence suggests that these tumour suppressor genes also play a very important role in the response of cancers to a variety of chemotherapeutic drugs. In the present review, we will provide a comprehensive overview on how major tumour suppressor genes [Rb (retinoblastoma), p53 family, cyclin-dependent kinase inhibitors, BRCA1 (breast-cancer susceptibility gene 1), PTEN (phosphatase and tensin homologue deleted on chromosome 10), Hippo pathway, etc.] are involved in chemotherapeutic drug response and discuss their applications in predicting the clinical outcome of chemotherapy for cancer patients. We also propose that tumour suppressor genes are critical chemotherapeutic targets for the successful treatment of drug-resistant cancer patients in future applications.
Collapse
|
13
|
Sterlacci W, Fiegl M, Tzankov A. Prognostic and Predictive Value of Cell Cycle Deregulation in Non-Small-Cell Lung Cancer. Pathobiology 2012; 79:175-94. [DOI: 10.1159/000336462] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 01/12/2012] [Indexed: 12/29/2022] Open
|
14
|
Predictive markers in the adjuvant therapy of non-small cell lung cancer. Lung Cancer 2011; 74:355-63. [DOI: 10.1016/j.lungcan.2011.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 05/30/2011] [Accepted: 06/12/2011] [Indexed: 12/30/2022]
|
15
|
Niu XF, Liu BQ, Du ZX, Gao YY, Li C, Li N, Guan Y, Wang HQ. Resveratrol protects leukemic cells against cytotoxicity induced by proteasome inhibitors via induction of FOXO1 and p27Kip1. BMC Cancer 2011; 11:99. [PMID: 21418583 PMCID: PMC3066124 DOI: 10.1186/1471-2407-11-99] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 03/19/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND It was reported recently that resveratrol could sensitize a number of cancer cells to the antitumoral effects of some conventional chemotherapy drugs. The current study was designed to investigate whether resveratrol could sensitize leukemic cells to proteasome inhibitors. METHODS Leukemic cells were treated with MG132 alone or in combination with resveratrol. Cell viability was investigated using MTT assay, and induction of apoptosis and cell cycle distribution was measured using flow cytometry. Western blot and real-time RT-PCR were used to investigate the expression of FOXO1 and p27Kip1. CHIP was performed to investigate the binding of FOXO1 to the p27 Kip1 promoter. RESULTS Resveratrol strongly reduced cytotoxic activities of proteasome inhibitors against leukemic cells. MG132 in combination with resveratrol caused cell cycle blockade at G1/S transition via p27Kip1 accumulation. Knockdown of p27Kip1 using siRNA dramatically attenuated the protective effects of resveratrol on cytotoxic actions of proteasome inhibitors against leukemic cells. Resveratrol induced FOXO1 expression at the transcriptional level, while MG132 increased nuclear distribution of FOXO1. MG132 in combination with resveratrol caused synergistic induction of p27Kip1 through increased recruitment of FOXO1 on the p27Kip1 promoter. CONCLUSIONS Resveratrol may have the potential to negate the cytotoxic effects of proteasome inhibitors via regulation of FOXO1 transcriptional activity and accumulation of p27Kip1.
Collapse
Affiliation(s)
- Xiao-Fang Niu
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110001, PR China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Yotova I, Quan P, Leditznig N, Beer U, Wenzl R, Tschugguel W. Abnormal activation of Ras/Raf/MAPK and RhoA/ROCKII signalling pathways in eutopic endometrial stromal cells of patients with endometriosis. Hum Reprod 2011; 26:885-97. [DOI: 10.1093/humrep/der010] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
17
|
Kaira K, Yamamoto N. Prognostic and predictive factors in resected non-small-cell lung cancer. ACTA ACUST UNITED AC 2010; 4:373-81. [DOI: 10.1517/17530059.2010.506214] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Increased expression of p27 is associated with the cisplatin resistance in gastric cancer cell line YCC-3. Arch Pharm Res 2010; 33:1127-32. [DOI: 10.1007/s12272-010-0720-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 05/24/2010] [Accepted: 05/26/2010] [Indexed: 11/30/2022]
|
19
|
Giuliano S, Cheli Y, Ohanna M, Bonet C, Beuret L, Bille K, Loubat A, Hofman V, Hofman P, Ponzio G, Bahadoran P, Ballotti R, Bertolotto C. Microphthalmia-Associated Transcription Factor Controls the DNA Damage Response and a Lineage-Specific Senescence Program in Melanomas. Cancer Res 2010; 70:3813-22. [DOI: 10.1158/0008-5472.can-09-2913] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Abstract
Dysregulation of the cell cycle is an important prerequisite for cancer development. p27 has an established role in cell cycle control and hence may be disrupted during carcinogenesis. The influence of p27 expression, including its subcellular location, on tumor behavior in ovarian cancer has been controversial. The purpose of this study was to evaluate the expression of p27 in a large population of patients with ovarian cancer and correlate this to clinicopathologic variables including overall survival. Using a tissue microarray of 339 primary ovarian cancers, the expression of p27 was assessed immunohistochemically. Coupled to a comprehensive database of clinicopathologic variables, its effect on these factors and survival was studied. Cytoplasmic p27 showed a progressively negative impact on overall survival (P=0.004). Tumors displaying nuclear p27 also had poorer prognosis (P=0.014). Factors shown to predict prognosis independently of each other were age, stage, and the absence of macroscopic disease after surgery. Cytoplasmic p27 expression, but not nuclear, was independently predictive of prognosis on multivariate analysis (P=0.042). Both subcellular locations of p27 expression were more frequently observed in serous compared with mucinous subtypes. Cytoplasmic p27 independently predicts poorer prognosis in ovarian carcinoma. These results seem counterintuitive, when considering the antiproliferative role of p27, but may reflect a more complex function of p27 within cell cycle regulation. These data support a novel role for p27 within the cytoplasm, possibly through effects on apoptosis, cellular motility, and drug resistance.
Collapse
|
21
|
Han YH, Moon HJ, You BR, Kim SZ, Kim SH, Park WH. Effects of carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone on the growth inhibition in human pulmonary adenocarcinoma Calu-6 cells. Toxicology 2009; 265:101-7. [PMID: 19819288 DOI: 10.1016/j.tox.2009.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 10/01/2009] [Accepted: 10/01/2009] [Indexed: 12/20/2022]
Abstract
Carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP) is an uncoupler of mitochondrial oxidative phosphorylation in eukaryotic cells. Here, we evaluated the in vitro effects of FCCP on the growth of Calu-6 lung cancer cells. FCCP inhibited the growth of Calu-6 cells with an IC(50) of approximately 6.64+/-1.84 microM at 72 h, as shown by MTT. DNA flow cytometric analysis indicated that FCCP induced G1 phase arrest below 20 microM of FCCP. Treatment with FCCP decreased the level of CDKs and cyclines in relation to G1 phase. In addition, FCCP not only increased the p27 level but also enhanced its binding with CDK4, which was associated with hypophosphorylation of Rb protein. While transfection of p27 siRNA inhibited G1 phase arrest in FCCP-treated cells, it did not enhance Rb phosphorylation. FCCP also efficiently induced apoptosis. The apoptotic process was accompanied with an increase in sub-G1 cells, annexin V staining cells, mitochondria membrane potential (MMP) loss and cleavage of PARP protein. All of the caspase inhibitors (caspase-3, -8, -9 and pan-caspase inhibitor) markedly rescued the Calu-6 cells from FCCP-induced cell death. However, knock down of p27 protein intensified FCCP-induced cell death. Moreover, FCCP induced the depletion of GSH content in Calu-6 cells, which was prevented by all of the caspase inhibitors. In summary, our results demonstrated that FCCP inhibits the growth of Calu-6 cells in vitro. The growth inhibitory effect of FCCP might be mediated by cell cycle arrest and apoptosis via decrease of CDKs and caspase activation, respectively. These findings now provide a better elucidation of the mechanisms involved in FCCP-induced growth inhibition in lung cancer.
