1
|
Hill KK, Kobe D, Jiddawi NS, Walz JR, Kreppel K. Larval surveys reveal breeding site preferences of malaria vector Anopheles spp. in Zanzibar City. PLoS One 2025; 20:e0313248. [PMID: 40378147 DOI: 10.1371/journal.pone.0313248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 04/11/2025] [Indexed: 05/18/2025] Open
Abstract
In Zanzibar City - the capital of the Zanzibar archipelago in Tanzania - the incidence of malaria has decreased over the past few decades due to standardized treatment protocols and public health interventions targeting adult mosquitoes. However, the incidence remains between 1-2%, and case numbers have increased over the past few years because of a continued influx of Plasmodium spp. from other malaria-endemic areas (including mainland Tanzania). Larviciding is a powerful tool to target mosquito populations and reduce the incidence of malaria. However, larvicidal strategies rely on knowledge of the breeding patterns of malaria vector mosquitoes. In Zanzibar City, no larval surveys have been done in the last few years. Our aim was to characterize Anopheles spp. breeding sites in Zanzibar City during the rainy season. We first conducted systematic larval surveys across 16 semi-permanent/permanent water bodies and 30 temporary water bodies. Then, we used principal component analysis and logistic regression to model the effects of physical/chemical parameters and rainfall on Anopheles presence. We found that Anopheles spp. prefer concrete, semi-permanent breeding sites with high levels of dissolved oxygen but are also found in natural sites after heavy rains. Our logistic regression model successfully predicted the presence of Anopheles larvae, achieving a positive predictive power of 65.7% and a negative predictive power of 88.8%. The data from our study suggest that Anopheles spp. have not yet adapted to more polluted breeding sites in Zanzibar City (as they have in some mainland locations). These results can inform targeted larvicidal strategies in Zanzibar City.
Collapse
Affiliation(s)
- Kaeden K Hill
- Trinity College of Arts and Sciences, Duke University, Durham, North Carolina, United States of America
| | | | - Narriman S Jiddawi
- Institute of Marine Sciences, University of Dar es Salaam, Zanzibar, Tanzania
- SIT-Graduate Institute, Brattleboro, Vermont, United States of America
| | - Jonathan R Walz
- SIT-Graduate Institute, Brattleboro, Vermont, United States of America
| | | |
Collapse
|
2
|
Khatib B, Mcha J, Pandu Z, Haji M, Hassan M, Ali H, Mrisho R, Abdallah K, Ali A, Ali K, Said T, Mohamed S, Mkali H, Mgata S, Makwaruzi S, Gulaka M, Makenga G, Mkude S, Githu V, Mero V, Serbantez N, Ballard SB, Chan A, Shija SJ, Govella NJ. Early evening outdoor biting by malaria-infected Anopheles arabiensis vectors threatens malaria elimination efforts in Zanzibar. Malar J 2025; 24:92. [PMID: 40114159 PMCID: PMC11927253 DOI: 10.1186/s12936-025-05333-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/11/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND The Zanzibar Malaria Elimination Programme relies on insecticide-treated nets as the principal vector control method, supplemented by reactive focal indoor residual spraying. Despite the success, local malaria transmission persists, and the underlying reasons for sustained transmission remain unclear, yet critical to optimizing vector control for elimination. Entomological characterization of transmission dynamics was conducted to identify the gaps with existing interventions and opportunities for complementary interventions. METHODS Adult malaria vectors were collected monthly for two consecutive nights at ten sentinel sites (6 Unguja, 4 Pemba) from October 2022 to September 2023. Hourly indoor and outdoor human landing catch method was used for collecting mosquitoes from 18:00 to 06:00 h. RESULTS Anopheles arabiensis was the predominant malaria vector species across all the sentinel sites, except in the urban district of Unguja, where Anopheles gambiae sensu stricto was predominant. Malaria parasite-infected An. arabiensis bites were distributed disproportionately between indoors (n = 4), 22:00 to 02:00 h, and outdoors (n = 10) earlier in the evenings, 1800 to 2100 h. CONCLUSION The outdoor catches of malaria-parasite infected mosquitoes before typical sleeping hours highlight the potential risk of human exposure to outdoor transmission.
Collapse
Affiliation(s)
- Bakar Khatib
- Zanzibar Malaria Elimination Program, Ministry of Health of Zanzibar, Zanzibar, Tanzania
| | - Juma Mcha
- Zanzibar Malaria Elimination Program, Ministry of Health of Zanzibar, Zanzibar, Tanzania
| | - Zamzam Pandu
- Zanzibar Malaria Elimination Program, Ministry of Health of Zanzibar, Zanzibar, Tanzania
| | - Makame Haji
- Zanzibar Malaria Elimination Program, Ministry of Health of Zanzibar, Zanzibar, Tanzania
| | - Makame Hassan
- Zanzibar Malaria Elimination Program, Ministry of Health of Zanzibar, Zanzibar, Tanzania
| | - Huba Ali
- Zanzibar Malaria Elimination Program, Ministry of Health of Zanzibar, Zanzibar, Tanzania
| | - Ramla Mrisho
- Zanzibar Malaria Elimination Program, Ministry of Health of Zanzibar, Zanzibar, Tanzania
| | - Kali Abdallah
- Zanzibar Malaria Elimination Program, Ministry of Health of Zanzibar, Zanzibar, Tanzania
| | - Ali Ali
- Zanzibar Malaria Elimination Program, Ministry of Health of Zanzibar, Zanzibar, Tanzania
| | - Khadija Ali
- Zanzibar Malaria Elimination Program, Ministry of Health of Zanzibar, Zanzibar, Tanzania
| | - Talib Said
- Zanzibar Malaria Elimination Program, Ministry of Health of Zanzibar, Zanzibar, Tanzania
| | - Safia Mohamed
- Zanzibar Malaria Elimination Program, Ministry of Health of Zanzibar, Zanzibar, Tanzania
| | - Humphrey Mkali
- PMI Dhibiti (Control) Malaria Project, Population Services International, Dar Es Salaam, Tanzania
| | - Said Mgata
- PMI Dhibiti (Control) Malaria Project, Population Services International, Dar Es Salaam, Tanzania
| | - Stella Makwaruzi
- PMI Dhibiti (Control) Malaria Project, Population Services International, Dar Es Salaam, Tanzania
| | - Michael Gulaka
- PMI Dhibiti (Control) Malaria Project, Population Services International, Dar Es Salaam, Tanzania
| | - Geofrey Makenga
- PMI Dhibiti (Control) Malaria Project, Population Services International, Dar Es Salaam, Tanzania
| | - Sigsbert Mkude
- PMI Dhibiti (Control) Malaria Project, Population Services International, Dar Es Salaam, Tanzania
| | - Victoria Githu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Dar Es Salaam, Tanzania
| | - Victor Mero
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Dar Es Salaam, Tanzania
| | - Naomi Serbantez
- U.S. President's Malaria Initiative, U. S. Agency for International Development, Dar Es Salaam, Tanzania
| | - Sarah-Blythe Ballard
- U.S. President's Malaria Initiative, US Centers for Disease Control and Prevention, Dar Es Salaam, Tanzania
| | - Adeline Chan
- Entomology Branch, Division of Parasitic Diseases and Malaria, U.S. President'S Malaria Initiative, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Shija Joseph Shija
- Zanzibar Malaria Elimination Program, Ministry of Health of Zanzibar, Zanzibar, Tanzania
| | - Nicodem J Govella
- PMI Dhibiti (Control) Malaria Project, Population Services International, Dar Es Salaam, Tanzania.
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Dar Es Salaam, Tanzania.
| |
Collapse
|
3
|
DePina AJ, Lopes Gomes JA, Moreira AL, Niang EHA. Situational analysis of malaria in Cabo Verde: From endemic control to elimination, history, cases data and challenges ahead. PLOS GLOBAL PUBLIC HEALTH 2025; 5:e0004153. [PMID: 39792907 PMCID: PMC11723648 DOI: 10.1371/journal.pgph.0004153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025]
Abstract
On 12 January 2024, Cabo Verde was officially certified by the WHO as a malaria-free country after six consecutive years without local transmission. This study analysed the malaria history of Cabo Verde from 1953 to certification in 2024, highlighted the valuable lessons learned, and discussed challenges for prevention reintroduction. Malaria data from the last 35 years (1988-2022) were analysed using descriptive analyses, and cases were mapped using the USGS National Map Viewer. From 1988 to 2022, 3,089 malaria cases were reported, 2.381 (77.1%) locally and 708 (22.9%) imported. Imported cases were reported nationwide except on Brava Island. Six municipalities did not report any cases, while local cases were restricted to Santiago and Boavista, with 2.360 and 21 cases, respectively. Malaria history in the country revealed six remarkable steps and three periods of interruption in the transmission of local malaria cases. The last local cases were reported in Boavista in 2015 and Santiago in 2017. Since 2018, introduced cases have been recorded from time to time. Disease lethality was low, with ten malaria deaths from 2010 to 2023, and the highest value of 8.3% (3/36) recorded in 2011. With this certification, Cabo Verde became a reference in Africa for its health sector organisation, multisectoral, and partnership in malaria control. However, maintaining the certification presents several sustainability challenges for the country. Additionally, robust epidemiological and entomological surveillance, continued investigations, and ongoing research are crucial.
Collapse
Affiliation(s)
- Adilson José DePina
- Programa de Eliminação do Paludismo, CCS-SIDA, Ministério da Saúde, Praia, Cabo Verde
| | | | - António Lima Moreira
- Programa Nacional de Luta contra as doenças de transmissão Vectorial e Problemas Ambientais, Ministério da Saúde, Praia, Cabo Verde
| | - El Hadji Amadou Niang
- Laboratoire d’Ecologie Vectorielle et Parasitaire (LEVP), Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| |
Collapse
|
4
|
Hergott DEB, Guerra CA, García GA, Mba Eyono JN, Donfack OT, Iyanga MM, Nguema Avue RM, Abeso Nsegue CN, Ondo Mifumu TA, Rivas MR, Phiri WP, Murphy SC, Guthrie BL, Smith DL, Balkus JE. Impact of six-month COVID-19 travel moratorium on Plasmodium falciparum prevalence on Bioko Island, Equatorial Guinea. Nat Commun 2024; 15:8285. [PMID: 39333562 PMCID: PMC11436818 DOI: 10.1038/s41467-024-52638-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
Importation of malaria infections is a suspected driver of sustained malaria prevalence on areas of Bioko Island, Equatorial Guinea. Quantifying the impact of imported infections is difficult because of the dynamic nature of the disease and complexity of designing a randomized trial. We leverage a six-month travel moratorium in and out of Bioko Island during the initial COVID-19 pandemic response to evaluate the contribution of imported infections to malaria prevalence on Bioko Island. Using a difference in differences design and data from island wide household surveys conducted before (2019) and after (2020) the travel moratorium, we compare the change in prevalence between areas of low historical travel to those with high historical travel. Here, we report that in the absence of a travel moratorium, the prevalence of infection in high travel areas was expected to be 9% higher than observed, highlighting the importance of control measures that target imported infections.
Collapse
Affiliation(s)
- Dianna E B Hergott
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA.
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington, USA.
| | - Carlos A Guerra
- MCD Global Health, Bioko Island Malaria Elimination Project, Silver Spring, Maryland, USA
| | - Guillermo A García
- MCD Global Health, Bioko Island Malaria Elimination Project, Silver Spring, Maryland, USA
| | | | - Olivier T Donfack
- MCD Global Health, Bioko Island Malaria Elimination Project, Malabo, Equatorial Guinea
| | - Marcos Mbulito Iyanga
- MCD Global Health, Bioko Island Malaria Elimination Project, Malabo, Equatorial Guinea
| | | | | | | | - Matilde Riloha Rivas
- National Malaria Control Program, Ministry of Health and Social Welfare, Malabo, Equatorial Guinea
| | - Wonder P Phiri
- MCD Global Health, Bioko Island Malaria Elimination Project, Malabo, Equatorial Guinea
| | - Sean C Murphy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
- Department of Laboratories, Seattle Children's Hospital, Seattle, Washington, USA
| | - Brandon L Guthrie
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA
- Department of Global Health, School of Public Health, University of Washington, Seattle, Washington, USA
| | - David L Smith
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington, USA
- Department of Health Metrics Science, University of Washington, Seattle, Washington, USA
| | - Jennifer E Balkus
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA
- Public Health-Seattle & King County, Seattle, Washington, USA
| |
Collapse
|
5
|
Arisco NJ, Peterka C, Castro MC. Spatiotemporal analysis of within-country imported malaria in Brazilian municipalities, 2004-2022. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0003452. [PMID: 39008438 PMCID: PMC11249269 DOI: 10.1371/journal.pgph.0003452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 06/15/2024] [Indexed: 07/17/2024]
Abstract
Human mobility has challenged malaria elimination efforts and remains difficult to routinely track. In Brazil, administrative records from the Ministry of Health allow monitoring of mobility locally and internationally. Although most imported malaria cases are between municipalities in Brazil, detailed knowledge of patterns of mobility is limited. Here, we address this gap by quantifying and describing patterns of malaria-infected individuals across the Amazon. We used network analysis, spatial clustering, and linear models to quantify and characterize the movement of malaria cases in Brazil between 2004 and 2022. We identified sources and sinks of malaria within and between states. We found that between-state movement of cases has become proportionally more important than within-state, that source clusters persisted longer than sink clusters, that movement of cases into sinks was seasonal while movement out of sources was not, and that importation is an impediment for subnational elimination in many municipalities. We elucidate the vast travel networks of malaria infected individuals that characterize the Amazon region. Uncovering patterns of malaria case mobility is vital for effective microstratification within Brazil. Our results have implications for intervention stratification across Brazil in line with the country's goal of malaria elimination by 2035.
Collapse
Affiliation(s)
- Nicholas J. Arisco
- Department of Global Health and Population, Harvard TH Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Cassio Peterka
- Department of Health and Environmental Surveillance, Ministry of Health, Brasília, Federal District, Brazil
| | - Marcia C. Castro
- Department of Global Health and Population, Harvard TH Chan School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
6
|
Connelly SV, Brazeau NF, Msellem M, Ngasala BE, Aydemir O, Goel V, Niaré K, Giesbrecht DJ, Popkin-Hall ZR, Hennelly C, Park Z, Moormann AM, Ong'echa JM, Verity R, Mohammed S, Shija SJ, Mhamilawa LE, Morris U, Mårtensson A, Lin JT, Björkman A, Juliano JJ, Bailey JA. Strong isolation by distance and evidence of population microstructure reflect ongoing Plasmodium falciparum transmission in Zanzibar. eLife 2024; 12:RP90173. [PMID: 38935423 PMCID: PMC11210957 DOI: 10.7554/elife.90173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024] Open
Abstract
Background The Zanzibar archipelago of Tanzania has become a low-transmission area for Plasmodium falciparum. Despite being considered an area of pre-elimination for years, achieving elimination has been difficult, likely due to a combination of imported infections from mainland Tanzania and continued local transmission. Methods To shed light on these sources of transmission, we applied highly multiplexed genotyping utilizing molecular inversion probes to characterize the genetic relatedness of 282 P. falciparum isolates collected across Zanzibar and in Bagamoyo district on the coastal mainland from 2016 to 2018. Results Overall, parasite populations on the coastal mainland and Zanzibar archipelago remain highly related. However, parasite isolates from Zanzibar exhibit population microstructure due to the rapid decay of parasite relatedness over very short distances. This, along with highly related pairs within shehias, suggests ongoing low-level local transmission. We also identified highly related parasites across shehias that reflect human mobility on the main island of Unguja and identified a cluster of highly related parasites, suggestive of an outbreak, in the Micheweni district on Pemba island. Parasites in asymptomatic infections demonstrated higher complexity of infection than those in symptomatic infections, but have similar core genomes. Conclusions Our data support importation as a main source of genetic diversity and contribution to the parasite population in Zanzibar, but they also show local outbreak clusters where targeted interventions are essential to block local transmission. These results highlight the need for preventive measures against imported malaria and enhanced control measures in areas that remain receptive to malaria reemergence due to susceptible hosts and competent vectors. Funding This research was funded by the National Institutes of Health, grants R01AI121558, R01AI137395, R01AI155730, F30AI143172, and K24AI134990. Funding was also contributed from the Swedish Research Council, Erling-Persson Family Foundation, and the Yang Fund. RV acknowledges funding from the MRC Centre for Global Infectious Disease Analysis (reference MR/R015600/1), jointly funded by the UK Medical Research Council (MRC) and the UK Foreign, Commonwealth & Development Office (FCDO), under the MRC/FCDO Concordat agreement and is also part of the EDCTP2 program supported by the European Union. RV also acknowledges funding by Community Jameel.
