1
|
Sethi P, Mehan S, Khan Z, Maurya PK, Kumar N, Kumar A, Tiwari A, Sharma T, Das Gupta G, Narula AS, Kalfin R. The SIRT-1/Nrf2/HO-1 axis: Guardians of neuronal health in neurological disorders. Behav Brain Res 2025; 476:115280. [PMID: 39368713 DOI: 10.1016/j.bbr.2024.115280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
SIRT1 (Sirtuin 1) is a NAD+-dependent deacetylase that functions through nucleoplasmic transfer and is present in nearly all mammalian tissues. SIRT1 is believed to deacetylate its protein substrates, resulting in neuroprotective actions, including reduced oxidative stress and inflammation, increased autophagy, increased nerve growth factors, and preserved neuronal integrity in aging or neurological disease. Nrf2 is a transcription factor that regulates the genes responsible for oxidative stress response and substance detoxification. The activation of Nrf2 guards cells against oxidative damage, inflammation, and carcinogenic stimuli. Several neurological abnormalities and inflammatory disorders have been associated with variations in Nrf2 activation caused by either pharmacological or genetic factors. Recent evidence indicates that Nrf2 is at the center of a complex cellular regulatory network, establishing it as a transcription factor with genuine pleiotropy. HO-1 is most likely a component of a defense mechanism in cells under stress, as it provides negative feedback for cell activation and mediator synthesis. This mediator is upregulated by Nrf2, nitric oxide (NO), and other factors in various inflammatory states. HO-1 or its metabolites, such as CO, may mitigate inflammation by modulating signal transduction pathways. Neurological diseases may be effectively treated by modulating the activity of HO-1. Multiple studies have demonstrated that SIRT1 and Nrf2 share an important connection. SIRT1 enhances Nrf2, activates HO-1, protects against oxidative injury, and decreases neuronal death. This has been associated with numerous neurodegenerative and neuropsychiatric disorders. Therefore, activating the SIRT1/Nrf2/HO-1 pathway may help treat various neurological disorders. This review focuses on the current understanding of the SIRT1 and Nrf2/HO-1 neuroprotective processes and the potential therapeutic applications of their target activators in neurodegenerative and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Pranshul Sethi
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Pankaj Kumar Maurya
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh 201204, India
| | - Aakash Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Aarti Tiwari
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Tarun Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, Sofia 1113, Bulgaria; Department of Healthcare, South-West University "NeofitRilski", Ivan Mihailov St. 66, Blagoevgrad 2700, Bulgaria
| |
Collapse
|
2
|
Dasdelen MF, Caglayan AB, Er S, Beker MC, Ates N, Gronewold J, Doeppner TR, Hermann DM, Kilic E. Social isolation initiated post-weaning augments ischemic brain injury by promoting pro-inflammatory responses. Exp Neurol 2024; 375:114729. [PMID: 38365135 DOI: 10.1016/j.expneurol.2024.114729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/23/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Social isolation is associated with poor stroke outcome, but the underlying molecular mechanisms were largely unknown. In male Balb/C mice exposed to transient middle cerebral artery occlusion (MCAo), we examined the effects of social isolation initiated post-weaning on ischemic injury, cytokine/chemokine responses and cell signaling using a broad panel of techniques that involved immunocytochemistry, cytokine/chemokine array and Western blots. Social isolation initiated post-weaning elevated infarct size, brain edema and neuronal injury in the ischemic brain tissue 3 days after MCAo, and increased microglia/ macrophage and leukocyte accumulation. In line with the increased immune cell recruitment, levels of several proinflammatory cytokines (e.g., IL-1α, IL-1β, IL-13, IL-17, TNF-α, IFN-γ), chemokines (e.g., CCL3, CCL4, CCL12, CXCL2, CXCL9, CXCL12) and adhesion molecules (i.e., ICAM-1) were increased in the ischemic brain tissue of socially isolated compared with paired housing mice, whereas levels of selected cytokines (IL-5, IL-6, IL-16) and colony-stimulating factors (G-CSF, GM-CSF) were reduced. The activity of the transcription factor nuclear factor-ĸB (NF-ĸB), which promotes cell injury via pro-inflammatory responses, was increased by social isolation, whereas that of nuclear factor erythroid related factor-2 (Nrf-2), which mediates anti-oxidative responses under oxidative stress conditions, was reduced. Our study shows that social isolation profoundly alters post-ischemic cell signaling in a way promoting pro-inflammatory responses. Our results highlight the importance of social support in preventing deleterious health effects of social isolation.
Collapse
Affiliation(s)
- Muhammed Furkan Dasdelen
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey; Research Institute for Health Sciences and Technologies, Istanbul Medipol University, Istanbul, Turkey
| | - Ahmet Burak Caglayan
- Research Institute for Health Sciences and Technologies, Istanbul Medipol University, Istanbul, Turkey; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sezgin Er
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey; Research Institute for Health Sciences and Technologies, Istanbul Medipol University, Istanbul, Turkey
| | - Mustafa Caglar Beker
- Research Institute for Health Sciences and Technologies, Istanbul Medipol University, Istanbul, Turkey; Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Nilay Ates
- Research Institute for Health Sciences and Technologies, Istanbul Medipol University, Istanbul, Turkey; Department of Molecular Pharmacology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Janine Gronewold
- Department of Neurology, University Hospital of Essen, University of Duisburg-, Essen, Germany
| | | | - Dirk M Hermann
- Department of Neurology, University Hospital of Essen, University of Duisburg-, Essen, Germany
| | - Ertugrul Kilic
- Department of Physiology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey.
| |
Collapse
|
3
|
Occhiuto CJ, Liby KT. KEAP1-Mutant Lung Cancers Weaken Anti-Tumor Immunity and Promote an M2-like Macrophage Phenotype. Int J Mol Sci 2024; 25:3510. [PMID: 38542481 PMCID: PMC10970780 DOI: 10.3390/ijms25063510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024] Open
Abstract
Considerable advances have been made in lung cancer therapies, but there is still an unmet clinical need to improve survival for lung cancer patients. Immunotherapies have improved survival, although only 20-30% of patients respond to these treatments. Interestingly, cancers with mutations in Kelch-like ECH-associated protein 1 (KEAP1), the negative regulator of the nuclear factor erythroid 2-related factor 2 (NRF2) transcription factor, are resistant to immune checkpoint inhibition and correlate with decreased lymphoid cell infiltration. NRF2 is known for promoting an anti-inflammatory phenotype when activated in immune cells, but the study of NRF2 activation in cancer cells has not been adequately assessed. The objective of this study was to determine how lung cancer cells with constitutive NRF2 activity interact with the immune microenvironment to promote cancer progression. To assess, we generated CRISPR-edited mouse lung cancer cell lines by knocking out the KEAP1 or NFE2L2 genes and utilized a publicly available single-cell dataset through the Gene Expression Omnibus to investigate tumor/immune cell interactions. We show here that KEAP1-mutant cancers promote immunosuppression of the tumor microenvironment. Our data suggest KEAP1 deletion is sufficient to alter the secretion of cytokines, increase expression of immune checkpoint markers on cancer cells, and alter recruitment and differential polarization of immunosuppressive macrophages that ultimately lead to T-cell suppression.
Collapse
Affiliation(s)
- Christopher J. Occhiuto
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA;
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Karen T. Liby
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
4
|
Xiao Y, Duan C, Gong P, Zhao Q, Wang XH, Geng F, Zeng J, Luo T, Xu Y, Zhao J. Kinsenoside from Anoectochilus roxburghii (Wall.) Lindl. suppressed oxidative stress to attenuate aging-related learning and memory impairment via ERK/Nrf2 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117152. [PMID: 37689328 DOI: 10.1016/j.jep.2023.117152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Anoectochilusroxburghii (Wall.) Lindl. (AR), as an exceptionally valuable traditional Chinese medicine, has been widely used to treat hepatitis, cancer, diabetes, etc. But, the effects and the primary functioning element of AR on attenuating aging and aging-related learning and memory degradation has not yet been explored. AIM OF THE STUDY This study aimed at exploring the protective property of aqueous extract of AR (AEAR) on alleviation of aging and aging-related learning and memory impairment in vivo, and further investigating the main active ingredient and mechanism of AEAR. MATERIALS AND METHODS D-galactose (D-gal) induced aging mice and HT22 cells exposed with L-Glutamic acid (Glu) were used as in vivo and in vitro model, separately. The effects of AEAR on aging and aging-related learning and memory degradation were explored by using morris water maze test, immunohistochemistry staining, biochemistry assay, etc. The effects and mechanism of AEAR and Kinsenoside (Kin) on antioxidation in vitro were investigated by cell viability assay, biochemistry assay, qRT-PCR, western blotting and molecular docking studies. RESULTS Treatment with AEAR (containing 69.52 ± 0.85% Kin, i.g.) for 63 days, alleviated low growth rate, abnormal brain, liver and thymus index, and decline in learning and memory capability of aging mice. Meanwhile, AEAR inhibited the decreased activities of SOD and GSH-PX, the decline in the ratio of GSH to GSSG, and the increase of MDA in both serum and brain, and also promoted the Nrf2 nuclear translocation in brain of aging mice induced by D-gal. The effects of AEAR on alleviating abnormal physiological characteristics, attenuating learning and memory impairment, and inhibiting oxidative stress in aging mice was similar to or even better than that of Vc. In HT22 cells exposed with Glu, Kin increased the cell viability, up-regulated the activities of SOD and GSH-PX, enhanced the ratio of GSH to GSSG, and down-regulated MDA, which was superior to AEAR. Kin up-regulated the ratio of p-ERK1/2 to ERK1/2, promoted the Nrf2 nuclear translocation and its downstream target genes, i.e. HO-1, NQO-1, GCLC and GCLM expression at the mRNA and protein levels, which were consistent with AEAR. Further, molecular docking results also confirmed that Kin had strong binding energy with ERK1 and ERK2. CONCLUSION The present study indicated that Kin could alleviate the oxidative stress in aging mice via activating the ERK/Nrf2 signaling pathway, in order to attenuate aging and aging-related learning and memory impairment, as the main active ingredient of AR.
Collapse
Affiliation(s)
- Yu Xiao
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China; College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| | - Changsong Duan
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China; College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| | - Pushuang Gong
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China; College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| | - Qi Zhao
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China.
| | - Xin Hui Wang
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| | - Fang Geng
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| | - Jin Zeng
- Key Laboratory of Biological Evaluation of Traditional Chinese Medicine Quality of National Administration of Traditional Chinese Medicine, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, Chengdu, 610041, China.
| | - Tianfeng Luo
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China; College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| | - Yisha Xu
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| | - Junning Zhao
- National Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, National Medical Products Administration of China, Beijing, 100037, China; Key Laboratory of Biological Evaluation of Traditional Chinese Medicine Quality of National Administration of Traditional Chinese Medicine, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, Chengdu, 610041, China.
| |
Collapse
|
5
|
Wang J, Cao Y, Lu Y, Zhu H, Zhang J, Che J, Zhuang R, Shao J. Recent progress and applications of small molecule inhibitors of Keap1-Nrf2 axis for neurodegenerative diseases. Eur J Med Chem 2024; 264:115998. [PMID: 38043492 DOI: 10.1016/j.ejmech.2023.115998] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/18/2023] [Accepted: 11/23/2023] [Indexed: 12/05/2023]
Abstract
The Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2) pathway serves as a crucial regulator against oxidative stress (OS) damage in various cells and organs. It has garnered significant attention as a potential therapeutic target for neurodegenerative diseases (NDD). Although progress has been achieved in strategies to regulate the Keap1-Nrf2 pathway, the availability of Nrf2 activators applicable to NDD is currently limited. Currently, the FDA has approved the Nrf2 activators dimethyl fumarate (DMF) and Omaveloxolone (Omav) as novel first-line oral drugs for the treatment of patients with relapsing forms of multiple sclerosis and Friedreich's ataxia. A promising alternative approach involves the direct inhibition of Keap1-Nrf2 protein-protein interactions (PPI), which offers numerous advantages over the use of electrophilic Nrf2 activators, primarily in avoiding off-target effects. This review examines the compelling evidence supporting the beneficial role of Nrf2 in NDD and explores the potential of Keap1 inhibitors and Keap1-Nrf2 PPI inhibitors as therapeutic agents, with the aim to provide further insights into the development of inhibitors targeting this pathway for the treatment of NDD.
Collapse
Affiliation(s)
- Jing Wang
- School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang Province, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Yu Cao
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, China
| | - Yang Lu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Huajian Zhu
- School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang Province, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Jiankang Zhang
- School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang Province, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Jinxin Che
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China.
| | - Rangxiao Zhuang
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, China.
| | - Jiaan Shao
- School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang Province, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China.
| |
Collapse
|
6
|
Tonev D, Momchilova A. Oxidative Stress and the Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) Pathway in Multiple Sclerosis: Focus on Certain Exogenous and Endogenous Nrf2 Activators and Therapeutic Plasma Exchange Modulation. Int J Mol Sci 2023; 24:17223. [PMID: 38139050 PMCID: PMC10743556 DOI: 10.3390/ijms242417223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/18/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
The pathogenesis of multiple sclerosis (MS) suggests that, in genetically susceptible subjects, T lymphocytes undergo activation in the peripheral compartment, pass through the BBB, and cause damage in the CNS. They produce pro-inflammatory cytokines; induce cytotoxic activities in microglia and astrocytes with the accumulation of reactive oxygen species, reactive nitrogen species, and other highly reactive radicals; activate B cells and macrophages and stimulate the complement system. Inflammation and neurodegeneration are involved from the very beginning of the disease. They can both be affected by oxidative stress (OS) with different emphases depending on the time course of MS. Thus, OS initiates and supports inflammatory processes in the active phase, while in the chronic phase it supports neurodegenerative processes. A still unresolved issue in overcoming OS-induced lesions in MS is the insufficient endogenous activation of the Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) pathway, which under normal conditions plays an essential role in mitochondria protection, OS, neuroinflammation, and degeneration. Thus, the search for approaches aiming to elevate endogenous Nrf2 activation is capable of protecting the brain against oxidative damage. However, exogenous Nrf2 activators themselves are not without drawbacks, necessitating the search for new non-pharmacological therapeutic approaches to modulate OS. The purpose of the present review is to provide some relevant preclinical and clinical examples, focusing on certain exogenous and endogenous Nrf2 activators and the modulation of therapeutic plasma exchange (TPE). The increased plasma levels of nerve growth factor (NGF) in response to TPE treatment of MS patients suggest their antioxidant potential for endogenous Nrf2 enhancement via NGF/TrkA/PI3K/Akt and NGF/p75NTR/ceramide-PKCζ/CK2 signaling pathways.
