1
|
Kim H, Woo CG, Son SM, Lee YP, Kim HK, Yang Y, Kwon J, Lee KH, Lee HC, Lee OJ, Han HS. Targeted Suppression of CEACAM6 via pHLIP-Delivered RNAs in Pancreatic Ductal Adenocarcinoma. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:598. [PMID: 40282889 PMCID: PMC12028928 DOI: 10.3390/medicina61040598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025]
Abstract
Background and Objectives: Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) is involved in pancreatic cancer progression and is an attractive therapeutic target for pancreatic cancer. In this study, we evaluated the therapeutic efficacy of small-interfering RNA (siRNA) targeting CEACAM6 (siCEACAM6) and the CEACAM6-suppressive microRNA-29a (miR-29a) in a pancreatic ductal adenocarcinoma xenograft mouse model using pH-low insertion peptide (pHLIP) technology, which targets the acidic tumor microenvironment. Materials and Methods: The delivery vectors for siRNA and miRNA were constructed by conjugating the peptide nucleic acid forms of siCEACAM6 and miR-29a to a peptide with a pHLIP, enabling the transport of siRNA and miRNA across the plasma membrane. The tumor-suppressive effects of pHLIP-siCEACAM6 and pHLIP-miR-29a were assessed in vivo using a BALB/c xenograft mouse model with the injection of the CFPAC-1 human pancreatic ductal adenocarcinoma cell line. Results: The treatment of CFPAC-1 cells with pHLIP-siCEACAM6 and pHLIP-miR-29a under acidic pH conditions suppressed CEACAM6 expression and decreased cell viability. In a xenograft mouse model, the intravenous injection of pHLIP-siCEACAM6 and pHLIP-miR-29a suppressed tumor growth by up to 25.1% (p < 0.01) and 21.2% (p < 0.01), respectively, compared to the control mice treated with pHLIP-scr. Conclusions: Our results demonstrated the efficacy of the pHLIP-mediated delivery of siCEACAM6 and miR-29a as a promising therapeutic strategy in a pancreatic ductal adenocarcinoma xenograft mouse model. The pHLIP technology, which targets the acidic tumor microenvironment, represents an innovative approach to the delivery of small RNAs to pancreatic ductal adenocarcinoma cells, providing new potential strategies for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Hongsik Kim
- Department of Internal Medicine, Chungbuk National University Hospital, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (H.K.); (Y.-P.L.); (H.-K.K.); (Y.Y.); (J.K.); (K.-H.L.)
| | - Chang-Gok Woo
- Department of Pathology, Chungbuk National University Hospital, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (C.-G.W.); (S.-M.S.); (H.-C.L.); (O.-J.L.)
| | - Seung-Myoung Son
- Department of Pathology, Chungbuk National University Hospital, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (C.-G.W.); (S.-M.S.); (H.-C.L.); (O.-J.L.)
| | - Yong-Pyo Lee
- Department of Internal Medicine, Chungbuk National University Hospital, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (H.K.); (Y.-P.L.); (H.-K.K.); (Y.Y.); (J.K.); (K.-H.L.)
| | - Hee-Kyung Kim
- Department of Internal Medicine, Chungbuk National University Hospital, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (H.K.); (Y.-P.L.); (H.-K.K.); (Y.Y.); (J.K.); (K.-H.L.)
| | - Yaewon Yang
- Department of Internal Medicine, Chungbuk National University Hospital, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (H.K.); (Y.-P.L.); (H.-K.K.); (Y.Y.); (J.K.); (K.-H.L.)
| | - Jihyun Kwon
- Department of Internal Medicine, Chungbuk National University Hospital, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (H.K.); (Y.-P.L.); (H.-K.K.); (Y.Y.); (J.K.); (K.-H.L.)
| | - Ki-Hyeong Lee
- Department of Internal Medicine, Chungbuk National University Hospital, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (H.K.); (Y.-P.L.); (H.-K.K.); (Y.Y.); (J.K.); (K.-H.L.)
| | - Ho-Chang Lee
- Department of Pathology, Chungbuk National University Hospital, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (C.-G.W.); (S.-M.S.); (H.-C.L.); (O.-J.L.)
| | - Ok-Jun Lee
- Department of Pathology, Chungbuk National University Hospital, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (C.-G.W.); (S.-M.S.); (H.-C.L.); (O.-J.L.)
| | - Hye-Sook Han
- Department of Internal Medicine, Chungbuk National University Hospital, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (H.K.); (Y.-P.L.); (H.-K.K.); (Y.Y.); (J.K.); (K.-H.L.)
| |
Collapse
|
2
|
Zhao D, Cai F, Liu X, Li T, Zhao E, Wang X, Zheng Z. CEACAM6 expression and function in tumor biology: a comprehensive review. Discov Oncol 2024; 15:186. [PMID: 38796667 PMCID: PMC11127906 DOI: 10.1007/s12672-024-01053-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024] Open
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) is an immunoglobulin superfamily protein primarily expressed on epithelial surfaces and myeloid cells. It plays a significant role in cancer progression by inhibiting apoptosis, promoting drug resistance, and facilitating cancer cell invasion and metastasis. Overexpression of CEACAM6 has been observed in various cancers, including lung, breast, colorectal, and hepatocellular cancers, and is associated with poorer overall survival and disease-free survival. Its differential expression on tumor cell surfaces makes it a promising cancer marker. This review aims to provide a comprehensive summary of CEACAM6's role in different cancer types, its involvement in signaling pathways, and recent advancements in CEACAM6-targeted treatments.
Collapse
Affiliation(s)
- Dong Zhao
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| | - Fei Cai
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
- China Medical University, Shenyang, China
| | - Xuefei Liu
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| | - Tingting Li
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| | - Ershu Zhao
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| | - Xinlong Wang
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| | - Zhendong Zheng
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China.
| |
Collapse
|
3
|
Kim EY, Cha YJ, Jeong S, Chang YS. Overexpression of CEACAM6 activates Src-FAK signaling and inhibits anoikis, through homophilic interactions in lung adenocarcinomas. Transl Oncol 2022; 20:101402. [PMID: 35358791 PMCID: PMC8968058 DOI: 10.1016/j.tranon.2022.101402] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 03/17/2022] [Indexed: 11/29/2022] Open
Abstract
CEACAM6 is overexpressed in most lung adenocarcinomas. CEACAM6 is significantly expressed in lung cancer cells of non-smokers. Lung adenocarcinoma patients overexpressing CEACAM6 have shorter overall survival. Exogenous CEACAM5/6 interacts with cell membrane-bound CEACAM6 in lung cancers. CEACAM6 homophilic interactions inhibit anoikis through Src-FAK activation.
Among carcinoembryonic antigen-related cell adhesion molecule (CEACAM) family proteins, CEACAM6 has received less attention than CEACAM5 and its presence and role in lung cancer are largely unknown. The application of CellphoneDB on the single cell RNA sequencing dataset showed that the homophilic interactions among CEACAM6 molecules, which are overexpressed in lung cancer cells were highly significant. CEACAM6 was overexpressed in 80.1% of lung adenocarcinomas and its overexpression had a significant relationship with non-smoking history and activating EGFR mutations. The effect of CEACAM6 overexpression on patient prognosis was evaluated using TCGA-LUAD dataset; the CEACAM6 overexpression group showed a shorter overall survival than that of the control group when matched for stage, age, sex, and pack-years. Immunoblotting of cell culture soup and ELISA of human derived material suggested that the majority of CEACAM6 was present on the cancer cell surface and interacted with other cancer cells in the crowded tumor microenvironment. Treatment with CEACAM6 showed CEACAM6 homophilic interactions in the cell membrane and anoikis inhibition through the activation of the Src-FAK pathway. Inhibition of CEACAM6 or its homophilic interactions in the cancer cell membrane may provide another therapeutic strategy for lung cancer.
Collapse
|
4
|
Kurlinkus B, Ger M, Kaupinis A, Jasiunas E, Valius M, Sileikis A. CEACAM6's Role as a Chemoresistance and Prognostic Biomarker for Pancreatic Cancer: A Comparison of CEACAM6's Diagnostic and Prognostic Capabilities with Those of CA19-9 and CEA. Life (Basel) 2021; 11:life11060542. [PMID: 34207784 PMCID: PMC8226832 DOI: 10.3390/life11060542] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/28/2022] Open
Abstract
Survival rates from pancreatic cancer have remained stagnant for decades due to the heterogenic nature of the disease. This study aimed to find a new advanced biomarker and evaluate its clinical capabilities, thus enabling more individualised pancreatic cancer management. Between 2013 and 2020, 267 patients were included in the study. Surgically collected pancreatic tissue samples were analysed via high-definition mass spectrometry. Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) was discovered as a possible promising pancreatic cancer biomarker. The predominance of CEACAM6 to pancreatic cancer was validated using antibodies in tissue samples. CEACAM6, carbohydrate antigen 19-9 (CA19-9), and carcinoembryonic antigen (CEA) blood serum concentrations were evaluated for clinical evaluation and comparison. Kaplan-Meier survival analyses were used to evaluate disease-free survival (DFS) and overall survival (OS). Poorer overall survival was significantly dependent on increased CEACAM6 blood serum concentrations (17.0 vs. 12.6 months, p = 0.017) in pancreatic cancer patients after radical treatment and adjuvant chemotherapy. Increased CEA and CA19-9 concentrations showed no significant dependencies with survival. Thus, CEACAM6 is a promising new biomarker with significant prognostic value and prediction of chemoresistance properties, enabling the improvement of individualised approaches to patients with pancreatic cancer.
