1
|
Jiang Y, Jia P, Feng X, Zhang D. Marfan syndrome: insights from animal models. Front Genet 2025; 15:1463318. [PMID: 39834548 PMCID: PMC11743488 DOI: 10.3389/fgene.2024.1463318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
Marfan syndrome (MFS) is an inherited disorder that affects the connective tissues and mainly presents in the bones, eyes, and cardiovascular system, etc. Aortic pathology is the leading cause of death in patients with Marfan syndrome. The fibrillin-1 gene (FBN1) is a major gene involved in the pathogenesis of MFS. It has been shown that the aortic pathogenesis of MFS is associated with the imbalances of the transforming growth factor-beta (TGF-β) signaling pathway. However, the exact molecular mechanism of MFS is unclear. Animal models may partially mimic MFS and are vital to the study of MFS. Several species of animals have been used for MFS studies, including chicks, cattle, mice, pigs, zebrafishes, Caenorhabditis elegans, and rabbits. These models were developed spontaneously or in combination with genetic engineering techniques. This review is to describe the TGF-β signaling pathway in MFS and the potential application of animal models to provide new therapeutic strategies for patients with MFS.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Marfan Research Group, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ping Jia
- Department of Neurosurgery Nursing, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoying Feng
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dingding Zhang
- Sichuan Provincial Key Laboratory for Genetic Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
2
|
Yoo SH, Nahm JH, Lee WK, Lee HW, Chang HY, Lee JI. Loss of Krüppel-like factor-10 facilitates the development of chemical-induced liver cancer in mice. Mol Med 2023; 29:156. [PMID: 37946098 PMCID: PMC10636809 DOI: 10.1186/s10020-023-00751-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Krüppel-like factor 10 (KLF10) is involved in a positive feedback loop that regulates transforming growth factor β (TGFβ) signaling, and TGFβ plays an important role in the pathogenesis of liver disease. Here, we investigated whether KLF10 deletion affects the development of liver fibrosis and hepatocellular carcinoma (HCC). METHODS We induced KLF10 deletion in C57BL/6 mice. Liver fibrosis was induced by feeding a diet high in fat and sucrose (high-fat diet [HFD]), whereas HCC was produced by intraperitoneal administration of N-diethylnitrosamine (DEN). An in vitro experiment was performed to evaluate the role of KLF10 in the cancer microenvironment using Hep3B and LX2 cells. An immunohistochemical study of KLF10 expression was performed using human HCC samples from 60 patients who had undergone liver resection. RESULTS KLF10 deletion resulted in an increased DEN-induced HCC burden with significant upregulation of SMAD2, although loss of KLF10 did not alter HFD-induced liver fibrosis. DEN-treated mice with KLF10 deletion exhibited increased levels of mesenchymal markers (N-cadherin and SNAI2) and tumor metastasis markers (matrix metalloproteinases 2 and 9). KLF10 depletion in Hep3B and LX2 cells using siRNA was associated with increased invasiveness. Compared with co-culture of KLF10-preserved Hep3B cells and KLF10-intact LX2 cells, co-culture of KLF10-preserved Hep3B cells and KLF10-depleted LX2 cells resulted in significantly enhanced invasion. Low KLF10 expression in resected human HCC specimens was associated with poor survival. CONCLUSION The results of this study suggest that loss of KLF10 facilitates liver cancer development with alteration in TGFβ signaling.
Collapse
Affiliation(s)
- Sung Hwan Yoo
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-Ro, Gangnam-Gu, Seoul, 06273, Republic of Korea
| | - Ji Hae Nahm
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
| | - Woon Kyu Lee
- Laboratory of Developmental Genetics, Department of Biomedical Sciences, Inha University College of Medicine, Incheon, 22212, Republic of Korea
| | - Hyun Woong Lee
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-Ro, Gangnam-Gu, Seoul, 06273, Republic of Korea
| | - Hye Young Chang
- Medical Research Center, Gangnam Severance Hospital, Seoul, 06230, Republic of Korea
| | - Jung Il Lee
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-Ro, Gangnam-Gu, Seoul, 06273, Republic of Korea.
| |
Collapse
|
3
|
Huang Y, Zeng A, Song L. Facts and prospects of peptide in targeted therapy and immune regulation against triple-negative breast cancer. Front Immunol 2023; 14:1255820. [PMID: 37691919 PMCID: PMC10485606 DOI: 10.3389/fimmu.2023.1255820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. Due to the lack of specific therapeutic targets, treatment options are limited, and the recurrence and metastasis rate is high, the overall survival of patients is poor. However, with the discovery of some new targets and the corresponding immune regulation after targeting these targets, TNBC has a new hope in treatment. The peptide has a simple structure, strong binding affinity, and high stability, and has great potential in targeted therapy and immune regulation against TNBC. This review will discuss how single peptides and peptide combinations target triple-negative breast cancer to exert immunomodulatory effects. Among them, single peptides target specific receptors on TNBC cells, act as decoys to target key ligands in the regulatory pathway, and target TME-related cells. The combinations of peptides work in the form of cancer vaccines, engineered exosomes, microRNAs and other immune-related molecular pathways, immune checkpoint inhibitors, chimeric antigen receptor T cells, and drug-peptide conjugates. This article is mainly dedicated to exploring new treatment methods for TNBC to improve the curative effect and prolong the survival time of patients.
Collapse
Affiliation(s)
- Yongxiu Huang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Anqi Zeng
- Institute of Translational Pharmacology and Clinical Application, Sichuan Academy of Chinese Medical Science, Chengdu, Sichuan, China
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Kruppel-like Factors in Skeletal Physiology and Pathologies. Int J Mol Sci 2022; 23:ijms232315174. [PMID: 36499521 PMCID: PMC9741390 DOI: 10.3390/ijms232315174] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
Kruppel-like factors (KLFs) belong to a large group of zinc finger-containing transcription factors with amino acid sequences resembling the Drosophila gap gene Krüppel. Since the first report of molecular cloning of the KLF family gene, the number of KLFs has increased rapidly. Currently, 17 murine and human KLFs are known to play crucial roles in the regulation of transcription, cell proliferation, cellular differentiation, stem cell maintenance, and tissue and organ pathogenesis. Recent evidence has shown that many KLF family molecules affect skeletal cells and regulate their differentiation and function. This review summarizes the current understanding of the unique roles of each KLF in skeletal cells during normal development and skeletal pathologies.
Collapse
|
5
|
Bhavani GS, Palanisamy A. SNAIL driven by a feed forward loop motif promotes TGF βinduced epithelial to mesenchymal transition. Biomed Phys Eng Express 2022; 8. [PMID: 35700712 DOI: 10.1088/2057-1976/ac7896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/14/2022] [Indexed: 11/12/2022]
Abstract
Epithelial to Mesenchymal Transition (EMT) plays an important role in tissue regeneration, embryonic development, and cancer metastasis. Several signaling pathways are known to regulate EMT, among which the modulation of TGFβ(Transforming Growth Factor-β) induced EMT is crucial in several cancer types. Several mathematical models were built to explore the role of core regulatory circuit of ZEB/miR-200, SNAIL/miR-34 double negative feedback loops in modulating TGFβinduced EMT. Different emergent behavior including tristability, irreversible switching, existence of hybrid EMT states were inferred though these models. Some studies have explored the role of TGFβreceptor activation, SMADs nucleocytoplasmic shuttling and complex formation. Recent experiments have revealed that MDM2 along with SMAD complex regulates SNAIL expression driven EMT. Encouraged by this, in the present study we developed a mathematical model for p53/MDM2 dependent TGFβinduced EMT regulation. Inclusion of p53 brings in an additional mechanistic perspective in exploring the EM transition. The network formulated comprises a C1FFL moderating SNAIL expression involving MDM2 and SMAD complex, which functions as a noise filter and persistent detector. The C1FFL was also observed to operate as a coincidence detector driving the SNAIL dependent downstream signaling into phenotypic switching decision. Systems modelling and analysis of the devised network, displayed interesting dynamic behavior, systems response to various inputs stimulus, providing a better understanding of p53/MDM2 dependent TGF-βinduced Epithelial to Mesenchymal Transition.
Collapse
|
6
|
Serum and Soleus Metabolomics Signature of Klf10 Knockout Mice to Identify Potential Biomarkers. Metabolites 2022; 12:metabo12060556. [PMID: 35736488 PMCID: PMC9231117 DOI: 10.3390/metabo12060556] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 12/10/2022] Open
Abstract
The transcription factor Krüppel-like factor 10 (Klf10), also known as Tieg1 for TGFβ (Inducible Early Gene-1) is known to control numerous genes in many cell types that are involved in various key biological processes (differentiation, proliferation, apoptosis, inflammation), including cell metabolism and human disease. In skeletal muscle, particularly in the soleus, deletion of the Klf10 gene (Klf10 KO) resulted in ultrastructure fiber disorganization and mitochondrial metabolism deficiencies, characterized by muscular hypertrophy. To determine the metabolic profile related to loss of Klf10 expression, we analyzed blood and soleus tissue using UHPLC-Mass Spectrometry. Metabolomics analyses on both serum and soleus revealed profound differences between wild-type (WT) and KO animals. Klf10 deficient mice exhibited alterations in metabolites associated with energetic metabolism. Additionally, chemical classes of aromatic and amino-acid compounds were disrupted, together with Krebs cycle intermediates, lipids and phospholipids. From variable importance in projection (VIP) analyses, the Warburg effect, citric acid cycle, gluconeogenesis and transfer of acetyl groups into mitochondria appeared to be possible pathways involved in the metabolic alterations observed in Klf10 KO mice. These studies have revealed essential roles for Klf10 in regulating multiple metabolic pathways whose alterations may underlie the observed skeletal muscle defects as well as other diseases.
Collapse
|
7
|
Hsu YC, Ho C, Shih YH, Ni WC, Li YC, Chang HC, Lin CL. Knockout of KLF10 Ameliorated Diabetic Renal Fibrosis via Downregulation of DKK-1. Molecules 2022; 27:2644. [PMID: 35565995 PMCID: PMC9105565 DOI: 10.3390/molecules27092644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 11/18/2022] Open
Abstract
Diabetes-induced chronic kidney disease leads to mortality and morbidity and thus poses a great health burden worldwide. Krüppel-like factor 10 (KLF10), a zinc finger-containing transcription factor, regulates numerous cellular functions, such as proliferation, differentiation, and apoptosis. In this study, we explored the effects of KLF10 on diabetes-induced renal disease by using a KLF10 knockout mice model. Knockout of KLF10 obviously diminished diabetes-induced tumor growth factor-β (TGF-β), fibronectin, and type IV collagen expression, as evidenced by immunohistochemical staining. KLF10 knockout also repressed the expression of Dickkopf-1 (DKK-1) and phosphorylated β-catenin in diabetic mice, as evidenced by immunohistochemical staining and Western blot analysis. Quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) revealed that significantly decreased type IV collagen, fibronectin, and DKK-1 existed in KLF10 knockout diabetic mice compared with control diabetic mice. Moreover, knockout of KLF10 reduced the renal fibrosis, as shown by Masson's Trichrome analysis. Overall, the results indicate that depletion of KLF10 ameliorated diabetic renal fibrosis via the downregulation of DKK-1 expression and inhibited TGF-β1 and phosphorylated β-catenin expression. Our findings suggest that KLF10 may be a promising therapeutic choice for the treatment of diabetes-induced renal fibrosis.
Collapse
Affiliation(s)
- Yung-Chien Hsu
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan; (Y.-H.S.); (W.-C.N.); (Y.-C.L.); (H.-C.C.)
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan;
| | - Cheng Ho
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan;
- Division of Endocrinology and Metabolism, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Ya-Hsueh Shih
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan; (Y.-H.S.); (W.-C.N.); (Y.-C.L.); (H.-C.C.)
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan;
| | - Wen-Chiu Ni
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan; (Y.-H.S.); (W.-C.N.); (Y.-C.L.); (H.-C.C.)
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan;
| | - Yi-Chen Li
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan; (Y.-H.S.); (W.-C.N.); (Y.-C.L.); (H.-C.C.)
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan;
| | - Hsiu-Ching Chang
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan; (Y.-H.S.); (W.-C.N.); (Y.-C.L.); (H.-C.C.)
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan;
| | - Chun-Liang Lin
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan; (Y.-H.S.); (W.-C.N.); (Y.-C.L.); (H.-C.C.)
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan;
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Kidney Research Center, Chang Gung Memorial Hospital, Taipei 105, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| |
Collapse
|
8
|
Kulkarni A, Pandey A, Trainor P, Carlisle S, Yu W, Kukutla P, Xu J. Aryl hydrocarbon receptor and Krüppel like factor 10 mediate a transcriptional axis modulating immune homeostasis in mosquitoes. Sci Rep 2022; 12:6005. [PMID: 35397616 PMCID: PMC8994780 DOI: 10.1038/s41598-022-09817-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/21/2022] [Indexed: 11/25/2022] Open
Abstract
Immune responses require delicate controls to maintain homeostasis while executing effective defense. Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor. The Krüppel-like factor 10 (KLF10) is a C2H2 zinc-finger containing transcription factor. The functions of mosquito AhR and KLF10 have not been characterized. Here we show that AhR and KLF10 constitute a transcriptional axis to modulate immune responses in mosquito Anopheles gambiae. The manipulation of AhR activities via agonists or antagonists repressed or enhanced the mosquito antibacterial immunity, respectively. KLF10 was recognized as one of the AhR target genes in the context. Phenotypically, silencing KLF10 reversed the immune suppression caused by the AhR agonist. The transcriptome comparison revealed that silencing AhR and KLF10 plus challenge altered the expression of 2245 genes in the same way. The results suggest that KLF10 is downstream of AhR in a transcriptional network responsible for immunomodulation. This AhR–KLF10 axis regulates a set of genes involved in metabolism and circadian rhythms in the context. The axis was required to suppress the adverse effect caused by the overactivation of the immune pathway IMD via the inhibitor gene Caspar silencing without a bacterial challenge. These results demonstrate that the AhR–KLF10 axis mediates an immunoregulatory transcriptional network as a negative loop to maintain immune homeostasis.
