1
|
Cappabianca L, Ruggieri M, Sebastiano M, Sbaffone M, Martelli I, Ruggeri P, Di Padova M, Farina AR, Mackay AR. Molecular Characterization and Inhibition of a Novel Stress-Induced Mitochondrial Protecting Role for Misfolded TrkAIII in Human SH-SY5Y Neuroblastoma Cells. Int J Mol Sci 2024; 25:5475. [PMID: 38791513 PMCID: PMC11122047 DOI: 10.3390/ijms25105475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Pediatric neuroblastomas (NBs) are heterogeneous, aggressive, therapy-resistant embryonal tumors that originate from cells of neural crest origin committed to the sympathoadrenal progenitor cell lineage. Stress- and drug-resistance mechanisms drive post-therapeutic relapse and metastatic progression, the characterization and inhibition of which are major goals in improving therapeutic responses. Stress- and drug-resistance mechanisms in NBs include alternative TrkAIII splicing of the neurotrophin receptor tropomyosin-related kinase A (NTRK1/TrkA), which correlates with post-therapeutic relapse and advanced-stage metastatic disease. The TrkAIII receptor variant exerts oncogenic activity in NB models by mechanisms that include stress-induced mitochondrial importation and activation. In this study, we characterize novel targetable and non-targetable participants in this pro-survival mechanism in TrkAIII-expressing SH-SY5Y NB cells, using dithiothreitol (DTT) as an activator and a variety of inhibitors by regular and immunoprecipitation Western blotting of purified mitochondria and IncuCyte cytotoxicity assays. We report that stress-induced TrkAIII misfolding initiates this mechanism, resulting in Grp78, Ca2+-calmodulin, adenosine ribosylating factor (Arf) and Hsp90-regulated mitochondrial importation. TrkAIII imported into inner mitochondrial membranes is cleaved by Omi/high temperature requirement protein A2 (HtrA2) then activated by a mechanism dependent upon calmodulin kinase II (CaMKII), alpha serine/threonine kinase (Akt), mitochondrial Ca2+ uniporter and reactive oxygen species (ROS), involving inhibitory mitochondrial protein tyrosine phosphatase (PTPase) oxidation, resulting in phosphoinositide 3 kinase (PI3K) activation of mitochondrial Akt, which enhances stress resistance. This novel pro-survival function for misfolded TrkAIII mitigates the cytotoxicity of mitochondrial Ca2+ homeostasis disrupted during integrated stress responses, and is prevented by clinically approved Trk and Akt inhibitors and also by inhibitors of 78kDa glucose regulated protein (Grp78), heat shock protein 90 (Hsp90), Ca2+-calmodulin and PI3K. This identifies Grp78, Ca2+-calmodulin, Hsp90, PI3K and Akt as novel targetable participants in this mechanism, in addition to TrkAIII, the inhibition of which has the potential to enhance the stress-induced elimination of TrkAIII-expressing NB cells, with the potential to improve therapeutic outcomes in NBs that exhibit TrkAIII expression and activation.
Collapse
|
2
|
Vaziri Z, Saleki K, Aram C, Alijanizadeh P, Pourahmad R, Azadmehr A, Ziaei N. Empagliflozin treatment of cardiotoxicity: A comprehensive review of clinical, immunobiological, neuroimmune, and therapeutic implications. Biomed Pharmacother 2023; 168:115686. [PMID: 37839109 DOI: 10.1016/j.biopha.2023.115686] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/03/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023] Open
Abstract
Cancer and cardiovascular disorders are known as the two main leading causes of mortality worldwide. Cardiotoxicity is a critical and common adverse effect of cancer-related chemotherapy. Chemotherapy-induced cardiotoxicity has been associated with various cancer treatments, such as anthracyclines, immune checkpoint inhibitors, and kinase inhibitors. Different methods have been reported for the management of chemotherapy-induced cardiotoxicity. In this regard, sodium-glucose cotransporter-2 inhibitors (SGLT2i), a class of antidiabetic agents, have recently been applied to manage heart failure patients. Further, SGLT2i drugs such as EMPA exert protective cardiac and systemic effects. Moreover, it can reduce inflammation through the mediation of major inflammatory components, such as Nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasomes, Adenosine 5'-monophosphate-activated protein kinase (AMPK), and c-Jun N-terminal kinase (JNK) pathways, Signal transducer and activator of transcription (STAT), and overall decreasing transcription of proinflammatory cytokines. The clinical outcome of EMPA administration is related to improving cardiovascular risk factors, including body weight, lipid profile, blood pressure, and arterial stiffness. Intriguingly, SGLT2 suppressors can regulate microglia-driven hyperinflammation affecting neurological and cardiovascular disorders. In this review, we discuss the protective effects of EMPA in chemotherapy-induced cardiotoxicity from molecular, immunological, and neuroimmunological aspects to preclinical and clinical outcomes.
Collapse
Affiliation(s)
- Zahra Vaziri
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; USERN Office, Babol University of Medical Sciences, Babol, Iran; Department of e-Learning, Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Cena Aram
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Parsa Alijanizadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Ramtin Pourahmad
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Azadmehr
- Immunology Department, Babol University of Medical Sciences, Babol, Iran
| | - Naghmeh Ziaei
- Clinical Research Development unit of Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran; Department of Cardiology, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
3
|
Yan C, Hu W, Tu J, Li J, Liang Q, Han S. Pathogenic mechanisms and regulatory factors involved in alcoholic liver disease. J Transl Med 2023; 21:300. [PMID: 37143126 PMCID: PMC10158301 DOI: 10.1186/s12967-023-04166-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023] Open
Abstract
Alcoholism is a widespread and damaging behaviour of people throughout the world. Long-term alcohol consumption has resulted in alcoholic liver disease (ALD) being the leading cause of chronic liver disease. Many metabolic enzymes, including alcohol dehydrogenases such as ADH, CYP2E1, and CATacetaldehyde dehydrogenases ALDHsand nonoxidative metabolizing enzymes such as SULT, UGT, and FAEES, are involved in the metabolism of ethanol, the main component in alcoholic beverages. Ethanol consumption changes the functional or expression profiles of various regulatory factors, such as kinases, transcription factors, and microRNAs. Therefore, the underlying mechanisms of ALD are complex, involving inflammation, mitochondrial damage, endoplasmic reticulum stress, nitrification, and oxidative stress. Moreover, recent evidence has demonstrated that the gut-liver axis plays a critical role in ALD pathogenesis. For example, ethanol damages the intestinal barrier, resulting in the release of endotoxins and alterations in intestinal flora content and bile acid metabolism. However, ALD therapies show low effectiveness. Therefore, this review summarizes ethanol metabolism pathways and highly influential pathogenic mechanisms and regulatory factors involved in ALD pathology with the aim of new therapeutic insights.
Collapse
Affiliation(s)
- Chuyun Yan
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Wanting Hu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Jinqi Tu
- The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College of Wuhu, Wannan Medical College, Wuhu, 241000, Anhui, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Shuxin Han
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China.
| |
Collapse
|
4
|
PUMA overexpression dissociates thioredoxin from ASK1 to activate the JNK/BCL-2/BCL-XL pathway augmenting apoptosis in ovarian cancer. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166553. [PMID: 36122664 DOI: 10.1016/j.bbadis.2022.166553] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022]
Abstract
ASK1-JNK signaling promotes mitochondrial dysfunction-mediated apoptosis, but the bridge between JNK and apoptosis is not fully understood. PUMA induces apoptosis through BAX/BAK. Our previous study suggests a therapeutic potential of PUMA for ovarian cancer. However, whether and how PUMA activates ASK1 remains unclear. Here, we found for the first time that PUMA activated ASK1 by dissociating thioredoxin (TRX) from ASK1, however, it neither interacted with ASK1 nor TRX. Furthermore, PUMA overexpression caused ROS release from mitochondrial. H2O2 significantly impaired the interaction of ASK1 with TRX, whereas ROS scavenger NAC effectively abrogated the H2O2 effect, partly rescued PUMA-interfered interaction of ASK1 with TRX, and also abolished ASK1 phosphorylation. Interestingly, PUMA could not impair the association of ASK1 with TRX-C32S or TRX-C35S, two TRX mutants which are no longer oxidized in response to ROS. We further showed that PUMA activated ASK1-JNK axis to phosphorylate BCL-2 and BCL-XL, further augmenting apoptosis of ovarian cancer cells. In vivo, PUMA adenovirus combined with paclitaxel significantly inhibited intrinsically cisplatin-resistant ovarian cancer growth, and caused phosphorylation of BCL-2 and BCL-XL. Our results from human ovarian cancer TMA chips also revealed a positive correlation between PUMA expression and the phosphorylation of BCL-2 and BCL-XL. More importantly, all patients had no distal metastasis, implying a possibly clinical significance. Collectively, our results reveal a new pro-apoptotic signal amplification mechanism for PUMA by which PUMA overexpression first induces ROS-mediated dissociation of TRX from ASK1, and then causes JNK activation-triggering BCL-2/BCL-XL phosphorylation, ultimately augmenting apoptosis in ovarian cancer.
Collapse
|
5
|
Afsar SY, Alam S, Fernandez Gonzalez C, van Echten‐Deckert G. Sphingosine‐1‐phosphate‐lyase deficiency affects glucose metabolism in a way that abets oncogenesis. Mol Oncol 2022; 16:3642-3653. [PMID: 35973936 PMCID: PMC9580888 DOI: 10.1002/1878-0261.13300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/25/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022] Open
Abstract
Sphingosine‐1‐phosphate (S1P), a bioactive signaling lipid, is involved in several vital processes, including cellular proliferation, survival and migration, as well as neovascularization and inflammation. Its critical role in the development and progression of cancer is well documented. The metabolism of S1P, which exerts its effect mainly via five G protein‐coupled receptors (S1PR1–5), is tightly regulated. S1P‐lyase (SGPL1) irreversibly cleaves S1P in the final step of sphingolipid catabolism and exhibits remarkably decreased enzymatic activity in tumor samples. In this study, we used SGPL1‐deficient (Sgpl1−/−) mouse embryonic fibroblasts (MEFs) and investigated the impact of S1P on glucose metabolism. Accumulated S1P activates, via its receptors (S1PR1–3), hypoxia‐inducible factor 1 and stimulates the expression of proteins involved in glucose uptake and breakdown, indicating that Sgpl1−/− cells, like cancer cells, prefer to convert glucose to lactate even in the presence of oxygen. Accordingly, their rate of proliferation is significantly increased. Activation of the Akt/mTOR pathway and hence down‐regulation of autophagy indicate that these changes do not negatively affect the cellular energy status. In summary, we report on a newly identified role of the S1P/S1PR1–3 axis in glucose metabolism in SGPL1‐deficient MEFs.
Collapse
Affiliation(s)
- Sumaiya Y. Afsar
- LIMES Institute for Membrane Biology and Lipid Biochemistry University Bonn Germany
| | - Shah Alam
- LIMES Institute for Membrane Biology and Lipid Biochemistry University Bonn Germany
| | | | | |
Collapse
|
6
|
Moreira NCDS, Lima JEBDF, Marchiori MF, Carvalho I, Sakamoto-Hojo ET. Neuroprotective Effects of Cholinesterase Inhibitors: Current Scenario in Therapies for Alzheimer's Disease and Future Perspectives. J Alzheimers Dis Rep 2022; 6:177-193. [PMID: 35591949 PMCID: PMC9108627 DOI: 10.3233/adr-210061] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/16/2022] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a slowly progressive neurodegenerative disease conceptualized as a continuous process, ranging from mild cognitive impairment (MCI), to the mild, moderate, and severe clinical stages of AD dementia. AD is considered a complex multifactorial disease. Currently, the use of cholinesterase inhibitors (ChEI), such as tacrine, donepezil, rivastigmine, and galantamine, has been the main treatment for AD patients. Interestingly, there is evidence that ChEI also promotes neuroprotective effects, bringing some benefits to AD patients. The mechanisms by which the ChEI act have been investigated in AD. ChEI can modulate the PI3K/AKT pathway, which is an important signaling cascade that is capable of causing a significant functional impact on neurons by activating cell survival pathways to promote neuroprotective effects. However, there is still a huge challenge in the field of neuroprotection, but in the context of unravelling the details of the PI3K/AKT pathway, a new scenario has emerged for the development of more efficient drugs that act on multiple protein targets. Thus, the mechanisms by which ChEI can promote neuroprotective effects and prospects for the development of new drug candidates for the treatment of AD are discussed in this review.
