1
|
König L, Schmidts M. The role of chromatin-related epigenetic modulations in CAKUT. Curr Top Dev Biol 2025; 163:169-227. [PMID: 40254345 DOI: 10.1016/bs.ctdb.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) represent a major health burden in humans. Phenotypes range from renal hypoplasia or renal agenesis, cystic renal dysplasia, duplicated or horseshoe kidneys to obstruction of the ureteropelvic junction, megaureters, duplicated ureters, urethral valves or bladder malformations. Over the past decade, next-generation sequencing has identified numerous causative genes; however, the genetic basis of most cases remains unexplained. It is assumed that environmental factors have a significant impact on the phenotype, but, overall, the pathogenesis has remained poorly understood. Interestingly however, CAKUT is a common phenotypic feature in two human syndromes, Kabuki and Koolen-de Vries syndrome, caused by dysfunction of genes encoding for KMT2D and KANSL1, both members of protein complexes playing an important role in histone modifications. In this chapter, we discuss current knowledge regarding epigenetic modulation in renal development and a putatively under-recognized role of epigenetics in CAKUT.
Collapse
Affiliation(s)
- Luise König
- Center for Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Miriam Schmidts
- Center for Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; CIBSS-Center for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
2
|
Romero G, Martin B, Gabris B, Salama G. Relaxin suppresses atrial fibrillation, reverses fibrosis and reduces inflammation in aged hearts. Biochem Pharmacol 2024; 227:116407. [PMID: 38969298 DOI: 10.1016/j.bcp.2024.116407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Healthy aging results in cardiac structural and electrical remodeling that increase susceptibility to cardiovascular diseases. Relaxin has shown broad cardioprotective effects including anti-fibrotic, anti-arrhythmic and anti-inflammatory outcomes in multiple models. This paper focuses on the cardioprotective effects of Relaxin in a rat model of aging. Sustained atrial or ventricular fibrillation are readily induced in the hearts of aged but not young control animals. Treatment with Relaxin suppressed this arrhythmogenic response by increasing conduction velocity, decreasing fibrosis and promoting substantial cardiac remodeling. Relaxin treatment resulted in a significant increase in the levels of: Nav1.5, Cx43, βcatenin and Wnt1 in rat hearts. In isolated cardiomyocytes, Relaxin increased Nav1.5 expression. These effects were mimicked by CHIR 99021, a pharmacological activator of canonical Wnt signaling, but blocked by the canonical Wnt inhibitor Dickkopf1. Relaxin prevented TGF-β-dependent differentiation of cardiac fibroblasts into myofibroblasts while increasing the expression of Wnt1; the effects of Relaxin on cardiac fibroblast differentiation were blocked by Dickkopf1. RNASeq studies demonstrated reduced expression of pro-inflammatory cytokines and an increase in the expression of α- and β-globin in Relaxin-treated aged males. Relaxin reduces arrhythmogenicity in the hearts of aged rats by reduction of fibrosis and increased conduction velocity. These changes are accompanied by substantial remodeling of the cardiac tissue and appear to be mediated by increased canonical Wnt signaling. Relaxin also exerts significant anti-inflammatory and anti-oxidant effects in the hearts of aged rodents. The mechanisms by which Relaxin increases the expression of Wnt ligands, promotes Wnt signaling and reprograms gene expression remain to be determined.
Collapse
Affiliation(s)
- Guillermo Romero
- Departments of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Brian Martin
- Departments of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Beth Gabris
- Departments of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Guy Salama
- Departments of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Torban E, Goodyer P. Wilms' tumor gene 1: lessons from the interface between kidney development and cancer. Am J Physiol Renal Physiol 2024; 326:F3-F19. [PMID: 37916284 DOI: 10.1152/ajprenal.00248.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023] Open
Abstract
In 1990, mutations of the Wilms' tumor-1 gene (WT1), encoding a transcription factor in the embryonic kidney, were found in 10-15% of Wilms' tumors; germline WT1 mutations were associated with hereditary syndromes involving glomerular and reproductive tract dysplasia. For more than three decades, these discoveries prompted investigators to explore the embryonic role of WT1 and the mechanisms by which loss of WT1 leads to malignant transformation. Here, we discuss how alternative splicing of WT1 generates isoforms that act in a context-specific manner to activate or repress target gene transcription. WT1 also regulates posttranscriptional regulation, alters the epigenetic landscape, and activates miRNA expression. WT1 functions at multiple stages of kidney development, including the transition from resting stem cells to committed nephron progenitor, which it primes to respond to WNT9b signals from the ureteric bud. WT1 then drives nephrogenesis by activating WNT4 expression and directing the development of glomerular podocytes. We review the WT1 mutations that account for Denys-Drash syndrome, Frasier syndrome, and WAGR syndrome. Although the WT1 story began with Wilms' tumors, an understanding of the pathways that link aberrant kidney development to malignant transformation still has some important gaps. Loss of WT1 in nephrogenic rests may leave these premalignant clones with inadequate DNA repair enzymes and may disturb the epigenetic landscape. Yet none of these observations provide a complete picture of Wilms' tumor pathogenesis. It appears that the WT1 odyssey is unfinished and still holds a great deal of untilled ground to be explored.
Collapse
Affiliation(s)
- Elena Torban
- Department of Medicine, McGill University and Research Institute of McGill University Health Center, Montreal, Quebec, Canada
| | - Paul Goodyer
- Department of Human Genetics, Montreal Children's Hospital and McGill University, Montreal, Quebec, Canada
- Department of Pediatrics, Montreal Children's Hospital and McGill University, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Fløisand Y, Remberger M, Bigalke I, Josefsen D, Vålerhaugen H, Inderberg EM, Olaussen RW, Gjertsen BT, Goedkoop R, Geiger C, Prinz PU, Schnorfeil FM, Pinkernell K, Schendel DJ, Kvalheim G. WT1 and PRAME RNA-loaded dendritic cell vaccine as maintenance therapy in de novo AML after intensive induction chemotherapy. Leukemia 2023; 37:1842-1849. [PMID: 37507426 DOI: 10.1038/s41375-023-01980-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/07/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
Intensive induction chemotherapy achieves complete remissions (CR) in >60% of patients with acute myeloid leukemia (AML) but overall survival (OS) is poor for relapsing patients not eligible for allogeneic hematopoietic stem cell transplantation (allo-HSCT). Oral azacytidine may be used as maintenance treatment in AML in first remission, but can be associated with substantial side effects, and less toxic strategies should be explored. Twenty AML patients in first CR (CR1) ineligible for allo-HSCT were treated with FDC101, an autologous RNA-loaded mature dendritic cell (mDC) vaccine expressing two leukemia-associated antigens (LAAs). Each dose consisted of 2.5-5 × 106 mDCs per antigen, given weekly until week 4, at week 6, and then monthly, during the 2-year study period. Patients were followed for safety and long-term survival. Treatment was well tolerated, with mild and transient injection site reactions. Eleven of 20 patients (55%) remained in CR, while 4 of 6 relapsing patients achieved CR2 after salvage therapy and underwent allo-HSCT. OS at five years was 75% (95% CI: 50-89), with 70% of patients ≥60 years of age being long-term survivors. Maintenance therapy with this DC vaccine was well tolerated in AML patients in CR1 and was accompanied by encouraging 5-year long-term survival.
Collapse
Affiliation(s)
- Yngvar Fløisand
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Mats Remberger
- Department of Hematology, Oslo University Hospital, Oslo, Norway
- Clinical Research and Development Unit, Uppsala University Hospital, Uppsala, Sweden
| | - Iris Bigalke
- Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | - Dag Josefsen
- Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | | | | | | | - Bjørn Tore Gjertsen
- Department of Clinical Science, University of Bergen; Department of Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
| | - Rene Goedkoop
- Medigene Immunotherapies GmbH and Medigene AG, Martinsried, Germany
| | | | - Petra U Prinz
- Medigene Immunotherapies GmbH and Medigene AG, Martinsried, Germany
| | - Frauke M Schnorfeil
- Medigene Immunotherapies GmbH and Medigene AG, Martinsried, Germany
- Bavarian Nordic GmbH, Martinsried, Germany
| | - Kai Pinkernell
- Medigene Immunotherapies GmbH and Medigene AG, Martinsried, Germany
- Dr. Falk Pharma, Freiburg, Germany
| | | | - Gunnar Kvalheim
- Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
5
|
Evaluating Established Roles, Future Perspectives and Methodological Heterogeneity for Wilms’ Tumor 1 (WT1) Antigen Detection in Adult Renal Cell Carcinoma, Using a Novel N-Terminus Targeted Antibody (Clone WT49). Biomedicines 2022; 10:biomedicines10040912. [PMID: 35453662 PMCID: PMC9026801 DOI: 10.3390/biomedicines10040912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/23/2022] [Accepted: 04/11/2022] [Indexed: 11/20/2022] Open
Abstract
Renal cell carcinoma (RCC) is arguably the deadliest form of genitourinary malignancy and is nowadays viewed as a heterogeneous series of cancers, with the same origin but fundamentally different metabolisms and clinical behaviors. Immunohistochemistry (IHC) is increasingly necessary for RCC subtyping and definitive diagnosis. WT1 is a complex gene involved in carcinogenesis. To address reporting heterogeneity and WT1 IHC standardization, we used a recent N-terminus targeted monoclonal antibody (clone WT49) to evaluate WT1 protein expression in 56 adult RCC (aRCC) cases. This is the largest WT1 IHC investigation focusing exclusively on aRCCs and the first report on clone WT49 staining in aRCCs. We found seven (12.5%) positive cases, all clear cell RCCs, showing exclusively nuclear staining for WT1. We did not disregard cytoplasmic staining in any of the negative cases. Extratumoral fibroblasts, connecting tubules and intratumoral endothelial cells showed the same exclusively nuclear WT1 staining pattern. We reviewed WT1 expression patterns in aRCCs and the possible explanatory underlying metabolomics. For now, WT1 protein expression in aRCCs is insufficiently investigated, with significant discrepancies in the little data reported. Emerging WT1-targeted RCC immunotherapy will require adequate case selection and sustained efforts to standardize the quantification of tumor-associated antigens for aRCC and its many subtypes.