Collapse
Affiliation(s)
- Benediktas Kurlinkus
- Clinic of Gastroenterology, Nephrourology and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania;
- Correspondence: ; Tel.: +370-67437295
| | - Marija Ger
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, LT-10257 Vilnius, Lithuania; (M.G.); (A.K.); (M.V.)
| | - Algirdas Kaupinis
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, LT-10257 Vilnius, Lithuania; (M.G.); (A.K.); (M.V.)
| | - Eugenijus Jasiunas
- Centre of Informatics and Development, Vilnius University Hospital Santaros Klinikos, LT-08661 Vilnius, Lithuania;
| | - Mindaugas Valius
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, LT-10257 Vilnius, Lithuania; (M.G.); (A.K.); (M.V.)
| | - Audrius Sileikis
- Clinic of Gastroenterology, Nephrourology and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania;
| |
Collapse
|
5
|
Iwabuchi E, Miki Y, Kanai A, Miyashita M, Kijima G, Hirakawa H, Suzuki T, Ishida T, Sasano H. The interaction between carcinoembryonic antigen-related cell adhesion molecule 6 and human epidermal growth factor receptor 2 is associated with therapeutic efficacy of trastuzumab in breast cancer. J Pathol 2018; 246:379-389. [PMID: 30058236 DOI: 10.1002/path.5148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/10/2018] [Accepted: 07/26/2018] [Indexed: 12/12/2022]
Abstract
Human epidermal growth factor receptor 2 (HER2) is a target of the HER2 inhibitor trastuzumab, which has been administered to HER2-positive breast cancer patients. However, the therapeutic effects of HER2 inhibitor monotherapy are not always clinically effective as compared with cotreatment with chemotherapy. Therefore, it has become pivotal to predict the therapeutic efficacy of trastuzumab monotherapy prior to administration. Recently, carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) has been reported to be a HER2-related factor. The aim of the present study was to explore the therapeutic mechanism of trastuzumab, including the relevance of CEACAM6 expression. CEACAM6/HER2-double-positive human breast carcinoma cell lines BT-474, HCC-1419 and MDA-MB-361 were used in this study. CEACAM6 knockdown decreased the inhibitory effects of trastuzumab in the trastuzumab-sensitive BT-474 and HCC-1419 cells, but not in the trastuzumab-resistant MDA-MB-361 cells. We examined the interaction between CEACAM6 and HER2 by using a proximity ligation assay (PLA). The interaction was detected in BT-474 and HCC-1419 cells, but not in MDA-MB-361 cells, and was significantly associated with in vitro trastuzumab therapeutic sensitivity. We further analysed the status of CEACAM6 and HER2 and their interaction in archival pathology specimens, also using PLA. The interaction was detected only in CEACAM6/HER2-double-positive breast cancer cases, and their PLA score was significantly associated with the efficacy of trastuzumab treatment. Therefore, evaluation of the CEACAM6-HER2 interaction could serve as a marker to predict the efficacy of trastuzumab monotherapy in breast cancer patients. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Erina Iwabuchi
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Miki
- Department of Disaster Obstetrics and Gynaecology, International Research Institute of Disaster Science (IRIDes), Tohoku University, Sendai, Japan
| | - Ayako Kanai
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Minoru Miyashita
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takanori Ishida
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
6
|
Ahn K, O YM, Ji YG, Cho HJ, Lee DH. Synergistic Anti-Cancer Effects of AKT and SRC Inhibition in Human Pancreatic Cancer Cells. Yonsei Med J 2018; 59:727-735. [PMID: 29978609 PMCID: PMC6037593 DOI: 10.3349/ymj.2018.59.6.727] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/27/2018] [Accepted: 06/07/2018] [Indexed: 01/01/2023] Open
Abstract
PURPOSE To investigate the effect of combined inhibition of protein kinase B (AKT) and SRC on the growth and metastatic potential of human pancreatic cancer cells. MATERIALS AND METHODS AKT and SRC were inhibited using 10-DEBC and PP2, respectively. The expression of their messenger RNAs were down-regulated by specific small interfering RNA (siRNA). Changes in pancreatic cancer cell growth and metastatic potential were determined using a cell viability assay and a xenotransplant model of pancreatic cancer, as well as cell migration and invasion assays. Signal proteins were analyzed by Western blot. RESULTS The inhibitors 10-DEBC and PP2 suppressed cell proliferation in a dose-dependent fashion in pancreatic cancer cell lines MIA PaCa-2 and PANC-1. The simultaneous inhibition of AKT and SRC at low concentrations resulted in a significant suppression of cell proliferation. Knockdown of AKT2 and SRC using siRNAs also significantly decreased cell proliferation. In a pancreatic cancer model, combined treatment with 10-DEBC and PP2 also significantly suppressed the growth of pancreatic cancer. Application of 10-DEBC with PP2 significantly reduced the metastatic potential of pancreatic cancer cells by inhibiting migration and invasion. The combined inhibition suppressed the phosphorylation of mTOR and ERK in pancreatic cancer cells. CONCLUSION Combined targeting of AKT and SRC resulted in a synergistic efficacy against human pancreatic cancer growth and metastasis.
Collapse
Affiliation(s)
- Kang Ahn
- Department of Physiology, School of Medicine, CHA University, Seongnam, Korea
| | - Young Moon O
- Department of Physiology, School of Medicine, CHA University, Seongnam, Korea
| | - Young Geon Ji
- Department of Preventive Medicine, School of Medicine, CHA University, Seongnam, Korea
| | - Han Jun Cho
- Department of Physiology, School of Medicine, CHA University, Seongnam, Korea
| | - Dong Hyeon Lee
- Department of Physiology, School of Medicine, CHA University, Seongnam, Korea.
| |
Collapse
|
7
|
Chiang WF, Cheng TM, Chang CC, Pan SH, Changou CA, Chang TH, Lee KH, Wu SY, Chen YF, Chuang KH, Shieh DB, Chen YL, Tu CC, Tsui WL, Wu MH. Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) promotes EGF receptor signaling of oral squamous cell carcinoma metastasis via the complex N-glycosylation. Oncogene 2017; 37:116-127. [PMID: 28892050 DOI: 10.1038/onc.2017.303] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 07/24/2017] [Accepted: 07/26/2017] [Indexed: 12/14/2022]
Abstract
Aberrant protein glycosylation could be a distinct surface-marker of cancer cells that influences cancer progression and metastasis because glycosylation can regulate membrane protein folding which alters receptor activation and changes epitope exposure for antibody (Ab) recognition. Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6), a glycophosphoinositol-anchored protein, is a heavily glycosylated tumor antigen. However, the clinical significance and biological effect of CEACAM6 glycosylation has not been addressed in cancers. We recently developed an anti-CEACAM6 Ab (TMU) from an immune llama library which can be engineered to a single-domain (sd)Ab or a heavy-chain (HC)Ab. The TMU HCAb specifically recognized glycosylated CEACAM6 compared to the conventional antibodies. Using the TMU HCAb, we found that glycosylated CEACAM6 was a tumor marker associated with recurrence in early-stage OSCC (oral squamous cell carcinoma) patients. CEACAM6 promoted OSCC cell invasion, migration, cytoskeletal rearrangement, and metastasis via interaction with epidermal growth factor (EGF) receptor (EGFR) and enhancing EGFR activation, clustering and intracellular signaling cascades. These functions were modulated by N-acetylglucosaminyltransferase 5 (MGAT5) which mediated N-glycosylation at Asn256 (N256) of CEACAM6. Finally, the TMU sdAb and HCAb treatment inhibited the migration, invasion and EGF-induced signaling in CEACAM6-overexpressing cells. In conclusion, the complex N-glycosylation of CEACAM6 is critical for EGFR signaling of OSCC invasion and metastasis. Targeting glycosylated CEACAM6 with the TMU sdAb or TMU HCAb could be a feasible therapy for OSCC.
