1
|
Song H, Liu H, Wang X, Yang Y, Zhao X, Jiang WG, Sui L, Song X. Death-associated protein 3 in cancer-discrepant roles of DAP3 in tumours and molecular mechanisms. Front Oncol 2024; 13:1323751. [PMID: 38352299 PMCID: PMC10862491 DOI: 10.3389/fonc.2023.1323751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/30/2023] [Indexed: 02/16/2024] Open
Abstract
Cancer, ranks as the secondary cause of death, is a group of diseases that are characterized by uncontrolled tumor growth and distant metastasis, leading to increased mortality year-on-year. To date, targeted therapy to intercept the aberrant proliferation and invasion is crucial for clinical anticancer treatment, however, mutant expression of target genes often leads to drug resistance. Therefore, it is essential to identify more molecules that can be targeted to facilitate combined therapy. Previous studies showed that death associated protein 3 (DAP3) exerts a pivotal role in regulating apoptosis signaling of tumors, meanwhile, aberrant DAP3 expression is associated with the tumorigenesis and disease progression of various cancers. This review provides an overview of the molecule structure of DAP3 and the discrepant roles played by DAP3 in various types of tumors. Considering the molecular mechanism of DAP3-regulated cancer development, new potential treatment strategies might be developed in the future.
Collapse
Affiliation(s)
- Hao Song
- The Second Medical College, Binzhou Medical University, Yantai, China
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Huifang Liu
- The Second Medical College, Binzhou Medical University, Yantai, China
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Xiufeng Wang
- Department of Nursing, Zhaoyuan People's Hospital, Yantai, China
| | - Yuteng Yang
- The Second Medical College, Binzhou Medical University, Yantai, China
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Xiangkun Zhao
- The Second Medical College, Binzhou Medical University, Yantai, China
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Wen G. Jiang
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Laijian Sui
- Department of Orthopedics, Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| |
Collapse
|
2
|
Al-Qadhi MA, Allam HA, Fahim SH, Yahya TAA, Ragab FAF. Design and synthesis of certain 7-Aryl-2-Methyl-3-Substituted Pyrazolo{1,5-a}Pyrimidines as multikinase inhibitors. Eur J Med Chem 2023; 262:115918. [PMID: 37922829 DOI: 10.1016/j.ejmech.2023.115918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
Four new series 7a-e, 8a-e, 9a-e, and 10a-e of 7-aryl-3-substituted pyrazolo[1,5-a]pyrimidines were synthesized and tested for their RTK and STK inhibitory activity. Compound 7d demonstrated potent enzymatic inhibitory activity against TrkA and ALK2 with IC50 0.087and 0.105 μM, respectively, and potent antiproliferative activity against KM12 and EKVX cell lines with IC50 0.82 and 4.13 μM, respectively. Compound 10e showed good enzyme inhibitory activity against TrkA, ALK2, c-KIT, EGFR, PIM1, CK2α, CHK1, and CDK2 in submicromolar values. Additionally 10e revealed antiproliferative activity against MCF7, HCT116 and EKVX with IC50 3.36, 1.40 and 3.49 μM, respectively; with good safety profile. Moreover, 10e showed cell cycle arrest at the G1/S phase and G1 phase in MCF7 and HCT116 cells with good apoptotic effect. Molecular docking studies were fulfilled for compound 10e and illustrated good interaction with the hot spots of the active site of the tested enzymes.
Collapse
Affiliation(s)
- Mustafa A Al-Qadhi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Sana'a University, P.O. Box, 18084, Sana'a, Yemen
| | - Heba Abdelrasheed Allam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box, 11562, Egypt.
| | - Samar H Fahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box, 11562, Egypt
| | - Tawfeek A A Yahya
- Department of Medicinal Chemistry, Faculty of Pharmacy, Sana'a University, P.O. Box, 18084, Sana'a, Yemen
| | - Fatma A F Ragab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box, 11562, Egypt
| |
Collapse
|
3
|
Wińska P, Wielechowska M, Koronkiewicz M, Borowiecki P. Synthesis and Anticancer Activity of Novel Dual Inhibitors of Human Protein Kinases CK2 and PIM-1. Pharmaceutics 2023; 15:1991. [PMID: 37514177 PMCID: PMC10385865 DOI: 10.3390/pharmaceutics15071991] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/05/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
CK2 and PIM-1 are serine/threonine kinases involved in the regulation of many essential processes, such as proliferation, differentiation, and apoptosis. Inhibition of CK2 and PIM-1 kinase activity has been shown to significantly reduce the viability of cancer cells by inducing apoptosis. A series of novel amino alcohol derivatives of parental DMAT were designed and synthesized as potent dual CK2/PIM-1 inhibitors. Concomitantly with the inhibition studies toward recombinant CK2 and PIM-1, the influence of the obtained compounds on the viability of three human carcinoma cell lines, i.e., acute lymphoblastic leukemia (CCRF-CEM), human chronic myelogenous leukemia (K-562), and breast cancer (MCF-7), as well as non-cancerous cells (Vero), was evaluated using an MTT assay. Induction of apoptosis and cell cycle progression after treatment with the most active compound and a lead compound were studied by flow-cytometry-based assay. Additionally, autophagy induction in K-562 cells and intracellular inhibition of CK2 and PIM-1 in all the tested cell lines were evaluated by qualitative/quantitative fluorescence-based assay and Western blot method, respectively. Among the newly developed inhibitors, 1,1,1-trifluoro-3-[(4,5,6,7-tetrabromo-1H-benzimidazol-2-yl)amino]propan-2-ol demonstrates the highest selectivity and the most prominent proapoptotic properties towards the studied cancer cells, especially towards acute lymphoblastic leukemia, in addition to inducing autophagy in K-562 cells.
Collapse
Affiliation(s)
- Patrycja Wińska
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Monika Wielechowska
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | | | - Paweł Borowiecki
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| |
Collapse
|
4
|
Zhang C, Zeng C, Xiong S, Zhao Z, Wu G. A mitophagy-related gene signature associated with prognosis and immune microenvironment in colorectal cancer. Sci Rep 2022; 12:18688. [PMID: 36333388 PMCID: PMC9636133 DOI: 10.1038/s41598-022-23463-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease and one of the most prevalent malignancies worldwide. Previous research has demonstrated that mitophagy is crucial to developing colorectal cancer. This study aims to examine the association between mitophagy-related genes and the prognosis of CRC patients. Gene expression profiles and clinical information of CRC patients were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Univariate Cox regression and the least absolute shrinkage and selection operator (LASSO) regression analysis were applied to establish a prognostic signature using mitophagy related genes. Kaplan-Meier and receiver operating characteristic (ROC) curves were used to analyze patient survival and predictive accuracy. Meanwhile, we also used the Genomics of Drug Sensitivity in Cancer (GDSC) database and Tumor Immune Dysfunction and Exclusion (TIDE) algorithm to estimate the sensitivity of chemotherapy, targeted therapy and immunotherapy. ATG14 overexpression plasmid was used to regulate the ATG14 expression level in HCT116 and SW480 cell lines, and cell counting kit-8, colony formation and transwell migration assay were performed to validate the function of ATG14 in CRC cells. A total of 22 mitophagy-driven genes connected with CRC survival were identified, and then a novel prognostic signature was established based on 10 of them (AMBRA1, ATG14, MAP1LC3A, MAP1LC3B, OPTN, VDAC1, ATG5, CSNK2A2, MFN1, TOMM22). Patients were divided into high-risk and low-risk groups based on the median risk score, and the survival of patients in the high-risk group was significantly shorter in both the training cohort and two independent cohorts. ROC curve showed that the area under the curves (AUC) of 1-, 3- and 5-year survival were 0.66, 0.66 and 0.64, respectively. Multivariate Cox regression analysis confirmed the independent prognostic value of the signature. Then we constructed a Nomogram combining the risk score, age and M stage, which had a concordance index of survival prediction of 0.77 (95% CI 0.71-0.83) and more robust predictive accuracy. Results showed that CD8+ T cells, regulatory T cells and activated NK cells were significantly more enriched in the high-risk group. Furthermore, patients in the high-risk group are more sensitive to targeted therapy or chemotherapy, including bosutinib, elesclomol, lenalidomide, midostaurin, pazopanib and sunitinib, while the low-risk group is more likely to benefit from immunotherapy. Finally, in vitro study confirmed the oncogenic significance of ATG14 in both HCT116 and SW480 cells, whose overexpression increased CRC cell proliferation, colony formation, and migration. In conclusion, we developed a novel mitophagy-related gene signature that can be utilized not only as an independent predictive biomarker but also as a tool for tailoring personalizing treatment for CRC patients, and we confirmed ATG14 as a novel oncogene in CRC.
Collapse
Affiliation(s)
- Cong Zhang
- grid.415440.0Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan China
| | - Cailing Zeng
- grid.415440.0Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan China
| | - Shaoquan Xiong
- grid.415440.0Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan China
| | - Zewei Zhao
- grid.411304.30000 0001 0376 205XChengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan China
| | - Guoyu Wu
- grid.415440.0Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan China
| |
Collapse
|
5
|
Trembley JH, Kren BT, Afzal M, Scaria GA, Klein MA, Ahmed K. Protein kinase CK2 – diverse roles in cancer cell biology and therapeutic promise. Mol Cell Biochem 2022; 478:899-926. [PMID: 36114992 PMCID: PMC9483426 DOI: 10.1007/s11010-022-04558-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022]
Abstract
The association of protein kinase CK2 (formerly casein kinase II or 2) with cell growth and proliferation in cells was apparent at early stages of its investigation. A cancer-specific role for CK2 remained unclear until it was determined that CK2 was also a potent suppressor of cell death (apoptosis); the latter characteristic differentiated its function in normal versus malignant cells because dysregulation of both cell growth and cell death is a universal feature of cancer cells. Over time, it became evident that CK2 exerts its influence on a diverse range of cell functions in normal as well as in transformed cells. As such, CK2 and its substrates are localized in various compartments of the cell. The dysregulation of CK2 is documented in a wide range of malignancies; notably, by increased CK2 protein and activity levels with relatively moderate change in its RNA abundance. High levels of CK2 are associated with poor prognosis in multiple cancer types, and CK2 is a target for active research and testing for cancer therapy. Aspects of CK2 cellular roles and targeting in cancer are discussed in the present review, with focus on nuclear and mitochondrial functions and prostate, breast and head and neck malignancies.
