1
|
Donison N, Palik J, Volkening K, Strong MJ. Cellular and molecular mechanisms of pathological tau phosphorylation in traumatic brain injury: implications for chronic traumatic encephalopathy. Mol Neurodegener 2025; 20:56. [PMID: 40349043 PMCID: PMC12065185 DOI: 10.1186/s13024-025-00842-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/14/2025] [Indexed: 05/14/2025] Open
Abstract
Tau protein plays a critical role in the physiological functioning of the central nervous system by providing structural integrity to the cytoskeletal architecture of neurons and glia through microtubule assembly and stabilization. Under certain pathological conditions, tau is aberrantly phosphorylated and aggregates into neurotoxic fibrillary tangles. The aggregation and cell-to-cell propagation of pathological tau leads to the progressive deterioration of the nervous system. The clinical entity of traumatic brain injury (TBI) ranges from mild to severe and can promote tau aggregation by inducing cellular mechanisms and signalling pathways that increase tau phosphorylation and aggregation. Chronic traumatic encephalopathy (CTE), which is a consequence of repetitive TBI, is a unique tauopathy characterized by pathological tau aggregates located at the depths of the sulci and surrounding blood vessels. The mechanisms leading to increased tau phosphorylation and aggregation in CTE remain to be fully defined but are likely the result of the primary and secondary injury sequelae associated with TBI. The primary injury includes physical and mechanical damage resulting from the head impact and accompanying forces that cause blood-brain barrier disruption and axonal shearing, which primes the central nervous system to be more vulnerable to the subsequent secondary injury mechanisms. A complex interplay of neuroinflammation, oxidative stress, excitotoxicity, and mitochondrial dysfunction activate kinase and cell death pathways, increasing tau phosphorylation, aggregation and neurodegeneration. In this review, we explore the most recent insights into the mechanisms of tau phosphorylation associated with TBI and propose how multiple cellular pathways converge on tau phosphorylation, which may contribute to CTE progression.
Collapse
Affiliation(s)
- Neil Donison
- Molecular Medicine Group, Robarts Research Institute, Western University, London, ON, Canada
- Neuroscience Graduate Program, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Jacqueline Palik
- Molecular Medicine Group, Robarts Research Institute, Western University, London, ON, Canada
| | - Kathryn Volkening
- Molecular Medicine Group, Robarts Research Institute, Western University, London, ON, Canada
- Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Michael J Strong
- Molecular Medicine Group, Robarts Research Institute, Western University, London, ON, Canada.
- Neuroscience Graduate Program, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| |
Collapse
|
2
|
Lin J, Li H, Jiang L, Li J. Novel strategies for targeting tau oligomers in neurodegenerative diseases. J Neurol 2025; 272:383. [PMID: 40335778 DOI: 10.1007/s00415-025-13117-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/09/2025]
Abstract
Tau protein is a soluble microtubule-associated protein enriched in neurons, is mainly distributed in the central nervous system, and is responsible for stabilizing neurons. Tau maintains nerve cell morphology and internal transport by binding to normal microtubules. In neurodegenerative diseases, such as Alzheimer's disease (AD), tau proteins undergo aberrant phosphorylation, resulting in their removal from microtubules and the formation of neurofibrillary tangles (NFTs), which are key pathological features. In contrast to the late formation of non-soluble NFTs, early, smaller, soluble tau oligomers (tauO) with disseminated toxicity are considered necessary in neurodegenerative disorders, such as the primary form of tau toxicity in the AD process. Although an increasing number of studies are focusing on tauO, there are still problems to be solved, mainly concerning the molecular and inhibitory mechanisms of tauO toxicity. In this paper, we summarize the new strategies for the molecular mechanisms of tauO toxicity, detection methods, and interventions in the last five years. An outlook on these new strategies and the challenges that may be foreseen is presented to provide new directions for future applications in the clinical treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jing Lin
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, 410000, Hunan, China
| | - Hong Li
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, 410000, Hunan, China
| | - Lingxia Jiang
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, 410000, Hunan, China
| | - Jian Li
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, 410000, Hunan, China.
| |
Collapse
|
3
|
Yenkoyan KB, Kotova MM, Apukhtin KV, Galstyan DS, Amstislavskaya TG, Strekalova T, de Abreu MS, Chavushyan VA, Lim LW, Yang L, Rosemberg DD, Kalueff AV. Experimental modeling of Alzheimer's disease: Translational lessons from cross-taxon analyses. Alzheimers Dement 2025; 21:e70273. [PMID: 40420360 PMCID: PMC12106051 DOI: 10.1002/alz.70273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/02/2025] [Accepted: 04/21/2025] [Indexed: 05/28/2025]
Abstract
Alzheimer's disease (AD) is a severely debilitating neurodegenerative disease with a rapidly increasing global prevalence, poorly understood causes, and no efficient treatments. Experimental models are valuable for studying AD pathogenesis, including amyloid beta and tau accumulation, synaptic dysfunction, and neuroinflammation. While no model fully reproduces the disease, we take an evolutionary biology approach to discuss available models across taxa, from mammals (rodents, primates) to zebrafish, Drosophila melanogaster, and Caenorhabditis elegans. Evaluating their strengths and limitations provides insight into disease mechanisms and may refine research strategies for improved diagnostics and therapeutic screening. Traditional models have significantly contributed to AD research, yet their translational limitations highlight the need for physiologically relevant alternatives. Integrating humanized rodent models, zebrafish, organoids, and induced pluripotent stem cell-based systems-along with advances in bioengineering and genetic editing-may offer a more comprehensive framework to bridge the gap between preclinical research and clinical application. HIGHLIGHTS: Experimental models across rodents, primates, zebrafish, fruit flies, and worms provide key insights into Alzheimer's disease (AD). Cross-taxon comparisons assess strengths and weaknesses in AD models. Evolutionary biology approaches refine experimental strategies for AD research. Diverse animal models improve understanding of AD pathogenesis. Cross-species models enhance diagnostics and therapeutic strategy development.