Collapse
Affiliation(s)
- W-F Chiang
- Graduate Institute of Translational Medicine, College of Medical Sciences and Technology, Taipei Medical University, Taipei, Taiwan.,Oral and Maxillofacial Section, Chi-Mei Medical Center, Liouying, Tainan, Taiwan.,School of Dentistry, National Yang Ming University, Taipei, Taiwan
| | - T-M Cheng
- Graduate Institute of Translational Medicine, College of Medical Sciences and Technology, Taipei Medical University, Taipei, Taiwan
| | - C-C Chang
- Graduate Institute of Translational Medicine, College of Medical Sciences and Technology, Taipei Medical University, Taipei, Taiwan.,Ph.D Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - S-H Pan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan.,Ph.D. Program in Translational Medicine, National Taiwan University and Academia Sinica, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - C A Changou
- Graduate Institute of Translational Medicine, College of Medical Sciences and Technology, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Sciences and Technology, Taipei Medical University, Taipei, Taiwan
| | - T-H Chang
- Graduate Institute of Biomedical Informatics, College of Medical Sciences and Technology, Taipei Medical University, Taipei, Taiwan
| | - K-H Lee
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Sciences and Technology, Taipei Medical University, Taipei, Taiwan
| | - S-Y Wu
- Department of Radiation Oncology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Y-F Chen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - K-H Chuang
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - D-B Shieh
- Institute of Basic Medical Science, Institute of Oral Medicine and Department of Stomatology, College of Medicine, National Cheng Kung University and hospital, Tainan, Taiwan.,Advanced Optoelectronic Technology Center and Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan, Taiwan
| | - Y-L Chen
- Institute of Basic Medical Science, Institute of Oral Medicine and Department of Stomatology, College of Medicine, National Cheng Kung University and hospital, Tainan, Taiwan
| | - C-C Tu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - W-L Tsui
- Graduate Institute of Translational Medicine, College of Medical Sciences and Technology, Taipei Medical University, Taipei, Taiwan
| | - M-H Wu
- Graduate Institute of Translational Medicine, College of Medical Sciences and Technology, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Biomedical Informatics, College of Medical Sciences and Technology, Taipei Medical University, Taipei, Taiwan.,Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
8
|
Howells A, Marelli G, Lemoine NR, Wang Y. Oncolytic Viruses-Interaction of Virus and Tumor Cells in the Battle to Eliminate Cancer. Front Oncol 2017; 7:195. [PMID: 28944214 PMCID: PMC5596080 DOI: 10.3389/fonc.2017.00195] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/15/2017] [Indexed: 12/13/2022] Open
Abstract
Oncolytic viruses (OVs) are an emerging treatment option for many cancer types and have recently been the focus of extensive research aiming to develop their therapeutic potential. The ultimate aim is to design a virus which can effectively replicate within the host, specifically target and lyse tumor cells and induce robust, long lasting tumor-specific immunity. There are a number of viruses which are either naturally tumor-selective or can be modified to specifically target and eliminate tumor cells. This means they are able to infect only tumor cells and healthy tissue remains unharmed. This specificity is imperative in order to reduce the side effects of oncolytic virotherapy. These viruses can also be modified by various methods including insertion and deletion of specific genes with the aim of improving their efficacy and safety profiles. In this review, we have provided an overview of the various virus species currently being investigated for their oncolytic potential and the positive and negative effects of a multitude of modifications used to increase their infectivity, anti-tumor immunity, and treatment safety, in particular focusing on the interaction of tumor cells and OVs.
Collapse
Affiliation(s)
- Anwen Howells
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Giulia Marelli
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Nicholas R Lemoine
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaohe Wang
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Rose JB, Correa-Gallego C, Li Y, Nelson J, Alseidi A, Helton WS, Allen PJ, D’Angelica MI, DeMatteo RP, Fong Y, Kingham TP, Kowdley KV, Jarnagin WR, Rocha FG. The Role of Biliary Carcinoembryonic Antigen-Related Cellular Adhesion Molecule 6 (CEACAM6) as a Biomarker in Cholangiocarcinoma. PLoS One 2016; 11:e0150195. [PMID: 26974538 PMCID: PMC4790932 DOI: 10.1371/journal.pone.0150195] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/04/2016] [Indexed: 12/13/2022] Open
Abstract
Objective The aim of the present study is to determine if CEACAM6 can be detected in the bile of patients with biliary cancer and can serve as a diagnostic biomarker for cholangiocarcinoma. Summary Background Data Distinguishing bile duct carcinoma from other diagnoses is often difficult using endoscopic or percutaneous techniques. The cell surface protein CEACAM6 is over-expressed in many gastrointestinal cancers and may be selectively elevated in biliary adenocarcinoma. Methods Bile from patients with benign biliary disease and cholangiocarcinoma (hilar, intrahepatic and distal) was collected at the time of index operation. The concentration of CEACAM6 was quantified by sandwich enzyme-linked immunosorbent assay (ELISA) and correlated to pathologic diagnosis. Diagnostic capability of CEACAM6 was evaluated by Wilcoxon rank-sum, linear regression, multiple regression, and receiver operating characteristic (ROC) curve analysis. Results Bile from 83 patients was analyzed: 42 with benign disease and 41 with cholangiocarcinoma. Patients in the benign cohort were younger, predominantly female, and had lower median biliary CEACAM6 levels than patients in the malignant cohort (7.5 ng/ml vs. 40 ng/ml; p = <.001). ROC curve analysis determined CEACAM6 to be a positive predictor cholangiocarcinoma with a CEACAM6 level >14 ng/ml associated with 87.5% sensitivity, 69.1% specificity, and a likelihood ratio of 2.8 (AUC 0.74). Multiple regression analysis suggested elevated alkaline phosphatase and the presence of biliary endoprostheses may influence CEACAM6 levels. Conclusion Biliary CEACAM6 can identify patients with extrahepatic cholangiocarcinoma with a high degree of sensitivity and should be investigated further as a potential screening tool.
Collapse
Affiliation(s)
- J. Bart Rose
- Section of General, Thoracic and Vascular Surgery, Department of Surgery, Virginia Mason Medical Center, Seattle, Washington, United States of America
- Benaroya Research Institute, Seattle, Washington, United States of America
| | - Camilo Correa-Gallego
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Yu Li
- Benaroya Research Institute, Seattle, Washington, United States of America
| | - James Nelson
- Benaroya Research Institute, Seattle, Washington, United States of America
| | - Adnan Alseidi
- Section of General, Thoracic and Vascular Surgery, Department of Surgery, Virginia Mason Medical Center, Seattle, Washington, United States of America
| | - W. Scott Helton
- Section of General, Thoracic and Vascular Surgery, Department of Surgery, Virginia Mason Medical Center, Seattle, Washington, United States of America
| | - Peter J. Allen
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Michael I. D’Angelica
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Ronald P. DeMatteo
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Yuman Fong
- Department of Surgery, City of Hope Cancer Center, Duarte, California, United States of America
| | - T. Peter Kingham
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Kris V. Kowdley
- Section of General, Thoracic and Vascular Surgery, Department of Surgery, Virginia Mason Medical Center, Seattle, Washington, United States of America
- Benaroya Research Institute, Seattle, Washington, United States of America
| | - William R. Jarnagin
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Flavio G. Rocha
- Section of General, Thoracic and Vascular Surgery, Department of Surgery, Virginia Mason Medical Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
10
|
Liu M, Wu HC. Carcinoembryonic antigen-related cell adhesion molecule 6 in gastrointestinal carcinomas. Shijie Huaren Xiaohua Zazhi 2015; 23:5499-5506. [DOI: 10.11569/wcjd.v23.i34.5499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Carcinoembryonic antigen-related cell adhesion molecules 6 (CEACAM6) belongs to the immunoglobulin superfamily, is overexpressed in 70% of solid tumors, and strikingly correlates with prognosis in gastrointestinal tumors. CEACAM6 participates in the development of tumors mainly by promoting tumor invasion and metastasis, resisting tumor cell anoikis, enhancing tumor drug resistance, and facilitating tumor cells to escape from the immune mechanism. In recent years, studies show that CEACAM6 has a great application potential in the diagnosis of gastrointestinal carcinomas. In this paper, we summarize the research progress of CEACAM6 in gastrointestinal carcinomas and discuss some related hot issues, with an aim to provide a theoretical foundation for the future clinical application of CEACAM6.
Collapse
|
11
|
Bonsor DA, Günther S, Beadenkopf R, Beckett D, Sundberg EJ. Diverse oligomeric states of CEACAM IgV domains. Proc Natl Acad Sci U S A 2015; 112:13561-6. [PMID: 26483485 PMCID: PMC4640789 DOI: 10.1073/pnas.1509511112] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) comprise a large family of cell surface adhesion molecules that bind to themselves and other family members to carry out numerous cellular functions, including proliferation, signaling, differentiation, tumor suppression, and survival. They also play diverse and significant roles in immunity and infection. The formation of CEACAM oligomers is caused predominantly by interactions between their N-terminal IgV domains. Although X-ray crystal structures of CEACAM IgV domain homodimers have been described, how CEACAMs form heterodimers or remain monomers is poorly understood. To address this key aspect of CEACAM function, we determined the crystal structures of IgV domains that form a homodimeric CEACAM6 complex, monomeric CEACAM8, and a heterodimeric CEACAM6-CEACAM8 complex. To confirm and quantify these interactions in solution, we used analytical ultracentrifugation to measure the dimerization constants of CEACAM homodimers and isothermal titration calorimetry to determine the thermodynamic parameters and binding affinities of CEACAM heterodimers. We found the CEACAM6-CEACAM8 heterodimeric state to be substantially favored energetically relative to the CEACAM6 homodimer. Our data provide a molecular basis for the adoption of the diverse oligomeric states known to exist for CEACAMs and suggest ways in which CEACAM6 and CEACAM8 regulate the biological functions of one another, as well as of additional CEACAMs with which they interact, both in cis and in trans.