Collapse
Affiliation(s)
- Aditi Kulkarni
- Biology Department, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Ashmita Pandey
- Biology Department, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Patrick Trainor
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Samantha Carlisle
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Wanqin Yu
- Biology Department, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Phanidhar Kukutla
- Biology Department, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Jiannong Xu
- Biology Department, New Mexico State University, Las Cruces, NM, 88003, USA.
| |
Collapse
|
9
|
Zheng C, Li R, Zheng S, Fang H, Xu M, Zhong L. LINC00174 Facilitates Cell Proliferation, Cell Migration and Tumor Growth of Osteosarcoma via Regulating the TGF-β/SMAD Signaling Pathway and Upregulating SSH2 Expression. Front Mol Biosci 2021; 8:697773. [PMID: 34222341 PMCID: PMC8245779 DOI: 10.3389/fmolb.2021.697773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/02/2021] [Indexed: 01/10/2023] Open
Abstract
Osteosarcoma (OS), a frequent malignant tumor which mainly occurs in the bone. The roles of long noncoding RNAs (lncRNAs) have been revealed in cancers, including OS. LncRNA long intergenic non-protein coding RNA (LINC00174) has been validated as an oncogene in several cancers. However, the role of LINC00174 in OS has not been explored. In our research, loss-of-function assays were conducted to explore the function of LINC00174 in OS cells. Then, we explored the downstream pathway of LINC00174 in OS cells. Bioinformatics, RNA pull-down and RIP experiments investigated the downstream mechanism of LINC00174 in OS cells. Finally, in vivo assays clarified the effect of LINC00174 on tumorigenesis. We found that LINC00174 was upregulated in OS tissues and cells. LINC00174 knockdown repressed OS cell growth. Mechanistically, LINC00174 knockdown suppressed the TGF-β/SMAD pathway. LINC00174 interacted with miR-378a-3p, and slingshot protein phosphatase 2 (SSH2) 3′UTR was targeted by miR-378a-3p in OS cells. Rescue assays showed that SSH2 upregulation or miR-378a-3p inhibition counteracted the inhibitory effect of LINC00174 depletion in OS cell growth. Additionally, LINC00174 depletion suppressed tumor growth in mice. In conclusion, LINC00174 promotes OS cellular malignancy and tumorigenesis via the miR-378a-3p/SSH2 axis and the TGF-β/SMAD pathway, which might provide a novel insight for OS treatment.
Collapse
Affiliation(s)
- Changjun Zheng
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Ronghang Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Shuang Zheng
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Hongjuan Fang
- Department of Electric Diagnostic, The Fourth Hospital of Jilin University, Changchun, China
| | - Meng Xu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Lei Zhong
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Wu T, Li X, Jia X, Zhu Z, Lu J, Feng H, Shen B, Guo K, Li Y, Wang Q, Gao Z, Yu B, Ba Z, Huang Y, Wu D. Krüppel like factor 10 prevents intervertebral disc degeneration via TGF-β signaling pathway both in vitro and in vivo. J Orthop Translat 2021; 29:19-29. [PMID: 34094855 PMCID: PMC8141503 DOI: 10.1016/j.jot.2021.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/26/2021] [Accepted: 04/12/2021] [Indexed: 01/07/2023] Open
Abstract
Background Krüppel like factor 10 (KLF10), which is also known as TGF-β Inducible Early Gene-1 (TIEG1), plays a crucial role in regulating cell proliferation, cell apoptosis and inflammatory reaction in human carcinoma cells. Moreover, KLF10 knockout in mice leads to severe defects associated with muscle, skeleton and heart etc. However, the function of KLF10 in intervertebral disc degeneration (IVDD) has not been reported yet. Methods The relationship between KLF10 and IVDD were investigated in nucleus pulposus (NP) tissues from human and rats. The role of KLF10 in NP cells was explored via loss or gain of function experiments. IVDD rat models were constructed through needle puncture and the effects of KLF10 in IVDD model of rats were investigated via intradiscal injection of KLF10. Results We first found that KLF10 was lowly expressed in degenerative NP tissues and the level of KLF10 showed negative correlation with the disc grades of IVDD patients. Loss or gain of function experiments demonstrated that KLF10 could inhibit apoptosis and enhance migration and proliferation of IL-1β induced NP cells. And KLF10 overexpression reduced extracellular matrix (ECM) degeneration and enhanced ECM synthesis, whereas knockdown of KLF10 resulted in adverse effects. These positive effects of KLF10 could be reversed by the inhibition of TGF-β signaling pathway. In vivo, KLF10 overexpression alleviated IVDD. Conclusions This is the first study to reveal that KLF10 was dysregulated in IVDD and overexpressed KLF10 could alleviate IVDD by regulating TGF-β signaling pathway both in vitro and in vivo, which were involved in prohibiting apoptosis, promoting proliferation and migration of NP cells.The translational potential of this article: Overexpression of KLF10 might be an effective therapeutic strategy in the treatment of IVDD.
Collapse
Affiliation(s)
- Tongde Wu
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Xinhua Li
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xuebing Jia
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Ziqi Zhu
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jiawei Lu
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Hang Feng
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450003, Henan, China
| | - Beiduo Shen
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Kai Guo
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yuzhi Li
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Qiang Wang
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Zhiqiang Gao
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Bin Yu
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Zhaoyu Ba
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yufeng Huang
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Desheng Wu
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| |
Collapse
|
11
|
Zhang P, Katzaroff AJ, Buttitta LA, Ma Y, Jiang H, Nickerson DW, Øvrebø JI, Edgar BA. The Krüppel-like factor Cabut has cell cycle regulatory properties similar to E2F1. Proc Natl Acad Sci U S A 2021; 118:e2015675118. [PMID: 33558234 PMCID: PMC7896318 DOI: 10.1073/pnas.2015675118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Using a gain-of-function screen in Drosophila, we identified the Krüppel-like factor Cabut (Cbt) as a positive regulator of cell cycle gene expression and cell proliferation. Enforced cbt expression is sufficient to induce an extra cell division in the differentiating fly wing or eye, and also promotes intestinal stem cell divisions in the adult gut. Although inappropriate cell proliferation also results from forced expression of the E2f1 transcription factor or its target, Cyclin E, Cbt does not increase E2F1 or Cyclin E activity. Instead, Cbt regulates a large set of E2F1 target genes independently of E2F1, and our data suggest that Cbt acts via distinct binding sites in target gene promoters. Although Cbt was not required for cell proliferation during wing or eye development, Cbt is required for normal intestinal stem cell divisions in the midgut, which expresses E2F1 at relatively low levels. The E2F1-like functions of Cbt identify a distinct mechanism for cell cycle regulation that may be important in certain normal cell cycles, or in cells that cycle inappropriately, such as cancer cells.
Collapse
Affiliation(s)
- Peng Zhang
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
| | - Alexia J Katzaroff
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Laura A Buttitta
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Yiqin Ma
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
| | - Huaqi Jiang
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Derek W Nickerson
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Jan Inge Øvrebø
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
| | - Bruce A Edgar
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112;
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| |
Collapse
|
12
|
Memon A, Pyao Y, Jung Y, Choi HS, Song KD, Lee WK. The basal transcriptional activity of the murine Klf10 gene is regulated by the transcriptional factor JunB. Genes Genomics 2021; 43:343-349. [PMID: 33555508 DOI: 10.1007/s13258-020-01024-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/10/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Krüppel-like factor 10 (KLF10) belongs to the Sp1-like transcription factor family, which plays an important role in many directions, e.g., cell proliferation, apoptosis, and differentiation. Its 5' upstream regions are conserved across mammalian species. However, the regulatory mechanism has not been elucidated yet. OBJECTIVE Nonetheless the basal transcriptional regulation mechanisms of these regions are unknown. Here, we characterized it which is indispensable for the basal transcription of the Klf10 gene. METHODS Seven deletions of 5' upstream DNA fragments from the 10 kb mKlf10 genomic DNA were produced by PCR and cloned into the upstream of the luciferase (Luc) reporter gene in the pGL3 basic plasmid. RESULT The luciferase reporter assay showed that the DNA sequence at positions from -101 to +68 was required for a principle activity in the promoter of mKlf10 gene, in which transcriptional factor binding motifs, one JunB and two Sp1 sites, are included. Mutations at the sequence of JunB motif, but not at the two Sp1, abrogated the promoter activity completely, suggesting the indispensable role of JunB site for basal transcription of mKlf10 gene. Moreover, electrophoretic mobility and supershift assays (EMSA) uncovered that JunB protein bound to this region specifically. CONCLUSION Taken together, our study revealed that the JunB but not Sp1 at mKlf10 promoter functions as a positive basic factor for the transcriptional activity of the gene.
Collapse
Affiliation(s)
- Azra Memon
- Department of Biomedical Sciences, School of Medicine, Inha University, Incheon, 22212, South Korea
| | - Yuliya Pyao
- Department of Biomedical Sciences, School of Medicine, Inha University, Incheon, 22212, South Korea
| | - Yerin Jung
- Department of Biomedical Sciences, School of Medicine, Inha University, Incheon, 22212, South Korea
| | - Hwa-Sik Choi
- Department of Biomedical Laboratory Science, Shinhan University, Uijeongbu, 11644, South Korea
| | - Ki-Duk Song
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896, South Korea.
| | - Woon Kyu Lee
- Department of Biomedical Sciences, School of Medicine, Inha University, Incheon, 22212, South Korea.
| |
Collapse
|
13
|
Wara AK, Wang S, Wu C, Fang F, Haemmig S, Weber BN, Aydogan CO, Tesmenitsky Y, Aliakbarian H, Hawse JR, Subramaniam M, Zhao L, Sage PT, Tavakkoli A, Garza A, Lynch L, Banks AS, Feinberg MW. KLF10 Deficiency in CD4 + T Cells Triggers Obesity, Insulin Resistance, and Fatty Liver. Cell Rep 2020; 33:108550. [PMID: 33378664 PMCID: PMC7816773 DOI: 10.1016/j.celrep.2020.108550] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 11/15/2019] [Accepted: 12/02/2020] [Indexed: 12/21/2022] Open
Abstract
CD4+ T cells regulate inflammation and metabolism in obesity. An imbalance of CD4+ T regulatory cells (Tregs) is critical in the development of insulin resistance and diabetes. Although cytokine control of this process is well understood, transcriptional regulation is not. KLF10, a member of the Kruppel-like transcription factor family, is an emerging regulator of immune cell function. We generated CD4+-T-cell-specific KLF10 knockout (TKO) mice and identified a predisposition to obesity, insulin resistance, and fatty liver due to defects of CD4+ Treg mobilization to liver and adipose tissue depots and decreased transforming growth factor β3 (TGF-β3) release in vitro and in vivo. Adoptive transfer of wild-type CD4+ Tregs fully rescued obesity, insulin resistance, and fatty liver. Mechanistically, TKO Tregs exhibit reduced mitochondrial respiration and glycolysis, phosphatidylinositol 3-kinase (PI3K)-Akt-mTOR signaling, and consequently impaired chemotactic properties. Collectively, our study identifies CD4+ T cell KLF10 as an essential regulator of obesity and insulin resistance by altering Treg metabolism and mobilization.
Collapse
Affiliation(s)
- Akm Khyrul Wara
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shijia Wang
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chun Wu
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fang Fang
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Stefan Haemmig
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Brittany N Weber
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ceren O Aydogan
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Cerrahpasa District, Kocamustafapasa Street, Number 34/E, Fatih, Istanbul, Turkey
| | - Yevgenia Tesmenitsky
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hassan Aliakbarian
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Lei Zhao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Peter T Sage
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ali Tavakkoli
- Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Cerrahpasa District, Kocamustafapasa Street, Number 34/E, Fatih, Istanbul, Turkey
| | - Amanda Garza
- Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Lydia Lynch
- Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Alexander S Banks
- Department of Medicine, Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Mark W Feinberg
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Lee JM, Ko JY, Park JW, Lee WK, Song SU, Im GI. KLF10 is a modulatory factor of chondrocyte hypertrophy in developing skeleton. J Orthop Res 2020; 38:1987-1995. [PMID: 32144802 DOI: 10.1002/jor.24653] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 01/17/2020] [Accepted: 02/29/2020] [Indexed: 02/04/2023]
Abstract
To define the functional role of Krüppel-like factor (KLF) 10 as a modulator of chondrocyte hypertrophy in developing skeleton, the developmental features in the long bone of KLF10 knockout (KO) mice were investigated and the mesenchymal stem cells (MSCs) from KLF10 KO mice were characterized regarding chondrogenesis and osteogenesis. Delayed long bone growth and delayed formation of primary ossification center were observed in an early embryonic stage in KLF10 KO mouse along with very low Indian hedgehog expression in epiphyseal plate. While the chondrogenic potential of mouse MSCs from KLF10 KO mice appeared normal or slight decreased, hypertrophy and osteogenesis were extensively suppressed. These findings suggest that KLF10 is a mediator of chondrocyte hypertrophy in developing skeleton, and that suppression of KLF10 may be employed as a new strategy for preventing hypertrophy in cartilage regeneration using MSCs.
Collapse
Affiliation(s)
- Jong Min Lee
- Research Institute for Integrative Regenerative Biomedical Engineering, Dongguk University, Goyang, Republic of Korea.,Bio Research Center, Lugen Sci Co, Bucheon, Republic of Korea
| | - Ji-Yun Ko
- Research Institute for Integrative Regenerative Biomedical Engineering, Dongguk University, Goyang, Republic of Korea
| | - Jeong-Won Park
- Research Institute for Integrative Regenerative Biomedical Engineering, Dongguk University, Goyang, Republic of Korea
| | - Woon Kyu Lee
- Laboratory of Developmental Genetics, Department of Biomedical Sciences, Inha University School of Medicine, Incheon, Republic of Korea
| | - Sun U Song
- Department of Integrated Biomedical Sciences, Inha University School of Medicine, Incheon, Republic of Korea
| | - Gun-Il Im
- Research Institute for Integrative Regenerative Biomedical Engineering, Dongguk University, Goyang, Republic of Korea
| |
Collapse
|
15
|
Lin CL, Hsu YC, Huang YT, Shih YH, Wang CJ, Chiang WC, Chang PJ. A KDM6A-KLF10 reinforcing feedback mechanism aggravates diabetic podocyte dysfunction. EMBO Mol Med 2020; 11:emmm.201809828. [PMID: 30948420 PMCID: PMC6505577 DOI: 10.15252/emmm.201809828] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diabetic nephropathy is the leading cause of end‐stage renal disease. Although dysfunction of podocytes, also termed glomerular visceral epithelial cells, is critically associated with diabetic nephropathy, the mechanism underlying podocyte dysfunction still remains obscure. Here, we identify that KDM6A, a histone lysine demethylase, reinforces diabetic podocyte dysfunction by creating a positive feedback loop through up‐regulation of its downstream target KLF10. Overexpression of KLF10 in podocytes not only represses multiple podocyte‐specific markers including nephrin, but also conversely increases KDM6A expression. We further show that KLF10 inhibits nephrin expression by directly binding to the gene promoter together with the recruitment of methyltransferase Dnmt1. Importantly, inactivation or knockout of either KDM6A or KLF10 in mice significantly suppresses diabetes‐induced proteinuria and kidney injury. Consistent with the notion, we also show that levels of both KDM6A and KLF10 proteins or mRNAs are substantially elevated in kidney tissues or in urinary exosomes of human diabetic nephropathy patients as compared with control subjects. Our findings therefore suggest that targeting the KDM6A–KLF10 feedback loop may be beneficial to attenuate diabetes‐induced kidney injury.