Collapse
Affiliation(s)
- Konstantin B. Yenkoyan
- Neuroscience Laboratory, COBRAIN CenterYerevan State Medical University after M. HeratsiYerevanArmenia
| | - Maria M. Kotova
- Neuroscience ProgramSirius University of Science and TechnologySochiRussia
| | - Kirill V. Apukhtin
- Neuroscience ProgramSirius University of Science and TechnologySochiRussia
| | - David S. Galstyan
- Institute of Translational BiomedicineSt. Petersburg State UniversitySt. PetersburgRussia
- Institute of Experimental Medicine, Almazov National Medical Research CentreMinistry of Healthcare of Russian FederationSt. PetersburgRussia
| | | | | | - Murilo S. de Abreu
- Graduate Program in Health SciencesFederal University of Health Sciences of Porto AlegrePorto AlegreBrazil
| | - Vergine A. Chavushyan
- Neuroscience Laboratory, COBRAIN CenterYerevan State Medical University after M. HeratsiYerevanArmenia
| | - Lee Wei Lim
- Department of Biosciences and Bioinformatics, School of ScienceXi'an Jiaotong‐Liverpool UniversitySuzhouChina
- Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of ScienceXi'an Jiaotong‐Liverpool UniversitySuzhouChina
| | - Longen Yang
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences CenterFederal University of Santa MariaSanta MariaBrazil
- Graduate Program in Biological Sciences: Toxicological BiochemistryFederal University of Santa MariaSanta MariaBrazil
| | - Denis D. Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences CenterFederal University of Santa MariaSanta MariaBrazil
- Graduate Program in Biological Sciences: Toxicological BiochemistryFederal University of Santa MariaSanta MariaBrazil
- The International Zebrafish Neuroscience Research Consortium (ZNRC)SlidellLouisianaUSA
| | - Allan V. Kalueff
- Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of ScienceXi'an Jiaotong‐Liverpool UniversitySuzhouChina
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences CenterFederal University of Santa MariaSanta MariaBrazil
- The International Zebrafish Neuroscience Research Consortium (ZNRC)SlidellLouisianaUSA
| |
Collapse
|
4
|
Yang Y, Ondrejcak T, Hu NW, Klyubin I, Rowan MJ. Divergent disruptive effects of soluble recombinant tau assemblies on synaptic plasticity in vivo. Mol Brain 2025; 18:36. [PMID: 40251677 PMCID: PMC12007380 DOI: 10.1186/s13041-025-01208-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/05/2025] [Indexed: 04/20/2025] Open
Abstract
Neurofibrillary tangles (NFTs), composed of tau protein fibrils, together with brain inflammation and synaptic loss, are neuropathological hallmarks of several neurodegenerative diseases, including Alzheimer's disease. Compared with tau fibrils, more water-soluble assemblies of either recombinant or patient-derived tau have been reported to exert relatively potent rapid synaptotoxic effects, including inhibition of synaptic long-term potentiation (LTP) in the hippocampus. Less is known regarding the action of exogenous tau soluble assemblies on the opposite form of synaptic plasticity, long-term depression (LTD). We compared the synaptic plasticity actions of two relatively standard preparations of soluble recombinant tau assemblies, (i) fibril-derived soluble sonicated tau aggregates (SτAs) and (ii) oligomer-enriched tau (oTau) prepared from monomers. Consistent with previous findings, intracerebroventricular injections of either SτAs or oTau acutely inhibited high-frequency stimulation-induced LTP at CA3-to-CA1 synapses in the anaesthetized rat hippocampus. However, LTP inhibition by oTau, but not SτAs, was prevented by co-injection with the conformational anti-tau monoclonal antibody, TOMA1. Furthermore, in contrast to SτAs, which inhibited LTD, injection of oTau potently facilitated LTD, decreasing the threshold for LTD induction by low-frequency stimulation. To test the role of pro-inflammatory cytokines in mediating the disruptive effects of the two forms of soluble tau on synaptic plasticity we pre-injected etanercept, a decoy receptor for tumor necrosis factor alpha (TNFα). Etanercept reduced the disruption of synaptic plasticity by oTau but not by SτAs. Moreover, injection of exogenous TNFα mimicked the facilitation of LTD by oTau, consistent with a role of this pro-inflammatory cytokine in LTD facilitation.These data provide evidence that preparations of soluble tau containing either monomer- or fibril-derived assemblies disrupt LTP and LTD via different mechanisms. Intriguingly, when oTau and SτAs were applied together, LTD block predominated. Thus, if similar synaptotoxic soluble tau assemblies are present together later during the disease process, as seems likely, inhibition of synaptic weakening processes is predicted to predominate. Equally, reducing TNFα would be expected to be more effective when the monomer-derived soluble tau assemblies are the dominant synaptotoxic species. We conclude that oTau and SτAs provide useful means to explore ways of targeting different synaptotoxic soluble tau species in tauopathies.
Collapse
Affiliation(s)
- Yin Yang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China
- Department of Pharmacology & Therapeutics, School of Medicine, Institute of Neuroscience, Watts Building, Trinity College, Dublin 2, Ireland
| | - Tomas Ondrejcak
- Department of Pharmacology & Therapeutics, School of Medicine, Institute of Neuroscience, Watts Building, Trinity College, Dublin 2, Ireland
| | - Neng-Wei Hu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China.