Collapse
Affiliation(s)
- Yong Hwan Han
- Department of Physiology, Medical School, Institute for Medical Sciences, Chonbuk National University, Jeonju 561-180, Republic of Korea
| | | | | | | | | | | |
Collapse
|
22
|
Schettino C, Bareschino MA, Maione P, Rossi A, Ciardiello F, Gridelli C. The potential role of pharmacogenomic and genomic in the adjuvant treatment of early stage non small cell lung cancer. Curr Genomics 2008; 9:252-62. [PMID: 19452042 PMCID: PMC2682934 DOI: 10.2174/138920208784533665] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 03/25/2008] [Accepted: 04/07/2008] [Indexed: 01/16/2023] Open
Abstract
Although notable progress has been made in the treatment of non-small-cell lung cancer (NSCLC) in recent years, this disease is still associated with a poor prognosis. Despite early-stage NSCLC is considered a potentially curable disease following complete resection, the majority of patients relapse and eventually die after surgery. Adjuvant chemotherapy prolongs survival, altough the absolute improvement in 5-year overall survival is only approximately 5%.Trying to understand the role of genes which could affect drug activity and response to treatment is a major challenge for establishing an individualised chemotherapy according to the specific genetic profile of each patient. Among genes involved in the DNA repair system, the excision repair cross-complementing 1 (ERCC1) is a useful markers of clinical resistance to platinum-based chemotherapy. In the International Lung Cancer Trial (IALT) adjuvant chemotherapy significantly prolonged survival among patients with ERCC1 negative tumors but not among ERCC1-positive patients. BRCA1 and ribonucleotide reductase M1 (RRM1), two other key enzymes in DNA synthesis and repair, appear to be modulators of drug sensitivity and may provide additional information for customizing adjuvant chemotherapy.Several clinical trials suggest that overexpression of class III beta-tubulin is an adverse prognostic factor in cancer since it could be responsible for resistance to anti-tubulin agents. A retrospective analysis of NCIC JBR.10 trial showed that high tubulin III expression is associated with a higher risk of relapse following surgery alone but also with a higher probability of benefit from adjuvant cisplatin plus vinorelbine chemotherapy.Finally, the use of gene expression patterns such as the lung metagene model could provide a potential mechanism to refine the estimation of a patient's risk of disease recurrence and could affect treatment decision in the management of early stage of NSCLC.In this review we will discuss the potential role of pharmacogenomic approaches to guide the medical treatment of early stage NSCLC.
Collapse
Affiliation(s)
- Clorinda Schettino
- Division of Medical Oncology, Department of Clinical and Experimental Medicine and Surgery ‘F. Magrassi and A. Lanzara’, Second University of Naples, School of Medicine Via S. Pansini 5, 80131 Naples, Italy
- Division of Medical Oncology, “S.G. Moscati” Hospital, Avellino, Italy
| | - Maria A Bareschino
- Division of Medical Oncology, Department of Clinical and Experimental Medicine and Surgery ‘F. Magrassi and A. Lanzara’, Second University of Naples, School of Medicine Via S. Pansini 5, 80131 Naples, Italy
- Division of Medical Oncology, “S.G. Moscati” Hospital, Avellino, Italy
| | - Paolo Maione
- Division of Medical Oncology, “S.G. Moscati” Hospital, Avellino, Italy
| | - Antonio Rossi
- Division of Medical Oncology, “S.G. Moscati” Hospital, Avellino, Italy
| | - Fortunato Ciardiello
- Division of Medical Oncology, Department of Clinical and Experimental Medicine and Surgery ‘F. Magrassi and A. Lanzara’, Second University of Naples, School of Medicine Via S. Pansini 5, 80131 Naples, Italy
| | - Cesare Gridelli
- Division of Medical Oncology, “S.G. Moscati” Hospital, Avellino, Italy
| |
Collapse
|
23
|
Davalli AM, Perego L, Bertuzzi F, Finzi G, La Rosa S, Blau A, Placidi C, Nano R, Gregorini L, Perego C, Capella C, Folli F. Disproportionate hyperproinsulinemia, beta-cell restricted prohormone convertase 2 deficiency, and cell cycle inhibitors expression by human islets transplanted into athymic nude mice: insights into nonimmune-mediated mechanisms of delayed islet graft failure. Cell Transplant 2008; 17:1323-36. [PMID: 19364070 DOI: 10.3727/096368908787648137] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
To learn more about nonimmune-mediated islet graft failure, we transplanted different preparations (preps) of isolated human islets under the kidney capsule of streptozotocin (STZ)-diabetic nude mice. One month after the implantation of 1,000 or 2,000 islets, grafts were harvested for morphological, immunohistochemical, and ultrastructural analysis. Only a single islet prep cured the diabetes out of all the recipients, while the remaining preps showed only partial function after the implantation of 2,000 islets. Transplanted mice showed high circulating proinsulin levels but, with the exclusion of those bearing curative grafts, relatively low mature insulin levels. Engrafted beta-cells showed positive carboxypeptidase E (CPE) and prohormone convertase 1 (PC1) staining, while prohormone convertase 2 (PC2) was undetectable. In contrast, PC2 was abundantly expressed by engrafted alpha-cells. Moreover, engrafted beta-cells did not show evidence of replication, and preapoptotic beta-cells, with intra- and extracellular amyloid deposition, were detected with electron microscopy. Cell cycle inhibitors p16(INK4), p21(WAF1), and p27(Kip1) were abundantly expressed in the islet grafts and showed a predominant nuclear localization. In conclusion, diabetic nude mice transplanted with human islets showed disproportionate hyperproinsulinemia and graft evidence of beta-cell restricted PC2 depletion, amyloid deposition and beta-cell death, and lack of beta-cell replication with nuclear translocation of p27(Kip1) and p21(WAF1) that together may contribute to delayed graft failure.
Collapse
Affiliation(s)
- Alberto M Davalli
- Department of Medicine, Unit of Endocrinology and Metabolic Diseases, San Raffaele Hospital, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Biomarker – der Weg zur individualisierten Chemotherapie beim nicht-kleinzelligen Bronchialkarzinom. Wien Med Wochenschr 2007; 157:554-61. [DOI: 10.1007/s10354-007-0483-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 09/11/2007] [Indexed: 10/22/2022]
|
25
|
Krämer OH, Knauer SK, Zimmermann D, Stauber RH, Heinzel T. Histone deacetylase inhibitors and hydroxyurea modulate the cell cycle and cooperatively induce apoptosis. Oncogene 2007; 27:732-40. [PMID: 17653085 DOI: 10.1038/sj.onc.1210677] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Therapy resistance represents a major problem for disease management in oncology. Histone deacetylase inhibitors (HDACi) have been shown to modulate the cell cycle, to induce apoptosis and to sensitize cancer cells for other chemotherapeutics. Our study shows that the HDACi valproic acid (VPA) and the ribonucleotide reductase inhibitor hydroxyurea (HU) potentiate the pro-apoptotic effects of each other towards several cancer cell lines. This correlates with the HU-induced degradation of the cyclin-dependent kinase inhibitors (CDKI) p21 and p27, mediated by the proteasome or caspase-3. Moreover, we found that caspase-3 activation is required for VPA-induced apoptosis. Remarkably, p21 and p27 can confer resistance against VPA and HU. Both CDKI interact with caspase-3 and compete with other caspase-3 substrates. Hence, p21 and p27 may contribute to chemotherapy resistance as apoptosis inhibitors. Since the biological effects of VPA and HU could be achieved at concentrations used in current treatment protocols, the combined application of these compounds might be considered as a potential strategy for cancer treatment.