Collapse
Affiliation(s)
- Janeen H Trembley
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Betsy T Kren
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
| | - Muhammad Afzal
- Department of Biochemistry, Riphah International University, Islamabad, Pakistan
| | - George A Scaria
- Hematology/Oncology Section, Primary Care Service Line, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
| | - Mark A Klein
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
- Hematology/Oncology Section, Primary Care Service Line, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Khalil Ahmed
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
- Department of Urology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
6
|
Marshall CA, McBride JD, Changolkar L, Riddle DM, Trojanowski JQ, Lee VMY. Inhibition of CK2 mitigates Alzheimer's tau pathology by preventing NR2B synaptic mislocalization. Acta Neuropathol Commun 2022; 10:30. [PMID: 35246269 PMCID: PMC8895919 DOI: 10.1186/s40478-022-01331-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder that exhibits pathological changes in both tau and synaptic function. AD patients display increases in hyperphosphorylated tau and synaptic activity. Previous studies have individually identified the role of NR2B subunit-containing NMDA receptors in AD related synaptic dysfunction and aggregated tau without reconciling the conflicting differences and implications of NR2B expression. Inhibition of extrasynaptically located NR2B mitigates tau pathology in AD models, whereas the inhibition of synaptic NR2B replicates tau-associated hyperactivity. This suggests that a simultaneous increase in extrasynaptic NR2B and decrease in synaptic NR2B may be responsible for tau pathology and synaptic dysfunction, respectively. The synaptic location of NR2B is regulated by casein kinase 2 (CK2), which is highly expressed in AD patients. Here, we used patient brains diagnosed with AD, corticobasal degeneration, progressive supranuclear palsy or Pick’s disease to characterize CK2 expression across these diverse tauopathies. Human derived material was also utilized in conjunction with cultured hippocampal neurons in order to investigate AD-induced changes in NR2B location. We further assessed the therapeutic effect of CK2 inhibition on NR2B synaptic distribution and tau pathology. We found that aberrant expression of CK2, and synaptically translocated NR2B, is unique to AD patients compared to other tauopathies. Increased CK2 was also observed in AD-tau treated neurons in addition to the mislocalization of NR2B receptors. Tau burden was alleviated in vitro by correcting synaptic:extrasynaptic NR2B function. Restoring NR2B physiological expression patterns with CK2 inhibition and inhibiting the function of excessive extrasynaptic NR2B with Memantine both mitigated tau accumulation in vitro. However, the combined pharmacological treatment promoted the aggregation of tau. Our data suggests that the synaptic:extrasynaptic balance of NR2B function regulates AD-tau pathogenesis, and that the inhibition of CK2, and concomitant prevention of NR2B mislocalization, may be a useful therapeutic tool for AD patients.
Collapse
|
7
|
Chojnacki K, Wińska P, Karatsai O, Koronkiewicz M, Milner-Krawczyk M, Wielechowska M, Rędowicz MJ, Bretner M, Borowiecki P. Synthesis of Novel Acyl Derivatives of 3-(4,5,6,7-Tetrabromo-1 H-benzimidazol-1-yl)propan-1-ols-Intracellular TBBi-Based CK2 Inhibitors with Proapoptotic Properties. Int J Mol Sci 2021; 22:6261. [PMID: 34200807 PMCID: PMC8230474 DOI: 10.3390/ijms22126261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 12/09/2022] Open
Abstract
Protein kinase CK2 has been considered as an attractive drug target for anti-cancer therapy. The synthesis of N-hydroxypropyl TBBi and 2MeTBBi derivatives as well as their respective esters was carried out by using chemoenzymatic methods. Concomitantly with kinetic studies toward recombinant CK2, the influence of the obtained compounds on the viability of two human breast carcinoma cell lines (MCF-7 and MDA-MB-231) was evaluated using MTT assay. Additionally, an intracellular inhibition of CK2 as well as an induction of apoptosis in the examined cells after the treatment with the most active compounds were studied by Western blot analysis, phase-contrast microscopy and flow cytometry method. The results of the MTT test revealed potent cytotoxic activities for most of the newly synthesized compounds (EC50 4.90 to 32.77 µM), corresponding to their solubility in biological media. We concluded that derivatives with the methyl group decrease the viability of both cell lines more efficiently than their non-methylated analogs. Furthermore, inhibition of CK2 in breast cancer cells treated with the tested compounds at the concentrations equal to their EC50 values correlates well with their lipophilicity since derivatives with higher values of logP are more potent intracellular inhibitors of CK2 with better proapoptotic properties than their parental hydroxyl compounds.
Collapse
Affiliation(s)
- Konrad Chojnacki
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland; (K.C.); (M.M.-K.); (M.W.); (M.B.); (P.B.)
| | - Patrycja Wińska
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland; (K.C.); (M.M.-K.); (M.W.); (M.B.); (P.B.)
| | - Olena Karatsai
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (O.K.); (M.J.R.)
| | - Mirosława Koronkiewicz
- Department of Drug Biotechnology and Bioinformatics, National Medicines Institute, 00-725 Warsaw, Poland;
| | - Małgorzata Milner-Krawczyk
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland; (K.C.); (M.M.-K.); (M.W.); (M.B.); (P.B.)
| | - Monika Wielechowska
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland; (K.C.); (M.M.-K.); (M.W.); (M.B.); (P.B.)
| | - Maria Jolanta Rędowicz
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (O.K.); (M.J.R.)
| | - Maria Bretner
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland; (K.C.); (M.M.-K.); (M.W.); (M.B.); (P.B.)
| | - Paweł Borowiecki
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland; (K.C.); (M.M.-K.); (M.W.); (M.B.); (P.B.)
| |
Collapse
|
8
|
Vigneswara V, Ahmed Z. The Role of Caspase-2 in Regulating Cell Fate. Cells 2020; 9:cells9051259. [PMID: 32438737 PMCID: PMC7290664 DOI: 10.3390/cells9051259] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
Caspase-2 is the most evolutionarily conserved member of the mammalian caspase family and has been implicated in both apoptotic and non-apoptotic signaling pathways, including tumor suppression, cell cycle regulation, and DNA repair. A myriad of signaling molecules is associated with the tight regulation of caspase-2 to mediate multiple cellular processes far beyond apoptotic cell death. This review provides a comprehensive overview of the literature pertaining to possible sophisticated molecular mechanisms underlying the multifaceted process of caspase-2 activation and to highlight its interplay between factors that promote or suppress apoptosis in a complicated regulatory network that determines the fate of a cell from its birth and throughout its life.
Collapse
|
9
|
Cojocneanu R, Braicu C, Raduly L, Jurj A, Zanoaga O, Magdo L, Irimie A, Muresan MS, Ionescu C, Grigorescu M, Berindan-Neagoe I. Plasma and Tissue Specific miRNA Expression Pattern and Functional Analysis Associated to Colorectal Cancer Patients. Cancers (Basel) 2020; 12:cancers12040843. [PMID: 32244548 PMCID: PMC7226631 DOI: 10.3390/cancers12040843] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
An increasing number of studies suggest the implication of microRNAs (miRNAs) in colorectal (CRC) carcinogenesis and disease progression. Nevertheless, the basic mechanism is not yet clear. We determined plasma miRNA expression levels using Agilent microarray technology followed by overlapping with The Cancer Genome Atlas (TCGA) tissue data and a qRT-PCR validation step and analysis of the altered miRNA signatures to emphasize new mechanistic insights. For TGCA dataset, we identified 156 altered miRNAs (79 downregulated and 77 upregulated) in colorectal tissue samples versus normal tissue. The microarray experiment is based on 16 control samples, 38 CRC plasma samples from colorectal cancer patients who have not undergone chemotherapy, and 17 chemo-treated samples. In the case of the analysis of CRC cancer versus healthy control we identified 359 altered miRNAs (214 downregulated and 60 upregulated), considering as the cutoff value a fold-change of ±1.5 and p < 0.01. An additional microarray analysis was performed on plasma from untreated colorectal cancer (n = 38) and chemotherapy-treated colorectal cancer patients (n = 17), which revealed 15 downregulated miRNAs and 53 upregulated miRNAs, demonstrating that the plasma miRNA pattern is affected by chemotherapy and emphasizing important regulators of drug resistance mechanisms. For the validation of the microarray data, we selected a panel of 4 miRNAs from the common miRNA signatures for colon and rectal cancer (miR-642b-3p, miR-195-5p and miR-4741). At the tissue level, the expression levels were in agreement with those observed in colorectal plasma. miR-1228-3p, the top upregulated miRNA in CRC, was chosen to be validated on tissue and plasma samples, as it was demonstrated to be downregulated at tissue level in our patient cohort. This was confirmed by TCGA data and was one example of ta ranscript that has a different expression level between tumor tissue and plasma. Developing more efficient investigation methods will help explain the mechanisms responsible for miRNAs released in biofluids, which is the most upregulated transcript in colorectal plasma samples and which can function as a prediction tool within the oncological field.
Collapse
Affiliation(s)
- Roxana Cojocneanu
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400015 Cluj-Napoca, Romania; (R.C.); (L.R.); (A.J.); (O.Z.); (L.M.); (I.B.-N.)
| | - Cornelia Braicu
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400015 Cluj-Napoca, Romania; (R.C.); (L.R.); (A.J.); (O.Z.); (L.M.); (I.B.-N.)
- Correspondence: (C.B.); (C.I.)
| | - Lajos Raduly
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400015 Cluj-Napoca, Romania; (R.C.); (L.R.); (A.J.); (O.Z.); (L.M.); (I.B.-N.)
| | - Ancuta Jurj
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400015 Cluj-Napoca, Romania; (R.C.); (L.R.); (A.J.); (O.Z.); (L.M.); (I.B.-N.)
| | - Oana Zanoaga
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400015 Cluj-Napoca, Romania; (R.C.); (L.R.); (A.J.); (O.Z.); (L.M.); (I.B.-N.)
| | - Lorand Magdo
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400015 Cluj-Napoca, Romania; (R.C.); (L.R.); (A.J.); (O.Z.); (L.M.); (I.B.-N.)
| | - Alexandru Irimie
- Department of Surgery, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania;
- Department of Surgical Oncology and Gynecological Oncology, University of Medicine and Pharmacy Iuliu Hatieganu, 400015 Cluj-Napoca, Romania
| | - Mihai-Stefan Muresan
- 5th Surgical Department, Municipal Hospital, 400139 Cluj-Napoca, Romania;
- Department of Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400015 Cluj-Napoca, Romania
| | - Calin Ionescu
- 5th Surgical Department, Municipal Hospital, 400139 Cluj-Napoca, Romania;
- Department of Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400015 Cluj-Napoca, Romania
- Correspondence: (C.B.); (C.I.)
| | - Mircea Grigorescu
- Gastroenterology and Hepatology Department, 3rd Medical Clinic, Iuliu Hatieganu University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania;
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400015 Cluj-Napoca, Romania; (R.C.); (L.R.); (A.J.); (O.Z.); (L.M.); (I.B.-N.)
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu Hatieganu, 23 Marinescu Street, 400015 Cluj-Napoca, Romania
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, Republicii 34 Street, 400015 Cluj-Napoca, Romania
| |
Collapse
|
10
|
Lian H, Su M, Zhu Y, Zhou Y, Soomro SH, Fu H. Protein Kinase CK2, a Potential Therapeutic Target in Carcinoma Management. Asian Pac J Cancer Prev 2019; 20:23-32. [PMID: 30677865 PMCID: PMC6485562 DOI: 10.31557/apjcp.2019.20.1.23] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Protein kinase CK2 (formerly known as casein kinase 2) is a highly conserved serine/ threonine kinase
overexpressed in various human carcinomas and its high expression often correlates with poor prognosis. CK2 protein
is localized in the nucleus of many tumor cells and correlates with clinical features in many cases. Increased expression
of CK2 in mice results in the development of various types of carcinomas (both solids and blood related tumors, such
as (breast carcinoma, lymphoma, etc), which reveals its carcinogenic properties. CK2 plays essential roles in many key
biological processes related to carcinoma, including cell apoptosis, DNA damage responses and cell cycle regulation.
CK2 has become a potential anti-carcinoma target. Various CK2 inhibitors have been developed with anti-neoplastic
properties against a variety of carcinomas. Some CK2 inhibitors have showed good results in in vitro and pre-clinical
models, and have even entered in clinical trials. This article will review effects of CK2 and its inhibitors on common
carcinomas in in vitro and pre-clinical studies.