Collapse
Affiliation(s)
- Dimitar Tonev
- Department of Anesthesiology and Intensive Care, University Hospital “Tzaritza Yoanna—ISUL”, Medical University of Sofia, 1527 Sofia, Bulgaria
| | - Albena Momchilova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Science, 1113 Sofia, Bulgaria;
| |
Collapse
|
7
|
Guo X, Yu S, Ren X, Li L. Immune checkpoints represent a promising breakthrough in targeted therapy and prognosis of myelodysplastic syndrome. Heliyon 2023; 9:e19222. [PMID: 37810157 PMCID: PMC10558320 DOI: 10.1016/j.heliyon.2023.e19222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 06/27/2023] [Accepted: 08/16/2023] [Indexed: 10/10/2023] Open
Abstract
Myelodysplastic syndrome (MDS) is a hematological malignancy of undetermined etiology, possibly linked to chromosomal structural alterations, genetic mutations, presentation and carcinogenicity of variant antigens on cell surface, and the generation of pro-inflammatory microenvironment in the bone marrow. Current drugs are unable to cure this disease, and therefore, decreasing the survival and proliferation of malignant cells to delay disease progression and extend the survival time of patients becomes the primary approach to management. In recent years, the immune system has received increasing attention for its potential role in the occurrence and development of MDS, leading to the emergence of immunoregulation as a viable treatment option. The current review provides a brief overview of pathogenesis of MDS and current treatment principles. In the meantime, the significance of immune proteins in treatment and prognosis of MDS is also discussed.
Collapse
Affiliation(s)
- Xinyu Guo
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, Heping District 154 Anshan Road, Tianjin, China
| | - Shunjie Yu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, Heping District 154 Anshan Road, Tianjin, China
| | - Xiaotong Ren
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, Heping District 154 Anshan Road, Tianjin, China
| | - Lijuan Li
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, Heping District 154 Anshan Road, Tianjin, China
| |
Collapse
|
8
|
Pant A, Dasgupta D, Tripathi A, Pyaram K. Beyond Antioxidation: Keap1-Nrf2 in the Development and Effector Functions of Adaptive Immune Cells. Immunohorizons 2023; 7:288-298. [PMID: 37099275 PMCID: PMC10579846 DOI: 10.4049/immunohorizons.2200061] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/05/2023] [Indexed: 04/27/2023] Open
Abstract
Ubiquitously expressed in mammalian cells, the Kelch-like ECH-associated protein 1 (Keap1)-NF erythroid 2-related factor 2 (Nrf2) complex forms the evolutionarily conserved antioxidation system to tackle oxidative stress caused by reactive oxygen species. Reactive oxygen species, generated as byproducts of cellular metabolism, were identified as essential second messengers for T cell signaling, activation, and effector responses. Apart from its traditional role as an antioxidant, a growing body of evidence indicates that Nrf2, tightly regulated by Keap1, modulates immune responses and regulates cellular metabolism. Newer functions of Keap1 and Nrf2 in immune cell activation and function, as well as their role in inflammatory diseases such as sepsis, inflammatory bowel disease, and multiple sclerosis, are emerging. In this review, we highlight recent findings about the influence of Keap1 and Nrf2 in the development and effector functions of adaptive immune cells, that is, T cells and B cells, and discuss the knowledge gaps in our understanding. We also summarize the research potential and targetability of Nrf2 for treating immune pathologies.
Collapse
Affiliation(s)
- Anil Pant
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX
| | - Debolina Dasgupta
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS
| | - Aprajita Tripathi
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS
| | - Kalyani Pyaram
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
9
|
Khodakarami A, Adibfar S, Karpisheh V, Abolhasani S, Jalali P, Mohammadi H, Gholizadeh Navashenaq J, Hojjat-Farsangi M, Jadidi-Niaragh F. The molecular biology and therapeutic potential of Nrf2 in leukemia. Cancer Cell Int 2022; 22:241. [PMID: 35906617 PMCID: PMC9336077 DOI: 10.1186/s12935-022-02660-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 07/19/2022] [Indexed: 02/07/2023] Open
Abstract
NF-E2-related factor 2 (Nrf2) transcription factor has contradictory roles in cancer, which can act as a tumor suppressor or a proto-oncogene in different cell conditions (depending on the cell type and the conditions of the cell environment). Nrf2 pathway regulates several cellular processes, including signaling, energy metabolism, autophagy, inflammation, redox homeostasis, and antioxidant regulation. As a result, it plays a crucial role in cell survival. Conversely, Nrf2 protects cancerous cells from apoptosis and increases proliferation, angiogenesis, and metastasis. It promotes resistance to chemotherapy and radiotherapy in various solid tumors and hematological malignancies, so we want to elucidate the role of Nrf2 in cancer and the positive point of its targeting. Also, in the past few years, many studies have shown that Nrf2 protects cancer cells, especially leukemic cells, from the effects of chemotherapeutic drugs. The present paper summarizes these studies to scrutinize whether targeting Nrf2 combined with chemotherapy would be a therapeutic approach for leukemia treatment. Also, we discussed how Nrf2 and NF-κB work together to control the cellular redox pathway. The role of these two factors in inflammation (antagonistic) and leukemia (synergistic) is also summarized.
Collapse
Affiliation(s)
- Atefeh Khodakarami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Adibfar
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Vahid Karpisheh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shiva Abolhasani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pooya Jalali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Mohammad Hojjat-Farsangi
- Bioclinicum, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden.,Department of Immunology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. .,Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Shi B, Hao Y, Li W, Dong H, Xu M, Gao P. TIPE2 May Target the Nrf2/HO-1 Pathway to Inhibit M1 Macrophage-Related Neutrophilic Inflammation in Asthma. Front Immunol 2022; 13:883885. [PMID: 35572500 PMCID: PMC9095941 DOI: 10.3389/fimmu.2022.883885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/04/2022] [Indexed: 11/28/2022] Open
Abstract
Purpose Although recent studies have highlighted the link of TIPE2 and asthma airway inflammation, its roles and molecular mechanisms in different asthma inflammatory phenotypes remain largely unknown. We evaluated sputum TIPE2 expression level and its correlation with different asthma phenotypes. Additionally, we explored the roles and mechanism of TIPE2 in M1 polarization of macrophages. Methods A total of 102 asthma patients who underwent sputum induction were enrolled to evaluate the expression level of TIPE2 and its association with different asthma phenotypes. To explore the roles and mechanism of TIPE2 in M1 polarization of macrophages, THP-1 monocytes stimulated with phorbol-12-myristate-13-acetate, were used as a model of undifferentiated (M0) macrophages, and M0 macrophages were treated with lipopolysaccharide to induce M1 macrophages. Results The sputum TIPE2 level was significantly lower in patients with neutrophilic asthma (NA) and higher in patients with eosinophilic asthma (EA) compared with patients with paucigranulocytic asthma. The levels of IL-1β, TNF-α and IL-6 were highest in NA compared with other groups. TIPE2 levels in sputum negatively correlated with IL-1β and TNF-α levels but positively correlated with IL-4, IL-5, IL-13, and IL-10 levels (P < 0.05). In vitro, TIPE2 enhanced Nrf2/HO-1 pathway activation in macrophages and inhibited LPS-induced M1 macrophage differentiation and related cytokine release. Further analysis showed that the Nrf2 inhibitor ML385 weakened TIPE2-induced activation of the Nrf2/HO-1 pathway, as well as TIPE2-induced suppression in M1 polarization of macrophage and inflammatory cytokines secretion. Conclusions TIPE2 expression level was highly down-regulated in NA and was negatively correlated with inflammatory factors (IL-1β and TNF-α). Aberrant expression of TIPE2 may target the Nrf2/HO-1 pathway to inhibit M1 macrophage–related neutrophilic inflammation in asthma.
Collapse
Affiliation(s)
- Bingqing Shi
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Yuqiu Hao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Wei Li
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Hongna Dong
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Mengting Xu
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Peng Gao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Wang L, Liang Y. MicroRNAs as T Lymphocyte Regulators in Multiple Sclerosis. Front Mol Neurosci 2022; 15:865529. [PMID: 35548667 PMCID: PMC9082748 DOI: 10.3389/fnmol.2022.865529] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/30/2022] [Indexed: 01/22/2023] Open
Abstract
MicroRNA (miRNA) is a class of endogenous non-coding small RNA with regulatory activities, which generally regulates the expression of target genes at the post-transcriptional level. Multiple Sclerosis (MS) is thought to be an autoimmune-mediated chronic inflammatory demyelinating disease of the central nervous system (CNS) that typically affect young adults. T lymphocytes play an important role in the pathogenesis of MS, and studies have suggested that miRNAs are involved in regulating the proliferation, differentiation, and functional maintenance of T lymphocytes in MS. Dysregulated expression of miRNAs may lead to the differentiation balance and dysfunction of T lymphocytes, and they are thus involved in the occurrence and development of MS. In addition, some specific miRNAs, such as miR-155 and miR-326, may have potential diagnostic values for MS or be useful for discriminating subtypes of MS. Moreover, miRNAs may be a promising therapeutic strategy for MS by regulating T lymphocyte function. By summarizing the recent literature, we reviewed the involvement of T lymphocytes in the pathogenesis of MS, the role of miRNAs in the pathogenesis and disease progression of MS by regulating T lymphocytes, the possibility of differentially expressed miRNAs to function as biomarkers for MS diagnosis, and the therapeutic potential of miRNAs in MS by regulating T lymphocytes.
Collapse
|
12
|
Reverte M, Snäkä T, Fasel N. The Dangerous Liaisons in the Oxidative Stress Response to Leishmania Infection. Pathogens 2022; 11:pathogens11040409. [PMID: 35456085 PMCID: PMC9029764 DOI: 10.3390/pathogens11040409] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022] Open
Abstract
Leishmania parasites preferentially invade macrophages, the professional phagocytic cells, at the site of infection. Macrophages play conflicting roles in Leishmania infection either by the destruction of internalized parasites or by providing a safe shelter for parasite replication. In response to invading pathogens, however, macrophages induce an oxidative burst as a mechanism of defense to promote pathogen removal and contribute to signaling pathways involving inflammation and the immune response. Thus, oxidative stress plays a dual role in infection whereby free radicals protect against invading pathogens but can also cause inflammation resulting in tissue damage. The induced oxidative stress in parasitic infections triggers the activation in the host of the antioxidant response to counteract the damaging oxidative burst. Consequently, macrophages are crucial for disease progression or control. The ultimate outcome depends on dangerous liaisons between the infecting Leishmania spp. and the type and strength of the host immune response.
Collapse
|
13
|
Vallion R, Hardonnière K, Bouredji A, Damiens MH, Deloménie C, Pallardy M, Ferret PJ, Kerdine-Römer S. The Inflammatory Response in Human Keratinocytes Exposed to Cinnamaldehyde Is Regulated by Nrf2. Antioxidants (Basel) 2022; 11:antiox11030575. [PMID: 35326225 PMCID: PMC8945052 DOI: 10.3390/antiox11030575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/09/2022] [Accepted: 03/13/2022] [Indexed: 12/24/2022] Open
Abstract
Keratinocytes (KC) play a crucial role in epidermal barrier function, notably through their metabolic activity and the detection of danger signals. Chemical sensitizers are known to activate the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2), leading to cellular detoxification and suppressed proinflammatory cytokines such as IL-1β, a key cytokine in skin allergy. We investigated the role of Nrf2 in the control of the proinflammatory response in human KC following treatment with Cinnamaldehyde (CinA), a well-known skin sensitizer. We used the well-described human KC cell line KERTr exposed to CinA. Our results showed that 250 μM of CinA did not induce any Nrf2 accumulation but increased the expression of proinflammatory cytokines. In contrast, 100 μM of CinA induced a rapid accumulation of Nrf2, inhibited IL-1β transcription, and downregulated the zymosan-induced proinflammatory response. Moreover, Nrf2 knockdown KERTr cells (KERTr ko) showed an increase in proinflammatory cytokines. Since the inhibition of Nrf2 has been shown to alter cellular metabolism, we performed metabolomic and seahorse analyses. The results showed a decrease in mitochondrial metabolism following KERTr ko exposure to CinA 100 µM. In conclusion, the fate of Nrf2 controls proinflammatory cytokine production in KCs that could be linked to its capacity to preserve mitochondrial metabolism upon chemical sensitizer exposure.
Collapse
Affiliation(s)
- Romain Vallion
- Inserm, Inflammation Microbiome and Immunosurveillance, Université Paris-Saclay, 92290 Châtenay-Malabry, France; (R.V.); (K.H.); (A.B.); (M.-H.D.); (M.P.)
