1
|
Fondevila MF, Novoa E, Fernandez U, Dorta V, Parracho T, Kreimeyer H, Garcia-Vence M, Chantada-Vazquez MP, Bravo SB, Porteiro B, Cabaleiro A, Koning M, Senra A, Souto Y, Verheij J, Guallar D, Fidalgo M, Meijnikman AS, da Silva Lima N, Dieguez C, Gonzalez-Rellan MJ, Nogueiras R. Inhibition of hepatic p63 ameliorates steatohepatitis with fibrosis in mice. Mol Metab 2024; 85:101962. [PMID: 38815625 PMCID: PMC11180345 DOI: 10.1016/j.molmet.2024.101962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/12/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024] Open
Abstract
OBJECTIVE p63 is a transcription factor involved in multiple biological functions. In the liver, the TAp63 isoform induces lipid accumulation in hepatocytes. However, the role of liver TAp63 in the progression of metabolic dysfunction-associated steatohepatitis (MASH) with fibrosis is unknown. METHODS We evaluated the hepatic p63 levels in different mouse models of steatohepatitis with fibrosis induced by diet. Next, we used virogenetic approaches to manipulate the expression of TAp63 in adult mice under diet-induced steatohepatitis with fibrosis and characterized the disease condition. Finally, we performed proteomics analysis in mice with overexpression and knockdown of hepatic TAp63. RESULTS Levels of TAp63, but not of ΔN isoform, are increased in the liver of mice with diet-induced steatohepatitis with fibrosis. Both preventive and interventional strategies for the knockdown of hepatic TAp63 significantly ameliorated diet-induced steatohepatitis with fibrosis in mice fed a methionine- and choline-deficient diet (MCDD) and choline deficient and high fat diet (CDHFD). The overexpression of hepatic TAp63 in mice aggravated the liver condition in mice fed a CDHFD. Proteomic analysis in the liver of these mice revealed alteration in multiple proteins and pathways, such as oxidative phosphorylation, antioxidant activity, peroxisome function and LDL clearance. CONCLUSIONS These results indicate that liver TAp63 plays a critical role in the progression of diet-induced steatohepatitis with fibrosis, and its inhibition ameliorates the disease.
Collapse
Affiliation(s)
- Marcos F Fondevila
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15782, Spain; Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Eva Novoa
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15782, Spain
| | - Uxia Fernandez
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15782, Spain
| | - Valentina Dorta
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Tamara Parracho
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Henriette Kreimeyer
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Maria Garcia-Vence
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15705, Spain
| | - Maria P Chantada-Vazquez
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15705, Spain
| | - Susana B Bravo
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15705, Spain
| | - Begoña Porteiro
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Alba Cabaleiro
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Mijra Koning
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Ana Senra
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Yara Souto
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Joanne Verheij
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Diana Guallar
- Department of Biochemistry and Molecular Biology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Miguel Fidalgo
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Abraham S Meijnikman
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Natalia da Silva Lima
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Carlos Dieguez
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Maria J Gonzalez-Rellan
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15782, Spain; Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, M5T 3H7, Canada
| | - Ruben Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15782, Spain; Galicia Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, 15702, Spain.
| |
Collapse
|
2
|
Fondevila MF, Novoa E, Gonzalez-Rellan MJ, Fernandez U, Heras V, Porteiro B, Parracho T, Dorta V, Riobello C, da Silva Lima N, Seoane S, Garcia-Vence M, Chantada-Vazquez MP, Bravo SB, Senra A, Leiva M, Marcos M, Sabio G, Perez-Fernandez R, Dieguez C, Prevot V, Schwaninger M, Woodhoo A, Martinez-Chantar ML, Schwabe R, Cubero FJ, Varela-Rey M, Crespo J, Iruzubieta P, Nogueiras R. p63 controls metabolic activation of hepatic stellate cells and fibrosis via an HER2-ACC1 pathway. Cell Rep Med 2024; 5:101401. [PMID: 38340725 PMCID: PMC10897550 DOI: 10.1016/j.xcrm.2024.101401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/19/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024]
Abstract
The p63 protein has pleiotropic functions and, in the liver, participates in the progression of nonalcoholic fatty liver disease (NAFLD). However, its functions in hepatic stellate cells (HSCs) have not yet been explored. TAp63 is induced in HSCs from animal models and patients with liver fibrosis and its levels positively correlate with NAFLD activity score and fibrosis stage. In mice, genetic depletion of TAp63 in HSCs reduces the diet-induced liver fibrosis. In vitro silencing of p63 blunts TGF-β1-induced HSCs activation by reducing mitochondrial respiration and glycolysis, as well as decreasing acetyl CoA carboxylase 1 (ACC1). Ectopic expression of TAp63 induces the activation of HSCs and increases the expression and activity of ACC1 by promoting the transcriptional activity of HER2. Genetic inhibition of both HER2 and ACC1 blunt TAp63-induced activation of HSCs. Thus, TAp63 induces HSC activation by stimulating the HER2-ACC1 axis and participates in the development of liver fibrosis.
Collapse
Affiliation(s)
- Marcos F Fondevila
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), 15782 Santiago de Compostela, Spain.
| | - Eva Novoa
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), 15782 Santiago de Compostela, Spain
| | - Maria J Gonzalez-Rellan
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Uxia Fernandez
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), 15782 Santiago de Compostela, Spain
| | - Violeta Heras
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Begoña Porteiro
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Tamara Parracho
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Valentina Dorta
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Cristina Riobello
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Natalia da Silva Lima
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Samuel Seoane
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Maria Garcia-Vence
- Proteomic Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15705 Santiago de Compostela, Spain
| | - Maria P Chantada-Vazquez
- Proteomic Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15705 Santiago de Compostela, Spain
| | - Susana B Bravo
- Proteomic Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15705 Santiago de Compostela, Spain
| | - Ana Senra
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Magdalena Leiva
- Department of Immunology, Ophthalmology, & ENT, Complutense University School of Medicine, 28040 Madrid, Spain; Health Research Institute Gregorio Marañón (IiSGM), 28007 Madrid, Spain; CIBER Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Miguel Marcos
- University of Salamanca, Department of Internal Medicine, University Hospital of Salamanca-IBSAL, 37008 Salamanca, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Roman Perez-Fernandez
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carlos Dieguez
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Vincent Prevot
- University Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, European Genomic Institute for Diabetes (EGID), 59000 Lille, France
| | - Markus Schwaninger
- University of Lübeck, Institute for Experimental and Clinical Pharmacology and Toxicology, 23562 Lübeck, Germany
| | - Ashwin Woodhoo
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Maria L Martinez-Chantar
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Robert Schwabe
- Department of Medicine, Columbia University, New York, NY 10027, USA
| | - Francisco J Cubero
- Department of Immunology, Ophthalmology, & ENT, Complutense University School of Medicine, 28040 Madrid, Spain; Health Research Institute Gregorio Marañón (IiSGM), 28007 Madrid, Spain; CIBER Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marta Varela-Rey
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Javier Crespo
- Gastroenterology and Hepatology Department, Marqués de Valdecilla University Hospital, Clinical and Translational Digestive Research Group, IDIVAL, 39008 Santander, Spain
| | - Paula Iruzubieta
- Gastroenterology and Hepatology Department, Marqués de Valdecilla University Hospital, Clinical and Translational Digestive Research Group, IDIVAL, 39008 Santander, Spain
| | - Ruben Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), 15782 Santiago de Compostela, Spain; Galicia Agency of Innovation (GAIN), Xunta de Galicia, 15702 Santiago de Compostela, Spain.
| |
Collapse
|
3
|
Napoli M, Deshpande AA, Chakravarti D, Rajapakshe K, Gunaratne PH, Coarfa C, Flores ER. Genome-wide p63-Target Gene Analyses Reveal TAp63/NRF2-Dependent Oxidative Stress Responses. CANCER RESEARCH COMMUNICATIONS 2024; 4:264-278. [PMID: 38165157 PMCID: PMC10832605 DOI: 10.1158/2767-9764.crc-23-0358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/14/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
The p53 family member TP63 encodes two sets of N-terminal isoforms, TAp63 and ΔNp63 isoforms. They each regulate diverse biological functions in epidermal morphogenesis and in cancer. In the skin, where their activities have been extensively characterized, TAp63 prevents premature aging by regulating the quiescence and genomic stability of stem cells required for wound healing and hair regeneration, while ΔNp63 controls maintenance and terminal differentiation of epidermal basal cells. This functional diversity is surprising given that these isoforms share a high degree of similarity, including an identical sequence for a DNA-binding domain. To understand the mechanisms of the transcriptional programs regulated by each p63 isoform and leading to diverse biological functions, we performed genome-wide analyses using p63 isoform-specific chromatin immunoprecipitation, RNA sequencing, and metabolomics of TAp63-/- and ΔNp63-/- mouse epidermal cells. Our data indicate that TAp63 and ΔNp63 physically and functionally interact with distinct transcription factors for the downstream regulation of their target genes, thus ultimately leading to the regulation of unique transcriptional programs and biological processes. Our findings unveil novel transcriptomes regulated by the p63 isoforms to control diverse biological functions, including the cooperation between TAp63 and NRF2 in the modulation of metabolic pathways and response to oxidative stress providing a mechanistic explanation for the TAp63 knock out phenotypes. SIGNIFICANCE The p63 isoforms, TAp63 and ΔNp63, control epithelial morphogenesis and tumorigenesis through the interaction with distinct transcription factors and the subsequent regulation of unique transcriptional programs.
Collapse
Affiliation(s)
- Marco Napoli
- Department of Molecular Oncology, Division of Basic Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Avani A. Deshpande
- Department of Molecular Oncology, Division of Basic Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | | | - Kimal Rajapakshe
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | | | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Elsa R. Flores
- Department of Molecular Oncology, Division of Basic Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
4
|
Aljagthmi AA, Hira A, Zhang J, Cooke M, Kazanietz MG, Kadakia MP. ∆Np63α inhibits Rac1 activation and cancer cell invasion through suppression of PREX1. Cell Death Discov 2024; 10:13. [PMID: 38191532 PMCID: PMC10774331 DOI: 10.1038/s41420-023-01789-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024] Open
Abstract
ΔNp63α, a member of the p53 family of transcription factors, plays a critical role in maintaining the proliferative potential of stem cells in the stratified epithelium. Although ΔNp63α is considered an oncogene and is frequently overexpressed in squamous cell carcinoma, loss of ΔNp63α expression is associated with increased tumor cell invasion and metastasis. We recently identified a ΔNp63α/miR-320a/PKCγ signaling axis that regulates cancer cell invasion by inhibiting phosphorylation of the small GTPase Rac1, a master switch of cell motility that positively regulates cell invasion in multiple human cancers. In this study, we identified a novel mechanism by which ΔNp63α negatively regulates Rac1 activity, by inhibiting the expression of the Rac-specific Guanine Exchange Factor PREX1. ΔNp63α knockdown in multiple squamous cell carcinoma cell lines leads to increased Rac1 activation, which is abrogated by treatment with the Rac1 inhibitor NSC23766. Furthermore, ΔNp63α negatively regulates PREX1 transcript and protein levels. Using a Rac-GEF activation assay, we also showed that ΔNp63α reduces the levels of active PREX1. The inhibition of the PREX1-Rac1 signaling axis by ΔNp63α leads to impaired cell invasion, thus establishing the functional relevance of this link. Our results elucidated a novel molecular mechanism by which ΔNp63α negatively affects cancer cell invasion and identifies the ΔNp63α/Rac1 axis as a potential target for metastasis.
