1
|
Dong W, Wang H, Li M, Li P, Ji S. Virus-induced host genomic remodeling dysregulates gene expression, triggering tumorigenesis. Front Cell Infect Microbiol 2024; 14:1359766. [PMID: 38572321 PMCID: PMC10987825 DOI: 10.3389/fcimb.2024.1359766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/01/2024] [Indexed: 04/05/2024] Open
Abstract
Virus-induced genomic remodeling and altered gene expression contribute significantly to cancer development. Some oncogenic viruses such as Human papillomavirus (HPV) specifically trigger certain cancers by integrating into the host's DNA, disrupting gene regulation linked to cell growth and migration. The effect can be through direct integration of viral genomes into the host genome or through indirect modulation of host cell pathways/proteins by viral proteins. Viral proteins also disrupt key cellular processes like apoptosis and DNA repair by interacting with host molecules, affecting signaling pathways. These disruptions lead to mutation accumulation and tumorigenesis. This review focuses on recent studies exploring virus-mediated genomic structure, altered gene expression, and epigenetic modifications in tumorigenesis.
Collapse
Affiliation(s)
- Weixia Dong
- Department of Basic Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, Henan, China
| | - Huiqin Wang
- Department of Basic Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, Henan, China
| | - Menghui Li
- Department of Basic Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, Henan, China
| | - Ping Li
- Department of Basic Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, Henan, China
| | - Shaoping Ji
- Department of Basic Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, Henan, China
- Department of Biochemistry and Molecular Biology, Medical School, Henan University, Kaifeng, Henan, China
| |
Collapse
|
2
|
Abstract
Growing lines of evidence implicate the small GTPase RAN, its regulators and effectors--predominantly, nuclear transport receptors--in practically all aspects of centrosome biology in mammalian cells. These include duplication licensing, cohesion, positioning, and microtubule-nucleation capacity. RAN cooperates with the protein nuclear export vector exportin 1/CRM1 to recruit scaffolding proteins containing nuclear export sequences that play roles in the structural organization of centrosomes. Together, they also limit centrosome reduplication by regulating the localization of key "licensing" proteins during the centrosome duplication cycle. In parallel, RAN also regulates the capacity of centrosomes to nucleate and organize functional microtubules, and this predominanlty involves importin vectors: many factors regulating microtubule nucleation or function harbor nuclear localization sequences that interact with importin molecules and such interaction inhibits their activity. Active RANGTP binding to importin molecules removes the inhibition and releases microtubule regulatory factors in the free productive form. A dynamic scenario emerges, in which RAN is pivotal in linking spatiotemporal control of centrosome regulators to the cell cycle machinery.
Collapse
Affiliation(s)
- Patrizia Lavia
- Institute of Molecular Biology and Pathology, CNR National Research Council of Italy, c/o Sapienza University of Rome, via degli Apuli 4, Rome, 00185, Italy.
| |
Collapse
|
3
|
Kaposi sarcoma herpes virus latency associated nuclear antigen protein release the G2/M cell cycle blocks by modulating ATM/ATR mediated checkpoint pathway. PLoS One 2014; 9:e100228. [PMID: 24972086 PMCID: PMC4074033 DOI: 10.1371/journal.pone.0100228] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 05/24/2014] [Indexed: 11/30/2022] Open
Abstract
The Kaposi's sarcoma-associated herpesvirus infects the human population and maintains latency stage of viral life cycle in a variety of cell types including cells of epithelial, mesenchymal and endothelial origin. The establishment of latent infection by KSHV requires the expression of an unique repertoire of genes among which latency associated nuclear antigen (LANA) plays a critical role in the replication of the viral genome. LANA regulates the transcription of a number of viral and cellular genes essential for the survival of the virus in the host cell. The present study demonstrates the disruption of the host G2/M cell cycle checkpoint regulation as an associated function of LANA. DNA profile of LANA expressing human B-cells demonstrated the ability of this nuclear antigen in relieving the drug (Nocodazole) induced G2/M checkpoint arrest. Caffeine suppressed nocodazole induced G2/M arrest indicating involvement of the ATM/ATR. Notably, we have also shown the direct interaction of LANA with Chk2, the ATM/ATR signalling effector and is responsible for the release of the G2/M cell cycle block.
Collapse
|
4
|
Abstract
To replicate their genomes in cells and generate new progeny, viruses typically require factors provided by the cells that they have infected. Subversion of the cellular machinery that controls replication of the infected host cell is a common activity of many viruses. Viruses employ different strategies to deregulate cell cycle checkpoint controls and modulate cell proliferation pathways. A number of DNA and RNA viruses encode proteins that target critical cell cycle regulators to achieve cellular conditions that are beneficial for viral replication. Many DNA viruses induce quiescent cells to enter the cell cycle; this is thought to increase pools of deoxynucleotides and thus, facilitate viral replication. In contrast, some viruses can arrest cells in a particular phase of the cell cycle that is favorable for replication of the specific virus. Cell cycle arrest may inhibit early cell death of infected cells, allow the cells to evade immune defenses, or help promote virus assembly. Although beneficial for the viral life cycle, virus-mediated alterations in normal cell cycle control mechanisms could have detrimental effects on cellular physiology and may ultimately contribute to pathologies associated with the viral infection, including cell transformation and cancer progression and maintenance. In this chapter, we summarize various strategies employed by DNA and RNA viruses to modulate the replication cycle of the virus-infected cell. When known, we describe how these virus-associated effects influence replication of the virus and contribute to diseases associated with infection by that specific virus.
Collapse
Affiliation(s)
- Eishi Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania USA
| | - Mariana C. Gadaleta
- Dept of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, USA
| |
Collapse
|
5
|
Di Fiore R, D'Anneo A, Tesoriere G, Vento R. RB1 in cancer: different mechanisms of RB1 inactivation and alterations of pRb pathway in tumorigenesis. J Cell Physiol 2013; 228:1676-87. [PMID: 23359405 DOI: 10.1002/jcp.24329] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 01/15/2013] [Indexed: 12/14/2022]
Abstract
Loss of RB1 gene is considered either a causal or an accelerating event in retinoblastoma. A variety of mechanisms inactivates RB1 gene, including intragenic mutations, loss of expression by methylation and chromosomal deletions, with effects which are species-and cell type-specific. RB1 deletion can even lead to aneuploidy thus greatly increasing cancer risk. The RB1gene is part of a larger gene family that includes RBL1 and RBL2, each of the three encoding structurally related proteins indicated as pRb, p107, and p130, respectively. The great interest in these genes and proteins springs from their ability to slow down neoplastic growth. pRb can associate with various proteins by which it can regulate a great number of cellular activities. In particular, its association with the E2F transcription factor family allows the control of the main pRb functions, while the loss of these interactions greatly enhances cancer development. As RB1 gene, also pRb can be functionally inactivated through disparate mechanisms which are often tissue specific and dependent on the scenario of the involved tumor suppressors and oncogenes. The critical role of the context is complicated by the different functions played by the RB proteins and the E2F family members. In this review, we want to emphasize the importance of the mechanisms of RB1/pRb inactivation in inducing cancer cell development. The review is divided in three chapters describing in succession the mechanisms of RB1 inactivation in cancer cells, the alterations of pRb pathway in tumorigenesis and the RB protein and E2F family in cancer.
Collapse
Affiliation(s)
- Riccardo Di Fiore
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Polyclinic, University of Palermo, Palermo, Italy
| | | | | | | |
Collapse
|
6
|
Mileo AM, Abbruzzese C, Vico C, Bellacchio E, Matarrese P, Ascione B, Federico A, Della Bianca S, Mattarocci S, Malorni W, Paggi MG. The human papillomavirus-16 E7 oncoprotein exerts antiapoptotic effects via its physical interaction with the actin-binding protein gelsolin. Carcinogenesis 2013; 34:2424-33. [PMID: 23729654 DOI: 10.1093/carcin/bgt192] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The oncoprotein E7 from human papillomavirus-16 (HPV-16 E7) plays a pivotal role in HPV postinfective carcinogenesis, and its physical interaction with host cell targets is essential to its activity. We identified a novel cellular partner for the viral oncoprotein: the actin-binding protein gelsolin (GSN), a key regulator of actin filament assembly and disassembly. In fact, biochemical analyses, generation of a 3D molecular interaction model and the use of specific HPV-16 E7 mutants provided clear cut evidence supporting the crucial role of HPV-16 E7 in affecting GSN integrity and function in human immortalized keratinocytes. Accordingly, functional analyses clearly suggested that stable HPV-16 E7 expression induced an imbalance between polymeric and monomeric actin in favor of the former. These events also lead to changes of cell cycle (increased S phase), to the inhibition of apoptosis and to the increase of cell survival. These results provide support to the hypotheses generated from the 3D molecular interaction model and encourage the design of small molecules hindering HPV-induced host cell reprogramming by specifically targeting HPV-16 E7-expressing cells.
Collapse
Affiliation(s)
- Anna M Mileo
- Department of Development of Therapeutic Programs, Regina Elena National Cancer Institute, IRCCS, Via Elio Chianesi 53, 00144 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Molecular mechanisms of natural killer cell activation in response to cellular stress. Cell Death Differ 2013; 21:5-14. [PMID: 23579243 DOI: 10.1038/cdd.2013.26] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 02/27/2013] [Indexed: 01/06/2023] Open
Abstract
Protection against cellular stress from various sources, such as nutritional, physical, pathogenic, or oncogenic, results in the induction of both intrinsic and extrinsic cellular protection mechanisms that collectively limit the damage these insults inflict on the host. The major extrinsic protection mechanism against cellular stress is the immune system. Indeed, it has been well described that cells that are stressed due to association with viral infection or early malignant transformation can be directly sensed by the immune system, particularly natural killer (NK) cells. Although the ability of NK cells to directly recognize and respond to stressed cells is well appreciated, the mechanisms and the breadth of cell-intrinsic responses that are intimately linked with their activation are only beginning to be uncovered. This review will provide a brief introduction to NK cells and the relevant receptors and ligands involved in direct responses to cellular stress. This will be followed by an in-depth discussion surrounding the various intrinsic responses to stress that can naturally engage NK cells, and how therapeutic agents may induce specific activation of NK cells and other innate immune cells by activating cellular responses to stress.