- Safety Assessment Department, Pierre Fabre Dermo Cosmétique, 31000 Toulouse, France;
| | - Kévin Hardonnière
- Inserm, Inflammation Microbiome and Immunosurveillance, Université Paris-Saclay, 92290 Châtenay-Malabry, France; (R.V.); (K.H.); (A.B.); (M.-H.D.); (M.P.)
| | - Abderrahmane Bouredji
- Inserm, Inflammation Microbiome and Immunosurveillance, Université Paris-Saclay, 92290 Châtenay-Malabry, France; (R.V.); (K.H.); (A.B.); (M.-H.D.); (M.P.)
| | - Marie-Hélène Damiens
- Inserm, Inflammation Microbiome and Immunosurveillance, Université Paris-Saclay, 92290 Châtenay-Malabry, France; (R.V.); (K.H.); (A.B.); (M.-H.D.); (M.P.)
| | - Claudine Deloménie
- Inserm US31, CNRS UMS3679, Ingénierie et Plateformes au Service de l’Innovation Thérapeutique, Université Paris-Saclay, 92296 Châtenay-Malabry, France;
| | - Marc Pallardy
- Inserm, Inflammation Microbiome and Immunosurveillance, Université Paris-Saclay, 92290 Châtenay-Malabry, France; (R.V.); (K.H.); (A.B.); (M.-H.D.); (M.P.)
| | - Pierre-Jacques Ferret
- Safety Assessment Department, Pierre Fabre Dermo Cosmétique, 31000 Toulouse, France;
| | - Saadia Kerdine-Römer
- Inserm, Inflammation Microbiome and Immunosurveillance, Université Paris-Saclay, 92290 Châtenay-Malabry, France; (R.V.); (K.H.); (A.B.); (M.-H.D.); (M.P.)
- Correspondence: ; Tel.: +33-(0)-1-46-83-57-79
| |
Collapse
|
14
|
Tsai TH, Lieu AS, Huang TY, Kwan AL, Lin CL, Hsu YC. Induction of Mitosis Delay and Apoptosis by CDDO-TFEA in Glioblastoma Multiforme. Front Pharmacol 2021; 12:756228. [PMID: 34858180 PMCID: PMC8630575 DOI: 10.3389/fphar.2021.756228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/25/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Glioblastoma multiforme (GBM) is the vicious malignant brain tumor in adults. Despite advances multi-disciplinary treatment, GBM constinues to have a poor overall survival. CDDO-trifluoroethyl-amide (CDDO-TEFA), a trifluoroethylamidederivative of CDDO, is an Nrf2/ARE pathway activator. CDDO-TEFEA is used to inhibit proliferation and induce apoptosis in glioma cells. However, it not clear what effect it may have on tumorigenesis in GBM. Methods: This in vitro study evaluated the effects of CDDO-TFEA on GBM cells. To do this, we treated GBM8401 cell lines with CDDO-TFEA and assessed apoptosis, cell cycle. DNA content and induction of apoptosis were analyzed by flow cytometry and protein expression by Western blot analysis. Results: CDDO-TFEA significantly inhibited the cell viability and induced cell apoptosis on GBM 8401 cell line. The annexin-FITC/PI assay revealed significant changes in the percentage of apoptotic cells. Treatment with CDDO-TFEA led to a significant reduction in the GBM8401 cells' mitochondrial membrane potential. A significant rise in the percentage of caspase-3 activity was detected in the treated cells. In addition, treatment with CDDO-TFEA led to an accumulation of G2/M-phase cells. In addition, these results suggest that regarding increased protein synthesis during mitosis in the MPM-2 staining, indicative of a delay in the G2 checkpoint. An analysis of Cyclin B1, CDK1, Cyclin B1/CDK1 complex and CHK1 and CHK2 expression suggested that cell cycle progression seems also to be regulated by CDDO-TFEA. Therefore, CDDO-TFEA may not only induce cell cycle G2/M arrest, it may also exert apoptosis in established GBM cells. Conclusion: CDDO-TFEA can inhibit proliferation, cell cycle progression and induce apoptosis in GBM cells in vitro, possibly though its inhibition of Cyclin B1, CDK1 expression, and Cyclin B1/CDK1 association and the promotion of CHK1 and CHK2 expression.
Collapse
Affiliation(s)
- Tai-Hsin Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institutes of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ann-Shung Lieu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institutes of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tzuu-Yuan Huang
- Department of Neurosurgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Aij-Lie Kwan
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institutes of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Lung Lin
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institutes of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Chiang Hsu
- School of Medicine, I‐Shou University, Kaohsiung, Taiwan
| |
Collapse
|
15
|
Zhang Z, Costa M. p62 functions as a signal hub in metal carcinogenesis. Semin Cancer Biol 2021; 76:267-278. [PMID: 33894381 PMCID: PMC9161642 DOI: 10.1016/j.semcancer.2021.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/06/2021] [Accepted: 04/15/2021] [Indexed: 12/13/2022]
Abstract
A number of metals are toxic and carcinogenic to humans. Reactive oxygen species (ROS) play an important role in metal carcinogenesis. Oxidative stress acts as the converging point among various stressors with ROS being the main intracellular signal transducer. In metal-transformed cells, persistent expression of p62 and erythroid 2-related factor 2 (Nrf2) result in apoptosis resistance, angiogenesis, inflammatory microenvironment, and metabolic reprogramming, contributing to overall mechanism of metal carcinogenesis. Autophagy, a conserved intracellular process, maintains cellular homeostasis by facilitating the turnover of protein aggregates, cellular debris, and damaged organelles. In addition to being a substrate of autophagy, p62 is also a crucial molecule in a myriad of cellular functions and in molecular events, which include oxidative stress, inflammation, apoptosis, cell proliferation, metabolic reprogramming, that modulate cell survival and tumor growth. The multiple functions of p62 are appreciated by its ability to interact with several key components involved in various oncogenic pathways. This review summarizes the current knowledge and progress in studies of p62 and metal carcinogenesis with emphasis on oncogenic pathways related to oxidative stress, inflammation, apoptosis, and metabolic reprogramming.
Collapse
Affiliation(s)
- Zhuo Zhang
- Department of Environmental Medicine, NYU School of Medicine, 341 East 25th Street, New York, NY 10010, USA
| | - Max Costa
- Department of Environmental Medicine, NYU School of Medicine, 341 East 25th Street, New York, NY 10010, USA.
| |
Collapse
|
16
|
Tsai TH, Lieu AS, Huang TY, Kwan AL, Lin CL, Hsu YC. RTA404, an Activator of Nrf2, Activates the Checkpoint Kinases and Induces Apoptosis through Intrinsic Apoptotic Pathway in Malignant Glioma. J Clin Med 2021; 10:4805. [PMID: 34768325 PMCID: PMC8585078 DOI: 10.3390/jcm10214805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/15/2021] [Accepted: 10/15/2021] [Indexed: 01/24/2023] Open
Abstract
Background: Malignant glioma (MG) is an aggressive malignant brain tumor. Despite advances in multidisciplinary treatment, overall survival rates remain low. A trifluoroethyl amide derivative of 2-cyano-3-,12-dioxoolean-1,9-dien-28-oic acid (CDDO), CDDO-trifluoroethyl amide (CDDO-TFEA) is a nuclear erythroid 2-related factor 2/antioxidant response element pathway activator. RTA404 is used to inhibit proliferation and induce apoptosis in cancer cells. However, its effect on tumorigenesis in glioma is unclear. Methods: This in vitro study evaluated the effects of RTA404 on MG cells. We treated U87MG cell lines with RTA404 and performed assessments of apoptosis and cell cycle distributions. DNA content and apoptosis induction were subjected to flow cytometry analysis. The mitotic index was assessed based on MPM-2 expression. Protein expression was analyzed through Western blotting. Results: RTA404 significantly inhibited the cell viability and induced cell apoptosis on the U87MG cell line. The Annexin-FITC/PI assay revealed significant changes in the percentage of apoptotic cells. Treatment with RTA404 led to a significant reduction in the U87MG cells' mitochondrial membrane potential. A significant rise in the percentage of caspase-3 activity was detected in the treated cells. In addition, these results suggest that cells pass the G2 checkpoint without cell cycle arrest by RTA404 treatment in the MPM-2 staining. An analysis of CHK1, CHK2, and p-CHK2 expression suggested that the DNA damage checkpoint system seems also to be activated by RTA404 treatment in established U87MG cells. Therefore, RTA404 may not only activate the DNA damage checkpoint system, it may also exert apoptosis in established U87MG cells. Conclusions: RTA404 inhibits the cell viability of gliomas and induces cancer cell apoptosis through intrinsic apoptotic pathway in Malignant glioma. In addition, the DNA damage checkpoint system seems also to be activated by RTA404. Taken together, RTA404 activated the DNA damage checkpoint system and induced apoptosis through intrinsic apoptotic pathways in established U87MG cells.
Collapse
Affiliation(s)
- Tai-Hsin Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (T.-H.T.); (A.-S.L.); (A.-L.K.); (C.-L.L.)
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institutes of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ann-Shung Lieu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (T.-H.T.); (A.-S.L.); (A.-L.K.); (C.-L.L.)
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institutes of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Tzuu-Yuan Huang
- Department of Neurosurgery, Changhua Christian Hospital, Changhua 500, Taiwan;
| | - Aij-Lie Kwan
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (T.-H.T.); (A.-S.L.); (A.-L.K.); (C.-L.L.)
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institutes of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chih-Lung Lin
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (T.-H.T.); (A.-S.L.); (A.-L.K.); (C.-L.L.)
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institutes of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yi-Chiang Hsu
- School of Medicine, I-Shou University, Kaohsiung 824, Taiwan
| |
Collapse
|
17
|
McCallum RT, Perreault ML. Glycogen Synthase Kinase-3: A Focal Point for Advancing Pathogenic Inflammation in Depression. Cells 2021; 10:cells10092270. [PMID: 34571919 PMCID: PMC8470361 DOI: 10.3390/cells10092270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 01/03/2023] Open
Abstract
Increasing evidence indicates that the host immune response has a monumental role in the etiology of major depressive disorder (MDD), motivating the development of the inflammatory hypothesis of depression. Central to the involvement of chronic inflammation in MDD is a wide range of signaling deficits induced by the excessive secretion of pro-inflammatory cytokines and imbalanced T cell differentiation. Such signaling deficits include the glutamatergic, cholinergic, insulin, and neurotrophin systems, which work in concert to initiate and advance the neuropathology. Fundamental to the communication between such systems is the protein kinase glycogen synthase kinase-3 (GSK-3), a multifaceted protein critically linked to the etiology of MDD and an emerging target to treat pathogenic inflammation. Here, a consolidated overview of the widespread multi-system involvement of GSK-3 in contributing to the neuropathology of MDD will be discussed, with the feed-forward mechanistic links between all major neuronal signaling pathways highlighted.
Collapse
Affiliation(s)
- Ryan T. McCallum
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Melissa L. Perreault
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada;
- Collaborative Program in Neuroscience, University of Guelph, Guelph, ON N1G 2W1, Canada
- Correspondence: ; Tel.: +1-(519)-824-4120 (ext. 52013)
| |
Collapse
|
18
|
Freeborn RA, Rockwell CE. The role of Nrf2 in autoimmunity and infectious disease: Therapeutic possibilities. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 91:61-110. [PMID: 34099113 DOI: 10.1016/bs.apha.2020.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Nrf2 is a cytoprotective transcription factor which is involved in ameliorating oxidative stress and toxic insults. Recently, an immunomodulatory role for Nrf2 has gained appreciation as it has been shown to protect cells and hosts alike in a variety of immune and inflammatory disorders. However, Nrf2 utilizes numerous distinct pathways to elicit its immunomodulatory effects. In this review, we summarize the literature discussing the roles of Nrf2 in autoimmunity and infectious diseases with a goal of understanding the potential to therapeutically target Nrf2.
Collapse
Affiliation(s)
- Robert A Freeborn
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Cheryl E Rockwell
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States; Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
19
|
Lin X, Tawch S, Wong HT, Roy S, Gaudino S, Castillo P, Elsegeiny W, Wakabayashi N, Oury TD, Pociask D, Chen K, McLinskey N, Melville P, Syritsyna O, Coyle P, Good M, Awasthi A, Kolls JK, Kumar P. Nrf2 through Aryl Hydrocarbon Receptor Regulates IL-22 Response in CD4 + T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:1540-1548. [PMID: 33648937 PMCID: PMC7987760 DOI: 10.4049/jimmunol.1900656] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 01/23/2021] [Indexed: 12/14/2022]
Abstract
IL-17A and IL-22 derived from Th17 cells play a significant role in mucosal immunity and inflammation. TGF-β and IL-6 promote Th17 differentiation; however, these cytokines have multiple targets. The identification and screening of additional molecules that regulate IL-17A and IL-22 responses in certain inflammatory conditions is of great clinical significance. In this study, we show that CDDO-Im, a specific Nrf2 activator, promotes IL-17A and IL-22 responses in murine Th17 cells. In contrast, CDDO-Im inhibits IL-17A response in multiple sclerosis patient-derived PBMCs. However, Nrf2 specifically regulates IL-22 response in vivo. Nrf2 acts through the regulation of antioxidant response element (ARE) binding motifs in target genes to induce or repress transcription. Promoter analysis revealed that Il17a, Rorc, and Ahr genes have several ARE motifs. We showed that Nrf2 bound to ARE repressor (ARE-R2) of Rorc and inhibited Rorc-dependent IL-17A transactivation. The luciferase reporter assay data showed that CDDO-Im regulated Ahr promoter activity. Chromatin immunoprecipitation quantitative PCR data showed that Nrf2 bound to ARE of AhR. Finally, we confirmed that the CDDO-Im-mediated induction of IL-22 production in CD4+ T cells was abrogated in CD4-specific Ahr knockout mice (AhrCD4 ). CH-223191, a specific AhR antagonist, inhibits CDDO-Im-induced IL-22 production in CD4+ T cells, which further confirmed the AhR-dependent regulation. Collectively, our data showed that Nrf2 via AhR pathways regulated IL-22 response in CD4+ T cells.