Collapse
Affiliation(s)
- O H Krämer
- Institute of Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Jena, Germany
| | | | | | | | | |
Collapse
|
26
|
Filipits M, Pirker R, Dunant A, Lantuejoul S, Schmid K, Huynh A, Haddad V, André F, Stahel R, Pignon JP, Soria JC, Popper HH, Le Chevalier T, Brambilla E. Cell cycle regulators and outcome of adjuvant cisplatin-based chemotherapy in completely resected non-small-cell lung cancer: the International Adjuvant Lung Cancer Trial Biologic Program. J Clin Oncol 2007; 25:2735-40. [PMID: 17602078 DOI: 10.1200/jco.2006.08.2867] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE The International Adjuvant Lung Cancer Trial (IALT) demonstrated that adjuvant cisplatin-based chemotherapy improves the survival of patients with completely resected non-small-cell lung cancer (NSCLC). The purpose of our study was to determine whether cell cycle regulators are of prognostic and/or predictive value in patients who were enrolled onto the IALT. PATIENTS AND METHODS Expression of p27Kip1, p16INK4A, cyclin D1, cyclin D3, cyclin E, and Ki-67 was immunohistochemically assessed in tumor specimens obtained from 778 IALT patients. Prognostic and predictive analyses were based on Cox models adjusted for clinical and pathologic parameters. RESULTS There was a relationship between p27Kip1 status and benefit of cisplatin-based chemotherapy (test for interaction, P = .02). Among patients with p27Kip1-negative tumors, cisplatin-based chemotherapy resulted in longer overall survival compared with controls (adjusted hazard ratio [HR] for death = 0.66; 95% CI, 0.50 to 0.88; P = .006). In patients with p27Kip1-positive tumors, overall survival was not different between patients treated with cisplatin-based chemotherapy and controls (adjusted HR for death = 1.09; 95% CI, 0.82 to 1.45; P = .54). The other cell cycle regulators and Ki-67 did not predict benefit of adjuvant cisplatin-based chemotherapy. None of these biomarkers was significantly associated with overall survival of the patients in the total study population. CONCLUSION NSCLC patients with p27Kip1-negative tumors benefit from adjuvant cisplatin-based chemotherapy after complete tumor resection. Before establishing p27Kip1 as a routine marker for selection of patients for adjuvant chemotherapy, the predictive value of p27Kip1 has to be confirmed in patients from other trials.
Collapse
Affiliation(s)
- Martin Filipits
- Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Nickeleit I, Zender S, Kossatz U, Malek NP. p27kip1: a target for tumor therapies? Cell Div 2007; 2:13. [PMID: 17488529 PMCID: PMC1872022 DOI: 10.1186/1747-1028-2-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Accepted: 05/09/2007] [Indexed: 11/27/2022] Open
Abstract
The cyclin kinase inhibitor p27kip1 acts as a potent tumor supressor protein in a variety of human cancers. Its expression levels correlate closely with the overall prognosis of the affected patient and often predict the outcome to different treatment modalities. In contrast to other tumor suppressor proteins p27 expression levels in tumor cells are frequently regulated by ubiquitin dependent proteolysis. Re-expression of p27 in cancer cells therefore does not require gene therapy but can be achieved by interfering with the protein turnover machinery. In this review we will summarize experimental results which highlight the potential use of p27 as a target for oncological therapies.
Collapse
Affiliation(s)
- Irina Nickeleit
- Institute for Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Steffen Zender
- Institute for Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Uta Kossatz
- Institute for Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Nisar P Malek
- Institute for Molecular Biology, Hannover Medical School, Hannover, Germany
- Dept. of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
28
|
Markaki EA, Stiakaki E, Zafiropoulos A, Arvanitis DA, Katzilakis N, Dimitriou H, Spandidos DA, Kalmanti M. Mutational analysis of the cell cycle inhibitor Kip1/p27 in childhood leukemia. Pediatr Blood Cancer 2006; 47:14-21. [PMID: 16526056 DOI: 10.1002/pbc.20730] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Cyclin-dependent kinases (CDKs) and cyclins, their regulatory subunits, govern cell-cycle progression in eukaryotic cells. Kip1/p27 is the main cyclin-dependent kinase inhibitor, which arrests cell division inhibiting G1-S transition. Kip1/p27 seems to play a critical role in the pathogenesis of several human malignancies and its lower expression has been shown to correlate with a poor prognosis in adult solid tumors. METHODS Bone marrow blasts from 49 children with leukemia, 37 acute lymphoblastic leukemia (ALL), and 12 acute myeloid leukemia (AML) were studied. Exon 3 of Kip1/p27 was amplified using the polymerase chain reaction technique (PCR). Single strand conformational polymorphism and heterodouplex analysis were performed to detect DNA sequence with altered conformations and were subsequently sequenced to document mutations. RESULTS Mutations in Kip1/p27 gene were detected in 2 out of 3 T-ALL, 6 out of 12 AML patients, and only 1 out of 34 B lineage ALL cases. Although the patient groups are small, a highly significant relation of the mutation status with the type of leukemia (P = 0.0037) and the risk group according to treatment protocols (P = 0.00021) was estimated. A statistically significant difference in the white blood count was observed (P = 0.019) between the mutated and non-mutated patient groups although no statistically significant association of the mutation status with the hemoglobin and platelets values, karyotype, age, sex, disease progression, and outcome was determined. CONCLUSIONS Based upon these results, the Kip1/p27 mutations should be considered for further prospective testing as an additional parameter for risk stratification and treatment of childhood leukemia.
Collapse
Affiliation(s)
- E-A Markaki
- Department of Pediatric Hematology-Oncology, University of Crete, Medical School, Heraklion Crete, Greece
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Leiser AL, Anderson SE, Nonaka D, Chuai S, Olshen AB, Chi DS, Soslow RA. Apoptotic and cell cycle regulatory markers in uterine leiomyosarcoma. Gynecol Oncol 2006; 101:86-91. [PMID: 16289259 DOI: 10.1016/j.ygyno.2005.09.055] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 09/01/2005] [Accepted: 09/27/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVES The primary aim of this study was to investigate the expression of apoptotic and cell cycle regulators p53, p21, p27, bax, and bcl-2 in uterine leiomyosarcoma in order to identify molecular pathways that possibly could be important in the development of leiomyosarcoma. A secondary aim was to examine if the apoptotic and cell cycle regulatory protein expression profile of uterine leiomyosarcoma is potentially useful for clinical prognostic purposes. METHODS A tissue microarray representing 36 uterine leiomyosarcomas and 19 uterine leiomyomas was created with 3 representative cores from each tumor. Immunohistochemical staining was performed for bcl-2, bax, p21, p27, and p53 using standard techniques. Staining was scored 0-12 for each marker, 0-3 being negative and 4-12 positive. Outcome analyses were performed only for leiomyosarcomas. First recurrence was determined from the time of initial diagnosis. Survival was determined from the time of initial diagnosis to last follow-up. RESULTS Associations were found between disease type (leiomyosarcoma vs. leiomyoma) and the positivity status of p21 (43% vs. 0%, P < 0.001), p53 (54% vs. 0%, P < 0.001), and bax (34% vs. 94%, P < 0.001). bcl-2-positive leiomyosarcoma was associated with a longer time to recurrence (P = 0.02) in a univariate analysis. In a multivariate analysis, tumor stage was the only independent significant prognostic factor (P = 0.002). CONCLUSION The significant differential expression of apoptotic and cell cycle regulatory proteins in uterine leiomyosarcoma as compared to benign smooth muscle tumors suggests that pathways involving these proteins may be important in the development of malignant disease and, therefore, could be potential targets for molecular therapies.