Collapse
Affiliation(s)
| | | | - Marcelo Fiori Marchiori
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ivone Carvalho
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Elza Tiemi Sakamoto-Hojo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
7
|
LI H, WANG T, CUI W, GAO Z, CHE Z. Effect of ginsenoside Rg3 on proliferation and apoptosis of 786-0 cells and AktmTORSTAT3 signaling in renal carcinoma. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.124121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
| | | | - Wei CUI
- Zibo Central Hospital, China
| | | | - Zi CHE
- Zibo Central Hospital, China
| |
Collapse
|
8
|
Massimino M, Vigneri P, Stella S, Tirrò E, Pennisi MS, Parrinello LN, Vetro C, Manzella L, Stagno F, Di Raimondo F. Combined Inhibition of Bcl2 and Bcr-Abl1 Exercises Anti-Leukemia Activity but Does Not Eradicate the Primitive Leukemic Cells. J Clin Med 2021; 10:jcm10235606. [PMID: 34884309 PMCID: PMC8658323 DOI: 10.3390/jcm10235606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/13/2021] [Accepted: 11/25/2021] [Indexed: 12/11/2022] Open
Abstract
Background: The management of Philadelphia Chromosome-positive (Ph+) hematological malignancies is strictly correlated to the use of BCR-ABL1 tyrosine kinase inhibitors (TKIs). However, these drugs do not induce leukemic stem cells death and their persistence may generate a disease relapse. Published reports indicated that Venetoclax, a selective BCL2 inhibitor, could be effective in Ph+ diseases, as BCL2 anti-apoptotic activity is modulated by BCR-ABL1 kinase. We, therefore, investigated if BCL2 inhibition, alone or combined with Nilotinib, a BCR-ABL1 inhibitor, affects the primitive and committed Ph+ cells survival. Methods: We used Ph+ cells isolated from leukemic patients at diagnosis. To estimate the therapeutic efficacy of BCL2 and BCR-ABL1 inhibition we employed long-term culture, proliferation and apoptosis assay. Immunoblot was used to evaluate the ability of treatment to interfere with the down-stream targets of BCR-ABL1. Results: Blocking BCL2, we observed reduced proliferation and clonogenic potential of CML CD34-positive cells and this cytotoxicity was improved by combination with BCR-ABL1 inhibitor. However, BCL2 inhibition, alone or in combination regiment with BCR-ABL1 inhibitor, did not reduce the self-renewal of primitive leukemic cells, while strongly induced cell death on primary Ph+ Acute Lymphoblastic Leukemia (ALL). Conclusion: Our results suggest that primitive CML leukemic cells are not dependent on BCL2 for their persistence and support that committed CML and Ph + ALL cells are dependent by BCL2 and BCR-ABL1 cooperation for their survival. The antileukemic activity of BCL2 and BCR-ABL1 dual targeting may be a useful therapeutic strategy for Ph+ ALL patients.
Collapse
Affiliation(s)
- Michele Massimino
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (P.V.); (S.S.); (E.T.); (M.S.P.); (L.M.)
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico-S. Marco”, 95123 Catania, Italy
- Correspondence: ; Tel.: +39-095-3781952; Fax: +39-095-3781949
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (P.V.); (S.S.); (E.T.); (M.S.P.); (L.M.)
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico-S. Marco”, 95123 Catania, Italy
| | - Stefania Stella
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (P.V.); (S.S.); (E.T.); (M.S.P.); (L.M.)
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico-S. Marco”, 95123 Catania, Italy
| | - Elena Tirrò
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (P.V.); (S.S.); (E.T.); (M.S.P.); (L.M.)
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico-S. Marco”, 95123 Catania, Italy
| | - Maria Stella Pennisi
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (P.V.); (S.S.); (E.T.); (M.S.P.); (L.M.)
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico-S. Marco”, 95123 Catania, Italy
| | - Laura Nunziatina Parrinello
- Division of Hematology, A.O.U. Policlinico “G. Rodolico-S. Marco”, 95123 Catania, Italy; (L.N.P.); (C.V.); (F.S.); (F.D.R.)
| | - Calogero Vetro
- Division of Hematology, A.O.U. Policlinico “G. Rodolico-S. Marco”, 95123 Catania, Italy; (L.N.P.); (C.V.); (F.S.); (F.D.R.)
| | - Livia Manzella
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (P.V.); (S.S.); (E.T.); (M.S.P.); (L.M.)
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico-S. Marco”, 95123 Catania, Italy
| | - Fabio Stagno
- Division of Hematology, A.O.U. Policlinico “G. Rodolico-S. Marco”, 95123 Catania, Italy; (L.N.P.); (C.V.); (F.S.); (F.D.R.)
| | - Francesco Di Raimondo
- Division of Hematology, A.O.U. Policlinico “G. Rodolico-S. Marco”, 95123 Catania, Italy; (L.N.P.); (C.V.); (F.S.); (F.D.R.)
| |
Collapse
|
9
|
Tang J, Yao C, Liu Y, Yuan J, Wu L, Hosoi K, Yu S, Huang C, Wei H, Chen G. Arsenic trioxide induces expression of BCL-2 expression via NF-κB and p38 MAPK signaling pathways in BEAS-2B cells during apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112531. [PMID: 34303041 DOI: 10.1016/j.ecoenv.2021.112531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/04/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Inorganic arsenic compounds are environmental toxicants that are widely distributed in air, water, and food. B-cell lymphoma 2 (BCL-2) is an oncogene having anti-apoptotic function. In this study, we clarify that BCL-2, as a pro-apoptotic factor, participates in As2O3-induced apoptosis in BEAS-2B cells. Specifically, As2O3 stimulated the expression of BCL-2 mRNA and protein in a dose-dependent manner which was highly accumulated in the nucleus of BEAS-2B cell together with chromatin condensation and DNA fragmentation during apoptosis. Mechanistically, the process described above is mediated through the NF-κB and p38 MAPK signaling pathways, which can be abated by corresponding inhibitors, such as BAY11-7082 and SB203580, respectively. Additionally, BAY11-7082, actinomycin D, and cycloheximide have inhibitory effects on As2O3-induced expression of BCL-2 mRNA and protein, and restore the cell viability of BEAS-2B cells. Suppression of BCL-2 protein activation by ABT-199 also restored viability of BEAS-2B cell in As2O3-induced apoptosis. Furthermore, As2O3 increased the level of BCL-2 phosphorylation. These results suggest that in BEAS-2B cells, As2O3-induced apoptosis is mainly dominated by BCL-2 upregulation, nuclear localization and phosphorylation. The study presented here provides a novel insight into the molecular mechanism of BCL-2-induced apoptosis.
Collapse
Affiliation(s)
- Jing Tang
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, Jiangsu, China
| | - Chenjuan Yao
- Department of Molecular Oral Physiology, Institute of Health Biosciences, University of Tokushima Graduate School, Toku shima-Shi 770-8504, Tokushima, Japan
| | - Yingqi Liu
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, Jiangsu, China
| | - Jiaming Yuan
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, Jiangsu, China
| | - Li Wu
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, Jiangsu, China
| | - Kazuo Hosoi
- Department of Molecular Oral Physiology, Institute of Health Biosciences, University of Tokushima Graduate School, Toku shima-Shi 770-8504, Tokushima, Japan; Kosei Pharmaceutical Co. Ltd., Osaka-shi 540-0039, Osaka, Japan
| | - Shali Yu
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, Jiangsu, China
| | - Chunyan Huang
- Department of Chronic Disease Prevention and Control, Suzhou Center for Disease Control and Prevention, Suzhou 215004, China
| | - Haiyan Wei
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, Jiangsu, China.
| | - Gang Chen
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, Jiangsu, China.
| |
Collapse
|
10
|
Avsec D, Jakoš Djordjevič AT, Kandušer M, Podgornik H, Škerget M, Mlinarič-Raščan I. Targeting Autophagy Triggers Apoptosis and Complements the Action of Venetoclax in Chronic Lymphocytic Leukemia Cells. Cancers (Basel) 2021; 13:cancers13184557. [PMID: 34572784 PMCID: PMC8466897 DOI: 10.3390/cancers13184557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 01/07/2023] Open
Abstract
Simple Summary Venetoclax is an antagonist of the antiapoptotic protein Bcl-2, and is currently approved for treatment of chronic lymphocytic leukemia (CLL). Recently, clinical use has shown that patients develop resistance to venetoclax. Therefore, the demand for novel targets for treatment of CLL remains high. One such target is autophagy, an evolutionarily old system for degradation of long-lived proteins and organelles that recovers the energy for normal cellular functions. Here, the antileukemic potential of different autophagy inhibitors was evaluated in patient-derived CLL cells. Among these, inhibitors of the AMPK/ULK1 pathway and late-stage autophagy were the most potent, with selective cytotoxic activities seen. They also show activity against CLL cells with unfavorable genetic characteristics. These inhibitors complement the cytotoxic action of venetoclax. In conclusion, targeting autophagy shows potential as a novel approach for treatment of patients with CLL. Abstract Continuous treatment of patients with chronic lymphocytic leukemia (CLL) with venetoclax, an antagonist of the anti-apoptotic protein Bcl-2, can result in resistance, which highlights the need for novel targets to trigger cell death in CLL. Venetoclax also induces autophagy by perturbing the Bcl-2/Beclin-1 complex, so autophagy might represent a target in CLL. Diverse autophagy inhibitors were assessed for cytotoxic activities against patient-derived CLL cells. The AMPK inhibitor dorsomorphin, the ULK1/2 inhibitor MRT68921, and the autophagosome–lysosome fusion inhibitor chloroquine demonstrated concentration-dependent and time-dependent cytotoxicity against CLL cells, even in those from hard-to-treat patients who carried del(11q) and del(17p). Dorsomorphin and MRT68921 but not chloroquine triggered caspase-dependent cell death. According to the metabolic activities of CLL cells and PBMCs following treatments with 10 µM dorsomorphin (13% vs. 84%), 10 µM MRT68921 (7% vs. 78%), and 25 µM chloroquine (41% vs. 107%), these autophagy inhibitors are selective toward CLL cells. In these CLL cells, venetoclax induced autophagy, and addition of dorsomorphin, MRT68921, or chloroquine showed potent synergistic cytotoxicities. Additionally, MRT68921 alone induced G2 arrest, but when combined with venetoclax, it triggered caspase-dependent cytotoxicity. These data provide the rationale to target autophagy and for autophagy inhibitors as potential treatments for patients with CLL.
Collapse
Affiliation(s)
- Damjan Avsec
- University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia; (D.A.); (A.T.J.D.); (M.K.); (H.P.)
| | - Alma Tana Jakoš Djordjevič
- University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia; (D.A.); (A.T.J.D.); (M.K.); (H.P.)
| | - Maša Kandušer
- University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia; (D.A.); (A.T.J.D.); (M.K.); (H.P.)
| | - Helena Podgornik
- University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia; (D.A.); (A.T.J.D.); (M.K.); (H.P.)
- University Medical Centre Ljubljana, Department of Haematology, SI-1000 Ljubljana, Slovenia;
| | - Matevž Škerget
- University Medical Centre Ljubljana, Department of Haematology, SI-1000 Ljubljana, Slovenia;
- University of Ljubljana, Faculty of Medicine, SI-1000 Ljubljana, Slovenia
| | - Irena Mlinarič-Raščan
- University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia; (D.A.); (A.T.J.D.); (M.K.); (H.P.)
- Correspondence:
| |
Collapse
|
11
|
Ghosh A, Upadhyay P, Sarker S, Das S, Bhattacharjee M, Bhattacharya S, Ahir M, Guria S, Gupta P, Chattopadhyay S, Ghosh S, Adhikari S, Adhikary A. Delivery of novel coumarin-dihydropyrimidinone conjugates through mixed polymeric nanoparticles to potentiate therapeutic efficacy against triple-negative breast cancer. Biomater Sci 2021; 9:5665-5690. [PMID: 34259681 DOI: 10.1039/d1bm00424g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
To date, most of the accessible therapeutic options are virtually non-responsive towards triple-negative breast cancer (TNBC) due to its highly aggressive and metastatic nature. Interestingly, chemotherapy reacts soundly in many TNBC cases compared to other types of breast cancer. However, the side effects of many chemotherapeutic agents are still under cross-examination, and thus prohibit their extensive uses. In this present study, we have developed a series of coumarin-dihydropyrimidinone conjugates (CDHPs) and subsequently their poly(lactic-co-glycolic acid) (PLGA)-PEG4000 mixed copolymer nanoparticles as excellent chemotherapeutic nanomedicine to control TNBC. Among all the synthesized CDHPs, CDHP-4 (prepared by the combination of EDCO with 3,4-difluorobenzaldehyde) showed excellent therapeutic effect on a wide variety of cancer cell lines, including TNBC. Besides, it can control the metastasis and stemness property of TNBC. Furthermore, the nano-encapsulation of CDHP-4 in a mixed polymer nanoparticle system (CDHP-4@PP-NPs) and simultaneous delivery showed much improved therapeutic efficacy at a much lower dose, and almost negligible side effects in normal healthy cells or organs. The effectiveness of the present therapeutic agent was observed both in intravenous and oral mode of administration in in vivo experiments. Moreover, on elucidating the molecular mechanism, we found that CDHP-4@PP-NPs could exhibit apoptotic, anti-migratory, as well as anti-stemness activity against TNBC cell lines through the downregulation of miR-138. We validated our findings in MDA-MB-231 xenograft chick embryos, as well as in 4T1-induced mammary tumor-bearing BALB/c mice models, and studied the bio-distribution of CDHP-4@PP-NPs on the basis of the photoluminescence property of nanoparticles. Our recent study, hence for the first time, unravels the synthesis of CDHP-4@PP-NPs and the molecular mechanism behind the anti-migration, anti-stemness and anti-tumor efficacy of the nanoparticles against the TNBC cells through the miR-138/p65/TUSC2 axis.