Collapse
Affiliation(s)
- Xun Lin
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794
| | - Suzanne Tawch
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794
| | - Hoi Tong Wong
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794
| | - Suyasha Roy
- Translational Health Science and Technology Institute, Faridabad, Haryana 12100, India
| | - Stephen Gaudino
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794
| | - Patricia Castillo
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA 15224
| | - Waleed Elsegeiny
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA 15224
| | - Nobunao Wakabayashi
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Tim D Oury
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Derek Pociask
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA 15224
| | - Kong Chen
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA 15224
| | - Nancy McLinskey
- Department of Neurology, Stony Brook University, Stony Brook, NY 11794
| | - Patricia Melville
- Department of Neurology, Stony Brook University, Stony Brook, NY 11794
| | - Olga Syritsyna
- Department of Neurology, Stony Brook University, Stony Brook, NY 11794
| | - Patricia Coyle
- Department of Neurology, Stony Brook University, Stony Brook, NY 11794
| | - Misty Good
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110; and
| | - Amit Awasthi
- Translational Health Science and Technology Institute, Faridabad, Haryana 12100, India
| | - Jay K Kolls
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA 15224
- Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112
| | - Pawan Kumar
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794;
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA 15224
| |
Collapse
|
20
|
Therapeutic Potential of RTA 404 in Human Brain Malignant Glioma Cell Lines via Cell Cycle Arrest via p21/AKT Signaling. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5552226. [PMID: 33763472 PMCID: PMC7963900 DOI: 10.1155/2021/5552226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/17/2021] [Accepted: 02/27/2021] [Indexed: 01/11/2023]
Abstract
Background Glioblastoma multiforme (GBM) is the most common malignant brain tumor in the world. Despite advances in surgical resection, radiotherapy, and chemotherapy, GBM continues to have a poor overall survival. CDDO (2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid), a synthetic triterpenoid, is an Nrf2 activator used to inhibit proliferation and induce differentiation and apoptosis in various cancer cells. One new trifluoroethylamide derivative of CDDO, RTA 404, has been found to have increased ability to cross the blood-brain barrier. However, it is not clear what effect it may have on tumorigenesis in GBM. Methods This in vitro study evaluated the effects of RTA 404 on GBM cells. To do this, we treated GBM840 and U87 MG cell lines with RTA 404 and assessed apoptosis, cell cycle, cell locomotion, and senescence. DNA content and induction of apoptosis were analyzed by flow cytometry and protein expression by Western blot analysis. Results RTA 404 significantly inhibited the proliferation of tumor cells at concentrations higher than 100 nM (p < 0.05) and reduced their locomotion ability. In addition, treatment with RTA 404 led to an accumulation of RTA 404-treated G2/M phase cells and apoptosis. An analysis of the p21/AKT expression suggested that RTA 404 may not only help prevent brain cancer but it may also exert antitumor activities in established GBM cells. Conclusion RTA404 can inhibit proliferation, cell locomotion, cell cycle progression, and induce apoptosis in GBM cells in vitro, possibly through its inhibition of N-cadherin and E-cadherin expression via its inhibition of the AKT pathway.
Collapse
|
21
|
Suzuki T, Hidaka T, Kumagai Y, Yamamoto M. Environmental pollutants and the immune response. Nat Immunol 2020; 21:1486-1495. [PMID: 33046888 DOI: 10.1038/s41590-020-0802-6] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022]
Abstract
Environmental pollution is one of the most serious challenges to health in the modern world. Pollutants alter immune responses and can provoke immunotoxicity. In this Review, we summarize the major environmental pollutants that are attracting wide-ranging concern and the molecular basis underlying their effects on the immune system. Xenobiotic receptors, including the aryl hydrocarbon receptor (AHR), sense and respond to a subset of environmental pollutants by activating the expression of detoxification enzymes to protect the body. However, chronic activation of the AHR leads to immunotoxicity. KEAP1-NRF2 is another important system that protects the body against environmental pollutants. KEAP1 is a sensor protein that detects environmental pollutants, leading to activation of the transcription factor NRF2. NRF2 protects the body from immunotoxicity by inducing the expression of genes involved in detoxification, antioxidant and anti-inflammatory activities. Intervening in these sensor-response systems could protect the body from the devastating immunotoxicity that can be induced by environmental pollutants.
Collapse
Affiliation(s)
- Takafumi Suzuki
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takanori Hidaka
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshito Kumagai
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
22
|
An Overview of Nrf2 Signaling Pathway and Its Role in Inflammation. Molecules 2020; 25:molecules25225474. [PMID: 33238435 PMCID: PMC7700122 DOI: 10.3390/molecules25225474] [Citation(s) in RCA: 774] [Impact Index Per Article: 154.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022] Open
Abstract
Inflammation is a key driver in many pathological conditions such as allergy, cancer, Alzheimer’s disease, and many others, and the current state of available drugs prompted researchers to explore new therapeutic targets. In this context, accumulating evidence indicates that the transcription factor Nrf2 plays a pivotal role controlling the expression of antioxidant genes that ultimately exert anti-inflammatory functions. Nrf2 and its principal negative regulator, the E3 ligase adaptor Kelch-like ECH- associated protein 1 (Keap1), play a central role in the maintenance of intracellular redox homeostasis and regulation of inflammation. Interestingly, Nrf2 is proved to contribute to the regulation of the heme oxygenase-1 (HO-1) axis, which is a potent anti-inflammatory target. Recent studies showed a connection between the Nrf2/antioxidant response element (ARE) system and the expression of inflammatory mediators, NF-κB pathway and macrophage metabolism. This suggests a new strategy for designing chemical agents as modulators of Nrf2 dependent pathways to target the immune response. Therefore, the present review will examine the relationship between Nrf2 signaling and the inflammation as well as possible approaches for the therapeutic modulation of this pathway.
Collapse
|
23
|
Quinovic Acid Impedes Cholesterol Dyshomeostasis, Oxidative Stress, and Neurodegeneration in an Amyloid- β-Induced Mouse Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9523758. [PMID: 33274012 PMCID: PMC7700034 DOI: 10.1155/2020/9523758] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/18/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder typified by several neuropathological features including amyloid-beta (Aβ) plaque and neurofibrillary tangles (NFTs). Cholesterol retention and oxidative stress (OS) are the major contributors of elevated β- and γ-secretase activities, leading to excessive Aβ deposition, signifying the importance of altered cholesterol homeostasis and OS in the progression of Aβ-mediated neurodegeneration and cognitive deficit. However, the effect of Aβ on cholesterol metabolism is lesser-known. In this study, we evaluated the effect of quinovic acid (QA; 50 mg/kg body weight, i.p.) against the intracerebroventricular (i.c.v.) injection of Aβ (1-42)-induced cholesterol dyshomeostasis, oxidative stress, and neurodegeneration in the cortex and hippocampal brain regions of wild-type male C57BL/6J mice. Our results indicated that Aβ (1-42)-treated mice have increased Aβ oligomer formation along with increased β-secretase expression. The enhanced amyloidogenic pathway in Aβ (1-42)-treated mice intensified brain cholesterol accumulation due to increased expressions of p53 and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) enzyme. Importantly, we further confirmed the p53-mediated HMGCR axis activation by using pifithrin-α (PFT) in SH-SY5Y cells. Furthermore, the augmented brain cholesterol levels were also associated with increased OS. However, the QA administration to Aβ (1-42)-injected mice significantly ameliorated the Aβ burden, p53 expression, and cholesterol accumulation by deterring the oxidative stress through upregulating the Nrf2/HO-1 pathway. Moreover, the QA downregulated gliosis, neuroinflammatory mediators (p-NF-κB and IL-1β), and the expression of mitochondrial apoptotic markers (Bax, cleaved caspase-3, and cytochrome c). QA treatment also reversed the deregulated synaptic markers (PSD-95 and synaptophysin) and improved spatial learning and memory behaviors in the Aβ-treated mouse brains. These results suggest that Aβ (1-42) induces its acute detrimental effects on cognitive functions probably by increasing brain cholesterol levels through a possible activation of the p53/HMGCR axis. However, QA treatment reduces the cholesterol-induced oxidative stress, neuroinflammation, and neurodegeneration, leading to the restoration of cognitive deficit after Aβ (1-42) i.c.v. injection in mice.
Collapse
|
24
|
Elekofehinti OO, Onunkun AT, Olaleye TM. Cymbopogon citratus (DC.) Stapf mitigates ER-stress induced by streptozotocin in rats via down-regulation of GRP78 and up-regulation of Nrf2 signaling. JOURNAL OF ETHNOPHARMACOLOGY 2020; 262:113130. [PMID: 32736056 DOI: 10.1016/j.jep.2020.113130] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/13/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Endoplasmic reticulum (ER) stress plays a role in the pathogenesis of diabetes mellitus, contributing to pancreatic dysfunction and insulin resistance. Ameliorating ER stress may be a viable therapeutic approach in the proper management of diabetes mellitus. Cymbopogon citratus (C.citratus) has been used in traditional medicine in the management of diabetes mellitus. Although well known for its anti-diabetic effect, the mechanism underlying this effect remains unclear. AIM OF THE STUDY This study was designed to investigate the effect of C. citratus methanolic leaves extract on ER stress induced by streptozotocin (STZ) in wistar rats. MATERIALS AND METHODS STZ (60 mg/kg) was used to induce ER stress in the pancreas of rats. The rats were administered C. citratus methanolic leaves extract via gastric gavage at doses 100, 200 and 400 mg/kg for two weeks while metformin (100 mg/kg) was used as positive control. Fasting blood glucose (FBG), expression of ER-stress related genes (GRP78, CHOP, ATF4, TRB3, PERK, IRE1), antioxidant (Nrf2 and AhR) and pro-inflammatory (TNF-α) genes were determined. Possible compounds responsible for this effect were also predicted through molecular docking. RESULTS Induction of ER stress using STZ significantly increased FBG while administration of C. citratus methanolic extract restored it to normal control level (p < 0.05). Significant down-regulation of ER stress genes was observed upon treatment of ER stress induced rats with C. citratus methanolic extract when compared to ER-stress untreated rats. Significant up-regulation (p < 0.05) of genes coding for Nrf2 and AhR was also noticed upon treatment of ER stress induced rats with C. citratus methanolic extract. Molecular docking suggests that apigenin targets GRP78 with binding affinity of -9.3 kcal/mol while kaempferol and quercetin target Keap1 with binding affinity of -9.5 kcal/mol and may be responsible for this ameliorative effect on ER stress. CONCLUSION These observations suggest that C. citratus mitigate ER stress induced by STZ via its down-regulative effect on GRP78 and up-regulative effect on NRF2 signaling.
Collapse
Affiliation(s)
- Olusola Olalekan Elekofehinti
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure, Akure, Ondo State, P.M.B 704, Nigeria.
| | - Afolashade Toritseju Onunkun
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure, Akure, Ondo State, P.M.B 704, Nigeria; Phytomedicine and Toxicology Unit, Department of Biochemistry, Federal University of Technology Akure, Akure, Ondo State, P.M.B 704, Nigeria
| | | |
Collapse
|
25
|
He F, Antonucci L, Karin M. NRF2 as a regulator of cell metabolism and inflammation in cancer. Carcinogenesis 2020; 41:405-416. [PMID: 32347301 DOI: 10.1093/carcin/bgaa039] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/11/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is a master transcriptional regulator of genes whose products defend our cells for toxic and oxidative insults. Although NRF2 activation may reduce cancer risk by suppressing oxidative stress and tumor-promoting inflammation, many cancers exhibit elevated NRF2 activity either due to mutations that disrupt the negative control of NRF2 activity or other factors. Importantly, NRF2 activation is associated with poor prognosis and NRF2 has turned out to be a key activator of cancer-supportive anabolic metabolism. In this review, we summarize the diverse roles played by NRF2 in cancer focusing on metabolic reprogramming and tumor-promoting inflammation.
Collapse
Affiliation(s)
- Feng He
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, San Diego, La Jolla, CA, USA
| | - Laura Antonucci
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, San Diego, La Jolla, CA, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, San Diego, La Jolla, CA, USA.,Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
26
|
Mechanisms and therapeutic implications of RTA 408, an activator of Nrf2, in subarachnoid hemorrhage-induced delayed cerebral vasospasm and secondary brain injury. PLoS One 2020; 15:e0240122. [PMID: 33017422 PMCID: PMC7535038 DOI: 10.1371/journal.pone.0240122] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/18/2020] [Indexed: 01/05/2023] Open
Abstract
Objectives More and more evidence suggests oxidative stress and inflammation contribute importantly to subarachnoid hemorrhage (SAH)-induced cerebral vasospasm and secondary brain injury. Recent evidence indicates Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) increases the expression of antioxidant genes and decreases the expression of pro-inflammatory genes. This study examines the effects of an activator of Nfr2, RTA 408, on SAH-induced cerebral vasospasm and possible mechanism underlying its effect in a two-hemorrhage rodent model of SAH. Methods We randomly assigned 60 Sprague-Dawley male rats (350 to 420g) to five groups twelve rats each: one control group (no SAH), one untreated SAH only group and three RTA-408 treatment groups (SAH+ RTA 408 0.5 mg/kg/day, SAH+RTA 408 1 mg/kg/day and a SAH+RTA 408 1.5 mg/kg/day). The treatment groups were administered RTA 408 by intraperitoneal injection thirty min following first induction of SAH for seven days starting with first hemorrhage. Cerebral vasospasm was determined by averaging the cross-sectional areas of basilar artery 7 days after first SAH. Expressions of Nrf2, NF-κB and iNOS in basilar artery and expressions of Nrf2, HO-1, NQO1 and Cleaved caspase-3 were evaluated. Tissue TNF-alpha was assessed by ELISA using the protein sampled from the dentate gyrus, cerebral cortex, and hippocampus. Results Prior to perfusion fixation, there were no significant physiological differences among the control and treated groups. RTA 408 treatment attenuated the morphological changes caused by cerebral vasospasm. It mitigated SAH-induced suppression of Nrf2 and increased expression of NF-κB and iNOS in the basilar artery. In dentate gyrus, it reversed SAH-decreases in Nrf2, HO-1, NQO-1 and cleaved caspase-3 and RTA 408 1.5 mg/kg/day reversed SAH increases in TNF-alpha. Conclusion It was concluded that RTA 408 reversal vasospasm was achieved via increases in Nrf2 and decreases in NF-κB and iNOS. It exerted a neuron-protection effect by decreasing the apoptosis-related protein cleaved caspase-3 and decreasing the information cytokine TNF-alpha expression, which it achieved by increasing HO-1 and NQO-1 protein found downstream from Nrf2 and Nrf2. We believe that RTA 408 can potentially be used to manage of cerebral vasospasm and secondary brain injury following SAH.