Collapse
Affiliation(s)
- Aliza L Leiser
- Developmental Chemotherapy Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Shen H, Sikorska M, Leblanc J, Walker PR, Liu QY. Oxidative stress regulated expression of Ubiquitin Carboxyl-terminal Hydrolase-L1: Role in cell survival. Apoptosis 2006; 11:1049-59. [PMID: 16544100 DOI: 10.1007/s10495-006-6303-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The ubiquitin Carboxyl-terminal Hydrolase-L1 gene (UCHL1) is a key enzyme in the protein degradation pathway; however, its precise role in protecting cells under stress conditions is unclear. In the present study we investigated the activity of this gene in human NT2/D1 embryonal carcinoma cells subjected to oxygen-glucose deprivation (OGD) and reoxygenation. OGD/reoxygenation cause global metabolic changes due to energy withdrawal and the subsequent generation of reactive oxygen species which initiates either a stress-adaptation-survival response or cell death, depending on the severity of the insult. A bi-phasic change in UCHL1 expression was observed by Q-PCR, Western blotting and flow cytometry. Down regulation of UCHL1 was detected immediately after OGD treatment and its expression was subsequently restored and increased 6 h after OGD treatment as well as during reoxygenation. Furthermore, flow cytometry analysis detected a lower level of UCHL1 only in apoptotic cells that had severe loss of mitochondrial membrane potential. Accordingly, down-regulation of endogenous UCHL1 by antisense cDNA in mouse N2a neuroblastoma cells increased the cell's sensitivity to OGD treatment. This down-regulation of endogenous UCHL1 led to the accumulation of p27, suggesting that UCHL1 is an essential gene to maintain cell homeostasis under normal growth and oxidative stress conditions.
Collapse
Affiliation(s)
- H Shen
- Neurobiology Program, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada, K1A 0R6
| | | | | | | | | |
Collapse
|
31
|
Wu FY, Wang SE, Sanders ME, Shin I, Rojo F, Baselga J, Arteaga CL. Reduction of Cytosolic p27Kip1Inhibits Cancer Cell Motility, Survival, and Tumorigenicity. Cancer Res 2006; 66:2162-72. [PMID: 16489017 DOI: 10.1158/0008-5472.can-05-3304] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We generated a p27(Kip1) mutant (p27deltaNLS) that localized exclusively in cell cytosol. Expression of p27deltaNLS in MCF7 breast cancer cells down-regulated RhoA and increased motility, survival, and Akt levels without an effect on cell cycle distribution. RNA interference of p27 in U87 glioma cells, which express p27 predominantly in the cytoplasm, inhibited motility and survival. Conversely, knockdown of p27 in COS7 cells, with >95% nuclear p27 expression, accelerated proliferation but had no effect on motility or survival. U87 cells in which p27 had been eliminated by RNA interference exhibited lower Akt levels, shorter Akt turnover, and markedly impaired tumorigenicity in vivo. These xenografts were less invasive and exhibited increased apoptosis compared with p27-expressing tumors. Expression of cytosolic p27 in primary human breast carcinomas correlated linearly with Akt content as measured by immunohistochemistry. These data suggest that cytoplasmic p27 can exert oncogenic functions by modulating Akt stability, cell survival, and tumorigenicity.
Collapse
Affiliation(s)
- Frederick Y Wu
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Ekberg J, Brunhoff C, Järås M, Fan X, Landberg G, Persson JL. Increased expression of cyclin A1 protein is associated with all-trans retinoic acid-induced apoptosis. Int J Biochem Cell Biol 2006; 38:1330-9. [PMID: 16517207 DOI: 10.1016/j.biocel.2006.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 12/26/2005] [Accepted: 01/17/2006] [Indexed: 11/23/2022]
Abstract
Deregulated cell growth and inhibition of apoptosis are hallmarks of cancer. All-trans retinoic acid induces clinical remission in patients with acute promyelocytic leukemia by inhibiting cell growth and inducing differentiation and apoptosis of the leukemic blasts. An important role of the cell cycle regulatory protein, cyclin A1, in the development of acute myeloid leukemia has previously been demonstrated in a transgenic mouse model. We have recently shown that there was a direct interaction between cyclin A1 and a major all-trans retinoic acid receptor, RAR alpha, following all-trans retinoic acid treatment of leukemic cells. In the present study, we investigated whether cyclin A1 might be involved in all-trans retinoic acid-induced apoptosis in U-937 leukemic cells. We found that all-trans retinoic acid-induced apoptosis was associated with concomitant increase in cyclin A1 expression. However, there was no induction of cyclin A1 mRNA expression following the all-trans retinoic acid-induced apoptosis. Treatment of cells with a caspase inhibitor was not able to prevent all-trans retinoic acid-induced up-regulation of cyclin A1 expression. Interestingly, induced cyclin A1 expression in U-937 cells led to a significant increase in the proportion of apoptotic cells. Further, U-937 cells overexpressing cyclin A1 appeared to be more sensitive to all-trans retinoic acid-induced apoptosis indicating the ability of cyclin A1 to mediate all-trans retinoic acid-induced apoptosis. Induced cyclin E expression was not able to initiate cell death in U-937 cells. Our results indicate that cyclin A1 might have a role in apoptosis by mediating all-trans retinoic acid-induced apoptosis.
Collapse
Affiliation(s)
- Jenny Ekberg
- Division of Pathology, Department of Laboratory Medicine, Lund University, University Hospital, 205 02 Malmö, Sweden
| | | | | | | | | | | |
Collapse
|
33
|
Mukai M, Dong Q, Hardy MP, Kiyokawa H, Peterson RE, Cooke PS. Altered Prostatic Epithelial Proliferation and Apoptosis, Prostatic Development, and Serum Testosterone in Mice Lacking Cyclin-Dependent Kinase Inhibitors1. Biol Reprod 2005; 73:951-8. [PMID: 16014817 DOI: 10.1095/biolreprod.105.040980] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Normal prostatic development and some prostatic diseases involve altered expression of the cell-cycle regulators p27 and p21 (also known as CDKN1B and CDKN1A, respectively). To determine the role of these proteins in the prostate, we examined prostatic phenotype and development in mice lacking p27 and/or p21. In p27-knockout (p27KO) mice, epithelial proliferation was increased 2- and 3.8-fold in the ventral and dorsolateral prostate, respectively, versus wild-type (WT) mice, although prostatic weights were not different. Epithelial apoptosis was increased in p27KO mice and may account for the lack of a concurrent increase in weight. Testosterone deficiency observed in this group was not the cause of this increase, because vehicle- and testosterone-treated p27KO mice had similar percentages of apoptotic cells. Also observed was a trend toward a decreased functional epithelial cytodifferentiation, indicating a potential role of p27 in this process. Conversely, dorsolateral prostate and seminal vesicle (SV) of p21-knockout (p21KO) mice, and all prostatic lobes and SV of p21/p27 double-knockout mice, weighed significantly less compared to the WT mice, and their epithelial proliferation was normal. Decreased testosterone concentrations may contribute to the decreased prostatic weights. However, other factors may be involved, because testosterone replacement only partially restored prostatic weights. We conclude that loss of p27 increases prostatic epithelial proliferation and alters differentiation but does not result in prostatic hyperplasia because of increased epithelial cell loss. The p21KO mice showed phenotypes distinctly different from those of p27KO mice, suggesting nonredundant roles of p21 and p27 in prostatic development. Loss of p27 or of both p21 and p27 results in serum testosterone deficiency, complicating analysis of the prostatic effects of these cell-cycle regulators.