Collapse
|
8
|
Wierstra I. FOXM1 (Forkhead box M1) in tumorigenesis: overexpression in human cancer, implication in tumorigenesis, oncogenic functions, tumor-suppressive properties, and target of anticancer therapy. Adv Cancer Res 2013; 119:191-419. [PMID: 23870513 DOI: 10.1016/b978-0-12-407190-2.00016-2] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
FOXM1 (Forkhead box M1) is a typical proliferation-associated transcription factor and is also intimately involved in tumorigenesis. FOXM1 stimulates cell proliferation and cell cycle progression by promoting the entry into S-phase and M-phase. Additionally, FOXM1 is required for proper execution of mitosis. In accordance with its role in stimulation of cell proliferation, FOXM1 exhibits a proliferation-specific expression pattern and its expression is regulated by proliferation and anti-proliferation signals as well as by proto-oncoproteins and tumor suppressors. Since these factors are often mutated, overexpressed, or lost in human cancer, the normal control of the foxm1 expression by them provides the basis for deregulated FOXM1 expression in tumors. Accordingly, FOXM1 is overexpressed in many types of human cancer. FOXM1 is intimately involved in tumorigenesis, because it contributes to oncogenic transformation and participates in tumor initiation, growth, and progression, including positive effects on angiogenesis, migration, invasion, epithelial-mesenchymal transition, metastasis, recruitment of tumor-associated macrophages, tumor-associated lung inflammation, self-renewal capacity of cancer cells, prevention of premature cellular senescence, and chemotherapeutic drug resistance. However, in the context of urethane-induced lung tumorigenesis, FOXM1 has an unexpected tumor suppressor role in endothelial cells because it limits pulmonary inflammation and canonical Wnt signaling in epithelial lung cells, thereby restricting carcinogenesis. Accordingly, FOXM1 plays a role in homologous recombination repair of DNA double-strand breaks and maintenance of genomic stability, that is, prevention of polyploidy and aneuploidy. The implication of FOXM1 in tumorigenesis makes it an attractive target for anticancer therapy, and several antitumor drugs have been reported to decrease FOXM1 expression.
Collapse
|
9
|
Topalis D, Andrei G, Snoeck R. The large tumor antigen: a "Swiss Army knife" protein possessing the functions required for the polyomavirus life cycle. Antiviral Res 2012. [PMID: 23201316 DOI: 10.1016/j.antiviral.2012.11.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The SV40 large tumor antigen (L-Tag) is involved in the replication and cell transformation processes that take place during the polyomavirus life cycle. The ability of the L-Tag to interact with and to inactivate the tumor suppressor proteins p53 and pRb, makes this polyfunctional protein an interesting target in the search for compounds with antiviral and/or antiproliferative activities designed for the management of polyomavirus-associated diseases. The severe diseases caused by polyomaviruses, mainly in immunocompromised hosts, and the absence of licensed treatments, make the discovery of new antipolyomavirus drugs urgent. Parallels can be made between the SV40 L-Tag and the human papillomavirus (HPV) oncoproteins (E6 and E7) as they are also able to deregulate the cell cycle in order to promote cell transformation and its maintenance. In this review, a presentation of the SV40 L-Tag characteristics, regarding viral replication and cellular transformation, will show how similar these two processes are between the polyoma- and papillomavirus families. Insights at the molecular level will highlight similarities in the binding of polyoma- and papillomavirus replicative helicases to the viral DNA and in their disruptions of the p53 and pRb tumor suppressor proteins.
Collapse
Affiliation(s)
- D Topalis
- Rega Institute for Medical Research, KU Leuven, Belgium.
| | | | | |
Collapse
|
10
|
Jung H, Hsiung B, Pestal K, Procyk E, Raulet DH. RAE-1 ligands for the NKG2D receptor are regulated by E2F transcription factors, which control cell cycle entry. ACTA ACUST UNITED AC 2012; 209:2409-22. [PMID: 23166357 PMCID: PMC3526358 DOI: 10.1084/jem.20120565] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
E2F transcription factors regulate expression of RAE-1 family NKG2D ligands in cancer cells and normal proliferating cells to promote wound healing and immune recognition. The NKG2D stimulatory receptor expressed by natural killer cells and T cell subsets recognizes cell surface ligands that are induced on transformed and infected cells and facilitate immune rejection of tumor cells. We demonstrate that expression of retinoic acid early inducible gene 1 (RAE-1) family NKG2D ligands in cancer cell lines and proliferating normal cells is coupled directly to cell cycle regulation. Raet1 genes are directly transcriptionally activated by E2F family transcription factors, which play a central role in regulating cell cycle entry. Induction of RAE-1 occurred in primary cell cultures, embryonic brain cells in vivo, and cells in healing skin wounds and, accordingly, wound healing was delayed in mice lacking NKG2D. Transcriptional activation by E2Fs is likely coordinated with posttranscriptional regulation by other stress responses. These findings suggest that cellular proliferation, as occurs in cancer cells but also other pathological conditions, is a key signal tied to immune reactions mediated by NKG2D-bearing lymphocytes.
Collapse
Affiliation(s)
- Heiyoun Jung
- Department of Molecular and Cell Biology, 489 Life Sciences Addition, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
11
|
Di Bucchianico S, Giardi MF, De Marco P, Ottaviano L, Botti D. Cytogenetic stability of chicken T-cell line transformed with Marek's disease virus: atomic force microscope, a new tool for investigation. J Mol Recognit 2010; 24:608-18. [PMID: 21472812 DOI: 10.1002/jmr.1094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2010] [Revised: 08/24/2010] [Accepted: 08/24/2010] [Indexed: 11/08/2022]
Abstract
The Marek's disease virus (MDV) integration may induce a novel organization of chromatin architecture with a modified genetic expression. In our opinion it is worthwhile trying to relate cytogenetic stability to functional modifications. Recently, atomic force microscopy technique was applied to study the structure of chromosomes at a nanoscale level. This high resolution allows to investigate the different structure of chromatin in order to study cytogenetic stability and chromosome aberrations due to MDV insertion. In this paper data are presented indicating a duplication [78,WZ,dup(1p)(p22-p23)] and a deletion [78,WZ cht del(3)(q2.10)] of Chromosomes 1 and 3 relatively. Relationships between GTG (G-bands by Trypsin using Giemsa) bands and the topography of chromosomes are also discussed, naming them Topographic Banding. The architecture of chromosomes observed by AFM can be related to the data obtained with classic banding techniques thus overcoming the optical resolution limits. The presence of chromatin bridges between sister chromatids at most of the heterochromatic regions is also evidenced. Besides, we present different studies of the longitudinal and transversal symmetry of the hetero and euchromatic regions to clearly demonstrate a different underlying architecture of these regions. It is indeed evident that the heterochromatic bands are more symmetrical than euchromatic bands.
Collapse
Affiliation(s)
- Sebastiano Di Bucchianico
- Department of Basic and Applied Biology, University of L'Aquila, Via Vetoio 1, 67100 L'Aquila, Italy.
| | | | | | | | | |
Collapse
|
12
|
Paggi MG, Vona R, Abbruzzese C, Malorni W. Gender-related disparities in non-small cell lung cancer. Cancer Lett 2010; 298:1-8. [PMID: 20826048 DOI: 10.1016/j.canlet.2010.08.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 08/10/2010] [Accepted: 08/13/2010] [Indexed: 02/08/2023]
Abstract
Epidemiological studies clearly outline some disparities in cancer onset, progression as well as prognosis and therapeutic response between sexes. In particular, in lung cancer, the leading cause of cancer death, at least in Western countries, a gender disparity appears now to emerge, especially for non-small cell lung cancer (NSCLC). Such a disparity is apparently due to a variety of mechanisms, ranging from genetic and epigenetic differences to gender-specific lifestyle as well as to behavioral causes and, clearly, to sex hormones activity. Here we briefly recapitulate gender differences in terms of risk factors, histopathological features and pathogenetic mechanisms in NSCLC, and hypothesize that a gender-oriented pharmacology could beneficially impact on innovative therapeutic strategies.
Collapse
Affiliation(s)
- Marco G Paggi
- Department of Development of Therapeutic Programs, National Cancer Institute "Regina Elena", Via Elio Chianesi 53, 00144 Rome, Italy
| | | | | | | |
Collapse
|
13
|
Jeang KT, Giam CZ, Majone F, Aboud M. HTLV-1 Tax: Linking transformation, DNA damage and apoptotic T-cell death. J Biol Chem 2010; 279:31991-4. [PMID: 15090550 DOI: 10.1074/jbc.r400009200] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The human T-cell leukemia virus type I (HTLV-1) is the causative agent of adult T-cell leukemia (ATL), an aggressive CD4-positive T-cell neoplasia. The HTLV-1 proto-oncogene Tax, a potent transcriptional activator of cellular and viral genes, is thought to play a pivotal role in the transforming properties of the virus by deregulating intracellular signaling pathways. During the course of HTLV-1 infection, the dysregulation of cell-cycle checkpoints and the suppression of DNA damage repair is tightly linked to the activity of the viral oncoprotein Tax. Tax activity is associated with production of reactive oxygen intermediates (ROS), chromosomal instability and DNA damage, apoptotic cell death and cellular transformation. Changes in the intracellular redox status induced by Tax promote DNA damage. Tax-mediated DNA damage is believed to be essential in initiating the transformation process by subjecting infected T cells to genetic changes that eventually promote the neoplastic state. Apoptosis and immune surveillance would then exert the necessary selection pressure for eliminating the majority of virally infected cells, while escape variants acquiring a mutator phenotype would constitute a subpopulation of genetically altered cells prone to neoplasia. While the potency of Tax-activity seems to be a determining factor for the observed effects, the cooperation of Tax with other viral proteins determines the fate and progression of HTLV-1-infected cells through DNA damage, apoptosis, survival and transformation.
