1
|
Kumar B, Singh A, Basar R, Uprety N, Li Y, Fan H, Cortes AKN, Kaplan M, Acharya S, Shaim H, Xu AC, Wu M, Fang D, Banerjee PP, Garcia LM, Tiberti S, Lin P, Rafei H, Ensley E, Munir MN, Moore M, Shanley M, Mendt M, Kerbauy LN, Liu B, Biederstädt A, Gokdemir E, Ghosh S, Kundu K, Reyes-Silva F, Jiang XR, Wan X, Gilbert AL, Dede M, Mohanty V, Dou J, Zhang P, Liu E, Muniz-Feliciano L, Deyter GM, Jain AK, Rodriguez-Sevilla JJ, Colla S, Garcia-Manero G, Shpall EJ, Chen K, Abbas HA, Rai K, Rezvani K, Daher M. BATF is a major driver of NK cell epigenetic reprogramming and dysfunction in AML. Sci Transl Med 2024; 16:eadp0004. [PMID: 39259809 PMCID: PMC11967735 DOI: 10.1126/scitranslmed.adp0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/10/2024] [Accepted: 08/08/2024] [Indexed: 09/13/2024]
Abstract
Myelodysplastic syndrome and acute myeloid leukemia (AML) belong to a continuous disease spectrum of myeloid malignancies with poor prognosis in the relapsed/refractory setting necessitating novel therapies. Natural killer (NK) cells from patients with myeloid malignancies display global dysfunction with impaired killing capacity, altered metabolism, and an exhausted phenotype at the single-cell transcriptomic and proteomic levels. In this study, we identified that this dysfunction was mediated through a cross-talk between NK cells and myeloid blasts necessitating cell-cell contact. NK cell dysfunction could be prevented by targeting the αvβ-integrin/TGF-β/SMAD pathway but, once established, was persistent because of profound epigenetic reprogramming. We identified BATF as a core transcription factor and the main mediator of this NK cell dysfunction in AML. Mechanistically, we found that BATF was directly regulated and induced by SMAD2/3 and, in turn, bound to key genes related to NK cell exhaustion, such as HAVCR2, LAG3, TIGIT, and CTLA4. BATF deletion enhanced NK cell function against AML in vitro and in vivo. Collectively, our findings reveal a previously unidentified mechanism of NK immune evasion in AML manifested by epigenetic rewiring and inactivation of NK cells by myeloid blasts. This work highlights the importance of using healthy allogeneic NK cells as an adoptive cell therapy to treat patients with myeloid malignancies combined with strategies aimed at preventing the dysfunction by targeting the TGF-β pathway or BATF.
Collapse
Affiliation(s)
- Bijender Kumar
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Anand Singh
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Rafet Basar
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Nadima Uprety
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Ye Li
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Huihui Fan
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA 77030
| | - Ana Karen Nunez Cortes
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Mecit Kaplan
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Sunil Acharya
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Hila Shaim
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Anna C Xu
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Manrong Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Dexing Fang
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Pinaki P. Banerjee
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Luciana Melo Garcia
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Silvia Tiberti
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Paul Lin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Hind Rafei
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Emily Ensley
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Maliha Nuzhat Munir
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Madison Moore
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Mayra Shanley
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Mayela Mendt
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Lucila N. Kerbauy
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
- Department of Stem Cell Transplantation and Hemotherapy/Cellular Therapy, Hospital Israelita Albert Einstein, Sao Paulo, 05652-900, Brazil
| | - Bin Liu
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Alexander Biederstädt
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Elif Gokdemir
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Susmita Ghosh
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Kiran Kundu
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Francia Reyes-Silva
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Xin Ru Jiang
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Xinhai Wan
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - April L. Gilbert
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Merve Dede
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Vakul Mohanty
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Jinzhuang Dou
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Patrick Zhang
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Enli Liu
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Luis Muniz-Feliciano
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Gary M. Deyter
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Abhinav K. Jain
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | | | - Simona Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Guillermo Garcia-Manero
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Elizabeth J. Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Hussein A. Abbas
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Kunal Rai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
- MD Anderson Cancer Center Epigenetics Therapy Initiative, Houston, TX, USA 77030
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - May Daher
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| |
Collapse
|
2
|
Xu HJ, Bai J, Tian Y, Feng X, Chen AP, Wang J, Wu J, Jin XR, Zhang F, Quan MY, Chen C, Lee KY, Zhang JS. ESE1/AGR2 axis antagonizes TGF-β-induced epithelial-mesenchymal transition in low-grade pancreatic cancer. Cancer Med 2023; 12:5979-5993. [PMID: 36329620 PMCID: PMC10028153 DOI: 10.1002/cam4.5397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/12/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Epithelium-specific ETS transcription factor 1 (ESE1) has been implicated in epithelial homeostasis, inflammation, as well as tumorigenesis, and cancer progression. However, numerous studies have reported contradictory roles-as an oncogene or a tumor suppressor of ESE1 in different cancers, and its function in the development and progression of pancreatic ductal adenocarcinoma (PDAC) has remained largely unexplored. Herein, we report that ESE1 was found upregulated in primary PDAC compared to normal pancreatic tissue, but high expression of ESE1 correlated to better relapse-free survival in patients with PDAC. Interestingly, ESE1 was found to exhibit dual roles in regulation of malignant properties of PDAC cells in that its overexpression promoted cell proliferation, whereas its downregulation enhanced epithelial-mesenchymal transition (EMT) phenotype. In the context of TGF-β-induced EMT, ESE1 is markedly downregulated at post-transcriptional level, and reconstituted ESE1 expression partially reversed TGF-β-induced EMT marker expression. Furthermore, we identify AGR2 as a novel transcriptional target of ESE1 that participates in TGF-β-induced EMT in PDAC. Collectively, our findings reveal an ESE1/AGR2 axis that interacts with TGF-β signaling to modulate EMT phenotype in PDAC.
Collapse
Affiliation(s)
- Hui-Jing Xu
- International Collaborative Center on Growth Factor Research, and School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, Republic of Korea
| | - Jing Bai
- International Collaborative Center on Growth Factor Research, and School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China
| | - Ye Tian
- International Collaborative Center on Growth Factor Research, and School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China
| | - Xiao Feng
- International Collaborative Center on Growth Factor Research, and School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China
| | - Ai-Ping Chen
- International Collaborative Center on Growth Factor Research, and School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China
| | - Jie Wang
- International Collaborative Center on Growth Factor Research, and School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China
| | - Jin Wu
- International Collaborative Center on Growth Factor Research, and School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China
| | - Xu-Ru Jin
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Zhejiang, China
| | - Feng Zhang
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Zhejiang, China
| | - Mei-Yu Quan
- Medical Research Center, and Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Chengshui Chen
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Zhejiang, China
| | - Kwang-Youl Lee
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, Republic of Korea
| | - Jin-San Zhang
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Zhejiang, China
- Medical Research Center, and Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
3
|
Elf3 deficiency during zebrafish development alters extracellular matrix organization and disrupts tissue morphogenesis. PLoS One 2022; 17:e0276255. [DOI: 10.1371/journal.pone.0276255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
E26 transformation specific (ETS) family transcription factors are expressed during embryogenesis and are involved in various cellular processes such as proliferation, migration, differentiation, angiogenesis, apoptosis, and survival of cellular lineages to ensure appropriate development. Dysregulated expression of many of the ETS family members is detected in different cancers. The human ELF3, a member of the ETS family of transcription factors, plays a role in the induction and progression of human cancers is well studied. However, little is known about the role of ELF3 in early development. Here, the zebrafish elf3 was cloned, and its expression was analyzed during zebrafish development. Zebrafish elf3 is maternally deposited. At different developmental stages, elf3 expression was detected in different tissue, mainly neural tissues, endoderm-derived tissues, cartilage, heart, pronephric duct, blood vessels, and notochord. The expression levels were high at the tissue boundaries. Elf3 loss-of-function consequences were examined by using translation blocking antisense morpholino oligonucleotides, and effects were validated using CRISPR/Cas9 knockdown. Elf3-knockdown produced short and bent larvae with notochord, craniofacial cartilage, and fin defects. The extracellular matrix (ECM) in the fin and notochord was disorganized. Neural defects were also observed. Optic nerve fasciculation (bundling) and arborization in the optic tectum were defective in Elf3-morphants, and fragmentation of spinal motor neurons were evident. Dysregulation of genes encoding ECM proteins and matrix metalloprotease (MMP) and disorganization of ECM may play a role in the observed defects in Elf3 morphants. We conclude that zebrafish Elf3 is required for epidermal, mesenchymal, and neural tissue development.
Collapse
|
4
|
Sarmah S, Srivastava R, McClintick JN, Janga SC, Edenberg HJ, Marrs JA. Embryonic ethanol exposure alters expression of sox2 and other early transcripts in zebrafish, producing gastrulation defects. Sci Rep 2020; 10:3951. [PMID: 32127575 PMCID: PMC7054311 DOI: 10.1038/s41598-020-59043-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/21/2020] [Indexed: 01/10/2023] Open
Abstract
Ethanol exposure during prenatal development causes fetal alcohol spectrum disorder (FASD), the most frequent preventable birth defect and neurodevelopmental disability syndrome. The molecular targets of ethanol toxicity during development are poorly understood. Developmental stages surrounding gastrulation are very sensitive to ethanol exposure. To understand the effects of ethanol on early transcripts during embryogenesis, we treated zebrafish embryos with ethanol during pre-gastrulation period and examined the transcripts by Affymetrix GeneChip microarray before gastrulation. We identified 521 significantly dysregulated genes, including 61 transcription factors in ethanol-exposed embryos. Sox2, the key regulator of pluripotency and early development was significantly reduced. Functional annotation analysis showed enrichment in transcription regulation, embryonic axes patterning, and signaling pathways, including Wnt, Notch and retinoic acid. We identified all potential genomic targets of 25 dysregulated transcription factors and compared their interactions with the ethanol-dysregulated genes. This analysis predicted that Sox2 targeted a large number of ethanol-dysregulated genes. A gene regulatory network analysis showed that many of the dysregulated genes are targeted by multiple transcription factors. Injection of sox2 mRNA partially rescued ethanol-induced gene expression, epiboly and gastrulation defects. Additional studies of this ethanol dysregulated network may identify therapeutic targets that coordinately regulate early development.