Collapse
Affiliation(s)
- Motoko Mukai
- Department of Veterinary Biosciences, University of Illinois, Urbana, Illinois 61802, USA
| | | | | | | | | | | |
Collapse
|
34
|
Murray SA, Yang S, Demicco E, Ying H, Sherr DH, Hafer LJ, Rogers AE, Sonenshein GE, Xiao ZXJ. Increased expression of MDM2, cyclin D1, and p27Kip1 in carcinogen-induced rat mammary tumors. J Cell Biochem 2005; 95:875-84. [PMID: 15844214 DOI: 10.1002/jcb.20414] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
It is thought that environmental pollutants, such as polycyclic aromatic hydrocarbons (PAH), contribute to human breast tumorigenesis, yet their roles remain incompletely elucidated. The prototypical PAH 7,12-dimethylbenz(alpha)anthracene (DMBA) specifically and effectively induces mammary tumor formation in rodent models. In an attempt to explore the molecular mechanisms by which PAH initiates and promotes mammary tumorigenesis, we examined the expression of several cell cycle regulators in rat mammary tumors induced by DMBA. Expression of cyclin D1, murine double minute-2 (MDM2), and Akt was up-regulated in tumors in comparison to normal mammary glands, as indicated by RT-PCR, Western blot analysis, and immunohistochemical staining. Expression of p27Kip1 protein was also elevated in the tumors with increased cytoplasmic localization. However, RB protein remained hyperphosphorylated. To directly test the effects of DMBA, the MCF-7 human breast cancer cells were treated. DMBA induced MDM2 expression in a dose- and time-dependent fashion in the MCF-7 cells, and this activation appeared to be p53 dependent. These data suggest that activation of cyclin D1, MDM2, and AKT as well as increased expression and cytoplasmic localization of p27Kip1 may play a role in this model of environmental pollutant-induced mammary tumorigenesis.
Collapse
Affiliation(s)
- Stephen A Murray
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Launay S, Hermine O, Fontenay M, Kroemer G, Solary E, Garrido C. Vital functions for lethal caspases. Oncogene 2005; 24:5137-48. [PMID: 16079910 DOI: 10.1038/sj.onc.1208524] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Caspases are a family of cysteine proteases expressed as inactive zymogens in virtually all animal cells. These enzymes play a central role in most cell death pathways leading to apoptosis but growing evidences implicate caspases also in nonapoptotic functions. Several of these enzymes, activated in molecular platforms referred to as inflammasomes, play a role in innate immune response by processing some of the cytokines involved in inflammatory response. Caspases are requested for terminal differentiation of specific cell types, whether this differentiation process leads to enucleation or not. These enzymes play also a role in T and B lymphocyte proliferation and, in some circumstances, appear to be cytoprotective rather than cytotoxic. These pleiotropic functions implicate caspases in the control of life and death but the fine regulation of their dual effect remains poorly understood. The nonapoptotic functions of caspases implicate that cells can restrict the proteolytic activity of these enzymes to selected substrates. Deregulation of the pathways in which caspases exert these nonapoptotic functions is suspected to play a role in the pathophysiology of several human diseases.
Collapse
Affiliation(s)
- Sophie Launay
- INSERM U-517, IFR100, Faculty of Medicine, 7 Boulevard Jeanne d'Arc, 21033 Dijon, France
| | | | | | | | | | | |
Collapse
|
36
|
Ishii T, Matsuse T, Masuda M, Teramoto S. The effects of S-phase kinase-associated protein 2 (SKP2) on cell cycle status, viability, and chemoresistance in A549 lung adenocarcinoma cells. Exp Lung Res 2005; 30:687-703. [PMID: 15700547 DOI: 10.1080/01902140490517818] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
S-phase kinase-associated protein 2 (SKP2), a member of the F-box family of ubiquitin-protein ligase complexes, controls the stability of cell cycle-related proteins including p27Kip1. The authors examined how the expression level of SKP2 affects the expression level of cell cycle-related proteins, cell cycle status, viability, and chemoresistance in A549 lung adenocarcinoma cells. Overexpression of SKP2 reduced the expression of p27Kip1, cyclin E, and p21Cip1, increased S-phase cells, rescued A549 cells from apoptosis due to adenoviral infection, and also increased chemoresistance against camptothecin, cisplatin, and AG1478. Down-regulation of SKP2 did not affect cell cycle status, and reduced cell viability.
Collapse
Affiliation(s)
- Takeo Ishii
- Department of Pulmonary Medicine, Yokohama City University Medical Center, Yokohama City, Japan
| | | | | | | |
Collapse
|
37
|
Jaruga-Killeen E, Rayford W. TNF receptor 1 is involved in the induction of apoptosis by the cyclin dependent kinase inhibitor p27Kip1 in the prostate cancer cell line PC-3. FASEB J 2004; 19:139-41. [PMID: 15545300 DOI: 10.1096/fj.04-2305fje] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Loss of p27Kip1, a cyclin-dependent kinase inhibitor, is observed in aggressive prostate cancers. We demonstrated that intratumoral injections of recombinant adenovirus overexpressing p27Kip1 (Adp27) reduced the growth of prostate cancer xenografts in nude mice. Presently, we studied the mechanism(s) of cell death induced by Adp27 in prostate cancer cell line PC-3. Cells were infected with Adp27 and compared with those infected by empty virus or were non-infected. Cell cycle and typical markers of apoptosis were analyzed by flow cytometry in the presence of the following reagents: cycloheximide, pan-caspase inhibitor ZVAD-fmk, neutralizing anti-TNFR1, and anti-TNFR2. Overexpression of p27Kip1 protein and cell cycle arrest were noted within 24 h after Adp27-infection. Sub-G1 fraction, chromatin margination, and phosphatidylserine exposure were evident by the third day of treatment. Cycloheximide elevated sub-G1 fraction in Adp27-infected cells by threefold, while ZVAD-fmk reduced sub-G1 to control levels. Caspase-dependent apoptosis occurred in a third of the population, while two-thirds were ZVAD-fmk insensitive but TUNEL-positive. Flow cytometry showed increased expression of TNFR1 and TNFR2 in Adp27-infected cells. Neutralizing anti-TNFR1 decreased TUNEL-positive score, while anti-TNFR2 did not affect p27Kip1-induced apoptosis. This is the first report showing that p27Kip1 induces caspase-dependent and -independent stages of cell death that may involve TNF-signaling through TNFR1.
Collapse
MESH Headings
- Adenoviridae
- Amino Acid Chloromethyl Ketones/pharmacology
- Antibodies/metabolism
- Apoptosis/physiology
- Carrier Proteins/genetics
- Carrier Proteins/physiology
- Cell Line, Tumor
- Cyclin-Dependent Kinase Inhibitor p27
- Cycloheximide/pharmacology
- DNA Fragmentation/drug effects
- Genetic Vectors/biosynthesis
- Genetic Vectors/genetics
- Humans
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/physiology
- Male
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms/virology
- Receptors, Tumor Necrosis Factor, Type I/biosynthesis
- Receptors, Tumor Necrosis Factor, Type I/immunology
- Receptors, Tumor Necrosis Factor, Type I/physiology
- Receptors, Tumor Necrosis Factor, Type II/biosynthesis
- Receptors, Tumor Necrosis Factor, Type II/immunology
- Signal Transduction/physiology
- Transduction, Genetic/methods
Collapse
Affiliation(s)
- Ewa Jaruga-Killeen
- Department of Urology, Louisiana State University Health Sciences Center, and Stanley S. Scott Cancer Center, New Orleans, Louisiana 70112, USA
| | | |
Collapse
|
38
|
Min YH, Cheong JW, Kim JY, Eom JI, Lee ST, Hahn JS, Ko YW, Lee MH. Cytoplasmic mislocalization of p27Kip1 protein is associated with constitutive phosphorylation of Akt or protein kinase B and poor prognosis in acute myelogenous leukemia. Cancer Res 2004; 64:5225-31. [PMID: 15289327 DOI: 10.1158/0008-5472.can-04-0174] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cyclin-dependent kinase inhibitor p27Kip1 functions at the nuclear level by binding to cyclin E/cyclin-dependent kinase-2. It was shown that Akt or protein kinase B (Akt/PKB)-dependent phosphorylation of p27Kip1 led to the cytoplasmic mislocalization of p27Kip1, suggesting the potential abrogation of its activity. Here, we evaluated the localization of p27Kip1 protein in leukemic blasts in relation to Akt/PKB phosphorylation and clinical outcomes in acute myelogenous leukemia (AML). Western blot analysis of the nuclear and cytoplasmic fractions revealed a heterogenous localization pattern of p27Kip1 in AML. Cytoplasmic mislocalization of p27Kip1 was significantly associated with the constitutive serine(473) Akt/PKB phosphorylation in AML cells (P < 0.05). Transfection of U937 cells with an expression construct encoding the constitutively active form of Akt/PKB resulted in a remarkable increase in the levels of cytoplasmic p27Kip1. Whereas the transfection of U937 cells with a construct encoding dominant-negative Akt/PKB resulted in a recovery of nuclear localization of p27Kip1. Both the disease-free survival and overall survival are significantly shorter in AML cases with high cytoplasmic to nuclear ratio of p27Kip1 localization compared with the cases with low cytoplasmic to nuclear ratio (P = 0.0353, P = 0.0023, respectively). Multivariate analysis indicated that the cytoplasmic to nuclear ratio of p27Kip1 localization was an independent prognostic variable for both disease-free survival and overall survival (P = 0.043, P = 0.008, respectively). These findings additionally extend our understanding of the role of p27Kip1 in AML, and buttress the case of p27Kip1 mislocalization as a prognostic indicator and Akt/PKB/p27Kip1 pathway as a ready target for antileukemia therapy.
