1
|
Benatzy Y, Palmer MA, Brüne B. Arachidonate 15-lipoxygenase type B: Regulation, function, and its role in pathophysiology. Front Pharmacol 2022; 13:1042420. [PMID: 36438817 PMCID: PMC9682198 DOI: 10.3389/fphar.2022.1042420] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/26/2022] [Indexed: 10/30/2023] Open
Abstract
As a lipoxygenase (LOX), arachidonate 15-lipoxygenase type B (ALOX15B) peroxidizes polyenoic fatty acids (PUFAs) including arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and linoleic acid (LA) to their corresponding fatty acid hydroperoxides. Distinctive to ALOX15B, fatty acid oxygenation occurs with positional specificity, catalyzed by the non-heme iron containing active site, and in addition to free PUFAs, membrane-esterified fatty acids serve as substrates for ALOX15B. Like other LOX enzymes, ALOX15B is linked to the formation of specialized pro-resolving lipid mediators (SPMs), and altered expression is apparent in various inflammatory diseases such as asthma, psoriasis, and atherosclerosis. In primary human macrophages, ALOX15B expression is associated with cellular cholesterol homeostasis and is induced by hypoxia. Like in inflammation, the role of ALOX15B in cancer is inconclusive. In prostate and breast carcinomas, ALOX15B is attributed a tumor-suppressive role, whereas in colorectal cancer, ALOX15B expression is associated with a poorer prognosis. As the biological function of ALOX15B remains an open question, this review aims to provide a comprehensive overview of the current state of research related to ALOX15B.
Collapse
Affiliation(s)
- Yvonne Benatzy
- Faculty of Medicine, Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
| | - Megan A. Palmer
- Faculty of Medicine, Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
| |
Collapse
|
2
|
Tang DG. Understanding and targeting prostate cancer cell heterogeneity and plasticity. Semin Cancer Biol 2022; 82:68-93. [PMID: 34844845 PMCID: PMC9106849 DOI: 10.1016/j.semcancer.2021.11.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022]
Abstract
Prostate cancer (PCa) is a prevalent malignancy that occurs primarily in old males. Prostate tumors in different patients manifest significant inter-patient heterogeneity with respect to histo-morphological presentations and molecular architecture. An individual patient tumor also harbors genetically distinct clones in which PCa cells display intra-tumor heterogeneity in molecular features and phenotypic marker expression. This inherent PCa cell heterogeneity, e.g., in the expression of androgen receptor (AR), constitutes a barrier to the long-term therapeutic efficacy of AR-targeting therapies. Furthermore, tumor progression as well as therapeutic treatments induce PCa cell plasticity such that AR-positive PCa cells may turn into AR-negative cells and prostate tumors may switch lineage identity from adenocarcinomas to neuroendocrine-like tumors. This induced PCa cell plasticity similarly confers resistance to AR-targeting and other therapies. In this review, I first discuss PCa from the perspective of an abnormal organ development and deregulated cellular differentiation, and discuss the luminal progenitor cells as the likely cells of origin for PCa. I then focus on intrinsic PCa cell heterogeneity in treatment-naïve tumors with the presence of prostate cancer stem cells (PCSCs). I further elaborate on PCa cell plasticity induced by genetic alterations and therapeutic interventions, and present potential strategies to therapeutically tackle PCa cell heterogeneity and plasticity. My discussions will make it clear that, to achieve enduring clinical efficacy, both intrinsic PCa cell heterogeneity and induced PCa cell plasticity need to be targeted with novel combinatorial approaches.
Collapse
Affiliation(s)
- Dean G Tang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Experimental Therapeutics (ET) Graduate Program, The University at Buffalo & Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| |
Collapse
|
3
|
Wang F, Yang J, Lin H, Li Q, Ye Z, Lu Q, Chen L, Tu Z, Tian G. Improved Human Age Prediction by Using Gene Expression Profiles From Multiple Tissues. Front Genet 2020; 11:1025. [PMID: 33101366 PMCID: PMC7546819 DOI: 10.3389/fgene.2020.01025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022] Open
Abstract
Studying transcriptome chronological change from tissues across the whole body can provide valuable information for understanding aging and longevity. Although there has been research on the effect of single-tissue transcriptomes on human aging or aging in mice across multiple tissues, the study of human body-wide multi-tissue transcriptomes on aging is not yet available. In this study, we propose a quantitative model to predict human age by using gene expression data from 46 tissues generated by the Genotype-Tissue Expression (GTEx) project. Specifically, the biological age of a person is first predicted via the gene expression profile of a single tissue. Then, we combine the gene expression profiles from two tissues and compare the predictive accuracy between single and two tissues. The best performance as measured by the root-mean-square error is 3.92 years for single tissue (pituitary), which deceased to 3.6 years when we combined two tissues (pituitary and muscle) together. Different tissues have different potential in predicting chronological age. The prediction accuracy is improved by combining multiple tissues, supporting that aging is a systemic process involving multiple tissues across the human body.
Collapse
Affiliation(s)
- Fayou Wang
- School of Computer and Data Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo, China.,Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institute of Life Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jialiang Yang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Geneis Beijing Co., Ltd., Beijing, China.,Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Huixin Lin
- Geneis Beijing Co., Ltd., Beijing, China.,Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Qian Li
- Geneis Beijing Co., Ltd., Beijing, China.,Reproductive Center, Northwest Women and Children's Hospital, Xi'an, China
| | - Zixuan Ye
- Geneis Beijing Co., Ltd., Beijing, China
| | - Qingqing Lu
- Geneis Beijing Co., Ltd., Beijing, China.,Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institute of Life Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhidong Tu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Geng Tian
- Geneis Beijing Co., Ltd., Beijing, China.,Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| |
Collapse
|
4
|
Snodgrass RG, Brüne B. Regulation and Functions of 15-Lipoxygenases in Human Macrophages. Front Pharmacol 2019; 10:719. [PMID: 31333453 PMCID: PMC6620526 DOI: 10.3389/fphar.2019.00719] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/05/2019] [Indexed: 12/15/2022] Open
Abstract
Lipoxygenases (LOXs) catalyze the stereo-specific peroxidation of polyunsaturated fatty acids (PUFAs) to their corresponding hydroperoxy derivatives. Human macrophages express two arachidonic acid (AA) 15-lipoxygenating enzymes classified as ALOX15 and ALOX15B. ALOX15, which was first described in 1975, has been extensively characterized and its biological functions have been investigated in a number of cellular systems and animal models. In macrophages, ALOX15 functions to generate specific phospholipid (PL) oxidation products crucial for orchestrating the nonimmunogenic removal of apoptotic cells (ACs) as well as synthesizing precursor lipids required for production of specialized pro-resolving mediators (SPMs) that facilitate inflammation resolution. The discovery of ALOX15B in 1997 was followed by comprehensive analyses of its structural properties and reaction specificities with PUFA substrates. Although its enzymatic properties are well described, the biological functions of ALOX15B are not fully understood. In contrast to ALOX15 whose expression in human monocyte-derived macrophages is strictly dependent on Th2 cytokines IL-4 and IL-13, ALOX15B is constitutively expressed. This review aims to summarize the current knowledge on the regulation and functions of ALOX15 and ALOX15B in human macrophages.
Collapse
Affiliation(s)
- Ryan G Snodgrass
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
5
|
Alfardan R, Guo C, Toth LA, Nie D. Impaired Recovery from Influenza A/X-31(H3N2) Infection in Mice with 8-Lipoxygenase Deficiency. Med Sci (Basel) 2019; 7:medsci7040060. [PMID: 31013822 PMCID: PMC6524062 DOI: 10.3390/medsci7040060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 01/03/2023] Open
Abstract
Lipoxygenase-derived lipid mediators can modulate inflammation and are stimulated in response to influenza infections. We report an effect of 8-lipoxygenase (ALOX8) on the recovery of mice after infection with Influenza virus X31. We compared the responses of 3- and 6-month-old mice with a deletion of ALOX8 (ALOX8−/−) to influenza infections with those of age-matched littermate wild-type mice (ALOX8+/+). The duration of illness was similar in 3-month-old ALOX8−/− and ALOX8+/+ mice. However, the 6-month-old ALOX8−/− mice showed a prolonged state of illness compared with ALOX8+/+ mice, as evidenced by reduced body temperatures, reduced locomotor activities, and delayed weight recovery. Although residual viral RNA in the lungs at day 10 post-inoculation was significantly influenced by the age of the ALOX8−/− mice, there were no significant differences between ALOX8−/− and ALOX8+/+ mice within the same age groups. The levels of cytokines interleukin 6 (IL-6) and keratinocyte chemoattractant (KC) differed significantly between 6-month-old ALOX8−/− and ALOX8+/+ mice 10 days after viral inoculation. Our data suggest that ALOX8 deficiency in mice leads to impaired recovery from influenza infection in an age-dependent manner.