Collapse
Affiliation(s)
- Sean V Connelly
- MD-PhD Program, University of North Carolina at Chapel HillChapel HillUnited States
| | - Nicholas F Brazeau
- MD-PhD Program, University of North Carolina at Chapel HillChapel HillUnited States
| | - Mwinyi Msellem
- Research Division, Ministry of HealthZanzibarUnited Republic of Tanzania
| | - Billy E Ngasala
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied SciencesDar es SalaamUnited Republic of Tanzania
- Global Health and Migration Unit, Department of Women's and Children's Health, Uppsala UniversityUppsalaSweden
| | - Ozkan Aydemir
- Department of Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Varun Goel
- Carolina Population Center, University of North Carolina at Chapel HillChapel HillUnited States
| | - Karamoko Niaré
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidenceUnited States
| | - David J Giesbrecht
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidenceUnited States
| | - Zachary R Popkin-Hall
- Institute for Global Health and Infectious Diseases, School of Medicine, University of North Carolina at Chapel HillChapel HillUnited States
| | - Chris Hennelly
- Institute for Global Health and Infectious Diseases, School of Medicine, University of North Carolina at Chapel HillChapel HillUnited States
| | - Zackary Park
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina at Chapel HillChapel HillUnited States
| | - Ann M Moormann
- Department of Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - John M Ong'echa
- Center for Global Health Research, Kenya Medical Research InstituteKisumuKenya
| | - Robert Verity
- MRC Centre for Global Infectious Disease Analysis, Imperial College LondonLondonUnited Kingdom
| | - Safia Mohammed
- Zanzibar Malaria Elimination Program (ZAMEP)ZanzibarUnited Republic of Tanzania
| | - Shija J Shija
- Zanzibar Malaria Elimination Program (ZAMEP)ZanzibarUnited Republic of Tanzania
| | - Lwidiko E Mhamilawa
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied SciencesDar es SalaamUnited Republic of Tanzania
- Global Health and Migration Unit, Department of Women's and Children's Health, Uppsala UniversityUppsalaSweden
| | - Ulrika Morris
- Department of Microbiology, Tumor and Cell Biology, Karolinska InstitutetStockholmSweden
| | - Andreas Mårtensson
- Global Health and Migration Unit, Department of Women's and Children's Health, Uppsala UniversityUppsalaSweden
| | - Jessica T Lin
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina at Chapel HillChapel HillUnited States
| | - Anders Björkman
- Department of Microbiology, Tumor and Cell Biology, Karolinska InstitutetStockholmSweden
- Department of Global Public Health, Karolinska InstituteStockholmSweden
| | - Jonathan J Juliano
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina at Chapel HillChapel HillUnited States
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel HillChapel HillUnited States
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel HillChapel HillUnited States
| | - Jeffrey A Bailey
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidenceUnited States
| |
Collapse
|
7
|
Connelly SV, Brazeau NF, Msellem M, Ngasala BE, Aydemir Ö, Goel V, Niaré K, Giesbrecht DJ, Popkin-Hall ZR, Hennelly CM, Park Z, Moormann AM, Ong'echa JM, Verity R, Mohammed S, Shija SJ, Mhamilawa LE, Morris U, Mårtensson A, Lin JT, Björkman A, Juliano JJ, Bailey JA. Strong isolation by distance and evidence of population microstructure reflect ongoing Plasmodium falciparum transmission in Zanzibar. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.02.15.23285960. [PMID: 36865135 PMCID: PMC9980253 DOI: 10.1101/2023.02.15.23285960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The Zanzibar archipelago of Tanzania has become a low-transmission area for Plasmodium falciparum. Despite being considered an area of pre-elimination for years, achieving elimination has been difficult, likely due to a combination of imported infections from mainland Tanzania, and continued local transmission. To shed light on these sources of transmission, we applied highly multiplexed genotyping utilizing molecular inversion probes to characterize the genetic relatedness of 282 P. falciparum isolates collected across Zanzibar and in Bagamoyo District on the coastal mainland from 2016-2018. Overall, parasite populations on the coastal mainland and Zanzibar archipelago remain highly related. However, parasite isolates from Zanzibar exhibit population microstructure due to rapid decay of parasite relatedness over very short distances. This, along with highly related pairs within shehias, suggests ongoing low level local transmission. We also identified highly related parasites across shehias that reflect human mobility on the main island of Unguja and identified a cluster of highly related parasites, suggestive of an outbreak, in the Micheweni district on Pemba island. Parasites in asymptomatic infections demonstrated higher complexity of infection than those in symptomatic infections, but have similar core genomes. Our data support importation as a main source of genetic diversity and contribution to the parasite population on Zanzibar, but they also show local outbreak clusters where targeted interventions are essential to block local transmission. These results highlight the need for preventive measures against imported malaria and enhanced control measures in areas that remain receptive for malaria reemergence due to susceptible hosts and competent vectors.
Collapse
Affiliation(s)
- Sean V Connelly
- MD-PhD Program, University of North Carolina, Chapel Hill, NC 27599
| | | | - Mwinyi Msellem
- Research Division, Ministry of Health, Zanzibar, Tanzania
| | - Billy E Ngasala
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Global Health and Migration Unit, Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Özkan Aydemir
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| | - Varun Goel
- Carolina Population Center, University of North Carolina, Chapel Hill, NC 27599
| | - Karamoko Niaré
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912 USA
| | - David J Giesbrecht
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912 USA
| | - Zachary R Popkin-Hall
- Institute for Global Health and Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599 USA
| | - Christopher M Hennelly
- Institute for Global Health and Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599 USA
| | - Zackary Park
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599 USA
| | - Ann M Moormann
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| | | | - Robert Verity
- MRC Centre for Global Infectious Disease Analysis, Imperial College, London
| | - Safia Mohammed
- Zanzibar Malaria Elimination Program (ZAMEP), Zanzibar, Tanzania
| | - Shija J Shija
- Zanzibar Malaria Elimination Program (ZAMEP), Zanzibar, Tanzania
| | - Lwidiko E Mhamilawa
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Global Health and Migration Unit, Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Ulrika Morris
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Andreas Mårtensson
- Global Health and Migration Unit, Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Jessica T Lin
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599 USA
| | - Anders Björkman
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Jonathan J Juliano
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599 USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, 27599 USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599 USA
| | - Jeffrey A Bailey
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912 USA
| |
Collapse
|
8
|
Holzschuh A, Lerch A, Fakih BS, Aliy SM, Ali MH, Ali MA, Bruzzese DJ, Yukich J, Hetzel MW, Koepfli C. Using a mobile nanopore sequencing lab for end-to-end genomic surveillance of Plasmodium falciparum: A feasibility study. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0002743. [PMID: 38300956 PMCID: PMC10833559 DOI: 10.1371/journal.pgph.0002743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/20/2023] [Indexed: 02/03/2024]
Abstract
Genomic epidemiology holds promise for malaria control and elimination efforts, for example by informing on Plasmodium falciparum genetic diversity and prevalence of mutations conferring anti-malarial drug resistance. Limited sequencing infrastructure in many malaria-endemic areas prevents the rapid generation of genomic data. To address these issues, we developed and validated assays for P. falciparum nanopore sequencing in endemic sites using a mobile laboratory, targeting key antimalarial drug resistance markers and microhaplotypes. Using two multiplexed PCR reactions, we amplified six highly polymorphic microhaplotypes and ten drug resistance markers. We developed a bioinformatics workflow that allows genotyping of polyclonal malaria infections, including minority clones. We validated the panels on mock dried blood spot (DBS) and rapid diagnostic test (RDT) samples and archived DBS, demonstrating even, high read coverage across amplicons (range: 580x to 3,212x median coverage), high haplotype calling accuracy, and the ability to explore within-sample diversity of polyclonal infections. We field-tested the feasibility of rapid genotyping in Zanzibar in close collaboration with the local malaria elimination program using DBS and routinely collected RDTs as sample inputs. Our assay identified haplotypes known to confer resistance to known antimalarials in the dhfr, dhps and mdr1 genes, but no evidence of artemisinin partial resistance. Most infections (60%) were polyclonal, with high microhaplotype diversity (median HE = 0.94). In conclusion, our assays generated actionable data within a few days, and we identified current challenges for implementing nanopore sequencing in endemic countries to accelerate malaria control and elimination.
Collapse
Affiliation(s)
- Aurel Holzschuh
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
| | - Anita Lerch
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Bakar S. Fakih
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania
| | - Safia Mohammed Aliy
- Zanzibar Malaria Elimination Programme, Ministry of Health, Zanzibar, United Republic of Tanzania
| | - Mohamed Haji Ali
- Zanzibar Malaria Elimination Programme, Ministry of Health, Zanzibar, United Republic of Tanzania
| | - Mohamed Ali Ali
- Zanzibar Malaria Elimination Programme, Ministry of Health, Zanzibar, United Republic of Tanzania
| | - Daniel J. Bruzzese
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Joshua Yukich
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, United States of America
| | - Manuel W. Hetzel
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
| | - Cristian Koepfli
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| |
Collapse
|
9
|
Kampango A, Saleh F, Furu P, Konradsen F, Alifrangis M, Schiøler KL, Weldon CW. A protocol for evaluating the entomological impact of larval source reduction on mosquito vectors at hotel compounds in Zanzibar. PLoS One 2023; 18:e0294773. [PMID: 38011153 PMCID: PMC10681246 DOI: 10.1371/journal.pone.0294773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023] Open
Abstract
There is an increasing awareness of the association between tourism activity and risks of emerging mosquito-borne diseases (MBDs) worldwide. In previous studies we showed that hotels in Zanzibar may play an important role in maintaining residual foci of mosquito vectors populations of public health concern. These findings indicated larval sources removal (LSR) interventions may have a significant negative impact on vector communities. However, a thorough analysis of the response vector species to potential LSM strategies must be evaluated prior to implementation of a large-scale area-wide control campaign. Here we propose a protocol for evaluation of the impact of LSR against mosquito vectors at hotel settings in Zanzibar. This protocol is set to determine the efficacy of LSR in a randomized control partial cross-over experimental design with four hotel compounds representing the unit of randomization for allocation of interventions. However, the protocol can be applied to evaluate the impact of LRS in more than four sites. Proposed interventions are active removal of disposed containers, and installation of water dispenser to replace single use discarded plastic water bottles, which were identified as the most important source of mosquitoes studied hotels. The ideal time for allocating intervention to the intervention arms the dry season, when the mosquito abundance is predictably lower. The possible impact of interventions on mosquito occurrence and abundance risks is then evaluated throughout subsequent rainy and dry seasons. If an appreciable reduction in mosquito abundance and occurrence risks is observed during the trial period, intervention could be extended to the control arm to determine whether any potential reduction of mosquito density is reproducible. A rigorous evaluation of the proposed LRS interventions will inspire large scale trials and provide support for evidence-based mosquito management at hotel facilities in Zanzibar and similar settings.
Collapse
Affiliation(s)
- Ayubo Kampango
- Sector de Estudos de Vectores, Instituto Nacional de Saúde (INS), Vila de Marracuene, Província de Maputo, Mozambique
- Department of Zoology and Entomology, University of Pretoria (UP), Pretoria, South Africa
| | - Fatma Saleh
- Department of Allied Health Sciences, School of Health and Medical Sciences, The State University of Zanzibar, Zanzibar, Tanzania
| | - Peter Furu
- Global Health Section, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Konradsen
- Global Health Section, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Michael Alifrangis
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Karin L. Schiøler
- Global Health Section, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Christopher W. Weldon
- Department of Zoology and Entomology, University of Pretoria (UP), Pretoria, South Africa
| |
Collapse
|
10
|
Fakih BS, Holzschuh A, Ross A, Stuck L, Abdul R, Al-Mafazy AWH, Irema I, Mbena A, Thawer SG, Shija SJ, Aliy SM, Ali A, Fink G, Yukich J, Hetzel MW. Risk of imported malaria infections in Zanzibar: a cross-sectional study. Infect Dis Poverty 2023; 12:80. [PMID: 37641152 PMCID: PMC10464242 DOI: 10.1186/s40249-023-01129-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Zanzibar has made substantial progress in malaria control with vector control, improved diagnosis, and artemisinin-based combination therapy. Parasite prevalence in the population has remained around 1% but imported infections from mainland Tanzania contribute to sustained local transmission. Understanding travel patterns between mainland Tanzania and Zanzibar, and the risk of malaria infection, may help to control malaria importation to Zanzibar. METHODS A rolling cross-sectional survey linked to routine reactive case detection of malaria was carried out in Zanzibar between May 2017 and October 2018. Households of patients diagnosed with malaria at health facilities were surveyed and household members were tested for malaria using rapid diagnostic tests and a sub-sample by quantitative PCR (qPCR). Interviews elicited a detailed travel history of all household members who had travelled within the past two months, including trips within and outside of Zanzibar. We estimated the association of malaria infection with travel destinations in pre-defined malaria endemicity categories, trip duration, and other co-variates using logistic regression. RESULTS Of 17,891 survey participants, 1177 (7%) reported a recent trip, of which 769 (65%) visited mainland Tanzania. Among travellers to mainland Tanzania with travel destination details and a qPCR result available, 241/378 (64%) reported traveling to districts with a 'high' malaria endemicity and for 12% the highest endemicity category was 'moderate'. Travelers to the mainland were more likely to be infected with malaria parasites (29%, 108/378) than those traveling within Zanzibar (8%, 16/206) or to other countries (6%, 2/17). Among travellers to mainland Tanzania, those visiting highly endemic districts had a higher odds of being qPCR-positive than those who travelled only to districts where malaria-endemicity was classified as low or very low (adjusted odd ratio = 7.0, 95% confidence interval: 1.9-25.5). Among travellers to the mainland, 110/378 (29%) never or only sometimes used a mosquito net during their travel. CONCLUSIONS Strategies to reduce malaria importation to Zanzibar may benefit from identifying population groups traveling to highly endemic areas in mainland Tanzania. Targeted interventions to prevent and clear infections in these groups may be more feasible than attempting to screen and treat all travellers upon arrival in Zanzibar.
Collapse
Affiliation(s)
- Bakar S Fakih
- Ifakara Health Institute, Dar es Salaam, Tanzania.
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland.
- University of Basel, Basel, Switzerland.
| | - Aurel Holzschuh
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, USA
| | - Amanda Ross
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Logan Stuck
- Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
- Amsterdam Institute for Global Health and Development, Amsterdam, Netherlands
| | - Ramadhan Abdul
- Ifakara Health Institute, Dar es Salaam, Tanzania
- Amsterdam Institute for Global Health and Development, Amsterdam, Netherlands
| | | | - Imani Irema
- Ifakara Health Institute, Dar es Salaam, Tanzania
| | | | - Sumaiyya G Thawer
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Shija J Shija
- Zanzibar Malaria Elimination Programme, Zanzibar, United Republic of Tanzania
| | - Safia M Aliy
- Zanzibar Malaria Elimination Programme, Zanzibar, United Republic of Tanzania
| | - Abdullah Ali
- Zanzibar Malaria Elimination Programme, Zanzibar, United Republic of Tanzania
| | - Günther Fink
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Joshua Yukich
- Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Manuel W Hetzel
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
11
|
Holzschuh A, Lerch A, Gerlovina I, Fakih BS, Al-Mafazy AWH, Reaves EJ, Ali A, Abbas F, Ali MH, Ali MA, Hetzel MW, Yukich J, Koepfli C. Multiplexed ddPCR-amplicon sequencing reveals isolated Plasmodium falciparum populations amenable to local elimination in Zanzibar, Tanzania. Nat Commun 2023; 14:3699. [PMID: 37349311 PMCID: PMC10287761 DOI: 10.1038/s41467-023-39417-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
Zanzibar has made significant progress toward malaria elimination, but recent stagnation requires novel approaches. We developed a highly multiplexed droplet digital PCR (ddPCR)-based amplicon sequencing method targeting 35 microhaplotypes and drug-resistance loci, and successfully sequenced 290 samples from five districts covering both main islands. Here, we elucidate fine-scale Plasmodium falciparum population structure and infer relatedness and connectivity of infections using an identity-by-descent (IBD) approach. Despite high genetic diversity, we observe pronounced fine-scale spatial and temporal parasite genetic structure. Clusters of near-clonal infections on Pemba indicate persistent local transmission with limited parasite importation, presenting an opportunity for local elimination efforts. Furthermore, we observe an admixed parasite population on Unguja and detect a substantial fraction (2.9%) of significantly related infection pairs between Zanzibar and the mainland, suggesting recent importation. Our study provides a high-resolution view of parasite genetic structure across the Zanzibar archipelago and provides actionable insights for prioritizing malaria elimination efforts.
Collapse
Affiliation(s)
- Aurel Holzschuh
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Indiana, IN, USA.