Collapse
Affiliation(s)
- Haiwei Lian
- Department of Human Anatomy, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, P.R, China.
| | | | | | | | | | | |
Collapse
|
11
|
Hashimoto A, Gao C, Mastio J, Kossenkov A, Abrams SI, Purandare AV, Desilva H, Wee S, Hunt J, Jure-Kunkel M, Gabrilovich DI. Inhibition of Casein Kinase 2 Disrupts Differentiation of Myeloid Cells in Cancer and Enhances the Efficacy of Immunotherapy in Mice. Cancer Res 2018; 78:5644-5655. [PMID: 30139814 DOI: 10.1158/0008-5472.can-18-1229] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/09/2018] [Accepted: 07/31/2018] [Indexed: 12/23/2022]
Abstract
The role of myeloid cells as regulators of tumor progression that significantly impact the efficacy of cancer immunotherapies makes them an attractive target for inhibition. Here we explore the effect of a novel, potent, and selective inhibitor of serine/threonine protein kinase casein kinase 2 (CK2) on modulating myeloid cells in the tumor microenvironment. Although inhibition of CK2 caused only a modest effect on dendritic cells in tumor-bearing mice, it substantially reduced the amount of polymorphonuclear myeloid-derived suppressor cells and tumor-associated macrophages. This effect was not caused by the induction of apoptosis, but rather by a block of differentiation. Our results implicated downregulation of CCAAT-enhancer binding protein-α in this effect. Although CK2 inhibition did not directly affect tumor cells, it dramatically enhanced the antitumor activity of immune checkpoint receptor blockade using anti-CTLA-4 antibody. These results suggest a potential role of CK2 inhibitors in combination therapies against cancer.Significance: These findings demonstrate the modulatory effects of casein kinase 2 inhibitors on myeloid cell differentiation in the tumor microenvironment, which subsequently synergize with the antitumor effects of checkpoint inhibitor CTLA4. Cancer Res; 78(19); 5644-55. ©2018 AACR.
Collapse
Affiliation(s)
| | - Chan Gao
- Bristol-Myers Squibb, Princeton, New Jersey
| | | | | | - Scott I Abrams
- Roswell Park Comprehensive Cancer Center, Department of Immunology, Buffalo, New York, Medimmune, Gaithersburg, Maryland
| | | | | | - Susan Wee
- Bristol-Myers Squibb, Princeton, New Jersey
| | | | | | | |
Collapse
|
12
|
Disrupting CCT-β : β-tubulin selectively kills CCT-β overexpressed cancer cells through MAPKs activation. Cell Death Dis 2017; 8:e3052. [PMID: 28906489 PMCID: PMC5636972 DOI: 10.1038/cddis.2017.425] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/12/2017] [Accepted: 07/24/2017] [Indexed: 12/21/2022]
Abstract
We have previously demonstrated the ability of I-Trp to disrupt the protein–protein interaction of β-tubulin with chaperonin-containing TCP-1β (CCT-β). This caused more severe apoptosis in multidrug-resistant MES-SA/Dx5, compared to MES-SA, due to its higher CCT-β overexpression. In this study, we screened a panel of cancer cell lines, finding CCT-β overexpression in the triple-negative breast cancer cell line MDA-MB-231, colorectal cancer cell lines Colo205 and HCT116, and a gastric cancer cell line MKN-45. Thus, I-Trp killed these cancers with sub- to low-μM EC50, whereas it was non-toxic to MCF-10A. We then synthesized analogs of I-Trp and evaluated their cytotoxicity. Furthermore, apoptotic mechanism investigations revealed the activation of both protein ubiquitination/degradation and ER-associated protein degradation pathways. These pathways proceeded through activation of MAPKs at the onset of CCT-β : β-tubulin complex disruption. We thus establish an effective strategy to treat CCT-β overexpressed cancers by disrupting the CCT-β : β-tubulin complex.
Collapse
|
13
|
Chua MMJ, Ortega CE, Sheikh A, Lee M, Abdul-Rassoul H, Hartshorn KL, Dominguez I. CK2 in Cancer: Cellular and Biochemical Mechanisms and Potential Therapeutic Target. Pharmaceuticals (Basel) 2017; 10:E18. [PMID: 28134850 PMCID: PMC5374422 DOI: 10.3390/ph10010018] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 01/09/2023] Open
Abstract
CK2 genes are overexpressed in many human cancers, and most often overexpression is associated with worse prognosis. Site-specific expression in mice leads to cancer development (e.g., breast, lymphoma) indicating the oncogenic nature of CK2. CK2 is involved in many key aspects of cancer including inhibition of apoptosis, modulation of signaling pathways, DNA damage response, and cell cycle regulation. A number of CK2 inhibitors are now available and have been shown to have activity against various cancers in vitro and in pre-clinical models. Some of these inhibitors are now undergoing exploration in clinical trials as well. In this review, we will examine some of the major cancers in which CK2 inhibition has promise based on in vitro and pre-clinical studies, the proposed cellular and signaling mechanisms of anti-cancer activity by CK2 inhibitors, and the current or recent clinical trials using CK2 inhibitors.
Collapse
Affiliation(s)
- Melissa M J Chua
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Charina E Ortega
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Ayesha Sheikh
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Migi Lee
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Hussein Abdul-Rassoul
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Kevan L Hartshorn
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Isabel Dominguez
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| |
Collapse
|
14
|
Sung B, Chung HY, Kim ND. Role of Apigenin in Cancer Prevention via the Induction of Apoptosis and Autophagy. J Cancer Prev 2016; 21:216-226. [PMID: 28053955 PMCID: PMC5207605 DOI: 10.15430/jcp.2016.21.4.216] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 12/12/2022] Open
Abstract
Apigenin (4′,5,7-trihydroxyflavone) is a flavonoid commonly found in many fruits and vegetables such as parsley, chamomile, celery, and kumquats. In the last few decades, recognition of apigenin as a cancer chemopreventive agent has increased. Significant progress has been made in studying the chemopreventive aspects of apigenin both in vitro and in vivo. Several studies have demonstrated that the anticarcinogenic properties of apigenin occur through regulation of cellular response to oxidative stress and DNA damage, suppression of inflammation and angiogenesis, retardation of cell proliferation, and induction of autophagy and apoptosis. One of the most well-recognized mechanisms of apigenin is the capability to promote cell cycle arrest and induction of apoptosis through the p53-related pathway. A further role of apigenin in chemoprevention is the induction of autophagy in several human cancer cell lines. In this review, we discuss the details of apigenin, apoptosis, autophagy, and the role of apigenin in cancer chemoprevention via the induction of apoptosis and autophagy.
Collapse
Affiliation(s)
- Bokyung Sung
- Department of Pharmacy, College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan, Korea
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan, Korea
| | - Nam Deuk Kim
- Department of Pharmacy, College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan, Korea
| |
Collapse
|
15
|
Gowda C, Song C, Kapadia M, Payne JL, Hu T, Ding Y, Dovat S. Regulation of cellular proliferation in acute lymphoblastic leukemia by Casein Kinase II (CK2) and Ikaros. Adv Biol Regul 2016; 63:71-80. [PMID: 27666503 DOI: 10.1016/j.jbior.2016.09.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/09/2016] [Indexed: 12/23/2022]
Abstract
The IKZF1 gene encodes the Ikaros protein, a zinc finger transcriptional factor that acts as a master regulator of hematopoiesis and a tumor suppressor in leukemia. Impaired activity of Ikaros is associated with the development of high-risk acute lymphoblastic leukemia (ALL) with a poor prognosis. The molecular mechanisms that regulate Ikaros' function as a tumor suppressor and regulator of cellular proliferation are not well understood. We demonstrated that Ikaros is a substrate for Casein Kinase II (CK2), an oncogenic kinase that is overexpressed in ALL. Phosphorylation of Ikaros by CK2 impairs Ikaros' DNA-binding ability, as well as Ikaros' ability to regulate gene expression and function as a tumor suppressor in leukemia. Targeting CK2 with specific inhibitors restores Ikaros' function as a transcriptional regulator and tumor suppressor resulting in a therapeutic, anti-leukemia effect in a preclinical model of ALL. Here, we review the genes and pathways that are regulated by Ikaros and the molecular mechanisms through which Ikaros and CK2 regulate cellular proliferation in leukemia.
Collapse
Affiliation(s)
- Chandrika Gowda
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Chunhua Song
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Malika Kapadia
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Jonathon L Payne
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA; Loma Linda University, Loma Linda, CA, USA
| | - Tommy Hu
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Yali Ding
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Sinisa Dovat
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
16
|
De Miguel D, Gallego-Lleyda A, Ayuso JM, Erviti-Ardanaz S, Pazo-Cid R, del Agua C, Fernández LJ, Ochoa I, Anel A, Martinez-Lostao L. TRAIL-coated lipid-nanoparticles overcome resistance to soluble recombinant TRAIL in non-small cell lung cancer cells. NANOTECHNOLOGY 2016; 27:185101. [PMID: 27001952 DOI: 10.1088/0957-4484/27/18/185101] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
PURPOSE Non-small cell lung cancer (NSCLC) is one the types of cancer with higher prevalence and mortality. Apo2-Ligand/TRAIL is a TNF family member able to induce apoptosis in tumor cells but not in normal cells. It has been tested in clinical trials against different types of human cancer including NSCLC. However, results of clinical trials have shown a limited efficacy of TRAIL-based therapies. Recently we have demonstrated that artificial lipid nanoparticles coated with bioactive Apo2L/TRAIL (LUV-TRAIL) greatly improved TRAIL cytotoxic ability being capable of killing chemoresistant hematological cancer cells. In the present work we have extended the study to NSCLC. METHODS/PATIENTS LUV-TRAIL-induced cytotoxicity was assessed on different NSCLC cell lines with different sensitivity to soluble TRAIL and on primary human tumor cells from three patients suffering from NSCLC cancer. We also tested LUV-TRAIL-cytotoxic ability in combination with several anti-tumor agents. RESULTS LUV-TRAIL exhibited a greater cytotoxic effect compared to soluble TRAIL both in A549 cells and primary human NSCLC cells. LUV-TRAIL-induced cell death was dependent on caspase-8 and caspase-3 activation. Moreover, combination of LUV-TRAIL with other anti-tumor agents such as flavopiridol, and SNS-032 clearly enhanced LUV-TRAIL-induced cytotoxicity against NSCLC cancer cells. CONCLUSION The novel formulation of TRAIL based on displaying it on the surface of lipid nanoparticles greatly increases its anti-tumor activity and has clinical potential in cancer treatment.