Collapse
|
6
|
Chen M, Cen C, Wang N, Shen Z, Wang M, Liu B, Li J, Cui X, Wang Y, Gao F. The functions of Wt1 in mouse gonad development and somatic cells differentiation. Biol Reprod 2022; 107:269-274. [PMID: 35244683 DOI: 10.1093/biolre/ioac050] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/27/2022] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Wilms' tumour 1 (Wt1) encodes a zinc finger nuclear transcription factor which is mutated in 15-20% of Wilms' tumor, a pediatric kidney tumor. Wt1 has been found to be involved in the development of many organs. In gonads, Wt1 is expressed in genital ridge somatic cells before sex determination, and its expression is maintained in Sertoli cells and granulosa cells after sex determination. It has been demonstrated that Wt1 is required for the survival of the genital ridge cells. Homozygous mutation of Wt1 causes gonad agenesis. Recent studies find that Wt1 plays important roles in lineage specification and maintenance of gonad somatic cells. In this review, we will summarize the recent research works about Wt1 in gonadal somatic cell differentiation.
Collapse
Affiliation(s)
- Min Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Changhuo Cen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Nan Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiming Shen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Mengyue Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bowen Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiayi Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiuhong Cui
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yanbo Wang
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
7
|
Weiss AC, Rivera-Reyes R, Englert C, Kispert A. Expansion of the renal capsular stroma, ureteric bud branching defects and cryptorchidism in mice with Wilms tumor 1 gene deletion in the stromal compartment of the developing kidney. J Pathol 2020; 252:290-303. [PMID: 32715478 DOI: 10.1002/path.5518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022]
Abstract
Development of the mammalian kidney is orchestrated by reciprocal interactions of stromal and nephrogenic mesenchymal cells with the ureteric bud epithelium. Previous work showed that the transcription factor Wilms tumor 1 (WT1) acts in the nephrogenic lineage to maintain precursor cells, to drive the epithelial transition of aggregating precursors into a renal vesicle and to specify and maintain the podocyte fate. However, WT1 is expressed not only in the nephrogenic lineage but also transiently in stromal progenitors in the renal cortex. Here we report that specific deletion of Wt1 in the stromal lineage using the Foxd1cre driver line results at birth in cryptorchidism and hypoplastic kidneys that harbour fewer and enlarged ureteric bud tips and display an expansion of capsular stroma into the cortical region. In vivo and ex vivo analysis at earlier stages revealed that stromal loss of Wt1 reduces stromal proliferation, and delays and alters branching morphogenesis, resulting in a variant architecture of the collecting duct tree with an increase of single at the expense of bifurcated ureteric bud tips. Molecular analysis identified a transient reduction of Aldh1a2 expression and of retinoic acid signalling activity in stromal progenitors, and of Ret in ureteric bud tips. Administration of retinoic acid partly rescued the branching defects of mutant kidneys in culture. We propose that WT1 maintains retinoic acid signalling in the cortical stroma, which, in turn, assures proper levels and dynamics of Ret expression in the ureteric bud tips, and thus normal ramification of the ureteric tree. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Anna-Carina Weiss
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | | | - Christoph Englert
- Molecular Genetics, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Andreas Kispert
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| |
Collapse
|
8
|
Wang X, Adegoke EO, Ma M, Huang F, Zhang H, Adeniran SO, Zheng P, Zhang G. Influence of Wilms' tumor suppressor gene WT1 on bovine Sertoli cells polarity and tight junctions via non-canonical WNT signaling pathway. Theriogenology 2019; 138:84-93. [PMID: 31302435 DOI: 10.1016/j.theriogenology.2019.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 07/07/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023]
Abstract
Sertoli cells (SCs) are polarized epithelial cells and provide a microenvironment for the development of germ cells (GCs). The Wilms' tumor suppressor gene WT1 which support spermatogenesis is expressed explicitly in SCs. This study investigated the effect of WT1 on the polarity and blood-testis barrier (BTB) formation of bovine SCs in order to provide theoretical and practical bases for the spermatogenic process in mammals. In this study, newborn calf SCs were used as research material, and the RNAi technique was used to knockdown the endogenous WT1. The results show that WT1 knockdown did not affect the proliferation ability of SCs, but down-regulated the expression of polarity-associated proteins (Par3, Par6b, and E-cadherin), junction-associated protein (occludin) and inhibits transcription of downstream genes (WNT4, JNK, αPKC, and CDC42) in non-canonical WNT signaling pathway. WT1 also altered ZO-1 and occludin protein distribution. Overexpression of WNT1 did not affect the expression of Par6b, E-cadherin, and occludin, whereas the non-canonical WNT signaling pathway inhibitors wnt-c59, CCG-1423, and GO-6983 down-regulated the expression of Par6b, E-cadherin, and occludin respectively. This study indicates that WT1 mediates the regulation of several proteins involved in bovine SCs polarity maintenance and intercellular tight junctions (TJ) by non-canonical WNT signaling pathway.
Collapse
Affiliation(s)
- Xue Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - E O Adegoke
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Mingjun Ma
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Fushuo Huang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Han Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - S O Adeniran
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Peng Zheng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Guixue Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China.
| |
Collapse
|
9
|
Wanner N, Vornweg J, Combes A, Wilson S, Plappert J, Rafflenbeul G, Puelles VG, Rahman RU, Liwinski T, Lindner S, Grahammer F, Kretz O, Wlodek ME, Romano T, Moritz KM, Boerries M, Busch H, Bonn S, Little MH, Bechtel-Walz W, Huber TB. DNA Methyltransferase 1 Controls Nephron Progenitor Cell Renewal and Differentiation. J Am Soc Nephrol 2019; 30:63-78. [PMID: 30518531 PMCID: PMC6317605 DOI: 10.1681/asn.2018070736] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/22/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Nephron number is a major determinant of long-term renal function and cardiovascular risk. Observational studies suggest that maternal nutritional and metabolic factors during gestation contribute to the high variability of nephron endowment. However, the underlying molecular mechanisms have been unclear. METHODS We used mouse models, including DNA methyltransferase (Dnmt1, Dnmt3a, and Dnmt3b) knockout mice, optical projection tomography, three-dimensional reconstructions of the nephrogenic niche, and transcriptome and DNA methylation analysis to characterize the role of DNA methylation for kidney development. RESULTS We demonstrate that DNA hypomethylation is a key feature of nutritional kidney growth restriction in vitro and in vivo, and that DNA methyltransferases Dnmt1 and Dnmt3a are highly enriched in the nephrogenic zone of the developing kidneys. Deletion of Dnmt1 in nephron progenitor cells (in contrast to deletion of Dnmt3a or Dnm3b) mimics nutritional models of kidney growth restriction and results in a substantial reduction of nephron number as well as renal hypoplasia at birth. In Dnmt1-deficient mice, optical projection tomography and three-dimensional reconstructions uncovered a significant reduction of stem cell niches and progenitor cells. RNA sequencing analysis revealed that global DNA hypomethylation interferes in the progenitor cell regulatory network, leading to downregulation of genes crucial for initiation of nephrogenesis, Wt1 and its target Wnt4. Derepression of germline genes, protocadherins, Rhox genes, and endogenous retroviral elements resulted in the upregulation of IFN targets and inhibitors of cell cycle progression. CONCLUSIONS These findings establish DNA methylation as a key regulatory event of prenatal renal programming, which possibly represents a fundamental link between maternal nutritional factors during gestation and reduced nephron number.
Collapse
Affiliation(s)
| | - Julia Vornweg
- Faculty of Medicine, Department of Medicine IV, Medical Center-University of Freiburg, and
- Faculty of Biology
| | - Alexander Combes
- Anatomy and Neuroscience
- Cell Biology Theme, Murdoch Children's Research Institute, Melbourne, Australia
| | | | - Julia Plappert
- Faculty of Medicine, Department of Medicine IV, Medical Center-University of Freiburg, and
| | - Gesa Rafflenbeul
- Faculty of Medicine, Department of Medicine IV, Medical Center-University of Freiburg, and
| | | | - Raza-Ur Rahman
- Institute of Medical Systems Biology, Center for Molecular Neurobiology, and
| | - Timur Liwinski
- Institute of Medical Systems Biology, Center for Molecular Neurobiology, and
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Saskia Lindner
- Faculty of Medicine, Department of Medicine IV, Medical Center-University of Freiburg, and
| | | | - Oliver Kretz
- III. Department of Medicine
- Department of Neuroanatomy, University of Freiburg, Freiburg, Germany
| | | | - Tania Romano
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Karen M Moritz
- Child Health Research Centre and School of Biomedical Sciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Melanie Boerries
- German Cancer Consortium, Heidelberg, Germany
- German Cancer Research Center, Heidelberg, Germany
- Institute of Molecular Medicine and Cell Research
| | - Hauke Busch
- Institute of Molecular Medicine and Cell Research
- Lübeck Institute of Experimental Dermatology, Lübeck, Germany; and
| | - Stefan Bonn
- Institute of Molecular Medicine and Cell Research
- Laboratory of Computational Systems Biology, German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Melissa H Little
- Cell Biology Theme, Murdoch Children's Research Institute, Melbourne, Australia
- Pediatrics, University of Melbourne, Melbourne, Australia
| | - Wibke Bechtel-Walz
- Faculty of Medicine, Department of Medicine IV, Medical Center-University of Freiburg, and
| | - Tobias B Huber
- III. Department of Medicine,
- Faculty of Medicine, Department of Medicine IV, Medical Center-University of Freiburg, and
- Centre for Biological Signalling Studies (BIOSS) and Center for Biological Systems Analysis (ZBSA), and
- Freiburg Institute for Advanced Studies, Albert Ludwig University of Freiburg, Freiburg, Germany; Departments of
| |
Collapse
|
10
|
Xia X, Huo W, Wan R, Wang P, Chang Z. Cloning, characterization and function analysis of DAX1 in Chinese loach (Paramisgurnus dabryanus). Genetica 2018; 146:487-496. [PMID: 30206752 DOI: 10.1007/s10709-018-0039-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 09/06/2018] [Indexed: 02/02/2023]
Abstract
The mechanisms of sex determination and differentiation have not been elucidated in most fish species. In this study, the full-length cDNAs of DAX1 was cloned and characterized in aquaculture fish Chinese loach (Paramisgurnus dabryanus), designated as Pd-DAX1. The cDNA sequence of Pd-DAX1 was 1261 bp, including 795 bp open reading frame (ORF) encoding 264 amino acids. Pd-DAX1 shares highly identical sequence with DAX1 homologues from different species. The expression profiles of Pd-DAX1 in different developmental stages and diverse adult tissues were analyzed by quantitative real-time RT-PCR and in situ hybridization (ISH). Pd-DAX1 was continuously expressed during embryogenesis, with the extensive distribution in the development of the central nervous system. Tissue distribution analysis revealed that Pd-DAX1 expressed widely in adult tissues, with the highest expression level found in testis, moderate level in ovary, showing a sex-dimorphic expression pattern. Pd-DAX1 mainly located in spermatogonia cells, spermatocytes, primary oocytes and previtellogenic oocyte cells, implying that Pd-DAX1 may involve in gametogenesis. These preliminary findings suggest that Pd-DAX1 gene is highly conserved during vertebrate evolution and involved in a wide range of developmental processes including embryogenesis, central nervous system development and gonad development.