Collapse
Affiliation(s)
- Daniel A Bonsor
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Sebastian Günther
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Robert Beadenkopf
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Dorothy Beckett
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
| | - Eric J Sundberg
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201; Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
12
|
Bonsor DA, Beckett D, Sundberg EJ. Structure of the N-terminal dimerization domain of CEACAM7. Acta Crystallogr F Struct Biol Commun 2015; 71:1169-75. [PMID: 26323304 PMCID: PMC4555925 DOI: 10.1107/s2053230x15013576] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/15/2015] [Indexed: 11/22/2022] Open
Abstract
CEACAM7 is a human cellular adhesion protein that is expressed on the surface of colon and rectum epithelial cells and is downregulated in colorectal cancers. It achieves cell adhesion through dimerization of the N-terminal IgV domain. The crystal structure of the N-terminal dimerization domain of CEACAM has been determined at 1.47 Å resolution. The overall fold of CEACAM7 is similar to those of CEACAM1 and CEACAM5; however, there are differences, the most notable of which is an insertion that causes the C'' strand to buckle, leading to the creation of a hydrogen bond in the dimerization interface. The Kdimerization for CEACAM7 determined by sedimentation equilibrium is tenfold tighter than that measured for CEACAM5. These findings suggest that the dimerization affinities of CEACAMs are modulated via sequence variation in the dimerization surface.
Collapse
Affiliation(s)
- Daniel A. Bonsor
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Dorothy Beckett
- Department of Chemistry and Biochemistry, University of Maryland College Park, Baltimore, MD 20742, USA
| | - Eric J. Sundberg
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
13
|
Johnson B, Mahadevan D. Emerging Role and Targeting of Carcinoembryonic Antigen-related Cell Adhesion Molecule 6 (CEACAM6) in Human Malignancies. CLINICAL CANCER DRUGS 2015; 2:100-111. [PMID: 27595061 PMCID: PMC4997943 DOI: 10.2174/2212697x02666150602215823] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 04/30/2015] [Accepted: 06/30/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) is a member of the CEA family of cell adhesion proteins that belong to the immunoglobulin superfamily. CEACAM6 is normally expressed on the surface of myeloid (CD66c) and epithelial surfaces. Stiochiomertic expression of members of the CEA family (CEACAM1, 5, 6, 7) on epithelia maintains normal tissue architecture through homo-and hetero-philic interactions. Dysregulated over-expression of CEACAM6 is oncogenic, is associated with anoikis resistance and an invasive phenotype mediated by excessive TGFβ, AKT, FAK and SRC signaling in human malignancies. METHODS Extensive literature review through PubMed was conducted to identify relevant preclinical and clinical research publications regarding CEACAM6 over the last decade and was summarized in this manuscript. RESULTS CEACAM5 and 6 are over-expressed in nearly 70% of epithelial malignancies including colorectal cancer (CRC), pancreatic ductal adenocarcinoma (PDA), hepatobiliary, gastric, breast, non-small cell lung and head/neck cancers. Importantly, CEACAM6 is a poor prognostic marker in CRC, while its expression correlates with tumor stage, metastasis and post-operative survival in PDA. CEACAM6 appears to be an immune checkpoint suppressor in hematologic malignancies including acute lymphoblastic leukemia and multiple myeloma. Several therapeutic monoclonal antibodies or antibody fragments targeting CEACAM6 have been designed and developed as a targeted therapy for human malignancies. A Llama antibody targeting CEACAM6 is being evaluated in early phase clinical trials. CONCLUSION This review focuses on the role of CEACAM6 in the pathogenesis and signaling of the malignant phenotype in solid and hematologic malignancies and highlights its potential as a therapeutic target for anti-cancer therapy.
Collapse
Affiliation(s)
- Benny Johnson
- The University of Tennessee Health Science Center & West Cancer Center, Memphis, TN,USA
| | - Daruka Mahadevan
- The University of Tennessee Health Science Center & West Cancer Center, Memphis, TN,USA
| |
Collapse
|
14
|
Gemei M, Corbo C, Salvatore F, Del Vecchio L. Carcinoembryonic Antigen Family Cell Adhesion Molecules (CEACAM) as Colorectal Cancer Biomarkers. BIOMARKERS IN CANCER 2015. [DOI: 10.1007/978-94-007-7681-4_30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Gebauer F, Wicklein D, Horst J, Sundermann P, Maar H, Streichert T, Tachezy M, Izbicki JR, Bockhorn M, Schumacher U. Carcinoembryonic antigen-related cell adhesion molecules (CEACAM) 1, 5 and 6 as biomarkers in pancreatic cancer. PLoS One 2014; 9:e113023. [PMID: 25409014 PMCID: PMC4237406 DOI: 10.1371/journal.pone.0113023] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/20/2014] [Indexed: 12/24/2022] Open
Abstract
Background Aim of this study was to assess the biological function in tumor progression and metastatic process carcinoembryonic antigen-related cell adhesion molecules (CEACAM) 1, 5 and 6 in pancreatic adenocarcinoma (PDAC). Experimental Design CEACAM knock down cells were established and assessed in vitro and in a subcutaneous and intraperitoneal mouse xenograft model. Tissue and serum expression of patients with PDAC were assessed by immunohistochemistry (IHC) and by enzyme linked immunosorbent assays. Results Presence of lymph node metastasis was correlated with CEACAM 5 and 6 expression (determined by IHC) and tumor recurrence exclusively with CEACAM 6. Patients with CEACAM 5 and 6 expression showed a significantly shortened OS in Kaplan-Meier survival analyses. Elevated CEACAM6 serum values showed a correlation with distant metastasis and. Survival analysis revealed a prolonged OS for patients with low serum CEACAM 1 values. In vitro proliferation and migration capacity was increased in CEACAM knock down PDAC cells, however, mice inoculated with CEACAM knock down cells showed a prolonged overall-survival (OS). The number of spontaneous pulmonary metastasis was increased in the CEACAM knock down group. Conclusion The effects mediated by CEACAM expression in PDAC are complex, though overexpression is correlated with loco-regional aggressive tumor growth. However, loss of CEACAM can be considered as a part of epithelial-mesenchymal transition and is therefore of rather importance in the process of distant metastasis.
Collapse
Affiliation(s)
- Florian Gebauer
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
- Institute of Anatomy and Experimental Morphology and University Cancer Center Hamburg (UCCH), University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| | - Daniel Wicklein
- Institute of Anatomy and Experimental Morphology and University Cancer Center Hamburg (UCCH), University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jennifer Horst
- Institute of Anatomy and Experimental Morphology and University Cancer Center Hamburg (UCCH), University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Philipp Sundermann
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | - Hanna Maar
- Institute of Anatomy and Experimental Morphology and University Cancer Center Hamburg (UCCH), University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Streichert
- Institute of Clinical Chemistry, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Tachezy
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | - Jakob R. Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | - Maximilian Bockhorn
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology and University Cancer Center Hamburg (UCCH), University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
16
|
Pattabiraman C, Hong S, Gunasekharan VK, Pranatharthi A, Bajaj J, Srivastava S, Krishnamurthy H, Ammothumkandy A, Giri VG, Laimins LA, Krishna S. CD66+ cells in cervical precancers are partially differentiated progenitors with neoplastic traits. Cancer Res 2014; 74:6682-92. [PMID: 25267065 DOI: 10.1158/0008-5472.can-14-1032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cervical cancers, a malignancy associated with oncogenic papilloma viruses, remain a major disease burden in the absence of effective implementation of preventive strategies. CD66(+) cells have previously been identified as a tumor-propagating subset in cervical cancers. We investigated the existence, differentiation state, and neoplastic potential of CD66(+) cells in a precancer cell line harboring HPV31b episomes. The gene expression profile of CD66(high) cells overlaps with differentiated keratinocytes, neoplastic mesenchymal transition, cells of the squamocolumnar junction, and cervical cancer cell line-derived spheroids. There is elevated expression of DNMT1, Notch1, and the viral gene product E1⁁E4 in CD66(high) cells. Thus, CD66(high) cells, in the absence of differentiating signals, express higher levels of key regulators of keratinocytes stemness, differentiation, and the viral life cycle, respectively. We also find a striking association of neoplastic traits, including migration, invasion, and colony formation, in soft agar with CD66(high) cells. These properties and a distinct G2-M-enriched cell-cycle profile are conserved in cells from cervical cancers. Principally, using a precancerous cell line, we propose that CD66(high) cells have an intermediate differentiation state, with a cellular milieu connected with both viral replication and neoplastic potential, and validate some key features in precancer lesions. Such pathophysiologically relevant systems for defining cellular changes in the early phases of the disease process provide both mechanistic insight and potential therapeutic strategies. Collectively, our data provide a rationale for exploring novel therapeutic targets in CD66(+) subsets during cancer progression.