Collapse
Affiliation(s)
- Swapnalee Sarmah
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Rajneesh Srivastava
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Jeanette N McClintick
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sarath C Janga
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Howard J Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - James A Marrs
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA.
| |
Collapse
|
5
|
Sakurai A, Ono H, Ochi A, Matsuura M, Yoshimoto S, Kishi S, Murakami T, Tominaga T, Nagai K, Abe H, Doi T. Involvement of Elf3 on Smad3 activation-dependent injuries in podocytes and excretion of urinary exosome in diabetic nephropathy. PLoS One 2019; 14:e0216788. [PMID: 31150422 PMCID: PMC6544199 DOI: 10.1371/journal.pone.0216788] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 04/29/2019] [Indexed: 01/15/2023] Open
Abstract
Diabetic nephropathy (DN) is among the most serious complications of diabetes mellitus, and often leads to end-stage renal disease ultimately requiring dialysis or renal transplantation. The loss of podocytes has been reported to have a role in the onset and progression of DN. Here, we addressed the activation mechanism of Smad3 signaling in podocytes. Expression of RII and activation of Smad3 were induced by AGE exposure (P<0.05). Reduction of the activation of RII-Smad3 signaling ameliorated podocyte injuries in Smad3-knockout diabetic mice. The bone morphogenetic protein 4 (BMP4) significantly regulated activation of RII-Smad3 signalings (P<0.05). Moreover, the epithelium-specific transcription factor, Elf3was induced by AGE stimulation and, subsequently, upregulated RII expression in cultured podocytes. Induction of Elf3 and activation of RII-Smad3 signaling, leading to a decrease in WT1 expression, were observed in podocytes in diabetic human kidneys. Moreover, AGE treatment induced the secretion of Elf3-containing exosomes from cultured podocytes, which was dependent on the activation of the TGF-β-Smad3 signaling pathway. In addition, exosomal Elf3 protein in urine could be measured only in urinary exosomes from patients with DN. The appearance of urinary exosomal Elf3 protein in patients with DN suggested the existence of irreversible injuries in podocytes. The rate of decline in the estimated Glomerular Filtration Rate (eGFR) after measurement of urinary exosomal Elf3 protein levels in patients with DN (R2 = 0.7259) might be useful as an early non-invasive marker for podocyte injuries in DN.
Collapse
Affiliation(s)
- Akiko Sakurai
- Department of Nephrology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hiroyuki Ono
- Department of Nephrology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Arisa Ochi
- Department of Nephrology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Motokazu Matsuura
- Department of Nephrology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Sakiya Yoshimoto
- Department of Nephrology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Seiji Kishi
- Department of Nephrology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Taichi Murakami
- Department of Nephrology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Tatsuya Tominaga
- Department of Nephrology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kojiro Nagai
- Department of Nephrology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hideharu Abe
- Department of Nephrology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
- * E-mail:
| | - Toshio Doi
- Department of Nephrology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
6
|
Wang Z, Ravula R, Shi L, Song Y, Yeung S, Liu M, Lau B, Hao J, Wang J, Lam CWK, Chow MSS, Huang Y. Overcoming chemoresistance in prostate cancer with Chinese medicine Tripterygium wilfordii via multiple mechanisms. Oncotarget 2018; 7:61246-61261. [PMID: 27487134 PMCID: PMC5308648 DOI: 10.18632/oncotarget.10868] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 07/06/2016] [Indexed: 11/25/2022] Open
Abstract
A leading cause of cancer chemotherapy failure is chemoresistance, which often involves multiple mechanisms. Chinese medicines (CM) usually contain multiple components which could potentially target many mechanisms simultaneously and may offer an advantage over single compounds that target one mechanism at a time. The purpose of this study was to investigate the chemosensitizing effect (CE) of a specific CM, Tripterygium wilfordii (TW), on prostate cancer cells resistant to docetaxel (Dtx) and identify the potential mechanisms. The CE of TW (in combination with Dtx) was evaluated in two Dtx resistant prostate cancer cell lines (PC3-TxR and DU145-TxR) and the efficacy of the combination for resistant PC3-TxR tumor was investigated using a xenograft mouse model. For mechanistic study, the inhibitory effect of TW on P-glycoprotein activity was assessed. In addition, novel gene targets of TW were identified using DNA microarray and quantitative PCR. Results showed that TW induced a CE of 8 and >38 folds in PC3-TxR and DU145-TxR cells, respectively with Dtx IC50 reversed back to that of the sensitive parent cells. An optimum dose of TW+Dtx significantly retarded tumor growth in mice compared to TW or Dtx alone. TW inhibited P-glycoprotein activity and induced a significant gene expression changes in genes related to angiogenesis, cell cycle regulation and differentiation. Our in vitro and in vivo studies demonstrate that TW in combination with Dtx was able to overcome the chemoresistance and suppress resistant prostate tumor growth via multi-mechanisms.
Collapse
Affiliation(s)
- Zhijun Wang
- Center for Advancement of Drug Research and Evaluation, College of Pharmacy, Western University of Health Sciences, Pomona, CA, USA
| | - Ranadheer Ravula
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, USA
| | - Leming Shi
- Center for Pharmacogenomics, State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Schools of Life Sciences and Pharmacy, Fudan University, Shanghai, China
| | - Yunjie Song
- Center for Pharmacogenomics, State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Schools of Life Sciences and Pharmacy, Fudan University, Shanghai, China
| | - Steven Yeung
- Center for Advancement of Drug Research and Evaluation, College of Pharmacy, Western University of Health Sciences, Pomona, CA, USA
| | - Mandy Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, USA
| | - Bernard Lau
- Center for Advancement of Drug Research and Evaluation, College of Pharmacy, Western University of Health Sciences, Pomona, CA, USA
| | - Jijun Hao
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, USA
| | - Jeffrey Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, USA
| | - Christopher Wai Kei Lam
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| | - Moses Sing Sum Chow
- Center for Advancement of Drug Research and Evaluation, College of Pharmacy, Western University of Health Sciences, Pomona, CA, USA
| | - Ying Huang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, USA
| |
Collapse
|
7
|
Sertorio M, Du W, Amarachintha S, Wilson A, Pang Q. In Vivo RNAi Screen Unveils PPARγ as a Regulator of Hematopoietic Stem Cell Homeostasis. Stem Cell Reports 2017; 8:1242-1255. [PMID: 28416286 PMCID: PMC5425620 DOI: 10.1016/j.stemcr.2017.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 12/13/2022] Open
Abstract
Hematopoietic stem cell (HSC) defects can cause repopulating impairment leading to hematologic diseases. To target HSC deficiency in a disease setting, we exploited the repopulating defect of Fanconi anemia (FA) HSCs to conduct an in vivo short hairpin RNA (shRNA) screen. We exposed Fancd2−/− HSCs to a lentiviral shRNA library targeting 947 genes. We found enrichment of shRNAs targeting genes involved in the PPARγ pathway that has not been linked to HSC homeostasis. PPARγ inhibition by shRNA or chemical compounds significantly improves the repopulating ability of Fancd2−/− HSCs. Conversely, activation of PPARγ in wild-type HSCs impaired hematopoietic repopulation. In mouse HSCs and patient-derived lymphoblasts, PPARγ activation is manifested in upregulating the p53 target p21. PPARγ and co-activators are upregulated in total bone marrow and stem/progenitor cells from FA patients. Collectively, this work illustrates the utility of RNAi technology coupled with HSC transplantation for the discovery of novel genes and pathways involved in stress hematopoiesis. In vivo screening identifies of deleterious Pparγ effect on HSCs Pharmacological activation of Pparγ impaired normal HSC repopulation Inhibition of Pparγ improves Fancd2-deficient HSC repopulation ability
Collapse
Affiliation(s)
- Mathieu Sertorio
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Wei Du
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Surya Amarachintha
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Andrew Wilson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Qishen Pang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
8
|
Zhang M, Li H, Zou D, Gao J. Ruguo key genes and tumor driving factors identification of bladder cancer based on the RNA-seq profile. Onco Targets Ther 2016; 9:2717-23. [PMID: 27217782 PMCID: PMC4863592 DOI: 10.2147/ott.s92529] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Aim This study aimed to select several signature genes associated with bladder cancer, thus to investigate the possible mechanism in bladder cancer. Methods The mRNA expression profile data of GSE31614, including ten bladder tissues and ten control samples, was downloaded from the Gene Expression Omnibus. The differentially expressed genes (DEGs) in bladder cancer samples compared with the control samples were screened using the Student’s t-test method. Functional analysis for the DEGs was analyzed using the Database for Annotation, Visualization, and Integrated Discovery from the Gene Ontology database, followed by the transcription function annotation of DEGs from Tumor-Associated Gene database. Motifs of genes that had transcription functions in promoter region were analyzed using the Seqpos. Results A total of 1,571 upregulated and 1,507 downregulated DEGs in the bladder cancer samples were screened. ELF3 and MYBL2 involved in cell cycle and DNA replication were tumor suppressors. MEG3, APEX1, and EZH2 were related with the cell epigenetic regulation in bladder cancer. Moreover, HOXB9 and EN1 that have their own motif were the transcription factors. Conclusion Our study has identified several key genes involved in bladder cancer. ELF3 and MYBL2 are tumor suppressers, HOXB9 and EN1 are the main regulators, while MEG3, APEX1, and EZH2 are driving factors for bladder cancer progression.
Collapse
Affiliation(s)
- Minglei Zhang
- Department of Orthopedics, Division of Tumor and Trauma Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Hongyan Li
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Di Zou
- Department of Nephrology, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, People's Republic of China
| | - Ji Gao
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
9
|
Min KW, Lee SH, Baek SJ. Moonlighting proteins in cancer. Cancer Lett 2015; 370:108-16. [PMID: 26499805 DOI: 10.1016/j.canlet.2015.09.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/15/2015] [Accepted: 09/18/2015] [Indexed: 12/26/2022]
Abstract
Since the 1980s, growing evidence suggested that the cellular localization of proteins determined their activity and biological functions. In a classical view, a protein is characterized by the single cellular compartment where it primarily resides and functions. It is now believed that when proteins appear in different subcellular locations, the cells surpass the expected activity of proteins given the same genomic information to fulfill complex biological behavior. Many proteins are recognized for having the potential to exist in multiple locations in cells. Dysregulation of translocation may cause cancer or contribute to poorer cancer prognosis. Thus, quantitative and comprehensive assessment of dynamic proteins and associated protein movements could be a promising indicator in determining cancer prognosis and efficiency of cancer treatment and therapy. This review will summarize these so-called moonlighting proteins, in terms of a coupled intracellular cancer signaling pathway. Determination of the detailed biological intracellular and extracellular transit and regulatory activity of moonlighting proteins permits a better understanding of cancer and identification of potential means of molecular intervention.