Collapse
Affiliation(s)
- Avijit Ghosh
- Center for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata-700106, West Bengal, India.
| | - Priyanka Upadhyay
- Center for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata-700106, West Bengal, India.
| | - Sushmita Sarker
- Center for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata-700106, West Bengal, India.
| | - Shaswati Das
- Center for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata-700106, West Bengal, India.
| | - Mousumi Bhattacharjee
- Center for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata-700106, West Bengal, India.
| | - Saurav Bhattacharya
- Center for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata-700106, West Bengal, India.
| | - Manisha Ahir
- Center for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata-700106, West Bengal, India.
| | - Subhajit Guria
- Department of Chemistry, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata-700009, West Bengal, India
| | - Payal Gupta
- Department of Physiology, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata-700009, West Bengal, India
| | - Sreya Chattopadhyay
- Department of Physiology, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata-700009, West Bengal, India
| | - Swatilekha Ghosh
- Amity Institute of Biotechnology, Amity University, Rajarhat, New Town, Kolkata-700156, West Bengal, India
| | - Susanta Adhikari
- Department of Chemistry, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata-700009, West Bengal, India
| | - Arghya Adhikary
- Center for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata-700106, West Bengal, India.
| |
Collapse
|
12
|
Zhang L, Lu Z, Zhao X. Targeting Bcl-2 for cancer therapy. Biochim Biophys Acta Rev Cancer 2021; 1876:188569. [PMID: 34015412 DOI: 10.1016/j.bbcan.2021.188569] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/27/2021] [Accepted: 05/12/2021] [Indexed: 12/15/2022]
Abstract
Apoptosis deficiency is one of the most important features observed in neoplastic diseases. The Bcl-2 family is composed of a subset of proteins that act as decisive apoptosis regulators. Research and clinical studies have both demonstrated that the hyperactivation of Bcl-2-related anti-apoptotic effects correlates with cancer occurrence, progression and prognosis, also having a role in facilitating the radio- and chemoresistance of various malignancies. Therefore, targeting Bcl-2 inactivation has provided some compelling therapeutic advantages by enhancing apoptotic sensitivity or reversing drug resistance. Therefore, this pharmacological route turned into one of the most promising routes for cancer treatment. This review discusses some of the well-defined and emerging roles of Bcl-2 as well as its potential clinical value in cancer therapeutics.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China
| | - Zaiming Lu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China.
| | - Xiangxuan Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China.
| |
Collapse
|
13
|
Monti N, Masiello MG, Proietti S, Catizone A, Ricci G, Harrath AH, Alwasel SH, Cucina A, Bizzarri M. Survival Pathways Are Differently Affected by Microgravity in Normal and Cancerous Breast Cells. Int J Mol Sci 2021; 22:ijms22020862. [PMID: 33467082 PMCID: PMC7829699 DOI: 10.3390/ijms22020862] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/16/2022] Open
Abstract
Metazoan living cells exposed to microgravity undergo dramatic changes in morphological and biological properties, which ultimately lead to apoptosis and phenotype reprogramming. However, apoptosis can occur at very different rates depending on the experimental model, and in some cases, cells seem to be paradoxically protected from programmed cell death during weightlessness. These controversial results can be explained by considering the notion that the behavior of adherent cells dramatically diverges in respect to that of detached cells, organized into organoids-like, floating structures. We investigated both normal (MCF10A) and cancerous (MCF-7) breast cells and found that appreciable apoptosis occurs only after 72 h in MCF-7 cells growing in organoid-like structures, in which major modifications of cytoskeleton components were observed. Indeed, preserving cell attachment to the substrate allows cells to upregulate distinct Akt- and ERK-dependent pathways in MCF-7 and MCF-10A cells, respectively. These findings show that survival strategies may differ between cell types but cannot provide sufficient protection against weightlessness-induced apoptosis alone if adhesion to the substrate is perturbed.
Collapse
Affiliation(s)
- Noemi Monti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
- Systems Biology Group Lab, Sapienza University of Rome, 00161 Rome, Italy
| | - Maria Grazia Masiello
- Department of Surgery “Pietro Valdoni”, Sapienza University of Rome, 00161 Rome, Italy; (M.G.M.); (S.P.); (A.C.)
| | - Sara Proietti
- Department of Surgery “Pietro Valdoni”, Sapienza University of Rome, 00161 Rome, Italy; (M.G.M.); (S.P.); (A.C.)
| | - Angela Catizone
- Department of Anatomy, Histology, Forensic-Medicine and Orthopedics, Section of Histology and Embryology, Sapienza University of Rome, 00161 Rome, Italy;
| | - Giulia Ricci
- Department of Experimental Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.H.H.); (S.H.A.)
| | - Saleh H. Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.H.H.); (S.H.A.)
| | - Alessandra Cucina
- Department of Surgery “Pietro Valdoni”, Sapienza University of Rome, 00161 Rome, Italy; (M.G.M.); (S.P.); (A.C.)
- Azienda Policlinico Umberto I, 00161 Rome, Italy
| | - Mariano Bizzarri
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
- Systems Biology Group Lab, Sapienza University of Rome, 00161 Rome, Italy
- Correspondence: ; Tel.: +39-4976-6606
| |
Collapse
|
14
|
Eliaa S, Al-Karmalawy AA, Saleh RM, Elshal MF. Empagliflozin and Doxorubicin Synergistically Inhibit the Survival of Triple-Negative Breast Cancer Cells via Interfering with the mTOR Pathway and Inhibition of Calmodulin: In Vitro and Molecular Docking Studies. ACS Pharmacol Transl Sci 2020; 3:1330-1338. [PMID: 33344906 PMCID: PMC7737321 DOI: 10.1021/acsptsci.0c00144] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Indexed: 02/08/2023]
Abstract
Triple-negative breast cancers (TNBCs) comprise 10-15% of all breast cancers but with more resistance affinity against chemotherapeutics. Although doxorubicin (DOX) is the recommended first choice, it has observed cardiotoxicity together with apparent drug resistance. The anti-hyperglycemic drug, empagliflozin (EMP), was recently indicated to have in vitro anticancer potential together with its previously reported cardioprotective properties related to calmodulin inhibition. In this study, we carried out molecular docking studies which revealed the potential blocking of the calmodulin receptor by EMP through its binding with similar crucial amino acids compared to its cocrystallized inhibitor (AAA) as a proposed mechanism of action. Moreover, combination of DOX with EMP showed a slightly lower cytotoxic activity against the MDA-MB-231 cell line (IC50 = 1.700 ± 0.121) compared to DOX alone (IC50 = 1.230 ± 0.131), but it achieved a more characteristic arrest in the growth of cells by 4.67-fold more than DOX alone (with only 3.27-fold) in comparison to the control as determined by cell cycle analysis, and at the same time reached an increase in the total apoptosis percentage from 27.05- to 29.22-fold, compared to DOX alone as indicated by Annexin V-FITC apoptosis assay. Briefly, the aforementioned in vitro studies in addition to PCR of pro- and antiapoptotic genes (mTOR, p21, JNK, Bcl2, and MDR1) suggest the chemosensitization effect of EMP combination with DOX which can reduce the required therapeutic dose of DOX in TNBC and eventually will decrease its toxic side effects (especially cardiotoxicity), along with decreasing the chemoresistance of TNBC cells to DOX treatment.
Collapse
Affiliation(s)
- Shenouda
G. Eliaa
- Department
of Molecular Biology, Genetic Engineering and Biotechnology Research
Institute, University of Sadat City, Sadat City 32897, Egypt
| | - Ahmed A. Al-Karmalawy
- Department
of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| | - Rasha M. Saleh
- Department
of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed F. Elshal
- Department
of Molecular Biology, Genetic Engineering and Biotechnology Research
Institute, University of Sadat City, Sadat City 32897, Egypt
| |
Collapse
|
15
|
Kim SY, Kim HJ, Kim HJ, Kim CH. Non-Thermal Plasma Induces Antileukemic Effect Through mTOR Ubiquitination. Cells 2020; 9:cells9030595. [PMID: 32131492 PMCID: PMC7140413 DOI: 10.3390/cells9030595] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/24/2020] [Accepted: 02/28/2020] [Indexed: 12/20/2022] Open
Abstract
Non-thermal plasma (NTP) has been studied as a novel therapeutic tool for cancer that does not damage healthy cells. In this study, we show that NTP-treated solutions (NTS) can induce death in various leukemia cells through mechanistic target of rapamycin (mTOR) ubiquitination. Previously, we manufactured and demonstrated the efficacy of NTS in solid cancers. NTS did not exhibit any deleterious side effects, such as acute death or weight loss in nude mice. In the present study, NTS induced cell death in myeloid leukemia cells, including acute myeloid leukemia (AML) and chronic myeloid leukemia (CML). We found that mTOR was downregulated in NTS-treated cells via the ubiquitin-proteasome system (UPS). We also identified ‘really interesting new gene’ finger protein 126 (RNF126) as a novel binding protein for mTOR through protein arrays and determined the role of E3 ligase in NTS-induced mTOR ubiquitination. NTS-derived reactive oxygen species (ROS) affected RNF126 expression and lysosomal dysfunction. These findings suggest that NTS has potential antileukemic effects through RNF126-mediated mTOR ubiquitination with no deleterious side effects. Thus, NTS may represent a new therapeutic method for chemotherapy-resistant leukemia.
Collapse
Affiliation(s)
- Sun-Yong Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Korea; (S.-Y.K.); (H.J.K.); (H.J.K.)
- Oncoprotein Modification and Regulation Research Center, Ajou University, Suwon 16499, Korea
| | - Hyo Jeong Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Korea; (S.-Y.K.); (H.J.K.); (H.J.K.)
- Oncoprotein Modification and Regulation Research Center, Ajou University, Suwon 16499, Korea
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Haeng Jun Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Korea; (S.-Y.K.); (H.J.K.); (H.J.K.)
- Oncoprotein Modification and Regulation Research Center, Ajou University, Suwon 16499, Korea
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Korea; (S.-Y.K.); (H.J.K.); (H.J.K.)
- Oncoprotein Modification and Regulation Research Center, Ajou University, Suwon 16499, Korea
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- Correspondence: ; Tel.: +82-31-219-5269
| |
Collapse
|
16
|
Park H, Lim W, You S, Song G. Fenbendazole induces apoptosis of porcine uterine luminal epithelial and trophoblast cells during early pregnancy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 681:28-38. [PMID: 31102815 DOI: 10.1016/j.scitotenv.2019.05.116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
Fenbendazole, is an effective benzimidazole anthelmintic that prevents parasite infection in both human and veterinary health care. Although the well-known and effect of benzimidazole was recently shown to have a broad spectrum of biological abilities, such as anticancer and anti-inflammation activities, the mechanism of benzimidazole's antiproliferative effect via cell signaling pathways and its role in preimplantation has not been studied. Therefore, the purpose of this study was to determine the effects of fenbendazole on porcine trophectoderm and luminal epithelial cells. First, we investigated cell viability in response to a low dose of fenbendazole, which highly inhibited cell proliferation. In addition, we investigated apoptotic molecules in the mitochondria, imbalanced intracellular calcium homeostasis, and the expression of some genes involved in apoptosis to explain the decrease in proliferation. Finally, we examined the intracellular mechanisms of fenbendazole by measuring the extracellular signal-regulated kinase, PI3K/AKT, and c-Jun N-terminal kinase signaling proteins by western blot analysis. Our findings suggest that fenbendazole functions as an effective anti-proliferative molecule that induces critical apoptosis in the porcine trophectoderm and uterine luminal epithelial cells by disrupting the mitochondria membrane potential during early pregnancy.
Collapse
Affiliation(s)
- Hahyun Park
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea
| | - Seungkwon You
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Gwonhwa Song
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
17
|
Intra-Tumoral Metabolic Zonation and Resultant Phenotypic Diversification Are Dictated by Blood Vessel Proximity. Cell Metab 2019; 30:201-211.e6. [PMID: 31056286 DOI: 10.1016/j.cmet.2019.04.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 02/05/2019] [Accepted: 04/07/2019] [Indexed: 11/23/2022]
Abstract
Differential exposure of tumor cells to blood-borne and angiocrine factors results in diverse metabolic microenvironments conducive for non-genetic tumor cell diversification. Here, we harnessed a methodology for retrospective sorting of fully functional, stroma-free cancer cells solely on the basis of their relative distance from blood vessels (BVs) to unveil the whole spectrum of genes, metabolites, and biological traits impacted by BV proximity. In both grafted mouse tumors and natural human glioblastoma (GBM), mTOR activity was confined to few cell layers from the nearest perfused vessel. Cancer cells within this perivascular tier are distinguished by intense anabolic metabolism and defy the Warburg principle through exercising extensive oxidative phosphorylation. Functional traits acquired by perivascular cancer cells, namely, enhanced tumorigenicity, superior migratory or invasive capabilities, and, unexpectedly, exceptional chemo- and radioresistance, are all mTOR dependent. Taken together, the study revealed a previously unappreciated graded metabolic zonation directly impacting the acquisition of multiple aggressive tumor traits.