Collapse
Affiliation(s)
- Chitra Pattabiraman
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, UAS-GKVK Campus, Bangalore, Karnataka, India
| | - Shiyuan Hong
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Vignesh K Gunasekharan
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Annapurna Pranatharthi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, UAS-GKVK Campus, Bangalore, Karnataka, India
| | - Jeevisha Bajaj
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, UAS-GKVK Campus, Bangalore, Karnataka, India
| | - Sweta Srivastava
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, UAS-GKVK Campus, Bangalore, Karnataka, India
| | - H Krishnamurthy
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, UAS-GKVK Campus, Bangalore, Karnataka, India
| | - Aswathy Ammothumkandy
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, UAS-GKVK Campus, Bangalore, Karnataka, India
| | - Venkat G Giri
- Department of Radiotherapy, Kidwai Memorial Institute of Oncology, Bangalore, Karnataka, India
| | - Laimonis A Laimins
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Sudhir Krishna
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, UAS-GKVK Campus, Bangalore, Karnataka, India.
| |
Collapse
|
17
|
Cheng TM, Murad YM, Chang CC, Yang MC, Baral TN, Cowan A, Tseng SH, Wong A, Mackenzie R, Shieh DB, Zhang J. Single domain antibody against carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) inhibits proliferation, migration, invasion and angiogenesis of pancreatic cancer cells. Eur J Cancer 2014; 50:713-21. [PMID: 22918079 DOI: 10.1016/j.ejca.2012.07.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 06/26/2012] [Accepted: 07/26/2012] [Indexed: 01/06/2023]
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) is over-expressed in pancreatic cancer cells, and it is associated with the progression of pancreatic cancer. We tested a single domain antibody (sdAb) targeting CEACAM6, 2A3, which was isolated previously from a llama immune library, and an Fc conjugated version of this sdAb, to determine how they affect the pancreatic cancer cell line BxPC3. We also compared the effects of the antibodies to gemcitabine. Gemcitabine and 2A3 slowed down cancer cell proliferation. However, only 2A3 retarded cancer cell invasion, angiogenesis within the cancer mass and BxPC3 cell MMP-9 activity, three features important for tumour growth and metastasis. The IC50s for 2A3, 2A3-Fc and gemcitabine were determined as 6.5μM, 8μM and 12nM, respectively. While the 2A3 antibody inhibited MMP-9 activity by 33% compared to non-treated control cells, gemcitabine failed to inhibit MMP-9 activity. Moreover, 2A3 and 2A3-Fc inhibited invasion of BxPC3 by 73% compared to non-treated cells. When conditioned media that were produced using 2A3- or 2A3-Fc-treated BxPC3 cells were used in a capillary formation assay, the capillary length was reduced by 21% and 49%, respectively. Therefore 2A3 is an ideal candidate for treating tumours that over-express CEACAM6.
Collapse
Affiliation(s)
- Tsai-Mu Cheng
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30050, Taiwan, ROC; Institute for Biological Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON, Canada
| | - Yanal M Murad
- Institute for Biological Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON, Canada
| | - Chia-Ching Chang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30050, Taiwan, ROC; Institute of Physics, Academia Sinica, Taipei 10529, Taiwan, ROC.
| | - Ming-Chi Yang
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, Taiwan, ROC
| | - Toya Nath Baral
- Institute for Biological Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON, Canada
| | - Aaron Cowan
- Institute for Biological Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON, Canada
| | - Shin-Hua Tseng
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30050, Taiwan, ROC
| | - Andrew Wong
- Institute for Biological Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON, Canada
| | - Roger Mackenzie
- Institute for Biological Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON, Canada
| | - Dar-Bin Shieh
- Institute of Oral Medicine, College of Medicine and Hospital, National Cheng Kung University, Taiwan 70101
| | - Jianbing Zhang
- Institute for Biological Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON, Canada.
| |
Collapse
|
18
|
Expression and clinical significance of carcinoembryonic antigen-related cell adhesion molecule 6 in breast cancers. Breast Cancer Res Treat 2013; 142:311-22. [PMID: 24186057 DOI: 10.1007/s10549-013-2756-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 10/25/2013] [Indexed: 01/02/2023]
Abstract
Carcino-embryonic antigen-related cell adhesion molecule 6 (CEACAM6), one of the members of human carcino-embryonic antigens, is a multifunctional regulatory protein involved in various cellular processes in cancers. Its role in malignant transformation and the clinical significance has been extensively studied in colonic and pancreatic cancers. However, relatively few studies have been done on breast cancers. In the current study, CEACAM6 expression in two independent cohorts of invasive breast cancers were evaluated immunohistochemically and correlated with clinico-pathological features, biomarker profiles and patient survival. In the primary cohort, CEACAM6 expression was detected in 37.1 % (312/840) of primary invasive cancers. It was positively correlated with HER2 (p < 0.001). Concordantly, HER2-OE subtype showed the highest CEACAM6 expression (62.7 %) among all molecular subtypes; whereas, other subtypes also showed substantial CEACAM6 expression (21.8-37.5 %). Interestingly, a significantly worse overall survival was found in high pN stage HER2 positive cancers with CEACAM6 positivity (log-rank = 4.452, p = 0.035) and this could be validated in an independent cohort. Additionally, HER2 signaling was found to induce SMAD3 phosphorylation and CEACAM6 expression in a cell line model. Likewise, in the primary tumors, a positive association was found between HER2 and SMAD3 phosphorylation in CEACAM6 positive cancers (p = 0.012). Overall, CEACAM6 was widely expressed in different molecular subtypes, but highest and significantly in HER2-OE breast cancer. Within this group, CEACAM6 was associated with adverse high nodal stage patient outcome. Given the wide expression of CEACAM6 in all breast cancers, its roles as prognostic marker and therapeutic target warrant further evaluation.
Collapse
|
19
|
Chen J, Li Q, An Y, Lv N, Xue X, Wei J, Jiang K, Wu J, Gao W, Qian Z, Dai C, Xu Z, Miao Y. CEACAM6 induces epithelial-mesenchymal transition and mediates invasion and metastasis in pancreatic cancer. Int J Oncol 2013; 43:877-85. [PMID: 23857344 DOI: 10.3892/ijo.2013.2015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 06/19/2013] [Indexed: 11/06/2022] Open
Abstract
Pancreatic cancer is a disease with an extremely poor prognosis. The acquisition of invasion properties in pancreatic cancer is accompanied by the process of epithelial-mesenchymal transition (EMT). Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) is emerging as an important determinant of the malignant phenotype in a range of cancers, including pancreatic cancer. Therefore, the aim of this study was to evaluate the potential involvement of CEACAM6 in the invasion and metastasis of pancreatic cancer cells via EMT regulation. The results of our study showed a positive association between CEACAM6 expression and poor prognosis of pancreatic cancer, differentiation and lymph node metastasis. Elevated levels of CEACAM6 in pancreatic cancer cells promoted EMT, migration and invasion in vitro and metastasis in animal models, whereas shRNA-mediated CEACAM6 knockdown had the opposite effect. Furthermore, we demonstrated that miR-29a/b/c specific for CEACAM6 could regulate its expression at the post-transcriptional level. Collectively, our findings identified CEACAM6, which is regulated by miR-29a/b/c, as an important positive regulator of EMT in pancreatic cancer offering an explanation for how elevated levels of CEACAM6 are likely to contribute to the highly metastatic phenotype of pancreatic cancer.
Collapse
Affiliation(s)
- Jianmin Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Cameron S, de Long LM, Hazar-Rethinam M, Topkas E, Endo-Munoz L, Cumming A, Gannon O, Guminski A, Saunders N. Focal overexpression of CEACAM6 contributes to enhanced tumourigenesis in head and neck cancer via suppression of apoptosis. Mol Cancer 2012; 11:74. [PMID: 23021083 PMCID: PMC3515475 DOI: 10.1186/1476-4598-11-74] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 09/18/2012] [Indexed: 12/22/2022] Open
Abstract
Background Overexpression of CEACAM6 has been reported for a number of malignancies. However, the mechanism of how CEACAM6 contributes to cancer formation and its role in head and neck squamous cell carcinoma (HNSCC) remains unclear. Therefore, we examined the role of CEACAM6 in head and neck squamous cell carcinoma (HNSCC). Methods CEACAM6 expression was examined in normal squamous epithelia as well as a number of patient HNSCC samples and tumours derived from HNSCC cell lines injected into NOD/SCID mice. CEACAM6 expression was manipulated in HNSCC cell lines by shRNA-mediated CEACAM6 knockdown or virally-delivered overexpression of CEACAM6. The role of CEACAM6 in tumour growth and chemotherapeutic sensitivity was then assessed in vivo and in vitro respectively. Results CEACAM6 expression was significantly increased in highly tumourigenic HNSCC cell lines when compared to poorly tumourigenic HNSCC cell lines. Moreover, HNSCC patient tumours demonstrated focal expression of CEACAM6. Functional investigation of CEACAM6, involving over-expression and knock down studies, demonstrated that CEACAM6 over-expression could enhance tumour initiating activity and tumour growth via activation of AKT and suppression of caspase-3 mediated cell death. Conclusion We report that CEACAM6 is focally overexpressed in a large fraction of human HNSCCs in situ. We also show that over-expression of CEACAM6 increases tumour growth and tumour initiating activity by suppressing PI3K/AKT-dependent apoptosis of HNSCC in a xenotransplant model of HNSCC. Finally, our studies indicate that foci of CEACAM6 expressing cells are selectively ablated by treatment of xenotransplant tumours with pharmacological inhibitors of PI3K/AKT in vivo.