Collapse
Affiliation(s)
- Yoo Hong Min
- Department of Internal Medicine, Yonsei University College of Medicine, Seodaemun-ku Shinchon-dong 134, Seoul 120-752, Korea.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Ishii T, Fujishiro M, Masuda M, Okudela K, Kitamura H, Teramoto S, Matsuse T. Nutritional deficiency affects cell cycle status and viability in A549 cells: role of p27Kip1. Cancer Lett 2004; 213:99-109. [PMID: 15312689 DOI: 10.1016/j.canlet.2004.03.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 03/04/2004] [Accepted: 03/17/2004] [Indexed: 11/17/2022]
Abstract
We investigated how nutritional deficiency affects cell cycle and cell viability in A549 lung adenocarcinoma cells. Deprivation of various amino acids or glucose induced cell cycle arrest and cell death in a different manner. Cell death on deprivation of these nutrients was increased by downregulating of p27Kip1 with RNA interference. It was also observed that intrinsic p27Kip1 was segregated in cytoplasm in a glucose-deprived situation. In conclusion, amino acid or glucose deprivation induced cell cycle arrest and cell death, part of which is thought to be rescued by the existence of cytoplasmic p27Kip1.
Collapse
Affiliation(s)
- Takeo Ishii
- Department of Pulmonary Medicine, Yokohama City University Medical Center, 4-57, Urahune-cho, Minami-ku, Yokohama City 232-0024, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Brown I, Shalli K, McDonald SL, Moir SE, Hutcheon AW, Heys SD, Schofield AC. Reduced expression of p27 is a novel mechanism of docetaxel resistance in breast cancer cells. Breast Cancer Res 2004; 6:R601-7. [PMID: 15318941 PMCID: PMC549179 DOI: 10.1186/bcr918] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Revised: 05/24/2004] [Accepted: 07/06/2004] [Indexed: 11/18/2022] Open
Abstract
Introduction Docetaxel is one of the most effective chemotherapeutic agents in the treatment of breast cancer. Breast cancers can have an inherent or acquired resistance to docetaxel but the causes of this resistance remain unclear. However, apoptosis and cell cycle regulation are key mechanisms by which most chemotherapeutic agents exert their cytotoxic effects. Methods We created two docetaxel-resistant human breast cancer cell lines (MCF-7 and MDA-MB-231) and performed cDNA microarray analysis to identify candidate genes associated with docetaxel resistance. Gene expression changes were validated at the RNA and protein levels by reverse transcription PCR and western analysis, respectively. Results Gene expression cDNA microarray analysis demonstrated reduced p27 expression in docetaxel-resistant breast cancer cells. Although p27 mRNA expression was found to be reduced only in MCF-7 docetaxel-resistant sublines (2.47-fold), reduced expression of p27 protein was noted in both MCF-7 and MDA-MB-231 docetaxel-resistant breast cancer cells (2.83-fold and 3.80-fold, respectively). Conclusions This study demonstrates that reduced expression of p27 is associated with acquired resistance to docetaxel in breast cancer cells. An understanding of the genes that are involved in resistance to chemotherapy may allow further development in modulating drug resistance, and may permit selection of those patients who are most likely to benefit from such therapies.
Collapse
Affiliation(s)
- Iain Brown
- Department of Surgery, University of Aberdeen, Medical School, Aberdeen, UK
| | - Kawan Shalli
- Department of Surgery, University of Aberdeen, Medical School, Aberdeen, UK
| | - Sarah L McDonald
- Department of Surgery, University of Aberdeen, Medical School, Aberdeen, UK
| | - Susan E Moir
- Department of Surgery, University of Aberdeen, Medical School, Aberdeen, UK
| | - Andrew W Hutcheon
- Department of Medical Oncology, Grampian University Hospitals NHS Trust, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Steven D Heys
- Department of Surgery, University of Aberdeen, Medical School, Aberdeen, UK
| | - Andrew C Schofield
- Department of Surgery, University of Aberdeen, Medical School, Aberdeen, UK
- Department of Molecular and Cell Biology, University of Aberdeen, Medical School, Aberdeen, UK
| |
Collapse
|
41
|
Ivan D, Diwan AH, Esteva FJ, Prieto VG. Expression of cell cycle inhibitor p27Kip1 and its inactivator Jab1 in melanocytic lesions. Mod Pathol 2004; 17:811-8. [PMID: 15154004 DOI: 10.1038/modpathol.3800123] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Decreased expression of p27 (a cyclin-dependent kinase inhibitor) is an adverse prognostic marker in a diverse array of human cancers. The purpose of this study was to investigate the expression of p27 and Jab1 (a protein involved in p27 degradation) in melanocytic lesions, and to identify their possible participation in melanoma progression. A tissue microarray was constructed using formalin-fixed, paraffin-embedded archival tissue blocks of 94 melanocytic lesions including 19 benign nevi, 21 dysplastic nevi, 23 melanomas, and 31 metastatic melanomas. The expression of p27 and Jab1 was evaluated by immunohistochemistry. The association between p27, Jab1, and clinicopathological parameters was analyzed using chi2 and Fisher's exact tests. Nonparametric Pearson's rank correlation was applied to evaluate the relationship between p27 and Jab1 expression. p27 was expressed in 15 (88%) nevi, 18 (95%) dysplastic nevi, 11 (50%) melanomas, and only in four (13%) of the metastatic melanomas (P<0.001). Jab1 was expressed in 14 (82%) standard nevi, 18 (95%) dysplastic nevi, 17 (77%) melanomas, and 16 (53%) of the metastatic melanomas (P<0.01). In metastatic melanomas, there was a negative correlation between p27 and Jab1 expression (r=-0.166). The low levels of p27 in primary and metastatic melanoma cases may explain the high proliferation rate of such lesions. Also, the relative high expression of Jab1 in metastatic melanoma, associated with low levels of p27, suggests that Jab1 may be involved in survival and proliferation of metastatic melanoma cells.