Collapse
Affiliation(s)
- Diego De Miguel
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Mandato E, Manni S, Zaffino F, Semenzato G, Piazza F. Targeting CK2-driven non-oncogene addiction in B-cell tumors. Oncogene 2016; 35:6045-6052. [PMID: 27041560 DOI: 10.1038/onc.2016.86] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 02/15/2016] [Accepted: 02/15/2016] [Indexed: 12/14/2022]
Abstract
Genetic mutations of oncogenes often underlie deranged cell growth and altered differentiation pathways leading to malignant transformation of B-lymphocytes. However, addiction to oncogenes is not the only drive to lymphoid tumor pathogenesis. Dependence on non-oncogenes, which act by propelling basic mechanisms of cell proliferation and survival, has also been recognized in the pathobiology of lymphoid leukemias, lymphomas and multiple myeloma. Among the growing number of molecules that may uphold non-oncogene addiction, a key place is increasingly being recognized to the serine-threonine kinase CK2. This enzyme is overexpressed and overactive in B-acute lymphoblastic leukemia, multiple myeloma, chronic lymphocytic leukemia and non-Hodgkin lymphomas, such as mantle cell, follicular, Burkitt's and diffuse large B-cell lymphomas. In these tumors, CK2 may serve the activity of oncogenes, similar to BCR-ABL and c-MYC, control the activation of critical signaling cascades, such as NF-κB (nuclear factor-κB), STAT3 (signal transducer and activator of transcription 3) and PTEN/PI3K/AKT (phosphatase and tensin homolog protein/phosphoinositide 3-kinase/AKR thymoma), and sustain multiple cellular stress-elicited pathways, such as the proteotoxic stress, unfolded protein and DNA-damage responses. CK2 has also been shown to have an essential role in tuning signals derived from the stromal tumor microenvironment. Not surprisingly, targeting CK2 in lymphoid tumor cell lines or mouse xenograft models can boost the cytotoxic effects of both conventional chemotherapeutics and novel agents, similar to heat-shock protein 90, proteasome and tyrosine kinases inhibitors. In this review, we summarize the evidence indicating how CK2 embodies most of the features of a cancer growth-promoting non-oncogene, focusing on lymphoid tumors. We further discuss the preclinical data of the use of small ATP-competitive CK2 inhibitors, which hold the promise to be additional options in novel drug combinations for the therapy of lymphoid and plasmacellular malignancies.
Collapse
Affiliation(s)
- E Mandato
- Department of Medicine, Hematology Branch, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - S Manni
- Department of Medicine, Hematology Branch, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - F Zaffino
- Department of Medicine, Hematology Branch, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - G Semenzato
- Department of Medicine, Hematology Branch, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - F Piazza
- Department of Medicine, Hematology Branch, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| |
Collapse
|
18
|
Pizzi M, Piazza F, Agostinelli C, Fuligni F, Benvenuti P, Mandato E, Casellato A, Rugge M, Semenzato G, Pileri SA. Protein kinase CK2 is widely expressed in follicular, Burkitt and diffuse large B-cell lymphomas and propels malignant B-cell growth. Oncotarget 2016; 6:6544-52. [PMID: 25788269 PMCID: PMC4466633 DOI: 10.18632/oncotarget.3446] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 01/28/2015] [Indexed: 12/02/2022] Open
Abstract
Serine-threonine kinase CK2 is highly expressed and pivotal for survival and proliferation in multiple myeloma, chronic lymphocytic leukemia and mantle cell lymphoma. Here, we investigated the expression of α catalytic and β regulatory CK2 subunits by immunohistochemistry in 57 follicular (FL), 18 Burkitt (BL), 52 diffuse large B-cell (DLBCL) non-Hodgkin lymphomas (NHL) and in normal reactive follicles. In silico evaluation of available Gene Expression Profile (GEP) data sets from patients and Western blot (WB) analysis in NHL cell-lines were also performed. Moreover, the novel, clinical-grade, ATP-competitive CK2-inhibitor CX-4945 (Silmitasertib) was assayed on lymphoma cells. CK2 was detected in 98.4% of cases with a trend towards a stronger CK2α immunostain in BL compared to FL and DLBCL. No significant differences were observed between Germinal Center B (GCB) and non-GCB DLBCL types. GEP data and WB confirmed elevated CK2 mRNA and protein levels as well as active phosphorylation of specific targets in NHL cells. CX-4945 caused a dose-dependent growth-arresting effect on GCB, non-GCB DLBCL and BL cell-lines and it efficiently shut off phosphorylation of NF-κB RelA and CDC37 on CK2 target sites. Thus, CK2 is highly expressed and could represent a suitable therapeutic target in BL, FL and DLBCL NHL.
Collapse
Affiliation(s)
- Marco Pizzi
- Department of Medicine, Surgical Pathology and Cytopathology Unit, DIMED University of Padua, Padua, Italy
| | - Francesco Piazza
- Department of Medicine, Hematology and Clinical Immunology Branch, DIMED University of Padua, Padua, Italy.,Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Claudio Agostinelli
- Department of Experimental, Hematopathology and Hematology Sections, Diagnostic and Specialty Medicine, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Fabio Fuligni
- Department of Experimental, Hematopathology and Hematology Sections, Diagnostic and Specialty Medicine, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Pietro Benvenuti
- Department of Medicine, Surgical Pathology and Cytopathology Unit, DIMED University of Padua, Padua, Italy
| | - Elisa Mandato
- Department of Medicine, Hematology and Clinical Immunology Branch, DIMED University of Padua, Padua, Italy.,Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Alessandro Casellato
- Department of Medicine, Hematology and Clinical Immunology Branch, DIMED University of Padua, Padua, Italy.,Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Massimo Rugge
- Department of Medicine, Surgical Pathology and Cytopathology Unit, DIMED University of Padua, Padua, Italy
| | - Gianpietro Semenzato
- Department of Medicine, Hematology and Clinical Immunology Branch, DIMED University of Padua, Padua, Italy.,Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Stefano A Pileri
- Department of Experimental, Hematopathology and Hematology Sections, Diagnostic and Specialty Medicine, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| |
Collapse
|
19
|
Filhol O, Giacosa S, Wallez Y, Cochet C. Protein kinase CK2 in breast cancer: the CK2β regulatory subunit takes center stage in epithelial plasticity. Cell Mol Life Sci 2015; 72:3305-22. [PMID: 25990538 PMCID: PMC11113558 DOI: 10.1007/s00018-015-1929-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/06/2015] [Accepted: 05/11/2015] [Indexed: 12/11/2022]
Abstract
Structurally, protein kinase CK2 consists of two catalytic subunits (α and α') and two regulatory subunits (β), which play a critical role in targeting specific CK2 substrates. Compelling evidence shows the complexity of the CK2 cellular signaling network and supports the view that this enzyme is a key component of regulatory protein kinase networks that are involved in several aspects of cancer. CK2 both activates and suppresses the expression of a number of essential oncogenes and tumor suppressors, and its expression and activity are upregulated in blood tumors and virtually all solid tumors. The prognostic significance of CK2α expression in association with various clinicopathological parameters highlighted this kinase as an adverse prognostic marker in breast cancer. In addition, several recent studies reported its implication in the regulation of the epithelial-to-mesenchymal transition (EMT), an early step in cancer invasion and metastasis. In this review, we briefly overview the contribution of CK2 to several aspects of cancer and discuss how in mammary epithelial cells, the expression of its CK2β regulatory subunit plays a critical role in maintaining an epithelial phenotype through CK2-mediated control of key EMT-related transcription factors. Importantly, decreased CK2β expression in breast tumors is correlated with inefficient phosphorylation and nuclear translocation of Snail1 and Foxc2, ultimately leading to EMT induction. This review highlights the pivotal role played by CK2β in the mammary epithelial phenotype and discusses how a modest alteration in its expression may be sufficient to induce dramatic effects facilitating the early steps in tumor cell dissemination through the coordinated regulation of two key transcription factors.
Collapse
Affiliation(s)
- Odile Filhol
- Institut National de la Santé et de la Recherche Médicale, U1036, Grenoble, France
- Institute of Life Sciences Research and Technologies, Biology of Cancer and Infection, Commissariat à l’Energie Atomique, Grenoble, France
- Unité Mixte de Recherche-S1036, University of Grenoble Alpes, Grenoble, France
| | - Sofia Giacosa
- Institut National de la Santé et de la Recherche Médicale, U1036, Grenoble, France
- Institute of Life Sciences Research and Technologies, Biology of Cancer and Infection, Commissariat à l’Energie Atomique, Grenoble, France
- Unité Mixte de Recherche-S1036, University of Grenoble Alpes, Grenoble, France
| | - Yann Wallez
- Institut National de la Santé et de la Recherche Médicale, U1036, Grenoble, France
- Institute of Life Sciences Research and Technologies, Biology of Cancer and Infection, Commissariat à l’Energie Atomique, Grenoble, France
- Unité Mixte de Recherche-S1036, University of Grenoble Alpes, Grenoble, France
| | - Claude Cochet
- Institut National de la Santé et de la Recherche Médicale, U1036, Grenoble, France
- Institute of Life Sciences Research and Technologies, Biology of Cancer and Infection, Commissariat à l’Energie Atomique, Grenoble, France
- Unité Mixte de Recherche-S1036, University of Grenoble Alpes, Grenoble, France
| |
Collapse
|
20
|
Modulatory role of the anti-apoptotic protein kinase CK2 in the sub-cellular localization of Fas associated death domain protein (FADD). BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2885-96. [PMID: 26253696 DOI: 10.1016/j.bbamcr.2015.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 07/28/2015] [Accepted: 08/01/2015] [Indexed: 12/30/2022]
Abstract
The Fas associated death domain protein (FADD) is the key adaptor molecule of the apoptotic signal triggered by death receptors of the TNF-R1 superfamily. Besides its crucial role in the apoptotic machinery, FADD has proved to be important in many biological processes like tumorigenesis, embryonic development or cell cycle progression. In a process to decipher the regulatory mechanisms underlying FADD regulation, we identified the anti-apoptotic kinase, CK2, as a new partner and regulator of FADD sub-cellular localization. The blockade of CK2 activity induced FADD re-localization within the cell. Moreover, cytoplasmic FADD was increased when CK2β was knocked down. In vitro kinase and pull down assays confirmed that FADD could be phosphorylated by the CK2 holoenzyme. We found that phosphorylation is weak with CK2α alone and optimal in the presence of stoichiometric amounts of CK2α catalytic and CK2β regulatory subunit, showing that FADD phosphorylation is undertaken by the CK2 holoenzyme in a CK2β-driven fashion. We found that CK2 can phosphorylate FADD on the serine 200 and that this phosphorylation is important for nuclear localization of FADD. Altogether, our results show for the first time that multifaceted kinase, CK2, phosphorylates FADD and is involved in its sub-cellular localization. This work uncovered an important role of CK2 in stable FADD nuclear localization.
Collapse
|
21
|
Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 2015; 160:48-61. [PMID: 25594174 DOI: 10.1016/j.cell.2014.12.033] [Citation(s) in RCA: 2746] [Impact Index Per Article: 274.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/09/2014] [Accepted: 12/24/2014] [Indexed: 02/07/2023]
Abstract
How the genomic landscape of a tumor shapes and is shaped by anti-tumor immunity has not been systematically explored. Using large-scale genomic data sets of solid tissue tumor biopsies, we quantified the cytolytic activity of the local immune infiltrate and identified associated properties across 18 tumor types. The number of predicted MHC Class I-associated neoantigens was correlated with cytolytic activity and was lower than expected in colorectal and other tumors, suggesting immune-mediated elimination. We identified recurrently mutated genes that showed positive association with cytolytic activity, including beta-2-microglobulin (B2M), HLA-A, -B and -C and Caspase 8 (CASP8), highlighting loss of antigen presentation and blockade of extrinsic apoptosis as key strategies of resistance to cytolytic activity. Genetic amplifications were also associated with high cytolytic activity, including immunosuppressive factors such as PDL1/2 and ALOX12B/15B. Our genetic findings thus provide evidence for immunoediting in tumors and uncover mechanisms of tumor-intrinsic resistance to cytolytic activity.