Collapse
|
27
|
Kim M, Lee S, Lim H, Lee J, Park JY, Kwon HJ, Lee IC, Ryu YB, Kim J, Shin T, Ahn G, Rho MC, Jung K. Oleanolic Acid Acetate Alleviates Symptoms of Experimental Autoimmune Encephalomyelitis in Mice by Regulating Toll-Like Receptor 2 Signaling. Front Pharmacol 2020; 11:556391. [PMID: 33013394 PMCID: PMC7494849 DOI: 10.3389/fphar.2020.556391] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptor 2 (TLR2) is expressed by several immune cells in the central nervous system and plays an important role in neuroinflammation. TLR2 upregulation has been reported in multiple sclerosis patients and in experimental autoimmune encephalomyelitis (EAE), a mouse model for multiple sclerosis. Therefore, modulating TLR2 signaling can be an effective treatment strategy against MS. Oleanolic acid acetate (OAA) has antiinflammatory and immunomodulatory effects. Hence, this study aimed to examine the effects of OAA on TLR2 signaling and neuroinflammation in EAE. EAE was induced in C57/BL6 mice using synthesized myelin oligodendrocyte glycoprotein (MOG)35-55 peptide, and OAA was administered daily. Hind limb paralysis and inflammatory cell infiltration were observed in the spinal cords of EAE mice. Moreover, T-cell proliferation was significantly stimulated in splenic cells from EAE mice. The expression of proinflammatory cytokines in the spinal cord was upregulated, and their serum protein levels were increased in EAE mice. Furthermore, upregulation of TLR2 and downstream signaling molecules was observed in the spinal cord. These pathological changes were reversed by OAA treatment. Our results suggest that OAA might have promising therapeutic properties and that the TLR signaling pathway is an effective therapeutic target against multiple sclerosis.
Collapse
Affiliation(s)
- Minju Kim
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu, South Korea
| | - Soyoung Lee
- Immunoregulatory Materials Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, South Korea
| | - Hyungjin Lim
- Immunoregulatory Materials Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, South Korea
| | - Jihye Lee
- Functional Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, South Korea
| | - Ji-Young Park
- Functional Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, South Korea
| | - Hyung-Jun Kwon
- Functional Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, South Korea
| | - In-Chul Lee
- Functional Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, South Korea
| | - Young-Bae Ryu
- Functional Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, South Korea
| | - Jeongtae Kim
- Department of Anatomy, Kosin University College of Medicine, Busan, South Korea
| | - Taekyun Shin
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, South Korea
| | - Ginnae Ahn
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu, South Korea
| | - Mun-Chual Rho
- Immunoregulatory Materials Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, South Korea
| | - Kyungsook Jung
- Functional Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, South Korea
| |
Collapse
|
28
|
Abstract
Covering: up to 2020The transcription factor NRF2 is one of the body's major defense mechanisms, driving transcription of >300 antioxidant response element (ARE)-regulated genes that are involved in many critical cellular processes including redox regulation, proteostasis, xenobiotic detoxification, and primary metabolism. The transcription factor NRF2 and natural products have an intimately entwined history, as the discovery of NRF2 and much of its rich biology were revealed using natural products both intentionally and unintentionally. In addition, in the last decade a more sinister aspect of NRF2 biology has been revealed. NRF2 is normally present at very low cellular levels and only activated when needed, however, it has been recently revealed that chronic, high levels of NRF2 can lead to diseases such as diabetes and cancer, and may play a role in other diseases. Again, this "dark side" of NRF2 was revealed and studied largely using a natural product, the quassinoid, brusatol. In the present review, we provide an overview of NRF2 structure and function to orient the general reader, we will discuss the history of NRF2 and NRF2-activating compounds and the biology these have revealed, and we will delve into the dark side of NRF2 and contemporary issues related to the dark side biology and the role of natural products in dissecting this biology.
Collapse
Affiliation(s)
- Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA.
| | | |
Collapse
|
29
|
Michaličková D, Hrnčíř T, Canová NK, Slanař O. Targeting Keap1/Nrf2/ARE signaling pathway in multiple sclerosis. Eur J Pharmacol 2020; 873:172973. [DOI: 10.1016/j.ejphar.2020.172973] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/08/2020] [Accepted: 01/28/2020] [Indexed: 12/29/2022]
|
30
|
Poganik JR, Aye Y. Electrophile Signaling and Emerging Immuno- and Neuro-modulatory Electrophilic Pharmaceuticals. Front Aging Neurosci 2020; 12:1. [PMID: 32116644 PMCID: PMC7019031 DOI: 10.3389/fnagi.2020.00001] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 01/07/2020] [Indexed: 12/11/2022] Open
Abstract
With a lipid-rich environment and elevated oxygen consumption, the central nervous system (CNS) is subject to intricate regulation by lipid-derived electrophiles (LDEs). Investigations into oxidative damage and chronic LDE generation in neural disorders have spurred the development of tools that can detect and catalog the gamut of LDE-adducted proteins. Despite these advances, deconstructing the precise consequences of individual protein-specific LDE modifications remained largely impossible until recently. In this perspective, we first overview emerging toolsets that can decode electrophile-signaling events in a protein/context-specific manner, and how the accumulating mechanistic insights brought about by these tools have begun to offer new means to modulate pathways relevant to multiple sclerosis (MS). By surveying the latest data surrounding the blockbuster MS drug dimethyl fumarate that functions through LDE-signaling-like mechanisms, we further provide a vision for how chemical biology tools probing electrophile signaling may be leveraged toward novel interventions in CNS disease.
Collapse
Affiliation(s)
- Jesse R Poganik
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Yimon Aye
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
31
|
Zhang HK, Ye Y, Li KJ, Zhao ZN, He JF. Gypenosides Prevent H 2O 2-Induced Retinal Ganglion Cell Apoptosis by Concurrently Suppressing the Neuronal Oxidative Stress and Inflammatory Response. J Mol Neurosci 2020; 70:618-630. [PMID: 31897969 PMCID: PMC7066284 DOI: 10.1007/s12031-019-01468-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 12/12/2019] [Indexed: 11/29/2022]
Abstract
Our previous study demonstrated that gypenosides (Gp) exert protective effects on retinal nerve fibers and axons in a mouse model of experimental autoimmune optic neuritis. However, the therapeutic mechanisms remain unclear. Thus, in this study, a model of oxidative damage in retinal ganglion cells (RGCs) was established to investigate the protective effect of Gp, and its possible influence on oxidative stress in RGCs. Treatment of cells with H2O2 induced RGC injury owing to the generation of intracellular reactive oxygen species (ROS). In addition, the activities of antioxidative enzymes decreased and the expression of inflammatory factors increased, resulting in an increase in cellular apoptosis. Gp helped RGCs to become resistant to oxidation damage by directly reducing the amount of ROS in cells and exerting protective effects against H2O2-induced apoptosis. Treatment with Gp also reduced the generation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and increased nuclear respiratory factor 2 (Nrf-2) levels so as to increase the levels of heme oxygenase-1 (HO-1) and glutathione peroxidase 1/2 (Gpx1/2), which can enhance antioxidation in RGCs. In conclusion, our data indicate that neuroprotection by Gp involves its antioxidation and anti-inflammation effects. Gp prevents apoptosis through a mitochondrial apoptotic pathway. This finding might provide novel insights into understanding the mechanism of the neuroprotective effects of gypenosides in the treatment of optic neuritis.
Collapse
Affiliation(s)
- Hong-Kan Zhang
- Department of Ophthalmology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Yuan Ye
- Department of Ophthalmology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Kai-Jun Li
- Department of Ophthalmology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Zhen-Ni Zhao
- Department of Ophthalmology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Jian-Feng He
- Department of Ophthalmology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
32
|
Amir M, Chaudhari S, Wang R, Campbell S, Mosure SA, Chopp LB, Lu Q, Shang J, Pelletier OB, He Y, Doebelin C, Cameron MD, Kojetin DJ, Kamenecka TM, Solt LA. REV-ERBα Regulates T H17 Cell Development and Autoimmunity. Cell Rep 2019; 25:3733-3749.e8. [PMID: 30590045 PMCID: PMC6400287 DOI: 10.1016/j.celrep.2018.11.101] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 09/19/2018] [Accepted: 11/29/2018] [Indexed: 11/19/2022] Open
Abstract
RORγt is well recognized as the lineage-defining transcription factor for T helper 17 (TH17) cell development. However, the cell-intrinsic mechanisms that negatively regulate TH17 cell development and autoimmunity remain poorly understood. Here, we demonstrate that the transcriptional repressor REV-ERBα is exclusively expressed in TH17 cells, competes with RORγt for their shared DNA consensus sequence, and negatively regulates TH17 cell development via repression of genes traditionally characterized as RORγt dependent, including Il17a. Deletion of REV-ERBα enhanced TH17-mediated pro-inflammatory cytokine expression, exacerbating experimental autoimmune encephalomyelitis (EAE) and colitis. Treatment with REV-ERB-specific synthetic ligands, which have similar phenotypic properties as RORγ modulators, suppressed TH17 cell development, was effective in colitis intervention studies, and significantly decreased the onset, severity, and relapse rate in several models of EAE without affecting thymic cellularity. Our results establish that REV-ERBα negatively regulates pro-inflammatory TH17 responses in vivo and identifies the REV-ERBs as potential targets for the treatment of TH17-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Mohammed Amir
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Sweena Chaudhari
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Ran Wang
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Sean Campbell
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Sarah A Mosure
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458, USA; Scripps Research, Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, California 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Laura B Chopp
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Qun Lu
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458, USA; Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Jinsai Shang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Oliver B Pelletier
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Yuanjun He
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Christelle Doebelin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Michael D Cameron
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Douglas J Kojetin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Theodore M Kamenecka
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Laura A Solt
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458, USA; Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, USA.
| |
Collapse
|
33
|
Borella R, Forti L, Gibellini L, De Gaetano A, De Biasi S, Nasi M, Cossarizza A, Pinti M. Synthesis and Anticancer Activity of CDDO and CDDO-Me, Two Derivatives of Natural Triterpenoids. Molecules 2019; 24:molecules24224097. [PMID: 31766211 PMCID: PMC6891335 DOI: 10.3390/molecules24224097] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/25/2019] [Accepted: 11/10/2019] [Indexed: 01/05/2023] Open
Abstract
Triterpenoids are natural compounds synthesized by plants through cyclization of squalene, known for their weak anti-inflammatory activity. 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO), and its C28 modified derivative, methyl-ester (CDDO-Me, also known as bardoxolone methyl), are two synthetic derivatives of oleanolic acid, synthesized more than 20 years ago, in an attempt to enhance the anti-inflammatory behavior of the natural compound. These molecules have been extensively investigated for their strong ability to exert antiproliferative, antiangiogenic, and antimetastatic activities, and to induce apoptosis and differentiation in cancer cells. Here, we discuss the chemical properties of natural triterpenoids, the pathways of synthesis and the biological effects of CDDO and its derivative CDDO-Me. At nanomolar doses, CDDO and CDDO-Me have been shown to protect cells and tissues from oxidative stress by increasing the transcriptional activity of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2). At doses higher than 100 nM, CDDO and CDDO-Me are able to modulate the differentiation of a variety of cell types, both tumor cell lines or primary culture cell, while at micromolar doses these compounds exert an anticancer effect in multiple manners; by inducing extrinsic or intrinsic apoptotic pathways, or autophagic cell death, by inhibiting telomerase activity, by disrupting mitochondrial functions through Lon protease inhibition, and by blocking the deubiquitylating enzyme USP7. CDDO-Me demonstrated its efficacy as anticancer drugs in different mouse models, and versus several types of cancer. Several clinical trials have been started in humans for evaluating CDDO-Me efficacy as anticancer and anti-inflammatory drug; despite promising results, significant increase in heart failure events represented an obstacle for the clinical use of CDDO-Me.
Collapse
Affiliation(s)
- Rebecca Borella
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.B.); (L.F.); (A.D.G.)
| | - Luca Forti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.B.); (L.F.); (A.D.G.)
| | - Lara Gibellini
- Department of Medical and Surgical Sciences of Children and Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (L.G.); (S.D.B.)
| | - Anna De Gaetano
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.B.); (L.F.); (A.D.G.)
| | - Sara De Biasi
- Department of Medical and Surgical Sciences of Children and Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (L.G.); (S.D.B.)
| | - Milena Nasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.N.); (A.C.)
| | - Andrea Cossarizza
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.N.); (A.C.)