Collapse
Affiliation(s)
- Chun-Liang Lin
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi, Taiwan.,Kidney Research Center, Chang Gung Memorial Hospital, Taipei, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi, Taiwan.,Center for Shockwave Medicine and Tissue Engineering, Department of Medical Research, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yung-Chien Hsu
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi, Taiwan.,Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yu-Ting Huang
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi, Taiwan.,Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Ya-Hsueh Shih
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi, Taiwan.,Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Ching-Jen Wang
- Center for Shockwave Medicine and Tissue Engineering, Department of Medical Research, Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Wen-Chih Chiang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Pey-Jium Chang
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi, Taiwan .,Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi, Taiwan.,Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
16
|
The Distinct Roles of Transcriptional Factor KLF11 in Normal Cell Growth Regulation and Cancer as a Mediator of TGF-β Signaling Pathway. Int J Mol Sci 2020; 21:ijms21082928. [PMID: 32331236 PMCID: PMC7215894 DOI: 10.3390/ijms21082928] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
KLF11 (Krüppel-like factor 11) belongs to the family of Sp1/Krüppel-like zinc finger transcription factors that play important roles in a variety of cell types and tissues. KLF11 was initially described as a transforming growth factor-beta (TGF-β) inducible immediate early gene (TIEG). KLF11 promotes the effects of TGF-β on cell growth control by influencing the TGFβ–Smads signaling pathway and regulating the transcription of genes that induce either apoptosis or cell cycle arrest. In carcinogenesis, KLF11 can show diverse effects. Its function as a tumor suppressor gene can be suppressed by phosphorylation of its binding domains via oncogenic pathways. However, KLF 11 can itself also show tumor-promoting effects and seems to have a crucial role in the epithelial–mesenchymal transition process. Here, we review the current knowledge about the function of KLF11 in cell growth regulation. We focus on its transcriptional regulatory function and its influence on the TGF-β signaling pathway. We further discuss its possible role in mediating crosstalk between various signaling pathways in normal cell growth and in carcinogenesis.
Collapse
|
17
|
Kammoun M, Piquereau J, Nadal‐Desbarats L, Même S, Beuvin M, Bonne G, Veksler V, Le Fur Y, Pouletaut P, Même W, Szeremeta F, Constans J, Bruinsma ES, Nelson Holte MH, Najafova Z, Johnsen SA, Subramaniam M, Hawse JR, Bensamoun SF. Novel role of Tieg1 in muscle metabolism and mitochondrial oxidative capacities. Acta Physiol (Oxf) 2020; 228:e13394. [PMID: 31560161 DOI: 10.1111/apha.13394] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/26/2022]
Abstract
AIM Tieg1 is involved in multiple signalling pathways, human diseases, and is highly expressed in muscle where its functions are poorly understood. METHODS We have utilized Tieg1 knockout (KO) mice to identify novel and important roles for this transcription factor in regulating muscle ultrastructure, metabolism and mitochondrial functions in the soleus and extensor digitorum longus (EDL) muscles. RNA sequencing, immunoblotting, transmission electron microscopy, MRI, NMR, histochemical and mitochondrial function assays were performed. RESULTS Loss of Tieg1 expression resulted in altered sarcomere organization and a significant decrease in mitochondrial number. Histochemical analyses demonstrated an absence of succinate dehydrogenase staining and a decrease in cytochrome c oxidase (COX) enzyme activity in KO soleus with similar, but diminished, effects in the EDL. Decreased complex I, COX and citrate synthase (CS) activities were detected in the soleus muscle of KO mice indicating altered mitochondrial function. Complex I activity was also diminished in KO EDL. Significant decreases in CS and respiratory chain complex activities were identified in KO soleus. 1 H-NMR spectra revealed no significant metabolic difference between wild-type and KO muscles. However, 31 P spectra revealed a significant decrease in phosphocreatine and ATPγ. Altered expression of 279 genes, many of which play roles in mitochondrial and muscle function, were identified in KO soleus muscle. Ultimately, all of these changes resulted in an exercise intolerance phenotype in Tieg1 KO mice. CONCLUSION Our findings have implicated novel roles for Tieg1 in muscle including regulation of gene expression, metabolic activity and organization of tissue ultrastructure. This muscle phenotype resembles diseases associated with exercise intolerance and myopathies of unknown consequence.
Collapse
Affiliation(s)
- Malek Kammoun
- Biomechanics and Bioengineering Laboratory Alliance Sorbonne Universités Université de Technologie de Compiègne UMR CNRS 7338 Compiègne France
| | - Jerome Piquereau
- Signalling and Cardiovascular Pathophysiology ‐ UMR‐S 1180 Université Paris‐Sud INSERM Université Paris‐Saclay Châtenay‐Malabry France
| | | | - Sandra Même
- CNRS UPR4301 Centre de Biophysique Moléculaire Orléans France
| | - Maud Beuvin
- Inserm U974 Centre de Recherche en Myologie Sorbonne Université Paris France
| | - Gisèle Bonne
- Inserm U974 Centre de Recherche en Myologie Sorbonne Université Paris France
| | - Vladimir Veksler
- Signalling and Cardiovascular Pathophysiology ‐ UMR‐S 1180 Université Paris‐Sud INSERM Université Paris‐Saclay Châtenay‐Malabry France
| | - Yann Le Fur
- Aix‐Marseille University CNRS CRMBM Marseille France
| | - Philippe Pouletaut
- Biomechanics and Bioengineering Laboratory Alliance Sorbonne Universités Université de Technologie de Compiègne UMR CNRS 7338 Compiègne France
| | - William Même
- CNRS UPR4301 Centre de Biophysique Moléculaire Orléans France
| | | | - Jean‐Marc Constans
- Institut Faire Faces EA Chimère Imagerie et Radiologie Médicale CHU Amiens Amiens France
| | | | | | - Zeynab Najafova
- Department of General, Visceral and Pediatric Surgery University Medical Center Göttingen Göttingen Germany
| | - Steven A. Johnsen
- Department of General, Visceral and Pediatric Surgery University Medical Center Göttingen Göttingen Germany
| | | | - John R. Hawse
- Department of Biochemistry and Molecular Biology Mayo Clinic Rochester MN USA
| | - Sabine F. Bensamoun
- Biomechanics and Bioengineering Laboratory Alliance Sorbonne Universités Université de Technologie de Compiègne UMR CNRS 7338 Compiègne France
| |
Collapse
|
18
|
Gasior K, Wagner NJ, Cores J, Caspar R, Wilson A, Bhattacharya S, Hauck ML. The role of cellular contact and TGF-beta signaling in the activation of the epithelial mesenchymal transition (EMT). Cell Adh Migr 2019; 13:63-75. [PMID: 30296203 PMCID: PMC6527395 DOI: 10.1080/19336918.2018.1526597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/31/2018] [Accepted: 09/07/2018] [Indexed: 01/06/2023] Open
Abstract
The epithelial mesenchymal transition (EMT) is one step in the process through which carcinoma cells metastasize by gaining the cellular mobility associated with mesenchymal cells. This work examines the dual influence of the TGF-β pathway and intercellular contact on the activation of EMT in colon (SW480) and breast (MCF7) carcinoma cells. While the SW480 population revealed an intermediate state between the epithelial and mesenchymal states, the MC7 cells exhibited highly adhesive behavior. However, for both cell lines, an exogenous TGF-β signal and a reduction in cellular confluence can push a subgroup of the population towards the mesenchymal phenotype. Together, these results highlight that, while EMT is induced by the synergy of multiple signals, this activation varies across cell types.
Collapse
Affiliation(s)
- Kelsey Gasior
- Biomathematics Program, North Carolina State University, Raleigh, NC, USA
| | - Nikki J. Wagner
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Jhon Cores
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC, USA
| | - Rose Caspar
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Alyson Wilson
- Department of Statistics, North Carolina State University, Raleigh, NC, USA
| | - Sudin Bhattacharya
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, USA
- Center for Research on Ingredient Safety, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Marlene L. Hauck
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
19
|
Overexpression of ERβ inhibits the proliferation through regulating TNG-β signaling pathway in osteosarcoma. Pathol Res Pract 2019; 215:152568. [PMID: 31383536 DOI: 10.1016/j.prp.2019.152568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/12/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023]
Abstract
The present study aimed to explore the potential anti-tumor effect of ERβ overexpression and investigate its related mechanism in osteosarcoma. Cell cycle and apoptosis rates were measured by flow cytometry. Cell proliferation and formation of autophagosome were assessed by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay and dansylcadaverine (MDC) staining assay. Cell migration and invasion were detected by wound healing assay and transwell assay. Western blot analysis was designed to detect the protein expressions of surviving, Bax, LC-3 П, Beclin-1, ERβ, TβRⅠ, TβRⅡ, Smad2, Smad3 and Smad7. Real-Time fluorogenic PCR was designed to examine the mRNA expressions of surviving, Bax, ERβ, TβRⅠ, TβRII, Smad2, Smad3 and Smad7. The results showed that ERβ overexpression inhibited cell proliferation, migration and invasion, blocked cell cycle, and induced apoptosis and autophagy. Additionally, ERβ overexpression significantly inhibited the expression of surviving, TβRⅠ, TβRⅡ, Smad2 and Smad3. Meanwhile, the expressions of Bax, LC-3 П, Beclin-1 and Smad7 were dramatically upregulated by ERβ overexpression. In conclusion, ERβ overexpression could inhibit cell proliferation, migration and invasion, block cell cycle, and promote apoptosis and autophagy in OS by downregulating TNG-β signaling pathway.
Collapse
|
20
|
miR-892b Inhibits Hypertrophy by Targeting KLF10 in the Chondrogenesis of Mesenchymal Stem Cells. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 17:310-322. [PMID: 31284128 PMCID: PMC6612925 DOI: 10.1016/j.omtn.2019.05.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 05/16/2019] [Accepted: 05/31/2019] [Indexed: 11/28/2022]
Abstract
We investigated the functional role of miR-892b as a novel inhibitor of chondrocyte hypertrophy during TGF-β-mediated chondrogenesis of human mesenchymal stem cells (hMSCs). The expression of miR-892b during TGF-β-mediated chondrogenesis of hMSCs and the effects of miR-892b overexpression on chondrogenic and hypertrophic marker genes in the chondrogenesis of hMSCs were investigated. Targets of miR-892b were identified and verified by overexpression of synthetic miRNA mimics and luciferase assays. Cross-talk between Kruppel-like factor 10 (KLF10) and Indian hedgehog (Ihh) was investigated using KLF10 knockdown (KD). miR-892b enhanced chondrogenic makers and suppressed hypertrophy in hMSC chondrogenesis, mimicking parathyroid hormone-related peptide (PTHrP). KLF10, a transcription factor and miR-892b target, directly regulated Ihh promoter activity. Like miR-892b, KLF10 KD enhanced hMSC chondrogenesis and inhibited hypertrophy. Our findings suggest a key role of miR-892b in targeting the KLF10-Ihh axis as a regulator of hypertrophy in TGF-β-mediated chondrogenesis of hMSCs and provide a novel strategy for preventing hypertrophy in chondrogenesis from MSCs.
Collapse
|
21
|
Development of a novel multiphysical approach for the characterization of mechanical properties of musculotendinous tissues. Sci Rep 2019; 9:7733. [PMID: 31118478 PMCID: PMC6531478 DOI: 10.1038/s41598-019-44053-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 05/03/2019] [Indexed: 12/02/2022] Open
Abstract
At present, there is a lack of well-validated protocols that allow for the analysis of the mechanical properties of muscle and tendon tissues. Further, there are no reports regarding characterization of mouse skeletal muscle and tendon mechanical properties in vivo using elastography thereby limiting the ability to monitor changes in these tissues during disease progression or response to therapy. Therefore, we sought to develop novel protocols for the characterization of mechanical properties in musculotendinous tissues using atomic force microscopy (AFM) and ultrasound elastography. Given that TIEG1 knockout (KO) mice exhibit well characterized defects in the mechanical properties of skeletal muscle and tendon tissue, we have chosen to use this model system in the present study. Using TIEG1 knockout and wild-type mice, we have devised an AFM protocol that does not rely on the use of glue or chemical agents for muscle and tendon fiber immobilization during acquisition of transversal cartographies of elasticity and topography. Additionally, since AFM cannot be employed on live animals, we have also developed an ultrasound elastography protocol using a new linear transducer, SLH20-6 (resolution: 38 µm, footprint: 2.38 cm), to characterize the musculotendinous system in vivo. This protocol allows for the identification of changes in muscle and tendon elasticities. Such innovative technological approaches have no equivalent to date, promise to accelerate our understanding of musculotendinous mechanical properties and have numerous research and clinical applications.
Collapse
|
22
|
Memon A, Lee WK. KLF10 as a Tumor Suppressor Gene and Its TGF-β Signaling. Cancers (Basel) 2018; 10:E161. [PMID: 29799499 PMCID: PMC6025274 DOI: 10.3390/cancers10060161] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/15/2018] [Accepted: 05/23/2018] [Indexed: 12/17/2022] Open
Abstract
Krüppel-like factor 10 (KLF10), originally named TGF-β (Transforming growth factor beta) inducible early gene 1 (TIEG1), is a DNA-binding transcriptional regulator containing a triple C2H2 zinc finger domain. By binding to Sp1 (specificity protein 1) sites on the DNA and interactions with other regulatory transcription factors, KLF10 encourages and suppresses the expression of multiple genes in many cell types. Many studies have investigated its signaling cascade, but other than the TGF-β/Smad signaling pathway, these are still not clear. KLF10 plays a role in proliferation, differentiation as well as apoptosis, just like other members of the SP (specificity proteins)/KLF (Krüppel-like Factors). Recently, several studies reported that KLF10 KO (Knock out) is associated with defects in cell and organs such as osteopenia, abnormal tendon or cardiac hypertrophy. Since KLF10 was first discovered, several studies have defined its role in cancer as a tumor suppressor. KLF10 demonstrate anti-proliferative effects and induce apoptosis in various carcinoma cells including pancreatic cancer, leukemia, and osteoporosis. Collectively, these data indicate that KLF10 plays a significant role in various biological processes and diseases, but its role in cancer is still unclear. Therefore, this review was conducted to describe and discuss the role and function of KLF10 in diseases, including cancer, with a special emphasis on its signaling with TGF-β.