Collapse
Affiliation(s)
- Michael S Rooney
- The Broad Institute, Cambridge, MA 02142, USA; Harvard/MIT Division of Health Sciences and Technology, Cambridge, MA 02141, USA
| | - Sachet A Shukla
- The Broad Institute, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Catherine J Wu
- The Broad Institute, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Gad Getz
- The Broad Institute, Cambridge, MA 02142, USA; Massachusetts General Hospital Cancer Center and Department of Pathology, Charlestown, MA 02129, USA
| | - Nir Hacohen
- The Broad Institute, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Center for Immunology and Inflammatory Diseases and Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129, USA.
| |
Collapse
|
22
|
de Thonel A, Hazoumé A, Kochin V, Isoniemi K, Jego G, Fourmaux E, Hammann A, Mjahed H, Filhol O, Micheau O, Rocchi P, Mezger V, Eriksson JE, Rangnekar VM, Garrido C. Regulation of the proapoptotic functions of prostate apoptosis response-4 (Par-4) by casein kinase 2 in prostate cancer cells. Cell Death Dis 2014; 5:e1016. [PMID: 24457960 PMCID: PMC4040712 DOI: 10.1038/cddis.2013.532] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 11/16/2013] [Accepted: 11/28/2013] [Indexed: 01/07/2023]
Abstract
The proapoptotic protein, prostate apoptosis response-4 (Par-4), acts as a tumor suppressor in prostate cancer cells. The serine/threonine kinase casein kinase 2 (CK2) has a well-reported role in prostate cancer resistance to apoptotic agents or anticancer drugs. However, the mechanistic understanding on how CK2 supports survival is far from complete. In this work, we demonstrate both in rat and humans that (i) Par-4 is a new substrate of the survival kinase CK2 and (ii) phosphorylation by CK2 impairs Par-4 proapoptotic functions. We also unravel different levels of CK2-dependent regulation of Par-4 between species. In rats, the phosphorylation by CK2 at the major site, S124, prevents caspase-mediated Par-4 cleavage (D123) and consequently impairs the proapoptotic function of Par-4. In humans, CK2 strongly impairs the apoptotic properties of Par-4, independently of the caspase-mediated cleavage of Par-4 (D131), by triggering the phosphorylation at residue S231. Furthermore, we show that human Par-4 residue S231 is highly phosphorylated in prostate cancer cells as compared with their normal counterparts. Finally, the sensitivity of prostate cancer cells to apoptosis by CK2 knockdown is significantly reversed by parallel knockdown of Par-4. Thus, Par-4 seems a critical target of CK2 that could be exploited for the development of new anticancer drugs.
Collapse
Affiliation(s)
- A de Thonel
- 1] INSERM U866, Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France [2] Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France
| | - A Hazoumé
- 1] INSERM U866, Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France [2] Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France
| | - V Kochin
- Department of Pathology, Sapporo Medical University, Sapporo-shi, Hokkaido, Japan
| | - K Isoniemi
- 1] Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland [2] Department of Biosciences, Åbo Akademi University, Tykistökatu 6B, Turku, Finland
| | - G Jego
- 1] INSERM U866, Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France [2] Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France
| | - E Fourmaux
- 1] INSERM U866, Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France [2] Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France
| | - A Hammann
- 1] INSERM U866, Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France [2] Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France
| | - H Mjahed
- 1] INSERM U866, Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France [2] Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France
| | - O Filhol
- INSERM U1036, DSV/iRTSV/CEA, Grenoble, France
| | - O Micheau
- 1] INSERM U866, Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France [2] Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France
| | - P Rocchi
- 1] INSERM, U624 'Stress Cellulaire', Marseille, France [2] Aix-Marseille Université, Campus de Luminy, Marseille, France
| | - V Mezger
- 1] CNRS, UMR7216 Épigénétique et Destin Cellulaire, 35 rue Hélène Brion, Paris, France [2] University Paris Diderot, Sorbonne Paris Cité, 35 rue Hélène Brion, Paris, France
| | - J E Eriksson
- 1] Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland [2] Department of Biosciences, Åbo Akademi University, Tykistökatu 6B, Turku, Finland
| | - V M Rangnekar
- 1] Department of Radiation Medicine, Lexington, KY, USA [2] Department of Microbiology, Immunology and Molecular Genetics, Lexington, KY, USA [3] Graduate Center for Toxicology, Lexington, KY, USA [4] Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - C Garrido
- 1] INSERM U866, Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France [2] Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France [3] Anticancer Center Jean François Leclerc, Dijon, France
| |
Collapse
|
23
|
Quotti Tubi L, Gurrieri C, Brancalion A, Bonaldi L, Bertorelle R, Manni S, Pavan L, Lessi F, Zambello R, Trentin L, Adami F, Ruzzene M, Pinna LA, Semenzato G, Piazza F. Inhibition of protein kinase CK2 with the clinical-grade small ATP-competitive compound CX-4945 or by RNA interference unveils its role in acute myeloid leukemia cell survival, p53-dependent apoptosis and daunorubicin-induced cytotoxicity. J Hematol Oncol 2013; 6:78. [PMID: 24283803 PMCID: PMC3852751 DOI: 10.1186/1756-8722-6-78] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/02/2013] [Indexed: 01/17/2023] Open
Abstract
Background The involvement of protein kinase CK2 in sustaining cancer cell survival could have implications also in the resistance to conventional and unconventional therapies. Moreover, CK2 role in blood tumors is rapidly emerging and this kinase has been recognized as a potential therapeutic target. Phase I clinical trials with the oral small ATP-competitive CK2 inhibitor CX-4945 are currently ongoing in solid tumors and multiple myeloma. Methods We have analyzed the expression of CK2 in acute myeloid leukemia and its function in cell growth and in the response to the chemotherapeutic agent daunorubicin We employed acute myeloid leukemia cell lines and primary blasts from patients grouped according to the European LeukemiaNet risk classification. Cell survival, apoptosis and sensitivity to daunorubicin were assessed by different means. p53-dependent CK2-inhibition-induced apoptosis was investigated in p53 wild-type and mutant cells. Results CK2α was found highly expressed in the majority of samples across the different acute myeloid leukemia prognostic subgroups as compared to normal CD34+ hematopoietic and bone marrow cells. Inhibition of CK2 with CX-4945, K27 or siRNAs caused a p53-dependent acute myeloid leukemia cell apoptosis. CK2 inhibition was associated with a synergistic increase of the cytotoxic effects of daunorubicin. Baseline and daunorubicin-induced STAT3 activation was hampered upon CK2 blockade. Conclusions These results suggest that CK2 is over expressed across the different acute myeloid leukemia subsets and acts as an important regulator of acute myeloid leukemia cell survival. CK2 negative regulation of the protein levels of tumor suppressor p53 and activation of the STAT3 anti-apoptotic pathway might antagonize apoptosis and could be involved in acute myeloid leukemia cell resistance to daunorubicin.
Collapse
|
24
|
Drygin D. CK2 as a Logical Target in Cancer Therapy: Potential for Combining CK2 Inhibitors with Various Classes of Cancer Therapeutic Agents. PROTEIN KINASE CK2 2013:383-439. [DOI: 10.1002/9781118482490.ch15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
25
|
Abstract
Apigenin (4',5,7-trihydroxyflavone, 5,7-dihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one) is a flavonoid found in many fruits, vegetables, and herbs, the most abundant sources being the leafy herb parsley and dried flowers of chamomile. Present in dietary sources as a glycoside, it is cleaved in the gastrointestinal lumen to be absorbed and distributed as apigenin itself. For this reason, the epithelium of the gastrointestinal tract is exposed to higher concentrations of apigenin than tissues at other locations. This would also be true for epithelial cancers of the gastrointestinal tract. We consider the evidence for actions of apigenin that might hinder the ability of gastrointestinal cancers to progress and spread. Apigenin has been shown to inhibit cell growth, sensitize cancer cells to elimination by apoptosis, and hinder the development of blood vessels to serve the growing tumor. It also has actions that alter the relationship of the cancer cells with their microenvironment. Apigenin is able to reduce cancer cell glucose uptake, inhibit remodeling of the extracellular matrix, inhibit cell adhesion molecules that participate in cancer progression, and oppose chemokine signaling pathways that direct the course of metastasis into other locations. As such, apigenin may provide some additional benefit beyond existing drugs in slowing the emergence of metastatic disease.
Collapse
Affiliation(s)
- Émilie C Lefort
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
26
|
Allen WL, Stevenson L, Coyle VM, Jithesh PV, Proutski I, Carson G, Gordon MA, Lenz HJD, Van Schaeybroeck S, Longley DB, Johnston PG. A systems biology approach identifies SART1 as a novel determinant of both 5-fluorouracil and SN38 drug resistance in colorectal cancer. Mol Cancer Ther 2012; 11:119-31. [PMID: 22027693 PMCID: PMC3272421 DOI: 10.1158/1535-7163.mct-11-0510] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Chemotherapy response rates for advanced colorectal cancer remain disappointingly low, primarily because of drug resistance, so there is an urgent need to improve current treatment strategies. To identify novel determinants of resistance to the clinically relevant drugs 5-fluorouracil (5-FU) and SN38 (the active metabolite of irinotecan), transcriptional profiling experiments were carried out on pretreatment metastatic colorectal cancer biopsies and HCT116 parental and chemotherapy-resistant cell line models using a disease-specific DNA microarray. To enrich for potential chemoresistance-determining genes, an unsupervised bioinformatics approach was used, and 50 genes were selected and then functionally assessed using custom-designed short interfering RNA (siRNA) screens. In the primary siRNA screen, silencing of 21 genes sensitized HCT116 cells to either 5-FU or SN38 treatment. Three genes (RAPGEF2, PTRF, and SART1) were selected for further analysis in a panel of 5 colorectal cancer cell lines. Silencing SART1 sensitized all 5 cell lines to 5-FU treatment and 4/5 cell lines to SN38 treatment. However, silencing of RAPGEF2 or PTRF had no significant effect on 5-FU or SN38 sensitivity in the wider cell line panel. Further functional analysis of SART1 showed that its silencing induced apoptosis that was caspase-8 dependent. Furthermore, silencing of SART1 led to a downregulation of the caspase-8 inhibitor, c-FLIP, which we have previously shown is a key determinant of drug resistance in colorectal cancer. This study shows the power of systems biology approaches for identifying novel genes that regulate drug resistance and identifies SART1 as a previously unidentified regulator of c-FLIP and drug-induced activation of caspase-8.