Collapse
Affiliation(s)
- Kuan-Teh Jeang
- Laboratory of Molecular Microbiology, Nattional Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
14
|
Mileo AM, Abbruzzese C, Mattarocci S, Bellacchio E, Pisano P, Federico A, Maresca V, Picardo M, Giorgi A, Maras B, Schininà ME, Paggi MG. Human papillomavirus-16 E7 interacts with glutathione S-transferase P1 and enhances its role in cell survival. PLoS One 2009; 4:e7254. [PMID: 19826491 PMCID: PMC2758704 DOI: 10.1371/journal.pone.0007254] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 08/17/2009] [Indexed: 11/18/2022] Open
Abstract
Background Human Papillomavirus (HPV)-16 is a paradigm for “high-risk” HPVs, the causative agents of virtually all cervical carcinomas. HPV E6 and E7 viral genes are usually expressed in these tumors, suggesting key roles for their gene products, the E6 and E7 oncoproteins, in inducing malignant transformation. Methodology/Principal Findings By protein-protein interaction analysis, using mass spectrometry, we identified glutathione S-transferase P1-1 (GSTP1) as a novel cellular partner of the HPV-16 E7 oncoprotein. Following mapping of the region in the HPV-16 E7 sequence that is involved in the interaction, we generated a three-dimensional molecular model of the complex between HPV-16 E7 and GSTP1, and used this to engineer a mutant molecule of HPV-16 E7 with strongly reduced affinity for GSTP1.When expressed in HaCaT human keratinocytes, HPV-16 E7 modified the equilibrium between the oxidized and reduced forms of GSTP1, thereby inhibiting JNK phosphorylation and its ability to induce apoptosis. Using GSTP1-deficient MCF-7 cancer cells and siRNA interference targeting GSTP1 in HaCaT keratinocytes expressing either wild-type or mutant HPV-16 E7, we uncovered a pivotal role for GSTP1 in the pro-survival program elicited by its binding with HPV-16 E7. Conclusions/Significance This study provides further evidence of the transforming abilities of this oncoprotein, setting the groundwork for devising unique molecular tools that can both interfere with the interaction between HPV-16 E7 and GSTP1 and minimize the survival of HPV-16 E7-expressing cancer cells.
Collapse
Affiliation(s)
- Anna M. Mileo
- Department of Development of Therapeutic Programs, CRS, Regina Elena Cancer Institute, Rome, Italy
| | - Claudia Abbruzzese
- Department of Development of Therapeutic Programs, CRS, Regina Elena Cancer Institute, Rome, Italy
| | - Stefano Mattarocci
- Department of Development of Therapeutic Programs, CRS, Regina Elena Cancer Institute, Rome, Italy
| | | | - Paola Pisano
- Department of Development of Therapeutic Programs, CRS, Regina Elena Cancer Institute, Rome, Italy
| | - Antonio Federico
- Department of Development of Therapeutic Programs, CRS, Regina Elena Cancer Institute, Rome, Italy
| | | | | | - Alessandra Giorgi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Bruno Maras
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - M. Eugenia Schininà
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Marco G. Paggi
- Department of Development of Therapeutic Programs, CRS, Regina Elena Cancer Institute, Rome, Italy
- * E-mail:
| |
Collapse
|
15
|
Medendorp K, van Groningen JJM, Vreede L, Hetterschijt L, van den Hurk WH, de Bruijn DRH, Brugmans L, Geurts van Kessel A. The mitotic arrest deficient protein MAD2B interacts with the small GTPase RAN throughout the cell cycle. PLoS One 2009; 4:e7020. [PMID: 19753112 PMCID: PMC2737141 DOI: 10.1371/journal.pone.0007020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 08/17/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Previously, we identified the mitotic arrest deficient protein MAD2B (MAD2L2) as a bona fide interactor of the renal cell carcinoma (RCC)-associated protein PRCC. In addition, we found that fusion of PRCC with the transcription factor TFE3 in t(X;1)(p11;q21)-positive RCCs results in an impairment of this interaction and, concomitantly, an abrogation of cell cycle progression. Although MAD2B is thought to inhibit the anaphase promoting complex (APC) by binding to CDC20 and/or CDH1(FZR1), its exact role in cell cycle control still remains to be established. METHODOLOGY/PRINCIPAL FINDINGS Using a yeast two-hybrid interaction trap we identified the small GTPase RAN, a well-known cell cycle regulator, as a novel MAD2B binding protein. Endogenous interaction was established in mammalian cells via co-localization and co-immunoprecipitation of the respective proteins. The interaction domain of RAN could be assigned to a C-terminal moiety of 60 amino acids, whereas MAD2B had to be present in its full-length conformation. The MAD2B-RAN interaction was found to persist throughout the cell cycle. During mitosis, co-localization at the spindle was observed. CONCLUSIONS/SIGNIFICANCE The small GTPase RAN is a novel MAD2B binding protein. This novel protein-protein interaction may play a role in (i) the control over the spindle checkpoint during mitosis and (ii) the regulation of nucleocytoplasmic trafficking during interphase.
Collapse
Affiliation(s)
- Klaas Medendorp
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Jan J. M. van Groningen
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Lilian Vreede
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Lisette Hetterschijt
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Wilhelmina H. van den Hurk
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Diederik R. H. de Bruijn
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Linda Brugmans
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Ad Geurts van Kessel
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
16
|
Chaurushiya MS, Weitzman MD. Viral manipulation of DNA repair and cell cycle checkpoints. DNA Repair (Amst) 2009; 8:1166-76. [PMID: 19473887 DOI: 10.1016/j.dnarep.2009.04.016] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recognition and repair of DNA damage is critical for maintaining genomic integrity and suppressing tumorigenesis. In eukaryotic cells, the sensing and repair of DNA damage are coordinated with cell cycle progression and checkpoints, in order to prevent the propagation of damaged DNA. The carefully maintained cellular response to DNA damage is challenged by viruses, which produce a large amount of exogenous DNA during infection. Viruses also express proteins that perturb cellular DNA repair and cell cycle pathways, promoting tumorigenesis in their quest for cellular domination. This review presents an overview of strategies employed by viruses to manipulate DNA damage responses and cell cycle checkpoints as they commandeer the cell to maximize their own viral replication. Studies of viruses have identified key cellular regulators and revealed insights into molecular mechanisms governing DNA repair, cell cycle checkpoints, and transformation.
Collapse
Affiliation(s)
- Mira S Chaurushiya
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | |
Collapse
|
17
|
Carson CT, Orazio NI, Lee DV, Suh J, Bekker-Jensen S, Araujo FD, Lakdawala SS, Lilley CE, Bartek J, Lukas J, Weitzman MD. Mislocalization of the MRN complex prevents ATR signaling during adenovirus infection. EMBO J 2009; 28:652-62. [PMID: 19197236 PMCID: PMC2666027 DOI: 10.1038/emboj.2009.15] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 12/23/2008] [Indexed: 01/13/2023] Open
Abstract
The protein kinases ataxia-telangiectasia mutated (ATM) and ATM-Rad3 related (ATR) are activated in response to DNA damage, genotoxic stress and virus infections. Here we show that during infection with wild-type adenovirus, ATR and its cofactors RPA32, ATRIP and TopBP1 accumulate at viral replication centres, but there is minimal ATR activation. We show that the Mre11/Rad50/Nbs1 (MRN) complex is recruited to viral centres only during infection with adenoviruses lacking the early region E4 and ATR signaling is activated. This suggests a novel requirement for the MRN complex in ATR activation during virus infection, which is independent of Mre11 nuclease activity and recruitment of RPA/ATR/ATRIP/TopBP1. Unlike other damage scenarios, we found that ATM and ATR signaling are not dependent on each other during infection. We identify a region of the viral E4orf3 protein responsible for immobilization of the MRN complex and show that this prevents ATR signaling during adenovirus infection. We propose that immobilization of the MRN damage sensor by E4orf3 protein prevents recognition of viral genomes and blocks detrimental aspects of checkpoint signaling during virus infection.
Collapse
Affiliation(s)
- Christian T Carson
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Graduate Program, Division of Biology, University of California, San Diego, CA, USA
| | - Nicole I Orazio
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Graduate Program, Division of Biology, University of California, San Diego, CA, USA
| | - Darwin V Lee
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Junghae Suh
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Simon Bekker-Jensen
- Centre for Genotoxic Stress Research, Institute of Cancer Biology, Danish Cancer Society, Copenhagen, Denmark
| | - Felipe D Araujo
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Seema S Lakdawala
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Graduate Program, Division of Biology, University of California, San Diego, CA, USA
| | - Caroline E Lilley
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jiri Bartek
- Centre for Genotoxic Stress Research, Institute of Cancer Biology, Danish Cancer Society, Copenhagen, Denmark
| | - Jiri Lukas
- Centre for Genotoxic Stress Research, Institute of Cancer Biology, Danish Cancer Society, Copenhagen, Denmark
| | - Matthew D Weitzman
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
18
|
Localization of TEIF in the centrosome and its functional association with centrosome amplification in DNA damage, telomere dysfunction and human cancers. Oncogene 2009; 28:1549-60. [PMID: 19198626 DOI: 10.1038/onc.2008.503] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Centrosome amplification and telomere shortening, which are commonly detected in human cancers, have been implicated in the induction of chromosome instability in tumorigenesis. The functions of these two structures are closely related to DNA damage repair machinery, and some factors that operate in the maintenance of telomeres also take part in the regulation of centrosome status, suggesting they are functionally linked. We report that TEIF (telomerase transcriptional elements-interacting factor), a transactivator of the hTERT (human telomerase reverse transcriptase subunit) gene, is distributed in the centrosome throughout the cell cycle, but its transport into the centrosome is increased under some conditions, and its distribution is dependent on its C-terminal domain. Experimental modulation of TEIF expression through overexpression, polypeptide expression or depletion affected centrosome status and increased abnormalities of cell mitosis. Localization of TEIF to the centrosome was also stimulated by treatment with genotoxic agents and experimental telomere dysfunction, accompanying centrosome amplification. Moreover, we demonstrated that the expression level of TEIF is not only closely correlated with centrosome amplification in soft tissue sarcomas but it is also significantly related to tumor histologic grade. Our data confirmed TEIF functions as a centrosome regulator. Its participation in DNA damage response, including telomere dysfunction and tumorigenesis, indicates TEIF is likely to be a factor involved in linking centrosome amplification and telomere dysfunction in cancer development.