Collapse
Affiliation(s)
- Rana Alfardan
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62794, USA.
| | - Changxiong Guo
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62794, USA.
| | - Linda A Toth
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62794, USA.
| | - Daotai Nie
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62794, USA.
| |
Collapse
|
6
|
Abbadie C, Pluquet O, Pourtier A. Epithelial cell senescence: an adaptive response to pre-carcinogenic stresses? Cell Mol Life Sci 2017; 74:4471-4509. [PMID: 28707011 PMCID: PMC11107641 DOI: 10.1007/s00018-017-2587-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/27/2017] [Accepted: 07/06/2017] [Indexed: 01/01/2023]
Abstract
Senescence is a cell state occurring in vitro and in vivo after successive replication cycles and/or upon exposition to various stressors. It is characterized by a strong cell cycle arrest associated with several molecular, metabolic and morphologic changes. The accumulation of senescent cells in tissues and organs with time plays a role in organismal aging and in several age-associated disorders and pathologies. Moreover, several therapeutic interventions are able to prematurely induce senescence. It is, therefore, tremendously important to characterize in-depth, the mechanisms by which senescence is induced, as well as the precise properties of senescent cells. For historical reasons, senescence is often studied with fibroblast models. Other cell types, however, much more relevant regarding the structure and function of vital organs and/or regarding pathologies, are regrettably often neglected. In this article, we will clarify what is known on senescence of epithelial cells and highlight what distinguishes it from, and what makes it like, replicative senescence of fibroblasts taken as a standard.
Collapse
Affiliation(s)
- Corinne Abbadie
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, 59000, Lille, France.
| | - Olivier Pluquet
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, 59000, Lille, France
| | - Albin Pourtier
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, 59000, Lille, France
| |
Collapse
|
7
|
Liu X, Chen X, Rycaj K, Chao HP, Deng Q, Jeter C, Liu C, Honorio S, Li H, Davis T, Suraneni M, Laffin B, Qin J, Li Q, Yang T, Whitney P, Shen J, Huang J, Tang DG. Systematic dissection of phenotypic, functional, and tumorigenic heterogeneity of human prostate cancer cells. Oncotarget 2016; 6:23959-86. [PMID: 26246472 PMCID: PMC4695164 DOI: 10.18632/oncotarget.4260] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/12/2015] [Indexed: 02/07/2023] Open
Abstract
Human cancers are heterogeneous containing stem-like cancer cells operationally defined as cancer stem cells (CSCs) that possess great tumor-initiating and long-term tumor-propagating properties. In this study, we systematically dissect the phenotypic, functional and tumorigenic heterogeneity in human prostate cancer (PCa) using xenograft models and >70 patient tumor samples. In the first part, we further investigate the PSA−/lo PCa cell population, which we have recently shown to harbor self-renewing long-term tumor-propagating cells and present several novel findings. We show that discordant AR and PSA expression in both untreated and castration-resistant PCa (CRPC) results in AR+PSA+, AR+PSA−, AR−PSA−, and AR−PSA+ subtypes of PCa cells that manifest differential sensitivities to therapeutics. We further demonstrate that castration leads to a great enrichment of PSA−/lo PCa cells in both xenograft tumors and CRPC samples and systemic androgen levels dynamically regulate the relative abundance of PSA+ versus PSA−/lo PCa cells that impacts the kinetics of tumor growth. We also present evidence that the PSA−/lo PCa cells possess distinct epigenetic profiles. As the PSA−/lo PCa cell population is heterogeneous, in the second part, we employ two PSA− (Du145 and PC3) and two PSA+ (LAPC9 and LAPC4) PCa models as well as patient tumor cells to further dissect the clonogenic and tumorigenic subsets. We report that different PCa models possess distinct tumorigenic subpopulations that both commonly and uniquely express important signaling pathways that could represent therapeutic targets. Our results have important implications in understanding PCa cell heterogeneity, response to clinical therapeutics, and cellular mechanisms underlying CRPC.
Collapse
Affiliation(s)
- Xin Liu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA
| | - Xin Chen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA
| | - Kiera Rycaj
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA
| | - Hsueh-Ping Chao
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA.,Program in Molecular Carcinogenesis, University of Texas Graduate School of Biomedical Sciences (GSBS), Houston, TX 77030, USA
| | - Qu Deng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA.,Program in Molecular Carcinogenesis, University of Texas Graduate School of Biomedical Sciences (GSBS), Houston, TX 77030, USA
| | - Collene Jeter
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA
| | - Can Liu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA
| | - Sofia Honorio
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA
| | - Hangwen Li
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA
| | - Tammy Davis
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA
| | - Mahipal Suraneni
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA
| | - Brian Laffin
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA
| | - Jichao Qin
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA
| | - Qiuhui Li
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA
| | - Tao Yang
- Cancer Stem Cell Institute, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Pamela Whitney
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA
| | - Jianjun Shen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA
| | - Jiaoti Huang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Dean G Tang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA.,Cancer Stem Cell Institute, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Program in Molecular Carcinogenesis, University of Texas Graduate School of Biomedical Sciences (GSBS), Houston, TX 77030, USA.,Centers for Cancer Epigenetics, Stem Cell and Developmental Biology, RNA Interference and Non-Coding RNAs, and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
8
|
Kim KH, Park B, Rhee DK, Pyo S. Acrylamide Induces Senescence in Macrophages through a Process Involving ATF3, ROS, p38/JNK, and a Telomerase-Independent Pathway. Chem Res Toxicol 2015; 28:71-86. [PMID: 25531190 DOI: 10.1021/tx500341z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Senescence, which is irreversible cell cycle arrest, is induced by various types of DNA damage, including genotoxic stress. Senescent cells show dysregulation of tumor suppressor genes and other regulators of cellular proliferation. Activating transcription factor 3 (ATF3) plays a pleiotropic role in biological processes through genotoxic stress. In this study, we examined the effects of acrylamide (ACR), a genotoxic carcinogen, on cellular senescence and the molecular mechanisms of ATF3 function in macrophages. Treatment of macrophages with ACR at low concentrations (<1.0 mM) resulted in senescence-like morphology and an increase in senescence-associated β-galactosidase (SA-β-gal) activity. Exposure of macrophages to ACR led to stress-induced, telomerase-independent senescence. In addition, ACR treatment for 1, 3, or 5 days showed a concentration-dependent increase in ATF3 expression and G0/G1 phase arrest. To better understand the role of ATF3 in controlling the senescence response to ACR, SA-β-gal activity was examined using ATF3 knockdown and overexpression. ACR-mediated senescence was significantly decreased by knockdown of ATF3, whereas it was increased with ATF3 overexpression. We found that ATF3 regulated p53 and p21 levels. ATF3 also played an important role in regulating intracellular reactive oxygen species (ROS) production in response to ACR treatment. Moreover, phosphorylation of p38 and JNK kinases, which were activated during ATF3-mediated senescence, was observed in ACR-treated macrophages. Taken together, these results suggest that ATF3 contributes to ACR-induced senescence by enhancing ROS production, activating p38 and JNK kinases, and promoting the ATF3-dependent expression of p53, resulting in regulation of cellular senescence in macrophages.
Collapse
Affiliation(s)
- Kyung-Ho Kim
- School of Pharmacy, Sungkyunkwan University , Suwon, Kyunggi-do, 440-746, Republic of Korea
| | - Bongkyun Park
- School of Pharmacy, Sungkyunkwan University , Suwon, Kyunggi-do, 440-746, Republic of Korea
| | - Dong-Kwon Rhee
- School of Pharmacy, Sungkyunkwan University , Suwon, Kyunggi-do, 440-746, Republic of Korea
| | - Suhkneung Pyo
- School of Pharmacy, Sungkyunkwan University , Suwon, Kyunggi-do, 440-746, Republic of Korea
| |
Collapse
|
9
|
HIĽOVSKÁ LUCIA, JENDŽELOVSKÝ RASTISLAV, FEDOROČKO PETER. Potency of non-steroidal anti-inflammatory drugs in chemotherapy. Mol Clin Oncol 2015; 3:3-12. [PMID: 25469262 PMCID: PMC4251142 DOI: 10.3892/mco.2014.446] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 10/01/2014] [Indexed: 12/19/2022] Open
Abstract
Cancer cell resistance, particularly multidrug resistance (MDR), is the leading cause of chemotherapy failure. A number of mechanisms involved in the development of MDR have been described, including the overexpression of ATP-dependent membrane-bound transport proteins. The enhanced expression of these proteins, referred to as ATP-binding cassette (ABC) transporters, results in an increased cellular efflux of the cytotoxic drug, thereby reducing its intracellular concentration to an ineffective level. Non-steroidal anti-inflammatory drugs (NSAIDs) are the most frequently consumed drugs worldwide. NSAIDs are mainly used to treat pain, fever and inflammation. Numerous studies suggest that NSAIDs also show promise as anticancer drugs. NSAIDs have been shown to reduce cancer cell proliferation, motility, angiogenesis and invasiveness. In addition to these effects, NSAIDs have been shown to induce apoptosis in a wide variety of cancer types. Moreover, several studies have indicated that NSAIDs may sensitise cancer cells to the antiproliferative effects of cytotoxic drugs by modulating ABC transporter activity. Therefore, combining specific NSAIDs with chemotherapeutic drugs may have clinical applications. Such treatments may allow for the use of a lower dose of cytotoxic drugs and may also enhance the effectiveness of therapy. The objective of this review was to discuss the possible role of NSAIDs in the modulation of antitumour drug cytotoxicity. We particularly emphasised on the use of COX-2 inhibitors in combination with chemotherapy and the molecular and cellular mechanisms underlying the alterations in outcome that occur in response to this combination therapy.