- Department of Pharmacology & Therapeutics, School of Medicine, Institute of Neuroscience, Watts Building, Trinity College, Dublin 2, Ireland.
| | - Igor Klyubin
- Department of Pharmacology & Therapeutics, School of Medicine, Institute of Neuroscience, Watts Building, Trinity College, Dublin 2, Ireland
| | - Michael J Rowan
- Department of Pharmacology & Therapeutics, School of Medicine, Institute of Neuroscience, Watts Building, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
5
|
Tofigh N, Agahi S, Riazi G, Ghalamkar Moazzam M, Shahpasand K. A Novel Phosphorylated Tau Conformer Implicated in the Tauopathy Pathogenesis of Human Neurons. Biomolecules 2025; 15:585. [PMID: 40305319 PMCID: PMC12025006 DOI: 10.3390/biom15040585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/30/2025] [Accepted: 04/02/2025] [Indexed: 05/02/2025] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with no effective treatments. Hyperphosphorylation of tau protein contributes to neurodegeneration in AD. Previous studies have identified pT231-tau in the cis conformation as an early driver of neurodegeneration in tauopathy models. Here, we identify a novel neurotoxic pT231-tau conformer in human AD neurons, distinct from both cis and trans conformations, which we propose as the gauche pT231-tau conformer. Notably, levels of this conformer were elevated in neurons subjected to aging-associated stress. In order to confirm the stress, we examined p21 accumulation in both human iPSC-derived and mouse cortical neurons under aging stress. Targeted elimination of the gauche pT231-tau conformer mitigated neurodegeneration in human AD cultures. These findings suggest the gauche pT231-tau conformer plays a key role in tau-mediated neurodegeneration and may be a potential therapeutic target for AD.
Collapse
Affiliation(s)
- Nahid Tofigh
- Laboratory of Neuro-Organic Chemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran 13561-457, Iran;
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran;
| | - Sadaf Agahi
- Department of Medicine, School of Medicine, Tehran University of Medical Sciences, Tehran 14768-211, Iran;
| | - Gholamhossein Riazi
- Laboratory of Neuro-Organic Chemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran 13561-457, Iran;
| | - Mahboobeh Ghalamkar Moazzam
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran;
| | - Koorosh Shahpasand
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran;
- Department of Laboratory Medicine and Pathology, Medical School, University of Minnesota, Minneapolis, MN 55414, USA
| |
Collapse
|
6
|
Sandhof CA, Murray HFB, Silva MC, Haggarty SJ. Targeted protein degradation with bifunctional molecules as a novel therapeutic modality for Alzheimer's disease & beyond. Neurotherapeutics 2025; 22:e00499. [PMID: 39638711 PMCID: PMC12047403 DOI: 10.1016/j.neurot.2024.e00499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
Alzheimer's disease (AD) is associated with memory and cognitive impairment caused by progressive degeneration of neurons. The events leading to neuronal death are associated with the accumulation of aggregating proteins in neurons and glia of the affected brain regions, in particular extracellular deposition of amyloid plaques and intracellular formation of tau neurofibrillary tangles. Moreover, the accumulation of pathological tau proteoforms in the brain concurring with disease progression is a key feature of multiple neurodegenerative diseases, called tauopathies, like frontotemporal dementia (FTD) where autosomal dominant mutations in the tau encoding MAPT gene provide clear evidence of a causal role for tau dysfunction. Observations from disease models, post-mortem histology, and clinical evidence have demonstrated that pathological tau undergoes abnormal post-translational modifications, misfolding, oligomerization, changes in solubility, mislocalization, and intercellular spreading. Despite extensive research, there are few disease-modifying or preventative therapeutics for AD and none for other tauopathies. Challenges faced in tauopathy drug development include an insufficient understanding of pathogenic mechanisms of tau proteoforms, limited specificity of agents tested, and inadequate levels of brain exposure, altogether underscoring the need for innovative therapeutic modalities. In recent years, the development of experimental therapeutic modalities, such as targeted protein degradation (TPD) strategies, has shown significant and promising potential to promote the degradation of disease-causing proteins, thereby reducing accumulation and aggregation. Here, we review all modalities of TPD that have been developed to target tau in the context of AD and FTD, as well as other approaches that with innovation could be adapted for tau-specific TPD.
Collapse
Affiliation(s)
- C Alexander Sandhof
- Department of Neurology, Precision Therapeutics Unit, Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Heide F B Murray
- Department of Neurology, Precision Therapeutics Unit, Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - M Catarina Silva
- Department of Neurology, Precision Therapeutics Unit, Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Stephen J Haggarty
- Department of Neurology, Precision Therapeutics Unit, Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
7
|
Puangmalai N, Aday AE, Samples M, Bhatt N, Cascio FL, Marcatti M, Park SJ, Fung L, Jerez C, Penalva LO, Zhao Y, Hao H, Lugano D, Kayed R, Montalbano M. Pathogenic oligomeric Tau alters neuronal RNA processes through the formation of nuclear heteromeric amyloids with RNA-binding protein Musashi1. Prog Neurobiol 2025; 247:102742. [PMID: 40064283 PMCID: PMC11984483 DOI: 10.1016/j.pneurobio.2025.102742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/17/2025]
Abstract
Alzheimer's disease (AD) is marked by cytoplasmic proteinopathies, primarily involving misfolded Tau protein. Pathogenic Tau species, such as soluble oligomers and fibrils, disrupt RNA metabolism, though the mechanisms are unclear. Recent research indicates that RNA has a crucial role in Tau aggregation. Our study builds on this by noting significant co-deposition of RNA-Binding Proteins (RBPs) with Tau in AD and Frontotemporal dementia (FTLD) brains. Using molecular and cellular techniques, we investigate the interaction between RNA dynamics and Tau aggregation, focusing on the localization and aggregation of Tau and RBPs, particularly Musashi (MSI), within neuronal nuclei. Through cyto-fluorometric, biochemical, and cellular assays, we reveal the importance of Tau/RBP interplay in primary cortical neurons expressing wild-type and mutant Tau. Pathogenic Tau oligomers alter MSI protein localization and function, causing cytoplasmic and nuclear aggregation. Mass spectrometry of the MSI1 nuclear interactome in Tau models shows disrupted RNA metabolism pathways, including ribosomal biogenesis, RNA splicing, and protein folding. Moreover, RNA immunoprecipitation assay revealed a remarkable impact of mutant P301L Tau on MSI1 ability to bind RNA targets. These findings highlight potential targets for early neurodegenerative therapeutic interventions.