Collapse
Affiliation(s)
- Kyung-Won Min
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - Seong-Ho Lee
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20742, USA
| | - Seung Joon Baek
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
10
|
ELF3 is a repressor of androgen receptor action in prostate cancer cells. Oncogene 2013; 33:862-71. [PMID: 23435425 DOI: 10.1038/onc.2013.15] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 12/10/2012] [Accepted: 12/14/2012] [Indexed: 12/19/2022]
Abstract
The androgen receptor (AR) has a critical role in the development and progression of prostate cancer (PC) and is a major therapeutic target in this disease. The transcriptional activity of AR is modulated by the coregulators with which it interacts, and consequently deregulation of cofactor expression and/or activity impacts the expression of genes whose products can have a role in PC pathogenesis. Here we report that E74-like factor 3 (ELF3), a member of the ETS family of transcription factors, is a repressor of AR transcriptional activity. Exogenous expression of ELF3 represses AR transcriptional activity when assessed using reporter-based transfection assays or when evaluated on endogenous AR target genes. Conversely, ELF3 knock down increases the AR transcriptional activity. Biochemical dissection of this activity indicates that it results from the physical interaction between ELF3 and AR and that this interaction inhibits the recruitment of AR to specific androgen response elements within target gene promoters. Significantly, we observed that depletion of ELF3 expression in LNCaP cells promotes cell migration, whereas increased ELF3 expression severely inhibits tumor growth in vitro and in a mouse xenograft model. Taken together, these results suggest that modulation of ELF3 expression and/or AR/ELF3 interaction may have utility in the treatment of PC.
Collapse
|
11
|
Making sense out of massive data by going beyond differential expression. Proc Natl Acad Sci U S A 2012; 109:5594-9. [PMID: 22447773 DOI: 10.1073/pnas.1118792109] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
With the rapid growth of publicly available high-throughput transcriptomic data, there is increasing recognition that large sets of such data can be mined to better understand disease states and mechanisms. Prior gene expression analyses, both large and small, have been dichotomous in nature, in which phenotypes are compared using clearly defined controls. Such approaches may require arbitrary decisions about what are considered "normal" phenotypes, and what each phenotype should be compared to. Instead, we adopt a holistic approach in which we characterize phenotypes in the context of a myriad of tissues and diseases. We introduce scalable methods that associate expression patterns to phenotypes in order both to assign phenotype labels to new expression samples and to select phenotypically meaningful gene signatures. By using a nonparametric statistical approach, we identify signatures that are more precise than those from existing approaches and accurately reveal biological processes that are hidden in case vs. control studies. Employing a comprehensive perspective on expression, we show how metastasized tumor samples localize in the vicinity of the primary site counterparts and are overenriched for those phenotype labels. We find that our approach provides insights into the biological processes that underlie differences between tissues and diseases beyond those identified by traditional differential expression analyses. Finally, we provide an online resource (http://concordia.csail.mit.edu) for mapping users' gene expression samples onto the expression landscape of tissue and disease.
Collapse
|
12
|
Multiple roles of the epithelium-specific ETS transcription factor, ESE-1, in development and disease. J Transl Med 2012; 92:320-30. [PMID: 22157719 DOI: 10.1038/labinvest.2011.186] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The E26 transformation-specific (ETS) family of transcription factors comprises of 27 and 26 members in humans and mice, respectively, which are known to regulate many different biological processes, including cell proliferation, cell differentiation, embryonic development, neoplasia, hematopoiesis, angiogenesis, and inflammation. The epithelium-specific ETS transcription factor-1 (ESE-1) is a physiologically important ETS transcription factor, which has been shown to play a role in the pathogenesis of various diseases, and was originally characterized as having an epithelial-restricted expression pattern, thus placing it within the epithelium-specific ETS subfamily. Despite a large body of published work on ETS biology, much remains to be learned about the precise functions of ESE-1 and other epithelium-specific ETS factors in regulating diverse disease processes. Clues as to the specific function of ESE-1 in the setting of various diseases can be obtained from studies aimed at examining the expression of putative target genes regulated by ESE-1. Thus, this review will focus primarily on the various roles of ESE-1 in different pathophysiological processes, including regulation of epithelial cell differentiation during both intestinal development and lung regeneration; regulation of dendritic cell-driven T-cell differentiation during allergic airway inflammation; regulation of mammary gland development and breast cancer; and regulation of the effects of inflammatory stimuli within the setting of synovial joint and vascular inflammation. Understanding the exact mechanisms by which ESE-1 regulates these processes can have important implications for the treatment of a wide range of diseases.
Collapse
|
13
|
Elf3 plays a role in regulating bronchiolar epithelial repair kinetics following Clara cell-specific injury. J Transl Med 2011; 91:1514-29. [PMID: 21709667 DOI: 10.1038/labinvest.2011.100] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
E74-like transcription factor-3 (Elf3), a member of the E26 transformation-specific transcription factor family, is strongly expressed in epithelial-rich tissues, such as small intestine, fetal lung, and various lung cancers. Although previous studies have shown a defect in terminal differentiation of the small intestinal epithelium of Elf3-deficient (Elf3-/-) mice during embryonic development, very little is known about the role Elf3 may play in repair of the airway epithelium after injury. In order to investigate whether Elf3 is involved in regeneration of the bronchiolar epithelium after Clara cell-specific injury, we administered naphthalene to both wild-type (Elf3+/+) and Elf3-/- mice. Histopathological analysis revealed no significant difference in the extent of naphthalene-induced Clara cell necrosis between Elf3+/+ mice and Elf3-/- mice. In the bronchiolar epithelium of Elf3-/- mice, there was a substantial delay in the kinetics of cell proliferation and mitosis along with Clara cell renewal, whereas in the peribronchiolar interstitium, there was a significantly greater level of cell proliferation and mitosis in Elf3-/- mice than in Elf3+/+ mice. Last, the intensity of immunopositive signal for transforming growth factor-β type II receptor, which is a well-known transcriptional target gene of Elf3 and involved in the induction of epithelial cell differentiation, was significantly lower in the bronchiolar epithelium of Elf3-/- mice when compared with Elf3+/+ mice. Taken together, our results suggest that Elf3 plays an important role in the regulation of lung cell proliferation and differentiation during repair of the injured bronchiolar airway epithelium.
Collapse
|
14
|
Agarkar VB, Babayeva ND, Wilder PJ, Rizzino A, Tahirov TH. Crystal structure of mouse Elf3 C-terminal DNA-binding domain in complex with type II TGF-beta receptor promoter DNA. J Mol Biol 2010; 397:278-89. [PMID: 20079749 DOI: 10.1016/j.jmb.2010.01.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 01/05/2010] [Accepted: 01/06/2010] [Indexed: 12/21/2022]
Abstract
The Ets family of transcription factors is composed of more than 30 members. One of its members, Elf3, is expressed in virtually all epithelial cells as well as in many tumors, including breast tumors. Several studies observed that the promoter of the type II TGF-beta receptor gene (TbetaR-II) is strongly stimulated by Elf3 via two adjacent Elf3 binding sites, the A-site and the B-site. Here, we report the 2.2 A resolution crystal structure of a mouse Elf3 C-terminal fragment, containing the DNA-binding Ets domain, in complex with the B-site of mouse type II TGF-beta receptor promoter DNA (mTbetaR-II(DNA)). Elf3 contacts the core GGAA motif of the B-site from a major groove similar to that of known Ets proteins. However, unlike other Ets proteins, Elf3 also contacts sequences of the A-site from the minor groove of the DNA. DNA binding experiments and cell-based transcription studies indicate that minor groove interaction by Arg349 located in the Ets domain is important for Elf3 function. Equally interesting, previous studies have shown that the C-terminal region of Elf3, which flanks the Ets domain, is required for Elf3 binding to DNA. In this study, we determined that Elf3 amino acid residues within this flanking region, including Trp361, are important for the structural integrity of the protein as well as for the Efl3 DNA binding and transactivation activity.
Collapse
Affiliation(s)
- Vinod B Agarkar
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, NE 68198-7696, USA
| | | | | | | | | |
Collapse
|
15
|
Agarkar VB, Babayeva ND, Rizzino A, Tahirov TH. Preliminary crystallographic analysis of mouse Elf3 C-terminal DNA-binding domain in complex with type II TGF-beta receptor promoter DNA. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:1261-3. [PMID: 20054123 DOI: 10.1107/s1744309109038007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 09/19/2009] [Indexed: 11/11/2022]
Abstract
Ets proteins are transcription factors that activate or repress the expression of genes that are involved in various biological processes, including cellular proliferation, differentiation, development, transformation and apoptosis. Like other Ets-family members, Elf3 functions as a sequence-specific DNA-binding transcriptional factor. A mouse Elf3 C-terminal fragment (amino-acid residues 269-371) containing the DNA-binding domain has been crystallized in complex with mouse type II TGF-beta receptor promoter (TbetaR-II) DNA. The crystals belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 42.66, b = 52, c = 99.78 A, and diffracted to a resolution of 2.2 A.