Collapse
Affiliation(s)
- Amjad A Aljagthmi
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA
| | - Akshay Hira
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA
| | - Jin Zhang
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA
| | - Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Madhavi P Kadakia
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA.
| |
Collapse
|
5
|
Sun M, Jiang H, Liu T, Tan X, Jiang Q, Sun B, Zheng Y, Wang G, Wang Y, Cheng M, He Z, Sun J. Structurally defined tandem-responsive nanoassemblies composed of dipeptide-based photosensitive derivatives and hypoxia-activated camptothecin prodrugs against primary and metastatic breast tumors. Acta Pharm Sin B 2022; 12:952-966. [PMID: 35256957 PMCID: PMC8897200 DOI: 10.1016/j.apsb.2021.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/10/2021] [Accepted: 05/28/2021] [Indexed: 12/29/2022] Open
Abstract
Substantial progress in the use of chemo-photodynamic nano-drug delivery systems (nano-DDS) for the treatment of the malignant breast cancer has been achieved. The inability to customize precise nanostructures, however, has limited the therapeutic efficacy of the prepared nano-DDS to date. Here, we report a structurally defined tandem-responsive chemo-photosensitive co-nanoassembly to eliminate primary breast tumor and prevent lung metastasis. This both-in-one co-nanoassembly is prepared by assembling a biocompatible photosensitive derivative (pheophorbide-diphenylalanine peptide, PPA-DA) with a hypoxia-activated camptothecin (CPT) prodrug [(4-nitrophenyl) formate camptothecin, N-CPT]. According to computational simulations, the co-assembly nanostructure is not the classical core-shell type, but consists of many small microphase regions. Upon exposure to a 660 nm laser, PPA-DA induce high levels of ROS production to effectively achieve the apoptosis of normoxic cancer cells. Subsequently, the hypoxia-activated N-CPT and CPT spatially penetrate deep into the hypoxic region of the tumor and suppress hypoxia-induced tumor metastasis. Benefiting from the rational design of the chemo-photodynamic both-in-one nano-DDS, these nanomedicines exhibit a promising potential in the inhibition of difficult-to-treat breast tumor metastasis in patients with breast cancer.
Collapse
Affiliation(s)
- Mengchi Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hailun Jiang
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, China
| | - Tian Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiao Tan
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qikun Jiang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bingjun Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, China
| | - Yulong Zheng
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Gang Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yang Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Corresponding authors. Tel./fax: +86 24 23986321.
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Corresponding authors. Tel./fax: +86 24 23986321.
| |
Collapse
|
6
|
Alshammari ES, Aljagthmi AA, Stacy AJ, Bottomley M, Shamma HN, Kadakia MP, Long W. ERK3 is transcriptionally upregulated by ∆Np63α and mediates the role of ∆Np63α in suppressing cell migration in non-melanoma skin cancers. BMC Cancer 2021; 21:155. [PMID: 33579235 PMCID: PMC7881562 DOI: 10.1186/s12885-021-07866-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND p63, a member of the p53 gene family, is an important regulator for epithelial tissue growth and development. ∆Np63α is the main isoform of p63 and highly expressed in Non-melanoma skin cancer (NMSC). Extracellular signal-regulated kinase 3 (ERK3) is an atypical mitogen-activated protein kinase (MAPK) whose biochemical features and cellular regulation are distinct from those of conventional MAPKs such as ERK1/2. While ERK3 has been shown to be upregulated in lung cancers and head and neck cancers, in which it promotes cancer cell migration and invasion, little is known about the implication of ERK3 in NMSCs. METHODS Fluorescent immunohistochemistry was performed to evaluate the expression levels of ΔNp63α and ERK3 in normal and NMSC specimens. Dunnett's test was performed to compare mean fluorescence intensity (MFI, indicator of expression levels) of p63 or ERK3 between normal cutaneous samples and NMSC samples. A mixed effects (ANOVA) test was used to determine the correlation between ΔNp63α and ERK3 expression levels (MFI). The regulation of ERK3 by ΔNp63α was studied by qRT-PCR, Western blot and luciferase assay. The effect of ERK3 regulation by ΔNp63α on cell migration was measured by performing trans-well migration assay. RESULTS The expression level of ∆Np63α is upregulated in NMSCs compared to normal tissue. ERK3 level is significantly upregulated in AK and SCC in comparison to normal tissue and there is a strong positive correlation between ∆Np63α and ERK3 expression in normal skin and skin specimens of patients with AK, SCC or BCC. Further, we found that ∆Np63α positively regulates ERK3 transcript and protein levels in A431 and HaCaT skin cells, underlying the upregulation of ERK3 expression and its positive correlation with ∆Np63α in NMSCs. Moreover, similar to the effect of ∆Np63α depletion, silencing ERK3 greatly enhanced A431 cell migration. Restoration of ERK3 expression under the condition of silencing ∆Np63α counteracted the increase in cell migration induced by the depletion of ∆Np63α. Mechanistically, ERK3 inhibits the phosphorylation of Rac1 G-protein and the formation of filopodia of A431 skin SCC cells. CONCLUSIONS ERK3 is positively regulated by ∆Np63α and mediates the role of ∆Np63α in suppressing cell migration in NMSC.
Collapse
Affiliation(s)
- Eid S Alshammari
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, 112 Diggs Laboratory, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA.,Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakakah, 72388, Saudi Arabia
| | - Amjad A Aljagthmi
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, 112 Diggs Laboratory, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA
| | - Andrew J Stacy
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, 112 Diggs Laboratory, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA
| | - Mike Bottomley
- Department of Math and Microbiology, College of Science and Mathematics, Wright State University, Dayton, OH, 45435, USA
| | - H Nicholas Shamma
- Department of Dermatology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA
| | - Madhavi P Kadakia
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, 112 Diggs Laboratory, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA.
| | - Weiwen Long
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, 112 Diggs Laboratory, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA.
| |
Collapse
|
7
|
Distinct p63 and p73 Protein Interactions Predict Specific Functions in mRNA Splicing and Polyploidy Control in Epithelia. Cells 2020; 10:cells10010025. [PMID: 33375680 PMCID: PMC7824480 DOI: 10.3390/cells10010025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022] Open
Abstract
Epithelial organs are the first barrier against microorganisms and genotoxic stress, in which the p53 family members p63 and p73 have both overlapping and distinct functions. Intriguingly, p73 displays a very specific localization to basal epithelial cells in human tissues, while p63 is expressed in both basal and differentiated cells. Here, we analyse systematically the literature describing p63 and p73 protein-protein interactions to reveal distinct functions underlying the aforementioned distribution. We have found that p73 and p63 cooperate in the genome stability surveillance in proliferating cells; p73 specific interactors contribute to the transcriptional repression, anaphase promoting complex and spindle assembly checkpoint, whereas p63 specific interactors play roles in the regulation of mRNA processing and splicing in both proliferating and differentiated cells. Our analysis reveals the diversification of the RNA and DNA specific functions within the p53 family.
Collapse
|
8
|
Galoczova M, Coates P, Vojtesek B. STAT3, stem cells, cancer stem cells and p63. Cell Mol Biol Lett 2018; 23:12. [PMID: 29588647 PMCID: PMC5863838 DOI: 10.1186/s11658-018-0078-0] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/07/2018] [Indexed: 12/15/2022] Open
Abstract
Signal Transducer and Activator of Transcription 3 (STAT3) is a transcription factor with many important functions in the biology of normal and transformed cells. Its regulation is highly complex as it is involved in signaling pathways in many different cell types and under a wide variety of conditions. Besides other functions, STAT3 is an important regulator of normal stem cells and cancer stem cells. p63 which is a member of the p53 protein family is also involved in these functions and is both physically and functionally connected with STAT3. This review summarizes STAT3 function and regulation, its role in stem cell and cancer stem cell properties and highlights recent reports about its relationship to p63.
Collapse
Affiliation(s)
- Michaela Galoczova
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| | - Philip Coates
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| | - Borivoj Vojtesek
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| |
Collapse
|
9
|
Semenza GL. A compendium of proteins that interact with HIF-1α. Exp Cell Res 2017; 356:128-135. [PMID: 28336293 DOI: 10.1016/j.yexcr.2017.03.041] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 03/18/2017] [Indexed: 12/23/2022]
Abstract
Hypoxia-inducible factor 1 (HIF-1) is the founding member of a family of transcription factors that function as master regulators of oxygen homeostasis. HIF-1 is composed of an O2-regulated HIF-1α subunit and a constitutively expressed HIF-1β subunit. This review provides a compendium of proteins that interact with the HIF-1α subunit, many of which regulate HIF-1 activity in either an O2-dependent or O2-independent manner.
Collapse
Affiliation(s)
- Gregg L Semenza
- Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205 USA.
| |
Collapse
|
10
|
Devos M, Gilbert B, Denecker G, Leurs K, Mc Guire C, Lemeire K, Hochepied T, Vuylsteke M, Lambert J, Van Den Broecke C, Libbrecht L, Haigh J, Berx G, Lippens S, Vandenabeele P, Declercq W. Elevated ΔNp63α Levels Facilitate Epidermal and Biliary Oncogenic Transformation. J Invest Dermatol 2016; 137:494-505. [PMID: 27725202 DOI: 10.1016/j.jid.2016.09.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 09/05/2016] [Accepted: 09/20/2016] [Indexed: 12/23/2022]
Abstract
Unlike its family member p53, TP63 is rarely mutated in human cancer. However, ΔNp63α protein levels are often elevated in tumors of epithelial origin, such as squamous cell carcinoma and cholangiocarcinoma. To study the oncogenic properties of ΔNp63α in vivo, we generated transgenic mice overexpressing ΔNp63α from the Rosa26 locus promoter controlled by keratin 5-Cre. We found that these mice spontaneously develop epidermal cysts and ectopic ΔNp63α expression in the bile duct epithelium that leads to dilatation of the intrahepatic biliary ducts, to hepatic cyst formation and bile duct adenoma. Moreover, when subjected to models of 7,12-dimethylbenz[a]anthracene-based carcinogenesis, tumor initiation was increased in ΔNp63α transgenic mice in a gene dosage-dependent manner although ΔNp63α overexpression did not alter the sensitivity to 7,12-dimethylbenz[a]anthracene-induced cytotoxicity in vivo. However, keratinocytes isolated from ΔNp63α transgenic mice displayed increased survival and delayed cellular senescence compared with wild-type keratinocytes, marked by decreased p16Ink4a and p19Arf expression. Taken together, we show that increased ΔNp63α protein levels facilitate oncogenic transformation in the epidermis as well as in the bile duct.