Collapse
Affiliation(s)
- Wendy L. Allen
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, Northern Ireland
| | - Leanne Stevenson
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, Northern Ireland
| | - Vicky M. Coyle
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, Northern Ireland
| | - Puthen V. Jithesh
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, Northern Ireland
| | - Irina Proutski
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, Northern Ireland
| | - Gail Carson
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, Northern Ireland
| | - Michael A Gordon
- Division of Medical Oncology, University of Southern California/Norris Comprehensive Cancer Center, Keck School of Medicine, Los Angeles, California 90033, USA
| | - Heinz-Josef D Lenz
- Division of Medical Oncology, University of Southern California/Norris Comprehensive Cancer Center, Keck School of Medicine, Los Angeles, California 90033, USA
| | - Sandra Van Schaeybroeck
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, Northern Ireland
| | - Daniel B. Longley
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, Northern Ireland
| | - Patrick G. Johnston
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, Northern Ireland
| |
Collapse
|
27
|
Affiliation(s)
- Odile Filhol
- INSERM, Unité 1036, Biology of Cancer and Infection, Grenoble, F-38054, France
- Université Joseph Fourier–Grenoble 1, Biology of Cancer and Infection, Grenoble, F-38041, France
- Commissariat à l’énergie atomique et aux énergies alternatives, Direction des Sciences du Vivant/institut de Recherches en Technologies et Sciences pour le Vivant, Biology of Cancer and Infection, Grenoble, F-38054, France
| | - Claude Cochet
- INSERM, Unité 1036, Biology of Cancer and Infection, Grenoble, F-38054, France
- Université Joseph Fourier–Grenoble 1, Biology of Cancer and Infection, Grenoble, F-38041, France
- Commissariat à l’énergie atomique et aux énergies alternatives, Direction des Sciences du Vivant/institut de Recherches en Technologies et Sciences pour le Vivant, Biology of Cancer and Infection, Grenoble, F-38054, France
| |
Collapse
|
28
|
Duncan JS, Turowec JP, Duncan KE, Vilk G, Wu C, Lüscher B, Li SSC, Gloor GB, Litchfield DW. A peptide-based target screen implicates the protein kinase CK2 in the global regulation of caspase signaling. Sci Signal 2011; 4:ra30. [PMID: 21558555 DOI: 10.1126/scisignal.2001682] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The convergence of caspase and protein kinase signaling pathways has become increasingly evident, as illustrated by the protection of caspase substrates from cleavage upon undergoing phosphorylation at or near to their caspase recognition motifs. To investigate the global role of phosphorylation in the regulation of caspase signaling, we designed a peptide match program to identify sequences from the human proteome that contained overlapping recognition motifs for caspases and kinases. We identified the protein kinase CK2 as the most prominent kinase with a consensus site for phosphorylation that overlapped with caspase recognition motifs. We then evaluated potential targets of CK2 and caspases by combining peptide array target screens with identification of caspase substrates. We identified numerous shared candidate targets of CK2 and caspases, including procaspase-3, which functions at a level at which both intrinsic and extrinsic apoptotic signals converge. Together, these data support a role for CK2-dependent phosphorylation as a global mechanism for inhibiting caspase signaling pathways.
Collapse
Affiliation(s)
- James S Duncan
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Turktekin M, Konac E, Onen HI, Alp E, Yilmaz A, Menevse S. Evaluation of the effects of the flavonoid apigenin on apoptotic pathway gene expression on the colon cancer cell line (HT29). J Med Food 2011; 14:1107-17. [PMID: 21548803 DOI: 10.1089/jmf.2010.0208] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Apigenin (4',5,7-trihydroxyflavone) is one of the leading components supporting targeted treatment options. We explored the cytotoxic and apoptotic effects of various doses of apigenin administered alone and together with 5-fluorouracil (5-FU)-a chemotherapeutic agent with high cytotoxicity-for different incubation periods, on morphologic, DNA, RNA (messenger RNA [mRNA]), and protein levels on the p53 mutant HT29 human colon adenocarcinoma cell line. Treatment with apigenin alone for a 72-hour incubation at 90-μM dose resulted in an apoptotic percentage of 24.92% (P=.001). A higher percentage (29.13%) was observed after treatment with the same dose of apigenin plus 5-FU for the same incubation period (P=.001). These results were confirmed as mRNA and protein expression levels of caspase-3 increased 2.567-fold and mRNA expression levels of caspase-8 increased 3.689-fold compared with the control group. On the other hand, mRNA expression levels of mammalian target of rapamycin (mTOR) and cyclin D1 (CCND1) decreased by 0.423-fold and 0.231-fold, respectively. To our knowledge this is the first study showing that treatment with apigenin alone results in cell cycle arrest through activation of caspase cascade and stimulation of apoptosis in HT29 cells. It also shows that use of apigenin plus 5-FU further increases this effect. This study draws attention to the probable clinical effectiveness of apigenin plus a chemotherapeutic agent with high cytotoxicity. It also highlights the induction of desirable apoptotic effects by targeting the caspase cascade pathway through administration of reduced doses for shorter incubation periods.
Collapse
Affiliation(s)
- Mehmet Turktekin
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler, Ankara, Turkey
| | | | | | | | | | | |
Collapse
|
30
|
Bandyopadhyay K, Gjerset RA. Protein kinase CK2 is a central regulator of topoisomerase I hyperphosphorylation and camptothecin sensitivity in cancer cell lines. Biochemistry 2011; 50:704-14. [PMID: 21182307 PMCID: PMC3046806 DOI: 10.1021/bi101110e] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Topoisomerase I (topo I) is required to unwind DNA during synthesis and provides the unique target for camptothecin-derived chemotherapeutic agents, including Irinotecan and Topotecan. While these agents are highly effective anticancer agents, some tumors do not respond due to intrinsic or acquired resistance, a process that remains poorly understood. Because of treatment toxicity, there is interest in identifying cellular factors that regulate tumor sensitivity and might serve as predictive biomarkers of therapy sensitivity. Here we identify the serine kinase, protein kinase CK2, as a central regulator of topo I hyperphosphorylation and activity and cellular sensitivity to camptothecin. In nine cancer cell lines and three normal tissue-derived cell lines we observe a consistent correlation between CK2 levels and camptothecin responsiveness. Two other topo I-targeted serine kinases, protein kinase C and cyclin-dependent kinase 1, do not show this correlation. Camptothecin-sensitive cancer cell lines display high CK2 activity, hyperphosphorylation of topo I, elevated topo I activity, and elevated phosphorylation-dependent complex formation between topo I and p14ARF, a topo I activator. Camptothecin-resistant cancer cell lines and normal cell lines display lower CK2 activity, lower topo I phosphorylation, lower topo I activity, and undetectable topo I/p14ARF complex formation. Experimental inhibition or activation of CK2 demonstrates that CK2 is necessary and sufficient for regulating these topo I properties and altering cellular responses to camptothecin. The results establish a cause and effect relationship between CK2 activity and camptothecin sensitivity and suggest that CK2, topo I phosphorylation, or topo I/p14ARF complex formation could provide biomarkers of therapy-responsive tumors.
Collapse
Affiliation(s)
- Keya Bandyopadhyay
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, California 92121
| | - Ruth A. Gjerset
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, California 92121
| |
Collapse
|
31
|
Siddiqui-Jain A, Drygin D, Streiner N, Chua P, Pierre F, O'Brien SE, Bliesath J, Omori M, Huser N, Ho C, Proffitt C, Schwaebe MK, Ryckman DM, Rice WG, Anderes K. CX-4945, an Orally Bioavailable Selective Inhibitor of Protein Kinase CK2, Inhibits Prosurvival and Angiogenic Signaling and Exhibits Antitumor Efficacy. Cancer Res 2010; 70:10288-98. [DOI: 10.1158/0008-5472.can-10-1893] [Citation(s) in RCA: 395] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
The inhibition of Bid expression by Akt leads to resistance to TRAIL-induced apoptosis in ovarian cancer cells. Oncogene 2010; 29:5523-36. [PMID: 20661217 PMCID: PMC3007125 DOI: 10.1038/onc.2010.288] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epithelial ovarian cancer (EOC) cells often show increased activity of the PI3K/Akt pathway. In addition, we have previously shown that EOC ascites induce Akt activation in the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-sensitive EOC cell line, CaOV3, leading to TRAIL-mediated apoptosis inhibition. In this study, we investigated the role of Akt in intrinsic resistance to TRAIL, which is common in EOC cells. We report that Akt activation reduces the sensitivity of EOC cells to TRAIL. TRAIL-resistant SKOV3ip1 and COV2 cells were sensitized to TRAIL-induced apoptosis by PI3K or Akt inhibitors although inhibition of PI3K/Akt signaling pathway did not interfere with the recruitment and processing of caspase-8 to the death-inducing signaling complex. Conversely, overexpression of Akt1 in TRAIL-sensitive cells promoted resistance to TRAIL. Although the fact that TRAIL-induced caspase-8 activation was observed in both sensitive and resistant cell lines, Bid cleavage occurred only in sensitive cells or in SKOV3ip1 cells treated with LY294002. Bid expression was low in resistant cells and Akt activation downregulated its expression. Depletion of Bid by siRNA in OVCAR3 cells was associated with a decrease in TRAIL-mediated apoptosis. Overexpression of Bid only in SKOV3ip1 cells enhanced TRAIL-induced apoptosis. Simultaneous blockade of Akt pathway further increased TRAIL-induced apoptosis. Thus, Akt acts upstream of mitochondria and inhibits TRAIL-induced apoptosis by decreasing Bid protein levels and possibly inhibiting its cleavage.
Collapse
|
33
|
Hanif IM, Hanif IM, Shazib MA, Ahmad KA, Pervaiz S. Casein Kinase II: an attractive target for anti-cancer drug design. Int J Biochem Cell Biol 2010; 42:1602-5. [PMID: 20558317 DOI: 10.1016/j.biocel.2010.06.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Revised: 06/08/2010] [Accepted: 06/08/2010] [Indexed: 10/19/2022]
Abstract
Casein Kinase II (CK2) is a ubiquitous serine/threonine kinase that is highly conserved in eukaryotic cells. CK2 has been shown to impact cell growth and proliferation, as numerous growth-related proteins are substrates of CK2. More importantly, experimental evidence linking increased expression and activity of CK2 to human cancers underscores the relevance of CK2 biology to cellular transformation and carcinogenesis. Due to the critical regulatory role CK2 plays in cell fate determination in cancer cells, there is a tremendous interest in the development of CK2-specific therapies. Supporting this, recent reports have demonstrated that genetic manipulation of CK2 expression as well as pharmacological inhibition of its enzymatic activity sensitizes cancers to apoptotic stimuli. Here we provide a succinct account of the biology of CK2, its cellular substrates, its pro-survival and pro-proliferation activity, and highlight evidence for its involvement in human cancer.
Collapse
Affiliation(s)
- Ismail Muhamad Hanif
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), Singapore
| | | | | | | | | |
Collapse
|
34
|
Trembley JH, Chen Z, Unger G, Slaton J, Kren BT, Van Waes C, Ahmed K. Emergence of protein kinase CK2 as a key target in cancer therapy. Biofactors 2010; 36:187-95. [PMID: 20533398 PMCID: PMC2916697 DOI: 10.1002/biof.96] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Protein kinase CK2, a protein serine/threonine kinase, plays a global role in activities related to cell growth, cell death, and cell survival. CK2 has a large number of potential substrates localized in diverse locations in the cell including, for example, NF-kappaB as an important downstream target of the kinase. In addition to its involvement in cell growth and proliferation it is also a potent suppressor of apoptosis, raising its key importance in cancer cell phenotype. CK2 interacts with diverse pathways which illustrates the breadth of its impact on the cellular machinery of both cell growth and cell death giving it the status of a "master regulator" in the cell. With respect to cancer, CK2 has been found to be dysregulated in all cancers examined demonstrating increased protein expression levels and nuclear localization in cancer cells compared with their normal counterparts. We originally proposed CK2 as a potentially important target for cancer therapy. Given the ubiquitous and essential for cell survival nature of the kinase, an important consideration would be to target it specifically in cancer cells while sparing normal cells. Towards that end, our design of a tenascin based sub-50 nm (i.e., less than 50 nm size) nanocapsule in which an anti-CK2 therapeutic agent can be packaged is highly promising because this formulation can specifically deliver the cargo intracellularly to the cancer cells in vivo. Thus, appropriate strategies to target CK2 especially by molecular approaches may lead to a highly feasible and effective approach to eradication of a given cancer.