Collapse
Affiliation(s)
- Nicha Puangmalai
- Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA; Departments of Neurology, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| | - Abbigael E Aday
- Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA; Departments of Neurology, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| | - Madison Samples
- Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA; Departments of Neurology, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| | - Nemil Bhatt
- Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA; Departments of Neurology, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| | - Filippa Lo Cascio
- Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA; Departments of Neurology, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| | - Michela Marcatti
- Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA; Departments of Neurology, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| | - Suhyeorn J Park
- Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA; Departments of Neurology, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| | - Leiana Fung
- Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA; Departments of Neurology, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| | - Cynthia Jerez
- Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA; Departments of Neurology, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| | - Luiz O Penalva
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA; Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA.
| | - Yingxin Zhao
- Department of Internal Medicine, The University of Texas Medical Branch, 301 University Blvd, Galveston TX 77555, USA.
| | - Haiping Hao
- Director, UTMB Next Gen Sequencing Core, Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA.
| | - Doreen Lugano
- KEMRI-Wellcome Trust Research Programme, P.O. Box 230, Kilifi Kenya.
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA; Departments of Neurology, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| | - Mauro Montalbano
- Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA; Departments of Neurology, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| |
Collapse
|
8
|
Szegvari E, Holec SAM, Woerman AL. Limitations and Applications of Rodent Models in Tauopathy and Synucleinopathy Research. J Neurochem 2025; 169:e70021. [PMID: 40026260 PMCID: PMC11874209 DOI: 10.1111/jnc.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/01/2025] [Accepted: 02/08/2025] [Indexed: 03/05/2025]
Abstract
Rodent models that accurately recapitulate key aspects of human disease have long been fundamental to the successful development of clinical interventions. This is greatly underscored in the neurodegenerative disease field, where preclinical testing of anti-prion therapeutics against rodent-adapted prions resulted in the development of small molecules effective against rodent-adapted prions but not against human prions. These findings provided critical lessons for ongoing efforts to develop treatments for patients with neurodegenerative diseases caused by misfolding and accumulation of the proteins tau and α-synuclein, or tauopathies and synucleinopathies, respectively. To avoid the potential pitfalls previously identified in the prion field, this review focuses on rodent models currently available to study tau and α-synuclein disease pathogenesis, emphasizing the strengths and limitations of each with the particular goal of better supporting preclinical research.
Collapse
Affiliation(s)
- Emma Szegvari
- Department of Microbiology, Immunology, & Pathology and Prion Research CenterColorado State UniversityFort CollinsColoradoUSA
| | - Sara A. M. Holec
- Department of Microbiology, Immunology, & Pathology and Prion Research CenterColorado State UniversityFort CollinsColoradoUSA
| | - Amanda L. Woerman
- Department of Microbiology, Immunology, & Pathology and Prion Research CenterColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
9
|
Islam T, Hill E, Abrahamson EE, Servaes S, Smirnov DS, Zeng X, Sehrawat A, Chen Y, Kac PR, Kvartsberg H, Olsson M, Sjons E, Gonzalez-Ortiz F, Therriault J, Tissot C, Del Popolo I, Rahmouni N, Richardson A, Mitchell V, Zetterberg H, Pascoal TA, Lashley T, Wall MJ, Galasko D, Rosa-Neto P, Ikonomovic MD, Blennow K, Karikari TK. Phospho-tau serine-262 and serine-356 as biomarkers of pre-tangle soluble tau assemblies in Alzheimer's disease. Nat Med 2025; 31:574-588. [PMID: 39930142 PMCID: PMC11835754 DOI: 10.1038/s41591-024-03400-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/02/2024] [Indexed: 02/20/2025]
Abstract
Patients with Alzheimer's disease (AD) with little or no quantifiable insoluble brain tau neurofibrillary tangle (NFT) pathology demonstrate stronger clinical benefits of therapies than those with advanced NFTs. The formation of NFTs can be prevented by targeting the intermediate soluble tau assemblies (STAs). However, biochemical understanding and biomarkers of STAs are lacking. We show that Tris-buffered saline-soluble tau aggregates from autopsy-verified AD brain tissues include the core sequence ~tau258-368. In neuropathological assessments, antibodies against the phosphorylation sites serine-262 and serine-356 within the STA core almost exclusively stained granular (that is, prefibrillar) tau aggregates in pre-NFTs while antibodies against phosphorylation at serine-202 and threonine-205 and threonine-231, outside the STA core, stained the entire spectrum of tau aggregates in pre-NFTs and mature NFTs, dystrophic neurites and neuropil threads in the hippocampus. Functionally, a recombinantly produced STA core peptide robustly altered neuronal excitability and synaptic transmission in mouse hippocampal brain slices. Furthermore, we developed a cerebrospinal fluid assay that differentiated STAs in AD from non-AD tauopathies, correlated with the severity of NFT burden and cognitive decline independently of amyloid beta deposition, and with tau positron emission tomography uptake across Braak NFT stages. Together, our findings inform about the status of early-stage tau aggregation, reveal aggregation-relevant phosphorylation epitopes in tau and offer a diagnostic biomarker and targeted therapeutic opportunities for AD.