Collapse
Affiliation(s)
- LUCIA HIĽOVSKÁ
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, 040 01 Košice, Slovakia
| | - RASTISLAV JENDŽELOVSKÝ
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, 040 01 Košice, Slovakia
| | - PETER FEDOROČKO
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, 040 01 Košice, Slovakia
| |
Collapse
|
10
|
Kuhn H, Banthiya S, van Leyen K. Mammalian lipoxygenases and their biological relevance. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:308-30. [PMID: 25316652 DOI: 10.1016/j.bbalip.2014.10.002] [Citation(s) in RCA: 458] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/30/2014] [Accepted: 10/03/2014] [Indexed: 02/07/2023]
Abstract
Lipoxygenases (LOXs) form a heterogeneous class of lipid peroxidizing enzymes, which have been implicated not only in cell proliferation and differentiation but also in the pathogenesis of various diseases with major public health relevance. As other fatty acid dioxygenases LOXs oxidize polyunsaturated fatty acids to their corresponding hydroperoxy derivatives, which are further transformed to bioactive lipid mediators (eicosanoids and related substances). On the other hand, lipoxygenases are key players in the regulation of the cellular redox homeostasis, which is an important element in gene expression regulation. Although the first mammalian lipoxygenases were discovered 40 years ago and although the enzymes have been well characterized with respect to their structural and functional properties the biological roles of the different lipoxygenase isoforms are not completely understood. This review is aimed at summarizing the current knowledge on the physiological roles of different mammalian LOX-isoforms and their patho-physiological function in inflammatory, metabolic, hyperproliferative, neurodegenerative and infectious disorders. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance".
Collapse
Affiliation(s)
- Hartmut Kuhn
- Institute of Biochemistry, University Medicine Berlin - Charite, Chariteplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany.
| | - Swathi Banthiya
- Institute of Biochemistry, University Medicine Berlin - Charite, Chariteplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany
| | - Klaus van Leyen
- Neuroprotection Research Laboratory, Department of Radiology, Massachusetts Genrel Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
11
|
Suraneni MV, Moore JR, Zhang D, Badeaux M, Macaluso MD, DiGiovanni J, Kusewitt D, Tang DG. Tumor-suppressive functions of 15-Lipoxygenase-2 and RB1CC1 in prostate cancer. Cell Cycle 2014; 13:1798-810. [PMID: 24732589 PMCID: PMC4111726 DOI: 10.4161/cc.28757] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
15-Lipoxygenase-2 (15-LOX2) is a human-specific lipid-peroxidizing enzyme most prominently expressed in epithelial cells of normal human prostate but downregulated or completely lost in>70% of prostate cancer (PCa) cases. Transgenic expression of 15-LOX2 in the mouse prostate surprisingly causes hyperplasia. Here we first provide evidence that 15-LOX2-induced prostatic hyperplasia does not progress to PCa even in p53(+/-) or p53(-/-) background. More important, by generating 15-LOX2; Hi-Myc double transgenic (dTg) mice, we show that 15-LOX2 expression inhibits Myc-induced PCa development, such that in the 3-month- and 6-month-old dTg mice, there is a significant reduction in prostate intraneoplasia (PIN) and PCa prevalent in age-matched Hi-Myc prostates. The dTg prostates show increased cell senescence and expression of several senescence-associated molecules, including p27, phosphorylated Rb, and Rb1cc1. We further show that in HPCa, 15-LOX2 and c-Myc manifest reciprocal protein expression patterns. Moreover, RB1CC1 accumulates in senescing normal human prostate (NHP) cells, and in both NHP and RWPE-1 cells, the 15-LOX2 metabolic products 15(S)-HPETE and 15(S)-HETE induce RB1CC1. We finally show that unlike 15-LOX2, RB1CC1 is not lost but rather frequently overexpressed in PCa samples. RB1CC1 knockdown in PC3 cells enhances clonal growth in vitro and tumor growth in vivo. Together, our present studies provide evidence for tumor-suppressive functions for both 15-LOX2 and RB1CC1.
Collapse
Affiliation(s)
- Mahipal V Suraneni
- Department of Molecular Carcinogenesis; The University of Texas MD Anderson Cancer Center; Smithville, TX USA
| | - John R Moore
- Department of Molecular Carcinogenesis; The University of Texas MD Anderson Cancer Center; Smithville, TX USA
| | - Dingxiao Zhang
- Department of Molecular Carcinogenesis; The University of Texas MD Anderson Cancer Center; Smithville, TX USA
| | - Mark Badeaux
- Department of Molecular Carcinogenesis; The University of Texas MD Anderson Cancer Center; Smithville, TX USA
| | - Marc D Macaluso
- Department of Molecular Carcinogenesis; The University of Texas MD Anderson Cancer Center; Smithville, TX USA
| | - John DiGiovanni
- Division of Pharmacology and Toxicology; College of Pharmacy; The University of Texas at Austin; Austin, TX USA
| | - Donna Kusewitt
- Department of Molecular Carcinogenesis; The University of Texas MD Anderson Cancer Center; Smithville, TX USA
| | - Dean G Tang
- Department of Molecular Carcinogenesis; The University of Texas MD Anderson Cancer Center; Smithville, TX USA; Cancer Stem Cell Institute; Research Center for Translational Medicine; Shanghai East Hospital; Tongji University School of Medicine; Shanghai, China
| |
Collapse
|
12
|
Krieg P, Fürstenberger G. The role of lipoxygenases in epidermis. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:390-400. [PMID: 23954555 DOI: 10.1016/j.bbalip.2013.08.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 07/31/2013] [Accepted: 08/05/2013] [Indexed: 12/11/2022]
Abstract
Lipoxygenases (LOX) are key enzymes in the biosynthesis of a variety of highly active oxylipins which act as signaling molecules involved in the regulation of many biological processes. LOX are also able to oxidize complex lipids and modify membrane structures leading to structural changes that play a role in the maturation and terminal differentiation of various cell types. The mammalian skin represents a tissue with highly abundant and diverse LOX metabolism. Individual LOX isozymes are thought to play a role in the modulation of epithelial proliferation and/or differentiation as well as in inflammation, wound healing, inflammatory skin diseases and cancer. Emerging evidence indicates a structural function of a particular LOX pathway in the maintenance of skin permeability barrier. Loss-of-function mutations in the LOX genes ALOX12B and ALOXE3 have been found to represent the second most common cause of autosomal recessive congenital ichthyosis and targeted disruption of the corresponding LOX genes in mice resulted in neonatal death due to a severely impaired permeability barrier function. Recent data indicate that LOX action in barrier function can be traced back to the oxygenation of linoleate-containing ceramides which constitutes an important step in the formation of the corneocyte lipid envelope. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.
Collapse
Affiliation(s)
- Peter Krieg
- Genome Modifications and Carcinogenesis, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D69120 Heidelberg, Germany.
| | - Gerhard Fürstenberger
- Genome Modifications and Carcinogenesis, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D69120 Heidelberg, Germany
| |
Collapse
|
13
|
Klil-Drori AJ, Ariel A. 15-Lipoxygenases in cancer: a double-edged sword? Prostaglandins Other Lipid Mediat 2013; 106:16-22. [PMID: 23933488 DOI: 10.1016/j.prostaglandins.2013.07.006] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 07/11/2013] [Accepted: 07/30/2013] [Indexed: 11/26/2022]
Abstract
Among the lipoxygenases, a diverse family of fatty acid dioxygenases with varying tissue-specific expression, 15-lipoxygenase (15-LOX) was found to be involved in many aspects of human cancer, such as angiogenesis, chronic inflammation, metastasis formation, and direct and indirect tumor suppression. Herein, evidence for the expression and action of 15-LOX and its orthologs in various neoplasms, including solid tumors and hematologic malignancies, is reviewed. The debate surrounding the impact of 15-LOX as either a tumor-promoting or a tumor-suppressing enzyme is highlighted and discussed in the context of its role in other biological systems.
Collapse
Affiliation(s)
- Adi J Klil-Drori
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, P.O. Box 9602, Haifa 31096, Israel
| | | |
Collapse
|
14
|
Abstract
Cancer initiation and progression are multistep events that require cell proliferation, migration, extravasation to the blood or lymphatic vessels, arrest to the metastatic site, and ultimately secondary growth. Tumor cell functions at both primary or secondary sites are controlled by many different factors, including growth factors and their receptors, chemokines, nuclear receptors, cell-cell interactions, cell-matrix interactions, as well as oxygenated metabolites of arachidonic acid. The observation that cyclooxygenases and lipoxygenases and their arachidonic acid-derived eicosanoid products (prostanoids and HETEs) are expressed and produced by tumor cells, together with the finding that these enzymes can regulate cell growth, survival, migration, and invasion, has prompted investigators to analyze the roles of these enzymes in cancer progression. In this review, we focus on the contribution of cyclooxygenase- and lipoxygenase-derived eicosanoids to tumor cell function in vitro and in vivo and discuss hope and tribulations of targeting these enzymes for cancer prevention and treatment.
Collapse
Affiliation(s)
- Claus Schneider
- Department of Pharmacology, Vanderbilt University Medical School, Nashville, TN 37232, USA
| | | |
Collapse
|
15
|
Li H, Tang DG. Prostate cancer stem cells and their potential roles in metastasis. J Surg Oncol 2011; 103:558-62. [PMID: 21480250 DOI: 10.1002/jso.21806] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Most solid tumors have now been reported to contain stem cell-like cells called cancer stem cells (CSCs). These cells are endowed with high tumorigenic capacity and may be the cells that drive tumor formation, maintain tumor homeostasis, and mediate tumor metastasis. Since these self-renewing cancer cells may be the sole population to develop a primary tumor, it is predicted that CSCs may also represent the lethal seeds of metastasis, as supported by a flurry of recent studies on the relationship between CSCs and metastasis. Herein, we summarize current knowledge of stem/progenitor cells and CSCs, especially in the context of normal human prostate and prostate cancer. We further update the recently gained knowledge on the involvement of CSCs in metastasis. We also discuss the fundamental influence of tumor microenvironment on the manifestation of CSCs and metastasis. Finally, we discuss the clinical implication of CSC-based therapy.