Collapse
|
19
|
Rajagopal V, Patel SS. Viral Helicases. VIRAL GENOME REPLICATION 2009. [PMCID: PMC7121818 DOI: 10.1007/b135974_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Helicases are motor proteins that use the free energy of NTP hydrolysis to catalyze the unwinding of duplex nucleic acids. Helicases participate in almost all processes involving nucleic acids. Their action is critical for replication, recombination, repair, transcription, translation, splicing, mRNA editing, chromatin remodeling, transport, and degradation (Matson and Kaiser-Rogers 1990; Matson et al. 1994; Mendonca et al. 1995; Luking et al. 1998).
Collapse
|
20
|
Transactivator IE1 is required for baculovirus early replication events that trigger apoptosis in permissive and nonpermissive cells. J Virol 2008; 83:262-72. [PMID: 18945761 DOI: 10.1128/jvi.01827-08] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Immediate early viral protein IE1 is a potent transcriptional activator encoded by baculoviruses. Although the requirement of IE1 for multiplication of Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) is well established, the functional roles of IE1 during infection are unclear. Here, we used RNA interference to ablate IE1, plus its splice variant IE0, and thereby define in vivo activities of these early proteins, including gene-specific regulation and induction of host cell apoptosis. Confirming an essential replicative role, simultaneous ablation of IE1 and IE0 by gene-specific double-stranded RNAs inhibited AcMNPV late gene expression, reduced yields of budded virus by more than 1,000-fold, and blocked production of occluded virus particles. Depletion of IE1 and IE0 had no effect on early expression of the envelope fusion protein gene gp64 but abolished early expression of the caspase inhibitor gene p35, which is required for prevention of virus-induced apoptosis. Thus, IE1 is a positive, gene-specific transactivator. Whereas an AcMNPV p35 deletion mutant caused widespread apoptosis in permissive Spodoptera frugiperda cells, ablation of IE1 and IE0 prevented this apoptosis. Silencing of ie-1 also prevented AcMNPV-induced apoptosis in nonpermissive Drosophila melanogaster cells. Thus, de novo synthesis of IE1 is required for virus-induced apoptosis. We concluded that IE1 causes apoptosis directly or contributes indirectly by promoting virus replication events that subsequently trigger cell death. This study reveals that IE1 is a gene-selective transcriptional activator which is required not only for expedition of virus multiplication but also for blocking of its own proapoptotic activity by upregulation of baculovirus apoptotic suppressors.
Collapse
|
21
|
Tong A, Wu L, Lin Q, Lau QC, Zhao X, Li J, Chen P, Chen L, Tang H, Huang C, Wei YQ. Proteomic analysis of cellular protein alterations using a hepatitis B virus-producing cellular model. Proteomics 2008; 8:2012-23. [PMID: 18491315 DOI: 10.1002/pmic.200700849] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hepatitis B virus (HBV) is one of the major etiological factors responsible for acute and chronic liver disease and for the development of hepatocellular carcinoma (HCC). To determine the effects of HBV replication on host cell-protein expression, we utilized 2-DE and MS/MS analysis to compare and identify differentially expressed proteins between an HBV-producing cell line HepG2.2.15 and its parental cell line HepG2. Of the 66 spots identified as differentially expressed (+/- over twofold, p <0.05) between the two cell lines, 62 spots (corresponding to 61 unique proteins) were positively identified by MS/MS analysis. These proteins could be clearly divided into three major groups by cluster and metabolic/signaling pathway analysis: proteins involved in retinol metabolism pathway, calcium ion-binding proteins, and proteins associated with protein degradation pathways. Other proteins identified include those that function in diverse biological processes such as signal transduction, immune regulation, molecular chaperone, electron transport/redox regulation, cell proliferation/differentiation, and mRNA splicing. In summary, we profiled proteome alterations between HepG2.2.15 and HepG2 cells. The proteins identified in this study would be useful in revealing the mechanisms underlying HBV-host cell interactions and the development of HCC. This study can also provide some useful clues for antiviral research.
Collapse
Affiliation(s)
- Aiping Tong
- The State Key Laboratory of Biotherapy, West China Hospital, College of Life Science, Sichuan University, Chengdu, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kotadia S, Kao LR, Comerford SA, Jones RT, Hammer RE, Megraw TL. PP2A-dependent disruption of centrosome replication and cytoskeleton organization in Drosophila by SV40 small tumor antigen. Oncogene 2008; 27:6334-46. [PMID: 18663356 DOI: 10.1038/onc.2008.254] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Viruses of the DNA tumor virus family share the ability to transform vertebrate cells through the action of virus-encoded tumor antigens that interfere with normal cell physiology. They accomplish this very efficiently by inhibiting endogenous tumor suppressor proteins that control cell proliferation and apoptosis. Simian virus 40 (SV40) encodes two oncoproteins, large tumor antigen, which directly inhibits the tumor suppressors p53 and Rb, and small tumor antigen (ST), which interferes with serine/threonine protein phosphatase 2A (PP2A). We have constructed a Drosophila model for SV40 ST expression and show that ST induces supernumerary centrosomes, an activity we also demonstrate in human cells. In early Drosophila embryos, ST also caused increased microtubule stability, chromosome segregation errors, defective assembly of actin into cleavage furrows, cleavage failure, a rise in cyclin E levels and embryonic lethality. Using ST mutants and genetic interaction experiments between ST and PP2A subunit mutations, we show that all of these phenotypes are dependent on ST's interaction with PP2A. These analyses demonstrate the validity and utility of Drosophila as a model for viral oncoprotein function in vivo.
Collapse
Affiliation(s)
- S Kotadia
- Department of Pharmacology, The Cecil and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9051, USA
| | | | | | | | | | | |
Collapse
|
23
|
Inhibition of apoptosis in Cryptosporidium parvum-infected intestinal epithelial cells is dependent on survivin. Infect Immun 2008; 76:3784-92. [PMID: 18519556 DOI: 10.1128/iai.00308-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cryptosporidium parvum is an obligate intracellular protozoan capable of causing severe diarrheal disease in a wide variety of mammals, including humans. C. parvum infection has been associated with induction of apoptosis in exposed epithelial cells, and we now demonstrate that apoptosis is restricted to a subset of cells actively infected with C. parvum. Approximately 20% of the infected cells underwent apoptosis within 48 h of infection, suggesting that the majority of the infected cells are rescued from apoptosis. C. parvum infection resulted in low-level activation of multiple members of the caspase family, including caspase-2, -3, -4, -6, -8, and -9. The kinetics of caspase activation correlated with apoptosis over a 48-h time course. Pan caspase inhibitors reduced apoptosis of epithelial cells infected by C. parvum. Furthermore, C. parvum infection inhibited staurosporine-induced apoptosis and caspase-3/7 activation at 24 h and 48 h. Infection with C. parvum led to upregulation of genes encoding inhibitors of apoptosis proteins (IAPs), including c-IAP1, c-IAP2, XIAP, and survivin. Knockdown of survivin gene expression, but not that of c-IAP1, c-IAP2, or XIAP expression, increased caspase-3/7 activity as well as apoptosis of infected cells and decreased C. parvum 18S rRNA levels. These data suggest that the apoptotic response of infected intestinal epithelial cells is actively suppressed by C. parvum via upregulation of survivin, favoring parasite infection.
Collapse
|
24
|
Miller TJ, Honchel R, Espandiari P, Knapton A, Zhang J, Sistare FD, Hanig JP. The utility of the K6/ODC transgenic mouse as an alternative short term dermal model for carcinogenicity testing of pharmaceuticals. Regul Toxicol Pharmacol 2007; 50:87-97. [PMID: 18069108 DOI: 10.1016/j.yrtph.2007.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 10/16/2007] [Accepted: 10/17/2007] [Indexed: 11/19/2022]
Abstract
The use of transgenic rodents may overcome many limitations of traditional cancer studies. Regulatory perspectives continue to evolve as new models are developed and validated. The transgenic mouse, K6/ODC, develops epidermal tumors when exposed to genotoxic carcinogens. In this study, K6/ODC mice were evaluated for model fitness and health robustness in a 36-week study to determine oncogenic risk of residual DNA in vaccines from neoplastic cell substrates. K6/ODC and C57BL/6 mice were treated with T24-H-ras expression plasmid, carrier vector DNA, or saline topically or by subcutaneous injection. One group of K6/ODC mice received 7,12-dimethylbenz-[a]anthracene [DMBA] dermally. Only DMBA-treated mice developed papillomas by six weeks, increasing in incidence to 25 weeks. By week 11, many K6/ODC mice showed severe dehydration and dermal eczema. By week 32, (6/8) surviving K6/ODC mice showed loss of mobility and balance. Microscopic evaluation of tissues revealed dermal/sebaceous gland hyperplasia, follicular dystrophy, splenic atrophy, and amyloid deposition/neutrophilic infiltration within liver, heart, and spleen, in all K6/ODC mice. Pathology was not detected in C57BL/6 mice. Progressive adverse health, decreased survival, and failure to develop papillomas to the H-ras plasmid suggest that K6/ODC mice may be an inappropriate alternative model for detection of oncogenic DNA and pharmaceutical carcinogenicity testing.