Collapse
Affiliation(s)
- Doina Ivan
- Department of Pathology, University of Texas, Houston, TX, USA
| | | | | | | |
Collapse
|
42
|
Bravo SB, Pampín S, Cameselle-Teijeiro J, Carneiro C, Domínguez F, Barreiro F, Alvarez CV. TGF-β-induced apoptosis in human thyrocytes is mediated by p27kip1 reduction and is overridden in neoplastic thyrocytes by NF-κB activation. Oncogene 2003; 22:7819-30. [PMID: 14586408 DOI: 10.1038/sj.onc.1207029] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Millions of people worldwide suffer goiter, a proliferative disease of the follicular cells of the thyroid that may become neoplastic. Thyroid neoplasms have low proliferative index, low apoptotic index and a high incidence of metastasis. TGF-beta is overexpressed in thyroid follicular tumor cells. To investigate the role of TGF-beta in thyroid tumor progression, we established cultures of human thyrocytes from different proliferative pathologies (Grave's disease, multinodular goiter, follicular adenoma, papillary carcinoma), lymph node metastasis, and a normal thyroid sample. All cultures maintained the thyrocyte phenotype. TGF-beta induced cell-cycle arrest in all cultures, in contrast with results reported for other epithelial tumors. In deprived medium, TGF-beta induced apoptosis in normal thyrocyte cultures and all neoplastic cultures except the metastatic cultures. This apoptosis was mediated by a reduction in p27kip1 levels, inducing cell-cycle initiation. Antisense p27 expression induced apoptosis in the absence of TGF-beta. By contrast, in cells in which p27 was overexpressed, TGF-beta had a survival effect. In growth medium, a net survival effect occurs in neoplastic thyrocytes only, not normal thyrocytes, due to activation of the NF-kappaB survival program. Together, these findings suggest that (a) thyroid neoplasms are due to reduced apoptosis, not increased division, in line with the low proliferative index of these pathologies, and (b) TGF-beta induces apoptosis in normal thyrocytes via p27 reduction, but that in neoplastic thyrocytes this effect is overridden by activation of the NF-kappaB program.
Collapse
Affiliation(s)
- Susana B Bravo
- Department of Physiology, School of Medicine, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | | | | | | | |
Collapse
|
43
|
Sgambato A, Camerini A, Pani G, Cangiano R, Faraglia B, Bianchino G, De Bari B, Galeotti T, Cittadini A. Increased expression of cyclin E is associated with an increased resistance to doxorubicin in rat fibroblasts. Br J Cancer 2003; 88:1956-62. [PMID: 12799643 PMCID: PMC2741105 DOI: 10.1038/sj.bjc.6600970] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cell cycle progression in eukaryotic cells is regulated by a family of cyclin-dependent kinases (CDKs). Cyclin E is a regulatory subunit of CDK2 and drives cells from G1 to S phase. Increased expression of cyclin E is a frequent event in human malignancies and has been associated with poor prognosis in various cancers. In this study, we evaluated the effects of cyclin E-overexpression on the sensitivity of rat fibroblasts to anticancer drugs. Cyclin E-overexpressing cells were less sensitive to doxorubicin-induced inhibition of cell growth but not to other antineoplastic drugs, such as paclitaxel, vincristine, etoposide and methotrexate. Cyclin E-overexpressing fibroblasts also displayed a reduction in ROS levels and a significantly lower increase following doxorubicin treatment compared with vector control cells. The expression of manganese superoxide dismutase (MnSOD) and its activity were increased (about 1.3-fold) in cyclin E-overexpressing derivatives compared with control cells. These results suggest that cyclin E overexpression might reduce tumour cells sensitivity to doxorubicin by affecting the expression of MnSOD and that determination of cyclin E expression levels might help to select patients to be treated with an anthracycline-based antineoplastic therapy.
Collapse
Affiliation(s)
- A Sgambato
- Istituto di Patologia Generale, Centro di Ricerche Oncologiche 'Giovanni XXIII', Catholic University, Largo Francesco Vito 1, 00168 Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ryu HY, Mann KK, Schlezinger JJ, Jensen B, Sherr DH. Environmental chemical-induced pro/pre-B cell apoptosis: analysis of c-Myc, p27Kip1, and p21WAF1 reveals a death pathway distinct from clonal deletion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:4897-904. [PMID: 12734332 DOI: 10.4049/jimmunol.170.10.4897] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAH) are common environmental pollutants that suppress the immune system in part by inducing pro/pre-B cell apoptosis. The PAH-induced death signaling pathway resembles the signaling cascade activated during clonal deletion and modeled by B cell receptor cross-linking or by dexamethasone exposure of immature surface Ig(+) B cells in that apoptosis is mediated by NF-kappa B down-regulation. Because a PAH-induced, clonally nonrestricted deletion of B cells would have important implications for B cell repertoire development, the nature of the PAH-induced intracellular death signal was studied further. Particular emphasis was placed on the roles of growth arrest and c-Myc, p27(Kip1), and p21(WAF1) expression, because all of these elements contribute to clonal deletion. As in clonal deletion models, and as predicted by the down-regulation of NF-kappa B, PAH-induced death of pro/pre-B cells was at least partially dependent on c-Myc down-regulation. Furthermore, whereas dexamethasone induced a G(0)/G(1) cell cycle arrest, PAH had no effect on pro/pre-B cell growth, indicating that growth arrest and apoptosis occur by separable signaling pathways in this early phase of B cell development. Finally, in contrast to clonal deletion, PAH-induced pro/pre-B cell death was not dependent on p27(Kip1) or p21(WAF1) up-regulation but did coincide with p53 induction. These results distinguish the PAH-induced apoptosis pathway from that activated during clonal deletion and indicate that signaling cascades leading to growth arrest and/or apoptosis in pro/pre-B cells differ from those active at later B cell developmental stages.
Collapse
Affiliation(s)
- Heui-Young Ryu
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
45
|
Drexler HCA, Pebler S. Inducible p27(Kip1) expression inhibits proliferation of K562 cells and protects against apoptosis induction by proteasome inhibitors. Cell Death Differ 2003; 10:290-301. [PMID: 12700629 DOI: 10.1038/sj.cdd.4401159] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Overexpression of the cyclin-dependent kinase inhibitor p27(Kip1) has been demonstrated to induce cell cycle arrest and apoptosis in various cancer cell lines, but has also been associated with the opposite effect of enhanced survival of tumor cells and increased resistance towards chemotherapeutic treatment. To address the question of how p27(Kip1) expression is related to apoptosis induction, we studied doxycycline-regulated p27(Kip1) expression in K562 erythroleukemia cells. p27(Kip1) expression effectively retards proliferation, but it is not sufficient to induce apoptosis in K562 cells. p27(Kip1)-expressing K562 cells, however, become resistant to apoptosis induction by the proteasome inhibitors PSI, MG132 and epoxomicin, in contrast to wild-type K562 cells that are efficiently killed. Cell cycle arrest in the S phase by aphidicolin, which is not associated with an accumulation of p27(Kip1) protein, did not protect K562 cells against the cytotoxic effect of the proteasome inhibitor PSI. The expression levels of p27(Kip1) thus constitute an important parameter, which decides on the overall sensitivity of cells against the cytotoxic effect of proteasome inhibitors.
Collapse
Affiliation(s)
- H C A Drexler
- Max Planck Institute for Physiological and Clinical Research, Department of Molecular Cell Biology, Bad Nauheim, Germany.
| | | |
Collapse
|
46
|
Abstract
Cell division relies on the activation of cyclins, which bind to cyclin-dependent kinases (CDKs) to induce cell-cycle progression towards S phase and later to initiate mitosis. Since uncontrolled cyclin-dependent kinase activity is often the cause of human cancer, their function is tightly regulated by cell-cycle inhibitors such as the p21 and p27 Cip/Kip proteins. Following anti-mitogenic signals or DNA damage, p21 and p27 bind to cyclin-CDK complexes to inhibit their catalytic activity and induce cell-cycle arrest. Interestingly, recent discoveries suggest that p21 and p27 might have new activities that are unrelated to their function as CDK inhibitors. The identification of new targets of Cip/Kip proteins as well as evidence of Cip/Kip cytoplasmic relocalization have revealed unexpected functions for these proteins in the control of CDK activation, in the regulation of apoptosis and in transcriptional activation. This article discusses recent insights into these possible additional functions of p21 and p27.