Collapse
Affiliation(s)
- Azra Memon
- Laboratory of Developmental Genetics, Department of Biomedical Sciences, School of Medicine, Inha University, Incheon 22212, Korea.
| | - Woon Kyu Lee
- Laboratory of Developmental Genetics, Department of Biomedical Sciences, School of Medicine, Inha University, Incheon 22212, Korea.
| |
Collapse
|
23
|
DiMario JX. KLF10 Gene Expression Modulates Fibrosis in Dystrophic Skeletal Muscle. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1263-1275. [PMID: 29458012 DOI: 10.1016/j.ajpath.2018.01.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 01/22/2018] [Accepted: 01/30/2018] [Indexed: 02/06/2023]
Abstract
Dystrophic skeletal muscle is characterized by fibrotic accumulation of extracellular matrix components that compromise muscle structure, function, and capacity for regeneration. Tissue fibrosis is often initiated and sustained through transforming growth factor-β (TGF-β) signaling, and Krüppel-like factor 10 (KLF10) is an immediate early gene that is transcriptionally activated in response to TGF-β signaling. It encodes a transcriptional regulator that mediates the effects of TGF-β signaling in a variety of cell types. This report presents results of investigation of the effects of loss of KLF10 gene expression in wild-type and dystrophic (mdx) skeletal muscle. On the basis of RT-PCR, Western blot, and histological analyses of mouse tibialis anterior and diaphragm muscles, collagen type I (Col1a1) and fibronectin gene expression and protein deposition were increased in KLF10-/- mice, contributing to increased fibrosis. KLF10-/- mice displayed increased expression of genes encoding SMAD2, SMAD3, and SMAD7, particularly in diaphragm muscle. SMAD4 gene expression was unchanged. Expression of the extracellular matrix remodeling genes, MMP2 and TIMP1, was also increased in KLF10-deficient mouse muscle. Histological analyses and assays of hydroxyproline content indicated that the loss of KLF10 increased fibrosis. Dystrophic KLF10-null mice also had reduced grip strength. The effects of loss of KLF10 gene expression were most pronounced in dystrophic diaphragm muscle, suggesting that KLF10 moderates the fibrotic effects of TGF-β signaling in chronically damaged regenerating muscle.
Collapse
Affiliation(s)
- Joseph X DiMario
- Department of Cell Biology and Anatomy, Rosalind Franklin University of Medicine and Science, Chicago Medical School, North Chicago, Illinois.
| |
Collapse
|
24
|
Yan X, Xiong X, Chen YG. Feedback regulation of TGF-β signaling. Acta Biochim Biophys Sin (Shanghai) 2018; 50:37-50. [PMID: 29228156 DOI: 10.1093/abbs/gmx129] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Indexed: 12/20/2022] Open
Abstract
Transforming growth factor beta (TGF-β) is a multi-functional polypeptide that plays a critical role in regulating a broad range of cellular functions and physiological processes. Signaling is initiated when TGF-β ligands bind to two types of cell membrane receptors with intrinsic Ser/Thr kinase activity and transmitted by the intracellular Smad proteins, which act as transcription factors to regulate gene expression in the nucleus. Although it is relatively simple and straight-forward, this TGF-β/Smad pathway is regulated by various feedback loops at different levels, including the ligand, the receptor, Smads and transcription, and is thus fine-tuned in terms of signaling robustness, duration, specificity, and plasticity. The precise control gives rise to versatile and context-dependent pathophysiological functions. In this review, we firstly give an overview of TGF-β signaling, and then discuss how each step of TGF-β signaling is finely controlled by distinct modes of feedback mechanisms, involving both protein regulators and miRNAs.
Collapse
Affiliation(s)
- Xiaohua Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Xiangyang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
25
|
Subramaniam M, Pitel KS, Bruinsma ES, Monroe DG, Hawse JR. TIEG and estrogen modulate SOST expression in the murine skeleton. J Cell Physiol 2017; 233:3540-3551. [PMID: 29044507 DOI: 10.1002/jcp.26211] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 09/26/2017] [Indexed: 01/02/2023]
Abstract
TIEG knockout (KO) mice exhibit a female-specific osteopenic phenotype and altered expression of TIEG in humans is associated with osteoporosis. Gene expression profiling studies identified sclerostin as one of the most highly up-regulated transcripts in the long bones of TIEG KO mice relative to WT littermates suggesting that TIEG may regulate SOST expression. TIEG was shown to substantially suppress SOST promoter activity and the regulatory elements through which TIEG functions were identified using promoter deletion and chromatin immunoprecipitation assays. Knockdown of TIEG in IDG-SW3 osteocyte cells using shRNA and CRISPR-Cas9 technology resulted in increased SOST expression and delayed mineralization, mimicking the results obtained from TIEG KO mouse bones. Given that TIEG is an estrogen regulated gene, and as changes in the hormonal milieu affect SOST expression, we performed ovariectomy (OVX) and estrogen replacement therapy (ERT) studies in WT and TIEG KO mice followed by miRNA and mRNA sequencing of cortical and trabecular compartments of femurs. SOST expression levels were considerably higher in cortical bone compared to trabecular bone. In cortical bone, SOST expression was increased following OVX only in WT mice and was suppressed following ERT in both genotypes. In contrast, SOST expression in trabecular bone was decreased following OVX and significantly increased following ERT. Interestingly, a number of miRNAs that are predicted to target sclerostin exhibited inverse expression levels in response to OVX and ERT. These data implicate important roles for TIEG and estrogen-regulated miRNAs in modulating SOST expression in bone.
Collapse
Affiliation(s)
| | - Kevin S Pitel
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Elizabeth S Bruinsma
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - David G Monroe
- Robert and Arlene Kogod Center on Aging and Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota
| | - John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
26
|
Subramaniam M, Cicek M, Pitel KS, Bruinsma ES, Nelson Holte MH, Withers SG, Rajamannan NM, Secreto FJ, Venuprasad K, Hawse JR. TIEG1 modulates β-catenin sub-cellular localization and enhances Wnt signaling in bone. Nucleic Acids Res 2017; 45:5170-5182. [PMID: 28201653 PMCID: PMC5435970 DOI: 10.1093/nar/gkx118] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 02/08/2017] [Indexed: 11/15/2022] Open
Abstract
We have previously demonstrated that TGFβ Inducible Early Gene-1 (TIEG1), also known as KLF10, plays important roles in mediating skeletal development and homeostasis in mice. TIEG1 has also been identified in clinical studies as one of a handful of genes whose altered expression levels or allelic variations are associated with decreased bone mass and osteoporosis in humans. Here, we provide evidence for the first time that TIEG1 is involved in regulating the canonical Wnt signaling pathway in bone through multiple mechanisms of action. Decreased Wnt signaling in the absence of TIEG1 expression is shown to be in part due to impaired β-catenin nuclear localization resulting from alterations in the activity of AKT and GSK-3β. We also provide evidence that TIEG1 interacts with, and serves as a transcriptional co-activator for, Lef1 and β-catenin. Changes in Wnt signaling in the setting of altered TIEG1 expression and/or activity may in part explain the observed osteopenic phenotype of TIEG1 KO mice as well as the known links between TIEG1 expression levels/allelic variations and patients with osteoporosis.
Collapse
Affiliation(s)
| | - Muzaffer Cicek
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kevin S Pitel
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Elizabeth S Bruinsma
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Molly H Nelson Holte
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Sarah G Withers
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Nalini M Rajamannan
- Division of Cardiology, Most Sacred Heart of Jesus Cardiology and Valvular Institute, Sheboygan, WI 53081, USA
| | - Frank J Secreto
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - K Venuprasad
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX 75204, USA
| | - John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
27
|
KLF10 loss in the pancreas provokes activation of SDF-1 and induces distant metastases of pancreatic ductal adenocarcinoma in the Kras G12D p53 flox/flox model. Oncogene 2017; 36:5532-5543. [PMID: 28581520 DOI: 10.1038/onc.2017.155] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 02/15/2017] [Accepted: 03/23/2017] [Indexed: 12/12/2022]
Abstract
Krüppel-like transcription factor 10 (KLF10), also named as TIEG1, plays essential roles in mediating transforming growth factor beta (TGFβ) signaling and has been shown to function as a tumor suppressor in multiple cancer types. However, its roles in mediating cancer progression in vivo have yet to be fully characterized. Here, we have employed two well-characterized Pdx-1CreLSL-KrasG12D and Pdx-1CreLSL-KrasG12Dp53L/L pancreatic cancer models to ablate KLF10 expression and determine the impact of KLF10 deletion on tumor development and progression. We show that loss of KLF10 cooperates with KrasG12D leading to an invasive and widely metastatic phenotype of pancreatic ductal adenocarcinoma (PDAC). Mechanistically, loss of KLF10 in PDAC is shown to increase distant metastases and cancer stemness through activation of SDF-1/CXCR4 and AP-1 pathways. Furthermore, we demonstrate that targeting the SDF-1/CXCR4 pathway in the context of KLF10 deletion substantially suppresses PDAC progression suggesting that inhibition of this pathway represents a novel therapeutic strategy for PDAC treatment.
Collapse
|
28
|
Abstract
Inhibitory Smads (I-Smads) have conserved carboxy-terminal MH2 domains but highly divergent amino-terminal regions when compared with receptor-regulated Smads (R-Smads) and common-partner Smads (co-Smads). Smad6 preferentially inhibits Smad signaling initiated by the bone morphogenetic protein (BMP) type I receptors ALK-3 and ALK-6, whereas Smad7 inhibits both transforming growth factor β (TGF-β)- and BMP-induced Smad signaling. I-Smads also regulate some non-Smad signaling pathways. Here, we discuss the vertebrate I-Smads, their roles as inhibitors of Smad activation and regulators of receptor stability, as scaffolds for non-Smad signaling, and their possible roles in the nucleus. We also discuss the posttranslational modification of I-Smads, including phosphorylation, ubiquitylation, acetylation, and methylation.
Collapse
Affiliation(s)
- Keiji Miyazawa
- Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
29
|
Kim M, Yun JW, Shin K, Cho Y, Yang M, Nam KT, Lim KM. Expression Levels of GABA-A Receptor Subunit Alpha 3, Gabra3 and Lipoprotein Lipase, Lpl Are Associated with the Susceptibility to Acetaminophen-Induced Hepatotoxicity. Biomol Ther (Seoul) 2017; 25:112-121. [PMID: 27530116 PMCID: PMC5340535 DOI: 10.4062/biomolther.2016.076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/09/2016] [Accepted: 05/11/2016] [Indexed: 02/05/2023] Open
Abstract
Drug-induced liver injury (DILI) is the serious and fatal drug-associated adverse effect, but its incidence is very low and individual variation in severity is substantial. Acetaminophen (APAP)-induced liver injury accounts for >50% of reported DILI cases but little is known for the cause of individual variations in the severity. Intrinsic genetic variation is considered a key element but the identity of the genes was not well-established. Here, pre-biopsy method and microarray technique was applied to uncover the key genes for APAP-induced liver injury in mice, and a cause and effect experiment employing quantitative real-time PCR was conducted to confirm the correlation between the uncovered genes and APAP-induced hepatotoxicity. We identified the innately and differentially expressed genes of mice susceptible to APAP-induced hepatotoxicity in the pre-biopsied liver tissue before APAP treatment through microarray analysis of the global gene expression profiles (Affymetrix GeneChip® Mouse Gene 1.0 ST for 28,853 genes). Expression of 16 genes including Gdap10, Lpl, Gabra3 and Ccrn4l were significantly different (t-test: FDR <10%) more than 1.5 fold in the susceptible animals than resistant. To confirm the association with the susceptibility to APAP-induced hepatotoxicity, another set of animals were measured for the expression level of selected 4 genes (higher two and lower two genes) in the liver pre-biopsy and their sensitivity to APAP-induced hepatotoxicity was evaluated by post hoc. Notably, the expressions of Gabra3 and Lpl were significantly correlated with the severity of liver injury (p<0.05) demonstrating that these genes may be linked to the susceptibility to APAP-induced hepatotoxicity.
Collapse
Affiliation(s)
- Minjeong Kim
- College of Pharmacy, Ewha Womans University, Seoul 03760,
Republic of Korea
| | - Jun-Won Yun
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080
| | - Kyeho Shin
- Department of Beauty Coordination, Suwon Science College, Suwon 18516,
Republic of Korea
| | - Yejin Cho
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722,
Republic of Korea
| | - Mijeong Yang
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722,
Republic of Korea
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722,
Republic of Korea
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul 03760,
Republic of Korea
| |
Collapse
|
30
|
Mishra VK, Subramaniam M, Kari V, Pitel KS, Baumgart SJ, Naylor RM, Nagarajan S, Wegwitz F, Ellenrieder V, Hawse JR, Johnsen SA. Krüppel-like Transcription Factor KLF10 Suppresses TGFβ-Induced Epithelial-to-Mesenchymal Transition via a Negative Feedback Mechanism. Cancer Res 2017; 77:2387-2400. [PMID: 28249899 DOI: 10.1158/0008-5472.can-16-2589] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 10/24/2016] [Accepted: 02/16/2017] [Indexed: 12/27/2022]
Abstract
TGFβ-SMAD signaling exerts a contextual effect that suppresses malignant growth early in epithelial tumorigenesis but promotes metastasis at later stages. Longstanding challenges in resolving this functional dichotomy may uncover new strategies to treat advanced carcinomas. The Krüppel-like transcription factor, KLF10, is a pivotal effector of TGFβ/SMAD signaling that mediates antiproliferative effects of TGFβ. In this study, we show how KLF10 opposes the prometastatic effects of TGFβ by limiting its ability to induce epithelial-to-mesenchymal transition (EMT). KLF10 depletion accentuated induction of EMT as assessed by multiple metrics. KLF10 occupied GC-rich sequences in the promoter region of the EMT-promoting transcription factor SLUG/SNAI2, repressing its transcription by recruiting HDAC1 and licensing the removal of activating histone acetylation marks. In clinical specimens of lung adenocarcinoma, low KLF10 expression associated with decreased patient survival, consistent with a pivotal role for KLF10 in distinguishing the antiproliferative versus prometastatic functions of TGFβ. Our results establish that KLF10 functions to suppress TGFβ-induced EMT, establishing a molecular basis for the dichotomy of TGFβ function during tumor progression. Cancer Res; 77(9); 2387-400. ©2017 AACR.