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland.
| | - Anita Lerch
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Indiana, IN, USA
| | - Inna Gerlovina
- EPPIcenter Research Program, Division of HIV, ID and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Bakar S Fakih
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania
| | | | - Erik J Reaves
- U.S. Centers for Disease Control and Prevention, President's Malaria Initiative, Dar es Salaam, United Republic of Tanzania
| | - Abdullah Ali
- Zanzibar Malaria Elimination Programme, Zanzibar, United Republic of Tanzania
| | - Faiza Abbas
- Zanzibar Malaria Elimination Programme, Zanzibar, United Republic of Tanzania
| | - Mohamed Haji Ali
- Zanzibar Malaria Elimination Programme, Zanzibar, United Republic of Tanzania
| | - Mohamed Ali Ali
- Zanzibar Malaria Elimination Programme, Zanzibar, United Republic of Tanzania
| | - Manuel W Hetzel
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Joshua Yukich
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Cristian Koepfli
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Indiana, IN, USA.
| |
Collapse
|
12
|
Ali MH, Kitau J, Ali AS, Al-Mafazy AW, Tegegne SG, Ussi O, Musanhu C, Shija SJ, Khatib BO, Mkali H, Mkude S, Makenga G, Kasagama E, Molteni F, Kisoka N, Kitojo C, Serbantez N, Reaves E, Yoti Z. Malaria elimination in Zanzibar: where next? Pan Afr Med J 2023; 45:7. [PMID: 37538363 PMCID: PMC10395111 DOI: 10.11604/pamj.supp.2023.45.1.39804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/12/2023] [Indexed: 08/05/2023] Open
Abstract
In 2018, Zanzibar developed a national malaria strategic plan IV (2018-2023) to guide elimination of malaria by 2023. We assessed progress in the implementation of malaria activities as part of the end-term review of the strategic plan. The review was done between August and October 2022 following the WHO guideline to assess progress made towards malaria elimination, effectiveness of the health systems in delivering malaria case management; and malaria financing. A desk review examined available malaria data, annual work plans and implementation reports for evidence of implemented malaria activities. This was complemented by field visits to selected health facilities and communities by external experts, and interviews with health management teams and inhabitants to authenticate desk review findings. A steady increase in the annual parasite incidence (API) was observed in Zanzibar, from 2.7 (2017) to 3.6 (2021) cases per 1,000 population with marked heterogeneity between areas. However, about 68% of the detected malaria cases were imported into Zanzibar. Malaria case follow-up and investigation increased from <70% in 2017 to 94% and 96% respectively, in 2021. The review noted a 3.7-fold increase of the health allocation in the country's budget, from 31.7 million USD (2017/18) to 117.3 million USD (2022/23) but malaria allocation remained low (<1%). The varying transmission levels in the islands suggest a need for strategic re-orientation of the elimination attempts from a national-wide to a sub-national agenda. We recommend increasing malaria allocation from the health budget to ensure sustainability of malaria elimination interventions.
Collapse
Affiliation(s)
- Mohamed Haji Ali
- Zanzibar Malaria Elimination Programme, Ministry of Health, Zanzibar, Tanzania
| | - Jovin Kitau
- World Health Organization, Country office, Dar-es-Salaam, Tanzania
| | | | - Abdul-wahid Al-Mafazy
- Second Vice President Office-Zanzibar Country Coordinating Mechanism, Zanzibar, Tanzania
| | | | - Omar Ussi
- Zanzibar Malaria Elimination Programme, Ministry of Health, Zanzibar, Tanzania
| | | | - Shija Joseph Shija
- Zanzibar Malaria Elimination Programme, Ministry of Health, Zanzibar, Tanzania
| | - Bakari Omar Khatib
- Zanzibar Malaria Elimination Programme, Ministry of Health, Zanzibar, Tanzania
| | - Humphrey Mkali
- Population Services International, Dar-es-Salaam, Tanzania
| | - Sigsbert Mkude
- Population Services International, Dar-es-Salaam, Tanzania
| | | | | | - Fabrizio Molteni
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
| | - Noela Kisoka
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
| | - Chonge Kitojo
- US President´s Malaria Initiative, United States Agency for International Development, Dar-es-Salaam, United Republic of Tanzania
| | - Naomi Serbantez
- US President´s Malaria Initiative, United States Agency for International Development, Dar-es-Salaam, United Republic of Tanzania
| | - Erik Reaves
- United States Centers for Disease Control, Dar-es-Salaam, Tanzania
| | - Zabulon Yoti
- World Health Organization, Country office, Dar-es-Salaam, Tanzania
| |
Collapse
|
13
|
Wu SL, Henry JM, Citron DT, Mbabazi Ssebuliba D, Nakakawa Nsumba J, Sánchez C. HM, Brady OJ, Guerra CA, García GA, Carter AR, Ferguson HM, Afolabi BE, Hay SI, Reiner RC, Kiware S, Smith DL. Spatial dynamics of malaria transmission. PLoS Comput Biol 2023; 19:e1010684. [PMID: 37307282 PMCID: PMC10289676 DOI: 10.1371/journal.pcbi.1010684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/23/2023] [Accepted: 05/15/2023] [Indexed: 06/14/2023] Open
Abstract
The Ross-Macdonald model has exerted enormous influence over the study of malaria transmission dynamics and control, but it lacked features to describe parasite dispersal, travel, and other important aspects of heterogeneous transmission. Here, we present a patch-based differential equation modeling framework that extends the Ross-Macdonald model with sufficient skill and complexity to support planning, monitoring and evaluation for Plasmodium falciparum malaria control. We designed a generic interface for building structured, spatial models of malaria transmission based on a new algorithm for mosquito blood feeding. We developed new algorithms to simulate adult mosquito demography, dispersal, and egg laying in response to resource availability. The core dynamical components describing mosquito ecology and malaria transmission were decomposed, redesigned and reassembled into a modular framework. Structural elements in the framework-human population strata, patches, and aquatic habitats-interact through a flexible design that facilitates construction of ensembles of models with scalable complexity to support robust analytics for malaria policy and adaptive malaria control. We propose updated definitions for the human biting rate and entomological inoculation rates. We present new formulas to describe parasite dispersal and spatial dynamics under steady state conditions, including the human biting rates, parasite dispersal, the "vectorial capacity matrix," a human transmitting capacity distribution matrix, and threshold conditions. An [Formula: see text] package that implements the framework, solves the differential equations, and computes spatial metrics for models developed in this framework has been developed. Development of the model and metrics have focused on malaria, but since the framework is modular, the same ideas and software can be applied to other mosquito-borne pathogen systems.
Collapse
Affiliation(s)
- Sean L. Wu
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington, United States of America
| | - John M. Henry
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington, United States of America
- Quantitative Ecology and Resource Management, University of Washington, Seattle, Washington, United States of America
| | - Daniel T. Citron
- Department of Population Health, Grossman School of Medicine, New York University, New York, New York, United States of America
| | | | - Juliet Nakakawa Nsumba
- Department of Mathematics, Makerere University Department of Mathematics, School of Physical Sciences, College of Natural Science, Makerere University, Kampala, Uganda
| | - Héctor M. Sánchez C.
- Division of Epidemiology, School of Public Health, University of California Berkeley, Berkeley, California, United States of America
- Division of Biostatistics, School of Public Health, University of California Berkeley, Berkeley, California, United States of America
| | - Oliver J. Brady
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Carlos A. Guerra
- MCD Global Health, Silver Spring, Maryland, United States of America
| | | | - Austin R. Carter
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington, United States of America
| | - Heather M. Ferguson
- Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Bakare Emmanuel Afolabi
- International Centre for Applied Mathematical Modelling and Data Analytics, Federal University Oye Ekiti, Ekiti State, Nigeria
- Department of Mathematics, Federal University Oye Ekiti, Ekiti State, Nigeria
| | - Simon I. Hay
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington, United States of America
- Department of Health Metrics Science, University of Washington, Seattle, Washington, United States of America
| | - Robert C. Reiner
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington, United States of America
- Department of Health Metrics Science, University of Washington, Seattle, Washington, United States of America
| | - Samson Kiware
- Ifakara Health Institute, Dar es Salaam, Tanzania
- Pan-African Mosquito Control Association (PAMCA), Nairobi, Kenya
| | - David L. Smith
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington, United States of America
- Department of Health Metrics Science, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
14
|
Das AM, Hetzel MW, Yukich JO, Stuck L, Fakih BS, Al-Mafazy AWH, Ali A, Chitnis N. Modelling the impact of interventions on imported, introduced and indigenous malaria infections in Zanzibar, Tanzania. Nat Commun 2023; 14:2750. [PMID: 37173317 PMCID: PMC10182017 DOI: 10.1038/s41467-023-38379-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Malaria cases can be classified as imported, introduced or indigenous cases. The World Health Organization's definition of malaria elimination requires an area to demonstrate that no new indigenous cases have occurred in the last three years. Here, we present a stochastic metapopulation model of malaria transmission that distinguishes between imported, introduced and indigenous cases, and can be used to test the impact of new interventions in a setting with low transmission and ongoing case importation. We use human movement and malaria prevalence data from Zanzibar, Tanzania, to parameterise the model. We test increasing the coverage of interventions such as reactive case detection; implementing new interventions including reactive drug administration and treatment of infected travellers; and consider the potential impact of a reduction in transmission on Zanzibar and mainland Tanzania. We find that the majority of new cases on both major islands of Zanzibar are indigenous cases, despite high case importation rates. Combinations of interventions that increase the number of infections treated through reactive case detection or reactive drug administration can lead to substantial decreases in malaria incidence, but for elimination within the next 40 years, transmission reduction in both Zanzibar and mainland Tanzania is necessary.
Collapse
Affiliation(s)
- Aatreyee M Das
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland.
- University of Basel, Basel, Switzerland.
| | - Manuel W Hetzel
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Joshua O Yukich
- Center for Applied Malaria Research and Evaluation, Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Logan Stuck
- Center for Applied Malaria Research and Evaluation, Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
- Amsterdam Institute for Global Health and Development Amsterdam, Amsterdam, Netherlands
- Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Bakar S Fakih
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania
| | - Abdul-Wahid H Al-Mafazy
- Zanzibar Malaria Elimination Programme, Zanzibar, United Republic of Tanzania
- Office of the Chief Government Statistician (OCGS), Zanzibar, United Republic of Tanzania
| | - Abdullah Ali
- Zanzibar Malaria Elimination Programme, Zanzibar, United Republic of Tanzania
| | - Nakul Chitnis
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
15
|
Abdalal SA, Yukich J, Andrinopoulos K, Alghanmi M, Wakid MH, Zawawi A, Harakeh S, Altwaim SA, Gattan H, Baakdah F, Gaddoury MA, Niyazi HA, Mokhtar JA, Alruhaili MH, Alsaady I, Alhabbab R, Alfaleh M, Hashem AM, Alahmadey ZZ, Keating J. Livelihood activities, human mobility, and risk of malaria infection in elimination settings: a case-control study. Malar J 2023; 22:53. [PMID: 36782234 PMCID: PMC9926773 DOI: 10.1186/s12936-023-04470-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/24/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Livelihood activities and human movements participate in the epidemiology of vector-borne diseases and influence malaria risk in elimination settings. In Saudi Arabia, where malaria transmission intensity varies geographically, it is vital to understand the components driving transmission within specific areas. In addition, shared social, behavioural, and occupational characteristics within communities may provoke the risk of malaria infection. This study aims to understand the relationship between human mobility, livelihood activities, and the risk of malaria infection in the border region of Jazan to facilitate further strategic malaria interventions. In addition, the study will complement and reinforce the existing efforts to eliminate malaria on the Saudi and Yemen border by providing a deeper understanding of human movement and livelihood activities. METHODS An unmatched case-control study was conducted. A total of 261 participants were recruited for the study, including 81 cases of confirmed malaria through rapid diagnostic tests (RDTs) and microscopy and 180 controls in the Baish Governorate in Jazan Provinces, Saudi Arabia. Individuals who received malaria tests were interviewed regarding their livelihood activities and recent movement (travel history). A questionnaire was administered, and the data was captured electronically. STATA software version 16 was used to analyse the data. Bivariate and multivariate analyses were conducted to determine if engaging in agricultural activities such as farming and animal husbandry, recent travel history outside of the home village within the last 30 days and participating in spiritual gatherings were related to malaria infection status. RESULTS A logistical regression model was used to investigate components associated with malaria infection. After adjusting several confounding factors, individuals who reported travelling away from their home village in the last 30 days OR 11.5 (95% CI 4.43-29.9), and those who attended a seasonal night spiritual gathering OR 3.04 (95% CI 1.10-8.42), involved in animal husbandry OR 2.52 (95% CI 1.10-5.82), and identified as male OR 4.57 (95% CI 1.43-14.7), were more likely to test positive for malaria infection. CONCLUSION Human movement and livelihood activities, especially at nighttime, should be considered malaria risk factors in malaria elimination settings, mainly when the targeted area is limited to a confined borderland area.
Collapse
Affiliation(s)
- Shaymaa A. Abdalal
- grid.412125.10000 0001 0619 1117Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Joshua Yukich
- grid.265219.b0000 0001 2217 8588School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA USA
| | - Katherine Andrinopoulos
- grid.265219.b0000 0001 2217 8588School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA USA
| | - Maimonah Alghanmi
- grid.412125.10000 0001 0619 1117Vaccines and Immunotherapy Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia ,grid.412125.10000 0001 0619 1117Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Majed H. Wakid
- grid.412125.10000 0001 0619 1117Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia ,grid.412125.10000 0001 0619 1117Special Infectious Agents Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ayat Zawawi
- grid.412125.10000 0001 0619 1117Vaccines and Immunotherapy Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia ,grid.412125.10000 0001 0619 1117Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Steve Harakeh
- grid.412125.10000 0001 0619 1117King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sarah A. Altwaim
- grid.412125.10000 0001 0619 1117Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia ,grid.412125.10000 0001 0619 1117Special Infectious Agents Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hattan Gattan
- grid.412125.10000 0001 0619 1117Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia ,grid.412125.10000 0001 0619 1117Special Infectious Agents Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fadi Baakdah
- grid.412125.10000 0001 0619 1117Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia ,grid.412125.10000 0001 0619 1117Special Infectious Agents Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmoud A. Gaddoury
- grid.412125.10000 0001 0619 1117Department of Community Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hatoon A. Niyazi
- grid.412125.10000 0001 0619 1117Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jawahir A. Mokhtar
- grid.412125.10000 0001 0619 1117Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed H. Alruhaili
- grid.412125.10000 0001 0619 1117Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia ,grid.412125.10000 0001 0619 1117Special Infectious Agents Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Isra Alsaady
- grid.412125.10000 0001 0619 1117Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia ,grid.412125.10000 0001 0619 1117Special Infectious Agents Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rowa Alhabbab
- grid.412125.10000 0001 0619 1117Vaccines and Immunotherapy Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia ,grid.412125.10000 0001 0619 1117Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed Alfaleh
- grid.412125.10000 0001 0619 1117Vaccines and Immunotherapy Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia ,grid.412125.10000 0001 0619 1117Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Anwar M. Hashem
- grid.412125.10000 0001 0619 1117Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia ,grid.412125.10000 0001 0619 1117Vaccines and Immunotherapy Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ziab Zakey Alahmadey
- grid.415696.90000 0004 0573 9824Microbiology and Serology Departments, Al-Ansar Hospital, Ministry of Health, Medina, Saudi Arabia
| | - Joseph Keating
- grid.265219.b0000 0001 2217 8588School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA USA
| |
Collapse
|
16
|
Abdalal SA, Yukich J, Andrinoplous K, Harakeh S, Altwaim SA, Gattan H, Carter B, Shammaky M, Niyazi HA, Alruhaili MH, Keating J. An insight to better understanding cross border malaria in Saudi Arabia. Malar J 2023; 22:37. [PMID: 36732819 PMCID: PMC9893606 DOI: 10.1186/s12936-023-04467-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Border malaria is a major obstacle for the malaria elimination in Saudi Arabia. Today, the southern border of Saudi Arabia is a region where malaria cases are resurging, and malaria control is dwindling mainly due to the humanitarian crisis and the conflict in Yemen. This study analyses the current border malaria epidemiology along the southern border of Saudi Arabia from 2015 to 2018. METHODS All reported cases maintained by the malaria elimination centres in Aledabi and Baish, Jazan Province, Saudi Arabia, from 2015 to 2018 were analysed to examine the epidemiological changes over time. Pearson's Chi-Square test of differences was utilized to assess differences between the characteristics of imported and local causes and between border cases. A logistic regression model was used to predict imported status was related to living along side of the border area. RESULTS A total of 3210 malaria cases were reported in Baish and Aledabi malaria centres between 2015 and 2018, of which 170 were classified as local cases and 3040 were classified as imported cases. Reported malaria cases were mainly among males, within the imported cases 61.5% (1868/3039) were residents of the border areas. CONCLUSIONS Given the complexity of cross-border malaria, creating a malaria buffer zone that covers a certain margin from both sides of the border would allow for a joint force, cross-border malaria elimination programme. To initiate a malaria elimination activity and cases reported as belonging to this zone, rather than being pushed from one country to the other, would allow malaria elimination staff to work collaboratively with local borderland residents and other stakeholders to come up with innovative solutions to combat malaria and reach malaria-free borders.