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.B.); (L.F.); (A.D.G.)
- Correspondence: ; Tel.: +39 059 205 5386; Fax: +39 059 205 5426
| |
Collapse
|
34
|
Mohtashami L, Shakeri A, Javadi B. Neuroprotective natural products against experimental autoimmune encephalomyelitis: A review. Neurochem Int 2019; 129:104516. [DOI: 10.1016/j.neuint.2019.104516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 12/16/2022]
|
35
|
17-β estradiol exerts anti-inflammatory effects through activation of Nrf2 in mouse embryonic fibroblasts. PLoS One 2019; 14:e0221650. [PMID: 31442293 PMCID: PMC6707591 DOI: 10.1371/journal.pone.0221650] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/12/2019] [Indexed: 01/12/2023] Open
Abstract
Several reports indicate crosstalk between the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and estrogen, which has a protective effect in colorectal cancer (CRC). The aim of this study was to investigate the role of Nrf2 signaling in the anti-inflammatory effect of estrogen using Nrf2 knockout (Nrf2 KO) mouse embryonic fibroblasts (MEFs), a powerful system to test the function of target genes due to their easy accessibility, and rapid growth rates. After inducing inflammation by tumor necrosis factor alpha (TNF-α), the effects of 17β-estradiol (E2) on the expression of proinflammatory mediators [i.e., NF-κB and inducible nitric oxide synthase (iNOS)] and estrogen receptors were evaluated by Western blot. In wild type (WT) MEFs, E2 treatment ameliorated TNF-α-induced nuclear translocation of NF-κB and expression of its target protein iNOS. Estrogen receptor beta (ERβ) expression was decreased by TNF-α-induced inflammation and restored by E2 treatment. When treated to WT MEFs, E2 induced nuclear translocation of Nrf2. The inhibitory effect of E2 on TNF-α-induced enhancement of iNOS was markedly dampened in Nrf2 KO MEFs. Notably, ERβ expression was significantly diminished in Nrf2 KO MEFs compared to that in WT cells. Promoter Database (EPD) revealed two putative anti-oxidant response elements (AREs) within the mouse ERβ promoter. Furthermore, in WT MEFs, E2 treatment repressed TNF-α-induced expression of iNOS protein and recovered by 4-(2-phenyl-5,7-bis(trifluoromethyl)pyrazolo(1,5-a)pyrimidin-3-yl)phenol (PHTPP), a selective ERβ antagonist, treatment, but not in Nrf2 KO MEFs. In conclusion, Nrf2 plays a pivotal role in the anti-inflammatory of estrogen by direct regulating the expression of ERβ.
Collapse
|
36
|
Nadeem A, Ahmad SF, Al-Harbi NO, Attia SM, Bakheet SA, Ibrahim KE, Alqahtani F, Alqinyah M. Nrf2 activator, sulforaphane ameliorates autism-like symptoms through suppression of Th17 related signaling and rectification of oxidant-antioxidant imbalance in periphery and brain of BTBR T+tf/J mice. Behav Brain Res 2019; 364:213-224. [DOI: 10.1016/j.bbr.2019.02.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/17/2019] [Accepted: 02/17/2019] [Indexed: 12/11/2022]
|
37
|
Valitsky M, Benhamron S, Nitzan K, Karussis D, Ella E, Abramsky O, Kassis I, Rosenmann H. Cerebrospinal Fluid (CSF) Exchange with Artificial CSF Enriched with Mesenchymal Stem Cell Secretions Ameliorates Experimental Autoimmune Encephalomyelitis. Int J Mol Sci 2019; 20:ijms20071793. [PMID: 30978957 PMCID: PMC6480705 DOI: 10.3390/ijms20071793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/28/2019] [Accepted: 04/08/2019] [Indexed: 12/13/2022] Open
Abstract
The complexity of central nervous system (CNS) degenerative/inflammatory diseases and the lack of substantially effective treatments point to the need for a broader therapeutic approach to target multiple components involved in the disease pathogenesis. We suggest a novel approach directed for the elimination of pathogenic agents from the CNS and, in parallel, its enrichment with an array of neuroprotective substances, using a "cerebrospinal fluid (CSF) exchange" procedure, in which endogenous (pathogenic) CSF is removed and replaced by artificial CSF (aCSF) enriched with secretions of human mesenchymal stem cells (MSCs). MSCs produce a variety of neuroprotective agents and have shown beneficial effects when cells are transplanted in animals and patients with CNS diseases. Our data show that MSCs grown in aCSF secrete neurotrophic factors, anti-inflammatory cytokines, and anti-oxidant agents; moreover, MSC-secretions-enriched-aCSF exerts neuroprotective and immunomodulatory effects in neuronal cell lines and spleen lymphocytes. Treatment of experimental-autoimmune-encephalomyelitis (EAE) mice with this enriched-aCSF using an intracerebroventricular (ICV) CSF exchange procedure ("CSF exchange therapy") caused a significant delay in the onset of EAE and amelioration of the clinical symptoms, paralleled by a reduction in axonal damage and demyelination. These findings point to the therapeutic potential of the CSF exchange therapy using MSC-secretions-enriched-aCSF in inflammatory/degenerative diseases of the CNS.
Collapse
Affiliation(s)
- Michael Valitsky
- The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel.
| | - Sandrine Benhamron
- The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel.
| | - Keren Nitzan
- The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel.
| | - Dimitrios Karussis
- The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel.
| | - Ezra Ella
- The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel.
| | - Oded Abramsky
- The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel.
| | - Ibrahim Kassis
- The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel.
| | - Hanna Rosenmann
- The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel.
| |
Collapse
|
38
|
Cuadrado A, Rojo AI, Wells G, Hayes JD, Cousin SP, Rumsey WL, Attucks OC, Franklin S, Levonen AL, Kensler TW, Dinkova-Kostova AT. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat Rev Drug Discov 2019; 18:295-317. [PMID: 30610225 DOI: 10.1038/s41573-018-0008-x] [Citation(s) in RCA: 925] [Impact Index Per Article: 154.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The transcription factor NF-E2 p45-related factor 2 (NRF2; encoded by NFE2L2) and its principal negative regulator, the E3 ligase adaptor Kelch-like ECH-associated protein 1 (KEAP1), are critical in the maintenance of redox, metabolic and protein homeostasis, as well as the regulation of inflammation. Thus, NRF2 activation provides cytoprotection against numerous pathologies including chronic diseases of the lung and liver; autoimmune, neurodegenerative and metabolic disorders; and cancer initiation. One NRF2 activator has received clinical approval and several electrophilic modifiers of the cysteine-based sensor KEAP1 and inhibitors of its interaction with NRF2 are now in clinical development. However, challenges regarding target specificity, pharmacodynamic properties, efficacy and safety remain.
Collapse
Affiliation(s)
- Antonio Cuadrado
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
- Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Ana I Rojo
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
- Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Geoffrey Wells
- UCL School of Pharmacy, University College London, London, UK
| | - John D Hayes
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, Scotland, UK
| | | | | | | | | | - Anna-Liisa Levonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Thomas W Kensler
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, Scotland, UK.
- Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
39
|
The Immunomodulatory Effect of Alpha-Lipoic Acid in Autoimmune Diseases. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8086257. [PMID: 31016198 PMCID: PMC6446120 DOI: 10.1155/2019/8086257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/11/2019] [Accepted: 02/21/2019] [Indexed: 01/08/2023]
Abstract
Αlpha-lipoic acid is a naturally occurring antioxidant in human body and has been widely used as an antioxidant clinically. Accumulating evidences suggested that α-lipoic acid might have immunomodulatory effects on both adaptive and innate immune systems. This review focuses on the evidences and potential targets involved in the immunomodulatory effects of α-lipoic acid. It highlights the fact that α-lipoic acid may have beneficial effects in autoimmune diseases once the immunomodulatory effects can be confirmed by further investigation.
Collapse
|
40
|
Dodson M, de la Vega MR, Cholanians AB, Schmidlin CJ, Chapman E, Zhang DD. Modulating NRF2 in Disease: Timing Is Everything. Annu Rev Pharmacol Toxicol 2019; 59:555-575. [PMID: 30256716 PMCID: PMC6538038 DOI: 10.1146/annurev-pharmtox-010818-021856] [Citation(s) in RCA: 348] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The transcription factor nuclear factor erythroid 2 (NF-E2)-related factor 2 (NRF2) is a central regulator of redox, metabolic, and protein homeostasis that intersects with many other signaling cascades. Although the understanding of the complex nature of NRF2 signaling continues to grow, there is only one therapeutic targeting NRF2 for clinical use, dimethyl fumarate, used for the treatment of multiple sclerosis. The discovery of new therapies is confounded by the fact that NRF2 levels vary significantly depending on physiological and pathological context. Thus, properly timed and targeted manipulation of the NRF2 pathway is critical in creating effective therapeutic regimens. In this review, we summarize the regulation and downstream targets of NRF2. Furthermore, we discuss the role of NRF2 in cancer, neurodegeneration, and diabetes as well as cardiovascular, kidney, and liver disease, with a special emphasis on NRF2-based therapeutics, including those that have made it into clinical trials.
Collapse
Affiliation(s)
- Matthew Dodson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, USA;
| | - Montserrat Rojo de la Vega
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, USA;
| | - Aram B Cholanians
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, USA;
| | - Cody J Schmidlin
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, USA;
| | - Eli Chapman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, USA;
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, USA;
- Arizona Cancer Center, University of Arizona, Tucson, Arizona 85724, USA
| |
Collapse
|
41
|
Singh NK, Rao GN. Emerging role of 12/15-Lipoxygenase (ALOX15) in human pathologies. Prog Lipid Res 2019; 73:28-45. [PMID: 30472260 PMCID: PMC6338518 DOI: 10.1016/j.plipres.2018.11.001] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 02/06/2023]
Abstract
12/15-lipoxygenase (12/15-LOX) is an enzyme, which oxidizes polyunsaturated fatty acids, particularly omega-6 and -3 fatty acids, to generate a number of bioactive lipid metabolites. A large number of studies have revealed the importance of 12/15-LOX role in oxidative and inflammatory responses. The in vitro studies have demonstrated the ability of 12/15-LOX metabolites in the expression of various genes and production of cytokine related to inflammation and resolution of inflammation. The studies with the use of knockout and transgenic animals for 12/15-LOX have further shown its involvement in the pathogenesis of a variety of human diseases, including cardiovascular, renal, neurological and metabolic disorders. This review summarizes our current knowledge on the role of 12/15-LOX in inflammation and various human diseases.
Collapse
Affiliation(s)
- Nikhlesh K Singh
- Department of Physiology, University of Tennessee Health Science Center, 71 S. Manassas Street Memphis, Memphis, TN 38163, USA
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, 71 S. Manassas Street Memphis, Memphis, TN 38163, USA.
| |
Collapse
|
42
|
Keleku-Lukwete N, Suzuki M, Yamamoto M. An Overview of the Advantages of KEAP1-NRF2 System Activation During Inflammatory Disease Treatment. Antioxid Redox Signal 2018; 29:1746-1755. [PMID: 28899203 DOI: 10.1089/ars.2017.7358] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inflammation can be defined as a protective immune response against harmful exogenous and endogenous stimuli. Nevertheless, prolonged or autoimmune inflammatory responses are likely to cause pathological states that are associated with a production of inflammation-associated molecules along with reactive oxygen species (ROS). Kelch-like ECH-associated protein 1-nuclear factor erythroid 2-related factor 2 (KEAP1-NRF2) signaling provides a cell protection mechanism against oxidative insults when endogenous stress defense mechanisms are imbalanced. Understanding the roles of the KEAP1-NRF2 system in inflammation caused by various types of stimuli may aid in the development of new therapies. Recent Advances: There have been tremendous advances in understanding the mechanism by which the KEAP1-NRF2 pathway abrogates inflammation. In addition to the well-established ROS-dependent pathway, recent studies have provided evidence of the direct repression of the transcription of pro-inflammatory cytokine genes, such as IL1b and IL6 (encoding Interleukin-1β and Interleukin-6, respectively). Further, the expanding functions of NRF2 have elicited interest in the development of therapeutic modalities for inflammatory diseases, including multiple sclerosis and sickle cell disease. Critical Issues and Future Directions: Despite progress in the understanding of molecular mechanisms supporting the roles that NRF2 plays during inflammation, the relationship between NRF2 and other transcription factors and mediators of inflammation still remains ambiguous. Further studies are required to address the effects of functional polymorphisms in KEAP1 and NRF2 that modify susceptibility to specific disease-related inflammation. Comprehensive analyses in the future should explore tissue- or cell-type specific NRF2 activation to elaborate effects of NRF2 induction. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Nadine Keleku-Lukwete
- 1 Department of Medical Biochemistry, Tohoku University Graduate School of Medicine , Sendai, Japan
| | - Mikiko Suzuki
- 2 Center for Radioisotope Sciences, Tohoku University Graduate School of Medicine , Sendai, Japan
| | - Masayuki Yamamoto
- 1 Department of Medical Biochemistry, Tohoku University Graduate School of Medicine , Sendai, Japan
| |
Collapse
|
43
|
The regulatory role of Nrf2 in antioxidants phase2 enzymes and IL-17A expression in patients with ulcerative colitis. Pathol Res Pract 2018; 214:1149-1155. [DOI: 10.1016/j.prp.2018.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/27/2018] [Accepted: 06/06/2018] [Indexed: 12/14/2022]
|
44
|
Wei HJ, Gupta A, Kao WM, Almudallal O, Letterio JJ, Pareek TK. Nrf2-mediated metabolic reprogramming of tolerogenic dendritic cells is protective against aplastic anemia. J Autoimmun 2018; 94:33-44. [PMID: 30025621 DOI: 10.1016/j.jaut.2018.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 02/06/2023]
Abstract
Aplastic anemia (AA) is a rare disease characterized by immune-mediated suppression of bone marrow (BM) function resulting in progressive pancytopenia. Stem cell transplant and immunosuppressive therapies remain the major treatment choices for AA patients with limited benefit and undesired side effects. Here, we report for the first time the therapeutic utility of Nrf2-induced metabolically reprogrammed tolerogenic dendritic cells (TolDCs) in the suppression of AA in mice. CDDO-DFPA-induced Nrf2 activation resulted in a TolDC phenotype as evidenced by induction of IL-4, IL-10, and TGF-β and suppression of TNFα, IFN-γ, and IL-12 levels in Nrf2+/+ but not Nrf2-/- DCs. Cellular metabolism holds the key to determining DC immunogenic or tolerogenic cell fate. Although immature and LPS-induced (mature) Nrf2+/+ and Nrf2-/- DCs exhibited similar patterns of oxidative phosphorylation (OXPHOS) and glycolysis, only Nrf2+/+ DCs partially restored OXPHOS and reduced glycolysis during CDDO-DFPA-induced Nrf2 activation. These results were further confirmed by altered glucose uptake and lactate production. We observed significantly enhanced HO-1 and reduced iNOS/NO production in Nrf2+/+ compared to Nrf2-/- DCs, suggesting Nrf2-dependent TolDC induction is linked to suppression of the inhibitory effect of NO on OXPHOS. Furthermore, Nrf2-/- DCs demonstrated higher antigen-specific T cell proliferation. Lastly, TolDC administration improved hematopoiesis and survival in AA murine model, with decreased Th17 and increased Treg cells. Concomitantly, immunohistochemical analysis of AA patient BM biopsies displayed higher DCs, T cells, and iNOS expression accompanied with lower Nrf2 and HO-1 expression when compared to normal subjects. These results provide new insight into the therapeutic utility of metabolically reprogrammed TolDCs by CDDO-DFPA induced Nrf2 signaling in the treatment of AA.