Collapse
Affiliation(s)
- Michael Devos
- Molecular Signaling and Cell Death Unit, Inflammation Research Center, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Barbara Gilbert
- Molecular Signaling and Cell Death Unit, Inflammation Research Center, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Geertrui Denecker
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Molecular and Cellular Oncology Unit, Inflammation Research Center, VIB, Ghent, Belgium
| | - Kirsten Leurs
- Molecular Signaling and Cell Death Unit, Inflammation Research Center, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Conor Mc Guire
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Molecular Signal Transduction in Inflammation Unit, Inflammation Research Center, VIB, Ghent, Belgium
| | - Kelly Lemeire
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Inflammation Research Center, VIB, Ghent, Belgium
| | - Tino Hochepied
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Transgenic mice core facility, VIB, Ghent, Belgium
| | | | - Jo Lambert
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium
| | | | - Louis Libbrecht
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Jody Haigh
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Vascular Cell Biology Unit, Department for Molecular Biomedical Research, VIB, Ghent, Belgium
| | - Geert Berx
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Molecular and Cellular Oncology Unit, Inflammation Research Center, VIB, Ghent, Belgium
| | - Saskia Lippens
- Molecular Signaling and Cell Death Unit, Inflammation Research Center, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, Inflammation Research Center, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Wim Declercq
- Molecular Signaling and Cell Death Unit, Inflammation Research Center, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
11
|
Ferraiuolo M, Di Agostino S, Blandino G, Strano S. Oncogenic Intra-p53 Family Member Interactions in Human Cancers. Front Oncol 2016; 6:77. [PMID: 27066457 PMCID: PMC4814729 DOI: 10.3389/fonc.2016.00077] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/21/2016] [Indexed: 12/21/2022] Open
Abstract
The p53 gene family members p53, p73, and p63 display several isoforms derived from the presence of internal promoters and alternative splicing events. They are structural homologs but hold peculiar functional properties. p53, p73, and p63 are tumor suppressor genes that promote differentiation, senescence, and apoptosis. p53, unlike p73 and p63, is frequently mutated in cancer often displaying oncogenic “gain of function” activities correlated with the induction of proliferation, invasion, chemoresistance, and genomic instability in cancer cells. These oncogenic functions are promoted either by the aberrant transcriptional cooperation of mutant p53 (mutp53) with transcription cofactors (e.g., NF-Y, E2F1, Vitamin D Receptor, Ets-1, NF-kB and YAP) or by the interaction with the p53 family members, p73 and p63, determining their functional inactivation. The instauration of these aberrant transcriptional networks leads to increased cell growth, low activation of DNA damage response pathways (DNA damage response and DNA double-strand breaks response), enhanced invasion, and high chemoresistance to different conventional chemotherapeutic treatments. Several studies have clearly shown that different cancers harboring mutant p53 proteins exhibit a poor prognosis when compared to those carrying wild-type p53 (wt-p53) protein. The interference of mutantp53/p73 and/or mutantp53/p63 interactions, thereby restoring p53, p73, and p63 tumor suppression functions, could be among the potential therapeutic strategies for the treatment of mutant p53 human cancers.
Collapse
Affiliation(s)
- Maria Ferraiuolo
- Translational Oncogenomics Unit, Department of Molecular Medicine, Regina Elena National Cancer Institute, Rome, Italy; Molecular Chemoprevention Unit, Department of Molecular Medicine, Regina Elena National Cancer Institute, Rome, Italy
| | - Silvia Di Agostino
- Translational Oncogenomics Unit, Department of Molecular Medicine, Regina Elena National Cancer Institute , Rome , Italy
| | - Giovanni Blandino
- Translational Oncogenomics Unit, Department of Molecular Medicine, Regina Elena National Cancer Institute , Rome , Italy
| | - Sabrina Strano
- Molecular Chemoprevention Unit, Department of Molecular Medicine, Regina Elena National Cancer Institute , Rome , Italy
| |
Collapse
|
12
|
Kov�ri B, Sz�sz AM, Kulka J, Maru�ic Z, �arcevic B, Tiszlavicz L, Cserni G. Evaluation of p40 as a Myoepithelial Marker in Different Breast Lesions. Pathobiology 2015; 82:166-71. [DOI: 10.1159/000375127] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
13
|
Amelio I, Melino G. The p53 family and the hypoxia-inducible factors (HIFs): determinants of cancer progression. Trends Biochem Sci 2015; 40:425-34. [PMID: 26032560 DOI: 10.1016/j.tibs.2015.04.007] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/17/2015] [Accepted: 04/29/2015] [Indexed: 12/20/2022]
Abstract
HIFs have long been associated with resistance to therapy, metastasis, and poor survival rates in cancer patients. In parallel, although the tumor-suppressor p53 acts as the first barrier against tumor transformation, its inactivation also appears to be crucial for enabling cancer progression at advanced stages. p53 has been proposed to antagonize HIF, and emerging evidence suggests that the p53 siblings p63 and p73 also participate in this interplay. Crosstalk between HIFs and the p53 family acts as a determinant of cancer progression through regulating angiogenesis, the tumor microenvironment, dormancy, metastasis, and recurrence. We discuss the possible mechanisms underlying this regulation and the controversies in this field in an attempt to provide a unified view of current knowledge.
Collapse
Affiliation(s)
- Ivano Amelio
- Medical Research Council Toxicology Unit, Leicester University, Leicester LE1 9HN, UK
| | - Gerry Melino
- Medical Research Council Toxicology Unit, Leicester University, Leicester LE1 9HN, UK; Biochemistry Laboratory, Istituto Dermopatico dell'Immacolata (IDI), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', 00133 Rome, Italy.
| |
Collapse
|
14
|
Sinha M, Ghatak S, Roy S, Sen CK. microRNA-200b as a Switch for Inducible Adult Angiogenesis. Antioxid Redox Signal 2015; 22:1257-72. [PMID: 25761972 PMCID: PMC4410303 DOI: 10.1089/ars.2014.6065] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 02/26/2015] [Accepted: 03/07/2015] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE Angiogenesis is the process by which new blood vessels develop from a pre-existing vascular system. It is required for physiological processes such as developmental biology and wound healing. Angiogenesis also plays a crucial role in pathological conditions such as tumor progression. The underlying importance of angiogenesis necessitates a highly regulated process. RECENT ADVANCES Recent works have demonstrated that the process of angiogenesis is regulated by small noncoding RNA molecules called microRNAs (miRs). These miRs, collectively referred to as angiomiRs, have been reported to have a profound effect on the process of angiogenesis by acting as either pro-angiogenic or anti-angiogenic regulators. CRITICAL ISSUES In this review, we will discuss the role of miR-200b as a regulator of angiogenesis. Once the process of angiogenesis is complete, anti-angiogenic miR-200b has been reported to provide necessary braking. Downregulation of miR-200b has been reported across various tumor types, as deregulated angiogenesis is necessary for tumor development. Transient downregulation of miR-200b in wounds drives wound angiogenesis. FUTURE DIRECTIONS New insights and understanding of the molecular mechanism of regulation of angiogenesis by miR-200b has opened new avenues of possible therapeutic interventions to treat angiogenesis-related patho-physiological conditions. Antioxid. Redox Signal. 22, 1257-1272.
Collapse
Affiliation(s)
- Mithun Sinha
- Center for Regenerative Medicine and Cell Based Therapies, Davis Heart and Lung Research Institute, Ohio State University , Columbus, Ohio
| | | | | | | |
Collapse
|
15
|
Hypoxia-inducible TAp73 supports tumorigenesis by regulating the angiogenic transcriptome. Nat Cell Biol 2015; 17:511-23. [PMID: 25774835 DOI: 10.1038/ncb3130] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 02/06/2015] [Indexed: 12/20/2022]
Abstract
The functional significance of the overexpression of unmutated TAp73, a homologue of the tumour suppressor p53, in multiple human cancers is unclear, but raises the possibility of unidentified roles in promoting tumorigenesis. We show here that TAp73 is stabilized by hypoxia, a condition highly prevalent in tumours, through HIF-1α-mediated repression of the ubiquitin ligase Siah1, which targets TAp73 for degradation. Consequently, TAp73-deficient tumours are less vascular and reduced in size, and conversely, TAp73 overexpression leads to increased vasculature. Moreover, we show that TAp73 is a critical regulator of the angiogenic transcriptome and is sufficient to directly activate the expression of several angiogenic genes. Finally, expression of TAp73 positively correlates with these angiogenic genes in several human tumours, and the angiogenic gene signature is sufficient to segregate the TAp73(Hi)- from TAp73(Low)-expressing tumours. These data demonstrate a pro-angiogenic role for TAp73 in supporting tumorigenesis, providing a rationale for its overexpression in cancers.
Collapse
|
16
|
Suarez-Carmona M, Hubert P, Gonzalez A, Duray A, Roncarati P, Erpicum C, Boniver J, Castronovo V, Noel A, Saussez S, Peulen O, Delvenne P, Herfs M. ΔNp63 isoform-mediated β-defensin family up-regulation is associated with (lymph)angiogenesis and poor prognosis in patients with squamous cell carcinoma. Oncotarget 2015; 5:1856-68. [PMID: 24732135 PMCID: PMC4039122 DOI: 10.18632/oncotarget.1819] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Beside a role in normal development/differentiation, high p63 immunoreactivity is also frequently observed in squamous cell carcinoma (SCC). Due to the complexity of the gene, the role of each p63 isotype in tumorigenesis is still confusing. Constitutively produced or induced in inflammatory conditions, human beta-defensins (HβDs) are cationic peptides involved in host defenses against bacteria, viruses and fungi. Here, we investigated both the role of p63 proteins in the regulation of HβDs and the implication of these antimicrobial peptides in tumor (lymph)angiogenesis. Thus, in contrast to TAp63 isotypes, we observed that ΔNp63 proteins (α, β, γ) induce HβD1, 2 and 4 expression. Similar results were observed in cancer tissues and cell lines. We next demonstrated that ΔNp63-overexpressing SCC are associated with both a poor prognosis and a high tumor vascularisation and lymphangiogenesis. Moreover, we showed that HβDs exert a chemotactic activity for (lymphatic) endothelial cells in a CCR6-dependent manner. The ability of HβDs to enhance (lymph)angiogenesis in vivo was also evaluated. We observed that HβDs increase the vessel number and induce a significant increase in relative vascular area compared to negative control. Taken together, the results of this study suggest that ΔNp63-regulated HβD could promote tumor (lymph)angiogenesis in SCC microenvironment.