Collapse
Affiliation(s)
- Xiaohua Xia
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, 453007, Henan, People's Republic of China.
| | - Weiran Huo
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, 453007, Henan, People's Republic of China
| | - Ruyan Wan
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, 453007, Henan, People's Republic of China
| | - Peijin Wang
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, 453007, Henan, People's Republic of China
| | - Zhongjie Chang
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, 453007, Henan, People's Republic of China
| |
Collapse
|
11
|
Wang N, Tan HY, Chan YT, Guo W, Li S, Feng Y. Identification of WT1 as determinant of heptatocellular carcinoma and its inhibition by Chinese herbal medicine Salvia chinensis Benth and its active ingredient protocatechualdehyde. Oncotarget 2017; 8:105848-105859. [PMID: 29285297 PMCID: PMC5739684 DOI: 10.18632/oncotarget.22406] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 09/22/2017] [Indexed: 01/02/2023] Open
Abstract
Candidates from Chinese herbal Medicine might be preferable in drug discovery as the abundant experiences of traditional use usually hint the clinical efficacy. In this study, we screened the anti-tumour effect of several commonly used Chinese herbal Medicines on human hepatocellular carcinoma cells (HCC). We identified that Salvia chinensia Benth. (Shijianchuan in Chinese, SJC) exhibited prominent in vitro inhibition of HCC cells and suppressed the orthotopic growth of HCC in the liver of mice and repressed the lung metastasis of tumour cells. Using a pathway-specific PCR array and Gene Ontology analysis, we identified that Wnt/β-catenin pathway was associated with the suppressive effect of SJC on HCC cell proliferation and cell cycle progression. SJC repressed transcription activity of Wnt/β-catenin pathway and reduced expression of β-catenin in GSK-3β-independent but promoter-specific transcription inhibition mechanism. The suppressive effect of SJC on β-catenin expression and its transcription activity was associated with Wilms' tumor 1 (WT1) protein. WT1 was overexpressed in HCC tissues, and was negatively correlated to the overall survival of HCC patients. WT1 promoted proliferation and invasion of HCC cells, as well as β-catenin-dependent transcription activation of Wnt products, while knockdown of WT1 had the opposite effect. Docking experiment revealed that protocatechualdehyde (PCA) might be the active component of the herb. PCA suppressed transcription activity of Wnt/β-catenin pathway in WT1-dependent manner. Our study sheds light on the potential of PCA from commonly used anti-cancer Chinese herbal Medicine SJC as a lead compound targeting WT1 in the discovery of anti-HCC drugs.
Collapse
Affiliation(s)
- Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., China
| | - Hor-Yue Tan
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., China
| | - Yau-Tuen Chan
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., China
| | - Wei Guo
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., China
| | - Sha Li
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., China
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., China
| |
Collapse
|
12
|
Abstract
The study of genes mutated in human disease often leads to new insights into biology as well as disease mechanisms. One such gene is Wilms' tumour 1 (WT1), which plays multiple roles in development, tissue homeostasis and disease. In this Primer, I summarise how this multifaceted gene functions in various mammalian tissues and organs, including the kidney, gonads, heart and nervous system. This is followed by a discussion of our current understanding of the molecular mechanisms by which WT1 and its two major isoforms regulate these processes at the transcriptional and post-transcriptional levels.
Collapse
Affiliation(s)
- Nicholas D Hastie
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road (S), Edinburgh, EH4 2XU, UK
| |
Collapse
|
13
|
CRISPR/Cas9-induced disruption of wt1a and wt1b reveals their different roles in kidney and gonad development in Nile tilapia. Dev Biol 2017; 428:63-73. [PMID: 28527702 DOI: 10.1016/j.ydbio.2017.05.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/06/2017] [Accepted: 05/17/2017] [Indexed: 12/20/2022]
Abstract
Wilms tumor 1 (Wt1) is an essential factor for urogenital system development. Teleosts have two wt1s, named as wt1a and wt1b. In this study, the expression pattern of wt1a and wt1b and their functions on the urogenital system were analyzed by in situ hybridization and CRISPR/Cas9. wt1a was found to be expressed in the glomerulus at 3 dah (days after hatching), earlier than wt1b. wt1a and wt1b were simultaneously expressed in the somatic cells of gonads at 3 dah, while their cell locations were similar, but not identical in adult fish gonads. The wt1a-/- fish displayed pericardial edema and yolk sac edema at 3 dah and subsequently expanded as general body edema at 6 dah, failed to develop glomerulus and died during 6-10 dah, whereas the wt1b-/- fish were phenotypically normal. Immunohistochemical analyses revealed that the germ cell marker Vasa was expressed, while somatic cell genes Cyp19a1a, Amh, Gsdf and Dmrt1 were not expressed in the wt1a-/- gonads at 6 dah. The sex phenotypes of XX and XY in the wt1b-/- fish were not affected. Real-time PCR revealed that the ovarian cyp19a1a expression was up-regulated in XX wt1b-/- fish, compared with XX control at 90 dah. Serum estradiol-17β level was also up-regulated in XX wt1b-/- fish at 90 and 180 dah. The XY wt1b-/- fish had normal serum estradiol-17β and 11-ketotestosterone levels and remained fertile. These results suggest that Wt1a and Wt1b have different functions in the kidneys and gonads of tilapia.
Collapse
|
14
|
Wang X, Garrett MR. Nephron number, hypertension, and CKD: physiological and genetic insight from humans and animal models. Physiol Genomics 2017; 49:180-192. [PMID: 28130427 DOI: 10.1152/physiolgenomics.00098.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The kidneys play a vital role in the excretion of waste products and the regulation of electrolytes, maintenance of acid-base balance, regulation of blood pressure, and production of several hormones. Any alteration in the structure of the nephron (basic functional unit of the kidney) can have a major impact on the kidney's ability to work efficiently. Progressive decline in kidney function can lead to serious illness and ultimately death if not treated by dialysis or transplantation. While there have been numerous studies that implicate lower nephron numbers as being an important factor in influencing susceptibility to developing hypertension and chronic kidney disease, a direct association has been difficult to establish because of three main limitations: 1) the large variation in nephron number observed in the human population; 2) no established reliable noninvasive methods to determine nephron complement; and 3) to date, nephron measurements have been done after death, which doesn't adequately account for potential loss of nephrons with age or disease. In this review, we will provide an overview of kidney structure/function, discuss the current literature for both humans and other species linking nephron deficiency and cardio-renal complications, as well as describe the major molecular signaling factors involved in nephrogenesis that modulate variation in nephron number. As more detailed knowledge about the molecular determinants of nephron development and the role of nephron endowment in the cardio-renal system is obtained, it will hopefully provide clinicians the ability to accurately identify people at risk to develop CKD/hypertension and lead to a shift in patient care from disease treatment to prevention.
Collapse
Affiliation(s)
- Xuexiang Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Michael R Garrett
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi; and .,Department of Medicine (Nephrology) and Pediatrics (Genetics), University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
15
|
Abstract
The Wilms' tumor suppressor gene 1 (Wt1) is critically involved in a number of developmental processes in vertebrates, including cell differentiation, control of the epithelial/mesenchymal phenotype, proliferation, and apoptosis. Wt1 proteins act as transcriptional and post-transcriptional regulators, in mRNA splicing and in protein-protein interactions. Furthermore, Wt1 is involved in adult tissue homeostasis, kidney function, and cancer. For these reasons, Wt1 function has been extensively studied in a number of animal models to establish its spatiotemporal expression pattern and the developmental fate of the cells expressing this gene. In this chapter, we review the developmental anatomy of Wt1, collecting information about its dynamic expression in mesothelium, kidney, gonads, cardiovascular system, spleen, nervous system, lung, and liver. We also describe the adult expression of Wt1 in kidney podocytes, gonads, mesothelia, visceral adipose tissue, and a small fraction of bone marrow cells. We have reviewed the available animal models for Wt1-expressing cell lineage analysis, including direct Wt1 expression reporters and systems for permanent Wt1 lineage tracing, based on constitutive or inducible Cre recombinase expression under control of a Wt1 promoter. Finally we provide a number of laboratory protocols to be used with these animal models in order to assess reporter expression.
Collapse
|
16
|
Kopan R, Chen S, Little M. Nephron progenitor cells: shifting the balance of self-renewal and differentiation. Curr Top Dev Biol 2014; 107:293-331. [PMID: 24439811 DOI: 10.1016/b978-0-12-416022-4.00011-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Within the developing mammalian kidney, several populations of progenitors form the discrete cellular components of the final organ. Fate mapping experiments revealed the cap mesenchyme (CM) to be the progenitor population for all nephron epithelial cells, whereas the neighboring stromal mesenchyme gives rise to mesangial, pericytic, renin-producing and interstitial cells. The collecting ducts are derived from a population of progenitors at the ureteric bud (UB) tip and a proportion of the endothelium is also derived from a dedicated mesenchymal progenitor. The stroma, CM, and UB interact to create spatially defined niches at the periphery of the developing organ. While the UB tip population persist, the CM represents a transient progenitor population that is exhausted to set the final organ size. The timing of CM exhaustion, and hence the final organ structure, is sensitive to disruptions such as premature birth. Here we will discuss our current understanding of the molecular processes allowing these populations to balance cell survival, self-renewal, support of branching, and maintain capacity to commit to differentiation.