Collapse
Affiliation(s)
- Vivek Kumar Mishra
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen Center for Molecular Biosciences, Göttingen, Germany
| | | | - Vijayalakshmi Kari
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen Center for Molecular Biosciences, Göttingen, Germany
| | - Kevin S Pitel
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Simon J Baumgart
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen Center for Molecular Biosciences, Göttingen, Germany
| | - Ryan M Naylor
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Sankari Nagarajan
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen Center for Molecular Biosciences, Göttingen, Germany
| | - Florian Wegwitz
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen Center for Molecular Biosciences, Göttingen, Germany
| | - Volker Ellenrieder
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota.
| | - Steven A Johnsen
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen Center for Molecular Biosciences, Göttingen, Germany.
| |
Collapse
|
31
|
TIEG1 Represses Smad7-Mediated Activation of TGF-β1/Smad Signaling in Keloid Pathogenesis. J Invest Dermatol 2017; 137:1051-1059. [PMID: 28108300 DOI: 10.1016/j.jid.2016.12.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/14/2016] [Accepted: 12/19/2016] [Indexed: 01/16/2023]
Abstract
Transforming growth factor-β (TGF-β)/Smad signaling plays a key role in excessive fibrosis and keloid formations. Smad7 is a negative feedback regulator that prevents activation of TGF-β/Smad signaling. However, the regulatory mechanism for Smad7 in the keloid pathogenic process remains elusive. Here, we show that expression of TIEG1 is markedly higher in keloid fibroblasts, whereas protein, mRNA, and promoter activity levels of Smad7 are decreased. When TIEG1 was knocked down with small interfering RNA, both the promoter activity and protein expression of Smad7 were increased, whereas collagen production and the proliferation, migration, and invasion of keloid fibroblasts were decreased. In contrast, TIEG1 overexpression led to a decrease in Smad7 expression and Smad7 promoter activity. Upon TGF-β1 stimulation, TIEG1 promoted Smad2 phosphorylation by down-regulating Smad7. Luciferase reporter assays and chromatin immunoprecipitation assays further showed that TIEG1 can directly bind a GC-box/Sp1 site located between nucleotides -1392 and -1382 in the Smad7 promoter to repress Smad7 promoter activity. Taken together, these findings show that TIEG1 is highly expressed in human keloids and that it directly binds and represses Smad7 promoter-mediated activation of TGF-β/Smad2 signaling, thus providing clues for development of TIEG1 blocking strategies for therapy or prophylaxis of keloids.
Collapse
|
32
|
Kammoun M, Meme S, Meme W, Subramaniam M, Hawse JR, Canon F, Bensamoun SF. Impact of TIEG1 on the structural properties of fast- and slow-twitch skeletal muscle. Muscle Nerve 2016; 55:410-416. [PMID: 27421714 DOI: 10.1002/mus.25252] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2016] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Transforming growth factor-beta (TGF-β)-inducible early gene-1 (TIEG1) is a transcription factor that is highly expressed in skeletal muscle. The purpose of this study was to characterize the structural properties of both fast-twitch (EDL) and slow-twitch (soleus) muscles in the hindlimb of TIEG1-deficient (TIEG1-/- ) mice. METHODS Ten slow and 10 fast muscles were analyzed from TIEG1-/- and wild-type (WT) mice using MRI texture (MRI-TA) and histological analyses. RESULTS MRI-TA could discriminate between WT slow and fast muscles. Deletion of the TIEG1 gene led to changes in the texture profile within both muscle types. Specifically, muscle isolated from TIEG1-/- mice displayed hypertrophy, hyperplasia, and a modification of fiber area distribution. CONCLUSIONS We demonstrated that TIEG1 plays an important role in the structural properties of skeletal muscle. This study further implicates important roles for TIEG1 in the development of skeletal muscle and suggests that defects in TIEG1 expression and/or function may be associated with muscle disease. Muscle Nerve 55: 410-416, 2017.
Collapse
Affiliation(s)
- Malek Kammoun
- Université de Technologie de Compiègne, Centre de Recherches de Royallieu, Laboratoire de Biomécanique et de BioIngénierie, UMR CNRS 7338, BP 20529, 60205, Compiègne Cedex, France
| | - Sandra Meme
- Centre de Biophysique Moléculaire, CNRS UPR4301, Orléans, France
| | - William Meme
- Centre de Biophysique Moléculaire, CNRS UPR4301, Orléans, France
| | - Malayannan Subramaniam
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Francis Canon
- Université de Technologie de Compiègne, Centre de Recherches de Royallieu, Laboratoire de Biomécanique et de BioIngénierie, UMR CNRS 7338, BP 20529, 60205, Compiègne Cedex, France
| | - Sabine F Bensamoun
- Université de Technologie de Compiègne, Centre de Recherches de Royallieu, Laboratoire de Biomécanique et de BioIngénierie, UMR CNRS 7338, BP 20529, 60205, Compiègne Cedex, France
| |
Collapse
|
33
|
Liu M, Xiusheng H, Xiao X, Wang Y. Overexpression of miR-422a inhibits cell proliferation and invasion, and enhances chemosensitivity in osteosarcoma cells. Oncol Rep 2016; 36:3371-3378. [PMID: 27779704 DOI: 10.3892/or.2016.5182] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/11/2016] [Indexed: 11/05/2022] Open
Abstract
Osteosarcoma (OS) is an aggressive malignant tumor that is mesenchymal in origin with a very low 5-year survival rate, particularly in the patients with locally advanced or metastatic tumors and recurrent disease. MicroRNAs (miRNAs) play a critical role in essential biological processes as cellular proliferation, differentiation and apoptosis in normal or cancer cells, including OS cells. In the present study, we aimed to investigate the role of miR-422a in OS. We demonstrated that miR-422a expression was significantly downregulated in OS tissues and cell lines compared with the normal controls. In addition, overexpression of miR-422a was able to inhibit cell proliferation and the ability of invasion, and enhance paclitaxel and cisplatin-mediated apoptosis in OS cells. Inversely, downregulation of miR-422a exhibited an opposite role. We further demonstrated that miR-422a directly targeted TGFβ2 and regulated its expression and the activation of downstream molecules, smad2 and smad3 in OS cells. Thus, miR-422a/TGFβ2/smad axis may be a potential target for OS treatment.
Collapse
Affiliation(s)
- Mingjiang Liu
- Department of Hand Surgery, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421002, P.R. China
| | - He Xiusheng
- Cancer Research Institute, University of South China, Hengyang, Hunan 421002, P.R. China
| | - Xiangjun Xiao
- Department of Hand Surgery, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421002, P.R. China
| | - Yichun Wang
- Department of ICU, Hunan Cancer Hospital, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
34
|
Bansal N, Petrie K, Christova R, Chung CY, Leibovitch BA, Howell L, Gil V, Sbirkov Y, Lee E, Wexler J, Ariztia EV, Sharma R, Zhu J, Bernstein E, Zhou MM, Zelent A, Farias E, Waxman S. Targeting the SIN3A-PF1 interaction inhibits epithelial to mesenchymal transition and maintenance of a stem cell phenotype in triple negative breast cancer. Oncotarget 2016; 6:34087-105. [PMID: 26460951 PMCID: PMC4741438 DOI: 10.18632/oncotarget.6048] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/24/2015] [Indexed: 12/15/2022] Open
Abstract
Triple negative breast cancer (TNBC) is characterized by a poorly differentiated phenotype and limited treatment options. Aberrant epigenetics in this subtype represent a potential therapeutic opportunity, but a better understanding of the mechanisms contributing to the TNBC pathogenesis is required. The SIN3 molecular scaffold performs a critical role in multiple cellular processes, including epigenetic regulation, and has been identified as a potential therapeutic target. Using a competitive peptide corresponding to the SIN3 interaction domain of MAD (Tat-SID), we investigated the functional consequences of selectively blocking the paired amphipathic α-helix (PAH2) domain of SIN3. Here, we report the identification of the SID-containing adaptor PF1 as a factor required for maintenance of the TNBC stem cell phenotype and epithelial-to-mesenchymal transition (EMT). Tat-SID peptide blocked the interaction between SIN3A and PF1, leading to epigenetic modulation and transcriptional downregulation of TNBC stem cell and EMT markers. Importantly, Tat-SID treatment also led to a reduction in primary tumor growth and disseminated metastatic disease in vivo. In support of these findings, knockdown of PF1 expression phenocopied treatment with Tat-SID both in vitro and in vivo. These results demonstrate a critical role for a complex containing SIN3A and PF1 in TNBC and provide a rational for its therapeutic targeting.
Collapse
Affiliation(s)
- Nidhi Bansal
- Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kevin Petrie
- Division of Clinical Studies, Institute of Cancer Research, Sutton, United Kingdom
| | - Rossitza Christova
- Division of Clinical Studies, Institute of Cancer Research, Sutton, United Kingdom
| | - Chi-Yeh Chung
- Department of Oncological Sciences, Department of Genetics and Genomic Sciences, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Boris A Leibovitch
- Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Louise Howell
- Division of Clinical Studies, Institute of Cancer Research, Sutton, United Kingdom
| | - Veronica Gil
- Division of Clinical Studies, Institute of Cancer Research, Sutton, United Kingdom
| | - Yordan Sbirkov
- Division of Clinical Studies, Institute of Cancer Research, Sutton, United Kingdom
| | - EunJee Lee
- Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joanna Wexler
- Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edgardo V Ariztia
- Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rajal Sharma
- Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jun Zhu
- Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily Bernstein
- Department of Oncological Sciences, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ming-Ming Zhou
- Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arthur Zelent
- Division of Hemato-Oncology, Department of Medicine, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Eduardo Farias
- Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samuel Waxman
- Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
35
|
TGF-beta-induced early gene-1 overexpression promotes oxidative stress protection and actin cytoskeleton rearrangement in human skin fibroblasts. Biochim Biophys Acta Gen Subj 2016; 1860:1071-8. [PMID: 26922828 DOI: 10.1016/j.bbagen.2016.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/31/2016] [Accepted: 02/21/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Transforming growth factor beta inducible early gene-1 (TIEG-1), a member of the Krüppel-like factor, was identified as a primary response gene for TGF-β. The role of TIEG-1 in skin repair has been mainly addressed in vivo on TIEG-1 null mice model and the mechanism remains unexplored. METHODS We investigated the modulation of TIEG-1 expression in normal human skin fibroblasts by either down-expressing or overexpressing the gene. We evaluated reactive oxygen species production and the cell viability of treated cells. The effect of TIEG-1 overexpression was monitored by wound healing assay and immunofluorescence staining of actin fibers organization and alpha-smooth muscle actin (α-SMA). Western blots were carried out to identify the level of expression or phosphorylation of key proteins such as cofilin, Rho GTPases, and p38 mitogen-activated protein kinase (p38 MAPK). RESULTS TIEG-1 down-regulation had a deleterious effect on the cell viability. It was significantly reduced (65±5%) and exposure to ultraviolet further increased this effect (47±3%). By contrast, cells overexpressing TIEG-1 had a reduced reactive oxygen species production (75%) compared to control and mock-transfected cells. This overexpression also resulted in formation of actin stress fibers and increased α-SMA expression and an enhanced wound healing feature. RhoB GTPase was upregulated and phosphorylation of cofilin and p38 MAPK was observed. CONCLUSION TIEG-1 overexpression in normal human skin fibroblasts results in improved resistance to oxidative stress, myofibroblast-like conversion that involved RhoB signaling pathway with cofilin and p38 MAPK proteins activation. GENERAL SIGNIFICANCE This study enlightens the role of TIEG-1 role in skin biology.
Collapse
|
36
|
Subramaniam M, Pitel KS, Withers SG, Drissi H, Hawse JR. TIEG1 enhances Osterix expression and mediates its induction by TGFβ and BMP2 in osteoblasts. Biochem Biophys Res Commun 2016; 470:528-533. [PMID: 26801561 DOI: 10.1016/j.bbrc.2016.01.112] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 01/18/2016] [Indexed: 01/03/2023]
Abstract
Deletion of TIEG1/KLF10 in mice results in an osteopenic skeletal phenotype with significant decreases in both bone mineral density and content throughout the skeleton. Calvarial osteoblasts isolated from TIEG1 knockout (KO) mice display numerous changes in gene expression and exhibit significant delays in their mineralization rates relative to wild-type (WT) controls. Here, we demonstrate that loss of TIEG1 expression in osteoblasts results in decreased levels of Osterix mRNA. Suppression of TIEG1 expression in WT osteoblasts leads to decreased Osterix expression while restoration of TIEG1 expression in TIEG1 KO osteoblasts results in increased levels of Osterix. Transient transfection and chromatin immunoprecipitation assays reveal that TIEG1 directly binds to and activates the Osterix promoter and demonstrate that the zinc finger-containing DNA binding domain of TIEG1 is necessary for this regulation. Furthermore, we reveal that TIEG1 expression is essential for the induction of Osterix expression by important bone-related cytokines such as TGFβ and BMP2 in osteoblast cells. Taken together, these data implicate an important role for TIEG1 in regulating the expression of Osterix, a master regulator of osteoblast differentiation and bone formation, and suggest that decreased expression of Osterix, as well as impaired TGFβ and BMP2 signaling, contribute to the observed osteopenic bone phenotype of TIEG1 KO mice.
Collapse
Affiliation(s)
| | - Kevin S Pitel
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Sarah G Withers
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Hicham Drissi
- Department of Orthopaedic Surgery, UConn Musculoskeletal Institute, UConn Health, Farmington, CT 06030, USA
| | - John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
37
|
Papadakis KA, Krempski J, Svingen P, Xiong Y, Sarmento OF, Lomberk GA, Urrutia RA, Faubion WA. Krüppel-like factor KLF10 deficiency predisposes to colitis through colonic macrophage dysregulation. Am J Physiol Gastrointest Liver Physiol 2015; 309:G900-9. [PMID: 26472224 PMCID: PMC4669350 DOI: 10.1152/ajpgi.00309.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/13/2015] [Indexed: 01/31/2023]
Abstract
Krüppel-like factor (KLF)-10 is an important transcriptional regulator of TGF-β1 signaling in both CD8(+) and CD4(+) T lymphocytes. In the present study, we demonstrate a novel role for KLF10 in the regulation of TGFβRII expression with functional relevance in macrophage differentiation and activation. We first show that transfer of KLF10(-/-) bone marrow-derived macrophages into wild-type (WT) mice leads to exacerbation of experimental colitis. At the cell biological level, using two phenotypic strategies, we show that KLF10-deficient mice have an altered colonic macrophage phenotype with higher frequency of proinflammatory LyC6(+)MHCII(+) cells and a reciprocal decrease of the anti-inflammatory LyC6(-)MHCII(+) subset. Additionally, the anti-inflammatory CD11b(+)CX3CR1(hi) subset of colonic macrophages is significantly decreased in KLF10(-/-) compared with WT mice under inflammatory conditions. Molecularly, CD11b(+) colonic macrophages from KLF10(-/-) mice exhibit a proinflammatory cytokine profile with increased production of TNF-α and lower production of IL-10 in response to LPS stimulation. Because KLF10 is a transcription factor, we explored how this protein may regulate macrophage function. Consequently, we analyzed the expression of TGFβRII expression in colonic macrophages and found that, in the absence of KLF10, macrophages express lower levels of TGFβRII and display an attenuated Smad-2 phosphorylation following TGF-β1 stimulation. We further show that KLF10 directly binds to the TGFβRII promoter in macrophages, leading to enhanced gene expression through histone H3 acetylation. Collectively, our data reveal a critical role for KLF10 in the epigenetic regulation of TGFβRII expression in macrophages and the acquisition of a "regulatory" phenotype that contributes to intestinal mucosal homeostasis.