Collapse
Grants
- R01 AG075336 NIA NIH HHS
- R01 AG083874 NIA NIH HHS
- R01 AG072641 NIA NIH HHS
- P30 AG062429 NIA NIH HHS
- AARF-21-850325 Alzheimer's Association
- P01AG14449 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- P01 AG014449 NIA NIH HHS
- P50 AG005133 NIA NIH HHS
- RF1 AG025516 NIA NIH HHS
- P30 AG066468 NIA NIH HHS
- R01 AG073267 NIA NIH HHS
- P01 AG025204 NIA NIH HHS
- R01AG083874 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- R37 AG023651 NIA NIH HHS
- U24 AG082930 NIA NIH HHS
- 2021-03244 Vetenskapsrådet (Swedish Research Council)
- P01AG025204 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- P30AG066468 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- RF1 AG052525 NIA NIH HHS
- R01 AG053952 NIA NIH HHS
- U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- ELH is supported by a Race Against Dementia Fellowship (funded by the Barbara Naylor Foundation)
- HZ is a Wallenberg Scholar supported by grants from the Swedish Research Council (#2022-01018 and #2019-02397), the European Union’s Horizon Europe research and innovation programme under grant agreement No 101053962, Swedish State Support for Clinical Research (#ALFGBG-71320), the Alzheimer Drug Discovery Foundation (ADDF), USA (#201809-2016862), the AD Strategic Fund and the Alzheimer's Association (#ADSF-21-831376-C, #ADSF-21-831381-C, and #ADSF-21-831377-C), the Bluefield Project, the Olav Thon Foundation, the Erling-Persson Family Foundation, Stiftelsen för Gamla Tjänarinnor, Hjärnfonden, Sweden (#FO2022-0270), the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 860197 (MIRIADE), the European Union Joint Programme – Neurodegenerative Disease Research (JPND2021-00694), the National Institute for Health and Care Research University College London Hospitals Biomedical Research Centre, and the UK Dementia Research Institute at UCL (UKDRI-1003)
Collapse
Affiliation(s)
- Tohidul Islam
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Emily Hill
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Eric E Abrahamson
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research Education and Clinical Center, VA Pittsburgh HS, Pittsburgh, PA, USA
| | - Stijn Servaes
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, McConnell Brain Imaging Centre (BIC), Montréal Neurological Institute, Montréal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Denis S Smirnov
- Shiley-Marcos Alzheimer's Disease Research Center, Department of Neurosciences, University of California, San Diego, San Diego, CA, USA
- Pathology Residency Program, Mass General and Brigham and Women's Hospitals, Harvard Medical School, Boston, MA, USA
| | - Xuemei Zeng
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anuradha Sehrawat
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yijun Chen
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Przemysław R Kac
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Hlin Kvartsberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Maria Olsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Emma Sjons
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Fernando Gonzalez-Ortiz
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, McConnell Brain Imaging Centre (BIC), Montréal Neurological Institute, Montréal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Cécile Tissot
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, McConnell Brain Imaging Centre (BIC), Montréal Neurological Institute, Montréal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | | | - Nesrine Rahmouni
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, McConnell Brain Imaging Centre (BIC), Montréal Neurological Institute, Montréal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | | | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Diseases, Queen Square Institute of Neurology UCL, London, UK
- UK Dementia Research Institute, University College London, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Tharick A Pascoal
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tammaryn Lashley
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London, UK
| | - Mark J Wall
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Douglas Galasko
- Shiley-Marcos Alzheimer's Disease Research Center, Department of Neurosciences, University of California, San Diego, San Diego, CA, USA
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, McConnell Brain Imaging Centre (BIC), Montréal Neurological Institute, Montréal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Milos D Ikonomovic
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research Education and Clinical Center, VA Pittsburgh HS, Pittsburgh, PA, USA
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
10
|
Chen GJW, Chang MY, Lin XP, Kundu D, Chang YJ, Chen YR. Tau destabilization in a familial deletion mutant K280 accelerates its fibrillization and enhances the seeding effect. J Biol Chem 2025; 301:108184. [PMID: 39814228 PMCID: PMC11849630 DOI: 10.1016/j.jbc.2025.108184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/23/2024] [Accepted: 01/05/2025] [Indexed: 01/18/2025] Open
Abstract
Tauopathies cover a range of neurodegenerative diseases in which natively unfolded tau protein aggregates and spreads in the brain during disease progression. To gain insights into the mechanism of tau structure and spreading, here, we examined the biochemical and cellular properties of human full-length wild-type and familial mutant tau, ΔK280, with a deletion at lysine 280. Our results showed that both wild-type and mutant tau are predominantly monomeric by analytical ultracentrifugation. The mutant tau may lose intramolecular contacts and is significantly destabilized assessed by cross-linking mass spectrometry and urea denaturation. Moreover, the mutant tau displayed accelerated fibril formation compared to the wild-type tau. Upon cross-seeding, the wild-type tau was seeded more easily by wild-type seeds than mutant seeds showing that homotypic seeding is more efficient. The wild-type tau was successfully converted to fibrils with mutant signatures by mutant seeds. Live cell cross-correlation fluorescence spectroscopy studies indicated that wild-type tau forms trimeric species and the mutant tau forms a larger assembly and processes higher cell-to-cell transmission. Overall, these findings shed light on the fundamental mechanisms of tau structure/stability, aggregation, and seeding to facilitate future therapeutic development for tauopathies.
Collapse
Affiliation(s)
| | - Ming-Yun Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan; Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Xin-Peng Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan; Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Debapriya Kundu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan; Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Yu-Jen Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan; Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Yun-Ru Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan; Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan; Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan; Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Taiwan University and Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
11
|
Lo Cascio F, Park S, Sengupta U, Puangmalai N, Bhatt N, Shchankin N, Jerez C, Moreno N, Bittar A, Xavier R, Zhao Y, Wang C, Fu H, Ma Q, Montalbano M, Kayed R. Brain-derived tau oligomer polymorphs: distinct aggregations, stability profiles, and biological activities. Commun Biol 2025; 8:53. [PMID: 39809992 PMCID: PMC11733013 DOI: 10.1038/s42003-025-07499-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025] Open
Abstract
Aggregation of microtubule-associated tau protein is a distinct hallmark of several neurodegenerative disorders such as Alzheimer's disease (AD), dementia with Lewy bodies (DLB), and progressive supranuclear palsy (PSP). Tau oligomers are suggested to be the primary neurotoxic species that initiate aggregation and propagate prion-like structures. Furthermore, different diseases are shown to have distinct structural characteristics of aggregated tau, denoted as polymorphs. Here, we investigate the structural and functional differences of amplified brain-derived tau oligomers (aBDTOs) from AD, DLB, and PSP. Our results indicate that the aBDTOs possess different structural and morphological features that impact neuronal function, gene regulation, and ultimately disease progression. The distinct tau oligomeric polymorphs may thus contribute to the development of clinical phenotypes and shape the progression of diseases. Our results can provide insight into developing personalized therapy to target a specific neurotoxic tau polymorph.