Collapse
Affiliation(s)
- Janeen H. Trembley
- Cellular and Molecular Biochemistry Research Laboratory, Research Service, Minneapolis V.A. Medical Center, Department of Laboratory Medicine and Pathology, University of Minnesota
| | - Zhong Chen
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, Bethesda, MD
| | | | - Joel Slaton
- Cellular and Molecular Biochemistry Research Laboratory, Research Service, Minneapolis V.A. Medical Center, Department of Laboratory Medicine and Pathology, University of Minnesota
- Department of Urology, University of Minnesota, Minneapolis, MN
- The Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Betsy T. Kren
- Cellular and Molecular Biochemistry Research Laboratory, Research Service, Minneapolis V.A. Medical Center, Department of Laboratory Medicine and Pathology, University of Minnesota
- Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Carter Van Waes
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, Bethesda, MD
| | - Khalil Ahmed
- Cellular and Molecular Biochemistry Research Laboratory, Research Service, Minneapolis V.A. Medical Center, Department of Laboratory Medicine and Pathology, University of Minnesota
- Department of Urology, University of Minnesota, Minneapolis, MN
- The Masonic Cancer Center, University of Minnesota, Minneapolis, MN
- Department of Otolaryngology, University of Minnesota, Minneapolis, MN
| |
Collapse
|
35
|
Anti-neoplastic effect of protein kinase CK2 inhibitor, 2-dimethylamino-4,5,6,7-tetrabromobenzimidazole (DMAT), on growth and hormonal activity of human adrenocortical carcinoma cell line (H295R) in vitro. Cell Tissue Res 2010; 340:371-9. [DOI: 10.1007/s00441-010-0960-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 02/26/2010] [Indexed: 02/06/2023]
|
36
|
Schneider CC, Hessenauer A, Montenarh M, Götz C. p53 is dispensable for the induction of apoptosis after inhibition of protein kinase CK2. Prostate 2010; 70:126-34. [PMID: 19760628 DOI: 10.1002/pros.21044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Protein kinase CK2 is a ubiquitously expressed heterotetramer consisting of two catalytic alpha/alpha' and two regulatory beta subunits. Expression of CK2 is highly elevated in tumor cells where it protects cells from apoptosis. A variety of different compounds were tested as inhibitors of protein kinase CK2 in order to find new therapy strategies. To analyze the role of p53 in the response to CK2 inhibition we used one of the most specific CK2 inhibitors available, TBB, in different prostate cancer cell lines. METHODS We treated prostate cancer cells with the CK2 inhibitor TBB and determined its effect on CK2 activity by an in vitro phosphorylation assay and its effect on viability by an MTT assay. Furthermore, we analyzed changes in the expression of p53 and PARP cleavage by Western Blot analysis. RESULTS Inhibition of CK2 by TBB led to a decrease in cell viability and apoptosis in two cell lines which express wild-type p53 whereas two other cell lines expressing mutant or no p53 failed to show signs of apoptosis. Moreover, cell lines expressing wild-type p53 showed an increase of the amount of p53 and of its transactivation efficiency. However, down-regulation of p53 by RNAi showed that p53 is not necessary for the induction of apoptosis. CONCLUSIONS Wild-type p53 is not necessary for the induction of apoptosis by TBB in prostate cancer cells.
Collapse
Affiliation(s)
- Carolin C Schneider
- Medizinische Biochemie und Molekularbiologie, Universität des Saarlandes, Homburg, Germany
| | | | | | | |
Collapse
|
37
|
Casein kinase 2 inhibition differentially modulates apoptotic effect of trichostatin A against epithelial ovarian carcinoma cell lines. Mol Cell Biochem 2009; 338:157-66. [PMID: 20020183 DOI: 10.1007/s11010-009-0349-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 12/03/2009] [Indexed: 10/20/2022]
Abstract
Histone deacetylase inhibitors and casein kinase 2 inhibitors have been shown to induce apoptosis. However, the combined effect of casein kinase 2 inhibition on the apoptotic effect of histone deacetylase inhibitor is unknown. We assessed the effect of casein kinase 2 inhibition on the apoptotic effect of trichostatin A in human epithelial carcinoma cell lines with respect to cell death signaling pathways. At concentrations that did not induce cell death, the casein kinase 2 inhibitor 4,5,6,7-tetrabromobenzotriazole inhibited activation of apoptotic proteins and changes in mitochondrial membrane permeability induced by the histone deacetylase inhibitor trichostatin A. These results suggest that casein kinase 2 inhibition may reduce trichostatin A-induced apoptosis in ovarian carcinoma cell lines by suppressing activation of apoptotic proteins and changes in mitochondrial membrane permeability, which both lead to caspase-3 activation. Casein kinase 2 inhibition, which does not induce a cytotoxic effect, may prevent histone deacetylase inhibitor-mediated apoptosis.
Collapse
|
38
|
Regulation of cell proliferation and survival: convergence of protein kinases and caspases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:505-10. [PMID: 19900592 DOI: 10.1016/j.bbapap.2009.11.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 11/03/2009] [Indexed: 02/07/2023]
Abstract
Intricate networks of protein kinases are intimately involved in the regulation of cellular events related to cell proliferation and survival. In addition to protein kinases, cells also contain networks of proteases including aspartic-acid directed caspases organized in cascades that play a major role in the regulation of cell survival through their involvement in the initiation and execution phases of apoptosis. Perturbations in regulatory protein kinase and caspase networks induce alterations in cell survival and frequently accompany transformation and tumorigenesis. Furthermore, recent studies have documented that caspases or their substrates are subject to phosphorylation in cells illustrating a potential convergence of protein kinase and caspase signaling pathways. Interestingly, a number of caspase substrates are protected from cleavage when they are phosphorylated at sites that are adjacent to caspase cleavage sites. While it is theoretically possible that many distinct protein kinases could protect proteins from caspase-mediated cleavage, protein kinase CK2 is of particular interest because acidic amino acids, including aspartic acid residues that are recognized by caspases, are its dominant specificity determinants.
Collapse
|
39
|
Ruzzene M, Pinna LA. Addiction to protein kinase CK2: a common denominator of diverse cancer cells? BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:499-504. [PMID: 19665589 DOI: 10.1016/j.bbapap.2009.07.018] [Citation(s) in RCA: 270] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 07/24/2009] [Accepted: 07/28/2009] [Indexed: 10/20/2022]
Abstract
At variance with most oncogenic protein kinases whose malignancy is generally due to genetic alterations conferring constitutive activity, CK2 is a highly pleiotropic Ser/Thr protein kinase naturally endowed with constitutive activity and lacking gain-of-function mutants. Nonetheless CK2 is abnormally elevated in a wide variety of tumors and there is strong evidence that it operates as a cancer driver by creating a cellular environment favorable to neoplasia: notably, CK2 plays a global role as an anti-apoptotic and pro-survival agent, it enhances the multi-drug resistance (MDR) phenotype, it assists the chaperone machinery which protects the "onco-kinome" and it promotes neo-angiogenesis. Based on this scenario we propose that the implication of CK2 in neoplasia is an example of "non oncogene addiction", i.e. over reliance of the perturbed cellular signaling network on high CK2 level for its own maintenance. Consistent with this, an ample spectrum of diverse types of cancer cells have been already shown to rely on high CK2 level for their survival, as judged from their response to specific CK2 inhibitors and silencing of endogenous CK2 catalytic subunits. Remarkably, among these are cells whose cancer phenotype arises from the genetic alteration of onco-kinases (e.g. Abl and Alk) different from CK2 and insensitive to the CK2 inhibitors used in those experiments. Based on these premises, CK2 could represent a "multi-purpose" target for the treatment of different kinds of tumors.
Collapse
Affiliation(s)
- Maria Ruzzene
- Department of Biological Chemistry and CNR Institute of Neurosciences, University of Padova, and Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | | |
Collapse
|
40
|
Zhu D, Hensel J, Hilgraf R, Abbasian M, Pornillos O, Deyanat-Yazdi G, Hua XH, Cox S. Inhibition of protein kinase CK2 expression and activity blocks tumor cell growth. Mol Cell Biochem 2009; 333:159-67. [PMID: 19629644 DOI: 10.1007/s11010-009-0216-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 07/07/2009] [Indexed: 11/28/2022]
Abstract
Protein kinase CK2 (CK2) is a highly conserved and ubiquitous serine/threonine kinase. It is a multifunctional and pleiotropic protein kinase implicated in the regulation of cell proliferation, survival, and differentiation. Deregulation of CK2 is observed in a wide variety of tumors. It has been the focus of intensive research efforts to establish the cause-effect relationship between CK2 and neoplastic growth. Here, we further validate the role of CK2 in cancer cell growth using siRNA approach. We also screened a library of more than 200,000 compounds and identified several molecules, which inhibit CK2 with IC(50) < 1 microM. The binding mode of a representative compound with maize CK2 was determined. In addition, the cellular activity of the compounds was demonstrated by their inhibition of phosphorylation of PTEN Ser370 in HCT116 cells. Treatment of a variety of cancer cell lines with the newly identified CK2 inhibitor significantly blocked cell growth with IC(50)s as low as 300 nM.
Collapse
Affiliation(s)
- Dan Zhu
- Celgene Corporation, 4550 Towne Centre Court, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Trembley JH, Wang G, Unger G, Slaton J, Ahmed K. Protein kinase CK2 in health and disease: CK2: a key player in cancer biology. Cell Mol Life Sci 2009; 66:1858-67. [PMID: 19387548 PMCID: PMC4385580 DOI: 10.1007/s00018-009-9154-y] [Citation(s) in RCA: 284] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Elevated levels of protein kinase CK2 (formerly casein kinase 2 or II) have long been associated with increased cell growth and proliferation both in normal and cancer cells. The ability of CK2 to also act as a potent suppressor of apoptosis offers an important link to its involvement in cancer since deregulation of both cell proliferation and apoptosis are among the key features of cancer cell biology. Dysregulated CK2 may impact both of these processes in cancer cells. All cancers that have been examined show increased CK2 expression, which may also relate to prognosis. The extensive involvement of CK2 in cancer derives from its impact on diverse molecular pathways controlling cell proliferation and cell death. Downregulation of CK2 by various approaches results in induction of apoptosis in cultured cell and xenograft cancer models suggesting its potential as a therapeutic target.
Collapse
Affiliation(s)
- J. H. Trembley
- Cellular and Molecular Biochemistry Research Laboratory (151), Veterans Affairs Medical Center, Minneapolis, MN USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN USA
| | - G. Wang
- Cellular and Molecular Biochemistry Research Laboratory (151), Veterans Affairs Medical Center, Minneapolis, MN USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN USA
| | | | - J. Slaton
- Urology Service, Veterans Affairs Medical Center, Minneapolis, MN USA
- Department of Urology, University of Minnesota, Minneapolis, MN USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN USA
| | - K. Ahmed
- Cellular and Molecular Biochemistry Research Laboratory (151), Veterans Affairs Medical Center, Minneapolis, MN USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN USA
- Department of Urology, University of Minnesota, Minneapolis, MN USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN USA
| |
Collapse
|
42
|
Nibbe RK, Markowitz S, Myeroff L, Ewing R, Chance MR. Discovery and scoring of protein interaction subnetworks discriminative of late stage human colon cancer. Mol Cell Proteomics 2008; 8:827-45. [PMID: 19098285 DOI: 10.1074/mcp.m800428-mcp200] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We used a systems biology approach to identify and score protein interaction subnetworks whose activity patterns are discriminative of late stage human colorectal cancer (CRC) versus control in colonic tissue. We conducted two gel-based proteomics experiments to identify significantly changing proteins between normal and late stage tumor tissues obtained from an adequately sized cohort of human patients. A total of 67 proteins identified by these experiments was used to seed a search for protein-protein interaction subnetworks. A scoring scheme based on mutual information, calculated using gene expression data as a proxy for subnetwork activity, was developed to score the targets in the subnetworks. Based on this scoring, the subnetwork was pruned to identify the specific protein combinations that were significantly discriminative of late stage cancer versus control. These combinations could not be discovered using only proteomics data or by merely clustering the gene expression data. We then analyzed the resultant pruned subnetwork for biological relevance to human CRC. A number of the proteins in these smaller subnetworks have been associated with the progression (CSNK2A2, PLK1, and IGFBP3) or metastatic potential (PDGFRB) of CRC. Others have been recently identified as potential markers of CRC (IFITM1), and the role of others is largely unknown in this disease (CCT3, CCT5, CCT7, and GNA12). The functional interactions represented by these signatures provide new experimental hypotheses that merit follow-on validation for biological significance in this disease. Overall the method outlines a quantitative approach for integrating proteomics data, gene expression data, and the wealth of accumulated legacy experimental data to discover significant protein subnetworks specific to disease.