Collapse
|
18
|
Liu K, Jin H, Guo Y, Liu Y, Wan Y, Zhao P, Zhou Z, Wang J, Wang M, Zou C, Wu W, Cheng Z, Dai Y. CFTR interacts with Hsp90 and regulates the phosphorylation of AKT and ERK1/2 in colorectal cancer cells. FEBS Open Bio 2019; 9:1119-1127. [PMID: 30985981 PMCID: PMC6551490 DOI: 10.1002/2211-5463.12641] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/21/2019] [Accepted: 04/12/2019] [Indexed: 12/21/2022] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CF cells and tissues exhibit various mitochondrial abnormalities. However, the underlying molecular mechanisms remain elusive. Here, we examined the mechanisms through which CFTR regulates Bcl‐2 family proteins, which in turn regulate permeabilization of the mitochondrial outer membrane. Notably, inhibition of CFTR activated Bax and Bad, but inhibited Bcl‐2. Moreover, degradation of phosphorylated extracellular signal‐regulated kinase 1/2 (ERK1/2) and AKT increased significantly in CFTR‐knockdown cells. Dysfunction of CFTR decreased heat‐shock protein 90 (Hsp90) mRNA levels, and CFTR was found to interact with Hsp90. Inhibition of Hsp90 by SNX‐2112 induced the degradation of phosphorylated AKT and ERK1/2 in Caco2 and HRT18 cells. These findings may help provide insights into the physiological role of CFTR in CF‐related diseases.
Collapse
Affiliation(s)
- Kaisheng Liu
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China.,Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hongtao Jin
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Yaomin Guo
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Ying Liu
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Yong Wan
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Pan Zhao
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Zhifan Zhou
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Jianhong Wang
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Maolin Wang
- School of Medicine, Health Science Centre, Shenzhen University, Shenzhen, China
| | - Chang Zou
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Weiqing Wu
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Zhiqiang Cheng
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Yong Dai
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| |
Collapse
|
19
|
Ganoderma lucidum Polysaccharides Prevent Palmitic Acid-Evoked Apoptosis and Autophagy in Intestinal Porcine Epithelial Cell Line via Restoration of Mitochondrial Function and Regulation of MAPK and AMPK/Akt/mTOR Signaling Pathway. Int J Mol Sci 2019; 20:ijms20030478. [PMID: 30678035 PMCID: PMC6387170 DOI: 10.3390/ijms20030478] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 01/01/2023] Open
Abstract
Ganoderma lucidum polysaccharide (GLP) extracted from Ganoderma lucidum (Leyss. ex Fr.) Karst, a traditional Chinese medicine, is a biologically active substance reported to possess anti-oxidative, anti-apoptotic, and neurological protection. However, it is unknown whether GLP have any protective effect against high-fat constituents-induced epithelial cell injury. The aim of this study was to investigate the protection and molecular mechanism of GLP on injury induced by palmitic acid (PA) in the intestinal porcine epithelial cell line (IPEC-J2). First, we tested whether the treatment of GLP attenuate PA-induced IPEC-J2 cell death. GLP markedly blocked PA-caused cytotoxicity and apoptosis in IPEC-J2 cells. Moreover, GLP recovered the decreased mitochondrial function and inhibited activation of caspase-dependent apoptotic pathway. Interestingly, PA promoted cell apoptosis and autophagy through stimulation of phosphorylation of mitogen-activated protein kinases (MAPKs), AMP-activated protein kinase (AMPK), and inhibition of phosphorylation of Akt and mammalian target of rapamycin (mTOR), which was reversed by GLP. Taken together, this study revealed a protective effect of GLP against PA-evoked IPEC-J2 cell death through anti-apoptotic and anti-autophagic properties.
Collapse
|
20
|
Pourhanifeh MH, Mahdavinia M, Reiter RJ, Asemi Z. Potential use of melatonin in skin cancer treatment: A review of current biological evidence. J Cell Physiol 2019; 234:12142-12148. [PMID: 30618091 DOI: 10.1002/jcp.28129] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 12/20/2018] [Indexed: 12/13/2022]
Abstract
Skin cancer, particularly melanoma, is a leading cause of death worldwide. The therapeutic methods for this malignancy are not effective, and due to the side effects of these treatments, applying an appropriate alternative or complementary treatment is important. According to available data, melatonin as the main product of the pineal gland has oncostatic and antitumoral properties. Also, melatonin acts as an anti-inflammatory and reactive oxygen species inducer agent which suppresses the growth of tumors. It also has apoptosis induction characteristics through regulating signaling pathways, including heat shock protein 70, nuclear factor-erythroid 2 p45-related factor 2 and others. Thus, adding melatonin to chemo- and radiotherapy may have synergistic therapeutic effects and increase the survival time in patients with skin cancer. Few clinical studies have evaluated the efficacy of melatonin in skin cancer. Based on the related mechanisms, this review discusses about how melatonin may improve outcomes in skin cancer patients.
Collapse
Affiliation(s)
- Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I. R. Iran
| | - Mostafa Mahdavinia
- Department of Dermatology, Razi Hospital, Tehran University of Medical Sciences, Tehran, I. R. Iran
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I. R. Iran
| |
Collapse
|
21
|
Yang B, Wang J, Zhang N. Effect of Nobiletin on Experimental Model of Epilepsy. Transl Neurosci 2018; 9:211-219. [PMID: 30746285 PMCID: PMC6368667 DOI: 10.1515/tnsci-2018-0031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/30/2018] [Indexed: 11/23/2022] Open
Abstract
Background The effects of nobiletin, a plant-derived flavonoid was examined against pentylenetetrazole (PTZ)-induced seizures. The study also aimed to assess whether nobiletin potentiated the effects of antiepileptic drug clonazepam (CZP). Methods PTZ (92 mg/kg, subcutaneous) was used to induce seizures in mice. Treatment groups (n = 18/group) received nobiletin (12.5, 25, or 50 mg/kg) via oral gavage for 6 consecutive days and 45 min prior to PTZ injection. CZP (0.015-2.0 mg/kg) was administered 15 min prior to PTZ. Skeletal muscle strength was assessed by measuring grip strength and Chimney test was performed to study the motor performance in animals. TUNEL assay was done to study neuro-apoptosis. RT-PCR and Western blot analysis were performed for assessment of mRNA and protein expressions. Results Nobiletin and CZP improved muscle strength and motor coordination and reduced seizure severity significantly. The administration of nobiletin and CZP, individually or in combination, downregulated seizure-induced increases in apoptotic cell count and apoptotic protein expression, modulated the expression of gamma-aminobutyric acid (GABA)A and glutamate decarboxylase 65 and restored the glutamate/GABA balance. Nobiletin and CZP administration significantly upregulated phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signaling. Conclusion Nobiletin exerted protective effect against seizures by regulating signaling pathways associated with epileptogenesis and potentiated the effects of CZP.
Collapse
Affiliation(s)
- Baowang Yang
- Department of Pediatric Intensive Care Unit, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| | - Jing Wang
- Department of Pediatric Intensive Care Unit, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| | - Ni Zhang
- Department of Pediatrics, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| |
Collapse
|
22
|
Shi K, Sun H, Zhang H, Xie D, Yu B. miR-34a-5p
aggravates hypoxia-induced apoptosis by targeting ZEB1 in cardiomyocytes. Biol Chem 2018; 400:227-236. [PMID: 30312158 DOI: 10.1515/hsz-2018-0195] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 09/05/2018] [Indexed: 12/16/2022]
Abstract
Abstract
Myocardial infarction (MI) is an unsolved health problem which seriously affects human health around the world. miR-34a-5p acting as a tumor-suppressor is associated with left ventricular remodeling. We aimed to explore the functional roles of miR-34a-5p in cardiomyocytes. Hypoxia-induced cell injury in H9c2, HL-1 and human cardiac myocytes was analyzed according to the decrease of cell viability and increase of apoptosis. Expression of miR-34a-5p was measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR) when the concentration of O2 was decreased. Then, the effects of aberrantly expressed miR-34a-5p on proliferation and apoptosis of cardiomyocytes incubated under hypoxia were assessed. Finally, the downstream protein and signaling pathways of miR-34a-5p were explored. The hypoxic model was successfully constructed after incubation under hypoxia for 48 h. When the concentration of O2 decreased, the miR-34a-5p level was increased significantly. Then, we found miR-34a-5p aggravated hypoxia-induced alterations of proliferation and apoptosis in cardiomyocytes. Zinc finger E-box binding homeobox 1 (ZEB1) was identified as a target of miR-34a-5p, and miR-34a-5p conferred its function via targeting ZEB1. Finally, miR-34a-5p inhibition reversed hypoxia-induced decreases of phosphorylated kinases in the JAK/STAT and PI3K/AKT pathways through up-regulating ZEB1. Our study revealed that miR-34a-5p inhibition protected cardiomyocytes against hypoxia-induced cell injury through activating the JAK/STAT and PI3K/AKT pathways by targeting ZEB1.
Collapse
Affiliation(s)
- Kaiyao Shi
- Department of Cardiology , China-Japan Union Hospital of Jilin University , Jilin Key Laboratory for Gene Diagnosis of Cardiovascular Disease , Jilin Engineering Laboratory for Endothelial Function and Genetic Diagnosis , No. 126, Xiantai Street , Changchun, Jilin 130033 , China
| | - Huan Sun
- Department of Cardiology , China-Japan Union Hospital of Jilin University , Jilin Key Laboratory for Gene Diagnosis of Cardiovascular Disease , Jilin Engineering Laboratory for Endothelial Function and Genetic Diagnosis , No. 126, Xiantai Street , Changchun, Jilin 130033 , China
| | - Hongli Zhang
- Department of Cardiology , China-Japan Union Hospital of Jilin University , Jilin Key Laboratory for Gene Diagnosis of Cardiovascular Disease , Jilin Engineering Laboratory for Endothelial Function and Genetic Diagnosis , No. 126, Xiantai Street , Changchun, Jilin 130033 , China
| | - Di Xie
- Department of Cardiology , China-Japan Union Hospital of Jilin University , Jilin Key Laboratory for Gene Diagnosis of Cardiovascular Disease , Jilin Engineering Laboratory for Endothelial Function and Genetic Diagnosis , No. 126, Xiantai Street , Changchun, Jilin 130033 , China
| | - Bo Yu
- Department of Cardiology , China-Japan Union Hospital of Jilin University , Jilin Key Laboratory for Gene Diagnosis of Cardiovascular Disease , Jilin Engineering Laboratory for Endothelial Function and Genetic Diagnosis , No. 126, Xiantai Street , Changchun, Jilin 130033 , China
| |
Collapse
|
23
|
Biological Aspects of mTOR in Leukemia. Int J Mol Sci 2018; 19:ijms19082396. [PMID: 30110936 PMCID: PMC6121663 DOI: 10.3390/ijms19082396] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 02/07/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) is a central processor of intra- and extracellular signals, regulating many fundamental cellular processes such as metabolism, growth, proliferation, and survival. Strong evidences have indicated that mTOR dysregulation is deeply implicated in leukemogenesis. This has led to growing interest in the development of modulators of its activity for leukemia treatment. This review intends to provide an outline of the principal biological and molecular functions of mTOR. We summarize the current understanding of how mTOR interacts with microRNAs, with components of cell metabolism, and with controllers of apoptotic machinery. Lastly, from a clinical/translational perspective, we recapitulate the therapeutic results in leukemia, obtained by using mTOR inhibitors as single agents and in combination with other compounds.
Collapse
|
24
|
Hagenbuchner J, Lungkofler L, Kiechl-Kohlendorfer U, Viola G, Ferlin MG, Ausserlechner MJ, Obexer P. The tubulin inhibitor MG-2477 induces autophagy-regulated cell death, ROS accumulation and activation of FOXO3 in neuroblastoma. Oncotarget 2018; 8:32009-32026. [PMID: 28415610 PMCID: PMC5458265 DOI: 10.18632/oncotarget.16434] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 03/08/2017] [Indexed: 12/29/2022] Open
Abstract
Neuroblastoma is the most frequent extra-cranial solid tumor in children with still high mortality in stage M. Here we studied the tubulin-inhibitor MG-2477 as a possible therapeutic agent for neuroblastoma therapy and uncovered that MG-2477 induces death in neuroblastoma cells independent of PKB-activation status and stage. MG-2477 triggers within 30 minutes extensive autophagosome-formation that finally leads to cell death associated with mitotic catastrophe. Autophagy is critical for MG-2477-induced death and is regulated by the BH3-only protein PMAIP1/NOXA which sequesters the anti-apoptotic BCL2-protein BCLXL and thereby displaces and activates the autophagy-regulator BECN1/beclin1. Knockdown of NOXA or overexpression of its pro-survival binding partners MCL1 and BCLXL counteracts MG-2477-induced cell death. MG-2477 also rapidly induces the repression of the anti-apoptotic protein Survivin, which promotes autophagy and cell death. We further observed the accumulation of reactive oxygen species (ROS) that triggers autophagy induction suggesting a change of the PI3 kinase-III/BECN1 complex and activates the transcription factor FOXO3, which contributes to final cell death induction. The combined data suggest that MG-2477 induces a sequential process of ROS-accumulation, autophagy and FOXO3-activation that leads to cell death in neuroblastoma cells.