Collapse
Affiliation(s)
- Vinod B Agarkar
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-7696, USA
| | | | | | | |
Collapse
|
16
|
Osunkoya AO, Yin-Goen Q, Phan JH, Moffitt RA, Stokes TH, Wang MD, Young AN. Diagnostic biomarkers for renal cell carcinoma: selection using novel bioinformatics systems for microarray data analysis. Hum Pathol 2009; 40:1671-8. [PMID: 19695674 DOI: 10.1016/j.humpath.2009.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 05/04/2009] [Accepted: 05/07/2009] [Indexed: 11/15/2022]
Abstract
The differential diagnosis of clear cell, papillary, and chromophobe renal cell carcinoma is clinically important, because these tumor subtypes are associated with different pathobiology and clinical behavior. For cases in which histopathology is equivocal, immunohistochemistry and quantitative reverse transcriptase-polymerase chain reaction can assist in the differential diagnosis by measuring expression of subtype-specific biomarkers. Several renal tumor biomarkers have been discovered in expression microarray studies. However, due to heterogeneity of gene and protein expression, additional biomarkers are needed for reliable diagnostic classification. We developed novel bioinformatics systems to identify candidate renal tumor biomarkers from the microarray profiles of 45 clear cell, 16 papillary, and 10 chromophobe renal cell carcinomas; the microarray data was derived from 2 independent published studies. The ArrayWiki biocomputing system merged the microarray data sets into a single file, so gene expression could be analyzed from a larger number of tumors. The caCORRECT system removed non-random sources of error from the microarray data, and the omniBioMarker system analyzed data with several gene-ranking algorithms to identify algorithms effective at recognizing previously described renal tumor biomarkers. We predicted these algorithms would also be effective at identifying unknown biomarkers that could be verified by independent methods. We selected 6 novel candidate biomarkers from the omniBioMarker analysis and verified their differential expression in formalin-fixed paraffin-embedded tissues by quantitative reverse transcriptase-polymerase chain reaction and immunohistochemistry. The candidate biomarkers were carbonic anhydrase IX, ceruloplasmin, schwannomin-interacting protein 1, E74-like factor 3, cytochrome c oxidase subunit 5a, and acetyl-CoA acetyltransferase 1. Quantitative reverse transcriptase-polymerase chain reaction was performed on 17 clear cell, 13 papillary and 7 chromophobe renal cell carcinoma. Carbonic anhydrase IX and ceruloplasmin were overexpressed in clear cell renal cell carcinoma; schwannomin-interacting protein 1 and E74-like factor 3 were overexpressed in papillary renal cell carcinoma; and cytochrome c oxidase subunit 5a and acetyl-CoA acetyltransferase 1 were overexpressed in chromophobe renal cell carcinoma. Immunohistochemistry was performed on tissue microarrays containing 66 clear cell, 16 papillary, and 12 chromophobe renal cell carcinomas. Cytoplasmic carbonic anhydrase IX staining was significantly associated with clear cell renal cell carcinoma. Strong cytoplasmic schwannomin-interacting protein 1 and cytochrome c oxidase subunit 5a staining were significantly more frequent in papillary and chromophobe renal cell carcinoma, respectively. In summary, we developed a novel process for identifying candidate renal tumor biomarkers from microarray data, and verifying differential expression in independent assays. The tumor biomarkers have potential utility as a multiplex expression panel for classifying renal cell carcinoma with equivocal histology. Biomarker expression assays are increasingly important for renal cell carcinoma diagnosis, as needle core biopsies become more common and different therapies for tumor subtypes continue to be developed.
Collapse
Affiliation(s)
- Adeboye O Osunkoya
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Xiao X, Liu A, Wen H, Tian Y, Ni J, Liu G. Expression and localization of transcription factor Ets-1 in the rat ovary during the estrous cycle and pregnancy. Fertil Steril 2008; 91:1998-2005. [PMID: 18439600 DOI: 10.1016/j.fertnstert.2008.02.166] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 02/26/2008] [Accepted: 02/27/2008] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To examine the expression and localization of Ets-1 in the rat ovary during the estrous cycle and pregnancy, and to investigate its effects on ovarian function. DESIGN Prospective, randomized study. SETTING Department of Physiology at Harbin Medical University. ANIMAL(S) Pubertal female Wistar rats. INTERVENTION(S) Vaginal smears were taken daily from female rats to determine the stage of the estrous cycle. Pregnancies were achieved by caging female and male rats together overnight. Ovaries were collected from both cycling and pregnant rats for tissue sectioning and RNA and protein extractions. MAIN OUTCOME MEASURE(S) Real-time quantitative polymerase chain reaction, Western blot, in situ hybridization, and immunohistochemistry were performed to investigate the expression and localization of Ets-1 messenger RNA (mRNA) and protein in the rat ovary during the estrous cycle and pregnancy. RESULT(S) During the estrous cycle, the levels of Ets-1 mRNA and protein expression increased during the follicular phase, achieving their highest measurements at proestrus and lowest at metestrus. The expression of Ets-1 mRNA and protein fluctuated during pregnancy, increasing during early pregnancy, then decreasing during mid-pregnancy, and again increasing until parturition. Ets-1 mRNA and protein were present throughout the estrous cycle and pregnancy, principally localized in follicles of various sizes and in the corpus luteum. CONCLUSION(S) Ets-1 may participate and play an important role in the regulation of follicular development, corpus luteum formation, maintenance, and regression.
Collapse
Affiliation(s)
- Xiaohui Xiao
- Laboratory of Reproductive Endocrinology, Department of Physiology, Harbin Medical University, Harbin, People's Republic of China
| | | | | | | | | | | |
Collapse
|
18
|
Fermentable metabolite of Zymomonas mobilis controls collagen reduction in photoaging skin by improving TGF-β/Smad signaling suppression. Arch Dermatol Res 2007; 300 Suppl 1:S57-64. [DOI: 10.1007/s00403-007-0805-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Lei W, Jaramillo RJ, Harrod KS. Transactivation of lung lysozyme expression by Ets family member ESE-1. Am J Physiol Lung Cell Mol Physiol 2007; 293:L1359-68. [PMID: 17905856 DOI: 10.1152/ajplung.00130.2007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Epithelial-specific Ets (ESE) transcription factors, consisting of ESE-1, ESE-2, and ESE-3, are constitutively expressed in distinct epithelia of mucosal tissues, including the lung. Each ESE member exhibits alternative splicing and yields at least two isoforms (a and b) with transcriptional targets largely unidentified. The studies described herein define a novel role for ESE transcription factors in transactivation of the human lysozyme gene ( LYZ), an essential component of innate defense in lung epithelia. Of the six ESE isoforms, ESE-1a and ESE-1b transactivated LYZ promoter in reporter gene assays, whereas only ESE-1b dramatically upregulated transcription of endogenous LYZ in both nonpulmonary and pulmonary epithelial cells. Importantly, ESE-1a and ESE-1b could transactivate the LYZ promoter in cultured primary airway epithelial cells. ESE-2 and ESE-3 isoforms were unable to substantially transactivate the lysozyme promoter or upregulate transcription of endogenous LYZ. Two functional consensus Ets sites located in the proximal 130-bp LYZ promoter were responsive to ESE-1b as identified by site-directed mutagenesis and DNA binding assays. Short hairpin RNA attenuation of endogenous ESE-1b mRNA levels in lung epithelia resulted in decreased LYZ transcription. Furthermore, ESE-1 antibody specifically enriched the 130-bp proximal LYZ promoter in chromatin immunoprecipitation analyses. These findings define a novel role for ESE transcription factors in regulating lung innate defense and suggest distinct regulatory functions for ESE family members.
Collapse
Affiliation(s)
- Wanli Lei
- Infectious Disease Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest Dr. SE, Albuquerque, NM 87108, USA
| | | | | |
Collapse
|
20
|
Flentjar N, Chu PY, Ng AYN, Johnstone CN, Heath JK, Ernst M, Hertzog PJ, Pritchard MA. TGF-betaRII rescues development of small intestinal epithelial cells in Elf3-deficient mice. Gastroenterology 2007; 132:1410-9. [PMID: 17408644 DOI: 10.1053/j.gastro.2007.02.054] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Accepted: 01/11/2007] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS ELF3, a member of the ETS transcription factor family, has been shown to transactivate the transforming growth factor beta type II receptor (TGF-betaRII) promoter. Previously we showed that Elf3-null mice have a defect in the small intestine caused by a failure of small intestinal epithelial cells to differentiate and that these cells produced significantly lower levels of Tgf-betaRII. To prove that the defect observed in Elf3-null mice resulted from the lack of Elf3-dependent activation of Tgf-betaRII expression, we performed a genetic rescue. METHODS We generated transgenic mice that express human TGF-betaRII specifically in the intestinal epithelium under the control of the mouse A33 antigen promoter. Mice expressing the A33-TGF-betaRII transgene were mated with Elf3(+/-) mice, and double heterozygous offspring harboring both the transgene and one mutant Elf3 allele were intercrossed. RESULTS The resultant A33-TGF-betaRII transgenic Elf3(-/-) pups displayed normal small intestinal morphology, while the characteristic abnormality was retained in all Elf3(-/-) mice that did not express the transgene. This phenotypic rescue shows for the first time in vivo that a single gene, Elf3, is the critical upstream regulator of Tgf-betaRII in mouse small intestinal epithelium. CONCLUSIONS This has important implications for our understanding of tissue-specific gene regulation and further strengthens the potential clinical connection between ELF3 and colorectal cancer involving transforming growth factor beta insensitivity.
Collapse
MESH Headings
- Animals
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- Female
- Gene Expression Regulation, Developmental
- Goblet Cells/cytology
- Goblet Cells/physiology
- Immunohistochemistry
- Intestine, Small/cytology
- Intestine, Small/metabolism
- Male
- Membrane Glycoproteins/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Transgenic
- Phenotype
- Promoter Regions, Genetic
- Protein Serine-Threonine Kinases
- RNA/genetics
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/biosynthesis
- Receptors, Transforming Growth Factor beta/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription Factors/deficiency
- Transcription Factors/genetics
- Transcriptional Activation
Collapse
Affiliation(s)
- Nicole Flentjar
- Centre for Functional Genomics and Human Disease, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Kopp JL, Wilder PJ, Desler M, Kinarsky L, Rizzino A. Different domains of the transcription factor ELF3 are required in a promoter-specific manner and multiple domains control its binding to DNA. J Biol Chem 2006; 282:3027-41. [PMID: 17148437 DOI: 10.1074/jbc.m609907200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Elf3 is an epithelially restricted member of the ETS transcription factor family, which is involved in a wide range of normal cellular processes. Elf3 is also aberrantly expressed in several cancers, including breast cancer. To better understand the molecular mechanisms by which Elf3 regulates these processes, we created a large series of Elf3 mutant proteins with specific domains deleted or targeted by point mutations. The modified forms of Elf3 were used to analyze the contribution of each domain to DNA binding and the activation of gene expression. Our work demonstrates that three regions of Elf3, in addition to its DNA binding domain (ETS domain), influence Elf3 binding to DNA, including the transactivation domain that behaves as an autoinhibitory domain. Interestingly, disruption of the transactivation domain relieves the autoinhibition of Elf3 and enhances Elf3 binding to DNA. On the basis of these studies, we suggest a model for autoinhibition of Elf3 involving intramolecular interactions. Importantly, this model is consistent with our finding that the N-terminal region of Elf3, which contains the transactivation domain, interacts with its C terminus, which contains the ETS domain. In parallel studies, we demonstrate that residues flanking the N- and C-terminal sides of the ETS domain of Elf3 are crucial for its binding to DNA. Our studies also show that an AT-hook domain, as well as the serine- and aspartic acid-rich domain but not the pointed domain, is necessary for Elf3 activation of promoter activity. Unexpectedly, we determined that one of the AT-hook domains is required in a promoter-specific manner.