Collapse
|
47
|
Carraway KL, Perez A, Idris N, Jepson S, Arango M, Komatsu M, Haq B, Price-Schiavi SA, Zhang J, Carraway CAC. Muc4/sialomucin complex, the intramembrane ErbB2 ligand, in cancer and epithelia: to protect and to survive. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2003; 71:149-85. [PMID: 12102554 DOI: 10.1016/s0079-6603(02)71043-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The membrane mucin Muc4, also called sialomucin complex (SMC), is a heterodimeric complex of two subunits, ASGP-1 and ASGP-2, derived from a single gene. It is produced by multiple epithelia in both membrane and soluble forms and serves as a protective agent for the epithelia. The membrane form of Muc4 acts as a steric barrier to the apical cell surface of epithelial or tumor cells. An important example is the uterus of the rat, in which Muc4 expression is downregulated for blastocyst implantation. The soluble form facilitates the protection and lubrication of epithelia by mucous gels composed of gel-forming mucins, as in the airway, where Muc4 is proposed to participate in mucociliary transport as a constituent of the periciliary fluid. The soluble form is also found in body fluids, such as milk, tears, and saliva. The transmembrane subunit ASGP-2 acts as an intramembrane ligand and activator for the receptor tyrosine kinase ErbB2. Formation of this ligand-receptor complex is proposed to repress apopotosis in epithelial and cancer cells in which the ligand-receptor complex is formed, providing a second type of cell protective mechanism. Muc4 expression is regulated in epithelial tissues in a cell- and tissue-specific manner during epithelial differentiation. In stratified epithelia, it is predominantly in the most superficial, differentiated layers, often coincident with ErbB2. Dysregulation of Muc4 expression may contribute to cell and tissue dysfunction, such as the proposed contribution of Muc4 to mammary tumor progression. These observations clearly show that Muc4 has multiple roles in epithelia, which may provide insights into aberrant behaviors of these tissues and their derivative carcinomas.
Collapse
Affiliation(s)
- Kermit L Carraway
- Department of Cell Biology and Anatomy, University of Miami School of Medicine, Florida 33101, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Esposito G, Pucciarelli S, Alaggio R, Giacomelli L, Marchiori E, Iaderosa GA, Friso ML, Toppan P, Chieco-Bianchi L, Lise M. P27kip1 expression is associated with tumor response to preoperative chemoradiotherapy in rectal cancer. Ann Surg Oncol 2001; 8:311-8. [PMID: 11352304 DOI: 10.1007/s10434-001-0311-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Our aim was to ascertain whether or not the response to preoperative chemoradiotherapy for rectal cancer is associated with p27kip1 and p53 protein expression. METHODS Thirty-eight patients (27 male, 11 female) with a mean age of 59 years (age range 33-87) and stage II-III rectal cancer received preoperative chemoradiotherapy (45-50.4 Gy; 5-FU 350 mg/m2/day and leucovorin 10 mg/m2/day). Thirty-one underwent low anterior resection; seven underwent abdominoperineal excision. Endoscopic tumor biopsies, performed before adjuvant therapy, were evaluated for: histologic type, tumor differentiation, mitotic index, and p27kip1 and p53 protein expression which were immunohistochemically determined. p53 expression was graded as: a) absent or present in < or =10% of tumor cells; b) present in 11-25%; c) present in 26-75%; and d) present in >75% of tumor cells. p27kip1 expression was assessed using both light microscopy (percent of stained cells x10 HPF) and cytometry with an image analysis workstation. Tumor response, ascertained with histology, was classified using a scale from 0 (no response) to 6 (complete pathologic response). RESULTS The mitotic index for the endoscopic biopsies was low in 14 cases, moderate in 17 cases, and high in 7 cases. p53 protein expression was found in 21 (a), 3 (b), 3 (c), and 11 (d) cases. The mean percentage of cells expressing the p27kip1 protein was 34 (range 0-77.14%). A close correlation was found between cytometric and light microscopy findings for p27kip1 (r2 = 0.92, P = .0001). Tumor differentiation was good in 5 cases, poor in 2 cases, and moderate in the remaining 31 cases. While the response to adjuvant therapy was good/complete in 25 (65.78%) cases, it was absent/poor in 13 (34.21%) cases. Univariate analysis associated type of adjuvant therapy (chemoradiotherapy, P = .0428) and p27kip1 protein lower expression (P = .0148) with a poor response to adjuvant treatment. Stepwise linear regression found overexpression of p53 and p27kip1 and young age to be independent variables that were linked to a good response to adjuvant therapy. CONCLUSIONS Lack of p27kip1 and p53 protein expression in rectal cancer is associated with a poor response to preoperative adjuvant therapy.
Collapse
Affiliation(s)
- G Esposito
- Section of Oncology, Department of Oncology and Surgery of the University of Padova, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Baghdassarian N, Bertrand Y, Gerland LM, Ffrench P, Duhaut P, Bryon PA, Magaud JP, Ffrench M. Bcl-2, cell cycle regulatory proteins and corticosensitivity in childhood acute lymphoblastic leukaemia. Leuk Lymphoma 2001; 42:1067-75. [PMID: 11697624 DOI: 10.3109/10428190109097727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The results of treatment in childhood acute lymphoblastic leukemia (ALL) remain incompletely satisfactory because of relapses observed even with high dose chemotherapy. The aim of this study was to evaluate the role of bcl-2 or cell cycle regulatory protein expression in peripheral blood cells before and during the first 48 hours of corticotherapy, and corticosensitivity criteria for predicting relapse and prognosis. Fifty two children presenting with ALL were studied at diagnosis and during the first 48 hours of treatment for the level of cell proliferation by measurement of DNA content, and for expression of several cell proliferation regulatory proteins by Western blot. Two criteria for corticosensitivity were used: 1--the number of blast cells present after seven days of treatment with a threshold at 1 G/L (usual criterion), 2--the D8/D1 blast cell ratio, which is independent of the initial leucocytosis. Relapse in the total patient population or in B-cell ALL could only be predicted by the level of leucocytosis before treatment or by p27kip1 expression during the first 48 hours of treatment. Disease free survival was significantly longer when the D8/D1 blast cell ratio was under the 0.75 quartile in the entire patient population (p = 0.03). Among the proteins analyzed, bcl-2 expression before treatment and p27kip1 expression analyzed after 48 hours of corticotherapy were the sole variables associated with significant differences in disease free survival duration in the entire patient population (p < 0.01 and p = 0.04 respectively) or in the B-cell ALL subgroup (p < 0.01). Comparable results were obtained for the overall survival data. The significance of these results is discussed but such a study on blood blast cells needs to be validated in a larger series.
Collapse
Affiliation(s)
- N Baghdassarian
- Laboratoire de Cytologie Analytique, Université Claude Bernard, Unité INSERM U453, Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Yaroslavskiy B, Watkins SC, Alber S, Steinman RA. Dynamic changes in p27kip1 variant expression in activated lymphocytes. J Cell Biochem 2001; 83:380-9. [PMID: 11596107 DOI: 10.1002/jcb.1243] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The p27Kip1 cell cycle inhibitor (p27) has emerged as a critical mediator of normal cellular growth control. We report the expression of a 24 kD C-terminal variant of p27 in normal peripheral blood lymphocytes. This variant is rapidly degraded in a proteasome-dependent manner when lymphocytes are activated by interleukin-2 or by superantigen. Whereas p24 degradation is complete within 16 h of mitogen addition, full-length p27 is decreased only modestly over 72 h of mitogen exposure and is present in activated and cycling lymphocytes. Persistent p27 is present in a complex with cyclin D3 in activated lymphocytes, and is localized both in the nucleus and cytoplasm. These results indicate that lymphocytes exiting from quiescence use several mechanisms to overcome the p27Kip1-enforced cell cycle checkpoint, and that elimination of p27 is not required for cell cycle entry.
Collapse
Affiliation(s)
- B Yaroslavskiy
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | |
Collapse
|