Collapse
Affiliation(s)
- Meggy Suarez-Carmona
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bid HK, Roberts RD, Cam M, Audino A, Kurmasheva RT, Lin J, Houghton PJ, Cam H. ΔNp63 promotes pediatric neuroblastoma and osteosarcoma by regulating tumor angiogenesis. Cancer Res 2013; 74:320-9. [PMID: 24154873 DOI: 10.1158/0008-5472.can-13-0894] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The tumor suppressor gene p53 and its family members p63/p73 are critical determinants of tumorigenesis. ΔNp63 is a splice variant of p63, which lacks the N-terminal transactivation domain. It is thought to antagonize p53-, p63-, and p73-dependent translation, thus blocking their tumor suppressor activity. In our studies of the pediatric solid tumors neuroblastoma and osteosarcoma, we find overexpression of ΔNp63; however, there is no correlation of ΔNp63 expression with p53 mutation status. Our data suggest that ΔNp63 itself endows cells with a gain-of-function that leads to malignant transformation, a function independent of any p53 antagonism. Here, we demonstrate that ΔNp63 overexpression, independent of p53, increases secretion of interleukin (IL)-6 and IL-8, leading to elevated phosphorylation of STAT3 (Tyr-705). We show that elevated phosphorylation of STAT3 leads to stabilization of hypoxia-inducible factor 1α (HIF-1α) protein, resulting in VEGF secretion. We also show human clinical data, which suggest a mechanistic role for ΔNp63 in osteosarcoma metastasis. In summary, our studies reveal the mechanism by which ΔNp63, as a master transcription factor, modulates tumor angiogenesis.
Collapse
Affiliation(s)
- Hemant K Bid
- Authors' Affiliations: Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital; and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Farhang Ghahremani M, Goossens S, Haigh JJ. The p53 family and VEGF regulation: "It's complicated". Cell Cycle 2013; 12:1331-2. [PMID: 23588071 PMCID: PMC3674056 DOI: 10.4161/cc.24579] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
19
|
Jolliffe AK, Derry WB. The TP53 signaling network in mammals and worms. Brief Funct Genomics 2012; 12:129-41. [PMID: 23165352 DOI: 10.1093/bfgp/els047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The nematode worm Caenorhabditis elegans has been an invaluable model organism for studying the molecular mechanisms that govern cell fate, from fundamental aspects of multicellular development to programmed cell death (apoptosis). The transparency of this organism permits visualization of cells in living animals at high resolution. The powerful genetics and functional genomics tools available in C. elegans allow for detailed analysis of gene function, including genes that are frequently deregulated in human diseases such as cancer. The TP53 protein is a critical suppressor of tumor formation in vertebrates, and the TP53 gene is mutated in over 50% of human cancers. TP53 suppresses malignancy by integrating a variety of cellular stresses that direct it to activate transcription of genes that help to repair the damage or trigger apoptotic death if the damage is beyond repair. The TP53 paralogs, TP63 and TP73, have distinct roles in development as well as overlapping functions with TP53 in apoptosis and repair, which complicates their analysis in vertebrates. C. elegans contains a single TP53 family member, cep-1, that shares properties of all three vertebrate genes and thus offers a simple system in which to study the biological functions of this important gene family. This review summarizes major advances in our understanding of the TP53 family using C. elegans as a model organism.
Collapse
|
20
|
Lin XY, Liu Y, Zhang Y, Yu JH, Wang EH. The co-expression of cytokeratin and p63 in epithelioid angiosarcoma of the parotid gland: a diagnostic pitfall. Diagn Pathol 2012; 7:118. [PMID: 22943673 PMCID: PMC3487964 DOI: 10.1186/1746-1596-7-118] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 08/10/2012] [Indexed: 01/21/2023] Open
Abstract
Summary Epithelioid angiosarcoma of the parotid gland is rare, and may pose a great diagnostic challenge. We report a case of primary epithelioid angiosarcoma in a 64-year-old male without history of radiation. The histopathological findings demonstrated a high grade epithelioid neoplasm. Immunostaining showed that the tumor was positive for the pan-cytokeratin, p63, cytokeratin18, Vimentin and vascular markers CD31, and was negative for CD34, cytokeratin5/6, cytokeratin7, cytokeratin20, CD68, CD30, S-100, HMB45, desmin, α–SMA and CD45. The tumor was diagnosed as an epithelioid angiosarcoma. To our knowledge, this is the first reported case of angiosarcoma which showed common positivity for cytokeratin and p63. In addition to cytokeratin, p63 is considered a useful marker for carcinoma. The co-expression of cytokeratin and p63 in epithelioid angiosarcoma represents a diagnostic pitfall. Thus, using a panel of antibodies is essential for distinguishing this tumor from poorly differentiated carcinoma. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/6548916707504750
Collapse
Affiliation(s)
- Xu-Yong Lin
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, 110001, China
| | | | | | | | | |
Collapse
|
21
|
Vascular proliferation is increased in basal-like breast cancer. Breast Cancer Res Treat 2011; 130:1063-71. [DOI: 10.1007/s10549-011-1740-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 08/11/2011] [Indexed: 10/17/2022]
|
22
|
Kallen ME, Nunes Rosado FG, Gonzalez AL, Sanders ME, Cates JMM. Occasional Staining for p63 in Malignant Vascular Tumors: A Potential Diagnostic Pitfall. Pathol Oncol Res 2011; 18:97-100. [DOI: 10.1007/s12253-011-9426-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 05/31/2011] [Indexed: 10/18/2022]
|
23
|
TP63 P2 promoter functional analysis identifies β-catenin as a key regulator of ΔNp63 expression. Oncogene 2011; 30:4656-65. [PMID: 21643019 DOI: 10.1038/onc.2011.171] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The ΔNp63 protein, a product of the TP63 gene that lacks the N-terminal domain, has a critical role in the maintenance of self renewal and progenitor capacity in several types of epithelial tissues. ΔNp63 is frequently overexpressed in squamous cell carcinoma (SCC) and in some other epithelial tumours. This overexpression may contribute to tumour progression through dominant-negative effects on the transcriptionally active (TA) isoforms of the p53 family (TAp63, TAp73 and p53), as well as through independent mechanisms. However, the molecular basis of ΔNp63 overexpression is not fully understood. Here, we show that the expression of ΔNp63 is regulated by the Wnt/β-catenin pathway in human hepatocellular carcinoma (HCC) and SCC cell lines. This regulation operates in particular through TCF/LEF sites present in the P2 promoter of TP63. In addition, we show that ΔNp63 and β-catenin are frequently coexpressed and accumulated in oesophageal SCC, but not in HCC. These results suggest that activation of the β-catenin pathway may contribute to overexpression of ΔNp63 during tumour progression, in a cell type-specific manner.
Collapse
|
24
|
Mitani Y, Li J, Weber RS, Lippman SL, Flores ER, Caulin C, El-Naggar AK. Expression and regulation of the ΔN and TAp63 isoforms in salivary gland tumorigenesis clinical and experimental findings. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:391-9. [PMID: 21703418 DOI: 10.1016/j.ajpath.2011.03.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 02/09/2011] [Accepted: 03/08/2011] [Indexed: 01/08/2023]
Abstract
The TP63 gene, a TP53 homologue, encodes for two main isoforms by different promoters: one retains (TA) and the other lacks (ΔN) the transactivation domain. p63 plays a critical role in the maintenance of basal and myoepithelial cells in ectodermally derived tissues and is implicated in tumorigenesis of several neoplastic entities. However, the biological and regulatory roles of these isoforms in salivary gland tumorigenesis remain unknown. Our results show a reciprocal expression between TA and ΔN isoforms in both benign and malignant salivary tumors. The most dominantly expressed were the ΔN isoforms, whereas the TA isoforms showed generally low levels of expression, except in a few tumors. High ΔNp63 expression characterized tumors with aggressive behavior, whereas tumors with high TAp63 expression were significantly smaller and less aggressive. In salivary gland cells, high expression of ΔNp63 led to enhanced cell migration and invasion and suppression of cell senescence independent of TAp63 and/or TP53 gene status. We conclude the following: i) overexpression of ΔNp63 contributes to salivary tumorigenesis, ii) ΔNp63 plays a dominant negative effect on the TA isoform in the modulation of cell migration and invasion, and iii) the ΔN isoform plays an oncogenic role and may represent an attractive target for therapeutic intervention in patients with salivary carcinomas.
Collapse
Affiliation(s)
- Yoshitsugu Mitani
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Boominathan L. The guardians of the genome (p53, TA-p73, and TA-p63) are regulators of tumor suppressor miRNAs network. Cancer Metastasis Rev 2011; 29:613-39. [PMID: 20922462 DOI: 10.1007/s10555-010-9257-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The tumor suppressor p53 homologues, TA-p73, and p63 have been shown to function as tumor suppressors. However, how they function as tumor suppressors remains elusive. Here, I propose a number of tumor suppressor pathways that illustrate how the TA-p73 and p63 could function as negative regulators of invasion, metastasis, and cancer stem cells (CSCs) proliferation. Furthermore, I provide molecular insights into how TA-p73 and p63 could function as tumor suppressors. Remarkably, the guardians--p53, p73, and p63--of the genome are in control of most of the known tumor suppressor miRNAs, tumor suppressor genes, and metastasis suppressors by suppressing c-myc through miR-145/let-7/miR-34/TRIM32/PTEN/FBXW7. In particular, p53 and TA-p73/p63 appear to upregulate the expression of (1) tumor suppressor miRNAs, such as let-7, miR-34, miR-15/16a, miR-145, miR-29, miR-26, miR-30, and miR-146a; (2) tumor suppressor genes, such as PTEN, RBs, CDKN1a/b/c, and CDKN2a/b/c/d; (3) metastasis suppressors, such as Raf kinase inhibitory protein, CycG2, and DEC2, and thereby they enlarge their tumor suppressor network to inhibit tumorigenesis, invasion, angiogenesis, migration, metastasis, and CSCs proliferation.
Collapse
|
26
|
Chilosi M, Murer B. Mixed Adenocarcinomas of the Lung: Place in New Proposals in Classification, Mandatory for Target Therapy. Arch Pathol Lab Med 2010; 134:55-65. [DOI: 10.5858/134.1.55] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Context.—Lung cancer is one of the most frequent and lethal malignant neoplasms, but knowledge regarding the molecular basis of its pathogenesis is far from complete due to the striking diversity of different forms. The current lung cancer classification (World Health Organization 2004) can efficiently distinguish clinically relevant major subtypes (small cell and non–small cell carcinomas), but its results are partly inadequate when facing prognostic and therapeutic decisions for non–small cell carcinomas, especially for the group of tumors classified as adenocarcinoma. Lung adenocarcinoma comprises a heterogeneous group of tumors characterized by diverse morphologic features and molecular pathogenesis. The category of mixed adenocarcinomas includes most adenocarcinomas (approximately 80%) and, according to World Health Organization criteria, is defined by the occurrence of a mixed array of different patterns (acinar, papillary, bronchioloalveolar, solid with mucin). The histologic recognition of mixed adenocarcinoma is subjective and cannot consistently discriminate between responders and nonresponders to new targeted therapies (eg, tyrosine kinase inhibitors). Diagnostic problems are mainly related to the poor reproducibility of histologic criteria, especially when applied in small biopsies and cytology, and to the difficulty in assigning each form to a precisely defined entity, as needed by updated therapeutic approaches. In this evolving scenario, pathologists face new challenging diagnostic roles that include not only the precise morphologic definition of carcinoma subtypes but also their molecular characterization.