Collapse
Affiliation(s)
- Janel L Kopp
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Nebraska 68198-6805, USA
| | | | | | | | | |
Collapse
|
22
|
Seth A, Catzavelos C, Vary C, Ascione R. ETS transcription factors and targets in tumour invasion, angiogenesis and bone metastasis. ACTA ACUST UNITED AC 2005; 5:87-107. [PMID: 15992169 DOI: 10.1517/14728222.5.1.87] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The ETS gene family encodes unique transcription regulators that have a common ETS DNA binding domain. At least 25 distinct ETS related genes have been isolated from various species. The ETS family transcription factors are known to regulate genetic programs essential for differentiation and development processes and play diverse roles in a number of biological processes such as organogenesis and tissue remodelling during murine development, hematopoiesis, B-cell development, activation of T-cells and signal transduction, as well as osteogenesis, osteoblast differentiation and extracellular matrix mineralization. Based on the observation of overexpression of ETS related genes in various primary and metastatic tumors, their utility as potential therapeutic targets has been suggested. Antisense oligonucleotides, transdominant, and dominant-negative mutants have been exploited to target and inhibit ETS gene expression selectively. These ETS-targeted studies are being pursued to assess their antitumour effect, and hold the potential that such specific ETS-targeted inhibitors may become a viable option for cancer therapy. Collectively, these studies also demonstrate that Ets factors can regulate multiple aspects of the malignant phenotype of many tumor cells in particular neoangiogenesis and extracellular matrix-regulated (ECM-regulated) cell proliferation, motility and invasiveness.
Collapse
Affiliation(s)
- A Seth
- Department of Anatomic Pathology, Sunnybrook and Women's College Health Sciences Centre, University of Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
23
|
Huang W, Zhao S, Ammanamanchi S, Brattain M, Venkatasubbarao K, Freeman JW. Trichostatin A induces transforming growth factor beta type II receptor promoter activity and acetylation of Sp1 by recruitment of PCAF/p300 to a Sp1.NF-Y complex. J Biol Chem 2005; 280:10047-54. [PMID: 15647279 DOI: 10.1074/jbc.m408680200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Transforming growth factor beta type II receptor (TbetaRII) is a tumor suppressor gene that can be transcriptionally silenced by histone deacetylases (HDACs) in cancer cells. In this report, we demonstrated the mechanism by which trichostatin A (TSA), an inhibitor of HDAC, induces the expression of TbetaRII in human pancreatic cancer cell lines by modulating the transcriptional components that bind a specific DNA region of the TbetaRII promoter. This region of the TbetaRII promoter possesses Sp1 and NF-Y binding sites in close proximity (located at -102 and -83, respectively). Treatment of cells with TSA activates the TbetaRII promoter in a time-dependent manner through the recruitment of p300 and PCAF into a Sp1.NF-Y.HDAC complex that binds this DNA element. The recruitment of p300 and PCAF into the complex is associated with a concomitant acetylation of Sp1 and an overall decrease in the amount of HDAC associated with the complex. Transient overexpression of p300 or PCAF potentiated TSA-induced TbetaRII promoter activity. The effect of PCAF was dependent on its histone acetyltransferase activity, whereas that of p300 was independent. Stable transfection of PCAF caused an increase in TbetaRII mRNA expression, the association of PCAF with TbetaRII promoter, and the acetylation of Sp1. Taken together, these results showed that TSA treatment of pancreatic cancer cells leads to transcriptional activation of the TbetaRII promoter through modulation of the components of a Sp1.NF-Y.p300.PCAF.HDAC-1 multiprotein complex. Moreover, the interaction of NF-Y with the Sp1-associated complex may further explain why this specific Sp1 site mediates transcriptional responsiveness to TSA.
Collapse
Affiliation(s)
- Weiqi Huang
- Department of Medicine, Division of Medical Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, Texas 78229-3900, USA
| | | | | | | | | | | |
Collapse
|
24
|
Hou J, Wilder PJ, Bernadt CT, Boer B, Neve RM, Rizzino A. Transcriptional regulation of the murine Elf3 gene in embryonal carcinoma cells and their differentiated counterparts: requirement for a novel upstream regulatory region. Gene 2004; 340:123-31. [PMID: 15556300 DOI: 10.1016/j.gene.2004.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2004] [Revised: 05/20/2004] [Accepted: 06/01/2004] [Indexed: 11/20/2022]
Abstract
The transcription factor Elf3, which is one of over 25 Ets family members, is expressed in a wide variety of carcinomas and has been shown to promote the transcription of many genes implicated in cancer. To understand how the Elf3 gene is regulated at the transcriptional level, we probed its 5'-flanking region, and we report here the identification of both proximal and distal regions that regulate murine Elf3 promoter activity. In addition to mapping the transcription start site of the Elf3 gene, the work described in this study identifies four cis-regulatory elements in the proximal promoter region of the gene. These include a cis-regulatory element previously designated ESE, a kappaB site, a POU motif, and a CCAAT box. In addition, we demonstrate that a novel 94 bp region 2 kb upstream of the transcription start site significantly elevates Elf3 promoter activity in F9-differentiated cells, but not in the parental F9 embryonal carcinoma (EC) cells. This region appears to be largely responsible for the increase in Elf3 promoter activity that accompanies the differentiation of embryonal carcinoma cells.
Collapse
MESH Headings
- 5' Flanking Region/genetics
- Animals
- Base Sequence
- Carcinoma, Embryonal/genetics
- Carcinoma, Embryonal/pathology
- Cell Differentiation/genetics
- Cell Line, Tumor
- DNA, Neoplasm/chemistry
- DNA, Neoplasm/genetics
- DNA-Binding Proteins/genetics
- Gene Expression Regulation, Neoplastic
- Luciferases/genetics
- Luciferases/metabolism
- Mice
- Molecular Sequence Data
- Promoter Regions, Genetic/genetics
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Regulatory Sequences, Nucleic Acid/genetics
- Sequence Analysis, DNA
- Transcription Factors/genetics
- Transcription Initiation Site
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- Jingwen Hou
- Eppley Institute for Research in Cancer and Allied Diseases at the University of Nebraska Medical Center, USA
| | | | | | | | | | | |
Collapse
|
25
|
Quan T, He T, Kang S, Voorhees JJ, Fisher GJ. Solar ultraviolet irradiation reduces collagen in photoaged human skin by blocking transforming growth factor-beta type II receptor/Smad signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:741-51. [PMID: 15331399 PMCID: PMC1618600 DOI: 10.1016/s0002-9440(10)63337-8] [Citation(s) in RCA: 255] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Ultraviolet (UV) irradiation from the sun reduces production of type I procollagen (COLI), the major structural protein in human skin. This reduction is a key feature of the pathophysiology of premature skin aging (photoaging). Photoaging is the most common form of skin damage and is associated with skin carcinoma. TGF-beta/Smad pathway is the major regulator of type I procollagen synthesis in human skin. We have previously reported that UV irradiation impairs transforming growth factor-beta (TGF-beta)/Smad signaling in mink lung epithelial cells. We have investigated the mechanism of UV irradiation impairment of the TGF-beta/Smad pathway and the impact of this impairment on type I procollagen production in human skin fibroblasts, the major collagen-producing cells in skin. We report here that UV irradiation impairs TGF-beta/Smad pathway in human skin by down-regulation of TGF-beta type II receptor (TbetaRII). This loss of TbetaRII occurs within 8 hours after UV irradiation and precedes down-regulation of type I procollagen expression in human skin in vivo. In human skin fibroblasts, UV-induced TbetaRII down-regulation is mediated by transcriptional repression and results in 90% reduction of specific, cell-surface binding of TGF-beta. This loss of TbetaRII prevents downstream activation of Smad2/3 by TGF-beta, thereby reducing expression of type I procollagen. Preventing loss of TbetaRII by overexpression protects against UV inhibition of type I procollagen gene expression in human skin fibroblasts. UV-induced down-regulation of TbetaRII, with attendant reduction of type I procollagen production, is a critical molecular mechanism in the pathophysiology of photoaging.
Collapse
Affiliation(s)
- Taihao Quan
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | | | | | |
Collapse
|
26
|
Kaplan MH, Wang XP, Xu HP, Dosik MH. Partially unspliced and fully spliced ELF3 mRNA, including a new Alu element in human breast cancer. Breast Cancer Res Treat 2004; 83:171-87. [PMID: 14997048 DOI: 10.1023/b:brea.0000010710.51614.2d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Using modified representational difference analysis, a DNA fragment (GC3) was isolated as a difference between a breast cancer and a normal cell line from the same patient. GC3 proved to be a fragment of intron 7 of the ELF3 gene, an ets family transcription factor, amplified in the breast cancer cell line. Using genomic walking technology, a new Alu (Alu(kwd)) was found downstream of GC3 in an antisense position between nt 8762 and nt 8763 within intron 8 of the ELF3 gene. This ELF3 intron fragment(GC3) was expressed in human breast cancer cell lines and four of six breast cancer tissues, but not in matched normal cell lines and tissues. Similarly, Alu(kwd) was also found in the same breast cancer cell lines and five of eight other breast cancer tissues, but not in matched normal cell lines and tissue. This was confirmed by RNase and DNase digestion analysis. Moreover, GC3 and Alu(kwd) were detected in both the nuclear and cytoplasmic RNA fractions of breast cancer cell lines. The finding of cytoplasmic intron retention was verified with northern blotting and the 5' and 3' rapid amplification cDNA ends procedure (5' and 3'RACE) to search for cDNA sequences in RNA from these cancer cell lines. Partially unspliced ELF3 mRNA and fully spliced ELF3 mRNA was found in the same breast cancer cell line. Partially unspliced ELF3 mRNA contained introns 4-7 without any nucleotide mutation at intron/exon splice junction borders. Fully spliced 1959 bp ELF3 mRNA showed a different 5'UTR from the published ELF3 mRNA, and was predicted to encode a 371 amino acid protein sharing 98% homology with the ELF3 protein sequence. This is the first report of intron retention of ELF3 as well as the pathological appearance of both spliced and unspliced cytoplasmic ELF3 mRNA in human breast cancer cells.