Collapse
Affiliation(s)
- Shaymaa A. Abdalal
- grid.412126.20000 0004 0607 9688Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University and King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Joshua Yukich
- grid.265219.b0000 0001 2217 8588Tulane University School of Public Health and Tropical Medicine, New Orleans, LA USA
| | - Katherine Andrinoplous
- grid.265219.b0000 0001 2217 8588Tulane University School of Public Health and Tropical Medicine, New Orleans, LA USA
| | - Steve Harakeh
- Saudi Arabia Ministry of Health, Jazan, Saudi Arabia
| | - Sarah A. Altwaim
- grid.412126.20000 0004 0607 9688Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University and King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Hattan Gattan
- grid.412125.10000 0001 0619 1117Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Brendan Carter
- grid.265219.b0000 0001 2217 8588Tulane University School of Public Health and Tropical Medicine, New Orleans, LA USA
| | | | - Hatoon A. Niyazi
- grid.412126.20000 0004 0607 9688Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University and King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Mohammed H. Alruhaili
- grid.412126.20000 0004 0607 9688Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University and King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Joseph Keating
- grid.265219.b0000 0001 2217 8588Tulane University School of Public Health and Tropical Medicine, New Orleans, LA USA
| |
Collapse
|
17
|
Bisanzio D, Lalji S, Abbas FB, Ali MH, Hassan W, Mkali HR, Al-Mafazy AW, Joseph JJ, Nyinondi S, Kitojo C, Serbantez N, Reaves E, Eckert E, Ngondi JM, Reithinger R. Spatiotemporal dynamics of malaria in Zanzibar, 2015-2020. BMJ Glob Health 2023; 8:bmjgh-2022-009566. [PMID: 36639160 PMCID: PMC9843203 DOI: 10.1136/bmjgh-2022-009566] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Despite high coverage of malaria interventions, malaria elimination in Zanzibar remains elusive, with the annual number of cases increasing gradually over the last 3 years. OBJECTIVE The aims of the study were to (1) assess the spatiotemporal dynamics of malaria in Zanzibar between 2015 and 2020 and (2) identify malaria hotspots that would allow Zanzibar to develop an epidemiological stratification for more effective and granular intervention targeting. METHODS In this study, we analysed data routinely collected by Zanzibar's Malaria Case Notification (MCN) system. The system collects sociodemographic and epidemiological data from all malaria cases. Cases are passively detected at health facilities (ie, primary index cases) and through case follow-up and reactive case detection (ie, secondary cases). Analyses were performed to identify the spatial heterogeneity of case reporting at shehia (ward) level during transmission seasons. RESULTS From 1 January 2015 to 30 April 2020, the MCN system reported 22 686 index cases. Number of cases reported showed a declining trends from 2015 to 2016, followed by an increase from 2017 to 2020. More than 40% of cases had a travel history outside Zanzibar in the month prior to testing positive for malaria. The proportion of followed up index cases was approximately 70% for all years. Out of 387 shehias, 79 (20.4%) were identified as malaria hotspots in any given year; these hotspots reported 52% of all index cases during the study period. Of the 79 hotspot shehias, 12 were hotspots in more than 4 years, that is, considered temporally stable, reporting 14.5% of all index cases. CONCLUSIONS Our findings confirm that the scale-up of malaria interventions has greatly reduced malaria transmission in Zanzibar since 2006. Analyses identified hotspots, some of which were stable across multiple years. Malaria efforts should progress from a universal intervention coverage approach to an approach that is more tailored to a select number of hotspot shehias.
Collapse
Affiliation(s)
- Donal Bisanzio
- RTI International, Washington, District of Columbia, USA
| | - Shabbir Lalji
- RTI International, Dar es Salaam, United Republic of Tanzania
| | - Faiza B Abbas
- Zanzibar Malaria Elimination Programme, Ministry of Health, Stone Town, Zanzibar, United Republic of Tanzania
| | - Mohamed H Ali
- Zanzibar Malaria Elimination Programme, Ministry of Health, Stone Town, Zanzibar, United Republic of Tanzania
| | - Wahida Hassan
- Zanzibar Malaria Elimination Programme, Ministry of Health, Stone Town, Zanzibar, United Republic of Tanzania
| | | | | | - Joseph J Joseph
- RTI International, Dar es Salaam, United Republic of Tanzania
| | - Ssanyu Nyinondi
- RTI International, Dar es Salaam, United Republic of Tanzania
| | - Chonge Kitojo
- U.S. President’s Malaria Initiative, U.S. Agency for International Development, Dar es Salaam, United Republic of Tanzania
| | - Naomi Serbantez
- U.S. President’s Malaria Initiative, U.S. Agency for International Development, Dar es Salaam, United Republic of Tanzania
| | - Erik Reaves
- U.S. President’s Malaria Initiative, U.S. Centers for Disease Control, Dar es Salaam, United Republic of Tanzania
| | - Erin Eckert
- RTI International, Washington, District of Columbia, USA
| | | | | |
Collapse
|
18
|
Hast M, Mharakurwa S, Shields TM, Lubinda J, Searle K, Gwanzura L, Munyati S, Moss WJ. Characterizing human movement patterns using GPS data loggers in an area of persistent malaria in Zimbabwe along the Mozambique border. BMC Infect Dis 2022; 22:942. [PMID: 36522643 PMCID: PMC9756631 DOI: 10.1186/s12879-022-07903-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Human mobility is a driver for the reemergence or resurgence of malaria and has been identified as a source of cross-border transmission. However, movement patterns are difficult to measure in rural areas where malaria risk is high. In countries with malaria elimination goals, it is essential to determine the role of mobility on malaria transmission to implement appropriate interventions. METHODS A study was conducted in Mutasa District, Zimbabwe, to investigate human movement patterns in an area of persistent transmission along the Mozambique border. Over 1 year, a convenience sample of 20 participants/month was recruited from active malaria surveillance cohorts to carry an IgotU® GT-600 global positioning system (GPS) data logger during all daily activities. Consenting participants were tested for malaria at data logger distribution using rapid antigen diagnostic tests and completed a survey questionnaire. GPS data were analyzed using a trajectory analysis tool, and participant movement patterns were characterized throughout the study area and across the border into Mozambique using movement intensity maps, activity space plots, and statistical analyses. RESULTS From June 2016-May 2017, 184 participants provided movement tracks encompassing > 350,000 data points and nearly 8000 person-days. Malaria prevalence at logger distribution was 3.7%. Participants traveled a median of 2.8 km/day and spent a median of 4.6 h/day away from home. Movement was widespread within and outside the study area, with participants traveling up to 500 km from their homes. Indices of mobility were higher in the dry season than the rainy season (median km traveled/day = 3.5 vs. 2.2, P = 0.03), among male compared to female participants (median km traveled/day = 3.8 vs. 2.0, P = 0.0008), and among adults compared to adolescents (median total km traveled = 104.6 vs. 59.5, P = 0.05). Half of participants traveled outside the study area, and 30% traveled into Mozambique, including 15 who stayed in Mozambique overnight. CONCLUSIONS Study participants in Mutasa District, Zimbabwe, were highly mobile throughout the year. Many participants traveled long distances from home, including overnight trips into Mozambique, with clear implications for malaria control. Interventions targeted at mobile populations and cross-border transmission may be effective in preventing malaria introductions in this region.
Collapse
Affiliation(s)
- Marisa Hast
- grid.21107.350000 0001 2171 9311Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA
| | - Sungano Mharakurwa
- grid.418347.d0000 0004 8265 7435Biomedical Research and Training Institute, Harare, Zimbabwe ,grid.442719.d0000 0000 8930 0245Africa University, Old Mutare, Mutare, Zimbabwe
| | - Timothy M. Shields
- grid.21107.350000 0001 2171 9311Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA
| | - Jailos Lubinda
- grid.414659.b0000 0000 8828 1230Telethon Kids Institute, Malaria Atlas Project, Nedlands, WA Australia
| | - Kelly Searle
- grid.17635.360000000419368657School of Public Health, University of Minnesota, Minneapolis, MN USA
| | - Lovemore Gwanzura
- grid.418347.d0000 0004 8265 7435Biomedical Research and Training Institute, Harare, Zimbabwe
| | - Shungu Munyati
- grid.418347.d0000 0004 8265 7435Biomedical Research and Training Institute, Harare, Zimbabwe
| | - William J. Moss
- grid.21107.350000 0001 2171 9311Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA
| |
Collapse
|
19
|
Das AM, Hetzel MW, Yukich JO, Stuck L, Fakih BS, Al-Mafazy AWH, Ali A, Chitnis N. The impact of reactive case detection on malaria transmission in Zanzibar in the presence of human mobility. Epidemics 2022; 41:100639. [PMID: 36343496 PMCID: PMC9758615 DOI: 10.1016/j.epidem.2022.100639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 09/02/2022] [Accepted: 10/03/2022] [Indexed: 12/29/2022] Open
Abstract
Malaria persists at low levels on Zanzibar despite the use of vector control and case management. We use a metapopulation model to investigate the role of human mobility in malaria persistence on Zanzibar, and the impact of reactive case detection. The model was parameterized using survey data on malaria prevalence, reactive case detection, and travel history. We find that in the absence of imported cases from mainland Tanzania, malaria would likely cease to persist on Zanzibar. We also investigate potential intervention scenarios that may lead to elimination, especially through changes to reactive case detection. While we find that some additional cases are removed by reactive case detection, a large proportion of cases are missed due to many infections having a low parasite density that go undetected by rapid diagnostic tests, a low rate of those infected with malaria seeking treatment, and a low rate of follow up at the household level of malaria cases detected at health facilities. While improvements in reactive case detection would lead to a reduction in malaria prevalence, none of the intervention scenarios tested here were sufficient to reach elimination. Imported cases need to be treated to have a substantial impact on prevalence.
Collapse
Affiliation(s)
- Aatreyee M Das
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland.
| | - Manuel W Hetzel
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Joshua O Yukich
- Center for Applied Malaria Research and Evaluation, Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Logan Stuck
- Center for Applied Malaria Research and Evaluation, Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Bakar S Fakih
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland; Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania
| | | | - Abdullah Ali
- Zanzibar Malaria Elimination Programme, Zanzibar, United Republic of Tanzania
| | - Nakul Chitnis
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| |
Collapse
|
20
|
Gautam R, Pokharel A, Adhikari K, Uprety KN, Vaidya NK. Modeling malaria transmission in Nepal: impact of imported cases through cross-border mobility. JOURNAL OF BIOLOGICAL DYNAMICS 2022; 16:528-564. [PMID: 35833562 DOI: 10.1080/17513758.2022.2096935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
The cross-border mobility of malaria cases poses an obstacle to malaria elimination programmes in many countries, including Nepal. Here, we develop a novel mathematical model to study how the imported malaria cases through the Nepal-India open-border affect the Nepal government's goal of eliminating malaria by 2026. Mathematical analyses and numerical simulations of our model, validated by malaria case data from Nepal, indicate that eliminating malaria from Nepal is possible if strategies promoting the absence of cross-border mobility, complete protection of transmission abroad, or strict border screening and isolation are implemented. For each strategy, we establish the conditions for the elimination of malaria. We further use our model to identify the control strategies that can help maintain a low endemic level. Our results show that the ideal control strategies should be designed according to the average mosquito biting rates that may depend on the location and season.
Collapse
Affiliation(s)
- Ramesh Gautam
- Ratna Rajya Laxmi Campus, Tribhuvan University, KTM, Nepal
| | - Anjana Pokharel
- Padma Kanya Multiple Campus, Tribhuvan University, KTM, Nepal
| | | | | | - Naveen K Vaidya
- Department of Mathematics and Statistics, San Diego State University, San Diego, CA, USA
- Computational Science Research Center, San Diego State University, San Diego, CA, USA
- Viral Information Institute, San Diego State University, San Diego, CA, USA
| |
Collapse
|
21
|
Cohen JM, Kandula D, Smith DL, Le Menach A. How long is the last mile? Evaluating successful malaria elimination trajectories. Malar J 2022; 21:330. [PMID: 36376935 PMCID: PMC9664685 DOI: 10.1186/s12936-022-04368-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Many national malaria programmes have set goals of eliminating malaria, but realistic timelines for achieving this goal remain unclear. In this investigation, historical data are collated on countries that successfully eliminated malaria to assess how long elimination has taken in the past, and thus to inform feasible timelines for achieving it in the future. METHODS Annual malaria case series were sought for 56 successful elimination programmes through a non-systematic review. Up to 40 years of annual case counts were compiled leading up to the first year in which zero locally acquired or indigenous cases were reported. To separate the period over which effective elimination efforts occurred from prior background trends, annual case totals were log transformed, and their slopes evaluated for a breakpoint in linear trend using the segmented package in R. The number of years from the breakpoint to the first year with zero cases and the decline rate over that period were then calculated. Wilcox-Mann-Whitney tests were used to evaluate whether a set of territory characteristics were associated with the timelines and decline rates. RESULTS Case series declining to the first year with zero cases were compiled for 45/56 of the candidate elimination programmes, and statistically significant breakpoints were identified for 42. The median timeline from the breakpoint to the first year with zero local cases was 12 years, over which cases declined at a median rate of 54% per year. Prior to the breakpoint, the median trend was slightly decreasing with median annual decline of < 3%. Timelines to elimination were fastest among territories that lacked land boundaries, had centroids in the Tropics, received low numbers of imported cases, and had elimination certified by the World Health Organization. CONCLUSION The historical case series assembled here may help countries with aspirations of malaria elimination to set feasible milestones towards this goal. Setting goals for malaria elimination on short timescales may be most appropriate in isolated, low importation settings, such as islands, while other regions aiming to eliminate malaria must consider how to sustainably fund and maintain vital case management and vector control services until zero cases are reached.
Collapse
Affiliation(s)
| | | | - David L Smith
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, USA
| | | |
Collapse
|
22
|
Carrasco-Escobar G, Rosado J, Nolasco O, White MT, Mueller I, Castro MC, Rodriguez-Ferruci H, Gamboa D, Llanos-Cuentas A, Vinetz JM, Benmarhnia T. Effect of out-of-village working activities on recent malaria exposure in the Peruvian Amazon using parametric g-formula. Sci Rep 2022; 12:19144. [PMID: 36351988 PMCID: PMC9645738 DOI: 10.1038/s41598-022-23528-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022] Open
Abstract
In the Amazon Region of Peru, occupational activities are important drivers of human mobility and may increase the individual risk of being infected while contributing to increasing malaria community-level transmission. Even though out-of-village working activities and other mobility patterns have been identified as determinants of malaria transmission, no studies have quantified the effect of out-of-village working activities on recent malaria exposure and proposed plausible intervention scenarios. Using two population-based cross-sectional studies in the Loreto Department in Peru, and the parametric g-formula method, we simulated various hypothetical scenarios intervening in out-of-village working activities to reflect their potential health benefits. This study estimated that the standardized mean outcome (malaria seroprevalence) in the unexposed population (no out-of-village workers) was 44.6% (95% CI: 41.7%-47.5%) and 66.7% (95% CI: 61.6%-71.8%) in the exposed population resulting in a risk difference of 22.1% (95% CI: 16.3%-27.9%). However, heterogeneous patterns in the effects of interest were observed between peri-urban and rural areas (Cochran's Q test = 15.5, p < 0.001). Heterogeneous patterns were also observed in scenarios of increased prevalence of out-of-village working activities and restriction scenarios by gender (male vs. female) and age (18 and under vs. 19 and older) that inform possible occupational interventions targetting population subgroups. The findings of this study support the hypothesis that targeting out-of-village workers will considerably benefit current malaria elimination strategies in the Amazon Region. Particularly, males and adult populations that carried out out-of-village working activities in rural areas contribute the most to the malaria seropositivity (recent exposure to the parasite) in the Peruvian Amazon.
Collapse
Affiliation(s)
- Gabriel Carrasco-Escobar
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA.
- Health Innovation Lab, Institute of Tropical Medicine "Alexander Von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru.
| | - Jason Rosado
- G5 Épidémiologie Et Analyse Des Maladies Infectieuses, Département de Santé Globale, Institut Pasteur, 75015, Paris, France
| | - Oscar Nolasco
- Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación Y Desarrollo, Facultad de Ciencias Y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Michael T White
- G5 Épidémiologie Et Analyse Des Maladies Infectieuses, Département de Santé Globale, Institut Pasteur, 75015, Paris, France
| | - Ivo Mueller
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Marcia C Castro
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Dionicia Gamboa
- Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación Y Desarrollo, Facultad de Ciencias Y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares Y Moleculares, Facultad de Ciencias Y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Alejandro Llanos-Cuentas
- Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M Vinetz
- Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación Y Desarrollo, Facultad de Ciencias Y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Tarik Benmarhnia
- Scripps Institution of Oceanography, University of California, San Diego, CA, 92037, USA
| |
Collapse
|
23
|
Abstract
Given the stagnating progress in the fight against malaria, there is an urgent need for area-wide integrated vector management strategies to complement existing intra-domiciliary tools, i.e., insecticide-treated bednets and indoor residual spraying. In this study, we describe a pilot trial using drones for aerial application of Aquatain Mosquito Formulation (AMF), a monomolecular surface film with larvicidal activity, against the African malaria mosquito Anopheles arabiensis in an irrigated rice agro-ecosystem in Unguja island, Zanzibar, Tanzania. Nine rice paddies were randomly assigned to three treatments: (a) control (drone spraying with water only), (b) drone spraying with 1 mL/m2, or (c) drone spraying with 5 mL/m2 of AMF. Compared to control paddies, AMF treatments resulted in highly significant (p < 0.001) reductions in the number of larvae and pupae and >90% fewer emerging adults. The residual effect of AMF treatment lasted for a minimum of 5 weeks post-treatment, with reductions in larval densities reaching 94.7% in week 5 and 99.4% in week 4 for the 1 and 5 mL/m2 AMF treatments, respectively. These results merit a review of the WHO policy regarding larval source management (LSM), which primarily recommends its use in urban environments with ‘few, fixed, and findable’ breeding sites. Unmanned aerial vehicles (UAVs) can rapidly treat many permanent, temporary, or transient mosquito breeding sites over large areas at low cost, thereby significantly enhancing the role of LSM in contemporary malaria control and elimination efforts.