Objective.—To use a comprehensive critical analysis reconciling the overwhelming variety of biologic, morphologic, molecular, and clinical data to define new classification schemes for lung adenocarcinoma.
Data Sources.—Scientific literature and personal data were used.
Conclusions.—A new classification approach should redefine lung adenocarcinoma heterogeneity reconciling classic morphology, immunophenotypic and molecular features of neoplastic cells, and also relevant information provided by stem cell biology. This approach, which has been already successfully applied in World Health Organization classification of other tumors, could improve the recognition of new reproducible profiles for adenocarcinomas, more closely and reproducibly related to clinical features and response to specific therapies, limiting the use of “wastebasket” categories such as mixed adenocarcinoma.
Collapse
Affiliation(s)
- Marco Chilosi
- From the Department of Pathology, University of Verona, Italy (Dr Chilosi); and the Anatomic Pathology Unit, Ospedale dell'Angelo, Mestre, Italy (Dr Murer)
| | - Bruno Murer
- From the Department of Pathology, University of Verona, Italy (Dr Chilosi); and the Anatomic Pathology Unit, Ospedale dell'Angelo, Mestre, Italy (Dr Murer)
| |
Collapse
|
27
|
Association between the N-terminally truncated (DeltaN) p63alpha (DeltaNp63alpha) isoform and debulking status, VEGF expression and progression-free survival in previously untreated, advanced stage epithelial ovarian cancer: A Gynecologic Oncology Group study. Gynecol Oncol 2009; 115:424-9. [PMID: 19767063 DOI: 10.1016/j.ygyno.2009.07.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 07/24/2009] [Accepted: 07/29/2009] [Indexed: 11/22/2022]
Abstract
OBJECTIVES The Gynecologic Oncology Group (GOG) examined the association between the relative expression of the DeltaNp63alpha isoform and clinicopathologic variables, p53 status, angiogenic markers, progression-free survival (PFS) and overall survival (OS) in epithelial ovarian cancer (EOC). METHODS Immunoblot analysis was used to determine the relative expression of DeltaNp63alpha to beta-actin in lysates of frozen primary tumor from women with previously untreated, advanced stage EOC who participated in a GOG specimen banking protocol and a randomized phase III treatment protocol. RESULTS DeltaNp63alpha was detected in 49/56 (87.5%) cases with relative expression ranging from 0 to 4.55 (median=0.325). A correlation was observed between the relative expression of DeltaNp63alpha and debulking status (Spearman's correlation coefficient=0.303; p=0.025) and the relative expression of vascular endothelial growth factor (VEGF) (Spearman's correlation coefficient=0.303; p=0.045), but not with p53 status (overexpression or mutation), immunoblot expression of MASPIN, or the relative expression of thrombospondin-1, basic fibroblast growth factor or VEGF receptor-1. A 1.4-fold increase was observed in the risk of disease progression for each unit increase in the relative expression of DeltaNp63alpha using an unadjusted (hazard ratio [HR]=1.459; 95% confidence interval [CI]=1.096-1.942; p=0.010), a full (HR=1.483; 95% CI=1.060-2.076; p=0.021) and a reduced (HR=1.387; 95% CI=1.025-1.877; p=0.034) Cox regression model. The relative expression of DeltaNp63alpha was not associated with OS using an unadjusted, a full or a reduced Cox model. CONCLUSIONS The relative expression DeltaNp63alpha appears to be associated with debulking status and the relative expression of VEGF and PFS, and to be an independent prognostic factor for disease progression in EOC.
Collapse
|
28
|
Kommagani R, Leonard MK, Lewis S, Romano RA, Sinha S, Kadakia MP. Regulation of VDR by deltaNp63alpha is associated with inhibition of cell invasion. J Cell Sci 2009; 122:2828-35. [PMID: 19622632 DOI: 10.1242/jcs.049619] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The p63 transcription factor has a pivotal role in epithelial morphogenesis. Multiple transcripts of the TP63 gene are generated because of alternative promoter usage and splicing. DeltaNp63alpha is the predominant isoform of p63 observed during epithelial morphogenesis and in human cancers. Loss of DeltaNp63alpha expression has been shown to promote invasiveness in a subset of human cancer cell lines. Here, we studied whether the regulation of VDR by DeltaNp63alpha controls the invasiveness of an epidermoid cancer cell line. We demonstrate that VDR expression is induced by all p63 isoforms, including DeltaNp63alpha. Endogenous DeltaNp63alpha protein was observed to bind to the VDR promoter, and silencing of endogenous DeltaNp63alpha resulted in diminished VDR expression. Although silencing of p63 inhibits VDR expression leading to an increase in cell migration, overexpression of p63 or VDR results in reduced cell migration as a result of increased VDR expression. Therefore, it is conceivable that p63 inhibits cell invasion by regulating VDR expression. Finally, we observed that expression of p63 and VDR overlaps in the wild-type mouse skin, but a reduced or complete absence of VDR expression was observed in skin from p63-null mice and in p63-null mouse embryonic fibroblasts. In conclusion, we demonstrate a direct transcriptional regulation of VDR by DeltaNp63alpha. Our results highlight a crucial role for VDR in p63-mediated biological functions.
Collapse
Affiliation(s)
- Ramakrishna Kommagani
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | | | | | | | | | | |
Collapse
|
29
|
Tsuchihara K, Suzuki Y, Wakaguri H, Irie T, Tanimoto K, Hashimoto SI, Matsushima K, Mizushima-Sugano J, Yamashita R, Nakai K, Bentley D, Esumi H, Sugano S. Massive transcriptional start site analysis of human genes in hypoxia cells. Nucleic Acids Res 2009; 37:2249-63. [PMID: 19237398 PMCID: PMC2673422 DOI: 10.1093/nar/gkp066] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Combining our full-length cDNA method and the massively parallel sequencing technology, we developed a simple method to collect precise positional information of transcriptional start sites (TSSs) together with digital information of the gene-expression levels in a high throughput manner. We applied this method to observe gene-expression changes in a colon cancer cell line cultured in normoxic and hypoxic conditions. We generated more than 100 million 36-base TSS-tag sequences and revealed comprehensive features of hypoxia responsive alterations in the transcriptional landscape of the human genome. The features include presence of inducible 'hot regions' in 54 genomic regions, 220 novel hypoxia inducible promoters that may drive non-protein-coding transcripts, 191 hypoxia responsive alternative promoters and detailed views of 120 novel as well as known hypoxia responsive genes. We further analyzed hypoxic response of different cells using additional 60 million TSS-tags and found that the degree of the gene-expression changes were different among cell lines, possibly reflecting cellular robustness against hypoxia. The novel dynamic figure of the human gene transcriptome will deepen our understanding of the transcriptional program of the human genome as well as bringing new insights into the biology of cancer cells in hypoxia.
Collapse
Affiliation(s)
- Katsuya Tsuchihara
- Cancer Physiology Project, Research Center for Innovative Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Khokhar SK, Kommagani R, Kadakia MP. Differential effects of p63 mutants on transactivation of p53 and/or p63 responsive genes. Cell Res 2008; 18:1061-73. [PMID: 18626511 DOI: 10.1038/cr.2008.82] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
p63, known to play a role in development, has more recently also been implicated in cancer progression. Mutations in p63 have been shown to be responsible for several human developmental diseases. Differential splicing of the p63 gene gives rise to p63 isoforms, which can act either as tumor suppressors or as oncogene. In this report, we studied the effects of naturally occurring TAp63gamma mutants on the regulation of p53/p63 and p63 specific target genes. We observed significant differences among p63 mutants to regulate the p53/p63 and p63 specific target genes. Additionally, we observed a differential effect of p63 mutants on wildtype-p63-mediated induction of p53/p63 and p63 specific target genes. We also demonstrated that these mutants differentially regulate the binding of wildtype p63 to the promoter of target genes. Furthermore, the effects of these mutants on cell death and survival were consistent with their ability to regulate the downstream targets when compared to wildtype TAp63gamma. In summary, our data demonstrate that p63 mutants exhibit differential effects on p63 and p53/p63 specific target genes and on the induction of apoptosis, and provide further insight into the function of p63.
Collapse
Affiliation(s)
- Shama K Khokhar
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | | | | |
Collapse
|
31
|
Díaz R, Peña C, Silva J, Lorenzo Y, García V, García JM, Sánchez A, Espinosa P, Yuste R, Bonilla F, Domínguez G. p73 isoforms affect VEGF, VEGF165b and PEDF expression in human colorectal tumors: VEGF165b downregulation as a marker of poor prognosis. Int J Cancer 2008; 123:1060-7. [DOI: 10.1002/ijc.23619] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Petitjean A, Ruptier C, Tribollet V, Hautefeuille A, Chardon F, Cavard C, Puisieux A, Hainaut P, Caron de Fromentel C. Properties of the six isoforms of p63: p53-like regulation in response to genotoxic stress and cross talk with DeltaNp73. Carcinogenesis 2007; 29:273-81. [PMID: 18048390 DOI: 10.1093/carcin/bgm258] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
TP63, a member of the TP53 gene family, encodes two groups of three isoforms (alpha, beta and gamma). The TAp63 isoforms act as transcription factors. The DeltaNp63 isoforms lack the main transcription activation domain and act as dominant-negative inhibitors of transactivation (TA) isoforms. To clarify the role of these isoforms and to better understand their functional overlap with p53, we ectopically expressed each p63 isoform in the p53-null hepatocellular carcinoma cell line Hep3B. All TA isoforms, as well as DeltaNp63alpha, had a half-life of <1 h when transiently expressed and were degraded by the proteasome pathway. The most stable form was DeltaNp63gamma, with a half-life of >8 h. As expected, TA isoforms differed in their transcriptional activities toward genes regulated by p53, TAp63gamma being the most active form. In contrast, DeltaNp63 isoforms were transcriptionally inactive on genes studied and inhibited TA isoforms in a dose-dependent manner. When stably expressed in polyclonal cell populations, TAp63beta and gamma isoforms were undetectable. However, when treated with doxorubicin (DOX), p63 proteins rapidly accumulated in the cells. This stabilization was associated with an increase in phosphorylation. Strikingly, in DOX-treated polyclonal populations, increase in TAp63 levels was accompanied by overexpression of DeltaNp73. This observation suggests complex regulatory cross talks between the different isoforms of the p53 family. In conclusion, p63 exhibits several transcriptional and stress-response properties similar to those of p53, suggesting that p63 activities should be taken into consideration in approaches to improve cancer therapies based on genotoxic agents.