Collapse
Affiliation(s)
- Raphael Kopan
- Department of Developmental Biology, Washington University, St. Louis, Missouri, USA; Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital, Cincinnati, Ohio, USA.
| | - Shuang Chen
- Department of Developmental Biology, Washington University, St. Louis, Missouri, USA
| | - Melissa Little
- Department of Developmental Biology, Washington University, St. Louis, Missouri, USA; Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
| |
Collapse
|
17
|
Abstract
The WT1 (Wilms' tumour 1) gene encodes a zinc finger transcription factor and RNA-binding protein that direct the development of several organs and tissues. WT1 manifests both tumour suppressor and oncogenic activities, but the reasons behind these opposing functions are still not clear. As a transcriptional regulator, WT1 can either activate or repress numerous target genes resulting in disparate biological effects such as growth, differentiation and apoptosis. The complex nature of WT1 is exemplified by a plethora of isoforms, post-translational modifications and multiple binding partners. How WT1 achieves specificity to regulate a large number of target genes involved in diverse physiological processes is the focus of the present review. We discuss the wealth of the growing molecular information that defines our current understanding of the versatility and utility of WT1 as a master regulator of organ development, a tumour suppressor and an oncogene.
Collapse
|
18
|
Ozdemir DD, Hohenstein P. Wt1 in the kidney--a tale in mouse models. Pediatr Nephrol 2014; 29:687-93. [PMID: 24240471 DOI: 10.1007/s00467-013-2673-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 10/14/2013] [Accepted: 10/21/2013] [Indexed: 10/26/2022]
Abstract
The WT1 gene was originally identified through its involvement in the development of Wilms tumours. The gene is characterized by a plethora of different isoforms with, in some cases, clearly different functions in transcriptional control and RNA metabolism. Many different mouse models for Wt1 have already been generated, and these are increasingly providing new information on the molecular roles of Wt1 in normal development and disease. In this review we discuss the different models that have been generated and what they have taught us about the role of Wt1 in the kidney.
Collapse
Affiliation(s)
- Derya Deniz Ozdemir
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | | |
Collapse
|
19
|
DAX1 regulatory networks unveil conserved and potentially new functions. Gene 2013; 530:66-74. [PMID: 23954228 DOI: 10.1016/j.gene.2013.07.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 07/09/2013] [Indexed: 11/22/2022]
Abstract
DAX1 is an orphan nuclear receptor with actions in mammalian sex determination, regulation of steroidogenesis, embryonic development and neural differentiation. Conserved patterns of DAX1 gene expression from mammals to fish have been taken to suggest conserved function. In the present study, the European sea bass, Dicentrarchus labrax, DAX1 promoter was isolated and its conserved features compared to other fish and mammalian DAX1 promoters in order to derive common regulators and functional gene networks. Fish and mammalian DAX1 promoters share common sets of transcription factor frameworks which were also present in the promoter region of another 127 genes. Pathway analysis clustered these into candidate gene networks associated with the fish and mammalian DAX1. The networks identified are concordant with described functions for DAX1 in embryogenesis, regulation of transcription, endocrine development and steroid production. Novel candidate gene network partners were also identified, which implicate DAX1 in ion homeostasis and transport, lipid transport and skeletal development. Experimental evidence is provided supporting roles for DAX1 in steroid signalling and osmoregulation in fish. These results highlight the usefulness of the in silico comparative approach to analyse gene regulation for hypothesis generation. Conserved promoter architecture can be used also to predict potentially new gene functions. The approach reported can be applied to genes from model and non-model species.
Collapse
|
20
|
Lee WK, Chakraborty PK, Thévenod F. Pituitary homeobox 2 (PITX2) protects renal cancer cell lines against doxorubicin toxicity by transcriptional activation of the multidrug transporter ABCB1. Int J Cancer 2013; 133:556-67. [PMID: 23354914 DOI: 10.1002/ijc.28060] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 12/16/2012] [Accepted: 01/08/2013] [Indexed: 12/21/2022]
Abstract
The multidrug resistance (MDR) P-glycoprotein ABCB1 plays a major role in MDR of malignant cells and is regulated by various transcription factors, including Wnt/β-catenin/TCF4. The transcription factor PITX2 (Pituitary homeobox-2) is essential for embryonic development. PITX2 operates by recruiting and interacting with β-catenin to increase the expression of growth-regulating genes, such as cyclin D1/2 and c-Myc. The importance of PITX2 in malignancy is not yet known. Here we demonstrate that in the renal cancer cell lines ACHN and A498, the level of ABCB1 expression and function correlate with nuclear PITX2 localization and PITX2-luciferase reporter gene activity (A498 > ACHN). In A498 cells, doxorubicin toxicity is augmented by the ABCB1 inhibitor, PSC833. PITX2 overexpression increases ABCB1 expression and cell survival in ACHN cells. Silencing of PITX2 by siRNA downregulates ABCB1 and induces a greater chemotherapeutic response to doxorubicin in A498 cells, as determined by MTT cell viability and clonogenic survival assays. Two PITX2 binding sequences were identified in the ABCB1 promoter sequence. PITX2 binding was confirmed by chromatin immunoprecipitation. β-Catenin is not required for PITX2 upregulation of ABCB1 because ABCB1 mRNA increased and doxorubicin toxicity decreased upon PITX2 overexpression in β-catenin(-/-) cells. The data show for the first time that ABCB1 is a target gene of PITX2 transcriptional activity, promoting MDR and cell survival of cancer cells.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Antibiotics, Antineoplastic/pharmacology
- Carcinoma, Renal Cell/drug therapy
- Cell Line, Tumor
- Cell Survival
- Chromatin Immunoprecipitation
- Cyclosporins/pharmacology
- Doxorubicin/pharmacology
- Gene Expression Regulation, Neoplastic
- Homeodomain Proteins/metabolism
- Humans
- Kidney Neoplasms/drug therapy
- Promoter Regions, Genetic
- RNA Interference
- RNA, Messenger/biosynthesis
- RNA, Small Interfering
- Signal Transduction/genetics
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcriptional Activation
- beta Catenin/genetics
- Homeobox Protein PITX2
Collapse
Affiliation(s)
- Wing-Kee Lee
- Institute of Physiology and Pathophysiology, ZBAF, Witten/Herdecke University, Witten, North-Rhine Westphalia, Germany
| | | | | |
Collapse
|
21
|
Pulkkinen K, Murugan S, Vainio S. Wnt signaling in kidney development and disease. Organogenesis 2012; 4:55-9. [PMID: 19279716 DOI: 10.4161/org.4.2.5849] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 03/06/2008] [Indexed: 01/09/2023] Open
Abstract
The Wnt gene family, which encodes secreted growth and differentiation factors, has been implicated in kidney organogenesis. The Wnts control both ureteric bud development and signaling, but they also serve as inductive factors to regulate nephrogenesis in the mesenchcymal cells. Several of the Wnt genes are expressed in the developing kidney, and gene knock-out studies have revealed specific developmental functions for these. Consistent with this, changes in Wnt ligands and pathway components are associated with many kidney diseases, including kidney cancers, renal fibrosis, cystic kidney diseases, acute renal failure, diabetic nephropathy and ischaemic injury. It is these associations of the Wnt signaling system with kidney development and kidney diseases that form to topic of this review.
Collapse
Affiliation(s)
- Kaisa Pulkkinen
- Department of Medical Biochemistry and Molecular Biology and Biocenter Oulu; Laboratory of Developmental Biology; University of Oulu; Oulu, Finland
| | | | | |
Collapse
|
22
|
Murugan S, Shan J, Kühl SJ, Tata A, Pietilä I, Kühl M, Vainio SJ. WT1 and Sox11 regulate synergistically the promoter of the Wnt4 gene that encodes a critical signal for nephrogenesis. Exp Cell Res 2012; 318:1134-45. [DOI: 10.1016/j.yexcr.2012.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 03/07/2012] [Accepted: 03/10/2012] [Indexed: 01/19/2023]
|
23
|
Little MH, McMahon AP. Mammalian kidney development: principles, progress, and projections. Cold Spring Harb Perspect Biol 2012; 4:a008300. [PMID: 22550230 PMCID: PMC3331696 DOI: 10.1101/cshperspect.a008300] [Citation(s) in RCA: 308] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The mammalian kidney is a vital organ with considerable cellular complexity and functional diversity. Kidney development is notable for requiring distinct but coincident tubulogenic processes involving reciprocal inductive signals between mesenchymal and epithelial progenitor compartments. Key molecular pathways mediating these interactions have been identified. Further, advances in the analysis of gene expression and gene activity, coupled with a detailed knowledge of cell origins, are enhancing our understanding of kidney morphogenesis and unraveling the normal processes of postnatal repair and identifying disease-causing mechanisms. This article focuses on recent insights into central regulatory processes governing organ assembly and renal disease, and predicts future directions for the field.
Collapse
Affiliation(s)
- Melissa H Little
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Australia.
| | | |
Collapse
|
24
|
Mill C, George SJ. Wnt signalling in smooth muscle cells and its role in cardiovascular disorders. Cardiovasc Res 2012; 95:233-40. [PMID: 22492675 DOI: 10.1093/cvr/cvs141] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Vascular smooth muscle cells (SMCs) are the major cell type within blood vessels. SMCs exhibit low rates of proliferation, migration, and apoptosis in normal blood vessels. However, increased SMC proliferation, migration, and apoptosis rates radically alter the composition and structure of the blood vessel wall and contribute to cardiovascular diseases, such as atherosclerosis, and restenosis that occur after coronary artery vein grafting and stent implantation. Consequently, therapies that modulate SMC proliferation, migration, and apoptosis may be useful for treating cardiovascular diseases. The family of Wnt proteins, which were first identified in the wingless drosophila, has a well-established role in embryogenesis and development. It is now emerging that Wnt proteins also regulate SMC proliferation, migration, and survival. In this review article, we discuss recently emerging research that has revealed that Wnt proteins are important regulators of SMC behaviour via activation of β-catenin-dependent and β-catenin-independent Wnt signalling pathways.
Collapse
Affiliation(s)
- Carina Mill
- Bristol Heart Institute, School of Clinical Sciences, Research Floor Level 7, Bristol Royal Infirmary, Upper Maudlin St, Bristol BS2 8HW, UK
| | | |
Collapse
|
25
|
Miller-Hodges E, Hohenstein P. WT1 in disease: shifting the epithelial-mesenchymal balance. J Pathol 2011; 226:229-40. [PMID: 21959952 DOI: 10.1002/path.2977] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/07/2011] [Accepted: 07/23/2011] [Indexed: 12/13/2022]
Abstract
WT1 is a versatile gene that controls transitions between the mesenchymal and epithelial state of cells in a tissue-context dependent manner. As such, WT1 is indispensable for normal development of many organs and tissues. Uncontrolled epithelial to mesenchymal transition (EMT) is a hallmark of a diverse array of pathologies and disturbance of mesenchymal to epithelial transition (MET) has been associated with a number of developmental abnormalities. It is therefore not surprising that WT1 has been linked to many of these. Here we review the role of WT1 in proper control of the mesenchymal-epithelial balance of cells and discuss how far these roles can explain the role of WT1 in a variety of disease states.