Collapse
Affiliation(s)
- T J Miller
- Division of Applied Pharmacology Research, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993-0002, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Manjarrez ME, Ocadiz R, Valle L, Pacheco C, Marroquin A, De la Torre C, Selman M, Gariglio P. Detection of human papillomavirus and relevant tumor suppressors and oncoproteins in laryngeal tumors. Clin Cancer Res 2007; 12:6946-51. [PMID: 17145812 DOI: 10.1158/1078-0432.ccr-06-1214] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The mechanism of larynx oncogenesis is complex and controlled by various factors, most of them involved in cell proliferation and apoptosis. In this study, we evaluated the levels of two suppressor proteins (pRb and p53) and two oncogenic proteins (c-Myc and Bcl-2), as well as the apoptotic levels and the presence of human papillomavirus (HPV) in both tumor types. EXPERIMENTAL DESIGN Low- or high-risk HPV viral DNA was determined by PCR and in situ PCR; the level of cellular proteins was examined by immunohistochemistry; the presence of apoptotic cells was evaluated by in situ cell death detection. RESULTS Most laryngeal papillomatosis samples contained low-risk HPV determined by both techniques. However, 25% of laryngeal carcinoma samples were positive for HPV employing PCR or in situ PCR. In papillomatosis, pRb and p53 levels were higher than in normal larynxes, whereas laryngeal cancer presented the lowest levels. c-Myc oncogene expression was very low in normal and cancer tissues but highly increased in papillomatosis. Bcl-2 expression was low and showed no significant difference between laryngeal papillomatosis and normal larynxes. By contrast, Bcl-2 was clearly up-regulated in cancer. Normal larynx samples and those from laryngeal papillomatosis exhibited similar relatively high numbers of apoptotic cells, whereas in malignant tumors, these cells were scarce. CONCLUSION Our results suggest that HPV is an important risk factor in papillomatosis and in some malignant larynx tumors with a strong participation of cellular genes, specifically involved in proliferation and apoptosis. In benign papillomatosis lesions but not in larynx cancer, high p53 activity might preserve the apoptosis process. In larynx cancer, low p53 levels and high bcl-2 expression may be playing an important role to block apoptosis.
Collapse
|
26
|
Koopal S, Furuhjelm JH, Järviluoma A, Jäämaa S, Pyakurel P, Pussinen C, Wirzenius M, Biberfeld P, Alitalo K, Laiho M, Ojala PM. Viral oncogene-induced DNA damage response is activated in Kaposi sarcoma tumorigenesis. PLoS Pathog 2007; 3:1348-60. [PMID: 17907806 PMCID: PMC1994968 DOI: 10.1371/journal.ppat.0030140] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Accepted: 08/09/2007] [Indexed: 12/29/2022] Open
Abstract
Kaposi sarcoma is a tumor consisting of Kaposi sarcoma herpesvirus (KSHV)–infected tumor cells that express endothelial cell (EC) markers and viral genes like v-cyclin, vFLIP, and LANA. Despite a strong link between KSHV infection and certain neoplasms, de novo virus infection of human primary cells does not readily lead to cellular transformation. We have studied the consequences of expression of v-cyclin in primary and immortalized human dermal microvascular ECs. We show that v-cyclin, which is a homolog of cellular D-type cyclins, induces replicative stress in ECs, which leads to senescence and activation of the DNA damage response. We find that antiproliferative checkpoints are activated upon KSHV infection of ECs, and in early-stage but not late-stage lesions of clinical Kaposi sarcoma specimens. These are some of the first results suggesting that DNA damage checkpoint response also functions as an anticancer barrier in virally induced cancers. Recent findings have indicated that DNA hyper-replication triggered by oncogenes can induce cellular senescence, which together with the oncogene-induced DNA damage checkpoint confers a barrier to tumorigenesis. Kaposi sarcoma herpesvirus (KSHV) can infect human dermal microvascular endothelial cells (ECs) in vitro, but KSHV infection does not seem to provide growth advantage to the cells, but rather leads to retarded growth. Moreover, the proliferative index has long been known to be low in KSHV-infected spindle cells in Kaposi sarcoma (KS) tumors. Our results provide an explanation for these observations by showing that activation of the DNA damage response, exerted by KSHV and a latent viral protein v-cyclin, functions as a barrier against transformation of KSHV-infected cells. Interestingly, the antiproliferative checkpoints are activated during the initial stages of KSHV infection and KS tumorigenesis. During the course of infection, the infected cells are imposed to overcome the checkpoint, and oncogenic stress elicited by the expression of v-cyclin may further contribute to the induction of genomic instability and malignant transformation.
Collapse
Affiliation(s)
- Sonja Koopal
- Genome-Scale Biology Program and Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Finland
| | - Johanna H Furuhjelm
- Genome-Scale Biology Program and Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Finland
| | - Annika Järviluoma
- Genome-Scale Biology Program and Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Finland
| | - Sari Jäämaa
- Molecular Cancer Biology Program, Haartman Institute, Biomedicum Helsinki, University of Helsinki, Finland
| | - Pawan Pyakurel
- Department of Pathology and Oncology, Karolinska Institute/Hospital, Stockholm, Sweden
| | - Christel Pussinen
- Genome-Scale Biology Program and Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Finland
| | - Maria Wirzenius
- Molecular Cancer Biology Program, Haartman Institute, Biomedicum Helsinki, University of Helsinki, Finland
| | - Peter Biberfeld
- Department of Pathology and Oncology, Karolinska Institute/Hospital, Stockholm, Sweden
| | - Kari Alitalo
- Molecular Cancer Biology Program, Haartman Institute, Biomedicum Helsinki, University of Helsinki, Finland
| | - Marikki Laiho
- Molecular Cancer Biology Program, Haartman Institute, Biomedicum Helsinki, University of Helsinki, Finland
| | - Päivi M Ojala
- Genome-Scale Biology Program and Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Finland
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
27
|
Affiliation(s)
- Clara Balsano
- Dipartimento di Medicina Interna e Sanità Pubblica (MISP), University of L'Aquila, L'Aquila, Italy.
| | | |
Collapse
|
28
|
Severino A, Abbruzzese C, Manente L, Valderas AA, Mattarocci S, Federico A, Starace G, Chersi A, Mileo AM, Paggi MG. Human papillomavirus-16 E7 interacts with Siva-1 and modulates apoptosis in HaCaT human immortalized keratinocytes. J Cell Physiol 2007; 212:118-25. [PMID: 17348035 DOI: 10.1002/jcp.21011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The viral factor E7 plays a key role in the well-established association between "high-risk" Human Papillomavirus (HPV) infection and the development of epithelial malignant tumors, as uterine cervix and ano-genital cancer. To delve into the molecular mechanisms of HPV-mediated cell transformation, we searched for novel potential cellular targets of the HPV-16 E7 oncoprotein, by means of the yeast two-hybrid technique, identifying a protein-protein interaction between HPV-16 E7 and the pro-apoptotic cellular factor Siva-1. Using co-precipitation assays and the "PepSets" technique, we confirmed this physical interaction and mapped accurately, for both proteins, the amino acid residues involved. Additionally, we found that HPV-16 E7 competed in vitro with the binding of the Bcl-X(L) anti-apoptotic factor to Siva-1, an interaction that has a major inference in UV radiation-induced apoptosis. In HaCaT immortalized human keratinocytes, forced HPV-16 E7 expression by retroviral infection caused Siva-1 transcript up-regulation, detected by cDNA macroarray hybridization and real-time quantitative PCR, paralleled by an increased amount of protein. Confirming the anti-apoptotic role of HPV-16 E7 in the HaCaT cellular model, evaluated by nuclear morphology, we also found that Siva-1 expression produced a significant increase of the apoptotic rate in UV radiation-exposed HaCaT cells, and that this effect resulted explicitly counteracted by HPV-16 E7. Being apoptosis a key physiological process for the elimination of irreversibly injured cells, the anti-apoptotic role of HPV-16 E7, performed at least by its interference with Siva-1, can be considered an additional mechanism for the survival of damaged, potentially transforming, cell clones.
Collapse
Affiliation(s)
- Anna Severino
- Department for the Development of Therapeutic Programs, Regina Elena Cancer Institute, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Pelka P, Scimè A, Mandalfino C, Joch M, Abdulla P, Whyte P. Adenovirus E1A proteins direct subcellular redistribution of Nek9, a NimA-related kinase. J Cell Physiol 2007; 212:13-25. [PMID: 17443675 DOI: 10.1002/jcp.20983] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A monoclonal antibody raised against adenovirus E1A-associated cellular proteins recognized Nek9, a NimA-related protein kinase. Subcellular fractionation and immunofluorescence indicated that Nek9 was primarily cytoplasmic with a small portion located in the nucleus whereas E1A was primarily nuclear. Although co-immunoprecipitation experiments indicated that nuclear Nek9 interacted, directly or indirectly, with E1A, the major effect of E1A was to diminish the amount of Nek9 in the nucleus suggesting that E1A alters the subcellular distribution of Nek9 and that the interaction is transient. A Nek9 deletion mutant lacking a central RCC1-like domain interacted stably with E1A and accumulated in the nucleus in the presence of E1A, possibly representing an intermediate stage of the normally transient Nek9/E1A interaction. The interaction of Nek9 with E1A was dependent on the N-terminal sequences of E1A. Attempts to stably overexpress either Nek9 or the kinase-inactive mutant in various cell lines were unsuccessful; however, the presence of E1A allowed stable overexpression of both proteins. These results suggest that E1A disrupts a nuclear function of Nek9.
Collapse
Affiliation(s)
- Peter Pelka
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Gill MB, Kutok JL, Fingeroth JD. Epstein-Barr virus thymidine kinase is a centrosomal resident precisely localized to the periphery of centrioles. J Virol 2007; 81:6523-35. [PMID: 17428875 PMCID: PMC1900094 DOI: 10.1128/jvi.00147-07] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The thymidine kinase (TK) encoded by Epstein-Barr virus (EBV) differs not only from that of the alphaherpesviruses but also from that of the gamma-2 herpesvirus subfamily. Because cellular location is frequently a determinant of regulatory function, to gain insight into additional role(s) of EBV TK and to uncover how the lymphocryptovirus and rhadinovirus enzymes differ, the subcellular localizations of EBV TK and the related cercopithecine herpesvirus-15 TK were investigated. We show that in contrast to those of the other family members, the gamma-1 herpesvirus TKs localize to the centrosome and even more precisely to the periphery of the centriole, tightly encircling the tubulin-rich centrioles in a microtubule-independent fashion. Centrosomal localization is observed in diverse cell types and occurs whether the protein is expressed independently or in the context of lytic EBV infection. Surprisingly, analysis of mutants revealed that the unique N-terminal domain was not critical for targeting to the centrosome, but rather, peptide sequences located C terminal to this domain were key. This is the first herpesvirus protein documented to reside in the centrosome, or microtubule-organizing center, an amembranous organelle that regulates the structural biology of the cell cycle through control of chromosome separation and cytokinesis. More recently, proteasome-mediated degradation of cell cycle regulatory proteins, production and loading of antigenic peptides onto HLA molecules, and transient homing of diverse virion proteins required for entry and/or egress have been shown to be coordinated at the centrosome. Potential implications of centrosomal localization for EBV TK function are discussed.