Collapse
Affiliation(s)
- Judith Hagenbuchner
- Department of Pediatrics II, Medical University Innsbruck, Innsbruck, Austria
| | | | | | - Giampietro Viola
- Department of Woman's and Child's Health, Oncohematology Laboratory University of Padova, Padova, Italy
| | - Maria Grazia Ferlin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | - Petra Obexer
- Department of Pediatrics II, Medical University Innsbruck, Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innsbruck, Austria
| |
Collapse
|
25
|
Mukunthan KS, Satyan RS, Patel TN. Pharmacological evaluation of phytochemicals from South Indian Black Turmeric (Curcuma caesia Roxb.) to target cancer apoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2017; 209:82-90. [PMID: 28733192 DOI: 10.1016/j.jep.2017.07.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 07/14/2017] [Accepted: 07/15/2017] [Indexed: 06/07/2023]
Abstract
Curcuma caesia Roxb. (Black turmeric), a perennial herb of the family Zingiberaceae is indigenous to India. C. caesia is used as a spice, food preservative and coloring agent commonly in the Indian subcontinent. Functional parametric pharmacological evaluations like drug ability and toxicity profile of this endangered species is poorly documented. In our present study, among all the extracts of dried C. caesia rhizome viz- hexane, ethyl acetate, methanol and water tested for free radical scavenging capacity by total antioxidant activity (TAO) method, Hexane Rhizome Extract (HRE) was found to possess remarkable activity (1200mg ascorbic acid equivalent/100g). In MTT assay across three cancer cell lines and a control cell line, HRE exhibited a dose-dependent inhibition only in cancer cells, with notable activity in HepG2 cell lines (IC50: 0976µg/mL). Further, western blotting and flow cytometry experiments proved that HRE induces cell arrest at G2/M phase along with cellular apoptosis as suggestive by multiple-point mitochondrial mediated intrinsic pathway of Programmed Cell Death (PCD). Gas Chromatography-Mass Spectrophotometry (GC-MS) analysis of HRE suggested twenty compounds that when docked in silico with Tubulin (1SA0) and Epidermal Growth Factor Receptor/ EGFR (1XKK) showed very intimate binding with the original ligands. Our results provided significant evidence of the toxicity mechanisms of HRE that may be beneficial for more rational applications of drug discovery for slowing down cancer progression.
Collapse
Affiliation(s)
- K S Mukunthan
- Department of Biotechnology, Manipal Institute of Technology, Manipal University, Manipal, Karnataka 576104, India.
| | - R S Satyan
- Parikshan, C-53, T.V.K. Industrial Estate, Guindy, Chennai, Tamil Nadu, India
| | - T N Patel
- Division of Medical Biotechnology, School of Bioscience and Technology, VIT University, Vellore, Tamil Nadu, India.
| |
Collapse
|
26
|
Guo XQ, Cao YL, Hao F, Yan ZR, Wang ML, Liu XW. Tangeretin alters neuronal apoptosis and ameliorates the severity of seizures in experimental epilepsy-induced rats by modulating apoptotic protein expressions, regulating matrix metalloproteinases, and activating the PI3K/Akt cell survival pathway. Adv Med Sci 2017; 62:246-253. [PMID: 28501723 DOI: 10.1016/j.advms.2016.11.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 11/16/2016] [Accepted: 11/29/2016] [Indexed: 12/27/2022]
Abstract
PURPOSE Epilepsy is complex neural disarray categorized by recurring seizures. Despite recent advances in pharmacotherapies for epilepsy, its treatment remains a challenge due to the contrary effects of the drugs. As a result, the identification of novel anti-epileptic drugs (AEDs) with neuroprotective properties and few side effects is of great value. Thus, the present study assessed the treatment effects of tangeretin using a rat model of pilocarpine-induced epilepsy. MATERIALS AND METHODS Separate groups of male Wistar rats received oral administrations of tangeretin at 50, 100, or 200mg/kg for 10 days and then, on the 10th day, they received an intraperitoneal injection of pilocarpine (30mg/kg). Subsequently, neuronal degeneration and apoptosis were assessed using Nissl staining and terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) assay procedures. Additionally, the expressions of phosphatidylinositol-3-kinase (PI3K/Akt) pathway proteins, cleaved caspase-3, Bad, Bcl-2, Bcl-xL, and Bax were determined using Western blot analyses. RESULTS Tangeretin reduced the seizure scores and latency to first seizure of the rats and effectively activated the pilocarpine-induced suppression of PI3K/Akt signaling. Additionally, tangeretin effectively regulated the levels of apoptosis-inducing factor (AIF) in mitochondria as well as the expressions of apoptotic pathway proteins. Seizure-induced elevations in the activities and expressions of matrix metalloproteinases (MMPs)-2 and -9 were also modulated. CONCLUSION The present results indicate that tangeretin exerted potent neuroprotective effects against pilocarpine-induced seizures via the activation of PI3K/Akt signaling and the regulation of MMPs.
Collapse
Affiliation(s)
- Xiao-Qian Guo
- Department of Neurology, Qilu Hospital, Shandong University, Jinan 250012, China; Department of Neurology, Jining First People's Hospital, Jining 272011, China
| | - Yu-Ling Cao
- Department of Neurology, Jining First People's Hospital, Jining 272011, China
| | - Fang Hao
- Department of Neurology, Liaocheng People's Hospital, Liaocheng 252000, China
| | - Zhong-Rui Yan
- Department of Neurology, Jining First People's Hospital, Jining 272011, China
| | - Mei-Ling Wang
- Department of Neurology, Affiliated Hospital of Binzhou Medical University, Binzhou 256603, China
| | - Xue-Wu Liu
- Department of Neurology, Qilu Hospital, Shandong University, Jinan 250012, China.
| |
Collapse
|
27
|
Rabold K, Netea MG, Adema GJ, Netea-Maier RT. Cellular metabolism of tumor-associated macrophages - functional impact and consequences. FEBS Lett 2017; 591:3022-3041. [PMID: 28771701 DOI: 10.1002/1873-3468.12771] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 07/28/2017] [Accepted: 07/28/2017] [Indexed: 12/20/2022]
Abstract
Macrophages are innate immune cells that play a role not only in host defense against infections, but also in the pathophysiology of autoimmune and autoinflammatory disorders, as well as cancer. An important feature of macrophages is their high plasticity, with high ability to adapt to environmental changes by adjusting their cellular metabolism and immunological phenotype. Macrophages are one of the most abundant innate immune cells within the tumor microenvironment that have been associated with tumor growth, metastasis, angiogenesis and poor prognosis. In the context of cancer, however, so far little is known about metabolic changes in macrophages, which have been shown to determine functional fate of the cells in other diseases. Here, we review the current knowledge regarding the cellular metabolism of tumor-associated macrophages (TAMs) and discuss its implications for cell function. Understanding the regulation of the cellular metabolism of TAMs may reveal novel therapeutic targets for treatment of malignancies.
Collapse
Affiliation(s)
- Katrin Rabold
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Germany
| | - Gosse J Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Romana T Netea-Maier
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Division of Endocrinology, Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
28
|
Ricciardi MR, Mirabilii S, Licchetta R, Piedimonte M, Tafuri A. Targeting the Akt, GSK-3, Bcl-2 axis in acute myeloid leukemia. Adv Biol Regul 2017; 65:36-58. [PMID: 28549531 DOI: 10.1016/j.jbior.2017.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
Over the last few decades, there has been significant progress in the understanding of the pathogenetic mechanisms of the Acute Myeloid Leukemia (AML). However, despite important advances in elucidating molecular mechanisms, the treatment of AML has not improved significantly, remaining anchored at the standard chemotherapy regimen "3 + 7", with the prognosis of patients remaining severe, especially for the elderly and for those not eligible for transplant procedures. The biological and clinical heterogeneity of AML represents the major obstacle that hinders the improvement of prognosis and the identification of new effective therapeutic approaches. To date, abundant information has been collected on the genetic and molecular alterations of AML carrying prognostic significance. However, not enough is known on how AML progenitors regulate proliferation and survival by redundant and cross-talking signal transduction pathways (STP). Furthermore, it remains unclear how such complicated network affects prognosis and therapeutic treatment options, although many of these molecular determinants are potentially attractive for their druggable characteristics. In this review, some of the key STP frequently deregulated in AML, such as PI3k/Akt/mTOR pathway, GSK3 and components of Bcl-2 family of proteins, are summarized, highlighting in addition their interplay. Based on this information, we reviewed new targeted therapeutic approaches, focusing on the aberrant networks that sustain the AML blast proliferation, survival and drug resistance, aiming to improve disease treatment. Finally, we reported the approaches aimed at disrupting key signaling cross-talk overcoming resistances based on the combination of different targeting therapeutic strategies.
Collapse
Affiliation(s)
- Maria Rosaria Ricciardi
- Hematology, "Sant'Andrea" Hospital-Sapienza, University of Rome, Department of Clinical and Molecular Medicine, Rome, Italy
| | - Simone Mirabilii
- Hematology, "Sant'Andrea" Hospital-Sapienza, University of Rome, Department of Clinical and Molecular Medicine, Rome, Italy.
| | - Roberto Licchetta
- Hematology, "Sant'Andrea" Hospital-Sapienza, University of Rome, Department of Clinical and Molecular Medicine, Rome, Italy
| | - Monica Piedimonte
- Hematology, "Sant'Andrea" Hospital-Sapienza, University of Rome, Department of Clinical and Molecular Medicine, Rome, Italy
| | - Agostino Tafuri
- Hematology, "Sant'Andrea" Hospital-Sapienza, University of Rome, Department of Clinical and Molecular Medicine, Rome, Italy
| |
Collapse
|
29
|
Choi HE, Shin JS, Leem DG, Kim SD, Cho WJ, Lee KT. 6-(3,4-Dihydro-1H-isoquinoline-2-yl)-N-(6-methoxypyridine-2-yl) nicotinamide-26 (DIMN-26) decreases cell proliferation by induction of apoptosis and downregulation of androgen receptor signaling in human prostate cancer cells. Chem Biol Interact 2016; 260:196-207. [DOI: 10.1016/j.cbi.2016.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 08/23/2016] [Accepted: 10/04/2016] [Indexed: 01/11/2023]
|
30
|
Li YL, Sun J, Hu X, Pan YN, Yan W, Li QY, Wang F, Lin NM, Zhang C. Epothilone B induces apoptosis and enhances apoptotic effects of ABT-737 on human cancer cells via PI3K/AKT/mTOR pathway. J Cancer Res Clin Oncol 2016; 142:2281-9. [PMID: 27591861 DOI: 10.1007/s00432-016-2236-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 08/30/2016] [Indexed: 11/25/2022]
Abstract
PURPOSE Epothilone B and its derivatives are tested in multiple clinical trials. Epothilone B induces neurotoxic effect in clinical trials; however, low-dose epothilone B regimen can promote neuroprotection and neurogenesis. Thus, the study of new combination chemotherapy regimen incorporating low-dose epothilone B with other chemotherapeutic agents might help to develop epothilone B-based approaches to cancer treatment and avoid the neurotoxicity of epothilone B. METHODS Cell proliferation was assessed by SRB cell viability assay. Apoptosis was analyzed by propidium iodide (PI) staining. Mitochondrial membrane depolarization was evaluated using JC-1 staining. The expression of proteins was detected by western blotting. RESULTS In this study, we demonstrated that the combination of ABT-737 and low-dose epothilone B showed synergistic anti-proliferation effects on human cancer cells. In addition, epothilone B + ABT-737 synergy was through mitochondria-mediated apoptosis pathway. Furthermore, combination treatment markedly induced the activation of caspase-3 and the cleavage of PARP. The activation of PI3K/Akt/mTOR pathway is associated with resistance to epothilone B. Our data showed that epothilone B plus ABT-737 resulted in a blockade of the PI3K/AKT/mTOR signaling pathway. CONCLUSIONS These data indicate that ABT-737 may be a pertinent sensitizer to epothilone B, and the strategy of combining epothilone B with ABT-737 appears to be an attractive option for overcoming the resistance and neurotoxicity of epothilone B.