Collapse
Affiliation(s)
- Eve Miller-Hodges
- MRC Human Genetics Unit and Institute for Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | | |
Collapse
|
26
|
Essafi A, Webb A, Berry RL, Slight J, Burn SF, Spraggon L, Velecela V, Martinez-Estrada OM, Wiltshire JH, Roberts SGE, Brownstein D, Davies JA, Hastie ND, Hohenstein P. A wt1-controlled chromatin switching mechanism underpins tissue-specific wnt4 activation and repression. Dev Cell 2011; 21:559-74. [PMID: 21871842 DOI: 10.1016/j.devcel.2011.07.014] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 03/28/2011] [Accepted: 07/27/2011] [Indexed: 11/16/2022]
Abstract
Wt1 regulates the epithelial-mesenchymal transition (EMT) in the epicardium and the reverse process (MET) in kidney mesenchyme. The mechanisms underlying these reciprocal functions are unknown. Here, we show in both embryos and cultured cells that Wt1 regulates Wnt4 expression dichotomously. In kidney cells, Wt1 recruits Cbp and p300 as coactivators; in epicardial cells it enlists Basp1 as a corepressor. Surprisingly, in both tissues, Wt1 loss reciprocally switches the chromatin architecture of the entire Ctcf-bounded Wnt4 locus, but not the flanking regions; we term this mode of action "chromatin flip-flop." Ctcf and cohesin are dispensable for Wt1-mediated chromatin flip-flop but essential for maintaining the insulating boundaries. This work demonstrates that a developmental regulator coordinates chromatin boundaries with the transcriptional competence of the flanked region. These findings also have implications for hierarchical transcriptional regulation in development and disease.
Collapse
Affiliation(s)
- Abdelkader Essafi
- MRC Human Genetics Unit and Institute for Genetics and Molecular Medicine, Western General Hospital, Edinburgh EH4 2XU, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Falahatpisheh MH, Nanez A, Ramos KS. AHR regulates WT1 genetic programming during murine nephrogenesis. Mol Med 2011; 17:1275-84. [PMID: 21863216 DOI: 10.2119/molmed.2011.00125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Accepted: 08/17/2011] [Indexed: 11/06/2022] Open
Abstract
Mounting evidence suggests that the blueprint of chronic renal disease is established during early development by environmental cues that dictate alterations in differentiation programming. Here we show that aryl hydrocarbon receptor (AHR), a lig-and-activated basic helix-loop-helix-PAS homology domain transcription factor, disrupts murine renal differentiation by interfering with Wilms tumor suppressor gene (WT1) signaling in the developing kidney. Embryonic kidneys of C57BL/6J Ahr⁻/⁻ mice at gestation d (GD) 14 showed reduced condensation in the nephrogenic zone and decreased numbers of differentiated structures compared with wild-type mice. These deficits correlated with increased expression of the (+) 17aa Wt1 splice variant, decreased mRNA levels of Igf-1 rec., Wnt-4 and E-cadherin, and reduced levels of 52 kDa WT1 protein. AHR knockdown in wild-type embryonic kidney cells mimicked these alterations with notable increases in (+) 17aa Wt1 mRNA, reduced levels of 52 kDa WT1 protein, and increased (+) 17aa 40-kDa protein. AHR downregulation also reduced Igf-1 rec., Wnt-4, secreted frizzled receptor binding protein-1 (sfrbp-1) and E-cadherin mRNAs. In the case of Igf-1 rec. and Wnt-4, genetic disruption was fully reversed upon restoration of cellular Wt1 protein levels, confirming that functional interactions between AHR and Wt1 represent a likely molecular target for renal developmental interference.
Collapse
Affiliation(s)
- M Hadi Falahatpisheh
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | | | | |
Collapse
|
28
|
Hu Q, Gao F, Tian W, Ruteshouser EC, Wang Y, Lazar A, Stewart J, Strong LC, Behringer RR, Huff V. Wt1 ablation and Igf2 upregulation in mice result in Wilms tumors with elevated ERK1/2 phosphorylation. J Clin Invest 2011; 121:174-83. [PMID: 21123950 PMCID: PMC3007149 DOI: 10.1172/jci43772] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 10/06/2010] [Indexed: 01/13/2023] Open
Abstract
Wilms tumor (WT) is a genetically heterogeneous childhood kidney tumor. Several genetic alterations have been identified in WT patients, including inactivating mutations in WT1 and loss of heterozygosity or loss of imprinting at 11p15, which results in biallelic expression of IGF2. However, the mechanisms by which one or a combination of genetic alterations results in tumorigenesis has remained challenging to determine, given the lack of a mouse model of WT. Here, we engineered mice to sustain mosaic, somatic ablation of Wt1 and constitutional Igf2 upregulation, mimicking a subset of human tumors. Mice with this combination of genetic alterations developed tumors at an early age. Mechanistically, Wt1 ablation blocked mesenchyme differentiation, and increased Igf2 expression upregulated ERK1/2 phosphorylation. Importantly, a subset of human tumors similarly displayed upregulation of ERK1/2 phosphorylation, which suggests ERK signaling might contribute to WT development. Thus, we have generated a biologically relevant mouse model of WT and defined one combination of driver alterations for WT. This mouse model will provide a powerful tool to study the biology of WT initiation and progression and to investigate therapeutic strategies for cancers with IGF pathway dysregulation.
Collapse
Affiliation(s)
- Qianghua Hu
- Department of Genetics,
Department of Experimental Therapeutics, and
Department of Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA.
Graduate Program in Genes and Development and
Graduate Program in Human Molecular Genetics, UT-Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Fei Gao
- Department of Genetics,
Department of Experimental Therapeutics, and
Department of Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA.
Graduate Program in Genes and Development and
Graduate Program in Human Molecular Genetics, UT-Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Weihua Tian
- Department of Genetics,
Department of Experimental Therapeutics, and
Department of Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA.
Graduate Program in Genes and Development and
Graduate Program in Human Molecular Genetics, UT-Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - E. Cristy Ruteshouser
- Department of Genetics,
Department of Experimental Therapeutics, and
Department of Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA.
Graduate Program in Genes and Development and
Graduate Program in Human Molecular Genetics, UT-Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Yaqing Wang
- Department of Genetics,
Department of Experimental Therapeutics, and
Department of Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA.
Graduate Program in Genes and Development and
Graduate Program in Human Molecular Genetics, UT-Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Alexander Lazar
- Department of Genetics,
Department of Experimental Therapeutics, and
Department of Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA.
Graduate Program in Genes and Development and
Graduate Program in Human Molecular Genetics, UT-Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - John Stewart
- Department of Genetics,
Department of Experimental Therapeutics, and
Department of Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA.
Graduate Program in Genes and Development and
Graduate Program in Human Molecular Genetics, UT-Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Louise C. Strong
- Department of Genetics,
Department of Experimental Therapeutics, and
Department of Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA.
Graduate Program in Genes and Development and
Graduate Program in Human Molecular Genetics, UT-Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Richard R. Behringer
- Department of Genetics,
Department of Experimental Therapeutics, and
Department of Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA.
Graduate Program in Genes and Development and
Graduate Program in Human Molecular Genetics, UT-Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Vicki Huff
- Department of Genetics,
Department of Experimental Therapeutics, and
Department of Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA.
Graduate Program in Genes and Development and
Graduate Program in Human Molecular Genetics, UT-Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
29
|
Abstract
The process of sexual differentiation is central for reproduction of almost all metazoan, and therefore, for maintenance of practically all multicellular organisms. In sex development, we can distinguish two different processes, sex determination, that is the developmental decision that directs the undifferentiated embryo into a sexually dimorphic individual. In mammals, sex determination equals gonadal development. The second process known as sex differentiation takes place once the sex determination decision has been made through factors produced by the gonads that determine the development of the phenotypic sex. Most of the knowledge on the factors involved in sexual development came from animal models and from studies of cases in whom the genetic or the gonadal sex does not match the phenotypical sex, that is, patients affected by disorders of sex development (DSDs). Generally speaking, factors influencing sex determination are transcriptional regulators, whereas factors important for sex differentiation are secreted hormones and their receptors. This review focuses on these factors and whenever possible, references regarding the 'prismatic' clinical cases are given.
Collapse
Affiliation(s)
- Anna Biason-Lauber
- Division of Endocrinology/Diabetology, University Children's Hospital, Steinwiesstrasse 75, CH-8032 Zurich, Switzerland.
| |
Collapse
|
30
|
Wan X, Ji W, Mei X, Zhou J, Liu JX, Fang C, Xiao W. Negative feedback regulation of Wnt4 signaling by EAF1 and EAF2/U19. PLoS One 2010; 5:e9118. [PMID: 20161747 PMCID: PMC2817739 DOI: 10.1371/journal.pone.0009118] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Accepted: 01/20/2010] [Indexed: 01/02/2023] Open
Abstract
Previous studies indicated that EAF (ELL-associated factor) family members, EAF1 and EAF2/U19, play a role in cancer and embryogenesis. For example, EAF2/U19 may serve as a tumor suppressor in prostate cancer. At the same time, EAF2/U19 is a downstream factor in the non-canonical Wnt 4 signaling pathway required for eye development in Xenopus laevis, and along with EAF1, contributes to convergence and extension movements in zebrafish embryos through Wnt maintenance. Here, we used zebrafish embryos and mammalian cells to show that both EAF1 and EAF2/U19 were up-regulated by Wnt4 (Wnt4a). Furthermore, we found that EAF1 and EAF2/U19 suppressed Wnt4 expression by directly binding to the Wnt4 promoter as seen in chromatin immunoprecipitation assays. These findings indicate that an auto-regulatory negative feedback loop occurs between Wnt4 and the EAF family, which is conserved between zebrafish and mammalian. The rescue experiments in zebrafish embryos showed that early embryonic development required the maintenance of the appropriate levels of Wnt4a through the feedback loop. Others have demonstrated that the tumor suppressors p63, p73 and WT1 positively regulate Wnt4 expression while p21 has the opposite effect, suggesting that maintenance of appropriate Wnt4 expression may also be critical for adult tissue homeostasis and prevention against tumor initiation. Thus, the auto-regulatory negative feedback loop that controls expression of Wnt4 and EAF proteins may play an important role in both embryonic development and tumor suppression. Our findings provide the first convincing line of evidence that EAF and Wnt4 form an auto-regulatory negative feedback loop in vivo.