Collapse
Affiliation(s)
- Michael B Gill
- Divison of Infectious Disease, Beth Israel Deaconess Medical Center, Harvard Medical School, and Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | |
Collapse
|
31
|
Ju W, Park HM, Lee SN, Sung SH, Kim SC. Loss of hMLH1 expression is associated with less aggressive clinicopathological features in sporadic endometrioid endometrial adenocarcinoma. J Obstet Gynaecol Res 2006; 32:454-60. [PMID: 16984511 DOI: 10.1111/j.1447-0756.2006.00438.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM To assess the incidence and clinicopathological significance of microsatellite instability (MSI) and the protein expression of hMLH1 and hMSH2 in sporadic endometrioid endometrial adenocarcinoma (SEEA). METHODS A total of 50 patients with pure endometrioid sporadic endometrial adenocarcinoma were enrolled in the study. MSI analysis was done using five polymorphic markers (BAT26, D5S346, BAT25, D17S250, D2S123) and the protein expression of the hMLH1 and hMSH2 genes was determined by immunohistochemical staining. MSI was detected in 24% (12/50) of SEEA cases. RESULTS There was a significant correlation between MSI status and loss of hMLH1, hMSH2 expression, respectively. No significant association was found between MSI status and clinicopathological parameters, including age, grade, stage, depth of myometrial invasion, lymph-vascular space invasion (LVI), lymph node involvement or peritoneal cytology. However, significant correlations were found between loss of hMLH1 and a lower histological grade and the absence of LVI in patients with SEEA. CONCLUSIONS According to these results, MSI and a loss of protein expression of hMLH1 and hMSH2 may be associated with the pathogenesis of SEEA. In addition, hMLH1 immunostaining might have a role as a prognostic parameter. Further research using a large number of cases is needed to confirm our observations.
Collapse
Affiliation(s)
- Woong Ju
- Department of Obstetrics and Gynecology, Ewha Womans University, College of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
32
|
Shadan FF. A circadian model for viral persistence. Med Hypotheses 2006; 68:546-53. [PMID: 17030450 DOI: 10.1016/j.mehy.2006.08.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2006] [Accepted: 08/11/2006] [Indexed: 01/20/2023]
Abstract
Persistently infecting DNA viruses depend heavily on host cell DNA synthesis machinery. Replication of cellular and viral DNA is inhibited by mutagenic stress. It is hypothesized that diurnal regulation of viral DNA replication may occur at the level of cell cycle checkpoints and DNA repair, to protect DNA from exposure to UV light or other mutagens. This highly conserved mechanism is traced back to viruses that persist in prokaryotes and eukaryotes. Inhibition of viral DNA replication and the cell cycle in response to UV light may represent a functional building block in the evolution of circadian-gated DNA replication. Viral DNA replication appears to be closely linked to the circadian clock by interaction of viral promoters, early viral proteins and transcription factors. It is proposed here that under certain conditions viral oncogene expression is phase-shifted relative to that of tumor suppressor and DNA repair genes. The resulting desynchrony of checkpoint controls and DNA repair from diurnal genotoxic exposure produces cyclic periods of suboptimal response to DNA damage. This temporal vulnerability to genotoxic stress produces a "mutator phenotype" with inherent genome instability. The proposed model delineates areas of research with implications for viral pathogenesis and therapeutics.
Collapse
Affiliation(s)
- Farhad F Shadan
- The Scripps Research Institute and Scripps Clinic, 10666 N. Torrey Pines Road, 403C, La Jolla, CA 92037, USA.
| |
Collapse
|
33
|
Shibue T, Suzuki S, Okamoto H, Yoshida H, Ohba Y, Takaoka A, Taniguchi T. Differential contribution of Puma and Noxa in dual regulation of p53-mediated apoptotic pathways. EMBO J 2006; 25:4952-62. [PMID: 17024184 PMCID: PMC1618103 DOI: 10.1038/sj.emboj.7601359] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Accepted: 08/30/2006] [Indexed: 12/25/2022] Open
Abstract
The activation of tumor suppressor p53 induces apoptosis or cell cycle arrest depending on the state and type of cell, but it is not fully understood how these different responses are regulated. Here, we show that Puma and Noxa, the well-known p53-inducible proapoptotic members of the Bcl-2 family, differentially participate in dual pathways of the induction of apoptosis. In normal cells, Puma but not Noxa induces mitochondrial outer membrane permeabilization (MOMP), and this function is mediated in part by a pathway that involves calcium release from the endoplasmic reticulum (ER) and the subsequent caspase activation. However, upon E1A oncoprotein expression, cells also become susceptible to MOMP induction by Noxa, owing to their sensitization to the ER-independent pathway. These findings offer a new insight into differential cellular responses induced by p53, and may have therapeutic implications in cancer.
Collapse
Affiliation(s)
- Tsukasa Shibue
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Saori Suzuki
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Tokyo, Japan
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Hideaki Okamoto
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Hiroki Yoshida
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Yusuke Ohba
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Akinori Takaoka
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Tadatsugu Taniguchi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Tokyo, Japan
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. Tel.: +81 3 5841 3375/73; Fax: +81 3 5841 3450; E-mail:
| |
Collapse
|
34
|
Felsani A, Mileo AM, Paggi MG. Retinoblastoma family proteins as key targets of the small DNA virus oncoproteins. Oncogene 2006; 25:5277-85. [PMID: 16936748 DOI: 10.1038/sj.onc.1209621] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
RB, the most investigated tumor suppressor gene, is the founder of the RB family of growth/tumor suppressors, which comprises also p107 (RBL1) and Rb2/p130 (RBL2). The protein products of these genes, pRb, p107 and pRb2/p130, respectively, are also known as 'pocket proteins', because they share a 'pocket' domain responsible for most of the functional interactions characterizing the activity of this family of cellular factors. The interest in these genes and proteins springs essentially from their ability to regulate negatively cell cycle processes and for their ability to slow down or abrogate neoplastic growth. The pocket domain of the RB family proteins is dramatically hampered in its functions by the interference of a number of proteins produced by the small DNA viruses. In the last two decades, the 'viral hypothesis' of cancer has received a considerable renewed impulse from the notion that small DNA viruses, such as Adenovirus, Human papillomavirus (HPV) and Polyomavirus, produce factors that can physically interact with major cellular regulators and alter their function. These viral proteins (oncoproteins) act as multifaceted molecular devices that have evolved to perform very specific tasks. Owing to these features, viral oncoproteins have been widely employed as invaluable experimental tools for the identification of several key families of regulators, particularly of the cell cycle homeostasis. Adenovirus early-region 1A (E1A) is the most widely investigated small DNA tumor virus oncoprotein, but relevant interest in human oncology is raised by the E1A-related E7 protein from transforming HPV strains and by Polyomavirus oncoproteins, particularly large and small T antigens from Simian virus 40, JC virus and BK virus.
Collapse
Affiliation(s)
- A Felsani
- Istituto di Neurobiologia e Medicina Molecolare, CNR, Rome, Italy
| | | | | |
Collapse
|
35
|
Kogan I, Goldfinger N, Milyavsky M, Cohen M, Shats I, Dobler G, Klocker H, Wasylyk B, Voller M, Aalders T, Schalken JA, Oren M, Rotter V. hTERT-immortalized prostate epithelial and stromal-derived cells: an authentic in vitro model for differentiation and carcinogenesis. Cancer Res 2006; 66:3531-40. [PMID: 16585177 DOI: 10.1158/0008-5472.can-05-2183] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prostate cancer is the most commonly diagnosed type of cancer in men, and there is no available cure for patients with advanced disease. In vitro model systems are urgently required to permit the study of human prostate cell differentiation and malignant transformation. Unfortunately, human prostate cells are particularly difficult to convert into continuously growing cultures. We report here the successful immortalization without viral oncogenes of prostate epithelial cells and, for the first time, prostate stromal cells. These cells exhibit a significant pattern of authentic prostate-specific features. In particular, the epithelial cell culture is able to differentiate into glandular buds that closely resemble the structures formed by primary prostate epithelial cells. The stromal cells have typical characteristics of prostate smooth muscle cells. These immortalized cultures may serve as a unique experimental platform to permit several research directions, including the study of cell-cell interactions in an authentic prostate microenvironment, prostate cell differentiation, and most significantly, the complex multistep process leading to prostate cell transformation.
Collapse
Affiliation(s)
- Ira Kogan
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Baek KH, Park HY, Kang CM, Kim SJ, Jeong SJ, Hong EK, Park JW, Sung YC, Suzuki T, Kim CM, Lee CW. Overexpression of hepatitis C virus NS5A protein induces chromosome instability via mitotic cell cycle dysregulation. J Mol Biol 2006; 359:22-34. [PMID: 16616934 DOI: 10.1016/j.jmb.2006.03.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 03/03/2006] [Accepted: 03/09/2006] [Indexed: 12/29/2022]
Abstract
Hepatocellular carcinoma (HCC) is a common primary cancer associated with high incidences of genetic variations including chromosome instability. Moreover, it has been demonstrated that hepatitis C virus (HCV) is one of the major causes of HCC. However, no previous work has assessed whether HCV proteins are associated with the induction of chromosome instability. Here, we found that liver cell lines constitutively expressing full-length or truncated versions of the HCV genome show a high incidence of chromosome instability. In particular, the overexpression of HCV NS5A protein in cultured liver cells was found to promote chromosome instability and aneuploidy. Further experiments showed that NS5A-induced chromosome instability is associated with aberrant mitotic regulations, such as, an unscheduled delay in mitotic exit and other mitotic impairments (e.g. multi-polar spindles). Thus, our results indicate that HCV NS5A protein may be directly involved in the induction of chromosome instability via mitotic cell cycle dysregulation, and provide novel insights into the molecular mechanisms of HCV-associated hepatocarcinogenesis.