Collapse
Affiliation(s)
- A Petitjean
- INSERM UMR590, Unité d'Oncogenèse et de Progression Tumorale, Centre Léon Bérard, 28 rue Laënnec, F69008 Lyon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
King KE, Weinberg WC. p63: defining roles in morphogenesis, homeostasis, and neoplasia of the epidermis. Mol Carcinog 2007; 46:716-24. [PMID: 17477357 DOI: 10.1002/mc.20337] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
p63 is a member of a gene family also including the p53 tumor suppressor and p73. In contrast to p53, p63 is rarely mutated in human cancers. Rather, gene amplification and dysregulated expression of p63 protein have been observed, particularly in squamous cell carcinomas. p63 is essential for development of stratified squamous epithelium, including the epidermis. The p63 gene is expressed as multiple protein isoforms with different functional capacities, and the balance of these isoforms, along with the presence or absence of the other family members, p53 and p73, can impact biological outcome. Both gene silencing and overexpression approaches have been utilized to elucidate the contributions of specific p63 isoforms to normal epidermal morphogenesis and tissue maintenance. While numerous studies have established the essential nature of p63 in the epidermis, the basis of this requirement, and the unique, as well as, overlapping functions of the individual isoforms, remain controversial. In this review, we summarize the current understanding of roles played by specific p63 isoforms within the context of epidermal morphogenesis and homeostasis of the established epidermis, and the potential impact of p63 dysregulation on cancer development.
Collapse
Affiliation(s)
- Kathryn E King
- Laboratory of Immunobiology, Division of Monoclonal Antibodies, FDA Center for Drug Evaluation and Research, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
34
|
Harper J, Yan L, Loureiro RM, Wu I, Fang J, D'Amore PA, Moses MA. Repression of Vascular Endothelial Growth Factor Expression by the Zinc Finger Transcription Factor ZNF24. Cancer Res 2007; 67:8736-41. [PMID: 17875714 DOI: 10.1158/0008-5472.can-07-1617] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vascular endothelial growth factor (VEGF) is a potent stimulator of angiogenesis. Although many positive regulators of VEGF have been identified, relatively little is known regarding the negative regulation of VEGF expression. We identified a zinc finger transcription factor, ZNF24, that may repress VEGF transcription. An inverse correlation between expression of VEGF and ZNF24 was observed in a series of independent studies. ZNF24 was up-regulated in angiogenic tumor nodules where VEGF expression is significantly decreased compared with preangiogenic nodules. In human breast carcinoma cells cultured under normoxic conditions, ZNF24 levels were significantly up-regulated whereas VEGF levels were low. In contrast, VEGF was significantly increased in hypoxic cells whereas ZNF24 was down-regulated. The same inverse correlation between ZNF24 and VEGF was also observed in 70% of matched cDNA pairs of normal and malignant tissues from human colon and breast biopsies. Overexpression of ZNF24 resulted in a significant down-regulation of VEGF, whereas silencing of ZNF24 with small interfering RNA led to increased VEGF expression. Cotransfection of ZNF24 and a VEGF promoter luciferase reporter construct in MDA-MB-231 cells resulted in a significant decrease in VEGF promoter activity. Taken together, these data suggest that ZNF24 is involved in negative regulation of VEGF and may represent a novel repressor of VEGF transcription.
Collapse
Affiliation(s)
- Jay Harper
- Vascular Biology Program, Children's Hospital Boston, Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Kommagani R, Payal V, Kadakia MP. Differential regulation of vitamin D receptor (VDR) by the p53 Family: p73-dependent induction of VDR upon DNA damage. J Biol Chem 2007; 282:29847-54. [PMID: 17716971 PMCID: PMC2771332 DOI: 10.1074/jbc.m703641200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p63 and p73, members of the p53 family, have been shown to be functionally distinct from p53. Vitamin D receptor (VDR) is a ligand (vitamin D(3))-dependent transcription factor, which is shown to play a major role in calcium homeostasis and keratinocyte differentiation. Vitamin D and its analogues in combination with DNA-damaging agents are extensively used for cancer chemotherapy. In this report, we examined whether p53 affects p63-mediated induction of VDR and studied the effect of DNA damage on VDR induction in p53 null cell lines. Our results demonstrate that p53 itself does not induce VDR expression, nor does it affect p63-mediated VDR induction in the cell lines tested in this study. Furthermore, we observed p53-independent activation of VDR upon DNA damage and associated the induction of VDR to p73. We have demonstrated that ectopic expression of various p73 isoforms can induce VDR expression. Inhibition of p73 in cells treated with DNA-damaging agents exhibited decreased VDR expression. Finally, we show that upon DNA damage, induction of VDR sensitizes the cells to vitamin D treatment. In conclusion, our results indicate that VDR is regulated by p63 and p73 and that the induction of VDR expression upon DNA damage is p73-dependent.
Collapse
Affiliation(s)
- Ramakrishna Kommagani
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio 45435
| | - Vandana Payal
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio 45435
| | - Madhavi P. Kadakia
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio 45435
- Center for Genomics Research, Wright State University, Dayton, Ohio 45435
- To whom correspondence should be addressed: Dept. of Biochemistry and Molecular Biology, Wright State University, 3640 Col. Glenn Hwy., Dayton, OH 45435.
| |
Collapse
|
36
|
Abstract
The p53-related genes p63 and p73 exhibit significant structural homology to p53; however, they do not function as classical tumor suppressors and are rarely mutated in human cancers. Both p63 and p73 exhibit tissue-specific roles in normal development and a complex contribution to tumorigenesis that is due to their expression as multiple protein isoforms. The predominant p63/p73 isoforms expressed both in normal development and in many tumors lack the conserved transactivation (TA) domain; these isoforms instead exhibit a truncated N-terminus (DeltaN) and function at least in part as transcriptional repressors. p63 and p73 isoforms are regulated through both transcriptional and post-translational mechanisms, and they in turn regulate diverse cellular functions including proliferation, survival and differentiation. The net effect of p63/p73 expression in a given context depends on the ratio of TA/DeltaN isoforms expressed, on physical interaction between p63 and p73 isoforms, and on functional interactions with p53 at the promoters of specific downstream target genes. These multifaceted interactions occur in diverse ways in tumor-specific contexts, demonstrating a functional 'p53 family network' in human tumorigenesis. Understanding the regulation and mechanistic contributions of p63 and p73 in human cancers may ultimately provide new therapeutic opportunities for a variety of these diseases.
Collapse
Affiliation(s)
- M P Deyoung
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | | |
Collapse
|
37
|
Caserta TM, Kommagani R, Yuan Z, Robbins DJ, Mercer CA, Kadakia MP. p63 overexpression induces the expression of Sonic Hedgehog. Mol Cancer Res 2007; 4:759-68. [PMID: 17050669 DOI: 10.1158/1541-7786.mcr-05-0149] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
p63 and p73 are members of the p53 protein family and have been shown to play an important role in cell death, development, and tumorigenesis. In particular, p63 has been shown to be involved in the maintenance of epidermal stem cells and in the stratification of the epidermis. Sonic Hedgehog (Shh) is a morphogen that has also been implicated to play a role in epithelial stem cell proliferation and in the development of organs. Recently, Shh has also been shown to play an important role in the progression of a variety of cancers. In this report, we show that p63 and p73 but not p53 overexpression induces Shh expression. In particular, p63gamma and p63beta (both TA and DeltaN isoforms) and TAp73beta isoform induce Shh. Expression of Shh was found to be significantly reduced in mouse embryo fibroblasts obtained from p63-/- mice. The naturally occurring p63 mutant TAp63gamma(R279H) and the tumor suppressor protein p14(ARF) inhibited the TAp63gamma-mediated transactivation of Shh. The region -228 to -102 bp of Shh promoter was found to be responsive to TAp63gamma-induced transactivation and TAp63gamma binds to regions within the Shh promoter in vivo. The results presented in this study implicate p63 in the regulation of the Shh signaling pathway.
Collapse
Affiliation(s)
- Tina M Caserta
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH 45435, USA
| | | | | | | | | | | |
Collapse
|
38
|
Kunisaki R, Ikawa S, Maeda T, Nakazaki Y, Kurita R, Harata M, Shutoh Y, Bai YS, Soda Y, Tanabe T, Dohi T, Kato R, Ikawa Y, Asano S, Tani K. p51/p63, a novel p53 homologue, potentiates p53 activity and is a human cancer gene therapy candidate. J Gene Med 2006; 8:1121-30. [PMID: 16832836 DOI: 10.1002/jgm.945] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND p51 (p73L/p63/p40/KET), a recently isolated novel p53 homologue, binds to p53-responsive elements to upregulate some p53 target genes and has been suggested to share partially overlapping functions with p53. p51 may be a promising candidate target molecule for anti-cancer therapy. METHODS In this study, we adenovirally transduced p51A cDNA into human lung, gastric and pancreatic cancer cells and analyzed the intracellular function of p51 in anti-oncogenesis in vitro and in vivo. RESULTS Overexpression of p51A revealed an anti-proliferative effect in vitro in all the cancer cells examined in this study. The anchorage-dependent and -independent cell growth of EBC1 cells carrying mutations in both p51 and p53 was suppressed and significant apoptosis following adenoviral transduction with p51 and/or p53 was seen. This growth suppression was cooperatively enhanced by the combined infection with adenoviral vectors encoding both p51 and p53. Furthermore, p51 activated several, but not all, p53-inducible genes, indicating that the mechanisms controlling p51- and p53-mediated tumor suppression differed. CONCLUSIONS Our observations indicate that, although p51 exhibited reduced anti-oncogenetic effects compared with p53, it cooperatively enhanced the anti-tumor effects of p53. Our results suggest that p51 functions as a tumor suppressor in human cancer cells in vitro and in vivo and may be useful as a potential tool for cancer gene therapy.
Collapse
Affiliation(s)
- Reiko Kunisaki
- Division of Molecular Therapy, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Viganò MA, Lamartine J, Testoni B, Merico D, Alotto D, Castagnoli C, Robert A, Candi E, Melino G, Gidrol X, Mantovani R. New p63 targets in keratinocytes identified by a genome-wide approach. EMBO J 2006; 25:5105-16. [PMID: 17036050 PMCID: PMC1630419 DOI: 10.1038/sj.emboj.7601375] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 08/28/2006] [Indexed: 12/27/2022] Open
Abstract
p63 is a developmentally regulated transcription factor related to p53. It is involved in the development of ectodermal tissues, including limb, skin and in general, multilayered epithelia. The DeltaNp63alpha isoform is thought to play a 'master' role in the asymmetric division of epithelial cells. It is also involved in the pathogenesis of several human diseases, phenotypically characterized by ectodermal dysplasia. Our understanding of transcriptional networks controlled by p63 is limited, owing to the low number of bona fide targets. To screen for new targets, we employed chromatin immunoprecipitation from keratinocytes (KCs) coupled to the microarray technology, using both CpG islands and promoter arrays. The former revealed 96 loci, the latter yielded 85 additional genes. We tested 40 of these targets in several functional assays, including: (i) in vivo binding by p63 in primary KCs; (ii) expression analysis in differentiating HaCaT cells and in cells overexpressing DeltaNp63alpha; (iii) promoter transactivation and (iv) immunostaining in normal tissues, confirming their regulation by p63. We discovered several new specific targets whose functional categorization links p63 to cell growth and differentiation.