Collapse
Affiliation(s)
- Xiaoyang Wan
- Key Laboratory of Biodiversity and Conservation of Aquatic Organisms, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
31
|
Yu H, Pask AJ, Shaw G, Renfree MB. Comparative analysis of the mammalian WNT4 promoter. BMC Genomics 2009; 10:416. [PMID: 19732466 PMCID: PMC2758904 DOI: 10.1186/1471-2164-10-416] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 09/06/2009] [Indexed: 11/25/2022] Open
Abstract
Background WNT4 is a critical signalling molecule in embryogenesis and homeostasis, but the elements that control its transcriptional regulation are largely unknown. This study uses comparative cross species sequence and functional analyses between humans and a marsupial (the tammar wallaby,Macropus eugenii) to refine the mammalian Wnt4 promoter. Results We have defined a highly conserved 89 bp minimal promoter region in human WNT4 by comparative analysis with the tammar wallaby. There are many conserved transcription factor binding sites in the proximal promoter region, including SP1, MyoD, NFκB and AP2, as well as highly conserved CpG islands within the human, mouse and marsupial promoters, suggesting that DNA methylation may play an important role in WNT4 transcriptional regulation. Conclusion Using a marsupial model, we have been able to provide new information on the transcriptional regulators in the promoter of this essential mammalian developmental gene, WNT4. These transcription factor binding sites and CpG islands are highly conserved in two disparate mammals, and are likely key controlling elements in the regulation of this essential developmental gene.
Collapse
Affiliation(s)
- Hongshi Yu
- ARC Centre of Excellence in Kangaroo Genomics, Department of Zoology, The University of Melbourne, Victoria 3010, Australia.
| | | | | | | |
Collapse
|
32
|
Ramos KS, Nanez A. Genetic regulatory networks of nephrogenesis: deregulation of WT1 splicing by benzo(a)pyrene. ACTA ACUST UNITED AC 2009; 87:192-7. [PMID: 19530133 DOI: 10.1002/bdrc.20148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Recent studies have identified AHR as a master regulator of Wilms' tumor suppressor gene (WT1) signaling in the developing kidney. Activation of AHR signaling by environmental chemical is associated with proteasome-mediated degradation of AHR protein, disruption of WT1 alternative splicing, and marked alterations in the regulation of genetic programs of developmental progression in the developing kidney. The complexity of genetic regulatory networks of nephrogenesis controlled by AHR-WT1 interactions will be discussed here with particular emphasis given to the biological and medical consequences that may result from deficits in nephrogenesis that compromise reserve capacity and renal function later in life. Understanding the impact of early-life environmental exposures to chemicals that disrupt AHR signaling can help minimize negative health consequences to pregnant women and their offspring.
Collapse
Affiliation(s)
- Kenneth S Ramos
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Delia Baxter Building, Room 227, Louisville, KY 40292, USA.
| | | |
Collapse
|
33
|
An integrated genome screen identifies the Wnt signaling pathway as a major target of WT1. Proc Natl Acad Sci U S A 2009; 106:11154-9. [PMID: 19549856 DOI: 10.1073/pnas.0901591106] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
WT1, a critical regulator of kidney development, is a tumor suppressor for nephroblastoma but in some contexts functions as an oncogene. A limited number of direct transcriptional targets of WT1 have been identified to explain its complex roles in tumorigenesis and organogenesis. In this study we performed genome-wide screening for direct WT1 targets, using a combination of ChIP-ChIP and expression arrays. Promoter regions bound by WT1 were highly G-rich and resembled the sites for a number of other widely expressed transcription factors such as SP1, MAZ, and ZNF219. Genes directly regulated by WT1 were implicated in MAPK signaling, axon guidance, and Wnt pathways. Among directly bound and regulated genes by WT1, nine were identified in the Wnt signaling pathway, suggesting that WT1 modulates a subset of Wnt components and responsive genes by direct binding. To prove the biological importance of the interplay between WT1 and Wnt signaling, we showed that WT1 blocked the ability of Wnt8 to induce a secondary body axis during Xenopus embryonic development. WT1 inhibited TCF-mediated transcription activated by Wnt ligand, wild type and mutant, stabilized beta-catenin by preventing TCF4 loading onto a promoter. This was neither due to direct binding of WT1 to the TCF binding site nor to interaction between WT1 and TCF4, but by competition of WT1 and TCF4 for CBP. WT1 interference with Wnt signaling represents an important mode of its action relevant to the suppression of tumor growth and guidance of development.
Collapse
|
34
|
Green LM, Wagner KJ, Campbell HA, Addison K, Roberts SGE. Dynamic interaction between WT1 and BASP1 in transcriptional regulation during differentiation. Nucleic Acids Res 2009; 37:431-40. [PMID: 19050011 PMCID: PMC2632906 DOI: 10.1093/nar/gkn955] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 11/10/2008] [Accepted: 11/10/2008] [Indexed: 12/31/2022] Open
Abstract
The Wilms' tumour suppressor protein WT1 plays a central role in the development of the kidney and also other organs. WT1 can act as a transcription factor with highly context-specific activator and repressor functions. We previously identified Brain Acid Soluble Protein 1 (BASP1) as a transcriptional cosuppressor that can block the transcriptional activation function of WT1. WT1 and BASP1 are co-expressed during nephrogenesis and both proteins ultimately become restricted to the podocyte cells of the adult kidney. Here, we have analysed the WT1/BASP1 complex in a podocyte precursor cell line that can be induced to differentiate. Chromatin immunoprecipitation revealed that WT1 and BASP1 occupy the promoters of the Bak, c-myc and podocalyxin genes in podocyte precursor cells. During differentiation-dependent upregulation of podocalyxin expression BASP1 occupancy of the podocalyxin promoter is reduced compared to that of WT1. In contrast, the repressive WT1/BASP1 occupancy of the c-myc and Bak promoters is maintained and these genes are downregulated during the differentiation process. We provide evidence that the regulation of BASP1 promoter occupancy involves the sumoylation of BASP1. Our results reveal a dynamic cooperation between WT1 and BASP1 in the regulation of gene expression during differentiation.
Collapse
Affiliation(s)
| | | | | | | | - Stefan G. E. Roberts
- Faculty of Life Sciences, The Michael Smith Building University of Manchester Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
35
|
Schittenhelm J, Psaras T, Honegger J, Trautmann K, Meyermann R, Beschorner R. No evidence for WT1 involvement in a beta-catenin-independent activation of the Wnt signaling pathway in pituitary adenomas. Endocr Pathol 2009; 20:158-62. [PMID: 19437143 DOI: 10.1007/s12022-009-9078-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The overexpression of Wilms' tumor gene product WT1, which acts as a tumor suppressor or oncogene, has been reported in various malignancies. Recent studies have shown that the interaction partner Wnt-4 is upregulated in pituitary adenomas dependent on the Pit-1 lineage (somatotrophs, lactotrophs, and thyrotrophs). However, no data on WT1 expression in nontumorous pituitary tissue or pituitary adenomas is available to date. We investigated WT1 expression in 90 paraffin-embedded pituitary adenomas, including eight atypical adenomas, and in 28 nontumorous pituitary glands by immunohistochemistry. WT1 is absent in epithelial cells of all nontumorous pituitary glands and in 87 out of 90 pituitary adenomas. Only two GHomas (including one atypical adenoma) and one gonadotropin-producing adenoma expressed WT1 in the cytoplasm of single tumor cells without nuclear staining. There is no evidence that WT1 does regulate the Wnt-4/beta-catenin-independent pathway which is activated in the Pit-1-expressing subset of pituitary adenomas.
Collapse
Affiliation(s)
- J Schittenhelm
- Institute of Brain Research, University of Tübingen, Calwerstr. 3, 72076, Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Chavanas S, Adoue V, Méchin MC, Ying S, Dong S, Duplan H, Charveron M, Takahara H, Serre G, Simon M. Long-range enhancer associated with chromatin looping allows AP-1 regulation of the peptidylarginine deiminase 3 gene in differentiated keratinocyte. PLoS One 2008; 3:e3408. [PMID: 18923650 PMCID: PMC2566589 DOI: 10.1371/journal.pone.0003408] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 09/04/2008] [Indexed: 11/19/2022] Open
Abstract
Transcription control at a distance is a critical mechanism, particularly for contiguous genes. The peptidylarginine deiminases (PADs) catalyse the conversion of protein-bound arginine into citrulline (deimination), a critical reaction in the pathophysiology of multiple sclerosis, Alzheimer's disease and rheumatoid arthritis, and in the metabolism of the major epidermal barrier protein filaggrin, a strong predisposing factor for atopic dermatitis. PADs are encoded by 5 clustered PADI genes (1p35-6). Unclear are the mechanisms controlling the expression of the gene PADI3 encoding the PAD3 isoform, a strong candidate for the deimination of filaggrin in the terminally differentiating epidermal keratinocyte. We describe the first PAD Intergenic Enhancer (PIE), an evolutionary conserved non coding segment located 86-kb from the PADI3 promoter. PIE is a strong enhancer of the PADI3 promoter in Ca2+-differentiated epidermal keratinocytes, and requires bound AP-1 factors, namely c-Jun and c-Fos. As compared to proliferative keratinocytes, calcium stimulation specifically associates with increased local DNase I hypersensitivity around PIE, and increased physical proximity of PIE and PADI3 as assessed by Chromosome Conformation Capture. The specific AP-1 inhibitor nordihydroguaiaretic acid suppresses the calcium-induced increase of PADI3 mRNA levels in keratinocytes. Our findings pave the way to the exploration of deimination control during tumorigenesis and wound healing, two conditions for which AP-1 factors are critical, and disclose that long-range transcription control has a role in the regulation of the gene PADI3. Since invalidation of distant regulators causes a variety of human diseases, PIE results to be a plausible candidate in association studies on deimination-related disorders or atopic disease.