Collapse
Affiliation(s)
- Filippa Lo Cascio
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Suhyeorn Park
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Urmi Sengupta
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Nicha Puangmalai
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Nemil Bhatt
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Nikita Shchankin
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Cynthia Jerez
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Naomi Moreno
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Alice Bittar
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Rhea Xavier
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yingxin Zhao
- Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Cankun Wang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Hongjun Fu
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA
| | - Qin Ma
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Mauro Montalbano
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA.
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA.
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA.
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
12
|
Gheni G, Shinohara M, Masuda‐Suzukake M, Shindo A, Watanabe A, Kawai K, Bu G, Tomimoto H, Hasegawa M, Sato N. Cerebral hypoperfusion reduces tau accumulation. Ann Clin Transl Neurol 2025; 12:69-85. [PMID: 39621511 PMCID: PMC11752094 DOI: 10.1002/acn3.52247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/03/2024] [Accepted: 10/24/2024] [Indexed: 01/22/2025] Open
Abstract
OBJECTIVE Alzheimer's disease (AD) often coexists with cerebrovascular diseases. However, the impact of cerebrovascular diseases such as stroke on AD pathology remains poorly understood. METHODS This study examines the correlation between cerebrovascular diseases and AD pathology. The research was carried out using clinical and neuropathological data collected from the National Alzheimer's Coordinating Center (NACC) database and an animal model in which bilateral common carotid artery stenosis surgery was performed, following the injection of tau seeds into the brains of wild-type mice. RESULTS Analysis of the NACC database suggests that clinical stroke history and lacunar infarcts are associated with lower neurofibrillary tangle pathology. An animal model demonstrates that chronic cerebral hypoperfusion reduces tau pathology, which was observed in not only neurons but also astrocytes, microglia, and oligodendrocytes. Furthermore, we found that astrocytes and microglia were activated in response to tau pathology and chronic cerebral hypoperfusion. Additionally, cerebral hypoperfusion increased a lysosomal enzyme, cathepsin D. INTERPRETATION These data together indicate that cerebral hypoperfusion reduces tau accumulation likely through an increase in microglial phagocytic activity towards tau and an elevation in degradation through cathepsin D. This study contributes to understanding the relationship between tau pathology and cerebrovascular diseases in older people with multimorbidity.
Collapse
Grants
- MEXT15K15272 Grants-in-Aid from Japan Promotion of Science; the Japanese Ministry of Education, Culture, Sports, Science, and Technology
- 19-9 Funding for Longevity Sciences from the National Center for Geriatrics and Gerontology
- P20 AG068053 NIA NIH HHS
- P30 AG062421 NIA NIH HHS
- Takeda Medical Research Foundation Research
- P30 AG066508 NIA NIH HHS
- P30 AG072973 NIA NIH HHS
- P30 AG066530 NIA NIH HHS
- Novartis Foundation for Gerontological Research Award
- P30 AG066509 NIA NIH HHS
- P30 AG066546 NIA NIH HHS
- Mitsui Sumitomo Insurance Welfare Foundation
- P30 AG072979 NIA NIH HHS
- P20 AG068082 NIA NIH HHS
- P30 AG072975 NIA NIH HHS
- P30 AG066444 NIA NIH HHS
- P30 AG066507 NIA NIH HHS
- P30 AG072946 NIA NIH HHS
- P30 AG066518 NIA NIH HHS
- P30 AG066511 NIA NIH HHS
- U24 AG072122 NIA NIH HHS
- MEXT21H02844 Grants-in-Aid from Japan Promotion of Science; the Japanese Ministry of Education, Culture, Sports, Science, and Technology
- P30 AG066512 NIA NIH HHS
- MEXT26293167 Grants-in-Aid from Japan Promotion of Science; the Japanese Ministry of Education, Culture, Sports, Science, and Technology
- P30 AG066515 NIA NIH HHS
- P30 AG072978 NIA NIH HHS
- P30 AG062429 NIA NIH HHS
- P30 AG066519 NIA NIH HHS
- Takeda Science Foundation Research Encouragement Grant
- 28-45 Funding for Longevity Sciences from the National Center for Geriatrics and Gerontology
- P30 AG062422 NIA NIH HHS
- R01 AG079280 NIA NIH HHS
- P30 AG066462 NIA NIH HHS
- 19-3 Funding for Longevity Sciences from the National Center for Geriatrics and Gerontology
- 21-12 Funding for Longevity Sciences from the National Center for Geriatrics and Gerontology
- MEXT24K02361 Grants-in-Aid from Japan Promotion of Science; the Japanese Ministry of Education, Culture, Sports, Science, and Technology
- P20 AG068077 NIA NIH HHS
- P30 AG072977 NIA NIH HHS
- P30 AG062677 NIA NIH HHS
- P20 AG068024 NIA NIH HHS
- P30 AG072958 NIA NIH HHS
- P30 AG062715 NIA NIH HHS
- P30 AG066506 NIA NIH HHS
- P30 AG066468 NIA NIH HHS
- Annual Research Award Grant from the Japanese Society of Anti-aging Medicine
- P30 AG072976 NIA NIH HHS
- P30 AG072947 NIA NIH HHS
- P30 AG072931 NIA NIH HHS
- MEXT17H04154 Grants-in-Aid from Japan Promotion of Science; the Japanese Ministry of Education, Culture, Sports, Science, and Technology
- SENSHIN Medical Research Foundation Research Grant
- P30 AG072972 NIA NIH HHS
- P30 AG066514 NIA NIH HHS
- P30 AG072959 NIA NIH HHS
- 24-16 Funding for Longevity Sciences from the National Center for Geriatrics and Gerontology
- Mitsui Sumitomo Insurance Welfare Foundation
Collapse
Affiliation(s)
- Ghupurjan Gheni
- Department of Aging Neurobiology, Center for Development of Advanced Medicine for DementiaNational Center for Geriatrics and Gerontology7‐430 MoriokaObuAichi474‐8511Japan
| | - Mitsuru Shinohara
- Department of Aging Neurobiology, Center for Development of Advanced Medicine for DementiaNational Center for Geriatrics and Gerontology7‐430 MoriokaObuAichi474‐8511Japan
- Department of NeuroscienceMayo ClinicJacksonvilleFlorida32224USA
| | - Masami Masuda‐Suzukake