Collapse
Affiliation(s)
- Yang-Ling Li
- Department of Clinical Pharmacology, Hangzhou First People's Hospital, Nanjing Medical University, No. 261 Huansha Road, Hangzhou, 310006, Zhejiang, China
| | - Jiao Sun
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Xiu Hu
- School of Medicine, Zhejiang University City College, No. 51 Huzhou Street, Hangzhou, 310015, Zhejiang, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi-Ni Pan
- School of Medicine, Zhejiang University City College, No. 51 Huzhou Street, Hangzhou, 310015, Zhejiang, China
| | - Wei Yan
- Department of Clinical Pharmacology, Hangzhou First People's Hospital, Nanjing Medical University, No. 261 Huansha Road, Hangzhou, 310006, Zhejiang, China
| | - Qing-Yu Li
- Department of Clinical Pharmacology, Hangzhou First People's Hospital, Nanjing Medical University, No. 261 Huansha Road, Hangzhou, 310006, Zhejiang, China
| | - Fei Wang
- Department of Clinical Pharmacology, Hangzhou First People's Hospital, Nanjing Medical University, No. 261 Huansha Road, Hangzhou, 310006, Zhejiang, China
| | - Neng-Ming Lin
- Department of Clinical Pharmacology, Hangzhou First People's Hospital, Nanjing Medical University, No. 261 Huansha Road, Hangzhou, 310006, Zhejiang, China.
- Hangzhou Translational Medicine Research Center, Hangzhou First People's Hospital, Nanjing Medical University, No. 261 Huansha Road, Hangzhou, 310006, Zhejiang, China.
| | - Chong Zhang
- School of Medicine, Zhejiang University City College, No. 51 Huzhou Street, Hangzhou, 310015, Zhejiang, China.
| |
Collapse
|
31
|
Yang B, Zhao Y, Lou C, Zhao H. Eupalinolide O, a novel sesquiterpene lactone from Eupatorium lindleyanum DC., induces cell cycle arrest and apoptosis in human MDA-MB-468 breast cancer cells. Oncol Rep 2016; 36:2807-2813. [DOI: 10.3892/or.2016.5115] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/17/2016] [Indexed: 11/05/2022] Open
|
32
|
CHEN FANGFANG, ZHAO QINFEI, WANG SHUXIA, WANG HAIYONG, LI XIAOJUN. Upregulation of Id3 inhibits cell proliferation and induces apoptosis in A549/DDP human lung cancer cells in vitro. Mol Med Rep 2016; 14:313-8. [DOI: 10.3892/mmr.2016.5221] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 03/23/2016] [Indexed: 11/06/2022] Open
|
33
|
Do prion protein gene polymorphisms induce apoptosis in non-mammals? J Biosci 2016; 41:97-107. [PMID: 26949092 DOI: 10.1007/s12038-015-9584-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Genetic variations such as single nucleotide polymorphisms (SNPs) in prion protein coding gene, Prnp, greatly affect susceptibility to prion diseases in mammals. Here, the coding region of Prnp was screened for polymorphisms in redeared turtle, Trachemys scripta. Four polymorphisms, L203V, N205I, V225A and M237V, were common in 15 out of 30 turtles; in one sample, three SNPs, L203V, N205I and M237V, and in the remaining 14 samples, only L203V and N205I polymorphisms, were investigated. Besides, C658T, C664T, C670A and C823A SNPs were silent mutations. To elucidate the relationship between the SNPs and apoptosis, TUNEL assays and active caspase-3 immunodetection techniques in brain sections of the polymorphic samples were performed. The results revealed that TUNEL-positive cells and active caspase-3-positive cells in the turtles with four polymorphisms were significantly increased compared with those of the turtles with two polymorphisms (P less than 0.01 and P less than 0.05, respectively). In conclusion, this study provides preliminary information about the possible relationship between SNPs within the Prnp locus and apoptosis in a non-mammalian species, Trachemys scripta, in which prion disease has never been reported.
Collapse
|
34
|
Liang D, Han D, Fan W, Zhang R, Qiao H, Fan M, Su T, Ma S, Li X, Chen J, Wang Y, Ren J, Cao F. Therapeutic efficacy of apelin on transplanted mesenchymal stem cells in hindlimb ischemic mice via regulation of autophagy. Sci Rep 2016; 6:21914. [PMID: 26902855 PMCID: PMC4763210 DOI: 10.1038/srep21914] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 02/02/2016] [Indexed: 01/15/2023] Open
Abstract
Mesenchymal stem cells (MSCs)-based therapy provides a promising avenue for the management of peripheral arterial disease (PAD). However, engrafted MSCs are subjected to acute cell death in the ischemic microenvironment. Apelin has been shown to protect bone marrow MSCs against apoptosis although the mechanism of action remains elusive. Here we demonstrated that apelin promoted functional survival of AD-MSCs in ischemic hindlimbs and provoked a synergetic effect with AD-MSCs to restore hindlimb blood perfusion and limb functions. Further in vitro studies revealed that a biphasic response in autophagy was induced by apelin in AD-MSCs during hypoxia and hypoxia/reoxygenation (H/R) stages to exert cytoprotective effects against H/R injury. Mechanistically, apelin increased the viability of AD-MSCs via promoting protective autophagy during hypoxia, which was accompanied with activation of AMPK and inhibition of mammalian target of rapamycin (mTOR). To the contrary, apelin suppressed autophagic cell death during reoxygenation, which was accompanied with activation of Akt and inhibition of Beclin1. Our findings indicated that apelin facilitated AD-MSCs-based therapy in PAD, possibly through promoting survival of AD-MSCs by way of autophagy regulation. Our data support the promises of apelin as a novel strategy to improve MSC-based therapy for PAD, possibly through autophagy modulation in MSCs.
Collapse
Affiliation(s)
- Dong Liang
- Department of Cardiology, Chinese PLA General Hospital, Beijing, 100853, China.,Department of Cardiology, Armed Police Corps Hospital of Shaanxi, Xi'an, Shaanxi 710032, China
| | - Dong Han
- Department of Cardiology, Chinese PLA General Hospital, Beijing, 100853, China.,Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Weiwei Fan
- Department of Cardiology, Chinese PLA General Hospital, Beijing, 100853, China.,Department of Cardiology, the 175th Hospital of Chinese PLA, the Affiliated Southeast Hospital of Xiamen University, Zhangzhou, Fujian 363000, China
| | - Ran Zhang
- Department of Cardiology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Hongyu Qiao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Miaomiao Fan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Tao Su
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Sai Ma
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xiujuan Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jiangwei Chen
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yabin Wang
- Department of Cardiology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA
| | - Feng Cao
- Department of Cardiology, Chinese PLA General Hospital, Beijing, 100853, China.,Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
35
|
Lim W, Jeong W, Song G. Delphinidin suppresses proliferation and migration of human ovarian clear cell carcinoma cells through blocking AKT and ERK1/2 MAPK signaling pathways. Mol Cell Endocrinol 2016; 422:172-181. [PMID: 26704080 DOI: 10.1016/j.mce.2015.12.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 11/19/2015] [Accepted: 12/14/2015] [Indexed: 11/30/2022]
Abstract
Delphinidin possesses the highest chemopreventive activity among the six components of anthocyanidin that are pigments from fruits and vegetables giving them blue, purple or red colors. Although delphinidin has anti-carcinogenic and apoptotic effects in various cancers, little is known about its functional roles in ovarian clear cell carcinoma (CCC) which shows poor prognosis with resistance to chemotherapy as compared with other subtypes of epithelial ovarian cancers (EOC). Results of present study revealed that cell survival rates of ES2 cells from ovarian CCC treated with delphinidin decreased in a dose-dependent manner. Also, delphinidin inhibited migration and induced apoptosis of ES2 cells. To investigate the molecular mechanisms responsible for biological effects of delphinidin, we analyzed the phosphorylation status of carcinogenic protein kinases related to development of CCC in a dose- and time-dependent manner. Phosphorylation of downstream targets of PI3K (AKT and p70S6K) and MAPKs (ERK1/2 and JNK) signaling was suppressed by treatment of ES2 cells with delphinidin. In addition, pharmacological inhibitors of PI3K/AKT and ERK1/2 MAPK pathway improved the anti-proliferative action of delphinidin on ES2 cells. Moreover, we compared the cancer preventive effects of delphinidin with traditional cisplatin- and paclitaxel-based chemotherapy on cell viability of ES2 cells. Results showed that delphinidin is as effective in its therapeutic activity against ES2 cells as cisplatin and placlitaxel. Collectively, these results indicated that delphinidin plays a critical role as a new chemotherapeutic agent to prevent development and progression of ES2 cells in CCC via inactivation of PI3K/AKT and ERK1/2 MAPK signal transduction cascades.
Collapse
Affiliation(s)
- Whasun Lim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | - Wooyoung Jeong
- Department of Animal Resources Science, Dankook University, Cheonan 330-714, Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea.
| |
Collapse
|
36
|
Abstract
Poor neurological outcome remains a major problem in patients with cardiac arrest. Ghrelin has been shown to be neuroprotective in models of neurologic injury in vitro and in vivo. This study was performed to assess the effects of ghrelin on postresuscitation brain injury in a rat model of cardiac arrest. Sprague-Dawley rats were subjected to 6-min cardiac arrest and resuscitated successfully. Either vehicle (saline) or ghrelin (80 μg/kg) was injected blindly immediately after return of spontaneous circulation (ROSC). A tape removal test was performed to evaluate neurological function at 24, 48, and 72 h after ROSC. Then, brain tissues were harvested and coronal brain sections were analyzed by hematoxylin and eosin (HE) staining for neuronal viability and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining for apoptosis in hippocampal CA1 sectors. In additional groups, rats were sacrificed at 6 h after ROSC, and hippocampal tissues were collected for further analysis. We found that animals treated with ghrelin had improved neurological performances, reduced neuronal injury, and inhibited neuronal apoptosis compared with the vehicle group. Moreover, ghrelin treatment was associated with the following: (1) a decrease in caspase-3 up-regulation and an increased Bcl-2/Bax ratio, (2) a reduction in maleic dialdehyde content and an up-regulation in superoxide dismutase activity, and (3) an increase in uncoupling protein 2 (UCP-2) expression. Our results suggest that ghrelin treatment attenuated postresuscitation brain injury in rats, possibly via regulation of apoptosis, oxidative stress, and mitochondrial UCP-2 expression. Ghrelin may have therapeutic potential when administered after cardiac arrest and cardiopulmonary resuscitation.
Collapse
|
37
|
Resveratrol chemosensitizes HER-2-overexpressing breast cancer cells to docetaxel chemoresistance by inhibiting docetaxel-mediated activation of HER-2-Akt axis. Cell Death Discov 2015; 1:15061. [PMID: 27551486 PMCID: PMC4979566 DOI: 10.1038/cddiscovery.2015.61] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/16/2015] [Indexed: 12/13/2022] Open
Abstract
As breast cancer cells often develop chemoresistance, better therapeutic options are in search to circumvent it. Here we demonstrate that human epidermal growth factor receptor-2 (HER-2)-overexpressing breast cancer cells resist docetaxel-induced cytotoxicity by upregulating HER-2 and its activity downstream, through Akt and mitogen-activated protein kinase (MAPK) pathways. We observed that introducing resveratrol as a chemosensitizer in docetaxel chemotherapy blocks upregulation and activation of HER-2 in addition to blocking downstream signaling pathways such as Akt. Resveratrol and docetaxel combination results in the synergistic induction of cell death in HER-2-overexpressing SK-BR-3 cells, whereas introduction of wild-type HER-2 in MDA-MD-231 cells increased the resistance to docetaxel. Dominant-negative HER-2 sensitizes SK-BR-3 cells to docetaxel. Our study identified a new synergistic therapeutic combination that targets HER-2-induced breast cancer resistance and might help to overcome therapeutic resistance during breast cancer therapy. The synergism of docetaxel and resveratrol was maximum in SK-BR-3, which is unique among the cell lines studied, due to its high expression status of HER-2, a receptor known to dictate the signaling environment of breast cancer cells. Docetaxel could further induce HER-2 activity in these cells, which was downregulated on resveratrol treatment. Transfection of DN-HER-2 in SK-BR-3 cells inhibits the synergism as the transfection itself sensitizes these cells to docetaxel, leaving no role for resveratrol, whereas ectopic expression of HER-2 introduces the synergism in MDA-MB-231, the triple-negative cell line, in which the synergism was minimum, attesting the crucial role of HER-2 in suppressing the sensitivity to docetaxel. Single-agent docetaxel induced HER-2-mediated resistance to cell death, which was blocked by resveratrol. Resveratrol also downregulated docetaxel-induced activation of MAPK and Akt, survival signaling pathways downstream of HER-2. In short, this study, for the first time, establishes the role of HER-2–Akt signaling axis in regulating the synergistic effect of docetaxel and resveratrol in breast cancer cells overexpressing HER-2.