Collapse
Affiliation(s)
- Kwan-Hyuck Baek
- Research Institute, National Cancer Center, Goyang, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Porter PC, Clark DR, McDaniel LD, McGregor WG, States JC. Telomerase-immortalized human fibroblasts retain UV-induced mutagenesis and p53-mediated DNA damage responses. DNA Repair (Amst) 2006; 5:61-70. [PMID: 16140041 DOI: 10.1016/j.dnarep.2005.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Revised: 07/20/2005] [Accepted: 07/21/2005] [Indexed: 12/23/2022]
Abstract
Immortalized cells frequently have disruptions of p53 activity and lack p53-dependent nucleotide excision repair (NER). We hypothesized that telomerase immortalization would not alter p53-mediated ultraviolet light (UV)-induced DNA damage responses. DNA repair proficient primary diploid human fibroblasts (GM00024) were immortalized by transduction with a telomerase expressing retrovirus. Empty retrovirus transduced cells senesced after a few doublings. Telomerase transduced GM00024 cells (tGM24) were cultured continuously for 6 months (>60 doublings). Colony forming ability after UV irradiation was dose-dependent between 0 and 20J/m2 UVC (LD50=5.6J/m2). p53 accumulation was UV dose- and time-dependent as was induction of p48(XPE/DDB2), p21(CIP1/WAF1), and phosphorylation on p53-S15. UV dose-dependent apoptosis was measured by nuclear condensation. UV exposure induced UV-damaged DNA binding as monitored by electrophoretic mobility shift assays using UV irradiated radiolabeled DNA probe was inhibited by p53-specific siRNA transfection. p53-Specific siRNA transfection also prevented UV induction of p48 and improved UV survival measured by colony forming ability. Strand-specific NER of cyclobutane pyrimidine dimers (CPD) within DHFR was identical in tGM24 and GM00024 cells. CPD removal from the transcribed strand was nearly complete in 6h and from the non-transcribed strand was 73% complete in 24h. UV-induced HPRT mutagenesis in tGM24 was indistinguishable from primary human fibroblasts. These wide-ranging findings indicate that the UV-induced DNA damage response remains intact in telomerase-immortalized cells. Furthermore, telomerase immortalization provides permanent cell lines for testing the immediate impact on NER and mutagenesis of selective genetic manipulation without propagation to establish mutant lines.
Collapse
Affiliation(s)
- Paul C Porter
- Department of Pharmacology & Toxicology, University of Louisville, 570 South Preston Street, Rm221, Louisville, KY 40202, USA
| | | | | | | | | |
Collapse
|
38
|
Desvoyes B, Ramirez-Parra E, Xie Q, Chua NH, Gutierrez C. Cell type-specific role of the retinoblastoma/E2F pathway during Arabidopsis leaf development. PLANT PHYSIOLOGY 2006; 140:67-80. [PMID: 16361519 PMCID: PMC1326032 DOI: 10.1104/pp.105.071027] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Revised: 11/08/2005] [Accepted: 11/09/2005] [Indexed: 05/05/2023]
Abstract
Organogenesis in plants is almost entirely a postembryonic process. This unique feature implies a strict coupling of cell proliferation and differentiation, including cell division, arrest, cell cycle reactivation, endoreplication, and differentiation. The plant retinoblastoma-related (RBR) protein modulates the activity of E2F transcription factors to restrict cell proliferation. Arabidopsis contains a single RBR gene, and its loss of function precludes gamete formation and early development. To determine the relevance of the RBR/E2F pathway during organogenesis, outside its involvement in cell division, we have used an inducible system to inactivate RBR function and release E2F activity. Here, we have focused on leaves where cell proliferation and differentiation are temporally and developmentally regulated. Our results reveal that RBR restricts cell division early during leaf development when cell proliferation predominates, while it regulates endocycle occurrence at later stages. Moreover, shortly after leaving the cell cycle, most of leaf epidermal pavement cells retain the ability to reenter the cell cycle and proliferate, but maintain epidermal cell fate. On the contrary, mesophyll cells in the inner layers do not respond in this way to RBR loss of activity. We conclude that there exists a distinct response of different cells to RBR inactivation in terms of maintaining the balance between cell division and endoreplication during Arabidopsis (Arabidopsis thaliana) leaf development.
Collapse
Affiliation(s)
- Bénédicte Desvoyes
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco 28049, Madrid, Spain
| | | | | | | | | |
Collapse
|
39
|
Srivastava S, Verma M, Gopal-Srivastava R. Proteomic maps of the cancer-associated infectious agents. J Proteome Res 2005; 4:1171-80. [PMID: 16083267 DOI: 10.1021/pr050017m] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The number of infectious agents associated with cancer is increasing. There is a need to develop approaches for the early detection of the infected host which might lead to tumor development. Recent advances in proteomic approaches provide that opportunity, and it is now possible to generate proteomic maps of cancer-associated infectious agents. Protein arrays, interaction maps, data archives, and biological assays are being developed to enable efficient and reliable protein identification and functional analysis. Herein, we discuss the current technologies and challenges in the field, and application of protein signatures in cancer detection and prevention.
Collapse
Affiliation(s)
- Sudhir Srivastava
- Cancer Biomarkers Research Group, Analytical Epidemiology Branch, Organ System Branch, National Cancer Institute, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
40
|
Abstract
Recent developments have highlighted the important role centrosomal defects play in the cellular changes associated with tumorigenesis. This article reviews recent developments addressing the impact of numerical centrosomal amplification on chromosomal segregational defects in the cancer cell. Probably, the most significant is the change to the structure of the spindle that leads to increased numbers of spindle poles and abnormal partitioning of the chromosomes in mitosis. I address how centrosomal changes are initiated and how they may lead to spindle multipolarity.
Collapse
Affiliation(s)
- William Saunders
- Department of Biological Sciences, 258 Crawford Hall, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
41
|
Shindoh M, Higashino F, Kohgo T. E1AF, an ets-oncogene family transcription factor. Cancer Lett 2004; 216:1-8. [PMID: 15500943 DOI: 10.1016/j.canlet.2004.07.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2004] [Accepted: 07/18/2004] [Indexed: 02/08/2023]
Abstract
E1AF is an ets-oncogene family transcription factor. E1AF was shown to upregulate multiple matrix metalloproteinase (MMP) genes and contribute to the malignant phenotype of cancer cells by inducing invasive and metastatic activities. E1AF is upregulated by hepatocyte growth factor (HGF) stimulation, which indicates that E1AF would participate in cell motility by HGF/scatter factor. On the other hand, E1AF upregulates p21waf1/cip1 to induce cell cycle arrest when cells are exposed to stress. EWS/ETS fusions are frequently observed in Ewing's sarcoma, and we have revealed that EWS/ETS chimeric protein activates telomerase activity by upregulating hTERT. However, substitution ets binding site (EBS) mutants did not affect the responsiveness to EWS/E1AF. DNA-IP assay showed that the complexes contained EWS/E1AF bound to the hTERT promoter, which suggested that EWS/ETS functions as a co-activator for TERT transcription. Our findings that EWS/ETS acts as a transcriptional co-factor may imply that the transcription pathway is regulated by the interaction of transcription factors.
Collapse
Affiliation(s)
- Masanobu Shindoh
- Department of Oral Pathobiological Science, Hokkaido University Graduate School of Dental Medicine, N 13 W7, Kita-ku, Sapporo 060-8586, Japan.
| | | | | |
Collapse
|
42
|
WU JOYCEC, SU PEI, SAFWAT NEDALW, SEBASTIAN JOSEPH, MILLER WILLIAML. Rapid, efficient isolation of murine gonadotropes and their use in revealing control of follicle-stimulating hormone by paracrine pituitary factors. Endocrinology 2004; 145:5832-9. [PMID: 15319358 PMCID: PMC1698745 DOI: 10.1210/en.2004-0257] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
FSH and LH are produced only in gonadotropes, which are reported to comprise 3-12% of mammalian pituitaries. Factors made within the pituitary are powerful regulators of FSH and also influence LH expression, but their identities and cellular origins are unknown because it is impossible to isolate and individually analyze different pituitary cell types. In this study FSH-producing gonadotropes were specifically tagged in vivo with a transgenic cell surface antigen (H-2Kk) so they could be purified in vitro using paramagnetic anti-H-2Kk microbeads. After enzymatic dispersion of pituitary cells, it took 1 h or less to extract 55 +/- 5% of FSH-producing gonadotropes at 95 +/- 0.5% purity, as judged by immunostaining for FSH or prolactin. Although this procedure selected for FSH expression, the isolated gonadotropes were also enriched 22-fold for LH-containing cells. For studies aimed at understanding factors that control FSH transcription, the purified gonadotropes were treated with activin A, which increased FSH expression 480% above basal levels (d 3 of culture). Coincubation of purified gonadotropes with pituitary nongonadotropes increased FSH expression 800% (d 3 of culture). Follistatin, an activin-binding protein, decreased FSH expression 35-50%, suggesting that gonadotropes make some activin and/or other follistatin-sensitive molecule(s) that induce FSH. These data show that paracrine factors from pituitary nongonadotropes can play a major role in controlling FSHbeta at the pituitary level. The study presented here describes a rapid, reliable, and efficient method for isolating any specialized cell type, including all cells that produce endocrine hormones.