Collapse
|
24
|
Annan E, Guo J, Angulo-Molina A, Yaacob WFW, Aghamohammadi N, C Guetterman T, Yavaşoglu Sİ, Bardosh K, Dom NC, Zhao B, Lopez-Lemus UA, Khan L, Nguyen USDT, Haque U. Community acceptability of dengue fever surveillance using unmanned aerial vehicles: A cross-sectional study in Malaysia, Mexico, and Turkey. Travel Med Infect Dis 2022; 49:102360. [PMID: 35644475 DOI: 10.1016/j.tmaid.2022.102360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/01/2022] [Accepted: 05/19/2022] [Indexed: 11/29/2022]
Abstract
Surveillance is a critical component of any dengue prevention and control program. There is an increasing effort to use drones in mosquito control surveillance. Due to the novelty of drones, data are scarce on the impact and acceptance of their use in the communities to collect health-related data. The use of drones raises concerns about the protection of human privacy. Here, we show how willingness to be trained and acceptance of drone use in tech-savvy communities can help further discussions in mosquito surveillance. A cross-sectional study was conducted in Malaysia, Mexico, and Turkey to assess knowledge of diseases caused by Aedes mosquitoes, perceptions about drone use for data collection, and acceptance of drones for Aedes mosquito surveillance around homes. Compared with people living in Turkey, Mexicans had 14.3 (p < 0.0001) times higher odds and Malaysians had 4.0 (p = 0.7030) times the odds of being willing to download a mosquito surveillance app. Compared to urban dwellers, rural dwellers had 1.56 times the odds of being willing to be trained. There is widespread community support for drone use in mosquito surveillance and this community buy-in suggests a potential for success in mosquito surveillance using drones. A successful surveillance and community engagement system may be used to monitor a variety of mosquito spp. Future research should include qualitative interview data to add context to these findings.
Collapse
Affiliation(s)
- Esther Annan
- Department of Biostatistics and Epidemiology, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA.
| | - Jinghui Guo
- Department of Computer Science, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Aracely Angulo-Molina
- Department of Chemical and Biological Sciences, University of Sonora, Hermosillo, 83000, Sonora, Mexico
| | - Wan Fairos Wan Yaacob
- Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA Cawangan Kelantan, Kampus Kota Bharu, Lembah Sireh, 15050, Kota Bharu, Kelantan, Malaysia; Institute for Big Data Analytics and Artificial Intelligence (IBDAAI), Kompleks Al-Khawarizmi, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| | - Nasrin Aghamohammadi
- Centre for Epidemiology and Evidence-Based Practice, Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | | | - Sare İlknur Yavaşoglu
- Department of Biology, Faculty of Science and Arts, Aydın Adnan Menderes University, Aydın, 09010, Turkey
| | - Kevin Bardosh
- Center for One Health Research, School of Public Health, University of Washington, USA
| | - Nazri Che Dom
- Faculty of Health Sciences, Universiti Teknologi MARA Cawangan Selangor, Selangor, Malaysia
| | - Bingxin Zhao
- Department of Statistics, Purdue University, 250 N. University St, West Lafayette, IN, 47907, USA
| | - Uriel A Lopez-Lemus
- Department of Health Sciences, Center for Biodefense and Global Infectious Diseases, Colima, 28078, Mexico
| | - Latifur Khan
- Department of Computer Science, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Uyen-Sa D T Nguyen
- Department of Biostatistics and Epidemiology, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Ubydul Haque
- Department of Biostatistics and Epidemiology, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| |
Collapse
|
25
|
Mkali HR, Reaves EJ, Lalji SM, Al-Mafazy AW, Joseph JJ, Ali AS, Abbas FB, Ali MH, Hassan WS, Kitojo C, Serbantez N, Kabula BI, Nyinondi SS, Bisanzio D, McKay M, Eckert E, Reithinger R, Ngondi JM. Risk factors associated with malaria infection identified through reactive case detection in Zanzibar, 2012-2019. Malar J 2021; 20:485. [PMID: 34952596 PMCID: PMC8710018 DOI: 10.1186/s12936-021-04025-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/14/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Over the past two decades, Zanzibar substantially reduced malaria burden. As malaria decreases, sustainable improvements in control interventions may increasingly depend on accurate knowledge of malaria risk factors to further target interventions. This study aimed to investigate the risk factors associated with malaria infection in Zanzibar. METHODS Surveillance data from Zanzibar's Malaria Case Notification system from August 2012 and December 2019 were analyzed. This system collects data on malaria cases passively detected and reported by all health facilities (index cases), and household-based reactive case detection (RCD) activities linked to those primary cases. All members of households of the index cases were screened for malaria using a malaria rapid diagnostic test (RDT). Individuals with a positive RDT were treated with artemisinin-based combination therapy. Univariate and multivariate logistic regression analyses were done to investigate the association between RDT positivity among the household members and explanatory factors with adjustment for seasonality and clustering at Shehia level. RESULTS A total of 30,647 cases were reported of whom household RCD was completed for 21,443 (63%) index case households and 85,318 household members tested for malaria. The findings show that younger age (p-value for trend [Ptrend] < 0.001), history of fever in the last 2 weeks (odds ratio [OR] = 35.7; 95% CI 32.3-39.5), travel outside Zanzibar in the last 30 days (OR = 2.5; 95% CI 2.3-2.8) and living in Unguja (OR = 1.2; 95% CI 1.0-1.5) were independently associated with increased odds of RDT positivity. In contrast, male gender (OR=0.8; 95% CI 0.7-0.9), sleeping under an LLIN the previous night (OR = 0.9; 95% CI 0.7-0.9), having higher household net access (Ptrend < 0.001), and living in a household that received IRS in the last 12 months (OR = 0.8; 95% CI 0.7-0.9) were independently associated with reduced odds of RDT positivity. A significant effect modification of combining IRS and LLIN was also noted (OR = 0.7; 95% CI 0.6-0.8). CONCLUSIONS The findings suggest that vector control remains an important malaria prevention intervention: they underscore the need to maintain universal access to LLINs, the persistent promotion of LLIN use, and application of IRS. Additionally, enhanced behavioural change and preventive strategies targeting children aged 5-14 years and travellers are needed.
Collapse
Affiliation(s)
| | - Erik J Reaves
- U.S. President's Malaria Initiative, U.S. Centers for Disease Control and Prevention, Dar es Salaam, United Republic of Tanzania
| | - Shabbir M Lalji
- RTI International, Dar es Salaam, United Republic of Tanzania
| | | | - Joseph J Joseph
- RTI International, Dar es Salaam, United Republic of Tanzania
| | - Abdullah S Ali
- Zanzibar Malaria Elimination Programme, Ministry of Health, Zanzibar, United Republic of Tanzania
| | - Faiza B Abbas
- Zanzibar Malaria Elimination Programme, Ministry of Health, Zanzibar, United Republic of Tanzania
| | - Mohamed H Ali
- Zanzibar Malaria Elimination Programme, Ministry of Health, Zanzibar, United Republic of Tanzania
| | - Wahida S Hassan
- Zanzibar Malaria Elimination Programme, Ministry of Health, Zanzibar, United Republic of Tanzania
| | - Chonge Kitojo
- U.S. President's Malaria Initiative, United States Agency for International Development, Dar es Salaam, United Republic of Tanzania
| | - Naomi Serbantez
- U.S. President's Malaria Initiative, United States Agency for International Development, Dar es Salaam, United Republic of Tanzania
| | - Bilali I Kabula
- RTI International, Dar es Salaam, United Republic of Tanzania
| | | | | | | | | | | | | |
Collapse
|
26
|
Kampango A, Furu P, Sarath DL, Haji KA, Konradsen F, Schiøler KL, Alifrangis M, Saleh F, Weldon CW. Risk factors for occurrence and abundance of Aedes aegypti and Aedes bromeliae at hotel compounds in Zanzibar. Parasit Vectors 2021; 14:544. [PMID: 34686195 PMCID: PMC8539800 DOI: 10.1186/s13071-021-05005-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/10/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND A field survey was performed to investigate local environmental factors promoting occurrence and abundance of Aedes aegypti and Ae. bromeliae mosquitoes at hotel compounds in the south-east coastal region of Zanzibar Island. METHODS The potential risk factors were determined using generalized linear mixed models. Aedes (Stegomyia) spp. indices such as container index (CI) and pupae per container (PPC) index were also estimated. RESULTS Aedes aegypti and Ae. bromeliae were the most abundant vector species, accounting for 70.8% of all Aedes mosquitoes collected. The highest CI was observed for plastic containers irrespective of the season, whereas the highest PPC was observed for coconut shells and aluminium containers in the rainy and dry seasons, respectively. The risk of Aedes mosquito occurrence and abundance were significantly associated with presence of plastic containers, coconut shells, used tyres and steel containers. These were discarded in shaded places, in the open and gardens, or found in plant nurseries. CONCLUSION This study shows that Aedes species of global health significance occur at hotel compounds on this part of Zanzibar Island. The occurrence and abundance are sustained by the presence of abundant and poorly managed solid wastes and containers used for gardening tasks. This highlights an urgent need for the adoption of area-wide environmentally sustainable Aedes mosquito management interventions that also integrate solid waste management and ornamental plant production practices for reducing the risk of arboviral disease epidemics.
Collapse
Affiliation(s)
- Ayubo Kampango
- Sector de Estudos de Vetores, Instituto Nacional de Saúde (INS), Vila de Marracuene, EN1, Parcela N°3943, Província de Maputo, Mozambique
- Department of Zoology and Entomology, University of Pretoria (UP), Hatfield, South Africa
| | - Peter Furu
- Global Health Section, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Divakara L. Sarath
- South Asian Clinical Toxicology Research Collaboration (SACTRC), Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Khamis A. Haji
- Zanzibar Malaria Elimination Programme (ZAMEP), Unguja Island, Zanzibar, Tanzania
| | - Flemming Konradsen
- Global Health Section, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Karin L. Schiøler
- Global Health Section, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Michael Alifrangis
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Fatma Saleh
- Department of Allied Health Sciences, School of Health and Medical Sciences, The State University of Zanzibar, Unguja Island, Zanzibar, Tanzania
| | - Christopher W. Weldon
- Department of Zoology and Entomology, University of Pretoria (UP), Hatfield, South Africa
| |
Collapse
|
27
|
Osborne A, Manko E, Takeda M, Kaneko A, Kagaya W, Chan C, Ngara M, Kongere J, Kita K, Campino S, Kaneko O, Gitaka J, Clark TG. Characterizing the genomic variation and population dynamics of Plasmodium falciparum malaria parasites in and around Lake Victoria, Kenya. Sci Rep 2021; 11:19809. [PMID: 34615917 PMCID: PMC8494747 DOI: 10.1038/s41598-021-99192-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/22/2021] [Indexed: 11/08/2022] Open
Abstract
Characterising the genomic variation and population dynamics of Plasmodium falciparum parasites in high transmission regions of Sub-Saharan Africa is crucial to the long-term efficacy of regional malaria elimination campaigns and eradication. Whole-genome sequencing (WGS) technologies can contribute towards understanding the epidemiology and structural variation landscape of P. falciparum populations, including those within the Lake Victoria basin, a region of intense transmission. Here we provide a baseline assessment of the genomic diversity of P. falciparum isolates in the Lake region of Kenya, which has sparse genetic data. Lake region isolates are placed within the context of African-wide populations using Illumina WGS data and population genomic analyses. Our analysis revealed that P. falciparum isolates from Lake Victoria form a cluster within the East African parasite population. These isolates also appear to have distinct ancestral origins, containing genome-wide signatures from both Central and East African lineages. Known drug resistance biomarkers were observed at similar frequencies to those of East African parasite populations, including the S160N/T mutation in the pfap2mu gene, which has been associated with delayed clearance by artemisinin-based combination therapy. Overall, our work provides a first assessment of P. falciparum genetic diversity within the Lake Victoria basin, a region targeting malaria elimination.
Collapse
Affiliation(s)
- Ashley Osborne
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Emilia Manko
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Mika Takeda
- Department of Protozoology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Akira Kaneko
- Department of Parasitology, Graduate School of Medicine, Osaka City University, Osaka, Japan
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Wataru Kagaya
- Department of Parasitology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Chim Chan
- Department of Parasitology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Mtakai Ngara
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - James Kongere
- Department of Parasitology, Graduate School of Medicine, Osaka City University, Osaka, Japan
- Centre for Research in Tropical Medicine and Community Development (CRTMCD), Hospital Road Next to Kenyatta National Hospital, Nairobi, Kenya
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Osamu Kaneko
- Department of Protozoology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Jesse Gitaka
- Directorate of Research and Innovation, Mount Kenya University, Thika, Kenya
- Centre for Malaria Elimination, Mount Kenya University, Thika, Kenya
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
28
|
Rathinam F, Khatua S, Siddiqui Z, Malik M, Duggal P, Watson S, Vollenweider X. Using big data for evaluating development outcomes: A systematic map. CAMPBELL SYSTEMATIC REVIEWS 2021; 17:e1149. [PMID: 37051451 PMCID: PMC8354555 DOI: 10.1002/cl2.1149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
BACKGROUND Policy makers need access to reliable data to monitor and evaluate the progress of development outcomes and targets such as sustainable development outcomes (SDGs). However, significant data and evidence gaps remain. Lack of resources, limited capacity within governments and logistical difficulties in collecting data are some of the reasons for the data gaps. Big data-that is digitally generated, passively produced and automatically collected-offers a great potential for answering some of the data needs. Satellite and sensors, mobile phone call detail records, online transactions and search data, and social media are some of the examples of big data. Integrating big data with the traditional household surveys and administrative data can complement data availability, quality, granularity, accuracy and frequency, and help measure development outcomes temporally and spatially in a number of new ways.The study maps different sources of big data onto development outcomes (based on SDGs) to identify current evidence base, use and the gaps. The map provides a visual overview of existing and ongoing studies. This study also discusses the risks, biases and ethical challenges in using big data for measuring and evaluating development outcomes. The study is a valuable resource for evaluators, researchers, funders, policymakers and practitioners in their effort to contributing to evidence informed policy making and in achieving the SDGs. OBJECTIVES Identify and appraise rigorous impact evaluations (IEs), systematic reviews and the studies that have innovatively used big data to measure any development outcomes with special reference to difficult contexts. SEARCH METHODS A number of general and specialised data bases and reporsitories of organisations were searched using keywords related to big data by an information specialist. SELECTION CRITERIA The studies were selected on basis of whether they used big data sources to measure or evaluate development outcomes. DATA COLLECTION AND ANALYSIS Data collection was conducted using a data extraction tool and all extracted data was entered into excel and then analysed using Stata. The data analysis involved looking at trends and descriptive statistics only. MAIN RESULTS The search yielded over 17,000 records, which we then screened down to 437 studies which became the foundation of our systematic map. We found that overall, there is a sizable and rapidly growing number of measurement studies using big data but a much smaller number of IEs. We also see that the bulk of the big data sources are machine-generated (mostly satellites) represented in the light blue. We find that satellite data was used in over 70% of the measurement studies and in over 80% of the IEs. AUTHORS' CONCLUSIONS This map gives us a sense that there is a lot of work being done to develop appropriate measures using big data which could subsequently be used in IEs. Information on costs, ethics, transparency is lacking in the studies and more work is needed in this area to understand the efficacies related to the use of big data. There are a number of outcomes which are not being studied using big data, either due to the lack to applicability such as education or due to lack of awareness about the new methods and data sources. The map points to a number of gaps as well as opportunities where future researchers can conduct research.