Collapse
Affiliation(s)
- Stéphane Chavanas
- UMR 5165, CNRS-Toulouse III University, CHU Purpan, Toulouse, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Morrison DJ, Kim MKH, Berkofsky-Fessler W, Licht JD. WT1 induction of mitogen-activated protein kinase phosphatase 3 represents a novel mechanism of growth suppression. Mol Cancer Res 2008; 6:1225-31. [PMID: 18644985 PMCID: PMC2587040 DOI: 10.1158/1541-7786.mcr-08-0078] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In its role as a tumor suppressor, WT1 transactivates several genes that are regulators of cell growth and differentiation pathways. For instance, WT1 induces the expression of the cell cycle regulator p21, the growth-regulating glycoprotein amphiregulin, the proapoptotic gene Bak, and the Ras/mitogen-activated protein kinase (MAPK) inhibitor Sprouty1. Here, we show that WT1 transactivates another important negative regulator of the Ras/MAPK pathway, MAPK phosphatase 3 (MKP3). In a WT1-inducible cell line that exhibits decreased cell growth and increased apoptosis on expression of WT1, microarray analysis showed that MKP3 is the most highly induced gene. This was confirmed by real-time PCR where MKP3 and other members of the fibroblast growth factor 8 syn expression group, which includes Sprouty 1 and the Ets family of transcription factors, were induced rapidly following WT1 expression. WT1 induction was associated with a block in the phosphorylation of extracellular signal-regulated kinase in response to epidermal growth factor stimulation, an effect mediated by MKP3. In the presence of a dominant-negative MKP3, WT1 could no longer block phosphorylation of extracellular signal-regulated kinase. Lastly, when MKP3 expression is down-regulated by short hairpin RNA, WT1 is less able to block Ras-mediated transformation of 3T3 cells.
Collapse
Affiliation(s)
- Debra J. Morrison
- Division of Pediatric Oncology, New York University School of Medicine
| | - Marianne KH Kim
- Division of Hematology/Oncology, Robert H. Lurie Cancer Center, Northwestern University Feinberg School of Medicine
| | | | - Jonathan D. Licht
- Division of Hematology/Oncology, Robert H. Lurie Cancer Center, Northwestern University Feinberg School of Medicine
| |
Collapse
|
38
|
A pathologic link between Wilms tumor suppressor gene, WT1, and IFI16. Neoplasia 2008; 10:69-78. [PMID: 18231640 DOI: 10.1593/neo.07869] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 11/07/2007] [Accepted: 11/08/2007] [Indexed: 11/18/2022] Open
Abstract
The Wilms tumor gene (WT1) is mutated or deleted in patients with heredofamilial syndromes associated with the development of Wilms tumors, but is infrequently mutated in sporadic Wilms tumors. By comparing the microarray profiles of syndromic versus sporadic Wilms tumors and WT1-inducible Saos-2 osteosarcoma cells, we identified interferon-inducible protein 16 (IFI16), a transcriptional modulator, as a differentially expressed gene and a candidate WT1 target gene. WT1 induction in Saos-2 osteosarcoma cells led to strong induction of IFI16 expression and its promoter activity was responsive to the WT1 protein. Immunohistochemical analysis showed that IFI16 and WT1 colocalized in WT1-replete Wilms tumors, but not in normal human midgestation fetal kidneys, suggesting that the ability of WT1 to regulate IFI16 in tumors represented an aberrant pathologic relationship. In addition, endogenous IFI16 and WT1 interacted in vivo in two Wilms tumor cell lines. Furthermore, IFI16 augmented the transcriptional activity of WT1 on both synthetic and physiological promoters. Strikingly, short hairpin RNA (shRNA)-mediated knockdown of either IFI16 or WT1 led to decreased growth of Wilms tumor cells. These data suggest that IFI16 and WT1, in certain cellular context including sporadic Wilms tumors, may support cell survival.
Collapse
|
39
|
Negative regulation of the Wnt signal by MM-1 through inhibiting expression of the wnt4 gene. Exp Cell Res 2008; 314:1217-28. [PMID: 18281035 DOI: 10.1016/j.yexcr.2008.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 12/01/2007] [Accepted: 01/06/2008] [Indexed: 11/24/2022]
Abstract
We have reported that a novel c-Myc-binding protein, MM-1, repressed the E-box-dependent transcription activity of c-Myc through TIF1beta/KAP1, a transcriptional corepressor, and that the c-fms gene was a target gene involved in this pathway. We have also reported that a mutation of A157R in MM-1, which is often observed in patients with leukemia or lymphoma, abrogated all of the repressive activities of MM-1 toward c-Myc, indicating that MM-1 is a novel tumor suppressor. In this study, to further identify target genes of MM-1, DNA microarray analysis was carried out by comparing expression levels of genes in MM-1 knockdown and parental cells, and the wnt4 gene, a member of the Wnt-beta-catenin pathway, was identified as a target gene of MM-1. Increased expression level of the wnt4 gene, accumulation and translocation of beta-catenin to the cytoplasm and nucleus, and upregulation of TCF/Lef-1, a target protein of the Wnt-beta-catenin pathway, were found in MM-1 knockdown cells. Reporter assays using various deletion constructs of the wnt4 gene promoter showed that MM-1 recognized the region spanning -286 to -229 from a transcription start site, and MM-1 complex was found to bind to this region by chromatin immunoprecipitation and gel mobility shift assays. Furthermore, it was found that Egr-1 and MM-1 were bound to this region and that both proteins mutually down-regulate promoter activity of the wnt4 gene. Since the c-myc gene is the target gene of the Wnt-beta-catenin pathway, these findings suggest that MM-1 inhibits c-Myc by a dual mechanism.
Collapse
|
40
|
Abstract
Congenital abnormalities of the kidney and urinary tract (CAKUT) occur in 1 out of 500 newborns, and constitute approximately 20-30% of all anomalies identified in the prenatal period. CAKUT has a major role in renal failure, and there is increasing evidence that certain abnormalities predispose to the development of hypertension and cardiovascular disease in adult life. Moreover, defects in nephron formation can predispose to Wilms tumour, the most frequent solid tumour in children. To understand the basis of human renal diseases, it is essential to consider how the kidney develops.
Collapse
|
41
|
Kim HS, Kim MS, Hancock AL, Harper JCP, Park JY, Poy G, Perantoni AO, Cam M, Malik K, Lee SB. Identification of Novel Wilms' Tumor Suppressor Gene Target Genes Implicated in Kidney Development. J Biol Chem 2007; 282:16278-87. [PMID: 17430890 DOI: 10.1074/jbc.m700215200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Wilms' tumor suppressor gene (WT1) encodes a zinc finger transcription factor that is vital during development of several organs including metanephric kidneys. Despite the critical regulatory role of WT1, the pathways and mechanisms by which WT1 orchestrates development remain elusive. To identify WT1 target genes, we performed a genome-wide expression profiling analysis in cells expressing inducible WT1. We identified a number of direct WT1 target genes, including the epidermal growth factor (EGF)-family ligands epiregulin and HB-EGF, the chemokine CX3CL1, and the transcription factors SLUG and JUNB. The target genes were validated using quantitative reverse transcriptase-polymerase chain reaction, small interfering RNA knockdowns, chromatin immunoprecipitation, and luciferase reporter analyses. Immunohistochemistry of fetal kidneys confirmed that a number of the WT1 target genes had overlapping expression patterns with the highly restricted spatiotemporal expression of WT1. Finally, using an in vitro embryonic kidney culture assay, we found that the addition of recombinant epiregulin, amphiregulin, CX3CL1, and interleukin-11 significantly enhanced ureteric bud branching morphogenesis. Our genome-wide screen implicates WT1 in the transcriptional regulation of the EGF-family of growth factors as well as the CX3CL1 chemokine during nephrogenesis.
Collapse
Affiliation(s)
- Ho-Shik Kim
- Genetics of Development and Disease Branch, Microarray Core Facility, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ariyaratana S, Loeb DM. The role of the Wilms tumour gene (WT1) in normal and malignant haematopoiesis. Expert Rev Mol Med 2007; 9:1-17. [PMID: 17524167 DOI: 10.1017/s1462399407000336] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In addition to its loss playing a pivotal role in the development of a childhood kidney malignancy, the Wilms tumour 1 gene (WT1) has emerged as an important factor in normal and malignant haematopoiesis. Preferentially expressed in CD34+ haematopoietic progenitors and down-regulated in more-differentiated cells, the WT1 transcription factor has been implicated in regulation of apoptosis, proliferation and differentiation. Putative target genes, such as BCL2, MYC, A1 and cyclin E, may cooperate with WT1 to modulate cell growth. However, the effects of WT1 on target gene expression appear to be isoform-specific. Certain WT1 isoforms are over-represented in leukaemia, but the exact mechanisms underlying the role of WT1 in transformation remain unclear. The ubiquity of WT1 in haematological malignancies has led to efforts to exploit it as a marker for minimal residual disease and as a prognostic factor, with conflicting results. In vitro killing of tumour cells by WT1-specific CD8+ cytotoxic T lymphocytes facilitated design of Phase I vaccine trials that showed clinical regression of WT1-positive tumours. Alternative methods employing WT1-specific immunotherapy are being investigated and might ultimately be used to optimise multimodal therapy of haematological malignancies.
Collapse
Affiliation(s)
- Suzie Ariyaratana
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| | | |
Collapse
|
43
|
Yang L, Han Y, Suarez Saiz F, Saurez Saiz F, Minden MD. A tumor suppressor and oncogene: the WT1 story. Leukemia 2007; 21:868-76. [PMID: 17361230 DOI: 10.1038/sj.leu.2404624] [Citation(s) in RCA: 341] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Wilms' tumor 1 (WT1) gene encodes a transcription factor important for normal cellular development and cell survival. The initial discovery of WT1 as the causative gene in an autosomal-recessive condition identified it as a tumor suppressor gene whose mutations are associated with urogenital disease and the development of kidney tumors. However, this view is not in keeping with the frequent finding of wild-type, full-length WT1 in human leukemia, breast cancer and several other cancers including the majority of Wilms' tumors. Rather, these observations suggest that in those conditions, WT1 has an oncogenic role in tumor formation. In this review, we explore the literature supporting both views of WT1 in human cancer and in particular human leukemias. To understand the mechanism by which WT1 can do this, we will also examine its functional activity as a transcription factor and the influence of protein partners on its dual behavior.