Collapse
Affiliation(s)
| | | | | | | | - WILLIAM L. MILLER
- Address all correspondence and requests for reprints to: Dr. William L. Miller, Department of Molecular and Structural Biochemistry, Box 7622, North Carolina State University, Raleigh, North Carolina 27695-7622. E-mail:
| |
Collapse
|
43
|
Hofacre A, Fan H. Multiple domains of the Jaagsiekte sheep retrovirus envelope protein are required for transformation of rodent fibroblasts. J Virol 2004; 78:10479-89. [PMID: 15367614 PMCID: PMC516437 DOI: 10.1128/jvi.78.19.10479-10489.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Jaagsiekte sheep retrovirus (JSRV) is an exogenous retrovirus of sheep that induces a contagious lung cancer, ovine pulmonary adenocarcinoma. We previously showed that the gene encoding JSRV envelope protein (Env) appears to function as an oncogene, since it can transform mouse NIH 3T3 cells. The cytoplasmic tail of the Env transmembrane protein (TM) is necessary for the transformation. However, previous experiments did not exclude the involvement of the Env surface protein (SU) in transformation. In this study, we created a series of nested deletion mutants through the SU domain and assessed their ability to transform rodent fibroblasts. All SU deletion mutants downstream of the predicted signal peptide were unable to transform murine NIH 3T3 or rat 208F cells. Transport to the plasma membrane of selected deleted Env proteins was confirmed by confocal immunofluorescence microscopy of hemagglutinin-tagged versions. Additional sequential SU deletion mutants lacking 50-amino-acid (aa) blocks throughout SU also were unable to transform. Furthermore, minimal insertion mutants of two amino acids (Leu/Gln) at various positions in SU also abolished transformation. These data indicate that domains in SU facilitate efficient JSRV transformation. This could reflect a necessity of SU for appropriate configuration of the Env protein or independent activation by SU of a signaling pathway necessary for transformation. Complementation between SU and TM mutants for transformation supported the latter hypothesis. Cotransfection with DeltaGP Y590F (mutant in the TM cytoplasmic tail) with DeltaGP SUDelta103-352 (lacking most of SU) resulted in efficient transformation. The resulting transformants showed evidence for the presence and expression of both mutant plasmids.
Collapse
Affiliation(s)
- Andrew Hofacre
- Cancer Research Institute, Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697-3905, USA
| | | |
Collapse
|
44
|
Azuma K, Sasada T, Takedatsu H, Shomura H, Koga M, Maeda Y, Yao A, Hirai T, Takabayashi A, Shichijo S, Itoh K. Ran, a Small GTPase Gene, Encodes Cytotoxic T Lymphocyte (CTL) Epitopes Capable of Inducing HLA-A33–restricted and Tumor-Reactive CTLs in Cancer Patients. Clin Cancer Res 2004; 10:6695-702. [PMID: 15475460 DOI: 10.1158/1078-0432.ccr-04-0818] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The purpose is to identify a gene coding for tumor-associated antigen and peptide capable of inducing CTLs reactive to tumor cells with a HLA-A33-restricted fashion to provide scientific basis for specific immunotherapy to HLA-A33+ cancer patients. EXPERIMENTAL DESIGN An expression gene-cloning method was used to identify the tumor-associated antigen gene. Northern blot analysis and immunohistochemistry were used to examine the mRNA and protein expression levels in various cells and tissues, respectively. Synthetic peptides were examined for their ability to induce HLA-A33+ tumor-reactive CTLs in peripheral blood mononuclear cells from cancer patients. RESULT A gene of small GTPase, Ran, which controls the cell cycle through the regulation of nucleocytoplasmic transport, mitotic spindle organization, and nuclear envelope formation, was found to encode epitopes recognized by the HLA-A33-restricted CTLs established from T cells infiltrating into gastric adenocarcinoma. The expression of the Ran gene was increased in most cancer cell lines and cancer tissues at both the mRNA and protein levels. However, it was not enhanced in the surrounding normal cells or tissues. It was also undetectable in normal tissues as far as tested. Ran-derived peptides at positions 48-56 and 87-95 could induce CD8+ peptide-specific CTLs reactive to tumor cells from HLA-A33+ epithelial cancer patients in a HLA class I-restricted manner. CONCLUSIONS Because of its increased expression in cancer cells and involvement in malignant transformation and/or the enhanced proliferation of cancer cells, the two Ran-directed peptides could be potent candidates in use for specific immunotherapy against HLA-A33+ epithelial cancers.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/immunology
- Adenocarcinoma/pathology
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/pharmacology
- Blotting, Northern
- CD8 Antigens/immunology
- COS Cells
- Cell Line, Tumor
- Chlorocebus aethiops
- Cytotoxicity, Immunologic/drug effects
- Epitopes/genetics
- Epitopes/immunology
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- HLA-A Antigens/genetics
- HLA-A Antigens/immunology
- Humans
- Interferon-gamma/biosynthesis
- K562 Cells
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/pathology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Stomach Neoplasms/genetics
- Stomach Neoplasms/immunology
- Stomach Neoplasms/pathology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Tumor Cells, Cultured
- ran GTP-Binding Protein/genetics
- ran GTP-Binding Protein/immunology
- ran GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- Koichi Azuma
- Department of Immunology and Research Center of Innovative Cancer Therapy of the 21st Century Center of Excellence Program for Medical Science, Kurume University School of Medicine, Kurume, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Schoenfeld AR, Apgar S, Dolios G, Wang R, Aaronson SA. BRCA2 is ubiquitinated in vivo and interacts with USP11, a deubiquitinating enzyme that exhibits prosurvival function in the cellular response to DNA damage. Mol Cell Biol 2004; 24:7444-55. [PMID: 15314155 PMCID: PMC506974 DOI: 10.1128/mcb.24.17.7444-7455.2004] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Revised: 03/03/2004] [Accepted: 06/03/2004] [Indexed: 12/14/2022] Open
Abstract
Individuals carrying a germ line mutation of the breast cancer susceptibility gene BRCA2 are predisposed to breast, ovarian, and other types of cancer. The BRCA2 protein has been proposed to function in the repair of DNA double-strand breaks. Using an immunopurification-mass spectrometry approach to identify novel proteins that associate with the BRCA2 gene product, we found that a deubiquitinating enzyme, USP11, formed specific complexes with BRCA2. Moreover, BRCA2 was constitutively ubiquitinated in vivo in the absence of detectable proteasomal degradation. Mitomycin C (MMC) led to decreased BRCA2 protein levels associated with increased ubiquitination, consistent with proteasome-dependent degradation. While BRCA2 could be deubiquitinated by USP11 in transient overexpression assays, a catalytically inactive USP11 mutant had no effect on BRCA2 ubiquitination or protein levels. Antagonism of USP11 function either through expression of this mutant or through RNA interference increased cellular sensitivity to MMC in a BRCA2-dependent manner. All of these results imply that BRCA2 expression levels are regulated by ubiquitination in the cellular response to MMC-induced DNA damage and that USP11 participates in DNA damage repair functions within the BRCA2 pathway independently of BRCA2 deubiquitination.
Collapse
Affiliation(s)
- Alan R Schoenfeld
- Derald H. Ruttenberg Cancer Center, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
46
|
Pan H, Zhou F, Gao SJ. Kaposi's sarcoma-associated herpesvirus induction of chromosome instability in primary human endothelial cells. Cancer Res 2004; 64:4064-8. [PMID: 15205312 PMCID: PMC5257260 DOI: 10.1158/0008-5472.can-04-0657] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chromosome instability contributes to the multistep oncogenesis of cancer cells. Kaposi's sarcoma (KS), an angiogenic vascular spindle cancer of endothelial cells, displays stage advancement with lesions at early stage being hyperproliferative, whereas lesions at late stage are clonal or multiclonal and can exhibit a neoplastic nature and chromosome instability. Although infection with KS-associated herpesvirus (KSHV) has been associated with the initiation and promotion of KS, the mechanism of KS neoplastic transformation remains unclear. We show that KSHV infection of primary human umbilical vein endothelial cells induces abnormal mitotic spindles and centrosome duplication. As a result, KSHV-infected cells manifest chromosome instability, including chromosomal misalignments and laggings, mitotic bridges, and formation of micronuclei and multinucleation. Our results indicate that KSHV infection could predispose cells to malignant transformation through induction of genomic instability and contributes to the development of KS.
Collapse
Affiliation(s)
- Hongyi Pan
- Tumor Virology Program, Children Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Department of Pediatrics, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Fuchun Zhou
- Tumor Virology Program, Children Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Department of Pediatrics, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Shou-Jiang Gao
- Tumor Virology Program, Children Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Department of Pediatrics, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
- San Antonio Cancer Institute, San Antonio, Texas
| |
Collapse
|
47
|
Cejka P, Stojic L, Marra G, Jiricny J. Is mismatch repair really required for ionizing radiation–induced DNA damage signaling? Nat Genet 2004; 36:432-3; author reply 434. [PMID: 15118672 DOI: 10.1038/ng0504-432] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
48
|
Diaconu CC, Bleotu C, Chivu M, Alexiu I, Petrusca D, Anton G, Achim R, Ruta SM, Cernescu C. The development of larger cells that spontaneously escape senescence--a step during the immortalization of a human cancer cell line. J Cell Mol Med 2004; 8:93-101. [PMID: 15090264 PMCID: PMC6740141 DOI: 10.1111/j.1582-4934.2004.tb00263.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
There are few information concerning the changes associated with the transition interval when slow growing, primary explanted human cancer cells are displaced by new selected faster growing cells and became an immortal cell line. In a previous paper (J. Cell. Mol. Med., 5: 49-59, 2001) we described the TV cell line derived from a laryngeal tumor which harbors human papillomavirus (HPV) gene sequences throughout more than sixty in vitro passages. In this paper we analyze the modifications observed during the crisis interval when significant amount of cells senesce but occasional cells acquire some mutations that make them immortal. Confocal microscopy analysis revealed the heterogeneity of the cells in terms of their size and nucleus/cell ratio. Proliferation capacity was assessed by flow cytometry analyzing DNA content and expression of transferrin receptor (CD71). We discussed the possibility that HPV genome sequences alleviate a proliferation block during the crisis growth arrest of human larynx carcinoma cell line and the possibility that the cells monitor their size and growth by measuring the levels of some protein whose synthesis is coupled to cell development.
Collapse
|
49
|
Macaluso M, Paggi MG, Giordano A. Genetic and epigenetic alterations as hallmarks of the intricate road to cancer. Oncogene 2003; 22:6472-8. [PMID: 14528270 DOI: 10.1038/sj.onc.1206955] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Despite the clonal origin of most tumors, their tremendous heterogeneity suggests that cancer progression springs from the combined forces of both genetic and epigenetic events, which produce variant clonal populations, together with the selective pressures of the microenvironment, which promote growth and, perhaps, dissemination of variants with a specific set of characteristics. Although the importance of genetic mutations in cancer has long been recognized, the role of epigenetic events has been suggested more recently. This review focuses on the genetic and epigenetic molecular mechanisms involved in cancer onset and progression, and discusses the possibility of new strategies in the development of anticancer treatments.
Collapse
Affiliation(s)
- Marcella Macaluso
- Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | | | | |
Collapse
|