Collapse
Affiliation(s)
| | - James Krempski
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; and
| | - Phyllis Svingen
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; and
| | - Yuning Xiong
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; and
| | - Olga F Sarmento
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; and
| | - Gwen A Lomberk
- Epigenetics and Chromatin Dynamics Laboratory, Departments of Medicine and Biochemistry and Molecular Biology, Epigenetic Translational Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Raul A Urrutia
- Epigenetics and Chromatin Dynamics Laboratory, Departments of Medicine and Biochemistry and Molecular Biology, Epigenetic Translational Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - William A Faubion
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; and
| |
Collapse
|
38
|
Jim HS, Lin HY, Tyrer JP, Lawrenson K, Dennis J, Chornokur G, Chen Z, Chen AY, Permuth-Wey J, Aben KKH, Anton-Culver H, Antonenkova N, Bruinsma F, Bandera EV, Bean YT, Beckmann MW, Bisogna M, Bjorge L, Bogdanova N, Brinton LA, Brooks-Wilson A, Bunker CH, Butzow R, Campbell IG, Carty K, Chang-Claude J, Cook LS, Cramer DW, Cunningham JM, Cybulski C, Dansonka-Mieszkowska A, du Bois A, Despierre E, Sieh W, Doherty JA, Dörk T, Dürst M, Easton DF, Eccles DM, Edwards RP, Ekici AB, Fasching PA, Fridley BL, Gao YT, Gentry-Maharaj A, Giles GG, Glasspool R, Goodman MT, Gronwald J, Harter P, Hasmad HN, Hein A, Heitz F, Hildebrandt MA, Hillemanns P, Hogdall CK, Hogdall E, Hosono S, Iversen ES, Jakubowska A, Jensen A, Ji BT, Karlan BY, Kellar M, Kiemeney LA, Krakstad C, Kjaer SK, Kupryjanczyk J, Vierkant RA, Lambrechts D, Lambrechts S, Le ND, Lee AW, Lele S, Leminen A, Lester J, Levine DA, Liang D, Lim BK, Lissowska J, Lu K, Lubinski J, Lundvall L, Massuger LF, Matsuo K, McGuire V, McLaughlin JR, McNeish I, Menon U, Milne RL, Modugno F, Thomsen L, Moysich KB, Ness RB, Nevanlinna H, Eilber U, Odunsi K, Olson SH, Orlow I, Orsulic S, et alJim HS, Lin HY, Tyrer JP, Lawrenson K, Dennis J, Chornokur G, Chen Z, Chen AY, Permuth-Wey J, Aben KKH, Anton-Culver H, Antonenkova N, Bruinsma F, Bandera EV, Bean YT, Beckmann MW, Bisogna M, Bjorge L, Bogdanova N, Brinton LA, Brooks-Wilson A, Bunker CH, Butzow R, Campbell IG, Carty K, Chang-Claude J, Cook LS, Cramer DW, Cunningham JM, Cybulski C, Dansonka-Mieszkowska A, du Bois A, Despierre E, Sieh W, Doherty JA, Dörk T, Dürst M, Easton DF, Eccles DM, Edwards RP, Ekici AB, Fasching PA, Fridley BL, Gao YT, Gentry-Maharaj A, Giles GG, Glasspool R, Goodman MT, Gronwald J, Harter P, Hasmad HN, Hein A, Heitz F, Hildebrandt MA, Hillemanns P, Hogdall CK, Hogdall E, Hosono S, Iversen ES, Jakubowska A, Jensen A, Ji BT, Karlan BY, Kellar M, Kiemeney LA, Krakstad C, Kjaer SK, Kupryjanczyk J, Vierkant RA, Lambrechts D, Lambrechts S, Le ND, Lee AW, Lele S, Leminen A, Lester J, Levine DA, Liang D, Lim BK, Lissowska J, Lu K, Lubinski J, Lundvall L, Massuger LF, Matsuo K, McGuire V, McLaughlin JR, McNeish I, Menon U, Milne RL, Modugno F, Thomsen L, Moysich KB, Ness RB, Nevanlinna H, Eilber U, Odunsi K, Olson SH, Orlow I, Orsulic S, Palmieri Weber R, Paul J, Pearce CL, Pejovic T, Pelttari LM, Pike MC, Poole EM, Schernhammer E, Risch HA, Rosen B, Rossing MA, Rothstein JH, Rudolph A, Runnebaum IB, Rzepecka IK, Salvesen HB, Schwaab I, Shu XO, Shvetsov YB, Siddiqui N, Song H, Southey MC, Spiewankiewicz B, Sucheston-Campbell L, Teo SH, Terry KL, Thompson PJ, Tangen IL, Tworoger SS, van Altena AM, Vergote I, Walsh CS, Wang-Gohrke S, Wentzensen N, Whittemore AS, Wicklund KG, Wilkens LR, Wu AH, Wu X, Woo YL, Yang H, Zheng W, Ziogas A, Amankwah E, Berchuck A, Georgia Chenevix-Trench on behalf of the AOCS management group 95,96, Schildkraut JM, Kelemen LE, Ramus SJ, Monteiro AN, Goode EL, Narod SA, Gayther SA, Pharoah PDP, Sellers TA, Phelan CM. Common Genetic Variation in Circadian Rhythm Genes and Risk of Epithelial Ovarian Cancer (EOC). JOURNAL OF GENETICS AND GENOME RESEARCH 2015; 2:017. [PMID: 26807442 PMCID: PMC4722961 DOI: 10.23937/2378-3648/1410017] [Show More Authors] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Disruption in circadian gene expression, whether due to genetic variation or environmental factors (e.g., light at night, shiftwork), is associated with increased incidence of breast, prostate, gastrointestinal and hematologic cancers and gliomas. Circadian genes are highly expressed in the ovaries where they regulate ovulation; circadian disruption is associated with several ovarian cancer risk factors (e.g., endometriosis). However, no studies have examined variation in germline circadian genes as predictors of ovarian cancer risk and invasiveness. The goal of the current study was to examine single nucleotide polymorphisms (SNPs) in circadian genes BMAL1, CRY2, CSNK1E, NPAS2, PER3, REV1 and TIMELESS and downstream transcription factors KLF10 and SENP3 as predictors of risk of epithelial ovarian cancer (EOC) and histopathologic subtypes. The study included a test set of 3,761 EOC cases and 2,722 controls and a validation set of 44,308 samples including 18,174 (10,316 serous) cases and 26,134 controls from 43 studies participating in the Ovarian Cancer Association Consortium (OCAC). Analysis of genotype data from 36 genotyped SNPs and 4600 imputed SNPs indicated that the most significant association was rs117104877 in BMAL1 (OR = 0.79, 95% CI = 0.68-0.90, p = 5.59 × 10-4]. Functional analysis revealed a significant down regulation of BMAL1 expression following cMYC overexpression and increasing transformation in ovarian surface epithelial (OSE) cells as well as alternative splicing of BMAL1 exons in ovarian and granulosa cells. These results suggest that variation in circadian genes, and specifically BMAL1, may be associated with risk of ovarian cancer, likely through disruption of hormonal pathways.
Collapse
Affiliation(s)
- Heather S.L. Jim
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL, USA
| | - Hui-Yi Lin
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Jonathan P. Tyrer
- Department of Public Health and Primary Care, The Centre for Cancer Epidemiology, University of Cambridge, Strange ways Research Laboratory, Cambridge, UK
| | - Kate Lawrenson
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Joe Dennis
- Department of Public Health and Primary Care, The Centre for Cancer Epidemiology, University of Cambridge, Strange ways Research Laboratory, Cambridge, UK
| | - Ganna Chornokur
- Department of Cancer Epidemiology, Division of Population Sciences, Moffitt Cancer Center, Tampa, FL, USA
| | - Zhihua Chen
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Ann Y. Chen
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Jennifer Permuth-Wey
- Department of Cancer Epidemiology, Division of Population Sciences, Moffitt Cancer Center, Tampa, FL, USA
| | - Katja KH. Aben
- Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
- Netherlands Comprehensive Cancer Organization, Utrecht, The Netherlands
| | - Hoda Anton-Culver
- Genetic Epidemiology Research Institute, UCI Center for Cancer Genetics Research and Prevention, School of Medicine, Department of Epidemiology, University of California Irvine, Irvine, CA, USA
| | - Natalia Antonenkova
- Byelorussian Institute for Oncology and Medical Radiology Aleksandrov N.N., Minsk, Belarus
| | - Fiona Bruinsma
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia
| | - Elisa V. Bandera
- Cancer Prevention and Control, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Yukie T. Bean
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Matthias W. Beckmann
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-University, Erlangen-Nuremberg Comprehensive Cancer Center, Erlangen EMN, Germany
| | - Maria Bisogna
- Department of Surgery, Gynecology Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Line Bjorge
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
- Centre for Cancer Biomarkers, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Natalia Bogdanova
- Gynecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Louise A. Brinton
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Angela Brooks-Wilson
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC Canada
| | - Clareann H. Bunker
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Ralf Butzow
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, HUS, Finland
- Department of Pathology, Helsinki University Central Hospital, Helsinki, HUS, Finland
| | - Ian G. Campbell
- Cancer Genetics Laboratory, Research Division, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Australia
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Karen Carty
- Department of Gynaecological Oncology, Glasgow Royal Infirmary, Glasgow, G31 2ER, UK
- CRUK Clinical Trials Unit, The Beatson West of Scotland Cancer Centre, 1053 Great Western Road, Glasgow G12 0YN, UK
| | - Jenny Chang-Claude
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Linda S. Cook
- Division of Epidemiology and Biostatistics, Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Daniel W. Cramer
- Obstetrics and Gynecology Center, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Julie M. Cunningham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Cezary Cybulski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | | | - Andreas du Bois
- Department of Gynaecology and Gynaecologic Oncology, Kliniken Essen-Mitte/ Evang. Huyssens-Stiftung/Knappschaft GmbH, Essen, Germany
- Department of Gynaecology and Gynaecologic Oncology, Dr. Horst Schmidt Kliniken Wiesbaden, Wiesbaden, Germany
| | - Evelyn Despierre
- Division of Gynecologic Oncology; Leuven Cancer Institute, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Weiva Sieh
- Department of Health Research and Policy-Epidemiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jennifer A. Doherty
- Department of Epidemiology, Geisel School of Medicine, Dartmouth, Hanover, NH, USA
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA, USA
| | - Thilo Dörk
- Gynecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Matthias Dürst
- Department of Gynecology, Friedrich Schiller University, Jena, Germany
| | - Douglas F. Easton
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Diana M. Eccles
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
| | - Robert P. Edwards
- Department of Obstetrics Gynecology/RS, Division of Gynecological Oncology, Ovarian Cancer Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Arif B. Ekici
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Peter A. Fasching
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-University, Erlangen-Nuremberg Comprehensive Cancer Center, Erlangen EMN, Germany
- Department of Medicine, Division of Hematology and Oncology, University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Brooke L. Fridley
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China
| | | | - Graham G. Giles
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Rosalind Glasspool
- CRUK Clinical Trials Unit, The Beatson West of Scotland Cancer Centre, 1053 Great Western Road, Glasgow G12 0YN, UK
| | - Marc T. Goodman
- Cancer Prevention and Control, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Community and Population Health Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jacek Gronwald
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Philipp Harter
- Department of Gynaecology and Gynaecologic Oncology, Kliniken Essen-Mitte/ Evang. Huyssens-Stiftung/Knappschaft GmbH, Essen, Germany
- Department of Gynaecology and Gynaecologic Oncology, Dr. Horst Schmidt Kliniken Wiesbaden, Wiesbaden, Germany
| | - Hanis N. Hasmad
- Cancer Research Initiatives Foundation, Sime Darby Medical Center, Subang Jaya, Malaysia
| | - Alexander Hein
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-University, Erlangen-Nuremberg Comprehensive Cancer Center, Erlangen EMN, Germany
| | - Florian Heitz
- Department of Gynaecology and Gynaecologic Oncology, Kliniken Essen-Mitte/ Evang. Huyssens-Stiftung/Knappschaft GmbH, Essen, Germany
- Department of Gynaecology and Gynaecologic Oncology, Dr. Horst Schmidt Kliniken Wiesbaden, Wiesbaden, Germany
| | | | - Peter Hillemanns
- Gynecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Claus K. Hogdall
- Department of Gynaecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Estrid Hogdall
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Pathology, Molecular Unit, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Satoyo Hosono
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | | | - Anna Jakubowska
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Allan Jensen
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Bu-Tian Ji
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Beth Y. Karlan
- Women’s Cancer Program at the Samuel Oschin Comprehensive, Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Melissa Kellar
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Lambertus A. Kiemeney
- Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Camilla Krakstad
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
- Centre for Cancer Biomarkers, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Susanne K. Kjaer
- Department of Gynaecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Jolanta Kupryjanczyk
- Department of Pathology, The Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Robert A. Vierkant
- Department of Health Science Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Diether Lambrechts
- Vesalius Research Center, VIB, University of Leuven, Leuven, Belgium
- Department of Oncology, Laboratory for Translational Genetics, University of Leuven, Belgium
| | - Sandrina Lambrechts
- Division of Gynecologic Oncology; Leuven Cancer Institute, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Nhu D. Le
- Cancer Control Research, BC Cancer Agency, Vancouver, BC, Canada
| | - Alice W. Lee
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Shashi Lele
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Arto Leminen
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, HUS, Finland
| | - Jenny Lester
- Women’s Cancer Program at the Samuel Oschin Comprehensive, Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Douglas A. Levine
- Department of Surgery, Gynecology Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Dong Liang
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| | - Boon Kiong Lim
- Department of Obstetrics and Gynaecology, University Malaya Medical Centre, University Malaya, Kuala Lumpur, Malaysia
| | - Jolanta Lissowska
- Department of Cancer Epidemiology and Prevention, M. Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Karen Lu
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jan Lubinski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Lene Lundvall
- Department of Gynaecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Leon F.A.G. Massuger
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Keitaro Matsuo
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Valerie McGuire
- Department of Health Research and Policy - Epidemiology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Ian McNeish
- CRUK Clinical Trials Unit, The Beatson West of Scotland Cancer Centre, 1053 Great Western Road, Glasgow G12 0YN, UK
| | - Usha Menon
- Women’s Cancer, UCL EGA Institute for Women’s Health, London, UK
| | - Roger L. Milne
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Francesmary Modugno
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
- Women’s Cancer Research Program, Magee-Women’s Research Institute and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lotte Thomsen
- Department of Pathology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Kirsten B. Moysich
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Roberta B. Ness
- The University of Texas School of Public Health, Houston, TX, USA
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, HUS, Finland
| | - Ursula Eilber
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Kunle Odunsi
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, NY
| | - Sara H. Olson
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Irene Orlow
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Sandra Orsulic
- Women’s Cancer Program at the Samuel Oschin Comprehensive, Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rachel Palmieri Weber
- Department of Community and Family Medicine, Duke University Medical Center, Durham, NC, USA
| | - James Paul
- CRUK Clinical Trials Unit, The Beatson West of Scotland Cancer Centre, 1053 Great Western Road, Glasgow G12 0YN, UK
| | - Celeste L. Pearce
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
- Department of Epidemiology, University of Michigan, 1415 Washington Heights, Ann Arbor, Michigan, USA