Collapse
Affiliation(s)
- M Alessandra Viganò
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Universita' di Milano, Milano, Italy
- Department of Biomolecular Sciences and Biotechnologies, University of Milan, Via Celoria, 26, Milan 20133, Italy. Tel.: +39 02 50315005; Fax: +39 02 50315044; E-mail:
| | | | - Barbara Testoni
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Universita' di Milano, Milano, Italy
| | - Daniele Merico
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Universita' di Milano, Milano, Italy
| | - Daniela Alotto
- Dipartimento di Chirurgia Plastica, Banca della Cute, Ospedale CTO, Torino, Italy
| | - Carlotta Castagnoli
- Dipartimento di Chirurgia Plastica, Banca della Cute, Ospedale CTO, Torino, Italy
| | - Amèlie Robert
- Service de Génomique Fonctionnelle CEA, Genopole Evry, France
| | - Eleonora Candi
- IDI-IRCCS c/o Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Gerry Melino
- IDI-IRCCS c/o Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Xavier Gidrol
- Service de Génomique Fonctionnelle CEA, Genopole Evry, France
| | - Roberto Mantovani
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Universita' di Milano, Milano, Italy
- Department of Biomolecular Sciences and Biotechnologies, University of Milan, Via Celoria, 26, Milan 20133, Italy. Tel.: +39 02 50315005; Fax: +39 02 50315044; E-mail:
| |
Collapse
|
40
|
Ongkeko WM, An Y, Chu TS, Aguilera J, Dang CL, Wang-Rodriguez J. Gleevec Suppresses p63 Expression in Head and Neck Squamous Cell Carcinoma Despite p63 Activation by DNA-Damaging Agents. Laryngoscope 2006; 116:1390-6. [PMID: 16885742 DOI: 10.1097/01.mlg.0000225941.60901.0f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The objectives of this study were to determine the effects of Gleevec on p63 expression in head and neck squamous cell carcinoma (HNSCC) cell lines and to investigate the role of Gleevec in regulating p63 stabilization under DNA-damaging conditions. METHODS Immunohistochemical staining was performed to determine p63 expression in HNSCC tissue. Annexin V staining was used to assess the effects of p63 on early apoptosis. Immunoblotting was used to examine the effects of Gleevec on p63 protein levels in HNSCC cell lines in response to DNA damage. Immunofluorescence staining was performed to study the expression pattern of p63 and c-Abl. RESULTS In HNSCC, p63 protein levels are induced by DNA-damaging agents, including ionizing radiation, doxorubicin, and ultraviolet light. We demonstrate that Gleevec reduces p63/DeltaNp63 expression in a dose-dependent manner in HNSCC and overrides the protein induction by DNA-damaging agents. Overexpression of c-Abl in the absence of Gleevec results in higher levels of p63 than those treated with Gleevec, implicating c-Abl kinase activity as a regulator of p63 protein stability. CONCLUSIONS Gleevec downregulates p63/DeltaNp63 levels in HNSCC in a dose-dependent manner under both normal and DNA-damaging conditions. This downregulation can be explained by Gleevec's inhibition of c-Abl, which destabilizes p63. Based on our data, treating cancers with high expression of TAp63 with Gleevec may result in the unfavorable inhibition of a tumor suppressor, whereas downregulation of DeltaNp63 would be advantageous. Further development of antibodies that can discriminate between TAp63 and DeltaNp63 will be needed to determine the specific effects of Gleevec on p63 in HNSCC.
Collapse
Affiliation(s)
- Weg M Ongkeko
- Division of Head and Neck Surgery, Department of Surgery, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Arai K, Matsumoto Y, Nagashima Y, Yagasaki K. Regulation of Class II β-Tubulin Expression by Tumor Suppressor p53 Protein in Mouse Melanoma Cells in Response toVincaAlkaloid. Mol Cancer Res 2006; 4:247-55. [PMID: 16603638 DOI: 10.1158/1541-7786.mcr-05-0183] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The continuous exposure of antimicrotubule drugs to tumors often results in the emergence of drug-resistant tumor cells with altered expression of several beta-tubulin isotypes. We found that Vinca alkaloid enhanced expression of class II beta-tubulin isotype (mTUBB2) in mouse B16F10 melanoma cells via alteration of the tumor suppressor p53 protein. Vincristine treatment stimulated an increase in mTUBB2 mRNA expression and promoted accumulation of this isotype around the nuclei. Transient transfection assays employing a reporter construct, together with site-directed mutagenesis studies, suggested that the p53-binding site found in the first intron was a critical region for mTUBB2 expression. Electrophoretic mobility shift assay and associated antibody supershift experiments showed that vincristine promoted release of p53 protein from the binding site. In addition, exogenous induction of TAp63gamma (p51A), a homologue of p53, canceled the effect of vincristine on mTUBB2 expression. These results suggest that p53 protein may function as a suppressor of mTUBB2 expression and vincristine-mediated inhibition of p53 binding results in enhanced mTUBB2 expression. This phenomenon could be related with the emergence of drug-resistant tumor cells induced by Vinca alkaloid and may participate in determining the fate of these cells.
Collapse
Affiliation(s)
- Katsuhiko Arai
- Department of Tissue Physiology, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Saiwai-cho 3-5-8, Fuchu, Tokyo 183-8509, Japan.
| | | | | | | |
Collapse
|
42
|
Abstract
p63, a p53 homolog has been shown to play a role in development and cancer. p63 is essential for both commitment of ectoderm to stratified epithelia and for the proliferative potential of epithelial stem cells. p63 knockout mice are born with severe development defects and lack organs of epithelial origin. In addition, p63 has also been shown to play a role in cancer development through the differential regulation of genes with tumor suppressor function and genes involved in metastasis. In order to understand the role of p63 in cancer and development, genes that are specifically regulated by p63 but not p53 were identified. In this study, we provide evidence that p63gamma specifically upregulates vitamin D Receptor (VDR). In contrast, p53 does not appear to be involved in upregulation of VDR expression. Additionally, we demonstrate that a naturally occurring p63 missense mutant, p63gamma (R279H) and p14(ARF), both act in a dominant negative manner to inhibit p63gamma-mediated upregulation of VDR. Furthermore, using chromatin immunoprecipitation assays, we demonstrated that p63 directly binds to the VDR promoter in vivo. Our findings clearly demonstrate that VDR is a direct target of p63 and suggests that p63 may play a role in cancer and differentiation through modulation of the VDR pathway.
Collapse
Affiliation(s)
- R Kommagani
- Department of Biochemistry and Molecular Biology, Dayton, OH 45435, USA
| | | | | |
Collapse
|
43
|
Compérat E, Camparo P, Haus R, Chartier-Kastler E, Bart S, Delcourt A, Houlgatte A, François R, Capron F, Vieillefond A. Immunohistochemical expression of p63, p53 and MIB-1 in urinary bladder carcinoma. A tissue microarray study of 158 cases. Virchows Arch 2005; 448:319-24. [PMID: 16283378 DOI: 10.1007/s00428-005-0092-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Accepted: 02/06/2005] [Indexed: 10/25/2022]
Abstract
P63 is a member of the p53 family, which plays a role in the differentiation of urothelium and is supposed to play a role in urothelial carcinogenesis. P53 and MIB-1 are recognised in many studies as predictive markers of progression, but few studies in the literature have examined p63. The aims of our study were to explore the expression of p63 in bladder carcinomas and to compare this expression to p53 and MIB-1, as well as to stage and grade. Tissue microarrays were performed on 158 urothelial carcinomas (56 pTa, 45 pT1 and 57>or=pT2). Immunohistochemical studies were performed with p63, p53 and MIB-1 antibodies. In our study we observed that p63 immunostaining is present in all cell layers in papillary urothelial neoplasm of low malignant potential (PUNLMP), but partially lost in non-invasive papillary urothelial carcinoma low grade (NILGC) and in pT1/>or=pT2 bladder cancers. P53 and MIB-1 displayed lower expression in PUNLMP/NILGC vs non-invasive papillary urothelial carcinoma high grade (NIHGC)/pT1, but there was no correlation between the expression of p63, p53 and MIB-1. Our study demonstrates that p63 expression distinguishes between PUNLMP/NILGC and NIHGC/pT1 (p=4.10(5)). A statistical difference disserving pTa and pT1/>or=pT2 with a statistical significance (p<10(-6)) could also be observed. P63 should be considered as an additional biomarker that might help pathologists to classify their patients.
Collapse
Affiliation(s)
- Eva Compérat
- Service Central d'Anatomie et Cytologie Pathologiques et d'Urologie, Hôpital La Pitié-Salpêtrière, 83, Bd de l'Hôpital, 75013 Paris, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
p63 is a recently described p53 homologue. It is involved in survival and differentiation of reserve/stem cells in epithelia. To obtain new insights into the role of p63 in malignant lymphomas (MLs), immunohistochemical staining for p63 and p53 was performed in 126 cases of MLs. p63 was expressed in 38 cases of MLs (30.2%) including 32/61 cases (52.5%) of diffuse large B-cell lymphoma (DLBCL), 1/8 cases (12.5%) of precursor T-lymphoblastic lymphoma (T-LBL), 4/14 cases (28.6%) of follicular lymphoma, 1/6 cases (16.7%) of T/NK cell lymphoma. Among p63 positive cases, p63 was strongly expressed in 15/32 cases of DLBCL and 1/1 case of T-LBL. p63 was not expressed in mantle cell lymphomas, peripheral T-cell lymphomas, marginal zone B-cell lymphomas, plasma cell myelomas and Hodgkin's lymphomas. p63 was coexpressed with p53 in 18/38 p63 positive cases in which only 4 cases were strongly coexpressed. All p63+/p53+ cases were DLBCL. p63 overexpression (above 30%) cases showed significant poor survival (p=0.0228) in DLBCL. However, there was no statistically significant correlation between p63 expression and IPI score on Multivariate analysis. We could speculate that p63 could act indirectly as an oncogene by inhibiting p53 functions. Stage of differentiation of neoplastic lymphocytes appears to have a correlation with p63 expression in MLs.