Collapse
Affiliation(s)
- Sarina Cameron
- University of Queensland Diamantina Institute, Epithelial Pathobiology Group, Princess Alexandra Hospital, Queensland, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Gaur P, Ranjan P, Sharma S, Patel JR, Bowzard JB, Rahman SK, Kumari R, Gangappa S, Katz JM, Cox NJ, Lal RB, Sambhara S, Lal SK. Influenza A virus neuraminidase protein enhances cell survival through interaction with carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) protein. J Biol Chem 2012; 287:15109-17. [PMID: 22396546 DOI: 10.1074/jbc.m111.328070] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The influenza virus neuraminidase (NA) protein primarily aids in the release of progeny virions from infected cells. Here, we demonstrate a novel role for NA in enhancing host cell survival by activating the Src/Akt signaling axis via an interaction with carcinoembryonic antigen-related cell adhesion molecule 6/cluster of differentiation 66c (C6). NA/C6 interaction leads to increased tyrosyl phosphorylation of Src, FAK, Akt, GSK3β, and Bcl-2, which affects cell survival, proliferation, migration, differentiation, and apoptosis. siRNA-mediated suppression of C6 resulted in a down-regulation of activated Src, FAK, and Akt, increased apoptosis, and reduced expression of viral proteins and viral titers in influenza virus-infected human lung adenocarcinoma epithelial and normal human bronchial epithelial cells. These findings indicate that influenza NA not only aids in the release of progeny virions, but also cell survival during viral replication.
Collapse
Affiliation(s)
- Pratibha Gaur
- Virology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi 110067, India
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Asuthkar S, Rao JS, Gondi CS. Drugs in preclinical and early-stage clinical development for pancreatic cancer. Expert Opin Investig Drugs 2012; 21:143-52. [PMID: 22217246 DOI: 10.1517/13543784.2012.651124] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Pancreatic cancer (PC) is the fourth leading cause of cancer-related deaths in the US and Europe, and the lethality of this cancer is demonstrated by the fact that the annual incidences are approximately equal to the annual deaths. Current therapy for PC is multimodal, involving surgery and chemotherapy. Clinical symptoms are unspecific, and consequently about 85% of patients with PC are diagnosed at advanced tumor stages without any surgical therapy options. Since the therapeutic rates for PC are so dismal, it is essential to review the clinical targets for diagnosis and treatment of this lethal cancer. AREAS COVERED In this review, we discuss potential treatment options for PC by identifying molecular targets including those involved in cell proliferation, survival, migration, invasion and angiogenesis. Targeting these molecules in combination with surgery could improve the clinical outcome for PC patients. EXPERT OPINION For a decade, gemcitabine has remained the single first-line chemotherapeutic agent for advanced adenocarcinoma of the pancreas; however, less than 25% of patients benefit from gemcitabine. The reason for frequent reoccurrence of PC after conventional methods such as surgery, radiation and/or chemotherapy is due to the lack of understanding of the basic underlying metabolic cause of the cancer and thus consequently remains uncorrected. Our understanding of drug resistance in PC is still not clear and may be answered by focusing on new useful biomarkers and their role in chemo- and radioresistance.
Collapse
Affiliation(s)
- Swapna Asuthkar
- University of Illinois College of Medicine, Cancer Biology and Pharmacology, One Illini Drive, Peoria, 61605, USA
| | | | | |
Collapse
|
23
|
Baral TN, Murad Y, Nguyen TD, Iqbal U, Zhang J. Isolation of functional single domain antibody by whole cell immunization: implications for cancer treatment. J Immunol Methods 2011; 371:70-80. [PMID: 21741385 DOI: 10.1016/j.jim.2011.06.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 05/11/2011] [Accepted: 06/16/2011] [Indexed: 12/26/2022]
Abstract
Carcinoembryonic antigen related cell adhesion molecule (CEACAM) 6 is over-expressed in different types of cancer cells. In addition, it has also been implicated in some infectious diseases. Targeting this molecule by an antibody might have applications in diverse tumor models. Single domain antibody (sdAb) is becoming very useful format in antibody engineering as potential tools for treating acute and chronic disease conditions such as cancer for both diagnostic as well as therapeutic application. Generally, sdAbs with good affinity are isolated from an immune library. Discovery of a new target antigen would require a new immunization with purified antigen which is not always easy. In this study, we have isolated, by phage display, an sdAb against CEACAM6 with an affinity of 5 nM from a llama immunized with cancer cells. The antibody has good biophysical properties, and it binds to the cells expressing the target antigen. Furthermore, it reduces cancer cells proliferation in vitro and shows an excellent tumor targeting in vivo. This sdAb could be useful in diagnosis as well as therapy of CEACAM6 expressing tumors. Finally, we envisage it would be feasible to isolate good sdAbs against other interesting tumor associated antigens from this library. Therefore, this immunization method could be a general strategy for isolating sdAbs against any surface antigen without immunizing the animal with the antigen of interest each time.
Collapse
Affiliation(s)
- Toya Nath Baral
- Antibody Engineering, Institute for Biological Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON, Canada.
| | | | | | | | | |
Collapse
|
24
|
Kalinina T, Güngör C, Thieltges S, Möller-Krull M, Murga Penas EM, Wicklein D, Streichert T, Schumacher U, Kalinin V, Simon R, Otto B, Dierlamm J, Schwarzenbach H, Effenberger KE, Bockhorn M, Izbicki JR, Yekebas EF. Establishment and characterization of a new human pancreatic adenocarcinoma cell line with high metastatic potential to the lung. BMC Cancer 2010; 10:295. [PMID: 20553613 PMCID: PMC2927995 DOI: 10.1186/1471-2407-10-295] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 06/16/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pancreatic cancer is still associated with devastating prognosis. Real progress in treatment options has still not been achieved. Therefore new models are urgently needed to investigate this deadly disease. As a part of this process we have established and characterized a new human pancreatic cancer cell line. METHODS The newly established pancreatic cancer cell line PaCa 5061 was characterized for its morphology, growth rate, chromosomal analysis and mutational analysis of the K-ras, EGFR and p53 genes. Gene-amplification and RNA expression profiles were obtained using an Affymetrix microarray, and overexpression was validated by IHC analysis. Tumorigenicity and spontaneous metastasis formation of PaCa 5061 cells were analyzed in pfp-/-/rag2-/- mice. Sensitivity towards chemotherapy was analysed by MTT assay. RESULTS PaCa 5061 cells grew as an adhering monolayer with a doubling time ranging from 30 to 48 hours. M-FISH analyses showed a hypertriploid complex karyotype with multiple numerical and unbalanced structural aberrations. Numerous genes were overexpressed, some of which have previously been implicated in pancreatic adenocarcinoma (GATA6, IGFBP3, IGFBP6), while others were detected for the first time (MEMO1, RIOK3). Specifically highly overexpressed genes (fold change > 10) were identified as EGFR, MUC4, CEACAM1, CEACAM5 and CEACAM6. Subcutaneous transplantation of PaCa 5061 into pfp-/-/rag2-/- mice resulted in formation of primary tumors and spontaneous lung metastasis. CONCLUSION The established PaCa 5061 cell line and its injection into pfp-/-/rag2-/- mice can be used as a new model for studying various aspects of the biology of human pancreatic cancer and potential treatment approaches for the disease.
Collapse
Affiliation(s)
- Tatyana Kalinina
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg, Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Cenap Güngör
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg, Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Sabrina Thieltges
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg, Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Maren Möller-Krull
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg, Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Eva Maria Murga Penas
- Hubertus Wald Tumorzentrum, University Cancer Center Hamburg, University Medical Center, University Hospital Hamburg, Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Daniel Wicklein
- Department of Clinical Chemistry, University Hospital Hamburg, Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Thomas Streichert
- Department of Clinical Chemistry, University Hospital Hamburg, Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Viacheslav Kalinin
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg, Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Hospital Hamburg, Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Benjamin Otto
- Department of Clinical Chemistry, University Hospital Hamburg, Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Judith Dierlamm
- Hubertus Wald Tumorzentrum, University Cancer Center Hamburg, University Medical Center, University Hospital Hamburg, Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Heidi Schwarzenbach
- Institute of Tumor Biology, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Katharina E Effenberger
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg, Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Institute of Tumor Biology, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Maximilian Bockhorn
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg, Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Jakob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg, Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Emre F Yekebas
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg, Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| |
Collapse
|
25
|
Jantscheff P, Ziroli V, Esser N, Graeser R, Kluth J, Sukolinskaya A, Taylor LA, Unger C, Massing U. Anti-metastatic effects of liposomal gemcitabine in a human orthotopic LNCaP prostate cancer xenograft model. Clin Exp Metastasis 2009; 26:981-92. [PMID: 19784785 DOI: 10.1007/s10585-009-9288-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 09/14/2009] [Indexed: 12/15/2022]
Abstract
Fatal outcomes of prostate carcinoma (PCa) mostly result from metastatic spread rather than from primary tumor burden. Here, we monitored growth and metastatic spread of an orthotopic luciferase/GFP-expressing LNCaP PCa xenograft model in SCID mice by in vivo imaging and in vitro luciferase assay of tissues homogenates. Although the metastatic spread generally shows a significant correlation to primary tumor volumes, the susceptibility of various tissues to metastatic invasion was different in the number of affected animals as well as in absolute metastatic burden in the individual tissues. Using this xenograft model we showed that treatment with liposomal gemcitabine (GemLip) inhibited growth of the primary tumors (83.9 +/- 6.4%; P = 0.009) as well as metastatic burden in lymph nodes (95.6 +/- 24.0%; P = 0.047), lung (86.5 +/- 10.5%; P = 0.015), kidney (88.4 +/- 9.2%; P = 0.045) and stomach (79.5 +/- 6.6%; P = 0.036) already at very low efficient concentrations (8 mg/kg) as compared to conventional gemcitabine (360 mg/kg). Our data show that this orthotopic LNCaP xenograft PCa model seems to reflect the clinical situation characterized by the fact that at time of diagnosis, prostate neoplasms are biologically heterogeneous and thus, it is a useful model to investigate new anti-metastatic therapies.