Collapse
Affiliation(s)
- Mark H Kaplan
- Department of Medicine, North Shore University Hospital, Manhasset, NY 11030, USA.
| | | | | | | |
Collapse
|
27
|
Kopp JL, Wilder PJ, Desler M, Kim JH, Hou J, Nowling T, Rizzino A. Unique and selective effects of five Ets family members, Elf3, Ets1, Ets2, PEA3, and PU.1, on the promoter of the type II transforming growth factor-beta receptor gene. J Biol Chem 2004; 279:19407-20. [PMID: 14976186 DOI: 10.1074/jbc.m314115200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have shown that the promoter of the type II TGF-beta receptor gene (TbetaR-II) is strongly stimulated by Elf3, a member of the Ets transcription factor family. The TbetaR-II gene behaves as a tumor suppressor and it is expressed in nearly all cell types, whereas Elf3 is expressed primarily in epithelial cells. Hence, the TbetaR-II gene is likely to be regulated by other Ets proteins in nonepithelial cells. In this study, we examined the effects of four other Ets family members (Ets1, Ets2, PEA3, and PU.1) on TbetaR-II promoter/reporter constructs that contain the two essential ets sites of this gene. These studies employed F9 embryonal carcinoma cells and their differentiated cells, because transcription of the TbetaR-II gene increases after F9 cells differentiate. Here we demonstrate that Ets2, which is expressed in F9-differentiated cells along with Elf3, does not stimulate or bind to the TbetaR-II promoter in these cells. In contrast, PEA3 stimulates the TbetaR-II promoter in F9-differentiated cells, but it inhibits this promoter in F9 cells. Thus, the effects of PEA3 on the TbetaR-II promoter are cell context-dependent. We also show that the effects of Elf3 are cell context-dependent. Elf3 strongly stimulates the TbetaR-II promoter in F9-differentiated cells, but not in F9 cells. In contrast to Elf3 and PEA3, Ets1 strongly stimulates this promoter in both F9 cells and F9-differentiated cells. Finally, we show that PU.1 exerts little or no effect on the activity of the TbetaR-II promoter. Together, our findings indicate that Elf3 is not the only Ets protein capable of stimulating the TbetaR-II promoter. Importantly, our findings also indicate that each of the five Ets proteins influences the TbetaR-II promoter in a unique manner because of important differences in their biochemical properties or their patterns of cellular expression.
Collapse
Affiliation(s)
- Janel L Kopp
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Tang Y, Shah K, Messerli SM, Snyder E, Breakefield X, Weissleder R. In vivo tracking of neural progenitor cell migration to glioblastomas. Hum Gene Ther 2003; 14:1247-54. [PMID: 12952596 DOI: 10.1089/104303403767740786] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The ability to noninvasively track the migration, engraftment, and proliferation of neural progenitor cells (NPCs) has significant clinical and research implications. The purpose of our study was to explore the macroscopic migratory capabilities of NPCs toward brain tumors after implantation into nude mice. We stably transfected C17.2 NPCs with the firefly luciferase gene (F-luc) and implanted cells into (1) the contralateral brain parenchyma (2 x 10(6) cells), (2) the ventricles (2 x 10(6) cells), (3) the vasculature (1 x 10(5) cells), or (4) the intraperitoneal cavity (5 x 10(6) cells) of mice bearing intracranial gliomas (Gli36). Using serial bioluminescence imaging, migration of parenchymally injected cells was observed across the corpus callosum, first detected at 1 week, with maximal density at the tumor site 2-3 weeks after implantation. Similar patterns were also observed with intraventricular injections; however, tumors were populated earlier, presumably because of the shorter distance to travel. Intravenous injections resulted in more modest tumoral NPC populations, whereas virtually no cells could be identified in tumors after intraperitoneal injection. These results confirm the migratory capability of NPCs over considerable distances and their preferential accumulation in brain tumors on CNS rather than peripheral injection.
Collapse
Affiliation(s)
- Yi Tang
- Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | | | | | |
Collapse
|
30
|
Bernadt CT, Rizzino A. Roles of the conserved CCAAT and GC boxes of the human and mouse type II transforming growth factor-beta receptor genes. Mol Reprod Dev 2003; 65:353-65. [PMID: 12840808 DOI: 10.1002/mrd.10313] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Embryonal carcinoma (EC) cells are used widely to study the molecular mechanisms that regulate the transcription of genes during mammalian embryogenesis. The type II transforming growth factor-beta receptor (TbetaR-II) gene is expressed at very low levels by mouse EC cells prior to differentiation. Differentiation of EC cells results in increases of both the steady-state levels of TbetaR-II mRNA and the activity of the TbetaR-II promoter. Several cis-regulatory elements have been shown previously to regulate the TbetaR-II gene. This study focuses on the role of a CCAAT box and three GC boxes in the regulation of the human and mouse TbetaR-II promoters in EC-differentiated cells. We demonstrate that the CCAAT box and two flanking GC boxes, Sp A and Sp B, function as positive regulatory elements in the human TbetaR-II promoter, and that the transcription factor complex NF-Y positively regulates the human TbetaR-II promoter through the CCAAT box motif. We also show that the CCAAT box and the downstream GC box Sp B, which are conserved between the human and mouse promoters, behave as positive regulatory elements in the mouse TbetaR-II promoter. In addition, we demonstrate that the transcription factor Sp1 can bind to the Sp B GC box in vitro. Finally, we show that a GC box located 25 bp upstream of the major transcription start site of the TbetaR-II gene plays a minimal role in the function of the TbetaR-II promoter in EC-differentiated cells. Together, our studies highlight important differences and similarities in the cis-regulatory elements that regulate the human and mouse TbetaR-II promoters.
Collapse
MESH Headings
- Animals
- CCAAT-Binding Factor/metabolism
- Carcinoma, Embryonal
- Cell Differentiation
- Cell Line, Tumor
- Conserved Sequence
- Gene Expression Regulation, Developmental
- Humans
- Mice
- Promoter Regions, Genetic
- Protein Serine-Threonine Kinases
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Regulatory Sequences, Nucleic Acid
- Sp1 Transcription Factor/metabolism
- Transfection
Collapse
Affiliation(s)
- Cory T Bernadt
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | | |
Collapse
|
31
|
Ma Y, Koza-Taylor PH, DiMattia DA, Hames L, Fu H, Dragnev KH, Turi T, Beebe JS, Freemantle SJ, Dmitrovsky E. Microarray analysis uncovers retinoid targets in human bronchial epithelial cells. Oncogene 2003; 22:4924-32. [PMID: 12894236 DOI: 10.1038/sj.onc.1206728] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Retinoids, the natural and synthetic derivatives of vitamin A, have a role in cancer treatment and prevention. There is a need to reveal mechanisms that account for retinoid response or resistance. This study identified candidate all-trans-retinoic acid (RA) target genes linked to growth suppression in BEAS-2B human bronchial epithelial cells. Microarray analyses were performed using Affymetrix arrays. A total of 11 RA-induced species were validated by reverse transcription polymerase chain reaction (RT-PCR), Western or Northern analyses. Three of these species were novel candidate RA-target genes in human bronchial epithelial cells. These included: placental bone morphogenetic protein (PLAB), polyamine oxidase isoform 1 (PAOh1) and E74-like factor 3 (ELF3). Expression patterns were studied in RA-resistant BEAS-2B-R1 cells. In BEAS-2B-R1 cells, RA dysregulated the expression of the putative lymphocyte G0/G1 switch gene (G0S2), heme oxygenase 1 (HMOX1), tumor necrosis factor-alpha-induced protein 2 (TNFAIP2), inhibitor of DNA binding 1(Id1), fos-like antigen 1 (FOSL1), transglutaminase 2 (TGM2), asparagine synthetase (ASNS), PLAB, PAOh1 and ELF3, while prominent induction of insulin-like growth-factor-binding protein 6 (IGFBP6) still occurred. In summary, this study identified 11 candidate RA-target genes in human bronchial epithelial cells including three novel species. Expression studies in BEAS-2B-R1 cells indicated that several were directly implicated in RA signaling, since their aberrant expression was linked to RA resistance of human bronchial epithelial cells.