- Dementia Research ProjectTokyo Metropolitan Institute of Medical Science2‐1‐6 Kamikitazawa, Setagaya‐kuTokyo156‐8506Japan
| | - Akihiko Shindo
- Department of Neurology, Graduate School of MedicineMie University1577 Kurima MachiyachoTsu CityMie514‐8507Japan
| | - Atsushi Watanabe
- Equipment Management Division, Center for Core Facility Administration, National Center for Geriatrics and Gerontology7‐430 MoriokaObuAichi474‐8511Japan
| | - Kaori Kawai
- Department of Aging Neurobiology, Center for Development of Advanced Medicine for DementiaNational Center for Geriatrics and Gerontology7‐430 MoriokaObuAichi474‐8511Japan
| | - Guojun Bu
- Department of NeuroscienceMayo ClinicJacksonvilleFlorida32224USA
- Division of Life ScienceThe Hong Kong University of Science and TechnologyHong KongChina
| | - Hidekazu Tomimoto
- Department of Neurology, Graduate School of MedicineMie University1577 Kurima MachiyachoTsu CityMie514‐8507Japan
| | - Masato Hasegawa
- Dementia Research ProjectTokyo Metropolitan Institute of Medical Science2‐1‐6 Kamikitazawa, Setagaya‐kuTokyo156‐8506Japan
| | - Naoyuki Sato
- Department of Aging Neurobiology, Center for Development of Advanced Medicine for DementiaNational Center for Geriatrics and Gerontology7‐430 MoriokaObuAichi474‐8511Japan
| |
Collapse
|
13
|
Ali A, Matveyenka M, Pickett DN, Rodriguez A, Kurouski D. Tubulin-Binding Region Modulates Cholesterol-Triggered Aggregation of Tau Proteins. J Neurochem 2025; 169:e16294. [PMID: 39777699 PMCID: PMC11731895 DOI: 10.1111/jnc.16294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025]
Abstract
A hallmark of Alzheimer disease (AD) and tauopathies, severe neurodegenerative diseases, is the progressive aggregation of Tau, also known as microtubule-associated Tau protein. Full-length Tau1-441, also known as 2N4R, contains two N-terminal inserts that bind to tubulin. This facilitates the self-assembly of tubulin simultaneously enhancing stability of cell microtubules. Other Tau isoforms have one (1N4R) or zero (0N4R) N-terminal inserts, which makes 2N4R Tau more and 0N4R less effective in promoting microtubule self-assembly. A growing body of evidence indicates that lipids can alter the aggregation rate of Tau isoforms. However, the role of N-terminal inserts in Tau-lipid interactions remains unclear. In this study, we utilized a set of biophysical methods to determine the extent to which N-terminal inserts alter interactions of Tau isoforms with cholesterol, one of the most important lipids in plasma membranes. Our results showed that 2 N insert prevents amyloid-driven aggregation of Tau at the physiological concentration of cholesterol, while the absence of this N-terminal repeat (1N4R and 0N4R Tau) resulted in the self-assembly of Tau into toxic amyloid fibrils. We also found that the presence of cholesterol in the lipid bilayers caused a significant increase in the cytotoxicity of 1N4R and 0N4R Tau to neurons. This effect was not observed for 2N4R Tau fibrils formed in the presence of lipid membranes with low, physiological, and elevated concentrations of cholesterol. Using molecular assays, we found that Tau aggregates primarily exert cytotoxicity by damaging cell endosomes, endoplasmic reticulum, and mitochondria.
Collapse
Affiliation(s)
- Abid Ali
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Mikhail Matveyenka
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Davis N Pickett
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Axell Rodriguez
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
14
|
Kadamangudi S, Marcatti M, Zhang WR, Fracassi A, Kayed R, Limon A, Taglialatela G. Amyloid-β oligomers increase the binding and internalization of tau oligomers in human synapses. Acta Neuropathol 2024; 149:2. [PMID: 39688618 DOI: 10.1007/s00401-024-02839-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
In Alzheimer's disease (AD), the propagation and spreading of CNS tau pathology closely correlates with cognitive decline, positioning tau as an attractive therapeutic target. Amyloid beta (Aβ) has been strongly implicated in driving tau spread, whereas primary tauopathies such as primary age-related tauopathy (PART)-which lack Aβ pathology-exhibit limited tau spread and minimal-to-no cognitive decline. Emerging evidence converges on a trans-synaptic mechanism of tau spread, facilitated by the transfer of misfolded tau aggregates (e.g. soluble oligomers). However, it is unclear whether Aβ oligomers modulate the binding and internalization of tau oligomers in human synapses. Our translationally focused paradigms utilize post-mortem brain specimens from Control, PART, and AD patients. Synaptosomes isolated from the temporal cortex of all three groups were incubated with preformed recombinant tauO (rtauO), ± preformed recombinant AβO (rAβO), and oligomer binding/internalization was quantified via flow cytometry following proteinase K (PK) digestion of surface-bound oligomers. TauO-synapse interactions were visualized using EM immunogold. Brain-derived tau oligomers (BDTO) from AD and PART PBS-soluble hippocampal fractions were co-immunoprecipitated and analyzed via mass spectrometry to compare synaptic tauO interactomes in primary and secondary tauopathies, thereby inferring the role of Aβ. AD synaptosomes, enriched in endogenous Aβ pathology, exhibited increased rtauO internalization compared to PART synaptosomes. This observation was mirrored in Control synaptosomes, where recombinant rAβO significantly increased rtauO binding and internalization. PK pre-treatment abolished this effect, implicating synaptic membrane proteins in AβO-mediated tauO internalization. While both PART and AD BDTO were broadly enriched in synaptic proteins, AD BDTO exhibited differential enrichment of endocytic proteins across pre- and post-synaptic compartments, whereas PART BDTO showed no significant synaptic enrichment. This study demonstrates that Aβ oligomers enhance tau oligomer binding and drive its internalization through synaptic membrane proteins. These findings offer novel mechanistic insights underlying pathological tau spreading directly within human synapses and emphasize the therapeutic potential of targeting Aβ-tau interactions.