Collapse
Affiliation(s)
- Hangwen Li
- Department of Molecular Carcinogenesis, The University of Texas, MD Anderson Cancer Center, Science Park, Smithville, Texas 78957, USA
| | | |
Collapse
|
16
|
Epithelial cell-targeted transgene expression enables isolation of cyan fluorescent protein (CFP)-expressing prostate stem/progenitor cells. Transgenic Res 2011; 20:1073-86. [PMID: 21222155 DOI: 10.1007/s11248-010-9478-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Accepted: 12/15/2010] [Indexed: 12/17/2022]
Abstract
To establish a method for efficient and relatively easy isolation of a cell population containing epithelial prostate stem cells, we developed two transgenic mouse models, K5/CFP and K18/RFP. In these models, promoters of the cytokeratin 5 (Krt5) and the cytokeratin 18 (Krt18) genes regulate cyan and red fluorescent proteins (CFP and RFP), respectively. CFP and RFP reporter protein fluorescence allows for visualization of K5(+) and K18(+) epithelial cells within the cellular spatial context of the prostate gland and for their direct isolation by FACS. Using these models, it is possible to test directly the stem cell properties of prostate epithelial cell populations that are positively selected based on expression of cytoplasmic proteins, K5 and K18. After validating appropriate expression of the K5/CFP and K18/RFP transgenes in the developing and adult prostate, we demonstrate that a subset of CFP-expressing prostate cells exhibits stem cell proliferation potential and differentiation capabilities. Then, using prostate cells sorted from double transgenic mice (K5/CFP + K18/RFP), we compare RNA microarrays of sorted K5(+)K18(+) basal and K5(-)K18(+) luminal epithelial cells, and identify genes that are differentially expressed. Several genes that are over-expressed in K5(+) cells have previously been identified as potential stem cell markers. These results suggest that FACS isolation of prostate cells from these mice based on combining reporter gene fluorescence with expression of potential stem cell surface marker proteins will yield populations of cells enriched for stem cells to a degree that has not been attained by using cell surface markers alone.
Collapse
|
17
|
Cancer stem cells in urologic cancers. Urol Oncol 2010; 28:585-90. [DOI: 10.1016/j.urolonc.2009.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 06/14/2009] [Accepted: 06/16/2009] [Indexed: 12/31/2022]
|
18
|
Suraneni MV, Schneider-Broussard R, Moore JR, Davis TC, Maldonado CJ, Li H, Newman RA, Kusewitt D, Hu J, Yang P, Tang DG. Transgenic expression of 15-lipoxygenase 2 (15-LOX2) in mouse prostate leads to hyperplasia and cell senescence. Oncogene 2010; 29:4261-75. [PMID: 20514017 PMCID: PMC3042242 DOI: 10.1038/onc.2010.197] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 04/21/2010] [Accepted: 04/25/2010] [Indexed: 12/13/2022]
Abstract
15-Lipoxygenase 2 (15-LOX2), a lipid-peroxidizing enzyme, is mainly expressed in the luminal compartment of the normal human prostate, and is often decreased or lost in prostate cancer. Previous studies from our lab implicate 15-LOX2 as a functional tumor suppressor. To better understand the biological role of 15-LOX2 in vivo, we generated prostate-specific 15-LOX2 transgenic mice using the ARR2PB promoter. Unexpectedly, transgenic expression of 15-LOX2 or 15-LOX2sv-b, a splice variant that lacks arachidonic acid-metabolizing activity, resulted in age-dependent prostatic hyperplasia and enlargement of the prostate. Prostatic hyperplasia induced by both 15-LOX2 and 15-LOX2sv-b was associated with an increase in luminal and Ki-67(+) cells; however, 15-LOX2-transgenic prostates also showed a prominent increase in basal cells. Microarray analysis revealed distinct gene expression profiles that could help explain the prostate phenotypes. Strikingly, 15-LOX2, but not 15-LOX2sv-b, transgenic prostate showed upregulation of several well-known stem or progenitor cell molecules including Sca-1, Trop2, p63, Nkx3.1 and Psca. Prostatic hyperplasia caused by both 15-LOX2 and 15-LOX2sv-b did not progress to prostatic intraprostate neoplasia or carcinoma and, mechanistically, prostate lobes (especially those of 15-LOX2 mice) showed a dramatic increase in senescent cells as revealed by increased SA-betagal, p27(Kip1) and heterochromatin protein 1gamma staining. Collectively, our results suggest that 15-LOX2 expression in mouse prostate leads to hyperplasia and also induces cell senescence, which may, in turn, function as a barrier to tumor development.
Collapse
Affiliation(s)
- MV Suraneni
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957
| | - R Schneider-Broussard
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957
| | - JR Moore
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957
| | - T Calhoun Davis
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957
| | - CJ Maldonado
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957
| | - H Li
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957
| | - RA Newman
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - D Kusewitt
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957
| | - J Hu
- Department of Biostatistics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - P Yang
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - DG Tang
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957
- Program in Molecular Carcinogenesis, The University of Texas Graduate School of Biomedical Sciences (GSBS), Houston, TX 77030
| |
Collapse
|
19
|
Differential androgen receptor signals in different cells explain why androgen-deprivation therapy of prostate cancer fails. Oncogene 2010; 29:3593-604. [PMID: 20440270 DOI: 10.1038/onc.2010.121] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Prostate cancer is one of the major causes of cancer-related death in the western world. Androgen-deprivation therapy (ADT) for the suppression of androgens binding to the androgen receptor (AR) has been the norm of prostate cancer treatment. Despite early success to suppress prostate tumor growth, ADT eventually fails leading to recurrent tumor growth in a hormone-refractory manner, even though AR remains to function in hormone-refractory prostate cancer. Interestingly, some prostate cancer survivors who received androgen replacement therapy had improved quality of life without adverse effect on their cancer progression. These contrasting clinical data suggest that differential androgen/AR signals in individual cells of prostate tumors can exist in the same or different patients, and may be used to explain why ADT of prostate cancer fails. Such a hypothesis is supported by the results obtained from transgenic mice with selective knockout of AR in prostatic stromal vs epithelial cells and orthotopic transplants of various human prostate cancer cell lines with AR over-expression or knockout. These studies concluded that AR functions as a stimulator for prostate cancer proliferation and metastasis in stromal cells, as a survival factor of prostatic cancer epithelial luminal cells, and as a suppressor for prostate cancer basal intermediate cell growth and metastasis. These dual yet opposite functions of the stromal and epithelial AR may challenge the current ADT to battle prostate cancer and should be taken into consideration when developing new AR-targeting therapies in selective prostate cancer cells.
Collapse
|
20
|
Li T, Su Y, Mei Y, Leng Q, Leng B, Liu Z, Stass SA, Jiang F. ALDH1A1 is a marker for malignant prostate stem cells and predictor of prostate cancer patients' outcome. J Transl Med 2010; 90:234-44. [PMID: 20010854 PMCID: PMC3552330 DOI: 10.1038/labinvest.2009.127] [Citation(s) in RCA: 293] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Prostate cancer (PCa) contains a small population of cancer stem cells (CSCs) that contribute to its initiation and progression. The development of specific markers for identification of the CSCs may lead to new diagnostic strategies of PCa. Increased aldehyde dehydrogenase 1A1 (ALDH1A1) activity has been found in the stem cell populations of leukemia and some solid tumors. The aim of the study was to investigate the stem-cell-related function and clinical significance of the ALDH1A1 in human PCa. ALDEFLUOR assay was used to isolate ALDH1A1(+) cells from PCa cell lines. Stem cell characteristics of the ALDH1A1(+) cells were then investigated by in vitro and in vivo approaches. The ALDH1A1 expression was also analyzed by immunohistochemistry in 18 normal prostate and 163 PCa tissues. The ALDH1A1(+) PCa cells showed high clonogenic and tumorigenic capacities, and serially reinitiated transplantable tumors that resembled histopathologic characteristics and heterogeneity of the parental PCa cells in mice. Immunohistochemical analysis of human prostate tissues showed that ALDH1A1(+) cells were sparse and limited to the basal component in normal prostates. However, in tumor specimens, increased ALDH1A1 immunopositivity was found not only in secretory type cancer epithelial cells but also in neuroendocrine tumor populations. Furthermore, the high ALDH1A1 expression in PCa was positively correlated with Gleason score (P=0.01) and pathologic stage (P=0.01), and inversely associated with overall survival and cancer-specific survival of the patients (P=0.00093 and 0.00017, respectively). ALDH1A1 could be a prostate CSC-related marker. Measuring its expression might provide a potential approach to study tumorigenesis of PCa and predict outcome of the disease.