Collapse
|
38
|
Shor B, Kahler J, Dougher M, Xu J, Mack M, Rosfjord E, Wang F, Melamud E, Sapra P. Enhanced Antitumor Activity of an Anti-5T4 Antibody-Drug Conjugate in Combination with PI3K/mTOR inhibitors or Taxanes. Clin Cancer Res 2015; 22:383-94. [PMID: 26319086 DOI: 10.1158/1078-0432.ccr-15-1166] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/13/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Targeted treatment of solid or liquid tumors with antibody-drug conjugates (ADCs) can lead to promising clinical benefit. The aim of the study is to investigate combination regimens of auristatin-based ADCs in preclinical models of cancer. EXPERIMENTAL DESIGN An auristatin-based anti-5T4 antibody conjugate (5T4-ADC) and auristatin payloads were combined with the dual PI3K/mTOR catalytic site inhibitor PF-05212384 (PF-384) or taxanes in a panel of tumor cell lines. Drug interactions in vitro were evaluated using cell viability assays, apoptosis induction, immunofluorescence, mitotic index, and immunoblotting. Breast cancer cells treated with auristatin analogue or 5T4-ADC were profiled by total- and phospho-proteomics. Antitumor efficacy of selected combinations was evaluated in 5T4-positive human breast or lung tumor xenografts in vivo. RESULTS In vitro, auristatin-based agents displayed strong synergistic or additive activity when combined with PF-384 or taxanes, respectively. Further, treatment of 5T4-ADC plus PF-384 resulted in stronger induction of apoptosis and cell line-specific attenuation of pAKT and pGSK. Interestingly, proteomic analysis revealed unique effects of auristatins on multiple components of mRNA translation. Addition of PF-384 further amplified effects of 5T4-ADC on translational components, providing a potential mechanism of synergy between these drugs. In human tumor xenografts, dual targeting with 5T4-ADC/PF-384 or 5T4-ADC/paclitaxel produced substantially greater antitumor effects with longer average survival as compared with monotherapy treatments. CONCLUSIONS Our results provide a biologic rationale for combining 5T4-ADC with either PI3K/mTOR pathway inhibitors or taxanes and suggest that mechanisms underlying the synergy may be attributed to cellular effects of the auristatin payload.
Collapse
Affiliation(s)
- Boris Shor
- Oncology Research Unit, Pfizer Worldwide Research and Development, Pearl River, New York
| | - Jennifer Kahler
- Oncology Research Unit, Pfizer Worldwide Research and Development, Pearl River, New York
| | - Maureen Dougher
- Oncology Research Unit, Pfizer Worldwide Research and Development, Pearl River, New York
| | - Jane Xu
- Oncology Research Unit, Pfizer Worldwide Research and Development, Pearl River, New York
| | - Michelle Mack
- Oncology Research Unit, Pfizer Worldwide Research and Development, Pearl River, New York
| | - Ed Rosfjord
- Oncology Research Unit, Pfizer Worldwide Research and Development, Pearl River, New York
| | - Fang Wang
- Oncology Research Unit, Pfizer Worldwide Research and Development, Pearl River, New York
| | - Eugene Melamud
- Oncology Research Unit, Pfizer Worldwide Research and Development, Pearl River, New York
| | - Puja Sapra
- Oncology Research Unit, Pfizer Worldwide Research and Development, Pearl River, New York.
| |
Collapse
|
39
|
Raha S, Yumnam S, Hong GE, Lee HJ, Saralamma VVG, Park HS, Heo JD, Lee SJ, Kim EH, Kim JA, Kim GS. Naringin induces autophagy-mediated growth inhibition by downregulating the PI3K/Akt/mTOR cascade via activation of MAPK pathways in AGS cancer cells. Int J Oncol 2015. [PMID: 26201693 DOI: 10.3892/ijo.2015.3095] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Naringin, one of the major bioflavonoid of Citrus, has been demonstrated as potential anticancer agent. However, the underlying anticancer mechanism still needs to be explored further. This study investigated the inhibitory effect of Naringin on human AGS cancer cells. AGS cell proliferation was inhibited by Naringin in a dose- and time-dependent manner. Naringin did not induce apoptotic cell death, determined by no DNA fragmentation and the reduced Bax/Bcl-xL ratio. Growth inhibitory role of Naringin was observed by western blot analysis demonstrating downregulation of PI3K/Akt/mTOR cascade with an upregulated p21CIPI/WAFI. Formation of cytoplasmic vacuoles and autophagosomes were observed in Naringin-treated AGS cells, further confirmed by the activation of autophagic proteins Beclin 1 and LC3B with a significant phosphorylation of mitogen activated protein kinases (MAPKs). Collectively, our observed results determined that anti-proliferative activity of Naringin in AGS cancer cells is due to suppression of PI3K/Akt/mTOR cascade via induction of autophagy with activated MAPKs. Thus, the present finding suggests that Naringin induced autophagy- mediated growth inhibition shows potential as an alternative therapeutic agent for human gastric carcinoma.
Collapse
Affiliation(s)
- Suchismita Raha
- Research Institute of Life Science and College of Veterinary Medicine (BK21 plus project), Gyeongsang National University, Gazwa, Jinju 660-701, Republic of Korea
| | - Silvia Yumnam
- Research Institute of Life Science and College of Veterinary Medicine (BK21 plus project), Gyeongsang National University, Gazwa, Jinju 660-701, Republic of Korea
| | - Gyeong Eun Hong
- Research Institute of Life Science and College of Veterinary Medicine (BK21 plus project), Gyeongsang National University, Gazwa, Jinju 660-701, Republic of Korea
| | - Ho Jeong Lee
- Research Institute of Life Science and College of Veterinary Medicine (BK21 plus project), Gyeongsang National University, Gazwa, Jinju 660-701, Republic of Korea
| | - Venu Venkatarame Gowda Saralamma
- Research Institute of Life Science and College of Veterinary Medicine (BK21 plus project), Gyeongsang National University, Gazwa, Jinju 660-701, Republic of Korea
| | - Hyeon-Soo Park
- Research Institute of Life Science and College of Veterinary Medicine (BK21 plus project), Gyeongsang National University, Gazwa, Jinju 660-701, Republic of Korea
| | - Jeong Doo Heo
- Gyeongnam Department of Environmental Toxicology and Chemistry, Toxicology Screening Research Center, Korea Institute of Toxicology, Jinju 666-844, Republic of Korea
| | - Sang Joon Lee
- Gyeongnam Department of Environmental Toxicology and Chemistry, Toxicology Screening Research Center, Korea Institute of Toxicology, Jinju 666-844, Republic of Korea
| | - Eun Hee Kim
- Department of Nursing Science, International University of Korea, Moonsan, Jinju 660-759, Republic of Korea
| | - Jin-A Kim
- Department of Physical Therapy, International University of Korea, Moonsan, Jinju 660-759, Republic of Korea
| | - Gon Sup Kim
- Research Institute of Life Science and College of Veterinary Medicine (BK21 plus project), Gyeongsang National University, Gazwa, Jinju 660-701, Republic of Korea
| |
Collapse
|
40
|
Petrulea MS, Plantinga TS, Smit JW, Georgescu CE, Netea-Maier RT. PI3K/Akt/mTOR: A promising therapeutic target for non-medullary thyroid carcinoma. Cancer Treat Rev 2015; 41:707-13. [PMID: 26138515 DOI: 10.1016/j.ctrv.2015.06.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/15/2015] [Accepted: 06/21/2015] [Indexed: 10/23/2022]
Abstract
Thyroid carcinoma (TC) is the most common endocrine malignancy. The pathogenesis of TC is complex and involves multiple genetic events that lead to activation of oncogenic pathways such as the MAP kinase (MAPK) pathway and the PI3K/Akt/mTOR pathway. The PI3K/Akt pathway has emerged as an important player in the pathogenesis of TC, particularly in follicular and advanced anaplastic or poorly differentiated TC. Because these patients have a poor prognosis, particularly when their tumors become resistant to the conventional treatment with radioactive iodine, efforts have been made to identify possible targets for therapy within these pathways. Orally available drugs targeting the PI3K/Akt/mTOR pathway are being used with success in treatment of several types of malignant tumors. There is an increasing amount of preclinical and clinical data supporting that this pathway may represent a promising target for systemic therapy in TC. The present review focuses on the most recent developments on the role of the PI3K/Akt pathway in the pathogenesis of non-medullary TC and will provide insight into how this pathway can be targeted either alone or in the context of multimodal therapeutic strategies for treatment of advanced TC.
Collapse
Affiliation(s)
- Mirela S Petrulea
- Department of Endocrinology, University of Medicine and Pharmacy Cluj-Napoca Iuliu Hatieganu, 3-5 Louis Pasteur, 400349 Cluj-Napoca, Romania
| | - Theo S Plantinga
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, The Netherlands; Division of Endocrinology, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, The Netherlands
| | - Jan W Smit
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, The Netherlands; Division of Endocrinology, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, The Netherlands
| | - Carmen E Georgescu
- Department of Endocrinology, University of Medicine and Pharmacy Cluj-Napoca Iuliu Hatieganu, 3-5 Louis Pasteur, 400349 Cluj-Napoca, Romania
| | - Romana T Netea-Maier
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, The Netherlands; Division of Endocrinology, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, The Netherlands..
| |
Collapse
|
41
|
Che XH, Chen YC, Chen CL, Ye XL, Zhu H. Non-hormonal targets underlying endometriosis: A focus on molecular mechanisms. Mol Reprod Dev 2015; 82:410-31. [PMID: 25982890 DOI: 10.1002/mrd.22493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/14/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Xiao-hang Che
- Division of Drugs and Pharmacology; Ningbo Institute of Medical Sciences; Ningbo China
- College of Chemistry and Bio-engineering; Yichun University; Yichun China
- Cancer Institute; Yinzhou People's Hospital; Ningbo China
| | - Yi-chen Chen
- Division of Drugs and Pharmacology; Ningbo Institute of Medical Sciences; Ningbo China
| | - Chun-lin Chen
- College of Chemistry and Bio-engineering; Yichun University; Yichun China
| | - Xiao-lei Ye
- Division of Drugs and Pharmacology; Ningbo Institute of Medical Sciences; Ningbo China
- Cancer Institute; Yinzhou People's Hospital; Ningbo China
| | - Hong Zhu
- Division of Obstetrics and Gynecology; Affiliated Hospital of Ningbo University School of Medicine; Ningbo China
| |
Collapse
|
42
|
Correia C, Lee SH, Meng XW, Vincelette ND, Knorr KLB, Ding H, Nowakowski GS, Dai H, Kaufmann SH. Emerging understanding of Bcl-2 biology: Implications for neoplastic progression and treatment. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1658-71. [PMID: 25827952 DOI: 10.1016/j.bbamcr.2015.03.012] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/20/2015] [Accepted: 03/22/2015] [Indexed: 02/07/2023]
Abstract
Bcl-2, the founding member of a family of apoptotic regulators, was initially identified as the protein product of a gene that is translocated and overexpressed in greater than 85% of follicular lymphomas (FLs). Thirty years later we now understand that anti-apoptotic Bcl-2 family members modulate the intrinsic apoptotic pathway by binding and neutralizing the mitochondrial permeabilizers Bax and Bak as well as a variety of pro-apoptotic proteins, including the cellular stress sensors Bim, Bid, Puma, Bad, Bmf and Noxa. Despite extensive investigation of all of these proteins, important questions remain. For example, how Bax and Bak breach the outer mitochondrial membrane remains poorly understood. Likewise, how the functions of anti-apoptotic Bcl-2 family members such as eponymous Bcl-2 are affected by phosphorylation or cancer-associated mutations has been incompletely defined. Finally, whether Bcl-2 family members can be successfully targeted for therapeutic advantage is only now being investigated in the clinic. Here we review recent advances in understanding Bcl-2 family biology and biochemistry that begin to address these questions.
Collapse
Affiliation(s)
- Cristina Correia
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Sun-Hee Lee
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - X Wei Meng
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Nicole D Vincelette
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Katherine L B Knorr
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Husheng Ding
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Grzegorz S Nowakowski
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Haiming Dai
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.
| | - Scott H Kaufmann
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA; Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
43
|
Askvig JM, Watt JA. The MAPK and PI3K pathways mediate CNTF-induced neuronal survival and process outgrowth in hypothalamic organotypic cultures. J Cell Commun Signal 2015; 9:217-31. [PMID: 25698661 PMCID: PMC4580676 DOI: 10.1007/s12079-015-0268-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/05/2015] [Indexed: 11/26/2022] Open
Abstract
While collateral sprouting has been shown to occur in a variety of neuronal populations, the factor or factors responsible for mediating the sprouting response remain largely un-defined. There is evidence indicating that ciliary neurotrophic factor (CNTF) may play an important role in promoting neuronal survival and process outgrowth in neuronal phenotypes tested to date. We previously demonstrated that the astrocytic Jak-STAT pathway is necessary to mediate CNTF-induced oxytocinergic (OT) neuronal survival; however, the mechanism (s) of CNTF-mediated process outgrowth remain unknown. Our working hypothesis is that CNTF mediates differential neuroprotective responses via different intracellular signal transduction pathways. In order to test this hypothesis, we utilized stationary hypothalamic organotypic cultures to assess the contribution of the MAPK-ERK and PI3-AKT pathways to OT neuron survival and process outgrowth. Our results demonstrate that the MAPK-ERK½ pathway mediates CNTF-induced neuronal survival. Moreover, we show that inhibition of the p38-, JNK-MAPK, and mTOR pathways prevents loss OT neurons following axotomy. We also provide quantitative evidence indicating that CNTF promotes process outgrowth of OT neurons via the PI3K-AKT pathway. Together, these data indicate that distinct intracellular signaling pathways mediate diverse neuroprotective processes in response to CNTF.