Collapse
Affiliation(s)
- Hsi-Ju Wei
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; The Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ashish Gupta
- The Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Pediatrics, Division of Pediatric Hematology/Oncology, Case Western Reserve University, Cleveland, OH 44106, USA; Angie Fowler Cancer Institute, Rainbow Babies & Children's Hospital, University Hospitals, Cleveland, OH 44106, USA
| | - Wei-Ming Kao
- The Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Omar Almudallal
- The Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - John J Letterio
- The Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Pediatrics, Division of Pediatric Hematology/Oncology, Case Western Reserve University, Cleveland, OH 44106, USA; Angie Fowler Cancer Institute, Rainbow Babies & Children's Hospital, University Hospitals, Cleveland, OH 44106, USA; Celloram Inc., Cleveland, OH 44106, USA.
| | - Tej K Pareek
- The Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Pediatrics, Division of Pediatric Hematology/Oncology, Case Western Reserve University, Cleveland, OH 44106, USA; Angie Fowler Cancer Institute, Rainbow Babies & Children's Hospital, University Hospitals, Cleveland, OH 44106, USA; Celloram Inc., Cleveland, OH 44106, USA.
| |
Collapse
|
45
|
Cuadrado A, Manda G, Hassan A, Alcaraz MJ, Barbas C, Daiber A, Ghezzi P, León R, López MG, Oliva B, Pajares M, Rojo AI, Robledinos-Antón N, Valverde AM, Guney E, Schmidt HHHW. Transcription Factor NRF2 as a Therapeutic Target for Chronic Diseases: A Systems Medicine Approach. Pharmacol Rev 2018; 70:348-383. [PMID: 29507103 DOI: 10.1124/pr.117.014753] [Citation(s) in RCA: 457] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Systems medicine has a mechanism-based rather than a symptom- or organ-based approach to disease and identifies therapeutic targets in a nonhypothesis-driven manner. In this work, we apply this to transcription factor nuclear factor (erythroid-derived 2)-like 2 (NRF2) by cross-validating its position in a protein-protein interaction network (the NRF2 interactome) functionally linked to cytoprotection in low-grade stress, chronic inflammation, metabolic alterations, and reactive oxygen species formation. Multiscale network analysis of these molecular profiles suggests alterations of NRF2 expression and activity as a common mechanism in a subnetwork of diseases (the NRF2 diseasome). This network joins apparently heterogeneous phenotypes such as autoimmune, respiratory, digestive, cardiovascular, metabolic, and neurodegenerative diseases, along with cancer. Importantly, this approach matches and confirms in silico several applications for NRF2-modulating drugs validated in vivo at different phases of clinical development. Pharmacologically, their profile is as diverse as electrophilic dimethyl fumarate, synthetic triterpenoids like bardoxolone methyl and sulforaphane, protein-protein or DNA-protein interaction inhibitors, and even registered drugs such as metformin and statins, which activate NRF2 and may be repurposed for indications within the NRF2 cluster of disease phenotypes. Thus, NRF2 represents one of the first targets fully embraced by classic and systems medicine approaches to facilitate both drug development and drug repurposing by focusing on a set of disease phenotypes that appear to be mechanistically linked. The resulting NRF2 drugome may therefore rapidly advance several surprising clinical options for this subset of chronic diseases.
Collapse
Affiliation(s)
- Antonio Cuadrado
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM (Autonomous University of Madrid)-CSIC (Centro Superior de Investigaciones Biomédicas), Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., M.P., A.I.R., N.R.-A.); Victor Babes National Institute of Pathology, Bucharest, Romania (A.C., G.M.); Department Pharmacology and Personalized Medicine, School for Cardiovascular Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastrich, The Netherlands (A.H., H.H.H.W.S.); Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Valencia, Spain (M.J.A.); Centre for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad CEU (Centro de Estudios Universitarios)-San Pablo, Madrid, Spain (C.B.); Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Brighton and Sussex Medical School, Brighton, United Kingdom (P.G.); Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (R.L., M.G.L.); Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain (R.L., M.G.L.); GRIB (Unidad de Investigación en Informática Biomédica), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (B.O., E.G.); Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC and Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain (A.M.V.); and Structural Bioinformatics Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (E.G.)
| | - Gina Manda
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM (Autonomous University of Madrid)-CSIC (Centro Superior de Investigaciones Biomédicas), Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., M.P., A.I.R., N.R.-A.); Victor Babes National Institute of Pathology, Bucharest, Romania (A.C., G.M.); Department Pharmacology and Personalized Medicine, School for Cardiovascular Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastrich, The Netherlands (A.H., H.H.H.W.S.); Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Valencia, Spain (M.J.A.); Centre for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad CEU (Centro de Estudios Universitarios)-San Pablo, Madrid, Spain (C.B.); Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Brighton and Sussex Medical School, Brighton, United Kingdom (P.G.); Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (R.L., M.G.L.); Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain (R.L., M.G.L.); GRIB (Unidad de Investigación en Informática Biomédica), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (B.O., E.G.); Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC and Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain (A.M.V.); and Structural Bioinformatics Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (E.G.)
| | - Ahmed Hassan
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM (Autonomous University of Madrid)-CSIC (Centro Superior de Investigaciones Biomédicas), Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., M.P., A.I.R., N.R.-A.); Victor Babes National Institute of Pathology, Bucharest, Romania (A.C., G.M.); Department Pharmacology and Personalized Medicine, School for Cardiovascular Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastrich, The Netherlands (A.H., H.H.H.W.S.); Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Valencia, Spain (M.J.A.); Centre for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad CEU (Centro de Estudios Universitarios)-San Pablo, Madrid, Spain (C.B.); Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Brighton and Sussex Medical School, Brighton, United Kingdom (P.G.); Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (R.L., M.G.L.); Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain (R.L., M.G.L.); GRIB (Unidad de Investigación en Informática Biomédica), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (B.O., E.G.); Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC and Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain (A.M.V.); and Structural Bioinformatics Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (E.G.)
| | - María José Alcaraz
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM (Autonomous University of Madrid)-CSIC (Centro Superior de Investigaciones Biomédicas), Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., M.P., A.I.R., N.R.-A.); Victor Babes National Institute of Pathology, Bucharest, Romania (A.C., G.M.); Department Pharmacology and Personalized Medicine, School for Cardiovascular Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastrich, The Netherlands (A.H., H.H.H.W.S.); Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Valencia, Spain (M.J.A.); Centre for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad CEU (Centro de Estudios Universitarios)-San Pablo, Madrid, Spain (C.B.); Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Brighton and Sussex Medical School, Brighton, United Kingdom (P.G.); Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (R.L., M.G.L.); Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain (R.L., M.G.L.); GRIB (Unidad de Investigación en Informática Biomédica), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (B.O., E.G.); Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC and Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain (A.M.V.); and Structural Bioinformatics Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (E.G.)
| | - Coral Barbas
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM (Autonomous University of Madrid)-CSIC (Centro Superior de Investigaciones Biomédicas), Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., M.P., A.I.R., N.R.-A.); Victor Babes National Institute of Pathology, Bucharest, Romania (A.C., G.M.); Department Pharmacology and Personalized Medicine, School for Cardiovascular Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastrich, The Netherlands (A.H., H.H.H.W.S.); Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Valencia, Spain (M.J.A.); Centre for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad CEU (Centro de Estudios Universitarios)-San Pablo, Madrid, Spain (C.B.); Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Brighton and Sussex Medical School, Brighton, United Kingdom (P.G.); Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (R.L., M.G.L.); Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain (R.L., M.G.L.); GRIB (Unidad de Investigación en Informática Biomédica), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (B.O., E.G.); Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC and Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain (A.M.V.); and Structural Bioinformatics Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (E.G.)
| | - Andreas Daiber
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM (Autonomous University of Madrid)-CSIC (Centro Superior de Investigaciones Biomédicas), Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., M.P., A.I.R., N.R.-A.); Victor Babes National Institute of Pathology, Bucharest, Romania (A.C., G.M.); Department Pharmacology and Personalized Medicine, School for Cardiovascular Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastrich, The Netherlands (A.H., H.H.H.W.S.); Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Valencia, Spain (M.J.A.); Centre for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad CEU (Centro de Estudios Universitarios)-San Pablo, Madrid, Spain (C.B.); Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Brighton and Sussex Medical School, Brighton, United Kingdom (P.G.); Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (R.L., M.G.L.); Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain (R.L., M.G.L.); GRIB (Unidad de Investigación en Informática Biomédica), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (B.O., E.G.); Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC and Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain (A.M.V.); and Structural Bioinformatics Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (E.G.)
| | - Pietro Ghezzi
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM (Autonomous University of Madrid)-CSIC (Centro Superior de Investigaciones Biomédicas), Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., M.P., A.I.R., N.R.-A.); Victor Babes National Institute of Pathology, Bucharest, Romania (A.C., G.M.); Department Pharmacology and Personalized Medicine, School for Cardiovascular Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastrich, The Netherlands (A.H., H.H.H.W.S.); Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Valencia, Spain (M.J.A.); Centre for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad CEU (Centro de Estudios Universitarios)-San Pablo, Madrid, Spain (C.B.); Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Brighton and Sussex Medical School, Brighton, United Kingdom (P.G.); Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (R.L., M.G.L.); Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain (R.L., M.G.L.); GRIB (Unidad de Investigación en Informática Biomédica), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (B.O., E.G.); Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC and Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain (A.M.V.); and Structural Bioinformatics Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (E.G.)
| | - Rafael León
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM (Autonomous University of Madrid)-CSIC (Centro Superior de Investigaciones Biomédicas), Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., M.P., A.I.R., N.R.-A.); Victor Babes National Institute of Pathology, Bucharest, Romania (A.C., G.M.); Department Pharmacology and Personalized Medicine, School for Cardiovascular Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastrich, The Netherlands (A.H., H.H.H.W.S.); Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Valencia, Spain (M.J.A.); Centre for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad CEU (Centro de Estudios Universitarios)-San Pablo, Madrid, Spain (C.B.); Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Brighton and Sussex Medical School, Brighton, United Kingdom (P.G.); Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (R.L., M.G.L.); Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain (R.L., M.G.L.); GRIB (Unidad de Investigación en Informática Biomédica), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (B.O., E.G.); Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC and Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain (A.M.V.); and Structural Bioinformatics Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (E.G.)
| | - Manuela G López
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM (Autonomous University of Madrid)-CSIC (Centro Superior de Investigaciones Biomédicas), Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., M.P., A.I.R., N.R.-A.); Victor Babes National Institute of Pathology, Bucharest, Romania (A.C., G.M.); Department Pharmacology and Personalized Medicine, School for Cardiovascular Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastrich, The Netherlands (A.H., H.H.H.W.S.); Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Valencia, Spain (M.J.A.); Centre for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad CEU (Centro de Estudios Universitarios)-San Pablo, Madrid, Spain (C.B.); Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Brighton and Sussex Medical School, Brighton, United Kingdom (P.G.); Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (R.L., M.G.L.); Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain (R.L., M.G.L.); GRIB (Unidad de Investigación en Informática Biomédica), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (B.O., E.G.); Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC and Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain (A.M.V.); and Structural Bioinformatics Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (E.G.)
| | - Baldo Oliva
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM (Autonomous University of Madrid)-CSIC (Centro Superior de Investigaciones Biomédicas), Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., M.P., A.I.R., N.R.-A.); Victor Babes National Institute of Pathology, Bucharest, Romania (A.C., G.M.); Department Pharmacology and Personalized Medicine, School for Cardiovascular Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastrich, The Netherlands (A.H., H.H.H.W.S.); Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Valencia, Spain (M.J.A.); Centre for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad CEU (Centro de Estudios Universitarios)-San Pablo, Madrid, Spain (C.B.); Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Brighton and Sussex Medical School, Brighton, United Kingdom (P.G.); Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (R.L., M.G.L.); Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain (R.L., M.G.L.); GRIB (Unidad de Investigación en Informática Biomédica), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (B.O., E.G.); Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC and Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain (A.M.V.); and Structural Bioinformatics Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (E.G.)