Collapse
Affiliation(s)
- Peter Jantscheff
- Department of Clinical Research, Tumor Biology Center, Freiburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Strickland LA, Ross J, Williams S, Ross S, Romero M, Spencer S, Erickson R, Sutcliffe J, Verbeke C, Polakis P, van Bruggen N, Koeppen H. Preclinical evaluation of carcinoembryonic cell adhesion molecule (CEACAM) 6 as potential therapy target for pancreatic adenocarcinoma. J Pathol 2009; 218:380-90. [PMID: 19334050 DOI: 10.1002/path.2545] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite the availability of new targeted therapies, ductal pancreatic adenocarcinoma continues to carry a poor prognosis. Carcinoembryonic antigen-related cell adhesion molecule (CEACAM)6 has been reported as a potential biomarker and therapy target for this malignancy. We have evaluated CEACAM6 as a potential therapy target, using an antibody-drug conjugate (ADC). Expression of CEACAM6 in pancreatic adenocarcinomas was determined using immunohistochemistry on tissue microarrays. The expression pattern in granulocytes and granulocytic precursors was measured by flow cytometry. Murine xenograft and non-human primate models served to evaluate efficacy and safety, respectively. Robust expression of CEACAM6 was found in > 90% of invasive pancreatic adenocarcinomas as well as in intraepithelial neoplastic lesions. In the granulocytic lineage, CEACAM6 was expressed at all stages of granulocytic maturation except for the early lineage-committed precursor cell. The anti-CEACAM6 ADC showed efficacy against established CEACAM6-expressing tumours. In non-human primates, antigen-dependent toxicity of the ADC consisted of dose-dependent and reversible depletion of granulocytes and their precursors. This was associated with preferential and rapid localization of the antibody in bone marrow, as determined by sequential in vivo PET imaging of the radiolabelled anti-CEACAM6. Localization of the radiolabelled tracer could be attenuated by predosing with unlabelled antibody confirming specific accumulation in this compartment. Based on the expression pattern in normal and malignant pancreatic tissues, efficacy against established tumours and limited and reversible bone marrow toxicity, we propose that CEACAM6 should be considered for an ADC-based therapy approach against pancreatic adenocarcinomas and possibly other CEACAM6-positive neoplasms.
Collapse
|
27
|
Wang Y, Gangeswaran R, Zhao X, Wang P, Tysome J, Bhakta V, Yuan M, Chikkanna-Gowda CP, Jiang G, Gao D, Cao F, Francis J, Yu J, Liu K, Yang H, Zhang Y, Zang W, Chelala C, Dong Z, Lemoine N. CEACAM6 attenuates adenovirus infection by antagonizing viral trafficking in cancer cells. J Clin Invest 2009; 119:1604-15. [PMID: 19411761 DOI: 10.1172/jci37905] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 03/04/2009] [Indexed: 12/26/2022] Open
Abstract
The changes in cancer cell surface molecules and intracellular signaling pathways during tumorigenesis make delivery of adenovirus-based cancer therapies inefficient. Here we have identified carcinoembryonic antigen- related cell adhesion molecule 6 (CEACAM6) as a cellular protein that restricts the ability of adenoviral vectors to infect cancer cells. We have demonstrated that CEACAM6 can antagonize the Src signaling pathway, downregulate cancer cell cytoskeleton proteins, and block adenovirus trafficking to the nucleus of human pancreatic cancer cells. Similar to CEACAM6 overexpression, treatment with a Src-selective inhibitor significantly reduced adenovirus replication in these cancer cells and normal human epithelial cells. In a mouse xenograft tumor model, siRNA-mediated knockdown of CEACAM6 also significantly enhanced the antitumor effect of an oncolytic adenovirus. We propose that CEACAM6-associated signaling pathways could be potential targets for the development of biomarkers to predict the response of patients to adenovirus-based therapies, as well as for the development of more potent adenovirus-based therapeutics.
Collapse
Affiliation(s)
- Yaohe Wang
- Centre for Molecular Oncology and Imaging, Institute of Cancer, Barts and The London School of Medicine and Dentistry, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The proto-oncogene c-Src (Src) encodes a nonreceptor tyrosine kinase whose expression and activity are correlated with advanced malignancy and poor prognosis in a variety of human cancers. Nine additional enzymes with homology to Src have been identified and collectively are referred to as Src family kinases (SFKs). Together, SFKs represent the largest family of nonreceptor tyrosine kinases and interact directly with receptor tyrosine kinases, G-protein-coupled receptors, steroid receptors, signal transducers and activators of transcription, and molecules involved in cell adhesion and migration. These interactions lead to a diverse array of biological functions including proliferation, cell growth, differentiation, cell shape, motility, migration, angiogenesis, and survival. Studies investigating mutational activation of Src in human cancers suggest that this may be a rare event and that wild-type Src is weakly oncogenic. Thus, the role of Src in the development and progression of human cancer remains unclear. Recently, it was suggested that increased SFK protein levels and, more importantly, SFK tyrosine kinase activity are linked to cancer progression and metastatic disease by facilitating the action of other signaling proteins. This accumulating body of evidence indicates that SFKs may represent a promising therapeutic target for the treatment of solid tumors. This review discusses the role of SFKs in solid tumors and the recent therapeutic advances aimed at targeting this family of tyrosine kinases in cancer.
Collapse
Affiliation(s)
- Deric L Wheeler
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.
| | | | | |
Collapse
|
29
|
Expression patterns of CEACAM5 and CEACAM6 in primary and metastatic cancers. BMC Cancer 2007; 7:2. [PMID: 17201906 PMCID: PMC1769503 DOI: 10.1186/1471-2407-7-2] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Accepted: 01/03/2007] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Many breast, pancreatic, colonic and non-small-cell lung carcinoma lines express CEACAM6 (NCA-90) and CEACAM5 (carcinoembryonic antigen, CEA), and antibodies to both can affect tumor cell growth in vitro and in vivo. Here, we compare both antigens as a function of histological phenotype in breast, pancreatic, lung, ovarian, and prostatic cancers, including patient-matched normal, primary tumor, and metastatic breast and colonic cancer specimens. METHODS Antigen expression was determined by immunohistochemistry (IHC) using tissue microarrays with MN-15 and MN-3 antibodies targeting the A1B1- and N-domains of CEACAM6, respectively, and the MN-14 antibody targeting the A3B3 domain of CEACAM5. IHC was performed using avidin-biotin-diaminobenzide staining. The average score +/- SD (0 = negative/8 = highest) for each histotype was recorded. RESULTS For all tumors, the amount of CEACAM6 expressed was greater than that of CEACAM5, and reflected tumor histotype. In breast tumors, CEACAM6 was highest in papillary > infiltrating ductal > lobular > phyllodes; in pancreatic tumors, moderately-differentiated > well-differentiated > poorly-differentiated tumors; mucinous ovarian adenocarcinomas had almost 3-fold more CEACAM6 than serous ovarian adenocarcinomas; lung adenocarcinomas > squamous tumors; and liver metastases of colonic carcinoma > primary tumors = lymph nodes metastases > normal intestine. However, CEACAM6 expression was similar in prostate cancer and normal tissues. The amount of CEACAM6 in metastatic colon tumors found in liver was higher than in many primary colon tumors. In contrast, CEACAM6 immunostaining of lymph node metastases from breast, colon, or lung tumors was similar to the primary tumor. CONCLUSION CEACAM6 expression is elevated in many solid tumors, but variable as a function of histotype. Based on previous work demonstrating a role for CEACAM6 in tumor cell migration, invasion and adhesion, and formation of distant metastases (Blumenthal et al., Cancer Res 65: 8809-8817, 2005), it may be a promising target for antibody-based therapy.