| | - Tanja Pejovic
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Liisa M. Pelttari
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, HUS, Finland
| | - Malcolm C. Pike
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Elizabeth M. Poole
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Eva Schernhammer
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | - Harvey A. Risch
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Barry Rosen
- Department of Gynecology-Oncology, Princess Margaret Hospital, and Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mary Anne Rossing
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA, USA
| | - Joseph H. Rothstein
- Department of Health Research and Policy-Epidemiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Anja Rudolph
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Ingo B. Runnebaum
- Department of Gynecology, Friedrich Schiller University, Jena, Germany
| | - Iwona K. Rzepecka
- Department of Pathology, The Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Helga B. Salvesen
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
- Centre for Cancer Biomarkers, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Ira Schwaab
- Institut für Humangenetik, Wiesbaden, Germany
| | - Xiao-Ou Shu
- Epidemiology Center and Vanderbilt, Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yurii B. Shvetsov
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Hawaii, USA
| | - Nadeem Siddiqui
- Department of Gynaecological Oncology, Glasgow Royal Infirmary, Glasgow, G31 2ER, UK
| | - Honglin Song
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Melissa C. Southey
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | | | - Lara Sucheston-Campbell
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Soo-Hwang Teo
- Cancer Research Initiatives Foundation, Sime Darby Medical Center, Subang Jaya, Malaysia
- University Malaya Medical Centre, University of Malaya, Kuala Lumpur, Maylaysia
| | - Kathryn L. Terry
- Obstetrics and Gynecology Center, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | - Pamela J. Thompson
- Cancer Prevention and Control, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Community and Population Health Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ingvild L. Tangen
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
- Centre for Cancer Biomarkers, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Shelley S. Tworoger
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | - Anne M. van Altena
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Ignace Vergote
- Division of Gynecologic Oncology; Leuven Cancer Institute, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Christine S. Walsh
- Women’s Cancer Program at the Samuel Oschin Comprehensive, Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Shan Wang-Gohrke
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Alice S. Whittemore
- Department of Health Research and Policy-Epidemiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kristine G. Wicklund
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA, USA
| | - Lynne R. Wilkens
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Hawaii, USA
| | - Anna H. Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yin-Ling Woo
- Department of Obstetrics and Gynaecology, University Malaya Medical Centre, University Malaya, Kuala Lumpur, Malaysia
| | - Hannah Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Wei Zheng
- Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Argyrios Ziogas
- Genetic Epidemiology Research Institute, UCI Center for Cancer Genetics Research and Prevention, School of Medicine, Department of Epidemiology, University of California Irvine, Irvine, CA, USA
| | - Ernest Amankwah
- Department of Cancer Epidemiology, Division of Population Sciences, Moffitt Cancer Center, Tampa, FL, USA
- Clinical and Translational Research Organization, All Children’s Hospital Johns Hopkins Medicine, St Petersburg, FL
| | - Andrew Berchuck
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | | | - Joellen M. Schildkraut
- Cancer Prevention, Detection & Control Research Program, Duke Cancer Institute, Durham, NC, USA
| | - Linda E. Kelemen
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Susan J. Ramus
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Alvaro N.A. Monteiro
- Department of Cancer Epidemiology, Division of Population Sciences, Moffitt Cancer Center, Tampa, FL, USA
| | - Ellen L. Goode
- Department of Health Science Research, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - Steven A. Narod
- Women’s College Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Simon A. Gayther
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Paul D. P. Pharoah
- Department of Public Health and Primary Care, The Centre for Cancer Epidemiology, University of Cambridge, Strange ways Research Laboratory, Cambridge, UK
- The Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Thomas A. Sellers
- Department of Cancer Epidemiology, Division of Population Sciences, Moffitt Cancer Center, Tampa, FL, USA
| | - Catherine M. Phelan
- Department of Cancer Epidemiology, Division of Population Sciences, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
39
|
Sun H, Mi X, Gao N, Yan C, Yu FS. Hyperglycemia-suppressed expression of Serpine1 contributes to delayed epithelial wound healing in diabetic mouse corneas. Invest Ophthalmol Vis Sci 2015; 56:3383-92. [PMID: 26024123 DOI: 10.1167/iovs.15-16606] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
PURPOSE Patients with diabetes mellitus (DM) are at an increased risk for developing corneal complications, including delayed wound healing. The purpose of this study was to characterize the expression and the function of Serpine1 and other components of urokinase plasminogen activator (uPA)-proteolytic system in delayed epithelial wound healing in diabetic mouse corneas. METHODS Mice of the strain C57BL/6 were induced to develop diabetes by streptozotocin, and wound-healing assays were performed 10 weeks afterward. Gene expression and/or distribution were assessed by real-time PCR, Western blotting, and/or immunohistochemistry. The role of Serpine1 in mediating epithelial wound closure was determined by subconjunctival injections of neutralizing antibodies in either normal or recombinant protein in diabetic corneas. Enzyme assay for matrix metalloproteinase (MMP)-3 was also performed. RESULTS The expressions of Serpine1 (PAI-1), Plau (uPA), and Plaur (uPA receptor) were upregulated in response to wounding, and these upregulations were significantly suppressed by hyperglycemia. In healing epithelia, Plau and Serpine1 were abundantly expressed at the leading edge of the healing epithelia of normal and, to a lesser extent, diabetic corneas. Inhibition of Serpine1 delayed epithelial wound closure in normal corneas, whereas recombinant Serpine1 accelerated it in diabetic corneas. The Plau and MMP-3 mRNA levels and MMP-3 enzymatic activities were correlated to Serpine1 levels and/or the rates of epithelial wound closure. CONCLUSIONS Serpine1 plays a role in mediating epithelial wound healing and its impaired expression may contribute to delayed wound healing in DM corneas. Hence, modulating uPA proteolytic pathway may represent a new approach for treating diabetic keratopathy.
Collapse
|
40
|
Sobilo L, Kurfürst R, Loubens V, Martin M, Mondon P, Jeanneton O, Heusèle C, Ossant F, Lespessailles E, Toumi H, Crabbe L, Schnebert S. Impact of exogenous stress on TGF-β inducible early gene 1 in human skin cells. Exp Dermatol 2015; 24:892-4. [DOI: 10.1111/exd.12790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2015] [Indexed: 11/26/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Frédéric Ossant
- Inserm U930; Université de Tours, UFR Médecine; Tours France
| | | | - Hechmi Toumi
- EA 4708 - IMT3O; CHR Orléans/Université d'Orléans; Orléans France
| | | | | |
Collapse
|
41
|
Kwon YJ, Petrie K, Leibovitch BA, Zeng L, Mezei M, Howell L, Gil V, Christova R, Bansal N, Yang S, Sharma R, Ariztia EV, Frankum J, Brough R, Sbirkov Y, Ashworth A, Lord CJ, Zelent A, Farias E, Zhou MM, Waxman S. Selective Inhibition of SIN3 Corepressor with Avermectins as a Novel Therapeutic Strategy in Triple-Negative Breast Cancer. Mol Cancer Ther 2015; 14:1824-36. [PMID: 26078298 PMCID: PMC4529816 DOI: 10.1158/1535-7163.mct-14-0980-t] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 06/02/2015] [Indexed: 12/25/2022]
Abstract
Triple-negative breast cancers (TNBC) lacking estrogen, progesterone, and HER2 receptors account for 10% to 20% of breast cancer and are indicative of poor prognosis. The development of effective treatment strategies therefore represents a pressing unmet clinical need. We previously identified a molecularly targeted approach to target aberrant epigenetics of TNBC using a peptide corresponding to the SIN3 interaction domain (SID) of MAD. SID peptide selectively blocked binding of SID-containing proteins to the paired α-helix (PAH2) domain of SIN3, resulting in epigenetic and transcriptional modulation of genes associated with epithelial-mesenchymal transition (EMT). To find small molecule inhibitor (SMI) mimetics of SID peptide, we performed an in silico screen for PAH2 domain-binding compounds. This led to the identification of the avermectin macrocyclic lactone derivatives selamectin and ivermectin (Mectizan) as candidate compounds. Both selamectin and ivermectin phenocopied the effects of SID peptide to block SIN3-PAH2 interaction with MAD, induce expression of CDH1 and ESR1, and restore tamoxifen sensitivity in MDA-MB-231 human and MMTV-Myc mouse TNBC cells in vitro. Treatment with selamectin or ivermectin led to transcriptional modulation of genes associated with EMT and maintenance of a cancer stem cell phenotype in TNBC cells. This resulted in impairment of clonogenic self-renewal in vitro and inhibition of tumor growth and metastasis in vivo. Underlining the potential of avermectins in TNBC, pathway analysis revealed that selamectin also modulated the expression of therapeutically targetable genes. Consistent with this, an unbiased drug screen in TNBC cells identified selamectin-induced sensitization to a number of drugs, including those targeting modulated genes.
Collapse
Affiliation(s)
- Yeon-Jin Kwon
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kevin Petrie
- The Institute of Cancer Research, London, United Kingdom
| | - Boris A Leibovitch
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Lei Zeng
- Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mihaly Mezei
- Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Louise Howell
- The Institute of Cancer Research, London, United Kingdom
| | - Veronica Gil
- The Institute of Cancer Research, London, United Kingdom
| | | | - Nidhi Bansal
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Shuai Yang
- Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rajal Sharma
- Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Edgardo V Ariztia
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Rachel Brough
- The Institute of Cancer Research, London, United Kingdom
| | - Yordan Sbirkov
- The Institute of Cancer Research, London, United Kingdom
| | - Alan Ashworth
- The Institute of Cancer Research, London, United Kingdom
| | | | - Arthur Zelent
- The Institute of Cancer Research, London, United Kingdom. Division of Hemato-Oncology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Eduardo Farias
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ming-Ming Zhou
- Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Samuel Waxman
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
42
|
Zeng R, Duan L, Sun L, Kong Y, Yang K. Effect of triptolide on expression of thrombospondin-1 and transforming growth factor-β1 in renal tubular cells. Ren Fail 2015; 37:1039-43. [PMID: 25945607 DOI: 10.3109/0886022x.2015.1040705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The objective of our study is to investigate the effect of triptolide on expression of thrombospondin-1 and transforming growth factor β1 in renal tubular cells. Human renal tubular epithelial cells were stimulated by different concentrations of triptolide (0.1, 1, and 10 μg/L) in the presence of angiotensin-II (10(-7)mol/L). Real Time PCR was used to detect the mRNA expression of thrombospondin-1 and transforming growth factor β1. Western blot analysis was used to detect the protein expression. ELISA was used to detect the level of total and active transforming growth factor β1. The mRNA expression of thrombospondin-1 (3.66 ± 0.48 vs. 1.33 ± 0.26, p < 0.05) and transforming growth factor β1 (3.58 ± 0.59 vs. 1.26 ± 0.28, p < 0.05) were up-regulated obviously when stimulated by angiotensin-II. And the protein expression of thrombospondin-1 (0.5126 ± 0.0936 vs. 0.1025 ± 0.0761, p < 0.01) and transforming growth factor β1 (0.5948 ± 0.0736 vs. 0.1318 ± 0.0614, p < 0.01) were also up-regulated simultaneously when stimulated by angiotensin-II. The expression of thrombospondin-1 and transforming growth factor β1 induced by angiotensin-II were down-regulated markedly with 1 μg/L and 10 μg/L of triptolide in mRNA and protein levels (p < 0.05, p < 0.01). And triptolide (1 and 10 μg/L) could reduce the expression of total and active transforming growth factor β1 (p < 0.05, p < 0.01). In conclusion, triptolide can inhibit the expression of thrombospondin-1 and transforming growth factor β1 in mRNA and protein levels and down-regulate the levels of total and active transforming growth factor β1.
Collapse
Affiliation(s)
- Rong Zeng
- a Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University , Lanzhou , Gansu , China .,b Key Laboratory of Clinical Translational Research and Evidence-Based Medicine Center of Gansu Province , Lanzhou , Gansu , China .,c The Second Clinical Medicine College of Lanzhou University , Lanzhou , Gansu , China , and
| | - Lei Duan
- a Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University , Lanzhou , Gansu , China .,b Key Laboratory of Clinical Translational Research and Evidence-Based Medicine Center of Gansu Province , Lanzhou , Gansu , China .,c The Second Clinical Medicine College of Lanzhou University , Lanzhou , Gansu , China , and
| | - Lina Sun
- d The First Clinical Medicine College of Lanzhou University , Lanzhou , Gansu , China
| | - Yuke Kong
- c The Second Clinical Medicine College of Lanzhou University , Lanzhou , Gansu , China , and
| | - Kehu Yang
- a Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University , Lanzhou , Gansu , China .,b Key Laboratory of Clinical Translational Research and Evidence-Based Medicine Center of Gansu Province , Lanzhou , Gansu , China
| |
Collapse
|
43
|
Tu X, Zheng X, Li H, Cao Z, Chang H, Luan S, Zhu J, Chen J, Zang Y, Zhang J. MicroRNA-30 Protects Against Carbon Tetrachloride-induced Liver Fibrosis by Attenuating Transforming Growth Factor Beta Signaling in Hepatic Stellate Cells. Toxicol Sci 2015; 146:157-69. [PMID: 25912033 DOI: 10.1093/toxsci/kfv081] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Transforming growth factor beta (TGF-β) is crucial for transdifferentiation of hepatic stellate cells (HSCs) and the blunting of TGF-β signaling in HSCs can effectively prevent liver fibrosis. Krüppel-like factor 11 (KLF11) is an early response transcription factor that potentiates TGF-β/Smad signaling by suppressing the transcription of inhibitory Smad7. Using a mouse model of carbon tetrachloride (CCl4)-induced liver fibrosis, we observed significant upregulation of KLF11 in the activated HSCs during liver fibrogenesis. Meanwhile, the downregulation of miR-30 was observed in the HSCs isolated from fibrotic liver. Adenovirus-mediated ectopic expression of miR-30 was under the control of smooth muscle α-actin promoter, showing that the increase in miR-30 in HSC greatly reduced CCl4-induced liver fibrosis. Subsequent investigations showed that miR-30 suppressed KLF11 expression in HSC and led to a significant upregulation of Smad7 in vivo. Mechanistic studies further confirmed that KLF11 was the direct target of miR-30, and revealed that miR-30 blunted the profibrogenic TGF-β signaling in HSC by suppressing KLF11 expression and thus enhanced the negative feedback loop of TGF-β signaling imposed by Smad7. Finally, we demonstrated that miR-30 facilitated the reversal of activated HSC to a quiescent state as indicated by the inhibition of proliferation and migration, the loss of activation markers, and the gain of quiescent HSC markers. In conclusion, our results define miR-30 as a crucial suppressor of TGF-β signaling in HSCs activation and provide useful insights into the mechanisms underlying liver fibrosis.