| | - Marta Pajares
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM (Autonomous University of Madrid)-CSIC (Centro Superior de Investigaciones Biomédicas), Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., M.P., A.I.R., N.R.-A.); Victor Babes National Institute of Pathology, Bucharest, Romania (A.C., G.M.); Department Pharmacology and Personalized Medicine, School for Cardiovascular Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastrich, The Netherlands (A.H., H.H.H.W.S.); Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Valencia, Spain (M.J.A.); Centre for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad CEU (Centro de Estudios Universitarios)-San Pablo, Madrid, Spain (C.B.); Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Brighton and Sussex Medical School, Brighton, United Kingdom (P.G.); Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (R.L., M.G.L.); Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain (R.L., M.G.L.); GRIB (Unidad de Investigación en Informática Biomédica), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (B.O., E.G.); Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC and Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain (A.M.V.); and Structural Bioinformatics Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (E.G.)
| | - Ana I Rojo
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM (Autonomous University of Madrid)-CSIC (Centro Superior de Investigaciones Biomédicas), Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., M.P., A.I.R., N.R.-A.); Victor Babes National Institute of Pathology, Bucharest, Romania (A.C., G.M.); Department Pharmacology and Personalized Medicine, School for Cardiovascular Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastrich, The Netherlands (A.H., H.H.H.W.S.); Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Valencia, Spain (M.J.A.); Centre for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad CEU (Centro de Estudios Universitarios)-San Pablo, Madrid, Spain (C.B.); Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Brighton and Sussex Medical School, Brighton, United Kingdom (P.G.); Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (R.L., M.G.L.); Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain (R.L., M.G.L.); GRIB (Unidad de Investigación en Informática Biomédica), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (B.O., E.G.); Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC and Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain (A.M.V.); and Structural Bioinformatics Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (E.G.)
| | - Natalia Robledinos-Antón
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM (Autonomous University of Madrid)-CSIC (Centro Superior de Investigaciones Biomédicas), Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., M.P., A.I.R., N.R.-A.); Victor Babes National Institute of Pathology, Bucharest, Romania (A.C., G.M.); Department Pharmacology and Personalized Medicine, School for Cardiovascular Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastrich, The Netherlands (A.H., H.H.H.W.S.); Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Valencia, Spain (M.J.A.); Centre for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad CEU (Centro de Estudios Universitarios)-San Pablo, Madrid, Spain (C.B.); Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Brighton and Sussex Medical School, Brighton, United Kingdom (P.G.); Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (R.L., M.G.L.); Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain (R.L., M.G.L.); GRIB (Unidad de Investigación en Informática Biomédica), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (B.O., E.G.); Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC and Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain (A.M.V.); and Structural Bioinformatics Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (E.G.)
| | - Angela M Valverde
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM (Autonomous University of Madrid)-CSIC (Centro Superior de Investigaciones Biomédicas), Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., M.P., A.I.R., N.R.-A.); Victor Babes National Institute of Pathology, Bucharest, Romania (A.C., G.M.); Department Pharmacology and Personalized Medicine, School for Cardiovascular Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastrich, The Netherlands (A.H., H.H.H.W.S.); Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Valencia, Spain (M.J.A.); Centre for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad CEU (Centro de Estudios Universitarios)-San Pablo, Madrid, Spain (C.B.); Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Brighton and Sussex Medical School, Brighton, United Kingdom (P.G.); Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (R.L., M.G.L.); Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain (R.L., M.G.L.); GRIB (Unidad de Investigación en Informática Biomédica), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (B.O., E.G.); Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC and Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain (A.M.V.); and Structural Bioinformatics Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (E.G.)
| | - Emre Guney
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM (Autonomous University of Madrid)-CSIC (Centro Superior de Investigaciones Biomédicas), Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., M.P., A.I.R., N.R.-A.); Victor Babes National Institute of Pathology, Bucharest, Romania (A.C., G.M.); Department Pharmacology and Personalized Medicine, School for Cardiovascular Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastrich, The Netherlands (A.H., H.H.H.W.S.); Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Valencia, Spain (M.J.A.); Centre for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad CEU (Centro de Estudios Universitarios)-San Pablo, Madrid, Spain (C.B.); Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Brighton and Sussex Medical School, Brighton, United Kingdom (P.G.); Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (R.L., M.G.L.); Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain (R.L., M.G.L.); GRIB (Unidad de Investigación en Informática Biomédica), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (B.O., E.G.); Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC and Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain (A.M.V.); and Structural Bioinformatics Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (E.G.)
| | - Harald H H W Schmidt
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM (Autonomous University of Madrid)-CSIC (Centro Superior de Investigaciones Biomédicas), Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., M.P., A.I.R., N.R.-A.); Victor Babes National Institute of Pathology, Bucharest, Romania (A.C., G.M.); Department Pharmacology and Personalized Medicine, School for Cardiovascular Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastrich, The Netherlands (A.H., H.H.H.W.S.); Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Valencia, Spain (M.J.A.); Centre for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad CEU (Centro de Estudios Universitarios)-San Pablo, Madrid, Spain (C.B.); Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Brighton and Sussex Medical School, Brighton, United Kingdom (P.G.); Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (R.L., M.G.L.); Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain (R.L., M.G.L.); GRIB (Unidad de Investigación en Informática Biomédica), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (B.O., E.G.); Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC and Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain (A.M.V.); and Structural Bioinformatics Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (E.G.)
| |
Collapse
|
46
|
Yarosz EL, Chang CH. The Role of Reactive Oxygen Species in Regulating T Cell-mediated Immunity and Disease. Immune Netw 2018; 18:e14. [PMID: 29503744 PMCID: PMC5833121 DOI: 10.4110/in.2018.18.e14] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 02/15/2018] [Accepted: 02/19/2018] [Indexed: 12/28/2022] Open
Abstract
T lymphocytes rely on several metabolic processes to produce the high amounts of energy and metabolites needed to drive clonal expansion and the development of effector functions. However, many of these pathways result in the production of reactive oxygen species (ROS), which have canonically been thought of as cytotoxic agents due to their ability to damage DNA and other subcellular structures. Interestingly, ROS has recently emerged as a critical second messenger for T cell receptor signaling and T cell activation, but the sensitivity of different T cell subsets to ROS varies. Therefore, the tight regulation of ROS production by cellular antioxidant pathways is critical to maintaining proper signal transduction without compromising the integrity of the cell. This review intends to detail the common metabolic sources of intracellular ROS and the mechanisms by which ROS contributes to the development of T cell-mediated immunity. The regulation of ROS levels by the glutathione pathway and the Nrf2-Keap1-Cul3 trimeric complex will be discussed. Finally, T cell-mediated autoimmune diseases exacerbated by defects in ROS regulation will be further examined in order to identify potential therapeutic interventions for these disorders.
Collapse
Affiliation(s)
- Emily L Yarosz
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Cheong-Hee Chang
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
47
|
Nishi T, Yamamoto Y, Yamagishi N, Iguchi M, Tamai H, Ito T, Tsuruo Y, Ichinose M, Kitano M, Ueyama T. Lansoprazole prevents the progression of liver fibrosis in non-alcoholic steatohepatitis model rats. ACTA ACUST UNITED AC 2018; 70:383-392. [PMID: 29355950 DOI: 10.1111/jphp.12870] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/25/2017] [Indexed: 12/31/2022]
Abstract
OBJECTIVES We previously demonstrated that lansoprazole provided hepatoprotection in a drug-induced hepatitis animal model partially through the Nrf2/HO-1 pathway. Here, we examined whether lansoprazole could also provide hepatoprotection in a rat model of non-alcoholic steatohepatitis (NASH). METHODS Six-week-old rats were fed a normal chow or a choline-deficient amino acid-defined (CDAA) diet to establish a rat model of NASH. The groups fed a CDAA diet for 5 weeks were subcutaneously administered either a vehicle or a lansoprazole suspension for 4 weeks beginning the second week of the experiment. KEY FINDINGS Bridging fibrosis was observed in the livers of almost all the NASH model rats (six of seven), but it was not always observed in NASH model rats (one of seven) continuously administered lansoprazole. The serum aspartate aminotransferase level elevated by the CDAA diet was significantly decreased following lansoprazole administration. Lansoprazole also increased the expression of Nrf2, but not HO-1, in the liver of NASH model rats. Lansoprazole decreased the level of activated TGF-β protein. Furthermore, interleukin-6 gene and protein expression were decreased. CONCLUSIONS Lansoprazole inhibits hepatic fibrogenesis, at least during the early stages, in CDAA diet-induced NASH model rats. The mechanisms might be associated with cytokine suppression but not the inhibition of reactive oxygen species.
Collapse
Affiliation(s)
- Toshio Nishi
- Department of Anatomy and Cell Biology, Wakayama Medical University Graduate School of Medicine, Wakayama, Japan
| | - Yuta Yamamoto
- Department of Anatomy and Cell Biology, Wakayama Medical University Graduate School of Medicine, Wakayama, Japan
| | - Naoko Yamagishi
- Department of Anatomy and Cell Biology, Wakayama Medical University Graduate School of Medicine, Wakayama, Japan
| | - Mikitaka Iguchi
- 2nd Department of Internal Medicine, Wakayama Medical University Graduate School of Medicine, Wakayama, Japan
| | - Hideyuki Tamai
- 2nd Department of Internal Medicine, Wakayama Medical University Graduate School of Medicine, Wakayama, Japan
| | - Takao Ito
- Department of Anatomy and Cell Biology, Wakayama Medical University Graduate School of Medicine, Wakayama, Japan
| | - Yoshihiro Tsuruo
- Department of Anatomy and Cell Biology, Wakayama Medical University Graduate School of Medicine, Wakayama, Japan.,Department of Anatomy and Cell Biology, Tokushima University Graduate School of Medical Science, Tokushima, Japan
| | - Masao Ichinose
- 2nd Department of Internal Medicine, Wakayama Medical University Graduate School of Medicine, Wakayama, Japan
| | - Masayuki Kitano
- 2nd Department of Internal Medicine, Wakayama Medical University Graduate School of Medicine, Wakayama, Japan
| | - Takashi Ueyama
- Department of Anatomy and Cell Biology, Wakayama Medical University Graduate School of Medicine, Wakayama, Japan
| |
Collapse
|
48
|
A unique tolerizing dendritic cell phenotype induced by the synthetic triterpenoid CDDO-DFPA (RTA-408) is protective against EAE. Sci Rep 2017; 7:9886. [PMID: 28851867 PMCID: PMC5575165 DOI: 10.1038/s41598-017-06907-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/20/2017] [Indexed: 12/15/2022] Open
Abstract
Tolerogenic dendritic cells (DCs) have emerged as relevant clinical targets for the treatment of multiple sclerosis and other autoimmune disorders. However, the pathways essential for conferring the tolerizing DC phenotype and optimal methods for their induction remain an intense area of research. Triterpenoids are a class of small molecules with potent immunomodulatory activity linked to activation of Nrf2 target genes, and can also suppress the manifestations of experimental autoimmune encephalomyelitis (EAE). Here we demonstrate that DCs are a principal target of the immune modulating activity of triterpenoids in the context of EAE. Exposure of DCs to the new class of triterpenoid CDDO-DFPA (RTA-408) results in the induction of HO-1, TGF-β, and IL-10, as well as the repression of NF-κB, EDN-1 and pro-inflammatory cytokines IL-6, IL-12, and TNFα. CDDO-DFPA exposed DCs retained expression of surface ligands and capacity for antigen uptake but were impaired to induce Th1 and Th17 cells. TGF-β was identified as the factor mediating suppression of T cell proliferation by CDDO-DFPA pretreated DCs, which failed to passively induce EAE. These findings demonstrate the potential therapeutic utility of CDDO-DFPA in the treatment and prevention of autoimmune disorders, and its capacity to induce tolerance via modulation of the DC phenotype.
Collapse
|
49
|
Are Astrocytes the Predominant Cell Type for Activation of Nrf2 in Aging and Neurodegeneration? Antioxidants (Basel) 2017; 6:antiox6030065. [PMID: 28820437 PMCID: PMC5618093 DOI: 10.3390/antiox6030065] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/11/2017] [Accepted: 08/16/2017] [Indexed: 12/29/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that regulates hundreds of antioxidant genes, and is activated in response to oxidative stress. Given that many neurodegenerative diseases including Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, Huntington’s disease and multiple sclerosis are characterised by oxidative stress, Nrf2 is commonly activated in these diseases. Evidence demonstrates that Nrf2 activity is repressed in neurons in vitro, and only cultured astrocytes respond strongly to Nrf2 inducers, leading to the interpretation that Nrf2 signalling is largely restricted to astrocytes. However, Nrf2 activity can be observed in neurons in post-mortem brain tissue and animal models of disease. Thus this interpretation may be false, and a detailed analysis of the cell type expression of Nrf2 in neurodegenerative diseases is required. This review describes the evidence for Nrf2 activation in each cell type in prominent neurodegenerative diseases and normal aging in human brain and animal models of neurodegeneration, the response to pharmacological and genetic modulation of Nrf2, and clinical trials involving Nrf2-modifying drugs.
Collapse
|
50
|
Role of pterostilbene in attenuating immune mediated devastation of pancreatic beta cells via Nrf2 signaling cascade. J Nutr Biochem 2017; 44:11-21. [DOI: 10.1016/j.jnutbio.2017.02.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/01/2017] [Accepted: 02/16/2017] [Indexed: 01/12/2023]
|