Collapse
Affiliation(s)
- Chan-Kum Park
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Korea
| | - Young-Ha Oh
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Korea
| |
Collapse
|
45
|
Maruya SI, Kies MS, Williams M, Myers JN, Weber RS, Batsakis JG, El-Naggar AK. Differential expression of p63 isotypes (DeltaN and TA) in salivary gland neoplasms: biological and diagnostic implications. Hum Pathol 2005; 36:821-7. [PMID: 16084953 DOI: 10.1016/j.humpath.2005.05.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Accepted: 05/12/2005] [Indexed: 12/21/2022]
Abstract
To determine the association between the expression of p63 gene isoforms (TA and DeltaN) and salivary gland tumorigenesis, we performed reverse transcription-polymerase chain reaction analysis of these markers in 71 benign and malignant salivary gland neoplasms. The results were correlated with the expression of Notch ligand JAG1 gene and the clinicopathologic features and the full-length p63 protein expression by immunohistochemistry. Both p63 isoforms were either negative or weakly expressed in normal salivary gland tissues. TAp63 was highly expressed in most benign tumors and was either negative or weakly positive in most carcinomas. Conversely, DeltaNp63 was negative or faintly positive in most benign neoplasms and was highly expressed in adenoid cystic, mucoepidermoid, and myoepithelial carcinomas. Immunohistochemical analysis using anti-full-length p63 protein showed ubiquitous nuclear staining in basal and myoepithelial cells in both benign and malignant neoplasms. JAG1 was expressed in most benign and malignant tumors and did not correlate with p63 isoforms expression. We conclude that (1) p63 isoforms are differentially expressed in most benign and malignant tumors and may play distinct biological roles in certain salivary gland neoplasms; (2) p63 immunostaining do not correlate with the isoforms expression; and (3) isoform-specific antibodies are required for better cellular localization and biological correlations.
Collapse
Affiliation(s)
- Shin-Ichiro Maruya
- Department of Pathology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Kasamatsu A, Endo Y, Uzawa K, Nakashima D, Koike H, Hashitani S, Numata T, Urade M, Tanzawa H. Identification of candidate genes associated with salivary adenoid cystic carcinomas using combined comparative genomic hybridization and oligonucleotide microarray analyses. Int J Biochem Cell Biol 2005; 37:1869-80. [PMID: 15908262 DOI: 10.1016/j.biocel.2005.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Indexed: 10/25/2022]
Abstract
Adenoid cystic carcinoma (ACC) of the salivary gland often has a variable clinical course with a poor prognosis. To investigate DNA copy number aberrations associated with ACCs, we compared comparative genome hybridization data from ACCs (n = 6) with other types of salivary gland tumors such as adenocarcinomas (n = 3) and pleomorphic adenomas (n = 6). While 15 gain loci (1q32, 6p25, 6q21-q24, 7q11.2, 7q31, 10q11.2, 11p12-q12, 12q13, 12q14, 13q24, 16p13.3-13.2, 18p11.3, 18q23, 19q13.4, and Xq28) were detected, no DNA loss locus was evident. To examine the expression status of genes on the ACC-associated loci, transcriptional measurements of approximately 38000 human genes then were monitored using Affymetrix U133 Plus 2.0 GeneChips. A total of 4431 genes were found differentially expressed by at least two-fold between ACCs and normal salivary glands. Of them, 3162 genes were up-regulated and 1269 genes were down-regulated in ACCs. After obtaining locus information about the RNA transcripts from the Affymetrix database, we found 262 ACC-associated genes with increased expression on ACC-associated loci. To investigate functional network and gene ontology, the 262 genes were analyzed using Ingenuity Pathway Analysis Tool. The function with the highest P value was a cancer-related function (P = 2.52e-4 to 4.71e-2). In addition, we identified pituitary tumor-transforming gene 1 and transformation related protein 63 genes that were up-regulated by increasing DNA copy number and modulated expression of oncogenes. These results suggested that the combination of copy number and gene expression profiling provides an improved strategy for gene identification in salivary gland ACCs.
Collapse
Affiliation(s)
- Atsushi Kasamatsu
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, Chuo-ku, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Faraldo MM, Teulière J, Deugnier MA, Taddei-De La Hosseraye I, Thiery JP, Glukhova MA. Myoepithelial cells in the control of mammary development and tumorigenesis: data from genetically modified mice. J Mammary Gland Biol Neoplasia 2005; 10:211-9. [PMID: 16807801 DOI: 10.1007/s10911-005-9582-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Until recently, myoepithelial cells-the second major cell population in the mammary epithelium-were not considered to play an important role in the morphogenetic events during gland development. Mouse mutants with changes in the gene expression pattern characteristic of the basal myoepithelial cell layer have been generated and used to show that these cells influence the proliferation, survival and differentiation of luminal cells, modulate stromal-epithelial interactions and actively participate in mammary morphogenesis. Various cellular and molecular mechanisms may underlie the observed phenotypes. These include an unbalanced expression of matrix degrading metalloproteinases (MMPs) and their inhibitors, leading to changes in the composition and organization of the (extracellular matrix) ECM, the production of soluble growth factors affecting stromal and epithelial cell growth and differentiation and direct signaling through cell-cell contacts between the myoepithelial and luminal cell layers.
Collapse
Affiliation(s)
- Marisa M Faraldo
- Institut Curie, CNRS UMR144, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | | | | | | | | | | |
Collapse
|
48
|
Johnson RA, Shepard EM, Scotto KW. Differential Regulation of MDR1 Transcription by the p53 Family Members. J Biol Chem 2005; 280:13213-9. [PMID: 15634666 DOI: 10.1074/jbc.m414646200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Although the p53 family members share a similar structure and function, it has become clear that they differ with respect to their role in development and tumor progression. Because of the high degree of homology in their DNA binding domains (DBDs), it is not surprising that both p63 and p73 activate the majority of p53 target genes. However, recent studies have revealed some differences in a subset of the target genes affected, and the mechanism underlying this diversity has only recently come under investigation. Our laboratory has demonstrated previously that p53 represses transcription of the P-glycoprotein-encoding MDR1 gene via direct DNA binding through a novel p53 DNA-binding site (the HT site). By transient transfection analyses, we now show that p63 and p73 activate rather than repress MDR1 transcription, and they do so through an upstream promoter element (the alternative p63/p73 element (APE)) independent of the HT site. This activation is dependent on an intact DNA binding domain, because mutations within the p63DBD or p73DBD are sufficient to prevent APE-mediated activation. However, neither p63 nor p73 directly interact with the APE, suggesting an indirect mechanism of activation through this site. Most interestingly, when the p53DBD is replaced by the p63DBD, p53 is converted from a repressor working through the HT site to an activator working through the APE. Taken together, these data indicate that, despite considerable homology, the DBD of the p53 family members have unique properties and can differentially regulate gene targeting and transcriptional output by both DNA binding-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Robert A Johnson
- Cancer Institute of New Jersey, Robert Wood Johnson School of Medicine, University of Medicine and Dentistry of New Jersey, New Brunswick, New Jersey 08901, USA
| | | | | |
Collapse
|
49
|
Xie K, Wei D, Shi Q, Huang S. Constitutive and inducible expression and regulation of vascular endothelial growth factor. Cytokine Growth Factor Rev 2005; 15:297-324. [PMID: 15450248 DOI: 10.1016/j.cytogfr.2004.04.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Vascular endothelial growth factor (VEGF), which was originally discovered as vascular permeability factor, is critical to human cancer angiogenesis through its potent functions as a stimulator of endothelial cell survival, mitogenesis, migration, differentiation and self-assembly, as well as vascular permeability, immunosuppression and mobilization of endothelial progenitor cells from the bone marrow into the peripheral circulation. Genetic alterations and a chaotic tumor microenvironment, such as hypoxia, acidosis, free radicals, and cytokines, are clearly attributed to numerous abnormalities in the expression and signaling of VEGF and its receptors. These perturbations confer a tremendous survival and growth advantage to vascular endothelial cells as manifested by exuberant tumor angiogenesis and a consequent malignant phenotype. Understanding the regulatory mechanisms of both inducible and constitutive VEGF expression will be crucial in designing effective therapeutic strategies targeting VEGF to control tumor growth and metastasis. In this review, molecular regulation of VEGF expression in tumor cells is discussed.
Collapse
Affiliation(s)
- Keping Xie
- Department of Gastrointestinal Medical Oncology, Unit 426, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
50
|
Teulière J, Faraldo MM, Deugnier MA, Shtutman M, Ben-Ze'ev A, Thiery JP, Glukhova MA. Targeted activation of beta-catenin signaling in basal mammary epithelial cells affects mammary development and leads to hyperplasia. Development 2004; 132:267-77. [PMID: 15590737 DOI: 10.1242/dev.01583] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Wnt/beta-catenin signaling pathway is involved in the maintenance of the progenitor cell population in the skin, intestine and other tissues, and its aberrant activation caused by stabilization of beta-catenin contributes to tumorigenesis. In the mammary gland, constitutive activation of Wnt/beta-catenin signaling in luminal secretory cells results in precocious lobuloalveolar differentiation and induces adenocarcinomas, whereas the impact of this signaling pathway on the function of the second major mammary epithelial cell lineage, the basal myoepithelial cells, has not been analyzed. We have used the keratin (K) 5 promoter to target the expression of stabilized N-terminally truncated beta-catenin to the basal cell layer of mouse mammary epithelium. The transgenic mice presented an abnormal mammary phenotype: precocious lateral bud formation, increased proliferation and premature differentiation of luminal epithelium in pregnancy, persistent proliferation in lactation and accelerated involution. Precocious development in pregnancy was accompanied by increased Myc and cyclin D1 transcript levels, and a shift in p63 variant expression towards the DeltaNp63 form. The expression of ECM-degrading proteinases and their inhibitors was altered in pregnancy and involution. Nulliparous transgenic females developed mammary hyperplasia that comprised undifferentiated basal (K5/14-positive, K8- and alpha-smooth muscle-actin-negative) cells. Multiparous mice, in addition, developed invasive basal-type carcinomas. Thus, activation of beta-catenin signaling in basal mammary epithelial cells affects the entire process of mammary gland development and induces amplification of basal-type cells that lack lineage markers, presumably, a subpopulation of mammary progenitors able to give rise to tumors.
Collapse
MESH Headings
- Adenocarcinoma/metabolism
- Animals
- Blotting, Southern
- Blotting, Western
- Cell Differentiation
- Cell Lineage
- Cell Proliferation
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/metabolism
- DNA Primers/chemistry
- Epithelial Cells/metabolism
- Epithelium/pathology
- Female
- Gene Expression Regulation, Developmental
- Hyperplasia/metabolism
- Immunohistochemistry
- In Situ Nick-End Labeling
- Mammary Glands, Animal/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Microscopy, Fluorescence
- Phosphoproteins/genetics
- Polymerase Chain Reaction
- Promoter Regions, Genetic
- Protein Structure, Tertiary
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Time Factors
- Trans-Activators/genetics
- Trans-Activators/metabolism
- beta Catenin
Collapse
Affiliation(s)
- Jérôme Teulière
- UMR 144 CNRS-Institut Curie, Institut Curie, Section de Recherche, 26 rue d'Ulm, 75248, Paris, Cedex 05, France
| | | | | | | | | | | | | |
Collapse
|