Collapse
|
29
|
Citron DT, Guerra CA, García GA, Wu SL, Battle KE, Gibson HS, Smith DL. Quantifying malaria acquired during travel and its role in malaria elimination on Bioko Island. Malar J 2021; 20:359. [PMID: 34461902 PMCID: PMC8404405 DOI: 10.1186/s12936-021-03893-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria elimination is the goal for Bioko Island, Equatorial Guinea. Intensive interventions implemented since 2004 have reduced prevalence, but progress has stalled in recent years. A challenge for elimination has been malaria infections in residents acquired during travel to mainland Equatorial Guinea. The present article quantifies how off-island contributes to remaining malaria prevalence on Bioko Island, and investigates the potential role of a pre-erythrocytic vaccine in making further progress towards elimination. METHODS Malaria transmission on Bioko Island was simulated using a model calibrated based on data from the Malaria Indicator Surveys (MIS) from 2015 to 2018, including detailed travel histories and malaria positivity by rapid-diagnostic tests (RDTs), as well as geospatial estimates of malaria prevalence. Mosquito population density was adjusted to fit local transmission, conditional on importation rates under current levels of control and within-island mobility. The simulations were then used to evaluate the impact of two pre-erythrocytic vaccine distribution strategies: mass treat and vaccinate, and prophylactic vaccination for off-island travellers. Lastly, a sensitivity analysis was performed through an ensemble of simulations fit to the Bayesian joint posterior probability distribution of the geospatial prevalence estimates. RESULTS The simulations suggest that in Malabo, an urban city containing 80% of the population, there are some pockets of residual transmission, but a large proportion of infections are acquired off-island by travellers to the mainland. Outside of Malabo, prevalence was mainly attributable to local transmission. The uncertainty in the local transmission vs. importation is lowest within Malabo and highest outside. Using a pre-erythrocytic vaccine to protect travellers would have larger benefits than using the vaccine to protect residents of Bioko Island from local transmission. In simulations, mass treatment and vaccination had short-lived benefits, as malaria prevalence returned to current levels as the vaccine's efficacy waned. Prophylactic vaccination of travellers resulted in longer-lasting reductions in prevalence. These projections were robust to underlying uncertainty in prevalence estimates. CONCLUSIONS The modelled outcomes suggest that the volume of malaria cases imported from the mainland is a partial driver of continued endemic malaria on Bioko Island, and that continued elimination efforts on must account for human travel activity.
Collapse
Affiliation(s)
- Daniel T Citron
- Institute for Health Metrics and Evaluation, University of Washington, Population Health Building/Hans Rosling Center, 3980 15th Ave NE, Seattle, WA, 98195, USA.
| | - Carlos A Guerra
- Medical Care Development International, 8401 Colesville Road Suite 425, Silver Spring, MD, 20910, USA
| | - Guillermo A García
- Medical Care Development International, 8401 Colesville Road Suite 425, Silver Spring, MD, 20910, USA
| | - Sean L Wu
- Division of Epidemiology and Biostatistics, University of California, 2121 Berkeley Way, Berkeley, CA, 94720, USA
| | - Katherine E Battle
- Malaria Atlas Project, Telethon Kids Institute, Perth Children's Hospital, 15 Hospital Avenue, WA, 6009, Nedlands, Australia
- Institute for Disease Modeling, 500 5th Ave N, Seattle, WA, 98109, USA
| | - Harry S Gibson
- Malaria Atlas Project, Telethon Kids Institute, Perth Children's Hospital, 15 Hospital Avenue, WA, 6009, Nedlands, Australia
| | - David L Smith
- Institute for Health Metrics and Evaluation, University of Washington, Population Health Building/Hans Rosling Center, 3980 15th Ave NE, Seattle, WA, 98195, USA
| |
Collapse
|
30
|
Clustering of subpatent infections in households with asymptomatic rapid diagnostic test-positive cases in Bioko Island, Equatorial Guinea independent of travel to regions of higher malaria endemicity: a cross-sectional study. Malar J 2021; 20:313. [PMID: 34247643 PMCID: PMC8274032 DOI: 10.1186/s12936-021-03844-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/03/2021] [Indexed: 11/27/2022] Open
Abstract
Background Prevalence of falciparum malaria on Bioko Island remains high despite sustained, intensive control. Progress may be hindered by high proportions of subpatent infections that are not detected by rapid diagnostic tests (RDT) but contribute to onward transmission, and by imported infections. Better understanding of the relationship between subpatent infections and RDT-detected infections, and whether this relationship is different from imported versus locally acquired infections, is imperative to better understand the sources of infection and mechanisms of transmission to tailor more effective interventions. Methods Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) was performed on a sub-set of samples from the 2015 Malaria Indicator Survey to identify subpatent infections. Households with RDT(+) individuals were matched 1:4 with households with no RDT(+) individuals. The association between living in a household with an RDT(+) individual and having a subpatent infection was evaluated using multivariate hierarchical logistic regression models with inverse probability weights for selection. To evaluate possible modification of the association by potential importation of the RDT(+) case, the analysis was repeated among strata of matched sets based on the reported eight-week travel history of the RDT(+) individual(s). Results There were 142 subpatent infections detected in 1,400 individuals (10.0%). The prevalence of subpatent infections was higher in households with versus without an RDT(+) individual (15.0 vs 9.1%). The adjusted prevalence odds of subpatent infection were 2.59-fold greater (95% CI: 1.31, 5.09) for those in a household with an RDT(+) individual compared to individuals in a household without RDT(+) individuals. When stratifying by travel history of the RDT(+) individual, the association between subpatent infections and RDT(+) infections was stronger in the strata in which the RDT(+) individual(s) had not recently travelled (adjusted prevalence odds ratio (aPOR) 2.95; 95% CI:1.17, 7.41), and attenuated in the strata in which recent travel was reported (aPOR 1.76; 95% CI: 0.54, 5.67). Conclusions There is clustering of subpatent infections around RDT(+) individual(s) when both imported and local infection are suspected. Future control strategies that aim to treat whole households in which an RDT(+) individual is found may target a substantial portion of infections that would otherwise not be detected. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03844-6.
Collapse
|
31
|
Tam G, Cowling BJ, Maude RJ. Analysing human population movement data for malaria control and elimination. Malar J 2021; 20:294. [PMID: 34193167 PMCID: PMC8247220 DOI: 10.1186/s12936-021-03828-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human population movement poses a major obstacle to malaria control and elimination. With recent technological advances, a wide variety of data sources and analytical methods have been used to quantify human population movement (HPM) relevant to control and elimination of malaria. METHODS The relevant literature and selected studies that had policy implications that could help to design or target malaria control and elimination interventions were reviewed. These studies were categorized according to spatiotemporal scales of human mobility and the main method of analysis. RESULTS Evidence gaps exist for tracking routine cross-border HPM and HPM at a regional scale. Few studies accounted for seasonality. Out of twenty included studies, two studies which tracked daily neighbourhood HPM used descriptive analyses as the main method, while the remaining studies used statistical analyses or mathematical modelling. CONCLUSION Although studies quantified varying types of human population movement covering different spatial and temporal scales, methodological gaps remain that warrant further studies related to malaria control and elimination.
Collapse
Affiliation(s)
- Greta Tam
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing, Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Benjamin J Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing, Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Richard J Maude
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand. .,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LG, UK. .,The Open University, Milton Keynes, MK7 6AA, UK. .,Harvard TH Chan School of Public Health, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
32
|
Comparing metapopulation dynamics of infectious diseases under different models of human movement. Proc Natl Acad Sci U S A 2021; 118:2007488118. [PMID: 33926962 PMCID: PMC8106338 DOI: 10.1073/pnas.2007488118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Newly available datasets present exciting opportunities to investigate how human population movement contributes to the spread of infectious diseases across large geographical distances. It is now possible to construct realistic models of infectious disease dynamics for the purposes of understanding global-scale epidemics. Nevertheless, a remaining unanswered question is how best to leverage the new data to parameterize models of movement, and whether one's choice of movement model impacts modeled disease outcomes. We adapt three well-studied models of infectious disease dynamics, the susceptible-infected-recovered model, the susceptible-infected-susceptible model, and the Ross-Macdonald model, to incorporate either of two candidate movement models. We describe the effect that the choice of movement model has on each disease model's results, finding that in all cases, there are parameter regimes where choosing one movement model instead of another has a profound impact on epidemiological outcomes. We further demonstrate the importance of choosing an appropriate movement model using the applied case of malaria transmission and importation on Bioko Island, Equatorial Guinea, finding that one model produces intelligible predictions of R 0, whereas the other produces nonsensical results.
Collapse
|
33
|
Jones RT, Pretorius E, Ant TH, Bradley J, Last A, Logan JG. The use of islands and cluster-randomized trials to investigate vector control interventions: a case study on the Bijagós archipelago, Guinea-Bissau. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190807. [PMID: 33357055 PMCID: PMC7776941 DOI: 10.1098/rstb.2019.0807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 12/30/2022] Open
Abstract
Vector-borne diseases threaten the health of populations around the world. While key interventions continue to provide protection from vectors, there remains a need to develop and test new vector control tools. Cluster-randomized trials, in which the intervention or control is randomly allocated to clusters, are commonly selected for such evaluations, but their design must carefully consider cluster size and cluster separation, as well as the movement of people and vectors, to ensure sufficient statistical power and avoid contamination of results. Island settings present an opportunity to conduct these studies. Here, we explore the benefits and challenges of conducting intervention studies on islands and introduce the Bijagós archipelago of Guinea-Bissau as a potential study site for interventions intended to control vector-borne diseases. This article is part of the theme issue 'Novel control strategies for mosquito-borne diseases'.
Collapse
Affiliation(s)
- Robert T. Jones
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, Bloomsbury, London WC1E 7HT, UK
- ARCTEC, London School of Hygiene & Tropical Medicine, Keppel Street, Bloomsbury, London WC1E 7HT, UK
| | - Elizabeth Pretorius
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, Bloomsbury, London WC1E 7HT, UK
| | - Thomas H. Ant
- Centre for Virus Research, Bearsden Road, Bearsden, Glasgow G61 1QH, UK
| | - John Bradley
- MRC International Statistics and Epidemiology Group, London School of Hygiene & Tropical Medicine, Keppel Street, Bloomsbury, London WC1E 7HT, UK
| | - Anna Last
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, Keppel Street, Bloomsbury, London WC1E 7HT, UK
| | - James G. Logan
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, Bloomsbury, London WC1E 7HT, UK
- ARCTEC, London School of Hygiene & Tropical Medicine, Keppel Street, Bloomsbury, London WC1E 7HT, UK
| |
Collapse
|
34
|
Li Q, Bessell L, Xiao X, Fan C, Gao X, Mostafavi A. Disparate patterns of movements and visits to points of interest located in urban hotspots across US metropolitan cities during COVID-19. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201209. [PMID: 33614069 PMCID: PMC7890478 DOI: 10.1098/rsos.201209] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/25/2020] [Indexed: 05/08/2023]
Abstract
We examined the effect of social distancing on changes in visits to urban hotspot points of interest. In a pandemic situation, urban hotspots could be potential superspreader areas as visits to urban hotspots can increase the risk of contact and transmission of a disease among a population. We mapped census-block-group to point-of-interest (POI) movement networks in 16 cities in the United States. We adopted a modified coarse-grain approach to examine patterns of visits to POIs among hotspots and non-hotspots from January to May 2020. Also, we conducted chi-square tests to identify POIs with significant flux-in changes during the analysis period. The results showed disparate patterns across cities in terms of reduction in hotspot POI visitors. Sixteen cities were divided into two categories using a time series clustering method. In one category, which includes the cities of San Francisco, Seattle and Chicago, we observed a considerable decrease in hotspot POI visitors, while in another category, including the cities of Austin, Houston and San Diego, the visitors to hotspots did not greatly decrease. While all the cities exhibited overall decreased visitors to POIs, one category maintained the proportion of visitors to hotspot POIs. The proportion of visitors to some POIs (e.g. restaurants) remained stable during the social distancing period, while some POIs had an increased proportion of visitors (e.g. grocery stores). We also identified POIs with significant flux-in changes, indicating that related businesses were greatly affected by social distancing. The study was limited to 16 metropolitan cities in the United States. The proposed methodology could be applied to digital trace data in other cities and countries to study the patterns of movements to POIs during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Qingchun Li
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, 199 Spence Street, College Station, TX 77843-3112, USA
- Author for correspondence: Qingchun Li e-mail:
| | - Liam Bessell
- Department of Computer Science and Engineering, Texas A&M University, 199 Spence Street, College Station, TX 77843-3112, USA
| | - Xin Xiao
- Department of Computer Science and Engineering, Texas A&M University, 199 Spence Street, College Station, TX 77843-3112, USA
| | - Chao Fan
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, 199 Spence Street, College Station, TX 77843-3112, USA
| | - Xinyu Gao
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, 199 Spence Street, College Station, TX 77843-3112, USA
| | - Ali Mostafavi
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, 199 Spence Street, College Station, TX 77843-3112, USA
| |
Collapse
|
35
|
Arinaitwe E, Mpimbaza A, Nankabirwa JI, Kamya V, Asiimwe A, Kuule JK, Kamya MR, Drakeley C, Dorsey G, Rosenthal PJ, Staedke SG. Malaria Diagnosed in an Urban Setting Strongly Associated with Recent Overnight Travel: A Case-Control Study from Kampala, Uganda. Am J Trop Med Hyg 2020; 103:1517-1524. [PMID: 32840203 DOI: 10.4269/ajtmh.20-0189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Malaria is frequently diagnosed in urban Kampala, despite low transmission intensity. To evaluate the association between recent travel out of Kampala and malaria, we conducted a matched case-control study. Cases were febrile outpatients with a positive malaria test; controls were febrile outpatients with a negative test. For every two cases, five controls were selected, matching on age. Data were collected on recent overnight travel out of Kampala (past 60 days), destination and duration of travel, and behavioral factors, including sleeping under an insecticide-treated net (ITN) during travel. From July to August 2019, 162 cases and 405 controls were enrolled. The locations of residence of cases and controls were similar. More controls were female (62.7% versus 46.3%, P < 0.001). Overall, 158 (27.9%) participants reported recent overnight travel. Travelers were far more likely to be diagnosed with malaria than those who did not travel (80.4% versus 8.6%, OR 58.9, 95% CI: 23.1-150.1, P < 0.001). Among travelers, traveling to a district not receiving indoor residual spraying of insecticide (OR 35.0, 95% CI: 4.80-254.9, P < 0.001), no ITN use (OR 30.1, 95% CI: 6.37-142.7, P < 0.001), engaging in outdoor activities (OR 22.0, 95% CI: 3.42-141.8, P = 0.001), and age < 16 years (OR 8.36, 95% CI: 2.22-56.2, P = 0.03) were associated with increased odds of malaria. Kampala residents who traveled overnight out of the city were at substantially higher risk of malaria than those who did not travel. For these travelers, personal protection measures, including sleeping under an ITN when traveling, should be advocated.
Collapse
Affiliation(s)
- Emmanuel Arinaitwe
- Infectious Diseases Research Collaboration, Kampala, Uganda.,London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Arthur Mpimbaza
- Child Health and Development Centre, Makerere University College of Health Sciences, Kampala, Uganda.,Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Joaniter I Nankabirwa
- Department of Medicine, Makerere University, Kampala, Uganda.,Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Victor Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Alan Asiimwe
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Julius K Kuule
- Uganda Malaria Research Centre, Ministry of Health, Kampala, Uganda
| | - Moses R Kamya
- Department of Medicine, Makerere University, Kampala, Uganda.,Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Chris Drakeley
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Grant Dorsey
- Department of Medicine, University of California, San Francisco, California
| | - Philip J Rosenthal
- Department of Medicine, University of California, San Francisco, California
| | - Sarah G Staedke
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
36
|
Thongsripong P, Qu Z, Yukich JO, Hyman JM, Wesson DM. An Investigation of Human-Mosquito Contact Using Surveys and Its Application in Assessing Dengue Viral Transmission Risk. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:1942-1954. [PMID: 32652036 DOI: 10.1093/jme/tjaa134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Indexed: 06/11/2023]
Abstract
Aedes-borne viral diseases such as dengue fever are surging in incidence in recent years. To investigate viral transmission risks, the availability of local transmission parameters is essential. One of the most important factors directly determining infection risk is human-mosquito contact. Yet the contact rate is not often characterized, compared with other risk metrics such as vector density, because of the limited research tool options. In this study, human-mosquito contact was assessed in two study sites in the Southern United States using self-administered standardized survey instruments. The fraction of mosquito bites attributed to important vector species was estimated by human landing sampling. The survey participants reported a significantly higher outdoor mosquito bite exposure than indoor. The reported bite number was positively correlated with outdoor time during at-risk periods. There was also a significant effect of the study site on outdoor bite exposure, possibly due to the differing vector density. Thus, the levels of human-mosquito contact in this study were influenced both by the mosquito density and human behaviors. A dengue virus transmission model demonstrated that the observed difference in the contact rates results in differential virus transmission risks. Our findings highlight the practicality of using surveys to investigate human-mosquito contact in a setting where bite exposure levels differ substantially, and serve as a basis for further evaluations. This study underscores a new avenue that can be used in combination with other field methods to understand how changes in human behavior may influence mosquito bite exposure which drives mosquito-borne virus transmission.