Collapse
|
30
|
Ieta K, Tanaka F, Utsunomiya T, Kuwano H, Mori M. CEACAM6 gene expression in intrahepatic cholangiocarcinoma. Br J Cancer 2006; 95:532-40. [PMID: 16868542 PMCID: PMC2360665 DOI: 10.1038/sj.bjc.6603276] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The purpose of this study was to investigate the clinicopathological and biological significance of human carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) gene expression in human intrahepatic cholangiocarcinoma. CEACAM6 is reported to be involved in human malignancies. However, in cholangiocarcinoma expression of CEACAM6 and its clinicopathological significance have not been investigated. CEACAM6 expression status was determined and analysed with respect to various clinicopathological parameters in 23 intrahepatic cholangiocarcinomas. Additionally, we investigated effects of CEACAM6 gene in the cholangiocarcinoma cell lines. CEACAM6 gene expression in cancer tissues was higher than in noncancerous tissues in 16 of the 23 cases; however, it was not statistically significant. The tumours with elevated CEACAM6 expression showed a tendency to be associated with lymphatic invasion and stage of the disease. Interestingly, patients with high CEACAM6 expression showed a significantly poorer disease-free survival rate than those with low CEACAM6 expression. We demonstrated that CEACAM6-transfected cells were more proliferative, more invasive and more chemoresistant to gemcitabine compared to mock-transfected cells. Furthermore, CEACAM6 gene silencing by CEACAM6-specific siRNA resulted in higher chemosensitivity to gemcitabine. CEACAM6 is a potential prognostic indicator and potential chemoresistant marker to gemcitabine for patients with intrahepatic cholangiocarcinoma.
Collapse
Affiliation(s)
- K Ieta
- Department of Surgery and Molecular Oncology, Medical Institute of Bioregulation, Kyushu University, 4546 Tsurumihara, Beppu, 874-0838, Japan
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - F Tanaka
- Department of Surgery and Molecular Oncology, Medical Institute of Bioregulation, Kyushu University, 4546 Tsurumihara, Beppu, 874-0838, Japan
| | - T Utsunomiya
- Department of Surgery and Molecular Oncology, Medical Institute of Bioregulation, Kyushu University, 4546 Tsurumihara, Beppu, 874-0838, Japan
| | - H Kuwano
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - M Mori
- Department of Surgery and Molecular Oncology, Medical Institute of Bioregulation, Kyushu University, 4546 Tsurumihara, Beppu, 874-0838, Japan
- E-mail:
| |
Collapse
|
31
|
Blumenthal RD, Hansen HJ, Goldenberg DM. Inhibition of adhesion, invasion, and metastasis by antibodies targeting CEACAM6 (NCA-90) and CEACAM5 (Carcinoembryonic Antigen). Cancer Res 2005; 65:8809-17. [PMID: 16204051 DOI: 10.1158/0008-5472.can-05-0420] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CEACAM5 and CEACAM6 are overexpressed in many cancers and are associated with adhesion and invasion. The effects of three monoclonal antibodies targeting different epitopes on these antigens (NH2-terminal [MN-3] and A1B1 domains [MN-15] shared by CEACAM5 and CEACAM6 and the A3B3 domain [MN-14] restricted to CEACAM5) were evaluated in migration, invasion, and adhesion assays in vitro using a panel of human pancreatic, breast, and colonic cancer cell lines, and in the GW-39 human colonic micrometastasis model in vivo. MN-3 Fab' and MN-15 Fab' were both effective at inhibiting cell migration. MN-15 Fab' treatment inhibited invasion, reducing cell penetration through an extracellular matrix (ECM). MN-3 Fab' also decreased invasion but was less effective than MN-15 Fab' in four of five cell lines. All three monoclonal antibody (mAb) Fabs decreased adhesion of tumor cells to endothelial cells by 49% to 58%. MN-15 Fab' but not MN-3 or MN-14 Fabs induced a decrease in adhesion of three of six cell lines to the ECM protein, fibronectin, but adhesion to vitronectin, laminin, collagen-I, and collagen-IV was not affected. In vivo studies showed that treatment with MN-3 Fab' or MN-15 Fab' of mice implanted with GW-39 human colonic cancer cells increased their survival (P < 0.025 and P < 0.01, respectively). These studies show that antibody Fabs that target either CEACAM5 or CEACAM6 affect cell migration, cell invasion, and cell adhesion in vitro, and that MN-15 and MN-3 Fabs have antimetastatic effects in vivo, resulting in improved survival of mice with metastases. Thus, blocking the N and A1B1 domains of CEACAM5/CEACAM6 can impede the metastatic process.
Collapse
Affiliation(s)
- Rosalyn D Blumenthal
- Center for Molecular Medicine and Immunology, Garden State Cancer Center, Belleville, New Jersey 07109, USA.
| | | | | |
Collapse
|
32
|
Mimeault M, Brand RE, Sasson AA, Batra SK. Recent advances on the molecular mechanisms involved in pancreatic cancer progression and therapies. Pancreas 2005; 31:301-16. [PMID: 16258363 DOI: 10.1097/01.mpa.0000175893.04660.1b] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review describes the recent advances in the molecular events involved in pancreatic cancer initiation, progression, and metastasis. Additionally, the importance of deregulated cellular signaling elements as potential targets for developing novel therapeutic strategies against incurable forms of pancreatic cancer is reported. The emphasis is on the critical functions gained by numerous growth factors and their receptors, such as epidermal growth factor receptor, hedgehog signaling, and proangiogenic agents such as vascular endothelial factor and interleukin-8 for the sustained growth, survival, and metastasis of pancreatic cancer cells. The molecular mechanisms associated with antitumoral properties and the clinical benefits of gemcitabine alone or in combination with other cytotoxic agents for the treatment of pancreatic cancer are discussed.
Collapse
Affiliation(s)
- Murielle Mimeault
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | | | | | | |
Collapse
|
33
|
Kalina T, Vaskova M, Mejstrikova E, Madzo J, Trka J, Stary J, Hrusak O. Myeloid antigens in childhood lymphoblastic leukemia: clinical data point to regulation of CD66c distinct from other myeloid antigens. BMC Cancer 2005; 5:38. [PMID: 15826304 PMCID: PMC1112585 DOI: 10.1186/1471-2407-5-38] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Accepted: 04/12/2005] [Indexed: 11/10/2022] Open
Abstract
Background Aberrant expression of myeloid antigens (MyAgs) on acute lymphoblastic leukemia (ALL) cells is a well-documented phenomenon, although its regulating mechanisms are unclear. MyAgs in ALL are interpreted e.g. as hallmarks of early differentiation stage and/or lineage indecisiveness. Granulocytic marker CD66c – Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) is aberrantly expressed on ALL with strong correlation to genotype (negative in TEL/AML1 and MLL/AF4, positive in BCR/ABL and hyperdiploid cases). Methods In a cohort of 365 consecutively diagnosed Czech B-precursor ALL patients, we analyze distribution of MyAg+ cases and mutual relationship among CD13, CD15, CD33, CD65 and CD66c. The most frequent MyAg (CD66c) is studied further regarding its stability from diagnosis to relapse, prognostic significance and regulation of surface expression. For the latter, flow cytometry, Western blot and quantitative RT-PCR on sorted cells is used. Results We show CD66c is expressed in 43% patients, which is more frequent than other MyAgs studied. In addition, CD66c expression negatively correlates with CD13 (p < 0.0001), CD33 (p = 0.002) and/or CD65 (p = 0.029). Our data show that different myeloid antigens often differ in biological importance, which may be obscured by combining them into "MyAg positive ALL". We show that unlike other MyAgs, CD66c expression is not shifted from the onset of ALL to relapse (n = 39, time to relapse 0.3–5.3 years). Although opposite has previously been suggested, we show that CEACAM6 transcription is invariably followed by surface expression (by quantitative RT-PCR on sorted cells) and that malignant cells containing CD66c in cytoplasm without surface expression are not found by flow cytometry nor by Western blot in vivo. We report no prognostic significance of CD66c, globally or separately in genotype subsets of B-precursor ALL, nor an association with known risk factors (n = 254). Conclusion In contrast to general notion we show that different MyAgs in lymphoblastic leukemia represent different biological circumstances. We chose the most frequent and tightly genotype-associated MyAg CD66c to show its stabile expression in patients from diagnosis to relapse, which differs from what is known on the other MyAgs. Surface expression of CD66c is regulated at the gene transcription level, in contrast to previous reports.
Collapse
Affiliation(s)
- Tomas Kalina
- Department of Immunology, Charles University 2nd Medical School, Prague, Czech Republic
- CLIP – Childhood Leukemia Investigation Prague Czech Republic
| | - Martina Vaskova
- Department of Immunology, Charles University 2nd Medical School, Prague, Czech Republic
- CLIP – Childhood Leukemia Investigation Prague Czech Republic
| | - Ester Mejstrikova
- Department of Immunology, Charles University 2nd Medical School, Prague, Czech Republic
- CLIP – Childhood Leukemia Investigation Prague Czech Republic
| | - Jozef Madzo
- Department of Pediatric Hematology and Oncology, Charles University 2nd Medical School, Prague, Czech Republic
- CLIP – Childhood Leukemia Investigation Prague Czech Republic
| | - Jan Trka
- Department of Pediatric Hematology and Oncology, Charles University 2nd Medical School, Prague, Czech Republic
- CLIP – Childhood Leukemia Investigation Prague Czech Republic
| | - Jan Stary
- Department of Pediatric Hematology and Oncology, Charles University 2nd Medical School, Prague, Czech Republic
| | - Ondrej Hrusak
- Department of Immunology, Charles University 2nd Medical School, Prague, Czech Republic
- CLIP – Childhood Leukemia Investigation Prague Czech Republic
| |
Collapse
|