Collapse
Affiliation(s)
- Ting Li
- Department of Pathology and Division of Biostatistics of The University of Maryland, Baltimore, MD.
| | - Yun Su
- Department of Surgery, Zhongda Hospital, The School of Clinical Medicine, Southeast University, Nanjing, China.
| | - Yuping Mei
- Department of Pathology and Division of Biostatistics of The University of Maryland, Baltimore, MD.
| | - Qixin Leng
- Department of Pathology and Division of Biostatistics of The University of Maryland, Baltimore, MD.
| | - Bingjie Leng
- Department of Pathology and Division of Biostatistics of The University of Maryland, Baltimore, MD.
| | - Zhenqiu Liu
- Department of Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD.
| | - Sanford A. Stass
- Department of Pathology and Division of Biostatistics of The University of Maryland, Baltimore, MD.
| | - Feng Jiang
- Department of Pathology and Division of Biostatistics of The University of Maryland, Baltimore, MD.
,Correspondence to, Department of Pathology, The University of Maryland School of Medicine, 10 South Pine Street, MSTF 7th floor, Baltimore, MD 21201-1192, USA. .
| |
Collapse
|
21
|
Tang Y, Wang MT, Chen Y, Yang D, Che M, Honn KV, Akers GD, Johnson SR, Nie D. Downregulation of vascular endothelial growth factor and induction of tumor dormancy by 15-lipoxygenase-2 in prostate cancer. Int J Cancer 2009; 124:1545-51. [PMID: 19089921 PMCID: PMC2913418 DOI: 10.1002/ijc.24118] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The enzyme 15-lipoxygenase-2 (15-LOX-2) utilizes arachidonic acid, a polyunsaturated fatty acid, to synthesize 15(S)-hydroxyeicosatetraenoic acid. Abundantly expressed in normal prostate epithelium but frequently suppressed in the cancerous tissues, 15-LOX-2 has been suggested as a functional suppressor of prostate cancer, but the mechanism(s) involved remains unknown. To study the functional role of 15-LOX-2 in prostate cancer, we expressed 15-LOX-2 as a fusion protein with GFP in DU145 and PC-3 cells and found that 15-LOX-2 increased cell cycle arrest at G0/G1 phase. When injected into athymic nu/nu mice, prostate cancer cells with 15-LOX-2 expression could still form palpable tumors without significant changes in tumorigenicity. But, the tumors with 15-LOX-2 expression grew significantly slower than those derived from vector controls and were kept dormant for a long period of time. Histological evaluation revealed an increase in cell death in tumors derived from prostate cancer cells with 15-LOX-2 expression, while in vitro cell culture conditions, no such increase in apoptosis was observed. Further studies found that the expression of vascular endothelial growth factor A (VEGF-A) was significantly reduced in prostate cancer cells with 15-LOX-2 expression restored. Our studies suggest that 15-LOX-2 suppresses VEGF gene expression and sustains tumor dormancy in prostate cancer. Loss of 15-LOX-2 functionalities, therefore, represents a key step for prostate cancer cells to exit from dormancy and embark on malignant progression in vivo.
Collapse
Affiliation(s)
- Yong Tang
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine and SimmonsCooper Cancer Institute, Springfield, IL 62794
| | - Man-Tzu Wang
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine and SimmonsCooper Cancer Institute, Springfield, IL 62794
| | - Yakun Chen
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine and SimmonsCooper Cancer Institute, Springfield, IL 62794
| | - Dianer Yang
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine and SimmonsCooper Cancer Institute, Springfield, IL 62794
| | - Mingxin Che
- Departments of Pathology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Kenneth V Honn
- Departments of Pathology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Gregory D Akers
- Department of Pathology, Southern Illinois University School of Medicine and SimmonsCooper Cancer Institute, Springfield, IL 62794
| | | | - Daotai Nie
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine and SimmonsCooper Cancer Institute, Springfield, IL 62794
| |
Collapse
|
22
|
Chen X, Schneider-Broussard R, Hollowell D, McArthur M, Jeter CR, Benavides F, DiGiovanni J, Tang DG. Abnormal differentiation, hyperplasia and embryonic/perinatal lethality in BK5-T/t transgenic mice. Differentiation 2009; 77:324-34. [PMID: 19272531 PMCID: PMC2680132 DOI: 10.1016/j.diff.2008.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 08/28/2008] [Accepted: 10/02/2008] [Indexed: 01/20/2023]
Abstract
The cell-of-origin has a great impact on the types of tumors that develop and the stem/progenitor cells have long been considered main targets of malignant transformation. The SV40 (SV40-Simian Virus 40) large T and small t antigens (T/t), have been targeted to multiple-differentiated cellular compartments in transgenic mice. In most of these studies, transgenic animals develop tumors without apparent defects in animal development. In this study, we used the bovine keratin 5 (BK5) promoter to target the T/t antigens to stem/progenitor cell-containing cytokeratin 5 (CK5) cellular compartment. A transgene construct, BK5-T/t, was made and microinjected into the male pronucleus of FVB/N mouse oocytes. After implanting approximately 1700 embryos, only 7 transgenics were obtained, including 4 embryos (E9.5, E13, E15, and E20) and 3 postnatal animals, which died at P1, P2, and P18, respectively. Immunohistological analysis revealed aberrant differentiation and prominent hyperplasia in several transgenic CK5 tissues, especially the upper digestive organs (tongue, oral mucosa, esophagus, and forestomach) and epidermis, the latter of which also showed focal dysplasia. Altogether, these results indicate that constitutive expression of the T/t antigens in CK5 cellular compartment results in abnormal epithelial differentiation and leads to embryonic/perinatal animal lethality.
Collapse
Affiliation(s)
- Xin Chen
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, 1808 Park Road 1-C, P.O. Box 389, Smithville, TX 78957, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The cancer stem cell (CSC) theory posits that only a small population of tumor cells within the tumor has the ability to reinitiate tumor development and is responsible for tumor homeostasis and progression. Tumor initiation is a defining property of putative CSCs, which have been reported in both blood malignancies and solid tumors. In order to test whether any given human tumor cell population has CSC properties, the relatively enriched single cells have to be put into a foreign microenvironment in a recipient animal to test their tumorigenic potential. Furthermore, various in vitro assays need be performed to demonstrate that the presumed CSCs have certain biological properties normally associated with the stem cells (SCs). Herein, we present a comprehensive review of the experimental methodologies that our lab has been using in assaying putative prostate cancer (PCa) SCs in culture, xenograft tumors, and primary tumor samples.
Collapse
|
24
|
Abstract
INTRODUCTION The lineages assumed by stem cells during hematopoiesis can be identified by the pattern of protein markers present on the surface of cells at different stages of differentiation. Specific antibodies directed at these markers have facilitated the isolation of hematopoietic stem cells by flow cytometry. DISCUSSION Similarly, stem cells in solid organs also can be identified using cell surface markers. In addition, solid tumors have recently been found to contain small proportions of cells that are capable of proliferation, self-renewal, and differentiation into the various cell types seen in the bulk tumor. Of particular concern, these tumor-initiating cells (termed cancer stem cells when multipotency and self-renewal have been demonstrated) often display characteristics of treatment resistance, particularly to ionizing radiation. Thus, it is important to be able to identify these cells in order to better understand the mechanisms of resistance, and to be able to predict outcome and response to treatment. This depends, of course, on identifying markers that can be used to identify the cells, and for some solid tumors, a specific pattern of cell surface markers is emerging. In breast cancer, for example, the tumor-initiating cells have a characteristic Lin(-)CD44(+)CD24(-/lo) ESA(+) antigenic pattern. In cells derived from some high-grade gliomas, expression of CD133 on the cell surface appears to select for a population of tumor-initiating, treatment resistant cells. CONCLUSION Because multiple markers, typically examined on single cells using flow cytometry, are used routinely to identify the subpopulation of tumor-initiating cells, and because the number of these cells is small, the challenge remains to detect them in clinical samples and to determine their ability to predict outcome and/or response to treatment, the hallmarks of established biomarkers.
Collapse
|
25
|
Bhatia B, Jiang M, Suraneni M, Patrawala L, Badeaux M, Schneider-Broussard R, Multani AS, Jeter CR, Calhoun-Davis T, Hu L, Hu J, Tsavachidis S, Zhang W, Chang S, Hayward SW, Tang DG. Critical and distinct roles of p16 and telomerase in regulating the proliferative life span of normal human prostate epithelial progenitor cells. J Biol Chem 2008; 283:27957-27972. [PMID: 18662989 DOI: 10.1074/jbc.m803467200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Normal human prostate (NHP) epithelial cells undergo senescence in vitro and in vivo, but the underlying molecular mechanisms remain obscure. Here we show that the senescence of primary NHP cells, which are immunophenotyped as intermediate basal-like cells expressing progenitor cell markers CD44, alpha2beta1, p63, hTERT, and CK5/CK18, involves loss of telomerase expression, up-regulation of p16, and activation of p53. Using genetically defined manipulations of these three signaling pathways, we show that p16 is the primary determinant of the NHP cell proliferative capacity and that hTERT is required for unlimited proliferative life span. Hence, suppression of p16 significantly extends NHP cell life span, but both p16 inhibition and hTERT are required to immortalize NHP cells. Importantly, immortalized NHP cells retain expression of most progenitor markers, demonstrate gene expression profiles characteristic of proliferating progenitor cells, and possess multilineage differentiation potential generating functional prostatic glands. Our studies shed important light on the molecular mechanisms regulating the proliferative life span of NHP progenitor cells.