Collapse
Affiliation(s)
| | - Zhuolin Qu
- Department of Mathematics, Tulane University, New Orleans, LA
| | - Joshua O Yukich
- Department of Tropical Medicine, Tulane University, New Orleans, LA
| | - James M Hyman
- Department of Mathematics, Tulane University, New Orleans, LA
| | - Dawn M Wesson
- Department of Tropical Medicine, Tulane University, New Orleans, LA
| |
Collapse
|
37
|
Arinaitwe E, Nankabirwa JI, Krezanoski P, Rek J, Kamya V, Epstein A, Rosenthal PJ, Drakeley C, Kamya MR, Dorsey G, Staedke SG. Association between recent overnight travel and use of long-lasting insecticidal nets in rural Uganda: a prospective cohort study in Tororo. Malar J 2020; 19:405. [PMID: 33176793 PMCID: PMC7661187 DOI: 10.1186/s12936-020-03475-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/31/2020] [Indexed: 11/25/2022] Open
Abstract
Background The burden of malaria in Uganda remains high, but has become increasingly heterogenous following intensified malaria control. Travel within Uganda is recognized as a risk factor for malaria, but behaviours associated with travel are not well-understood. To address this knowledge gap, malaria-relevant behaviours of cohort participants were assessed during travel and at home in Uganda. Methods Residents from 80 randomly selected households in Nagongera sub-county, Tororo district were enrolled into a cohort to study malaria in rural Uganda. All participants were given long-lasting insecticidal nets (LLINs) at enrolment and were evaluated every 4 weeks at the study clinic. Participants were asked if they had travelled overnight from their home, and if so, a questionnaire was administered to capture information on travel details and behaviours. Behaviour while travelling was assessed within 4 weeks following travel during the study clinic visit. Behaviour while at home was assessed using a similar questionnaire during two-weekly home visits. Behaviours while travelling vs at home were compared using log binomial regression models with generalized estimating equations adjusting for repeated measures in the same individual. Analysis of factors associated with LLIN adherence, such as destination and duration of travel, time to bed during travel, gender and age at time of travel, were assessed using log binomial regression models with generalized estimating equations adjusting for repeated measures in the same individual. Results Between October 2017 and October 2019, 527 participants were enrolled and assessed for travel. Of these, 123 (23.2%) reported taking 211 overnight trips; 149 (70.6%) trips were within Tororo. Participants were less likely to use LLINs when travelling than when at home (41.0% vs. 56.2%, relative risk [RR] 0.73, 95% CI 0.60–0.89, p = 0.002); this difference was noted for women (38.8% vs 59.2%, RR 0.66, 95% CI 0.52–0.83, p = 0.001) but not men (48.3% vs 46.6%, RR 0.96, 95% CI 0.67–1.40, p = 0.85). In an adjusted analysis, factors associated with LLIN use when travelling included destination (travelling to districts not receiving indoor residual spraying [IRS] 65.8% vs Tororo district 32.2%, RR 1.80, 95% CI 1.31–2.46, p < 0.001) and duration of travel (> 7 nights 60.3% vs one night 24.4%, RR 1.97, 95% CI 1.07–3.64, p = 0.03). Conclusions Travellers, particularly women, were less likely to use LLINs when travelling than when at home. LLIN adherence was higher among those who travelled to non-IRS districts and for more than 1 week, suggesting that perceived malaria risk influences LLIN use. Strategies are needed to raise awareness of the importance of using LLINs while travelling.
Collapse
Affiliation(s)
- Emmanuel Arinaitwe
- London School of Hygiene and Tropical Medicine, London, UK. .,Infectious Diseases Research Collaboration, Kampala, Uganda.
| | - Joaniter I Nankabirwa
- Infectious Diseases Research Collaboration, Kampala, Uganda.,Department of Medicine, Makerere University, Kampala, Uganda
| | - Paul Krezanoski
- Department of Medicine, University of California, San Francisco, CA, USA
| | - John Rek
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Victor Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Adrienne Epstein
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Philip J Rosenthal
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Chris Drakeley
- London School of Hygiene and Tropical Medicine, London, UK
| | - Moses R Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda.,Department of Medicine, Makerere University, Kampala, Uganda
| | - Grant Dorsey
- Department of Medicine, University of California, San Francisco, CA, USA
| | | |
Collapse
|
38
|
Better coverage, better outcomes? Mapping mobile network data to official statistics using satellite imagery and radio propagation modelling. PLoS One 2020; 15:e0241981. [PMID: 33166359 PMCID: PMC7652289 DOI: 10.1371/journal.pone.0241981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 10/23/2020] [Indexed: 12/02/2022] Open
Abstract
Mobile sensing data has become a popular data source for geo-spatial analysis, however, mapping it accurately to other sources of information such as statistical data remains a challenge. Popular mapping approaches such as point allocation or voronoi tessellation provide only crude approximations of the mobile network coverage as they do not consider holes, overlaps and within-cell heterogeneity. More elaborate mapping schemes often require additional proprietary data operators are highly reluctant to share. In this paper, I use human settlement information extracted from publicly available satellite imagery in combination with stochastic radio propagation modelling techniques to account for that. I show in a simulation study and a real-world application on unemployment estimates in Senegal that better coverage approximations do not necessarily lead to better outcome predictions.
Collapse
|
39
|
Porter TR, Finn TP, Silumbe K, Chalwe V, Hamainza B, Kooma E, Moonga H, Bennett A, Yukich JO, Steketee RW, Keating J, Miller JM, Eisele TP. Recent Travel History and Plasmodium falciparum Malaria Infection in a Region of Heterogenous Transmission in Southern Province, Zambia. Am J Trop Med Hyg 2020; 103:74-81. [PMID: 32618250 PMCID: PMC7416974 DOI: 10.4269/ajtmh.19-0660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
As Zambia continues to reduce its malaria incidence and target elimination in Southern Province, there is a need to identify factors that can reintroduce parasites and sustain malaria transmission. To examine the relative contributions of types of human mobility on malaria prevalence, this analysis quantifies the proportion of the population having recently traveled during both peak and nonpeak transmission seasons over the course of 2 years and assesses the relationship between short-term travel and malaria infection status. Among all residents targeted by mass drug administration in the Lake Kariba region of Southern Province, 602,620 rapid diagnostic tests and recent travel histories were collected during four campaign rounds occurring between December 2014 and February 2016. Rates of short-term travel in the previous 2 weeks fluctuated seasonally from 0.3% to 1.2%. Travel was significantly associated with prevalent malaria infection both seasonally and overall (adjusted odds ratio [AOR]: 2.55; 95% CI: 2.28-2.85). The strength of association between travel and malaria infection varied by travelers' origin and destination, with those recently traveling to high-prevalence areas from low-prevalence areas experiencing the highest odds of malaria infection (AOR: 7.38). Long-lasting insecticidal net usage while traveling was associated with a relative reduction in infections (AOR: 0.74) compared with travelers not using a net. Although travel was directly associated with only a small fraction of infections, importation of malaria via human movement may play an increasingly important role in this elimination setting as transmission rates continue to decline.
Collapse
Affiliation(s)
- Travis R Porter
- Department of Tropical Medicine, Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Timothy P Finn
- Department of Tropical Medicine, Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Kafula Silumbe
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Victor Chalwe
- National Malaria Elimination Centre, Zambia Ministry of Health, Lusaka, Zambia
| | - Busiku Hamainza
- National Malaria Elimination Centre, Zambia Ministry of Health, Lusaka, Zambia
| | - Emmanuel Kooma
- National Malaria Elimination Centre, Zambia Ministry of Health, Lusaka, Zambia
| | - Hawela Moonga
- National Malaria Elimination Centre, Zambia Ministry of Health, Lusaka, Zambia
| | - Adam Bennett
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, California
| | - Joshua O Yukich
- Department of Tropical Medicine, Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | | | - Joseph Keating
- Department of Tropical Medicine, Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - John M Miller
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Thomas P Eisele
- Department of Tropical Medicine, Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| |
Collapse
|
40
|
Buxton M, Machekano H, Gotcha N, Nyamukondiwa C, Wasserman RJ. Are Vulnerable Communities Thoroughly Informed on Mosquito Bio-Ecology and Burden? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E8196. [PMID: 33171954 PMCID: PMC7672552 DOI: 10.3390/ijerph17218196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 11/25/2022]
Abstract
Mosquitoes account for a significant burden of morbidity and mortality globally. Despite evidence of (1) imminent anthropogenic climate and environmental changes, (2) vector-pathogen spatio-temporal dynamics and (3) emerging and re-emerging mosquito borne infections, public knowledge on mosquito bio-ecology remain scant. In particular, knowledge, attitude and practices (KAPs) on mosquitoes are often neglected despite otherwise expensive remedial efforts against consequent infections and other indirect effects associated with disease burden. To gather baseline KAPs that identify gaps for optimising vector-borne disease control, we surveyed communities across endemic and non-endemic malaria sub-districts (Botswana). The study revealed limited knowledge of mosquitoes and their infections uniformly across endemic and non-endemic areas. In addition, a significant proportion of respondents were concerned about mosquito burdens, although their level of personal, indoor and environmental protection practices varied significantly across sub-districts. Given the limited knowledge displayed by the communities, this study facilitates bridging KAP gaps to minimise disease burdens by strengthening public education. Furthermore, it provides a baseline for future studies in mosquito bio-ecology and desirable control practices across differential spheres of the rural-urban lifestyle, with implications for enhanced livelihoods as a consequence of improved public health.
Collapse
Affiliation(s)
- Mmabaledi Buxton
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, P. Bag 16, Palapye, Botswana; (H.M.); (N.G.); (C.N.); (R.J.W.)
| | | | | | | | | |
Collapse
|
41
|
Milusheva S. Managing the spread of disease with mobile phone data. JOURNAL OF DEVELOPMENT ECONOMICS 2020; 147:102559. [PMID: 33144750 PMCID: PMC7561616 DOI: 10.1016/j.jdeveco.2020.102559] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 06/04/2023]
Abstract
While human mobility has important benefits for economic growth, it can generate negative externalities. This paper studies the effect of mobility on the spread of disease in a low-incidence setting when people do not internalize their risks to others. Using malaria as a case study and 15 billion mobile phone records across nine million SIM cards, this paper quantifies the relationship between travel and the spread of disease. The estimates indicate that an infected traveler contributes to 1.66 additional cases reported in the health facility at the traveler's destination. This paper develops a simulation-based policy tool that uses mobile phone data to inform strategic targeting of travelers based on their origins and destinations. The simulations suggest that targeting informed by mobile phone data could reduce the caseload by 50 percent more than current strategies that rely only on previous incidence.
Collapse
|
42
|
How Urban Factors Affect the Spatiotemporal Distribution of Infectious Diseases in Addition to Intercity Population Movement in China. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 2020. [DOI: 10.3390/ijgi9110615] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The outbreak of the 2019 novel coronavirus (COVID-19) has attracted global attention. During the Chinese New Year holiday, population outflow from Wuhan induced the spread of the epidemic to other cities in China. This study analyzed massive intercity movement data from Baidu and epidemic data to study how intercity population outflows affected the spatiotemporal spread of the epidemic. This study further investigated how urban factors influenced the spatiotemporal spread of COVID-19. The analysis indicates that intercity movement was an important factor in the spread of the epidemic in China, and the impact of intercity movement on the spread was heterogeneous across different classes of cities. The spread of the epidemic also varied among cities and was affected by urban factors including the total population, population density, and gross domestic product (GDP). The findings have implications for public health management. Mega-cities should consider tougher measures to contain the spread of the epidemic compared with other cities. It is of great significance for policymakers in any nation to assess the potential risk of epidemics and make cautious plans ahead of time.
Collapse
|
43
|
Ahmed S, Reithinger R, Kaptoge SK, Ngondi JM. Travel Is a Key Risk Factor for Malaria Transmission in Pre-Elimination Settings in Sub-Saharan Africa: A Review of the Literature and Meta-Analysis. Am J Trop Med Hyg 2020; 103:1380-1387. [PMID: 32815497 PMCID: PMC7543864 DOI: 10.4269/ajtmh.18-0456] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
By sustaining transmission or causing malaria outbreaks, imported malaria undermines malaria elimination efforts. Few studies have examined the impact of travel on malaria epidemiology. We conducted a literature review and meta-analysis of studies investigating travel as a risk factor for malaria infection in sub-Saharan Africa using PubMed. We identified 22 studies and calculated a random-effects meta-analysis pooled odds ratio (OR) of 3.77 (95% CI: 2.49–5.70), indicating that travel is a significant risk factor for malaria infection. Odds ratios were particularly high in urban locations when travel was to rural areas, to more endemic/high transmission areas, and in young children. Although there was substantial heterogeneity in the magnitude of association across the studies, the pooled estimate and directional consistency support travel as an important risk factor for malaria infection.
Collapse
Affiliation(s)
- Sundus Ahmed
- Institute of Public Health, University of Cambridge, Cambridge, United Kingdom
| | | | - Stephen K Kaptoge
- Institute of Public Health, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
44
|
Carrasco-Escobar G, Fornace K, Wong D, Padilla-Huamantinco PG, Saldaña-Lopez JA, Castillo-Meza OE, Caballero-Andrade AE, Manrique E, Ruiz-Cabrejos J, Barboza JL, Rodriguez H, Henostroza G, Gamboa D, Castro MC, Vinetz JM, Llanos-Cuentas A. Open-Source 3D Printable GPS Tracker to Characterize the Role of Human Population Movement on Malaria Epidemiology in River Networks: A Proof-of-Concept Study in the Peruvian Amazon. Front Public Health 2020; 8:526468. [PMID: 33072692 PMCID: PMC7542225 DOI: 10.3389/fpubh.2020.526468] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 08/21/2020] [Indexed: 11/13/2022] Open
Abstract
Human movement affects malaria epidemiology at multiple geographical levels; however, few studies measure the role of human movement in the Amazon Region due to the challenging conditions and cost of movement tracking technologies. We developed an open-source low-cost 3D printable GPS-tracker and used this technology in a cohort study to characterize the role of human population movement in malaria epidemiology in a rural riverine village in the Peruvian Amazon. In this pilot study of 20 participants (mean age = 40 years old), 45,980 GPS coordinates were recorded over 1 month. Characteristic movement patterns were observed relative to the infection status and occupation of the participants. Applying two analytical animal movement ecology methods, utilization distributions (UDs) and integrated step selection functions (iSSF), we showed contrasting environmental selection and space use patterns according to infection status. These data suggested an important role of human movement in the epidemiology of malaria in the Peruvian Amazon due to high connectivity between villages of the same riverine network, suggesting limitations of current community-based control strategies. We additionally demonstrate the utility of this low-cost technology with movement ecology analysis to characterize human movement in resource-poor environments.
Collapse
Affiliation(s)
- Gabriel Carrasco-Escobar
- Health Innovation Laboratory, Institute of Tropical Medicine "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru.,Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA, United States.,Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Kimberly Fornace
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Daniel Wong
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Pierre G Padilla-Huamantinco
- Health Innovation Laboratory, Institute of Tropical Medicine "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru.,Departamento de Ingenieria, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jose A Saldaña-Lopez
- Departamento de Ingenieria, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Ober E Castillo-Meza
- Departamento de Ingenieria, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Armando E Caballero-Andrade
- Departamento de Ingenieria, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Edgar Manrique
- Health Innovation Laboratory, Institute of Tropical Medicine "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru.,Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jorge Ruiz-Cabrejos
- Health Innovation Laboratory, Institute of Tropical Medicine "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru.,Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jose Luis Barboza
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - German Henostroza
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru.,Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru.,Instituto de Medicinal Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marcia C Castro
- Department of Global Health and Population, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Joseph M Vinetz
- Instituto de Medicinal Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru.,Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, United States
| | - Alejandro Llanos-Cuentas
- Instituto de Medicinal Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru.,Facultad de Salud Pública y Administración, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
45
|
Santos JPC, Honório NA, Barcellos C, Nobre AA. A Perspective on Inhabited Urban Space: Land Use and Occupation, Heat Islands, and Precarious Urbanization as Determinants of Territorial Receptivity to Dengue in the City of Rio De Janeiro. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E6537. [PMID: 32911768 PMCID: PMC7558446 DOI: 10.3390/ijerph17186537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/19/2020] [Accepted: 07/28/2020] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Rio de Janeiro is the second-largest city in Brazil, with strong socio-spatial segregation, and diverse and heterogeneous land use, occupation, and landscapes. The complexity of dengue requires the construction of surveillance and control tools that take into account the historical, social, economic, and environmental processes mediated in the territory as a central axis of public policy. In this context, this study aimed to stratify the city into areas of receptivity to dengue, using innovative "territorial indicators" because they are built based on the actual occupation of the territory. METHODS We designed and constructed 17 indicators that sought to characterize the transformed and inhabited space according to receptivity to dengue. We used data on land use and occupation, connectivity, climate, and landscape. We developed the dengue receptivity through principal component analysis (PCA), using multiple criteria analysis and map algebra integrated in a GIS platform. RESULTS The most receptive areas were concentrated in the transition between the north and west zones of the city, a region of unconsolidated urban sprawl. The areas of greatest receptivity had the highest incidence and density of Aedes eggs during the study period. The correlation between receptivity index and incidence rate was positive in the epidemic years. CONCLUSION The proposed set of indicators was able to identify areas of greater receptivity, such as regions of disorderly urban sprawl, with a concentration of social and environmental processes that are related to the occurrence of dengue outbreaks and high vector density. On the other hand, population immunity plays an important role in the spatial distribution of dengue during non-epidemic years.