Collapse
Affiliation(s)
- L Yang
- Department of Cellular and Molecular Biology, Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
44
|
Spraggon L, Dudnakova T, Slight J, Lustig-Yariv O, Cotterell J, Hastie N, Miles C. hnRNP-U directly interacts with WT1 and modulates WT1 transcriptional activation. Oncogene 2007; 26:1484-91. [PMID: 16924231 DOI: 10.1038/sj.onc.1209922] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 06/26/2006] [Accepted: 06/26/2006] [Indexed: 11/09/2022]
Abstract
The Wilms' tumour suppressor gene, WT1, encodes a zinc-finger protein that is mutated in Wilms' tumours and highly expressed in a wide variety of other malignancies. WT1 is a transcription factor that is likely to have additional, post-transcriptional, regulatory roles, although the molecular mechanisms by which WT1 acts remain poorly understood. We have combined genetic and biochemical approaches to show, that endogenous WT1 binds to heterogeneous nuclear ribonuclear protein U (hnRNP-U), that this interaction does not require any other proteins or nucleic acids, involves the zinc-fingers of WT1 and the middle domain of hnRNP-U, and that hnRNP-U can modulate WT1 transcriptional activation of a bona fide WT1 target gene. These findings increase our knowledge of how WT1 exerts its transcriptional regulatory role and suggests that hnRNP-U may be a candidate Wilms' tumour gene at 1q44.
Collapse
Affiliation(s)
- L Spraggon
- MRC Human Genetics Unit, Western General Hospital, Crew Road, Edinburgh, UK
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Over the years, many apparently contradictory findings and functions have been ascribed to the protein product of the WT1 tumour suppressor gene. These include being a transcriptional activator or repressor, a function in transcription versus RNA metabolism, and these days even a function as oncogene or tumour suppressor gene. To fully understand the role of WT1 in different diseases and normal development, we will need to understand these contradictions. In this review, we will discuss the present state of knowledge and suggest that a role for WT1 in influencing the mesenchymal-epithelial state of cells might be a common function that could explain many of the previously described findings.
Collapse
Affiliation(s)
- Peter Hohenstein
- MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | | |
Collapse
|
46
|
Yu H, Pask AJ, Shaw G, Renfree MB. Differential expression of WNT4 in testicular and ovarian development in a marsupial. BMC DEVELOPMENTAL BIOLOGY 2006; 6:44. [PMID: 17014734 PMCID: PMC1609105 DOI: 10.1186/1471-213x-6-44] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Accepted: 10/03/2006] [Indexed: 12/14/2022]
Abstract
Background WNT4 is a key regulator of gonadal differentiation in humans and mice, playing a pivotal role in early embryogenesis. Using a marsupial, the tammar wallaby, in which most gonadal differentiation occurs after birth whilst the young is in the pouch, we show by quantitative PCR during early testicular and ovarian development that WNT4 is differentially expressed ingonads. Results Before birth, WNT4 mRNA expression was similar in indifferent gonads of both sexes. After birth, in females WNT4 mRNA dramatically increased during ovarian differentiation, reaching a peak by day 9–13 post partum (pp) when the ovarian cortex and medulla are first distinguishable. WNT4 protein was localised in the ovarian cortex and at the medullary boundary. WNT4 mRNA then steadily decreased to day 49, by which time all the female germ cells have entered meiotic arrest. In males, WNT4 mRNA was down-regulated in testes immediately after birth, coincident with the time that seminiferous cords normally form, and rose gradually after day 8. By day 49, when testicular androgen production normally declines, WNT4 protein was restricted to the Leydig cells. Conclusion This is the first localisation of WNT4 protein in developing gonads and is consistent with a role for WNT4 in steroidogenesis. Our data provide strong support for the suggestion that WNT4 not only functions as an anti-testis gene during early development, but is also necessary for later ovarian and testicular function.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Southern
- Blotting, Western
- Cloning, Molecular
- DNA/genetics
- DNA/isolation & purification
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Developmental/genetics
- Immunohistochemistry
- Macropodidae/embryology
- Macropodidae/genetics
- Macropodidae/growth & development
- Male
- Molecular Sequence Data
- Ovary/embryology
- Ovary/growth & development
- Ovary/metabolism
- Phylogeny
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Testis/embryology
- Testis/growth & development
- Testis/metabolism
- Time Factors
- Wnt Proteins/genetics
- Wnt Proteins/metabolism
- Wnt4 Protein
Collapse
Affiliation(s)
- Hongshi Yu
- Department of Zoology, The University of Melbourne, Victoria 3010, Australia
| | - Andrew J Pask
- Department of Zoology, The University of Melbourne, Victoria 3010, Australia
| | - Geoffrey Shaw
- Department of Zoology, The University of Melbourne, Victoria 3010, Australia
| | - Marilyn B Renfree
- Department of Zoology, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
47
|
Ito M, Miyagishi M, Murata C, Kawasaki H, Baba T, Tachi C, Taira K. Down-Regulation of Endogenous Wt1 Expression by Sry Transgene in the Murine Embryonic Mesonephros-Derived M15 Cell Line. J Reprod Dev 2006; 52:415-27. [PMID: 16571910 DOI: 10.1262/jrd.17094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wt1 is one of numerous candidate genes comprising the hypothetical chain of gene expression essential for male sex differentiation of the bipotential indifferent gonads during embryogenesis. However, the evidence in the literature is ambivalent regarding the position of Wt1 relative to Sry in this scheme; Wt1 might act either upstream or downstream of Sry. In the present study, the effects of Sry expression upon Wt1 were investigated using M15 cells (XX karyotype), which are derived from murine embryonic mesonephros and express endogenous Wt1. In 3 stably-transformed Sry-expressing M15 cell lines, we showed that the expression levels of the mRNAs coding for all 4 isoforms of the WT1 proteins were down-regulated. Similarly, Wnt 4 expression was down-regulated in these cell lines. Silencing of Sry in the transformed cell lines using ribozymes or short hairpin RNAs (shRNAs) resulted in elevated levels of Wt1 and Wnt4 expression. These results strongly indicate that Wt1 might be under the control of Sry during gonadal differentiation in the mouse. In electrophoretic mobility shift assays (EMSA), we demonstrated that the 3.7 kb 5'-upstream DNA stretch of Wt1 containing potential Sry binding sites was capable of forming molecular complexes with nuclear protein(s) from Sry expressing cells but not with those from control non-Sry expressing cells. In summary, our present results support the notion that Wt1 is located downstream of Sry and down-regulated by the sex determining gene. Although the precise biological meaning of the present findings have yet to be clarified, it is possible that Wt1 plays a dual role during gonadal differentiation, i. e., turning on Sry expression on one hand, and being down-regulated by its product, Sry, on the other, possibly forming a type of negative feed-back mechanism. Further work is needed to substantiate this view.
Collapse
Affiliation(s)
- Masanori Ito
- Gene Function Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Torban E, Dziarmaga A, Iglesias D, Chu LL, Vassilieva T, Little M, Eccles M, Discenza M, Pelletier J, Goodyer P. PAX2 activates WNT4 expression during mammalian kidney development. J Biol Chem 2005; 281:12705-12. [PMID: 16368682 DOI: 10.1074/jbc.m513181200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcription factor PAX2 is expressed during normal kidney development and is thought to influence outgrowth and branching of the ureteric bud. Mice with homozygous null Pax2 mutations have developmental defects of the midbrain-hindbrain region, optic nerve, and ear and are anephric. During nephrogenesis, PAX2 is also expressed by mesenchymal cells as they cluster and reorganize to form proximal elements of each nephron, but the function of PAX2 in these cells is unknown. In this study we hypothesized that PAX2 activates expression of WNT4, a secreted glycoprotein known to be critical for successful nephrogenesis. PAX2 protein was identified in distal portions of the "S-shaped" body, and the protein persists in the emerging proximal tubules of murine fetal kidney. PAX2 activated WNT4 promoter activity 5-fold in co-transfection assays with JTC12 cells derived from the proximal tubule. Inspection of the 5'-flanking sequence of the human WNT4 gene identified three novel PAX2 recognition motifs; each exhibited specific PAX2 protein binding in electromobility shift assays. Two motifs were contained within a completely duplicated 0.66-kb cassette. Transfection of JTC12 cells with a PAX2 expression vector was associated with a 7-fold increase in endogenous WNT4 mRNA. In contrast, Wnt4 mRNA was decreased by 60% in mesenchymal cell condensates of fetal kidney from mice with a heterozygous Pax2 mutation. We speculated that a key function of PAX2 is to activate WNT4 gene expression in metanephric mesenchymal cells as they differentiate to form elements of the renal tubules.
Collapse
Affiliation(s)
- Elena Torban
- Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Osada M, Park HL, Nagakawa Y, Begum S, Yamashita K, Wu G, Kim MS, Trink B, Sidransky D. A novel response element confers p63- and p73-specific activation of the WNT4 promoter. Biochem Biophys Res Commun 2005; 339:1120-8. [PMID: 16343436 DOI: 10.1016/j.bbrc.2005.11.118] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Accepted: 11/18/2005] [Indexed: 10/25/2022]
Abstract
The p53 tumor suppressor gene family consists of three genes, p53, p63, and p73. p53 family proteins share high homology in their DNA-binding domains but exhibit diverse biological functions. In this study, we demonstrated differential target gene activation by specific p53, p63, and p73 induction in Saos2 cells by oligonucleotide microarray expression analysis. We further analyzed the WNT4 promoter, which was induced by p63 and p73 but not p53, in order to clarify the mechanism of differential target gene activation between the three family members. Luciferase analysis showed that the WNT4 promoter harbors two p63/p73 response elements, designated RE1 and RE2. RE1 resembles the canonical p53 response element (tandem repeats of RRRCWWGYYY), located between -141 and -121, while RE2 consists of a GC-rich sequence further downstream. Neither response element alone was able to confer transcriptional activity. It is thus likely that both RE1 and RE2 are necessary in rendering p63/p73-specific activation of the WNT4 promoter.
Collapse
Affiliation(s)
- Motonobu Osada
- Department of Otolaryngology, Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Roberts SGE. Transcriptional regulation by WT1 in development. Curr Opin Genet Dev 2005; 15:542-7. [PMID: 16099645 DOI: 10.1016/j.gde.2005.08.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Accepted: 08/02/2005] [Indexed: 11/16/2022]
Abstract
The Wilms' tumour suppressor protein, WT1, plays a central role in the development of the genitourinary system and also other organs and tissues. WT1 can act as a transcriptional regulator or as an RNA processing factor in an isoform-dependent manner. The mechanisms that are used by WT1 to regulate transcription, and its associated target genes have been difficult to study, in part because the transcription function of WT1 is highly context-dependent. Recent studies have provided new insights into how WT1 achieves this specificity and have uncovered new target genes that are regulated by WT1 during development. In addition, ongoing studies of transgenic animals and analyses in kidney explant systems have revealed further roles for WT1 in development.
Collapse
Affiliation(s)
- Stefan G E Roberts
- Faculty of Life Sciences, The Michael Smith Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|