Collapse
Affiliation(s)
- Xiaolong Tu
- *State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University and Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Xiuxiu Zheng
- *State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University and Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Huanan Li
- *State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University and Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Zhipeng Cao
- *State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University and Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Hanwen Chang
- *State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University and Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Shaoyuan Luan
- *State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University and Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Jie Zhu
- *State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University and Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Jiangning Chen
- *State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University and Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Yuhui Zang
- *State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University and Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China *State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University and Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Junfeng Zhang
- *State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University and Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China *State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University and Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| |
Collapse
|
44
|
Duncan J, Wang N, Zhang X, Johnson S, Harris S, Zheng B, Zhang Q, Rajkowska G, Miguel-Hidalgo JJ, Sittman D, Ou XM, Stockmeier CA, Wang JM. Chronic Social Stress and Ethanol Increase Expression of KLF11, a Cell Death Mediator, in Rat Brain. Neurotox Res 2015; 28:18-31. [PMID: 25739536 DOI: 10.1007/s12640-015-9524-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 01/20/2015] [Accepted: 02/19/2015] [Indexed: 02/06/2023]
Abstract
Major depressive disorder and alcoholism are significant health burdens that can affect executive functioning, cognitive ability, job responsibilities, and personal relationships. Studies in animal models related to depression or alcoholism reveal that the expression of Krüppel-like factor 11 (KLF11, also called TIEG2) is elevated in frontal cortex, which suggests that KLF11 may play a role in stress- or ethanol-induced psychiatric conditions. KLF11 is a transcriptional activator of monoamine oxidase A and B, but also serves other functions in cell cycle regulation and apoptotic cell death. In the present study, immunohistochemistry was used to quantify intensity of nuclear KLF11, combined with an unbiased stereological approach to assess nuclei in fronto-limbic, limbic, and other brain regions of rats exposed chronically to social defeat or ethanol. KLF11 immunoreactivity was increased significantly in the medial prefrontal cortex, frontal cortex, and hippocampus of both stressed rats and rats fed ethanol. However, expression of KLF11 protein was not significantly affected in the thalamus, hypothalamus, or amygdala in either treatment group compared to respective control rats. Triple-label immunofluorescence revealed that KLF11 protein was localized in nuclei of neurons and astrocytes. KLF11 was also co-localized with the immunoreactivity of cleaved caspase-3. In addition, Western blot analysis revealed a significant reduction in anti-apoptotic protein, Bcl-xL, but an increase of caspase-3 expression in the frontal cortex of ethanol-treated rats compared to ethanol-preferring controls. Thus, KLF11 protein is up-regulated following chronic exposure to stress or ethanol in a region-specific manner and may contribute to pro-apoptotic signaling in ethanol-treated rats. Further investigation into the KLF11 signaling cascade as a mechanism for neurotoxicity and cell death in depression and alcoholism may provide novel pharmacological targets to lessen brain damage and maximize neuroprotection in these disorders.
Collapse
Affiliation(s)
- Jeremy Duncan
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
HEO SEUNGHO, JEONG EUISUK, LEE KYOUNGSUN, SEO JINHEE, LEE WOONKYU, CHOI YANGKYU. Krüppel-like factor 10 null mice exhibit lower tumor incidence and suppressed cellular proliferation activity following chemically induced liver tumorigenesis. Oncol Rep 2015; 33:2037-44. [DOI: 10.3892/or.2015.3801] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/16/2015] [Indexed: 11/06/2022] Open
|
46
|
Martínez-Armenta M, Díaz de León-Guerrero S, Catalán A, Alvarez-Arellano L, Uribe RM, Subramaniam M, Charli JL, Pérez-Martínez L. TGFβ2 regulates hypothalamic Trh expression through the TGFβ inducible early gene-1 (TIEG1) during fetal development. Mol Cell Endocrinol 2015; 400:129-39. [PMID: 25448845 PMCID: PMC4415168 DOI: 10.1016/j.mce.2014.10.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 09/01/2014] [Accepted: 10/27/2014] [Indexed: 01/05/2023]
Abstract
The hypothalamus regulates the homeostasis of the organism by controlling hormone secretion from the pituitary. The molecular mechanisms that regulate the differentiation of the hypothalamic thyrotropin-releasing hormone (TRH) phenotype are poorly understood. We have previously shown that Klf10 or TGFβ inducible early gene-1 (TIEG1) is enriched in fetal hypothalamic TRH neurons. Here, we show that expression of TGFβ isoforms (1-3) and both TGFβ receptors (TβRI and II) occurs in the hypothalamus concomitantly with the establishment of TRH neurons during late embryonic development. TGFβ2 induces Trh expression via a TIEG1 dependent mechanism. TIEG1 regulates Trh expression through an evolutionary conserved GC rich sequence on the Trh promoter. Finally, in mice deficient in TIEG1, Trh expression is lower than in wild type animals at embryonic day 17. These results indicate that TGFβ signaling, through the upregulation of TIEG1, plays an important role in the establishment of Trh expression in the embryonic hypothalamus.
Collapse
MESH Headings
- Animals
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- Embryo, Mammalian
- Fetus
- Gene Expression Regulation, Developmental
- Hypothalamus/cytology
- Hypothalamus/growth & development
- Hypothalamus/metabolism
- Immunohistochemistry
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neurons/cytology
- Neurons/metabolism
- Primary Cell Culture
- Promoter Regions, Genetic
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Rats
- Rats, Wistar
- Receptor, Transforming Growth Factor-beta Type I
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Signal Transduction
- Thyrotropin-Releasing Hormone/genetics
- Thyrotropin-Releasing Hormone/metabolism
- Transcription Factors/deficiency
- Transcription Factors/genetics
- Transforming Growth Factor beta1/genetics
- Transforming Growth Factor beta1/metabolism
- Transforming Growth Factor beta2/genetics
- Transforming Growth Factor beta2/metabolism
- Transforming Growth Factor beta3/genetics
- Transforming Growth Factor beta3/metabolism
Collapse
Affiliation(s)
- Miriam Martínez-Armenta
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Sol Díaz de León-Guerrero
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Ana Catalán
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Lourdes Alvarez-Arellano
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Rosa Maria Uribe
- Departamento de Genética y Fisiología Molecular, Instituto de Biotecnología, UNAM, Cuernavaca, Morelos, Mexico
| | | | - Jean-Louis Charli
- Departamento de Genética y Fisiología Molecular, Instituto de Biotecnología, UNAM, Cuernavaca, Morelos, Mexico
| | - Leonor Pérez-Martínez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico.
| |
Collapse
|
47
|
Abstract
Krüppel-like factors (KLFs) comprise a highly conserved family of zinc finger transcription factors, that are involved in a plethora of cellular processes, ranging from proliferation and apoptosis to differentiation, migration and pluripotency. During the last few years, evidence on their role and deregulation in different human cancers has been emerging. This review will discuss current knowledge on Krüppel-like transcription in the epithelial-mesenchymal transition (EMT), invasion and metastasis, with a focus on epithelial cancer biology and the extensive interface with pluripotency. Furthermore, as KLFs are able to mediate different outcomes, important influences of the cellular and microenvironmental context will be highlighted. Finally, we attempt to integrate diverse findings on KLF functions in EMT and stem cell biology to ft in the current model of cellular plasticity as a tool for successful metastatic dissemination.
Collapse
|
48
|
Papadakis KA, Krempski J, Reiter J, Svingen P, Xiong Y, Sarmento OF, Huseby A, Johnson AJ, Lomberk GA, Urrutia RA, Faubion WA. Krüppel-like factor KLF10 regulates transforming growth factor receptor II expression and TGF-β signaling in CD8+ T lymphocytes. Am J Physiol Cell Physiol 2014; 308:C362-71. [PMID: 25472963 DOI: 10.1152/ajpcell.00262.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
KLF10 has recently elicited significant attention as a transcriptional regulator of transforming growth factor-β1 (TGF-β1) signaling in CD4(+) T cells. In the current study, we demonstrate a novel role for KLF10 in the regulation of TGF-β receptor II (TGF-βRII) expression with functional relevance in antiviral immune response. Specifically, we show that KLF10-deficient mice have an increased number of effector/memory CD8(+) T cells, display higher levels of the T helper type 1 cell-associated transcription factor T-bet, and produce more IFN-γ following in vitro stimulation. In addition, KLF10(-/-) CD8(+) T cells show enhanced proliferation in vitro and homeostatic proliferation in vivo. Freshly isolated CD8(+) T cells from the spleen of adult mice express lower levels of surface TGF-βRII (TβRII). Congruently, in vitro activation of KLF10-deficient CD8(+) T cells upregulate TGF-βRII to a lesser extent compared with wild-type (WT) CD8(+) T cells, which results in attenuated Smad2 phosphorylation following TGF-β1 stimulation compared with WT CD8(+) T cells. Moreover, we demonstrate that KLF10 directly binds to the TGF-βRII promoter in T cells, leading to enhanced gene expression. In vivo viral infection with Daniel's strain Theiler's murine encephalomyelitis virus (TMEV) also led to lower expression of TGF-βRII among viral-specific KLF10(-/-) CD8(+) T cells and a higher percentage of IFN-γ-producing CD8(+) T cells in the spleen. Collectively, our data reveal a critical role for KLF10 in the transcriptional activation of TGF-βRII in CD8(+) T cells. Thus, KLF10 regulation of TGF-βRII in this cell subset may likely play a critical role in viral and tumor immune responses for which the integrity of the TGF-β1/TGF-βRII signaling pathway is crucial.
Collapse
Affiliation(s)
| | - James Krempski
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Jesse Reiter
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Phyllis Svingen
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Yuning Xiong
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Olga F Sarmento
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - April Huseby
- Division of Immunology and Neurology, Mayo Clinic, Rochester, Minnesota; and
| | - Aaron J Johnson
- Division of Immunology and Neurology, Mayo Clinic, Rochester, Minnesota; and
| | - Gwen A Lomberk
- Epigenetics and Chromatin Dynamics Laboratory, Departments of Medicine and Biochemistry and Molecular Biology, Epigenetic Translational Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Raul A Urrutia
- Epigenetics and Chromatin Dynamics Laboratory, Departments of Medicine and Biochemistry and Molecular Biology, Epigenetic Translational Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - William A Faubion
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota;
| |
Collapse
|
49
|
Kim JK, Lee KS, Chang HY, Lee WK, Lee JI. Progression of diet induced nonalcoholic steatohepatitis is accompanied by increased expression of Kruppel-like-factor 10 in mice. J Transl Med 2014; 12:186. [PMID: 24986741 PMCID: PMC4086692 DOI: 10.1186/1479-5876-12-186] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/24/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Kruppel-like-factor (KLF) 10 is identified as transforming growth factor (TGF) β inducible early gene and is reported to suppress lipogenic genes. Although previous studies report that TGFβ plays an important role in progression of nonalcoholic steatohepatitis (NASH) by regulating liver fibrosis, the association of KLF10 and NASH has never been explored. Thus we evaluated expressions and changes of KLF10 in diet induced NASH and in NASH which was alleviated by ursodeoxycholic acid (UDCA). We also assessed KLF10 in quiescent and activated hepatic stellate cells (HSCs). METHODS C57BL/6 mice were given high fat, sucrose diet (HFSD) at least for 12 weeks up to 48 weeks and sacrificed at 12, 24 and 48 weeks thereafter. In other groups, either standard diet (SD) or HFSD was given for 24 weeks at which point mice fed with HFSD were divided into two groups, and were given either UDCA in combination with HFSD or vehicle with HFSD. Mice under SD were given vehicle. HSCs were isolated from C57BL/6 mice in order to evaluated KLF10 expression in activated HSCs. RESULTS The mice were found to acquire liver steatosis and inflammation starting from week 12 of HFSD feeding, although significant liver fibrosis was noticed by week 24. Increased TGFβ and collagen α1(I) (Col1α(I)) expression was also apparent from week 24. However, expression of KLF10 mRNA started to increase from week 12, earlier than TGFβ gene. Up-regulation of KLF10 was accompanied by suppressed carbohydrate response element-binding protein (ChREBP) that is known to be protective against insulin resistance. The mice fed with HFSD and UDCA had decreased Colα(I) mRNA that was coincided with reduced TGFβ and KLF10 expression. Expression of ChREBP was also recovered by UDCA administration. Enhanced KLF10 was noticed in activated HSCs when quiescent cell showed minimal expression. CONCLUSIONS Our study demonstrated that KLF10 expression was significantly increased in diet induced NASH and collagen producing activated HSCs. We also noticed that this up-regulation of KLF10 was accompanied by increased TGFβ signaling genes and suppressed ChREBP expression. These observations suggest possible association of KLF10 and NASH progression.
Collapse
Affiliation(s)
- Ja Kyung Kim
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eunju-ro, Gangnam-gu, Seoul 135-720, Republic of Korea
| | - Kwan Sik Lee
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eunju-ro, Gangnam-gu, Seoul 135-720, Republic of Korea
| | - Hye Young Chang
- Medical Research Center, Gangnam Severance Hospital, 211 Eunju-ro, Gangnam-gu, Seoul 120-752, Republic of Korea
| | - Woon Kyu Lee
- Laboratory of Developmental Genetics, Inha University School of Medicine, Incheon 400-712, Republic of Korea
| | - Jung Il Lee
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eunju-ro, Gangnam-gu, Seoul 135-720, Republic of Korea
| |
Collapse
|
50
|
Song M, Zhang Y, Katzaroff AJ, Edgar BA, Buttitta L. Hunting complex differential gene interaction patterns across molecular contexts. Nucleic Acids Res 2014; 42:e57. [PMID: 24482443 PMCID: PMC3985659 DOI: 10.1093/nar/gku086] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Heterogeneity in genetic networks across different signaling molecular contexts can suggest molecular regulatory mechanisms. Here we describe a comparative chi-square analysis (CPχ2) method, considerably more flexible and effective than other alternatives, to screen large gene expression data sets for conserved and differential interactions. CPχ2 decomposes interactions across conditions to assess homogeneity and heterogeneity. Theoretically, we prove an asymptotic chi-square null distribution for the interaction heterogeneity statistic. Empirically, on synthetic yeast cell cycle data, CPχ2 achieved much higher statistical power in detecting differential networks than alternative approaches. We applied CPχ2 to Drosophila melanogaster wing gene expression arrays collected under normal conditions, and conditions with overexpressed E2F and Cabut, two transcription factor complexes that promote ectopic cell cycling. The resulting differential networks suggest a mechanism by which E2F and Cabut regulate distinct gene interactions, while still sharing a small core network. Thus, CPχ2 is sensitive in detecting network rewiring, useful in comparing related biological systems.
Collapse
Affiliation(s)
- Mingzhou Song
- Department of Computer Science, New Mexico State University, Las Cruces, NM 88003, USA, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA, Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA and German Cancer Research Center (DKFZ)-Center for Molecular Biology Heidelberg (ZMBH) Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|