Collapse
Affiliation(s)
- Jefferson Pereira Caldas Santos
- Centro de Inovação em Biodiversidade e Saúde, Instituto de Tecnologia em Fármacos, Fundação Oswaldo Cruz, Rio de Janeiro 22775-903, Brazil
| | - Nildimar Alves Honório
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fundaҫão Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil;
- Núcleo Operacional Sentinela de Mosquitos Vetores-Nosmove/Fiocruz, Fundaҫão Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | - Christovam Barcellos
- Instituto de Comunicação e Informação Científica e Tecnológica em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil;
| | - Aline Araújo Nobre
- Programa de Computação Científica, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil;
| |
Collapse
|
46
|
Stuck L, Fakih BS, Al-Mafazy AWH, Hofmann NE, Holzschuh A, Grossenbacher B, Bennett A, Cotter C, Reaves E, Ali A, der Horst TV, Felger I, Hetzel MW, Yukich J. Malaria infection prevalence and sensitivity of reactive case detection in Zanzibar. Int J Infect Dis 2020; 97:337-346. [PMID: 32534138 PMCID: PMC8450816 DOI: 10.1016/j.ijid.2020.06.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Reactive case detection (RCD) is a commonly used strategy for malaria surveillance and response in elimination settings. Many approaches to RCD assume detectable infections are clustered within and around homes of passively detected cases (index households), which has been evaluated in a number of settings with disparate results. METHODS Household questionnaires and diagnostic testing were conducted following RCD investigations in Zanzibar, Tanzania, including the index household and up to 9 additional neighboring households. RESULTS Of 12,487 participants tested by malaria rapid diagnostic test (RDT), 3·2% of those residing in index households and 0·4% of those residing in non-index households tested positive (OR = 8·4; 95%CI: 5·7, 12·5). Of 6,281 participants tested by quantitative polymerase chain reaction (qPCR), 8·4% of those residing in index households and 1·3% of those residing in non-index households tested positive (OR = 7·1; 95%CI: 6·1, 10·9). Within households of index cases defined as imported, odds of qPCR-positivity amongst members reporting recent travel were 1·4 times higher than among those without travel history (95%CI: 0·2, 4·4). Amongst non-index households, odds of qPCR-detectable infection were no different between households located within 50 m of the index household as compared with those located farther away (OR = 0·8, 95%CI: 0·5, 1·4). Sensitivity of RDT to detect qPCR-detectable infections was 34% (95%CI: 26·4, 42·3). CONCLUSIONS Malaria prevalence in index households in Zanzibar is much higher than in non-index households, in which prevalence is very low. Travelers represent a high-risk population. Low sensitivity of RDTs due to a high prevalence of low-density infections results in an RCD system missing a large proportion of the parasite reservoir.
Collapse
Affiliation(s)
- Logan Stuck
- Tulane School of Public Health and Tropical Medicine, New Orleans, LA, USA.
| | - Bakar S Fakih
- Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania
| | - Abdul-Wahid H Al-Mafazy
- Zanzibar Malaria Elimination Programme, Ministry of Health, Zanzibar, United Republic of Tanzania
| | - Natalie E Hofmann
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Aurel Holzschuh
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Benjamin Grossenbacher
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Adam Bennett
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, CA, USA
| | - Chris Cotter
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, CA, USA
| | - Erik Reaves
- U.S. President's Malaria Initiative, Malaria Branch, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Abdullah Ali
- Zanzibar Malaria Elimination Programme, Ministry of Health, Zanzibar, United Republic of Tanzania
| | - Tina van der Horst
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Ingrid Felger
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Manuel W Hetzel
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Joshua Yukich
- Tulane School of Public Health and Tropical Medicine, New Orleans, LA, USA
| |
Collapse
|
47
|
Haji KA, Khatib BO, Obi E, Dimoso K, Koenker H, Babalola S, Greer G, Serbantez N, Abbas F, Ali A, Blaufuss S, Olapeju B, Kilian A. Monitoring the durability of the long-lasting insecticidal nets Olyset ® and PermaNet ® 2.0 in similar use environments in Zanzibar. Malar J 2020; 19:187. [PMID: 32448313 PMCID: PMC7247136 DOI: 10.1186/s12936-020-03258-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/15/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Malaria transmission in Zanzibar has dramatically reduced in recent years but vector control interventions such as long-lasting insecticidal nets (LLIN) must continue to reach malaria elimination. To achieve this, the Zanzibar Malaria Elimination Programme needs actionable evidence of the durability of the LLIN brands distributed. This study compared physical and insecticidal durability of two LLIN brands: Olyset® and PermaNet© 2.0 in two similar districts on the islands of Unguja and Pemba. METHODS This was a prospective cohort study of representative samples of households from two districts, recruited at baseline 4 months after the mass campaign. All campaign nets in these households were labelled and followed up over a period of 33 months. Primary outcome was the "proportion of nets surviving in serviceable condition" based on attrition and integrity measures and the median survival in years. The outcome for insecticidal durability was determined by bio-assay from sub-samples of campaign nets. RESULTS A total of 834 campaign nets (121% of target) from 299 households were included in the study. Definite outcomes could be determined for 86% of the cohort nets in Unguja (PermaNet® 2.0) and 89% in Pemba (Olyset®). After 33 months, physical survival in serviceable condition was 55% in Unguja and 51% in Pemba. Estimated median survival was lower in Pemba at all time points with 2.3-2.7 years compared to 3.1-3.3 yeas in Unguja. Multivariable Cox proportionate hazard models confirmed the difference between brands (p < 0.0001) and identified household net-care attitude (p = 0.007) and folding of hanging nets during the day (p < 0.0001) as significant determinants, in addition to exclusive use of nets by adults (p = 0.03) and use only over a finished bedframe (p = 0.01). Optimal insecticidal effectiveness was 80% or higher for both brands at all time points when both cone bio-assays and tunnel tests were applied. CONCLUSIONS After 3 years of follow-up, Olyset® LLIN showed significantly lower physical survival compared to PermaNet® 2.0 LLIN even after adjusting for other variables of net-use environment and net handling. This suggests that the differences were driven by the textile characteristics of the LLIN brands.
Collapse
Affiliation(s)
- Khamis Ameir Haji
- Zanzibar Malaria Elimination Programme, Stone Town, Zanzibar, Tanzania
| | | | - Emmanuel Obi
- PMI VectorWorks Project, Tropical Health LLP, Abuja, Nigeria
| | - Kanuth Dimoso
- PMI VectorWorks Project, JHU Center for Communication Programs, Dar es Salaam, Tanzania
| | - Hannah Koenker
- PMI VectorWorks Project, JHU Center for Communication Programs, Baltimore, MD, USA
| | - Stella Babalola
- PMI VectorWorks Project, JHU Center for Communication Programs, Baltimore, MD, USA
| | - George Greer
- U.S. President's Malaria Initiative, U.S. Agency for International Development, Dar es Salaam, Tanzania
| | - Naomi Serbantez
- U.S. President's Malaria Initiative, U.S. Agency for International Development, Dar es Salaam, Tanzania
| | - Faiza Abbas
- Zanzibar Malaria Elimination Programme, Stone Town, Zanzibar, Tanzania
| | - Abdullah Ali
- Zanzibar Malaria Elimination Programme, Stone Town, Zanzibar, Tanzania
| | - Sean Blaufuss
- PMI VectorWorks Project, JHU Center for Communication Programs, Baltimore, MD, USA
| | - Bolanle Olapeju
- PMI VectorWorks Project, JHU Center for Communication Programs, Baltimore, MD, USA
| | - Albert Kilian
- PMI VectorWorks Project, Tropical Health LLP, Montagut, Spain.
| |
Collapse
|
48
|
Runge M, Snow RW, Molteni F, Thawer S, Mohamed A, Mandike R, Giorgi E, Macharia PM, Smith TA, Lengeler C, Pothin E. Simulating the council-specific impact of anti-malaria interventions: A tool to support malaria strategic planning in Tanzania. PLoS One 2020; 15:e0228469. [PMID: 32074112 PMCID: PMC7029840 DOI: 10.1371/journal.pone.0228469] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/16/2020] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION The decision-making process for malaria control and elimination strategies has become more challenging. Interventions need to be targeted at council level to allow for changing malaria epidemiology and an increase in the number of possible interventions. Models of malaria dynamics can support this process by simulating potential impacts of multiple interventions in different settings and determining appropriate packages of interventions for meeting specific expected targets. METHODS The OpenMalaria model of malaria dynamics was calibrated for all 184 councils in mainland Tanzania using data from malaria indicator surveys, school parasitaemia surveys, entomological surveillance, and vector control deployment data. The simulations were run for different transmission intensities per region and five interventions, currently or potentially included in the National Malaria Strategic Plan, individually and in combination. The simulated prevalences were fitted to council specific prevalences derived from geostatistical models to obtain council specific predictions of the prevalence and number of cases between 2017 and 2020. The predictions were used to evaluate in silico the feasibility of the national target of reaching a prevalence of below 1% by 2020, and to suggest alternative intervention stratifications for the country. RESULTS The historical prevalence trend was fitted for each council with an agreement of 87% in 2016 (95%CI: 0.84-0.90) and an agreement of 90% for the historical trend (2003-2016) (95%CI: 0.87-0.93) The current national malaria strategy was expected to reduce the malaria prevalence between 2016 and 2020 on average by 23.8% (95% CI: 19.7%-27.9%) if current case management levels were maintained, and by 52.1% (95% CI: 48.8%-55.3%) if the case management were improved. Insecticide treated nets and case management were the most cost-effective interventions, expected to reduce the prevalence by 25.0% (95% CI: 19.7%-30.2) and to avert 37 million cases between 2017 and 2020. Mass drug administration was included in most councils in the stratification selected for meeting the national target at minimal costs, expected to reduce the prevalence by 77.5% (95%CI: 70.5%-84.5%) and to avert 102 million cases, with almost twice higher costs than those of the current national strategy. In summary, the model suggested that current interventions are not sufficient to reach the national aim of a prevalence of less than 1% by 2020 and a revised strategic plan needs to consider additional, more effective interventions, especially in high transmission areas and that the targets need to be revisited. CONCLUSION The methodology reported here is based on intensive interactions with the NMCP and provides a helpful tool for assessing the feasibility of country specific targets and for determining which intervention stratifications at sub-national level will have most impact. This country-led application could support strategic planning of malaria control in many other malaria endemic countries.
Collapse
Affiliation(s)
- Manuela Runge
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Robert W. Snow
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, England, United Kingodm
- Population Health Unit, Kenya Medical Research Institute-Wellcome Trust Research Programme, Nairobi, Kenya
| | - Fabrizio Molteni
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- National Malaria Control Programme (NMCP), Dar es Salaam, Tanzania
| | - Sumaiyya Thawer
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- National Malaria Control Programme (NMCP), Dar es Salaam, Tanzania
| | - Ally Mohamed
- National Malaria Control Programme (NMCP), Dar es Salaam, Tanzania
| | - Renata Mandike
- National Malaria Control Programme (NMCP), Dar es Salaam, Tanzania
| | - Emanuele Giorgi
- CHICAS, Lancaster Medical School, Lancaster University, Lancaster, England, United Kingodm
| | - Peter M. Macharia
- Population Health Unit, Kenya Medical Research Institute-Wellcome Trust Research Programme, Nairobi, Kenya
| | - Thomas A. Smith
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Christian Lengeler
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Emilie Pothin
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Clinton Health Access Initiative, Boston, Massachusetts, United States of America
| |
Collapse
|
49
|
Arinaitwe E, Dorsey G, Nankabirwa JI, Kigozi SP, Katureebe A, Kakande E, Rek J, Rosenthal PJ, Drakeley C, Kamya MR, Staedke SG. Association Between Recent Overnight Travel and Risk of Malaria: A Prospective Cohort Study at 3 Sites in Uganda. Clin Infect Dis 2020; 68:313-320. [PMID: 29868722 DOI: 10.1093/cid/ciy478] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/31/2018] [Indexed: 11/14/2022] Open
Abstract
Background Human movement can undermine malaria control efforts. However, understanding of the association between travel and malaria infection in Africa is limited. We evaluated the association between recent overnight travel and malaria incidence in Uganda. Methods All children aged 0.5-10 years and 1 adult living in 266 randomly selected households within 3 different regions of Uganda were followed up prospectively. Information on overnight travel was collected in 2015-2016. Malaria, defined as fever with parasites detected by microscopy, was measured using passive surveillance. Results At least 1 overnight trip was reported by 64 of 275 (23.3%) participants in Walukuba, 37 of 317 (11.7%) in Nagongera, and 19 of 314 (6.1%) in Kihihi. Among individuals who traveled, the incidence of malaria was higher in the first 60 days after traveling, compared with periods without recent travel at all 3 sites (overall, 1.15 vs 0.33 episodes per person-year; incidence rate ratio, 3.53; 95% confidence interval, 1.85-6.73; P < .001). Risk factors for malaria within 60 days after overnight travel included young age (19.5% in children vs 4.9% in adults; odds ratio, 5.29; 95% confidence interval, 1.34-21.0; P = .02) and not using an insecticide-treated net during travel (18.0% for no use vs 4.1% for any use; 5.10; 1.07-24.5; P = .04). Conclusions Recent overnight travel was associated with a higher incidence of malaria. Individuals who travel may represent a high-risk group that could be targeted for malaria control interventions, particularly use of insecticide-treated nets.
Collapse
Affiliation(s)
- Emmanuel Arinaitwe
- London School of Hygiene and Tropical Medicine, United Kingdom.,Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Grant Dorsey
- Department of Medicine, University of California, San Francisco
| | | | - Simon P Kigozi
- London School of Hygiene and Tropical Medicine, United Kingdom.,Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Elijah Kakande
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - John Rek
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Chris Drakeley
- London School of Hygiene and Tropical Medicine, United Kingdom
| | - Moses R Kamya
- School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Sarah G Staedke
- London School of Hygiene and Tropical Medicine, United Kingdom
| |
Collapse
|
50
|
Morgan AP, Brazeau NF, Ngasala B, Mhamilawa LE, Denton M, Msellem M, Morris U, Filer DL, Aydemir O, Bailey JA, Parr JB, Mårtensson A, Bjorkman A, Juliano JJ. Falciparum malaria from coastal Tanzania and Zanzibar remains highly connected despite effective control efforts on the archipelago. Malar J 2020; 19:47. [PMID: 31992305 PMCID: PMC6988337 DOI: 10.1186/s12936-020-3137-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/22/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tanzania's Zanzibar archipelago has made significant gains in malaria control over the last decade and is a target for malaria elimination. Despite consistent implementation of effective tools since 2002, elimination has not been achieved. Importation of parasites from outside of the archipelago is thought to be an important cause of malaria's persistence, but this paradigm has not been studied using modern genetic tools. METHODS Whole-genome sequencing (WGS) was used to investigate the impact of importation, employing population genetic analyses of Plasmodium falciparum isolates from both the archipelago and mainland Tanzania. Ancestry, levels of genetic diversity and differentiation, patterns of relatedness, and patterns of selection between these two populations were assessed by leveraging recent advances in deconvolution of genomes from polyclonal malaria infections. RESULTS Significant decreases in the effective population sizes were inferred in both populations that coincide with a period of decreasing malaria transmission in Tanzania. Identity by descent analysis showed that parasites in the two populations shared long segments of their genomes, on the order of 5 cM, suggesting shared ancestry within the last 10 generations. Even with limited sampling, two of isolates between the mainland and Zanzibar were identified that are related at the expected level of half-siblings, consistent with recent importation. CONCLUSIONS These findings suggest that importation plays an important role for malaria incidence on Zanzibar and demonstrate the value of genomic approaches for identifying corridors of parasite movement to the island.
Collapse
Affiliation(s)
- Andrew P Morgan
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Nicholas F Brazeau
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Billy Ngasala
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Lwidiko E Mhamilawa
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden
| | - Madeline Denton
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mwinyi Msellem
- Training and Research, Mnazi Mmoja Hospital, Zanzibar, Tanzania
| | - Ulrika Morris
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Dayne L Filer
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Ozkan Aydemir
- Department of Laboratory Medicine and Pathology, Brown University, Providence, RI, 02912, USA
| | - Jeffrey A Bailey
- Department of Laboratory Medicine and Pathology, Brown University, Providence, RI, 02912, USA
| | - Jonathan B Parr
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Andreas Mårtensson
- Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden
| | - Anders Bjorkman
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Jonathan J Juliano
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|