Collapse
Affiliation(s)
- Bobby Bhatia
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957
| | - Ming Jiang
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, the Departments of
| | - Mahipal Suraneni
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957
| | - Lubna Patrawala
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957
| | - Mark Badeaux
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957
| | - Robin Schneider-Broussard
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957
| | - Asha S Multani
- Cancer Genetics, University of Texas M.D Anderson Cancer Center, Houston, Texas 77030
| | - Collene R Jeter
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957
| | - Tammy Calhoun-Davis
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957
| | - Limei Hu
- Pathology, University of Texas M.D Anderson Cancer Center, Houston, Texas 77030
| | - Jianhua Hu
- Biostatistics, University of Texas M.D Anderson Cancer Center, Houston, Texas 77030
| | - Spiridon Tsavachidis
- Biostatistics, University of Texas M.D Anderson Cancer Center, Houston, Texas 77030
| | - Wei Zhang
- Pathology, University of Texas M.D Anderson Cancer Center, Houston, Texas 77030
| | - Sandy Chang
- Cancer Genetics, University of Texas M.D Anderson Cancer Center, Houston, Texas 77030; Hematopathology, University of Texas M.D Anderson Cancer Center, Houston, Texas 77030
| | - Simon W Hayward
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, the Departments of
| | - Dean G Tang
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957; Program in Molecular Carcinogenesis, Graduate School of Biomedical Sciences, Houston, Texas 77030.
| |
Collapse
|
26
|
Li H, Chen X, Calhoun-Davis T, Claypool K, Tang DG. PC3 human prostate carcinoma cell holoclones contain self-renewing tumor-initiating cells. Cancer Res 2008; 68:1820-5. [PMID: 18339862 DOI: 10.1158/0008-5472.can-07-5878] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Primary keratinocytes exhibit three typical clonal morphologies represented by holoclones, meroclones, and paraclones, with holoclones containing self-renewing stem cells, and meroclones and paraclones containing more mature and differentiated cells. Interestingly, long-term-cultured human epithelial cancer cells in clonal cultures also form holoclones, meroclones, and paraclones, and tumor cell holoclones have been hypothesized to harbor stem-like cells or cancer stem cells. However, the key question of whether tumor cell holoclones genuinely contain tumor-initiating cells has not been directly addressed. Here, using PC3 human prostate carcinoma cells as a model, we provide direct experimental evidence that tumor cell holoclones contain stem-like cells that can initiate serially transplantable tumors. Importantly, holoclones derived from either cultured PC3 cells or holoclone-initiated tumors can be serially passaged and regenerate all three types of clones. In contrast, meroclones and paraclones cannot be continuously propagated and fail to initiate tumor development. Phenotypic characterizations reveal high levels of CD44, alpha(2)beta(1) integrin, and beta-catenin expression in holoclones, whereas meroclones and paraclones show markedly reduced expression of these stem cell markers. The present results have important implications in understanding morphologic heterogeneities and tumorigenic hierarchies in human epithelial cancer cells.
Collapse
Affiliation(s)
- Hangwen Li
- Department of Carcinogenesis, Science Park-Research Division, The University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| | | | | | | | | |
Collapse
|
27
|
Mimeault M, Mehta PP, Hauke R, Batra SK. Functions of normal and malignant prostatic stem/progenitor cells in tissue regeneration and cancer progression and novel targeting therapies. Endocr Rev 2008; 29:234-52. [PMID: 18292464 PMCID: PMC2528844 DOI: 10.1210/er.2007-0040] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This review summarizes the recent advancements that have improved our understanding of the functions of prostatic stem/progenitor cells in maintaining homeostasis of the prostate gland. We also describe the oncogenic events that may contribute to their malignant transformation into prostatic cancer stem/progenitor cells during cancer initiation and progression to metastatic disease stages. The molecular mechanisms that may contribute to the intrinsic or the acquisition of a resistant phenotype by the prostatic cancer stem/progenitor cells and their differentiated progenies with a luminal phenotype to the current therapies and disease relapse are also reviewed. The emphasis is on the critical functions of distinct tumorigenic signaling cascades induced through the epidermal growth factor system, hedgehog, Wnt/beta-catenin, and/or stromal cell-derived factor-1/CXC chemokine receptor-4 pathways as well as the deregulated apoptotic signaling elements and ATP-binding cassette multidrug transporter. Of particular therapeutic interest, we also discuss the potential beneficial effects associated with the targeting of these signaling elements to overcome the resistance to current treatments and prostate cancer recurrence. The combined targeted strategies toward distinct oncogenic signaling cascades in prostatic cancer stem/progenitor cells and their progenies as well as their local microenvironment, which could improve the efficacy of current clinical chemotherapeutic treatments against incurable, androgen-independent, and metastatic prostate cancers, are also described.
Collapse
Affiliation(s)
- Murielle Mimeault
- and Surinder K. Batra, Ph.D., Department of Biochemistry and Molecular Biology, Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| | | | | | | |
Collapse
|
28
|
Bhatia B, Multani AS, Patrawala L, Chen X, Calhoun-Davis T, Zhou J, Schroeder L, Schneider-Broussard R, Shen J, Pathak S, Chang S, Tang DG. Evidence that senescent human prostate epithelial cells enhance tumorigenicity: cell fusion as a potential mechanism and inhibition by p16INK4a and hTERT. Int J Cancer 2008; 122:1483-95. [PMID: 18059027 DOI: 10.1002/ijc.23222] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Normal human prostate (NHP) epithelial cells undergo senescence in vitro and in vivo but the potential role of senescent NHP cells in prostate tumorigenesis remain unclear. Here we show that senescent NHP cells enhance the in vivo tumorigenicity of low-tumorigenic LNCaP prostate cancer and low/non-tumorigenic subset of cells (called L cells) isolated from multiple bulk-cultured prostate (and other) cancer cell lines. Subsequent studies suggest cell-cell fusion as a potential mechanism for senescent NHP cell-enhanced tumor development. Using fluorescently tagged tumor cells and/or NHP cells, we find that NHP cells, like fibroblasts, can undergo fusion with unfractionated tumor cells or the L cells. Using 293T-L cells as the model cell system, we verify NHP and 293T-L cell fusion by using differential RT-PCR, karyotyping, and gene expression analyses. Further experiments demonstrate that senescent NHP cells that have lost progenitor markers, accumulated p16INK4a (p16) protein expression, and acquired the AR mRNA expression, appear to be the preferential fusion targets. Strikingly, the tumorigenicity of the NHP/293T-L hybrid cells was inhibited by exogenous p16 as well as hTERT. Chromosomal analyses revealed that hTERT probably inhibited the in vivo tumorigenicity by maintaining genomic stability. These results suggest that senescent NHP cells, like senescent fibroblasts, may promote tumor development and that one of the mechanisms underlying the senescent NHP cell-enhanced tumorigenicity could be through cell fusion.
Collapse
Affiliation(s)
- Bobby Bhatia
- Department of Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park-Research Division, Smithville, TX 78957, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Synergistic effect of 15-lipoxygenase 2 and radiation in killing head-and-neck cancer. Cancer Gene Ther 2008; 15:323-30. [DOI: 10.1038/cgt.2008.9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
|
31
|
Freedman RS, Wang E, Voiculescu S, Patenia R, Bassett RL, Deavers M, Marincola FM, Yang P, Newman RA. Comparative analysis of peritoneum and tumor eicosanoids and pathways in advanced ovarian cancer. Clin Cancer Res 2007; 13:5736-44. [PMID: 17908963 DOI: 10.1158/1078-0432.ccr-07-0583] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To describe the eicosanoid profile and differentially expressed eicosanoid and arachidonic acid pathway genes in tissues from patients with advanced epithelial ovarian cancer (EOC). EXPERIMENTAL DESIGN We first employed electrospray tandem mass spectrometry to determine tissue-specific concentrations of the eicosanoids prostaglandin E2 (PGE2), the hydroxyeicosatetraenoic acids (12-HETE and 5-HETE), and leukotriene (LTB4), selected for tumor growth potential, and two other bioactive lipids (15-HETE and 13-HODE) with tumor cell proliferation interference potential. The cellular location of eicosanoid activity was identified by immunofluorescence antibody costaining and confocal microscopy. Differential analysis of eicosanoid and arachidonic pathway genes was done using a previously validated cDNA microarray platform. Tissues used included EOC tumor, tumor-free malignant peritoneum (MP), and benign peritoneum (BP) from patients with benign pelvic disease. RESULTS (a) Eicosanoid products were detected in tumor, MP, and BP specimens. PGE2 levels were significantly elevated in tumors in an overall comparison with MP or BP (P < 0.001). Combined levels of PGE2, 12-HETE, 5-HETE, and LTB4 increased progressively from low to high concentrations in BP, MP, and tumors (P = 0.012). Neither 15-HETE nor 13-HODE showed a significant opposite trend toward levels found in BP. (b) Tissue specimens representing common EOC histotypes showed strong coexpressions of cyclooxygenases (COX-1) and prostaglandin E synthases (PGES-1) on tumor cells, whereas intratumoral or peritumoral MO/MA coexpressed COX-1 and COX-2 and PGES-1 and PGES-2, respectively. (c) cDNA microarray analysis of MP, BP, and tumor showed that a number of eicosanoid and arachidonic acid pathway genes were differentially expressed in MP and BP compared with tumor, except for CYP2J2, which was increased in tumors. CONCLUSIONS Elevated levels of eicosanoid metabolites in tumors and differential expression of eicosanoid and arachidonic acid pathway genes in the peritoneum support the involvement of bioactive lipids in the inflammatory tumor environment of EOC.