Collapse
Affiliation(s)
- Yan Ma
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Reddy SPM, Vuong H, Adiseshaiah P. Interplay between proximal and distal promoter elements is required for squamous differentiation marker induction in the bronchial epithelium: role for ESE-1, Sp1, and AP-1 proteins. J Biol Chem 2003; 278:21378-87. [PMID: 12682075 DOI: 10.1074/jbc.m212258200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Overexpression of SPRR1B in bronchial epithelial cells is a marker for early metaplastic changes induced by various toxicants/carcinogens. Previously, we have shown that the transcriptional stimulation of SPRR1B expression by phorbol 12-myristate 13-acetate (PMA) is mainly mediated by a -150/-94 bp enhancer harboring two critical 12-O-tetradecanoylphorbol-13-acetate-responsive elements (TREs) and by Jun.Fra-1 dimers. Here, we show that a region between -54 and -39 bp containing an ETS-binding site (EBS) and a GC box is essential for both basal and PMA-inducible SPRR1B transcription. In vivo footprinting demonstrated binding of transcription factors to these elements. However, unlike enhancer TREs, exposure of cells to PMA did not significantly alter the footprinting pattern at these elements. Mutations that crippled both the EBS and GC box suppressed both basal and PMA-inducible SPRR1B transcription. Consistent with this, overexpression of EBS-binding proteins ESE-1 and ESE-3 significantly stimulated SPRR1B promoter activity. Furthermore, preceding SPRR1B transcription, PMA up-regulated mRNA expression of ETS family members such as ESE-1 and ESE-3. Although ESE-1 synergistically activated c-Jun- and PMA-enhanced SPRR1B transcription, coexpression of Sp1 and ESE-1 showed no synergistic or additive effect on promoter activity, indicating an obligatory role for AP-1 proteins in such regulation. In support of this notion, deletion or mutation of two functional TREs inhibited ESE-1- and Sp1-enhanced promoter activation. Thus, the interaction between ESE-1 and Sp1, and AP-1 proteins that bind to the proximal and distal promoter regions, respectively, play a critical role in the induction of squamous differentiation marker expression in bronchial epithelial cells.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Biomarkers, Tumor
- Bronchial Neoplasms/genetics
- Bronchial Neoplasms/metabolism
- Carcinogens
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Cell Differentiation
- Cell Nucleus/metabolism
- Cornified Envelope Proline-Rich Proteins
- DNA-Binding Proteins
- Epithelial Cells/cytology
- Epithelial Cells/metabolism
- Epithelium/pathology
- Gene Expression Regulation, Neoplastic
- Humans
- JNK Mitogen-Activated Protein Kinases
- Membrane Proteins
- Mitogen-Activated Protein Kinases/metabolism
- Models, Genetic
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- Oligonucleotides/chemistry
- Promoter Regions, Genetic
- Proteins/genetics
- Proteins/physiology
- Proto-Oncogene Proteins
- Proto-Oncogene Proteins c-ets
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sp1 Transcription Factor/physiology
- Tetradecanoylphorbol Acetate
- Time Factors
- Trans-Activators/physiology
- Transcription Factor AP-1/physiology
- Transcription Factors
- Transcription, Genetic
- Transcriptional Activation
- Transfection
- Tumor Cells, Cultured
- Up-Regulation
Collapse
Affiliation(s)
- Sekhar P M Reddy
- Department of Environmental Health Sciences, Division of Physiology, The Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
33
|
Lindemann RK, Nordheim A, Dittmer J. Interfering with TGFbeta-induced Smad3 nuclear accumulation differentially affects TGFbeta-dependent gene expression. Mol Cancer 2003; 2:20. [PMID: 12747808 PMCID: PMC153548 DOI: 10.1186/1476-4598-2-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2003] [Accepted: 03/19/2003] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Transforming growth factor-beta (TGFbeta) plays an important role in late-stage carcinogenesis by stimulating invasive behavior of cancer cells, promoting neo-angiogenesis and by helping cancer cells to escape surveillance by the immune system. It also supports colonization of the bone by metastatic breast cancer cells by increasing expression of osteolytic parathyroid hormone-related protein (PTHrP). Interfering with TGFbeta signalling may thus weaken the malignant properties of cancer cells. We investigated to what extent two inhibitors, SB-202190 and SB-203580, interfere with TGFbeta-signalling in invasive MDA-MB-231 breast cancer cells. These compounds, formerly used as p38-MAPK-specific inhibitors, were recently also demonstrated to inhibit TGFbeta type I receptor kinase. RESULTS Our results show that these inhibitors delay the onset of TGFbeta-induced nuclear accumulation of Smad3 and reduces its amplitude. This effect was accompanied by a strong reduction in TGFbeta-responsivess of the slow-responder genes pthrp, pai-1 and upa, while the reactivity of the fast-responder gene smad7 to TGFbeta remained almost unchanged. Neither was the TGFbeta response of the fast-responder ese-1/esx gene, whose expression we found to be strongly downregulated by TGFbeta, affected by the inhibitors. CONCLUSION The data show that SB-202190 and SB-203580 suppress TGFbeta-dependent activation of genes that are important for the acquisition of invasive behavior, while having no effect on the expression of the natural TGFbeta inhibitor Smad7. This suggests that these compounds are potent inhibitors of malignant behavior of cancer cells.
Collapse
Affiliation(s)
- Ralph K Lindemann
- Institut für Zellbiologie, Abteilung Molekularbiologie, Universität Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Alfred Nordheim
- Institut für Zellbiologie, Abteilung Molekularbiologie, Universität Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Jürgen Dittmer
- Current address: Martin-Luther-Universität Halle-Wittenberg, Universitätsklinik für Gynäkologie, Magdeburger Str. 24, 06097 Halle (Saale), Germany
| |
Collapse
|
34
|
Abstract
The Ets family of transcription factors characterized by an evolutionarily-conserved DNA-binding domain regulates expression of a variety of viral and cellular genes by binding to a purine-rich GGAA/T core sequence in cooperation with other transcriptional factors and co-factors. Most Ets family proteins are nuclear targets for activation of Ras-MAP kinase signaling pathway and some of them affect proliferation of cells by regulating the immediate early response genes and other growth-related genes. Some of them also regulate apoptosis-related genes. Several Ets family proteins are preferentially expressed in specific cell lineages and are involved in their development and differentiation by increasing the enhancer or promoter activities of the genes encoding growth factor receptors and integrin families specific for the cell lineages. Many Ets family proteins also modulate gene expression through protein-protein interactions with other cellular partners. Deregulated expression or formation of chimeric fusion proteins of Ets family due to proviral insertion or chromosome translocation is associated with leukemias and specific types of solid tumors. Several Ets family proteins also participate in malignancy of tumor cells including invasion and metastasis by activating the transcription of several protease genes and angiogenesis-related genes.
Collapse
Affiliation(s)
- Tsuneyuki Oikawa
- Department of Cell Genetics, Sasaki Institute, 2-2 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | | |
Collapse
|
35
|
Kim JH, Wilder PJ, Hou J, Nowling T, Rizzino A. Activation of the murine type II transforming growth factor-beta receptor gene: up-regulation and function of the transcription factor Elf-3/Ert/Esx/Ese-1. J Biol Chem 2002; 277:17520-30. [PMID: 11893733 DOI: 10.1074/jbc.m110434200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies demonstrated that differentiation of mouse embryonal carcinoma cells leads to transcriptional up-regulation of the mouse type II transforming growth factor-beta receptor (mTbetaR-II) gene. To elucidate the molecular mechanisms regulating transcription of this gene, we isolated the 5'-flanking region of the mTbetaR-II gene and characterized its expression in F9-differentiated cells. Analysis of mTbetaR-II promoter/reporter gene constructs demonstrates that two conserved Ets-binding sites play an important role in the activity of the mTbetaR-II promoter. Importantly, we present evidence that mElf-3, a member of the Ets family, plays a key role in the activation of the mTbetaR-II promoter. Northern blot analysis reveals that the steady-state levels of mTbetaR-II mRNA increase in parallel with those of mElf-3 mRNA during the differentiation of F9 embryonal carcinoma cells. We also demonstrate that mElf-3 contains one or more domains that influence its binding to DNA. Finally, we report that a single amino acid substitution in the transactivation domain of mElf-3 reduces its ability to transactivate and elevates its steady-state levels of expression. In conclusion, our data argue that mElf-3 plays a key role in the regulation of the mTbetaR-II gene, and Elf-3 itself is regulated at multiple levels.
Collapse
Affiliation(s)
- Jae-Hwan Kim
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA
| | | | | | | | | |
Collapse
|
36
|
Ng AYN, Waring P, Ristevski S, Wang C, Wilson T, Pritchard M, Hertzog P, Kola I. Inactivation of the transcription factor Elf3 in mice results in dysmorphogenesis and altered differentiation of intestinal epithelium. Gastroenterology 2002; 122:1455-66. [PMID: 11984530 DOI: 10.1053/gast.2002.32990] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS The mammalian small intestine is lined by a highly specialized epithelium that functions in the digestion and absorption of nutrients. The molecular mechanisms that direct intestinal epithelial cell morphogenesis and terminal differentiation are poorly understood. We have previously identified Elf3 (E74-like factor-3) as a member of the ETS transcription factor family strongly expressed in small intestinal epithelium. The aim of this study is to investigate the biological roles of Elf3 in vivo. METHODS Mice with a null mutation of Elf3 were generated through targeted gene disruption. Characterization of intestinal development was performed by histologic and immunohistochemical techniques. RESULTS Targeted disruption of Elf3 resulted in fetal lethality of about 30% at around embryonic day 11.5. Seventy percent of the Elf3-deficent progeny were born and displayed severe alterations of tissue architecture in the small intestine, manifested by poor villus formation and abnormal morphogenesis and terminal differentiation of absorptive enterocytes and mucus-secreting goblet cells. Crypt cell proliferation, however, appeared intact in Elf3-deficient mice.Elf3-deficient enterocytes express markedly reduced levels of the transforming growth factor beta type II receptor (TGF-beta RII), an inducer of intestinal epithelial differentiation. CONCLUSIONS Elf3 is an important regulator of morphogenesis and terminal differentiation of epithelial cell lineages in the small intestine.
Collapse
Affiliation(s)
- Annie Y-N Ng
- Centre for Functional Genomics and Human Disease, Monash Institute of Reproduction and Development, Monash University, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Adnane J, Seijo E, Chen Z, Bizouarn F, Leal M, Sebti SM, Muñoz-Antonia T. RhoB, not RhoA, represses the transcription of the transforming growth factor beta type II receptor by a mechanism involving activator protein 1. J Biol Chem 2002; 277:8500-7. [PMID: 11741970 DOI: 10.1074/jbc.m104367200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transforming growth factor-beta (TGF-beta) type I (T beta R-I) and type II (T beta R-II) receptors are responsible for transducing TGF-beta signals. We have previously shown that inhibition of farnesyltransferase activity results in an increase in T beta R-II expression, leading to enhanced TGF-beta binding, signaling, and inhibition of tumor cell growth, suggesting that a farnesylated protein(s) exerts a repressive effect on T beta R-II expression. Likely candidates are farnesylated proteins such as Ras and RhoB, which are both farnesylated and involved in cell growth control. Neither a dominant negative Ha-Ras, constitutively activated Ha-Ras, or a pharmacological inhibitor of MEK1 affected T beta R-II transcription. However, ectopic expression of RhoB, but not the closely related family member RhoA, resulted in a 5-fold decrease of T beta R-II promoter activity. Furthermore, ectopic expression of RhoB, but not RhoA, resulted in a significant decrease of T beta R-II protein expression and resistance of tumor cells to TGF-beta-mediated cell growth inhibition. Deletion analysis of the T beta R-II promoter identified a RhoB-responsive region, and mutational analysis of this region revealed that a site for the transcription factor activator protein 1 (AP1) is critical for RhoB-mediated repression of T beta R-II transcription. Electrophoretic mobility shift assays clearly showed that the binding of AP1 to its DNA-binding site is strongly inhibited by RhoB. Consequently, transcription assays using an AP1 reporter showed that AP1-mediated transcription is down-regulated by RhoB. Altogether, these results identify a mechanism by which RhoB antagonizes TGF-beta action through transcriptional down-regulation of AP1 in T beta R-II promoter.