Collapse
Affiliation(s)
- Jason M Askvig
- Department of Biology, Concordia College, Moorhead, MN, 56562, USA.
| | - John A Watt
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Room 1701 Stop 9037, 501 N Columbia Road, Grand Forks, ND, 58203, USA.
| |
Collapse
|
44
|
Rana C, Piplani H, Vaish V, Nehru B, Sanyal SN. Downregulation of PI3-K/Akt/PTEN pathway and activation of mitochondrial intrinsic apoptosis by Diclofenac and Curcumin in colon cancer. Mol Cell Biochem 2015; 402:225-41. [PMID: 25644785 DOI: 10.1007/s11010-015-2330-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/16/2015] [Indexed: 02/07/2023]
Abstract
Phosphatidylinositol 3-kinase (PI3-K)/PTEN/Akt signaling is over activated in various tumors including colon cancer. Activation of this pathway regulates multiple biological processes such as apoptosis, metabolism, cell proliferation, and cell growth that underlie the biology of a cancer cell. In the present study, the chemopreventive effects have been observed of Diclofenac, a preferential COX-2 inhibitory non-steroidal anti-inflammatory drugs, and Curcumin, a natural anti-inflammatory agent, in the early stage of colorectal carcinogenesis induced by 1,2-dimethylhydrazine dihydrochloride in rats. The tumor-promoting role of PI3-K/Akt/PTEN signal transduction pathway and its association with anti-apoptotic family of proteins are also observed. Both Diclofenac and Curcumin downregulated the PI3-K and Akt expression while promoting the apoptotic mechanism. Diclofenac and Curcumin administration significantly increased the expression of pro-apoptotic Bcl-2 family members (Bad and Bax) while decreasing the anti-apoptotic Bcl-2 protein. An up-regulation of cysteine protease family apoptosis executioner, such as caspase-3 and -9, is seen. Diclofenac and Curcumin inhibited the Bcl-2 protein by directly interacting at the active site by multiple hydrogen bonding, as also evident by negative glide score of Bcl-2. These drugs stimulated apoptosis by increasing reactive oxygen species (ROS) generation and simultaneously decreasing the mitochondrial membrane potential (ΔΨ M). Diclofenac and Curcumin showed anti-neoplastic effects by downregulating PI3-K/Akt/PTEN pathway, inducing apoptosis, increasing ROS generation, and decreasing ΔΨ M. The anti-neoplastic and apoptotic effects were found enhanced when both Diclofenac and Curcumin were administered together, rather than individually.
Collapse
Affiliation(s)
- Chandan Rana
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | | | | | | | | |
Collapse
|
45
|
Human adipose derived stem cells induced cell apoptosis and s phase arrest in bladder tumor. Stem Cells Int 2015; 2015:619290. [PMID: 25691904 PMCID: PMC4322296 DOI: 10.1155/2015/619290] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/24/2014] [Accepted: 01/07/2015] [Indexed: 12/26/2022] Open
Abstract
The aim of this study was to determine the effect of human adipose derived stem cells (ADSCs) on the viability and apoptosis of human bladder cancer cells. EJ and T24 cells were cocultured with ADSCs or cultured with conditioned medium of ADSCs (ADSC-CM), respectively. The cell counting and colony formation assay showed ADSCs inhibited the proliferation of EJ and T24 cells. Cell viability assessment revealed that the secretions of ADSCs, in the form of conditioned medium, were able to decrease cancer cell viability. Wound-healing assay suggested ADSC-CM suppressed migration of T24 and EJ cells. Moreover, the results of the flow cytometry indicated that ADSC-CM was capable of inducing apoptosis of T24 cells and inducing S phase cell cycle arrest. Western blot revealed ADSC-CM increased the expression of cleaved caspase-3 and cleaved PARP, indicating that ADSC-CM induced apoptosis in a caspase-dependent way. PTEN/PI3K/Akt pathway and Bcl-2 family proteins were involved in the mechanism of this reaction. Our study indicated that ADSCs may provide a promising and practicable manner for bladder tumor therapy.
Collapse
|
46
|
Calastretti A, Gatti G, Quaresmini C, Bevilacqua A. Down-modulation of Bcl-2 sensitizes PTEN-mutated prostate cancer cells to starvation and taxanes. Prostate 2014; 74:1411-22. [PMID: 25111376 DOI: 10.1002/pros.22857] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/17/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND The critical role of PTEN in regulating the PI3K/Akt/mTOR signaling pathway raises the possibility that targeting downstream effectors of the PI3K pathway, such as Bcl-2, might be an effective anti-proliferative strategy for PTEN-deficient prostate cancer cells. METHODS Four prostate cancer cell lines (LNCaP, PC3, DU145, 22Rv1) were assayed for their levels of total Akt and Ser473 phosphorylated Akt (p-Akt) by Western Blotting; their growth rates and sensitivity to different doses of paclitaxel were determined by cell counts after Trypan Blue dye exclusion assay. Cells were subjected to different combinations of starvation (growth factors and/or aminoacids withdrawal), paclitaxel treatment and Bcl-2 silencing by siRNA. Cell viability was evaluated by Trypan Blue dye exclusion assay, Propidium Iodide (PI) and Annexin-V/PI staining. RESULTS We assessed the sensitivity of different prostate cancer cell lines to starvation and we observed a differential response correlated to the levels of Akt activation. The four prostate cancer cell lines also showed different sensitivity to taxol treatments; LNCaP and 22Rv1 cells were more resistant to paclitaxel than DU145 and PC3 cells. Combining taxol with growth factors and aminoacids deprivation leaded to a more than additive reduction of cell viability compared to single treatments in PTEN-mutant LNCaP cells. Down-modulation of anti-apoptotic Bcl-2 protein by siRNA sensitized LNCaP cells to taxanes and starvation induced cell death. CONCLUSIONS Silencing Bcl-2 in PTEN-mutated prostate cancer cells enhances the apoptotic effects of combined starvation and taxol treatments, indicating that inhibition of Bcl-2 may be of significant value in PTEN-mutant tumor therapy.
Collapse
Affiliation(s)
- Angela Calastretti
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | | | | | | |
Collapse
|
47
|
Mitochondrial ROS and involvement of Bcl-2 as a mitochondrial ROS regulator. Mitochondrion 2014; 19 Pt A:39-48. [PMID: 24954615 DOI: 10.1016/j.mito.2014.06.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/06/2014] [Accepted: 06/12/2014] [Indexed: 12/22/2022]
Abstract
Mitochondria are the major intracellular source of reactive oxygen species (ROS). While excessive mitochondrial ROS (mitoROS) production induces cell injury and death, there is accumulating evidence that non-toxic low levels of mitoROS could serve as important signaling molecules. Therefore, maintenance of mitoROS at physiological levels is crucial for cell homeostasis as well as for survival and proliferation. This review describes the various mechanisms that keep mitoROS in check, with particular focus on the role of the onco-protein Bcl-2 in redox regulation. In addition to its canonical anti-apoptotic activity, Bcl-2 has been implicated in mitoROS regulation by its effect on mitochondrial complex IV activity, facilitating the mitochondrial incorporation of GSH and interaction with the small GTPase-Rac1 at the mitochondria. We also discuss some of the plausible mechanism(s) which allows Bcl-2 to sense and respond to the fluctuations in mitoROS.
Collapse
|
48
|
Kim HS, Kim TJ, Yoo YM. Melatonin combined with endoplasmic reticulum stress induces cell death via the PI3K/Akt/mTOR pathway in B16F10 melanoma cells. PLoS One 2014; 9:e92627. [PMID: 24647338 PMCID: PMC3960269 DOI: 10.1371/journal.pone.0092627] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/24/2014] [Indexed: 02/07/2023] Open
Abstract
This study investigated B16F10 melanoma cell death induced by melatonin combined with endoplasmic reticulum (ER) stress through the PI3K/Akt/mTOR pathway. Cell viability was significantly decreased after treatment with melatonin combined with ER stress from thapsigargin or tunicamycin compared to no treatment or treatment with melatonin only. Combined melatonin and ER stress also significantly reduced expression of p85β, p-Akt (Ser473, Thr308), and p-mTOR (Ser2448, Ser2481) compared to treatment with melatonin only. The ER stress protein p-PERK and p-eIF2α were significantly increased under combined melatonin and ER stress treatment compared to no treatment or treatment with melatonin only. Combined melatonin and ER stress significantly reduced Bcl-2 protein and augmented Bax protein compared to melatonin-only treatment. Also, the combined treatment significantly lowered expression of catalase, Cu/Zn-SOD, and Mn-SOD proteins compared to melatonin only. Expression of p85β was significantly more decreased under treatment with melatonin and thapsigargin or tunicamycin plus the PI3K inhibitors LY294002 or wortmannin than under treatment with only melatonin or a PI3K inhibitor. The PI3K downstream target p-Akt (Ser473, Thr308) showed significantly decreased expression under treatment with melatonin and thapsigargin or tunicamycin plus PI3K inhibitors than under treatment with melatonin or PI3K inhibitors only. These results indicate that survival of B16F10 melanoma cells after combined treatment with melatonin and ER stress inducers is suppressed through regulation of the PI3K/Akt/mTOR pathway. Melatonin combined with thapsigargin or tunicamycin appears to be a promising strategy for effective melanoma treatment.
Collapse
Affiliation(s)
- Han Sung Kim
- Department of Biomedical Engineering, College of Health Science, Yonsei University, Wonju, Gangwon-do, Republic of Korea
| | - Tack-Joong Kim
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Wonju, Gangwon-do, Republic of Korea
| | - Yeong-Min Yoo
- Department of Biomedical Engineering, College of Health Science, Yonsei University, Wonju, Gangwon-do, Republic of Korea
- * E-mail:
| |
Collapse
|
49
|
High-frequency stimulation of the hippocampus protects against seizure activity and hippocampal neuronal apoptosis induced by kainic acid administration in macaques. Neuroscience 2013; 256:370-8. [PMID: 24200923 DOI: 10.1016/j.neuroscience.2013.10.059] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 09/18/2013] [Accepted: 10/24/2013] [Indexed: 12/14/2022]
Abstract
Kainic acid (KA) administration is known to cause seizures and neuronal death in the hippocampus. High-frequency stimulation (HFS) of the hippocampus can be a promising method in the treatment of epilepsy while the mechanism of action is unknown yet. It remains unknown whether HFS is neuroprotective for hippocampal neurons following KA-induced seizures in macaques, although HFS has neuroprotective effects in animal models of Parkinson's disease. We therefore examined the effects of HFS on KA-induced seizures and neuronal survival in macaque's hippocampus. Seizure frequency following KA that led to seizures in macaques was strongly reduced by HFS of the hippocampus. In addition, administration of KA led to marked neuronal apoptosis in the hippocampus, accompanied by increased levels of Bax, activated caspase-3 and decreased levels of Bcl-2. HFS was found to attenuate changes in apoptosis-related proteins and robustly decreased neuronal loss following KA administration. These data indicate that hippocampal HFS can protect hippocampal neurons against KA neurotoxicity, and that HFS neuroprotection is likely to operate with inhibition of apoptosis.
Collapse
|
50
|
Xiao X, Cao W, Jiang X, Zhang W, Zhang Y, Liu B, Cheng J, Huang H, Huo J, Zhang X. Glaucocalyxin A, a negative Akt regulator, specifically induces apoptosis in human brain glioblastoma U87MG cells. Acta Biochim Biophys Sin (Shanghai) 2013; 45:946-52. [PMID: 24041957 DOI: 10.1093/abbs/gmt097] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Akt is becoming an attractive target in the development of anti-tumor agents. In the present study, we aimed to discover novel negative Akt regulators against malignant glioma. An Akt regulator screening platform performed in an Akt-GFP overexpression cell line was developed, and natural product library was screened and evaluated using this platform. In addition, the cytotoxic effect of the regulator was detected by MTT assay. Cell apoptosis was assayed by Hoechst 33342 staining and flow cytometry analysis. Afterwards, the apoptotic signaling pathway was investigated by western blot analysis. Glaucocalyxin A, isolated from Rabdosia japonica, was identified as a potent negative regulator of Akt. In human-derived malignant glioma U87MG cells, glaucocalyxin A inhibited Akt phosphorylation, suppressed proliferation, and promoted apoptosis in a dose-dependent manner, but not in normal glial cells. Furthermore, glaucocalyxin A activated caspase-3, decreased BAD phosphorylation, and reduced the expression of X-linked inhibitor of apoptosis protein. Taken together, these results indicated that glaucocalyxin A may become a promising candidate in the treatment of malignant glioma.
Collapse
Affiliation(s)
- Xian Xiao
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|