Collapse
Affiliation(s)
- Ralph S Freedman
- Department of Gynecologic Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77230, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Patrawala L, Calhoun-Davis T, Schneider-Broussard R, Tang DG. Hierarchical organization of prostate cancer cells in xenograft tumors: the CD44+alpha2beta1+ cell population is enriched in tumor-initiating cells. Cancer Res 2007; 67:6796-805. [PMID: 17638891 DOI: 10.1158/0008-5472.can-07-0490] [Citation(s) in RCA: 267] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Prostate cancer cells are heterogeneous in their tumorigenicity. For example, the side population cells isolated from LAPC9 xenografts are 100 to 1,000 times more tumorigenic than the corresponding non-side population cells. Highly purified CD44(+) prostate cancer cells from several xenografts are also enriched in prostate cancer stem/progenitor cells. Because the CD44(+) prostate cancer cell population is still heterogeneous, we wonder whether we could further enrich for tumorigenic prostate cancer cells in this population using other markers. Integrin alpha2beta1 has been proposed to mark a population of normal human prostate stem cells. Therefore, we first asked whether the alpha2beta1(+/hi) cells in prostate tumors might also represent prostate cancer stem cells. Highly purified (> or =98%) alpha2beta1(+/hi) cells from three human xenograft tumors, Du145, LAPC4, and LAPC9, show higher clonal and clonogenic potential than the alpha2beta1(-/lo) cells in vitro. However, when injected into the nonobese diabetic/severe combined immunodeficient (NOD/SCID) mouse prostate or s.c., the alpha2beta1(+/hi) prostate cancer cells are no more tumorigenic than the alpha2beta1(-/lo) cells. Immunofluorescence studies reveal that CD44 and alpha2beta1 identify an overlapping and inclusive population of prostate cancer cells in that approximately 70% of alpha2beta1(+/hi) cells are CD44(+) and 20% to 30% of CD44(+) cells are distributed in the alpha2beta1(-/lo) cell population. Subsequently, we sorted out CD44(+)alpha2beta1(+/hi), CD44(+)alpha2beta1(-/lo), CD44(-)alpha2beta1(+/hi), and CD44(-)alpha2beta1(-/lo) cells from LAPC9 tumors and carried out tumorigenicity experiments. The results revealed a hierarchy in tumorigenic potential in the order of CD44(+)alpha2beta1(+/hi) approximately CD44(+)alpha2beta1(-/lo) > CD44(-)alpha2beta1(+/hi) >> CD44(-)alpha2beta1(-/lo). These observations together suggest that prostate cancer cells are organized as a hierarchy.
Collapse
Affiliation(s)
- Lubna Patrawala
- Department of Carcinogenesis, The University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, 1808 Park Road 1C, Smithville, TX 78957, USA
| | | | | | | |
Collapse
|
33
|
Gu G, Yuan J, Wills M, Kasper S. Prostate cancer cells with stem cell characteristics reconstitute the original human tumor in vivo. Cancer Res 2007; 67:4807-15. [PMID: 17510410 DOI: 10.1158/0008-5472.can-06-4608] [Citation(s) in RCA: 265] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancer may arise from a cancer stem/progenitor cell that shares characteristics with its normal counterpart. We report the reconstitution of the original human prostate cancer specimen from epithelial cell lines (termed HPET for human prostate epithelial/hTERT) derived from this sample. These tumors can be described in terms of Gleason score, a classification not applied to any of the transgenic mouse models currently developed to mimic human disease. Immunohistochemical and Western blot analyses indicate that they do not express androgen receptor or p63, similar to that reported for prostate stem cells. These cell lines also express embryonic stem markers (Oct4, Nanog, and Sox2) as well as early progenitor cell markers (CD44 and Nestin) in vitro. Clonally derived HPET cells reconstitute the original human tumor in vivo and differentiate into the three prostate epithelial cell lineages, indicating that they arise from a common stem/progenitor cell. Serial transplantation experiments reconstitute the tumors, suggesting that a fraction of parental or clonally derived HPET cells have self-renewal potential. Thus, this model may enhance our understanding of human tumor development and provide a mechanism for studying cancer stem/progenitor cells in differentiation, tumorigenesis, preclinical testing, and the development of drug resistance.
Collapse
Affiliation(s)
- Guangyu Gu
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232-2765, USA
| | | | | | | |
Collapse
|
34
|
Tang DG, Patrawala L, Calhoun T, Bhatia B, Choy G, Schneider-Broussard R, Jeter C. Prostate cancer stem/progenitor cells: identification, characterization, and implications. Mol Carcinog 2007; 46:1-14. [PMID: 16921491 DOI: 10.1002/mc.20255] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Several solid tumors have now been shown to contain stem cell-like cells called cancer stem cells (CSC). These cells, although generally rare, appear to be highly tumorigenic and may be the cells that drive tumor formation, maintain tumor homeostasis, and mediate tumor metastasis. In this Perspective, we first provide our insight on how a CSC should be defined. We then summarize our current knowledge of stem/progenitor cells in the normal human prostate (NHP), an organ highly susceptible to hyperproliferative diseases such as benign prostate hyperplasia (BPH) and prostate cancer (PCa). We further review the evidence that cultured PCa cells, xenograft prostate tumors, and patient tumors may contain stem/progenitor cells. Along with our discussion, we present several methodologies that can be potentially used to identify putative tumor-reinitiating CSC. Finally, we present a hypothetical model for the hierarchical organization of human PCa cells and discuss the implications of this model in helping understand prostate carcinogenesis and design novel diagnostic, prognostic, and therapeutic approaches.
Collapse
Affiliation(s)
- Dean G Tang
- Department of Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Tang DG, Bhatia B, Tang S, Schneider-Broussard R. 15-Lipoxygenase 2 (15-LOX2) is a functional tumor suppressor that regulates human prostate epithelial cell differentiation, senescence, and growth (size). Prostaglandins Other Lipid Mediat 2007; 82:135-46. [PMID: 17164141 DOI: 10.1016/j.prostaglandins.2006.05.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Accepted: 05/16/2006] [Indexed: 11/19/2022]
Abstract
15-Lipoxygenase 2 (15-LOX2) is the major mammalian lipoxygenase expressed in normal human adult prostate and its expression is decreased or lost in high-grade prostate intraepithelial neoplasia (HGPIN) and prostate cancer (PCa). Our recent work has demonstrated that (1) 15-LOX2 has multiple alternatively spliced isoforms and is a negative cell-cycle regulator in normal human prostate (NHP) epithelial cells; (2) 15-LOX2 in NHP cells is positively regulated by Sp1 and negatively regulated by Sp3; (3) 15-LOX2 in NHP cells may be partially involved in cell differentiation; (4) 15-LOX2 is cell-autonomously upregulated in cultured NHP cells and its induction is associated with NHP cell senescence; and (5) 15-LOX2 is a functional prostate tumor suppressor. Here we summarize these new findings to provide a concise view of the potential biological functions of 15-LOX2 in NHP cells and of its deregulation in PCa development.
Collapse
Affiliation(s)
- Dean G Tang
- Department of Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park-Research Division, 1808 Park Rd. 1C, Smithville, TX 78957, United States.
| | | | | | | |
Collapse
|
36
|
Koeneman KS. Prostate cancer stem cells, telomerase biology, epigenetic modifiers, and molecular systemic therapy for the androgen-independent lethal phenotype. Urol Oncol 2006; 24:119-21. [PMID: 16520275 DOI: 10.1016/j.urolonc.2005.11.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Numerous, relatively well-characterized androgen-independent osteotropic prostate cancer cell lines are now available to interrogate clinically relevant fundamental questions of prostate cancer metastasis and lethal progression systematically. Mounting basic and translational science efforts reveal that, very likely, the currently incurable form of androgen independent osseous prostate cancer originates from a more undifferentiated or "stem cell" like component, coexisting within a heterogeneous tumor mass containing more differentiated epithelial cancer subtypes. Current therapeutic preclinical investigations point toward the use of epigenetic modifiers, such as histone deacetylase inhibitors, to abrogate the continued survival of prostate cancer cells and likely can be used relatively chronically, with little morbidity. Telomere maintenance is critical in the immortalization of prostate cancer cells, and all known androgen independent cell line variants invariably express telomerase, and, thus, an argument can be made that these aggressive cells are likened to immature, progenitor variants. The arena of telomere biology has evolved enough to provide precise, nontoxic small molecule inhibitors of telomerase that limit viability of androgen-independent cell lines, yielding apoptosis. Both epigenetic modifiers and telomerase-directed small molecule inhibitors have enhanced efficacy when given in combination with conventional and novel cytotoxic drugs. Better knowledge of the "stem cell" nature of prostate cancer will help direct the molecularly targeted therapies of the near future.