Collapse
Affiliation(s)
- Jalila Adnane
- Drug Discovery Program, H. Lee Moffitt Cancer Center and Research Institute, Department of Oncology, University of South Florida, Tampa, Florida 33612, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Tugores A, Le J, Sorokina I, Snijders AJ, Duyao M, Reddy PS, Carlee L, Ronshaugen M, Mushegian A, Watanaskul T, Chu S, Buckler A, Emtage S, McCormick MK. The epithelium-specific ETS protein EHF/ESE-3 is a context-dependent transcriptional repressor downstream of MAPK signaling cascades. J Biol Chem 2001; 276:20397-406. [PMID: 11259407 DOI: 10.1074/jbc.m010930200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Exon trapping and cDNA selection procedures were used to search for novel genes at human chromosome 11p13, a region previously associated with loss of heterozygosity in epithelial carcinomas. Using these approaches, we found the ESE-2 and ESE-3 genes, coding for ETS domain-containing transcription factors. These genes lie in close proximity to the catalase gene within a approximately 200-kilobase genomic interval. ESE-3 mRNA is widely expressed in human tissues with high epithelial content, and immunohistochemical analysis with a newly generated monoclonal antibody revealed that ESE-3 is a nuclear protein expressed exclusively in differentiated epithelial cells and that it is absent in the epithelial carcinomas tested. In transient transfections, ESE-3 behaves as a repressor of the Ras- or phorbol ester-induced transcriptional activation of a subset of promoters that contain ETS and AP-1 binding sites. ESE-3-mediated repression is sequence- and context-dependent and depends both on the presence of high affinity ESE-3 binding sites in combination with AP-1 cis-elements and the arrangement of these sites within a given promoter. We propose that ESE-3 might be an important determinant in the control of epithelial differentiation, as a modulator of the nuclear response to mitogen-activated protein kinase signaling cascades.
Collapse
Affiliation(s)
- A Tugores
- Axys Pharmaceuticals, Inc., South San Francisco, CA 94080, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Park SH, Kim YS, Park BK, Hougaard S, Kim SJ. Sequence-specific enhancer binding protein is responsible for the differential expression of ERT/ESX/ELF-3/ESE-1/jen gene in human gastric cancer cell lines: Implication for the loss of TGF-beta type II receptor expression. Oncogene 2001; 20:1235-45. [PMID: 11313868 DOI: 10.1038/sj.onc.1204227] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2000] [Revised: 12/26/2000] [Accepted: 01/04/2001] [Indexed: 11/09/2022]
Abstract
Transcriptional repression of the TGF-beta type II receptor (RII) is one of the mechanisms leading to TGF-beta resistance. The newly identified epithelium-specific ets transcription factor ERT/ESX/ELF-3/ESE-1/jen binds to the TGF-beta RII promoter and induces promoter activity. The human gastric cancer cell lines, which show undetectable level of TGF-beta RII mRNA, do not express ERT mRNA. To study the molecular mechanisms of loss of ERT expression, we have cloned and characterized the human ERT promoter. DNA transfection experiments and electrophoretic mobility shift assays have revealed the existence of a distinct enhancer element (-186 to -177) which we named ESE (ERT promoter specific element). Deletion of the ESE markedly decreased expression of the target gene. ESE interacts with two distinct nuclear protein complexes, at least one of which appears to be inactivated in a cell line which does not express the ERT mRNA, compared to a cell line expressing the ERT mRNA. These results suggest the possibility that inactivation of the sequence-specific DNA binding protein to the region from -186 to -177 contributes to the loss of ERT expression, leading to the loss of TGF-beta type II receptor mRNA in human gastric cancer cell lines.
Collapse
Affiliation(s)
- S H Park
- Laboratory of Cell Regulation and Carcinogenesis, National Cancer Institute, Bethesda, MD 20892-5055, USA
| | | | | | | | | |
Collapse
|
40
|
Akiyoshi S, Ishii M, Nemoto N, Kawabata M, Aburatani H, Miyazono K. Targets of transcriptional regulation by transforming growth factor-beta: expression profile analysis using oligonucleotide arrays. Jpn J Cancer Res 2001; 92:257-68. [PMID: 11267935 PMCID: PMC5926719 DOI: 10.1111/j.1349-7006.2001.tb01090.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Transforming growth factor-betas (TGF-betas) are potent inhibitors of cell proliferation, and disruption of components of the TGF-beta signaling pathway leads to tumorigenesis. Mutations of transmembrane receptors and Smads mediating intracellular signaling have been reported in various cancers. To identify transcriptional targets of TGF-beta, we conducted an expression profile analysis. HaCaT cells derived from human keratinocytes and highly sensitive to TGF-beta were treated with TGF-beta in the absence or presence of cycloheximide (CHX). mRNAs extracted from the HaCaT cells were used for hybridization of oligonucleotide arrays representing approximately 5600 human genes. TGF-beta increased the expression of PAI-1, junB, p21 cdk inhibitor, Smad7, betaIG-H3, and involucrin that have been reported to be up-regulated by TGF-beta, validating the usefulness of this approach. The induction of betaIG-H3 by TGF-beta was completely abolished by CHX, suggesting that the transcription of betaIG-H3 is not directly regulated by TGF-beta. Unexpectedly, we identified more genes down-regulated by TGF-beta than up-regulated ones. TGF-beta repressed the expression of epithelial specific Ets that may be involved in breast and lung tumorigenesis, which could contribute to tumor suppression by TGF-beta. Among a panel of cell cycle regulators, TGF-beta induced the expression of p21 cdk inhibitor; however, the induction of other cdk inhibitors was not significant in the present study. Taken together, the results suggest that TGF-beta may suppress tumorigenesis through positive and negative regulation of transcription.
Collapse
Affiliation(s)
- S Akiyoshi
- Department of Biochemistry, The Cancer Institute of Japanese Foundation for Cancer Research (JFCR), and Research for the Future Program, the Japan Society for the Promotion of Science, Toshima-ku, Tokyo 170-8455, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Wakefield LM, Piek E, Böttinger EP. TGF-beta signaling in mammary gland development and tumorigenesis. J Mammary Gland Biol Neoplasia 2001; 6:67-82. [PMID: 11467453 DOI: 10.1023/a:1009568532177] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Ligands of the TGF-beta superfamily are unique in that they signal through transmembrane receptor serine-threonine kinases, rather than tyrosine kinases. The receptor complex couples to a signal transduction pathway involving a novel family of proteins, the Smads. On phosphorylation, Smads translocate to the nucleus where they modulate transcriptional responses. However, TGF-betas can also activate the mitogen-activated protein kinase (MAPK)4 pathway, and the different biological responses to TGF-beta depend to varying degrees on activation of either or both of these two pathways. The Smad pathway is a nexus for cross-talk with other signal transduction pathways and for modulation by many different interacting proteins. Despite compelling evidence that TGF-beta has tumor suppressor activity in the mammary gland, neither TGF-beta receptors nor Smads are genetically inactivated in human breast cancer, though receptor expression is reduced. Possible reasons are discussed in relation to the dual role of TGF-beta as tumor suppressor and oncogene.
Collapse
Affiliation(s)
- L M Wakefield
- Laboratory of Cell Regulation and Carcinogenesis, National Cancer Institute, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
42
|
Abstract
The recent completion of the Caenorhabditis elegans genome has revealed that this nematode worm has 10 members of the ETS gene family. Isolation and analysis of C. elegans mutants and subsequent screens to identify interacting genes can proceed very quickly in this model organism. Molecular genetic analysis of the receptor tyrosine kinase-Ras-MAP kinase signaling pathway in C. elegans identified the ETS family transcription factor Lin-1 as a nuclear effector of this evolutionarily conserved signal transduction pathway. Here we review classical genetic approaches used to discover the role of Lin-1 in the Ras-MAP kinase signaling pathway and describe new technologies that can be applied to the analyses of signaling pathways and transcription factor regulatory networks in C. elegans.
Collapse
Affiliation(s)
- A H Hart
- Program of Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada M5G 1X5
| | | | | |
Collapse
|
43
|
Abstract
Cellular responses to environmental stimuli are controlled by a series of signaling cascades that transduce extracellular signals from ligand-activated cell surface receptors to the nucleus. Although most pathways were initially thought to be linear, it has become apparent that there is a dynamic interplay between signaling pathways that result in the complex pattern of cell-type specific responses required for proliferation, differentiation and survival. One group of nuclear effectors of these signaling pathways are the Ets family of transcription factors, directing cytoplasmic signals to the control of gene expression. This family is defined by a highly conserved DNA binding domain that binds the core consensus sequence GGAA/T. Signaling pathways such as the MAP kinases, Erk1 and 2, p38 and JNK, the PI3 kinases and Ca2+-specific signals activated by growth factors or cellular stresses, converge on the Ets family of factors, controlling their activity, protein partnerships and specification of downstream target genes. Interestingly, Ets family members can act as both upstream and downstream effectors of signaling pathways. As downstream effectors their activities are directly controlled by specific phosphorylations, resulting in their ability to activate or repress specific target genes. As upstream effectors they are responsible for the spacial and temporal expression or numerous growth factor receptors. This review provides a brief survey of what is known to date about how this family of transcription factors is regulated by cellular signaling with a special focus on Ras responsive elements (RREs), the MAP kinases (Erks, p38 and JNK) and Ca2+-specific pathways and includes a description of the multiple roles of Ets family members in the lymphoid system. Finally, we will discuss other potential mechanisms and pathways involved in the regulation of this important family of transcription factors.
Collapse
Affiliation(s)
- J S Yordy
- Center for Molecular and Structural Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, SC 29403, USA
| | | |
Collapse
|