Collapse
Affiliation(s)
- Rod K Nibbe
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | | | | | | | |
Collapse
|
43
|
Harris SM, Harvey EJ, Hughes TR, Ramji DP. The interferon-gamma-mediated inhibition of lipoprotein lipase gene transcription in macrophages involves casein kinase 2- and phosphoinositide-3-kinase-mediated regulation of transcription factors Sp1 and Sp3. Cell Signal 2008; 20:2296-301. [PMID: 18793716 PMCID: PMC2586094 DOI: 10.1016/j.cellsig.2008.08.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 08/18/2008] [Accepted: 08/24/2008] [Indexed: 11/19/2022]
Abstract
The mechanisms underlying transcriptional inhibition by interferon-gamma (IFN-gamma) are poorly understood despite the existence of a large number of genes that are regulated in this manner and the key role of this cytokine in inflammatory disorders such as atherosclerosis. We have previously identified a novel mechanism for transcriptional inhibition by IFN-gamma that involves a reduction in the binding of transcription factors Sp1 and Sp3 to regulatory sequences in the lipoprotein lipase (LPL) gene. In the present study, we have investigated the signalling pathways that impact on the IFN-gamma-mediated regulation of Sp1/Sp3 binding and LPL gene transcription in macrophages. The IFN-gamma-mediated inhibition of LPL promoter activity was prevented by expression of dominant negative forms of casein kinase 2 (CK2) and protein kinase B (PKB), a key downstream component of the phosphoinositide-3-kinase (PI3K) pathway. IFN-gamma activated both the catalytic subunits of CK2 without affecting their expression. CK2 interacted with both Sp1 and Sp3 and this association was increased by IFN-gamma. Electrophoretic mobility shift assays showed that a CK2-mediated phosphorylation of either cellular extracts or recombinant Sp1 reduced binding to the regulatory region in the LPL gene. The action of PKB was potentially mediated through mammalian target for rapamycin proteins. Taken together, these results suggest a key role for CK2 and PI3K signalling pathways in the IFN-gamma-mediated inhibition of macrophage LPL gene transcription through the regulation of Sp1/Sp3 binding.
Collapse
Affiliation(s)
| | | | | | - Dipak P. Ramji
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3US, UK
| |
Collapse
|
44
|
Impact of protein kinase CK2 on inhibitor of apoptosis proteins in prostate cancer cells. Mol Cell Biochem 2008; 316:91-7. [PMID: 18574673 DOI: 10.1007/s11010-008-9810-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 05/29/2008] [Indexed: 01/07/2023]
Abstract
We have previously demonstrated that protein kinase CK2 is a potent suppressor of apoptosis in cells subjected to diverse mediators of apoptosis. The process of apoptosis involves a complex series of molecules localized in various cellular compartments. Among the various proteins that modulate apoptotic activity are inhibitors of apoptosis proteins (IAPs) which are elevated in cancers and have been proposed to block caspase activity. We have examined the impact of CK2 signal on these proteins in prostate cancer cells. Cellular IAPs demonstrate distinct localization and responsiveness to altered CK2 expression or activity in the cytoplasmic and nuclear matrix fractions. Modulation of cellular CK2 by various approaches impacts on cellular IAPs such that inhibition or downregulation of CK2 results in reduction in these proteins. Further, IAPs are also reduced when cells are treated with sub-optimal concentrations of chemical inhibitors of CK2 combined with low or sub-optimal levels of apoptosis-inducing agents (such as etoposide) suggesting that downregulation of CK2 sensitizes cells to induction of apoptosis which may be related to attenuation of IAPs. Decreased IAP protein levels in response to apoptotic agents such as TNFalpha or TRAIL were potently blocked upon forced overexpression of CK2 in cells. Together, our results suggest that one of the modes of CK2-mediated modulation of apoptotic activity is via its impact on cellular IAPs.
Collapse
|
45
|
Duncan JS, Gyenis L, Lenehan J, Bretner M, Graves LM, Haystead TA, Litchfield DW. An Unbiased Evaluation of CK2 Inhibitors by Chemoproteomics. Mol Cell Proteomics 2008; 7:1077-88. [DOI: 10.1074/mcp.m700559-mcp200] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
46
|
Ahmad KA, Wang G, Unger G, Slaton J, Ahmed K. Protein kinase CK2--a key suppressor of apoptosis. ADVANCES IN ENZYME REGULATION 2008; 48:179-87. [PMID: 18492491 PMCID: PMC2593134 DOI: 10.1016/j.advenzreg.2008.04.002] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Kashif A Ahmad
- Cellular and Molecular Biochemistry Research Laboratory (151), V.A. Medical Center, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55417, USA.
| | | | | | | | | |
Collapse
|
47
|
Kim HR, Kim K, Lee KH, Kim SJ, Kim J. Inhibition of casein kinase 2 enhances the death ligand- and natural kiler cell-induced hepatocellular carcinoma cell death. Clin Exp Immunol 2008; 152:336-44. [PMID: 18336591 DOI: 10.1111/j.1365-2249.2008.03622.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Recent studies have shown that the inhibition of casein kinase 2 (CK2) sensitizes many cancer cells to Fas ligand- and tumour necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. However, it has not been demonstrated directly whether CK2 inhibition can also enhance the cytotoxicity of natural killer (NK) cells, which actually use the death ligands to kill cancer cells in vivo. To address whether NK cell-mediated cancer cell death is affected by the inhibition of CK2, we first checked whether the death ligand-induced apoptosis of hepatocellular carcinoma cells (HCCs) and HeLa were affected by CK2 inhibition. We then investigated the effect of CK2 inhibition on NK cytotoxicity against HCCs and HeLa cells and its mechanistic features. Inhibition of CK2 by emodin increased the apoptotic cell death of HepG2, Hep3B and HeLa when the cancer cell lines were treated with a soluble form of recombinant TRAIL or an agonistic antibody of Fas. This phenomenon appeared to be correlated with the expression level of death receptors on the cancer cell surface. More interestingly, the inhibition of CK2 also greatly increased the NK cell-mediated cancer cell killing. The NK cytotoxicity against the cancer cells increased about twofold when the target cells were pretreated with a specific CK2 inhibitor, emodin or 4,5,6,7-tetrabromobenzotriazole. Furthermore, the increase of the NK cytotoxicity against cancer cells by CK2 inhibition was granule-independent and mediated possibly by the death ligands on the NK cell surface. This suggests that CK2 inhibitors could be used to enhance the cytotoxicity of NK cells and consequently increase host tumour immunity.
Collapse
Affiliation(s)
- H-R Kim
- Department of Microbiology and Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
48
|
Too much of a good thing: The role of protein kinase CK2 in tumorigenesis and prospects for therapeutic inhibition of CK2. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:33-47. [DOI: 10.1016/j.bbapap.2007.08.017] [Citation(s) in RCA: 242] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 08/21/2007] [Accepted: 08/23/2007] [Indexed: 11/24/2022]
|
49
|
CK2 controls TRAIL and Fas sensitivity by regulating FLIP levels in endometrial carcinoma cells. Oncogene 2007; 27:2513-24. [PMID: 17982483 DOI: 10.1038/sj.onc.1210924] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has emerged as a promising antineoplastic agent because of its ability to selectively kill tumoral cells. However, some cancer cells are resistant to TRAIL-induced apoptosis. We have previously demonstrated that in endometrial carcinoma cells such resistance is caused by elevated FLICE-inhibitory protein (FLIP) levels. The present study focuses on the mechanisms by which FLIP could be modulated to sensitize endometrial carcinoma cells to TRAIL-induced apoptosis. We find that inhibition of casein kinase (CK2) sensitizes endometrial carcinoma cells to TRAIL- and Fas-induced apoptosis. CK2 inhibition correlates with a reduction of FLIP protein, suggesting that CK2 regulates resistance to TRAIL and Fas by controlling FLIP levels. FLIP downregulation correlates with a reduction of mRNA and is prevented by addition of the MG-132, suggesting that CK2 inhibition results in a proteasome-mediated degradation of FLIP. Consistently, forced expression of FLIP restores resistance to TRAIL and Fas. Moreover, knockdown of either FADD or caspase-8 abrogates apoptosis triggered by inhibition of CK2, indicating that CK2 sensitization requires formation of functional DISC. Finally, because of the possible role of both TRAIL and CK2 in cancer therapy, we demonstrate that CK2 inhibition sensitizes primary endometrial carcinoma explants to TRAIL apoptosis. In conclusion, we demonstrate that CK2 regulates endometrial carcinoma cell sensitivity to TRAIL and Fas by regulating FLIP levels.
Collapse
|
50
|
Shukla S, MacLennan GT, Flask CA, Fu P, Mishra A, Resnick MI, Gupta S. Blockade of beta-catenin signaling by plant flavonoid apigenin suppresses prostate carcinogenesis in TRAMP mice. Cancer Res 2007; 67:6925-35. [PMID: 17638904 DOI: 10.1158/0008-5472.can-07-0717] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Deregulation of beta-catenin signaling is an important event in the genesis of several human malignancies including prostate cancer. We investigated the effects of apigenin, a naturally occurring plant flavone, on prostate carcinogenesis in TRAMP mice and further elucidated its mechanism of action. Oral intake of apigenin by gavage at doses of 20 and 50 microg/mouse/d, 6 days per week for 20 weeks, significantly decreased tumor volumes of the prostate as well as completely abolished distant-site metastases to lymph nodes, lungs, and liver in TRAMP mice. Apigenin-treated mice had significantly diminished weights of their genitourinary apparatuses and dorsolateral and ventral prostate lobes, compared with the control group, and showed reduced proliferation and increased apoptosis in the dorsolateral prostates, which correlated with elevated plasma apigenin levels. Continuous intake of apigenin up to 50 weeks by TRAMP mice significantly improved their overall survival. P.o. administration of apigenin further resulted in increased levels of E-cadherin and decreased levels of nuclear beta-catenin, c-Myc, and cyclin D1 in the dorsolateral prostates of TRAMP mice. Similar effects were noted in TRAMP mice with established tumors. Treatment of DU145 human prostate cancer cells with 10 and 20 micromol/L apigenin also increased protein levels of E-cadherin by 27% to 74%, inhibited nuclear translocation of beta-catenin and its retention in the cytoplasm, and decreased c-Myc and cyclin D1 levels, an effect similar to the exposure of cells to beta-catenin small interfering RNA. Our results indicate that apigenin effectively suppressed prostate carcinogenesis in TRAMP mice, at least in part, by blocking beta-catenin signaling.
Collapse
Affiliation(s)
- Sanjeev Shukla
- Department of Urology, Case Western Reserve University and University Hospitals Case Medical Center, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | | | | | | | | | |
Collapse
|