Collapse
Affiliation(s)
- Kenneth S Koeneman
- Department of Urologic Surgery, Comprehensive Cancer Center, Center for Prostate Cancer, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
37
|
Torosyan Y, Dobi A, Naga S, Mezhevaya K, Glasman M, Norris C, Jiang G, Mueller G, Pollard H, Srivastava M. Distinct Effects of Annexin A7 and p53 on Arachidonate Lipoxygenation in Prostate Cancer Cells Involve 5-Lipoxygenase Transcription. Cancer Res 2006; 66:9609-16. [PMID: 17018618 DOI: 10.1158/0008-5472.can-06-1574] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumor suppressor function for Annexin A7 (ANXA7; 10q21) is based on cancer-prone phenotype in Anxa7(+/-) mouse and ANXA7 prognostic role in human cancers. Because ANXA7-caused liposome aggregation can be promoted by arachidonic acid (AA), we hypothesized that the phospholipid-binding tumor suppressor ANXA7 is associated with AA cascade. In a comparative study of ANXA7 versus canonical tumor suppressor p53 effects on AA lipoxygenation pathway in the p53-mutant and androgen-insensitive DU145 prostate cancer cells, both tumor suppressors altered gene expression of major 5-lipoxygenase (LOX) and 15-LOXs, including response to T helper 2 (Th2)-cytokine [interleukin-4 (IL-4)] and endogenous steroids (mimicked by dexamethasone). Wild-type and mutant ANXA7 distinctly affected expression of the dexamethasone-induced 15-LOX-2 (a prostate-specific endogenous tumor suppressor) as well as the IL-4-induced 15-LOX-1. On the other hand, wild-type p53 restored 5-LOX expression in DU145 to levels comparable to benign prostate epithelial cells. Using mass spectrometry of DNA affinity-enriched nuclear proteins, we detected different proteins that were bound to adjacent p53 and estrogen response elements in the 5-LOX promoter in DU145 cells introduced with ANXA7 versus p53. Sex hormone regulator 17-beta hydroxysteroid dehydrogenase 4 was identified under p53 introduction, which induced the 5-LOX expression. Meantime, nuclear proteins bound to the same 5-LOX promoter site under introduction of ANXA7 (that was associated with the repressed 5-LOX) were identified as zinc finger proteins ZNF433 and Aiolos, pyrin domain-containing NALP10, and the p53-regulating DNA repair enzyme APEX1. Thus, ANXA7 and p53 can distinctly regulate LOX transcription that is potentially relevant to the AA-mediated cell growth control in tumor suppression.
Collapse
Affiliation(s)
- Yelizaveta Torosyan
- Department of Anatomy, Physiology, and Genetics, and Institute for Molecular Medicine, Uniformed Services University of the Health Sciences School of Medicine, Bethesda, MD 20814, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Carrington JL, Bellino FL. Developing a research agenda in biogerontology: physiological systems. SCIENCE OF AGING KNOWLEDGE ENVIRONMENT : SAGE KE 2006; 2006:pe17. [PMID: 16807481 DOI: 10.1126/sageke.2006.10.pe17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The Biology of Aging Program (BAP) at the National Institute on Aging supports research in many areas, including processes of cell senescence and apoptosis, genetic influences on aging, and how aging leads to tissue dysfunction. Several approaches to research on aging physiological systems are described, along with BAP programmatic efforts to enhance and support that research. Understanding the relation between aging and tissue dysfunction has led to new insights into how health can be improved for aged individuals.
Collapse
Affiliation(s)
- Jill L Carrington
- Biology of Aging Program, National Institute on Aging, Bethesda, MD 20892, USA.
| | | |
Collapse
|
39
|
Subbarayan V, Krieg P, Hsi LC, Kim J, Yang P, Sabichi AL, Llansa N, Mendoza G, Logothetis CJ, Newman RA, Lippman SM, Menter DG. 15-Lipoxygenase-2 gene regulation by its product 15-(S)-hydroxyeicosatetraenoic acid through a negative feedback mechanism that involves peroxisome proliferator-activated receptor gamma. Oncogene 2006; 25:6015-25. [PMID: 16682954 DOI: 10.1038/sj.onc.1209617] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An inverse relationship exists between the expression of 15-lipoxygenase-2 (15-LOX-2) and peroxisome proliferator-activated receptor gamma (PPARgamma) in normal prostate epithelial cells (PrECs) compared with their expression in prostate carcinoma cells (PC-3). The reason for this difference, however, is unknown. We hypothesized that this inverse expression partly involves the 15-LOX-2 promoter and 15-S-hydroxyeicosatetraenoic acid (15-(S)-HETE), a product of 15-LOX-2 that binds to PPARgamma. We identified an active steroid nuclear receptor half-site present in the 15-LOX-2 promoter fragment F-5 (-618/+177) that can interact with PPARgamma. After forced expression of wild-type PPARgamma, 15-(S)-HETE (1 microM) decreased F-5 reporter activity in PrECs whereas forced expression of 15-LOX-2 resulted in 15-(S)-HETE production which enhanced F-5 activity in PC-3. In contrast, the expression of dominant-negative PPARgamma reversed the transcriptional activation of F-5 by enhancing it 202-fold in PrEC or suppressing it in PC-3; the effect in PC-3 was positively increased 150-fold in the presence of 15-(S)-HETE (1 microM). Peroxisome proliferator-activated receptor gamma interacted with 15-LOX-2 promoter sequences in pulldown experiments using biotinylated 15-LOX-2 (-560/-596 bp) oligonucleotides. In gelshift analyses PPARgamma and orphan receptor RORalpha were shown to interact with the F-5 fragment in PC-3 cells. These data suggest that crosstalk mechanisms exist between the 15-LOX-2 gene and PPARgamma to counterbalance expression and help explain the inverse relationship of these genes in normal versus cancer cells.
Collapse
Affiliation(s)
- V Subbarayan
- Department of Clinical Cancer Prevention, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B, Tang S, Reilly JG, Chandra D, Zhou J, Claypool K, Coghlan L, Tang DG. Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 2006; 25:1696-708. [PMID: 16449977 DOI: 10.1038/sj.onc.1209327] [Citation(s) in RCA: 723] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CD44 is a multifunctional protein involved in cell adhesion and signaling. The role of CD44 in prostate cancer (PCa) development and progression is controversial with studies showing both tumor-promoting and tumor-inhibiting effects. Most of these studies have used bulk-cultured PCa cells or PCa tissues to carry out correlative or overexpression experiments. The key experiment using prospectively purified cells has not been carried out. Here we use FACS to obtain homogeneous CD44(+) and CD44(-) tumor cell populations from multiple PCa cell cultures as well as four xenograft tumors to compare their in vitro and in vivo tumor-associated properties. Our results reveal that the CD44(+) PCa cells are more proliferative, clonogenic, tumorigenic, and metastatic than the isogenic CD44(-) PCa cells. Subsequent molecular studies demonstrate that the CD44(+) PCa cells possess certain intrinsic properties of progenitor cells. First, BrdU pulse-chase experiments reveal that CD44(+) cells colocalize with a population of intermediate label-retaining cells. Second, CD44(+) PCa cells express higher mRNA levels of several 'stemness' genes including Oct-3/4, Bmi, beta-catenin, and SMO. Third, CD44(+) PCa cells can generate CD44(-) cells in vitro and in vivo. Fourth, CD44(+) PCa cells, which are AR(-), can differentiate into AR(+) tumor cells. Finally, a very small percentage of CD44(+) PCa cells appear to undergo asymmetric cell division in clonal analyses. Altogether, our results suggest that the CD44(+) PCa cell population is enriched in tumorigenic and metastatic progenitor cells.
Collapse
Affiliation(s)
- L Patrawala
- Department of Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park-Research Division, Smithville, 78957, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Patrawala L, Calhoun T, Schneider-Broussard R, Zhou J, Claypool K, Tang DG. Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic. Cancer Res 2005; 65:6207-19. [PMID: 16024622 DOI: 10.1158/0008-5472.can-05-0592] [Citation(s) in RCA: 670] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recently, several human cancers including leukemia and breast and brain tumors were found to contain stem-like cancer cells called cancer stem cells (CSC). Most of these CSCs were identified using markers that identify putative normal stem cells. In some cases, stem-like cancer cells were identified using the flow cytometry-based side population technique. In this study, we first show that approximately 30% of cultured human cancer cells and xenograft tumors examined ( approximately 30 in total) possess a detectable side population. Purified side population cells from two cell lines (U373 glioma and MCF7 breast cancer) and a xenograft prostate tumor (LAPC-9) are more tumorigenic than the corresponding non-side population cells. These side population cells also possess some intrinsic stem cell properties as they generate non-side population cells in vivo, can be further transplanted, and preferentially express some "stemness" genes, including Notch-1 and beta-catenin. Because the side population phenotype is mainly mediated by ABCG2, an ATP-binding cassette half-transporter associated with multidrug resistance, we subsequently studied ABCG2+ and ABCG2- cancer cells with respect to their tumorigenicity in vivo. Although side population cells show increased ABCG2 mRNA expression relative to the non-side population cells and all cancer cells and xenograft tumors examined express ABCG2 in a small fraction (0.5-3%) of the cells, highly purified ABCG2+ cancer cells, surprisingly, have very similar tumorigenicity to the ABCG2- cancer cells. Mechanistic studies indicate that ABCG2 expression is associated with proliferation and ABCG2+ cancer cells can generate ABCG2- cells. However, ABCG2- cancer cells can also generate ABCG2+ cells. Furthermore, the ABCG2- cancer cells form more and larger clones in the long-term clonal analyses and the ABCG2- population preferentially expresses several "stemness" genes. Taken together, our results suggest that (a) the side population is enriched with tumorigenic stem-like cancer cells, (b) ABCG2 expression identifies mainly fast-cycling tumor progenitors, and (c) the ABCG2- population contains primitive stem-like cancer cells.
Collapse
Affiliation(s)
- Lubna Patrawala
- Department of Carcinogenesis, Science Park-Research Division, The University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957, USA
| | | | | | | | | | | |
Collapse
|