Collapse
Affiliation(s)
- Shrinath Kadamangudi
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Michela Marcatti
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Wen-Ru Zhang
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Anna Fracassi
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Rakez Kayed
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Agenor Limon
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Giulio Taglialatela
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA.
| |
Collapse
|
15
|
Cehlar O, Njemoga S, Horvath M, Cizmazia E, Bednarikova Z, Barrera EE. Structures of Oligomeric States of Tau Protein, Amyloid-β, α-Synuclein and Prion Protein Implicated in Alzheimer's Disease, Parkinson's Disease and Prionopathies. Int J Mol Sci 2024; 25:13049. [PMID: 39684761 DOI: 10.3390/ijms252313049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
In this review, we focus on the biophysical and structural aspects of the oligomeric states of physiologically intrinsically disordered proteins and peptides tau, amyloid-β and α-synuclein and partly disordered prion protein and their isolations from animal models and human brains. These protein states may be the most toxic agents in the pathogenesis of Alzheimer's and Parkinson's disease. It was shown that oligomers are important players in the aggregation cascade of these proteins. The structural information about these structural states has been provided by methods such as solution and solid-state NMR, cryo-EM, crosslinking mass spectrometry, AFM, TEM, etc., as well as from hybrid structural biology approaches combining experiments with computational modelling and simulations. The reliable structural models of these protein states may provide valuable information for future drug design and therapies.
Collapse
Affiliation(s)
- Ondrej Cehlar
- Institute of Neuroimmunology, Slovak Academy of Sciences, 84510 Bratislava, Slovakia
| | - Stefana Njemoga
- Institute of Neuroimmunology, Slovak Academy of Sciences, 84510 Bratislava, Slovakia
| | - Marian Horvath
- Institute of Neuroimmunology, Slovak Academy of Sciences, 84510 Bratislava, Slovakia
| | - Erik Cizmazia
- Institute of Neuroimmunology, Slovak Academy of Sciences, 84510 Bratislava, Slovakia
| | - Zuzana Bednarikova
- Institute of Experimental Physics, Slovak Academy of Sciences, 04001 Kosice, Slovakia
| | - Exequiel E Barrera
- Instituto de Histología y Embriología (IHEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CC56, Universidad Nacional de Cuyo, Mendoza M5502JMA, Argentina
| |
Collapse
|
16
|
Lee SH, Bae EJ, Perez-Acuna D, Jung MK, Han JW, Mook-Jung I, Lee SJ. Amyloid-β-activated microglia can induce compound proteinopathies. Brain 2024; 147:4105-4120. [PMID: 39194073 DOI: 10.1093/brain/awae221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/22/2024] [Accepted: 06/17/2024] [Indexed: 08/29/2024] Open
Abstract
Neuropathological features of Alzheimer's disease include amyloid plaques, neurofibrillary tangles and Lewy bodies, with the former preceding the latter two. However, it is not fully understood how these compound proteinopathies are interconnected. Here, we show that transplantation of amyloid-β oligomer-activated microglia into the striatum of naïve mice was sufficient to generate all the features of Alzheimer's disease, including widespread tauopathy and synucleinopathy, gliosis, neuroinflammation, synapse loss, neuronal death, and cognitive and motor deficits. These pathological features were eliminated by microglia depletion and anti-inflammatory drug administration. Our results suggest the crucial roles of microglia-driven inflammation in development of mixed pathology. This study provides not only mechanistic insights into amyloid-β oligomer-triggered proteinopathies but also a novel animal model recapitulating the salient features of Alzheimer's disease.
Collapse
Affiliation(s)
- Sang Hwan Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Neuroscience Research Institute, Medical Research Center, Seoul National University, Seoul 03080, Korea
| | - Eun-Jin Bae
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Neuroscience Research Institute, Medical Research Center, Seoul National University, Seoul 03080, Korea
| | - Dayana Perez-Acuna
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Min Kyo Jung
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu 41068, Korea
| | - Jong Won Han
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Biochemistry, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Inhee Mook-Jung
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Neuroscience Research Institute, Medical Research Center, Seoul National University, Seoul 03080, Korea
- Department of Biochemistry, Seoul National University College of Medicine, Seoul 03080, Korea
- Convergence Research Center for Dementia, Medical Research Center, Seoul National University, Seoul 03080, Korea
| | - Seung-Jae Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Neuroscience Research Institute, Medical Research Center, Seoul National University, Seoul 03080, Korea
- Convergence Research Center for Dementia, Medical Research Center, Seoul National University, Seoul 03080, Korea
| |
Collapse
|
17
|
Fukumoto H, Kao TH, Tai CY, Jang MK, Miyamoto M. High-molecular-weight oligomer tau (HMWoTau) species are dramatically increased in Braak-stage dependent manner in the frontal lobe of human brains, demonstrated by a novel oligomer Tau ELISA with a mouse monoclonal antibody (APNmAb005). FASEB J 2024; 38:e70160. [PMID: 39565643 DOI: 10.1096/fj.202401704r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/30/2024] [Accepted: 10/24/2024] [Indexed: 11/21/2024]
Abstract
Disease-specific oligomers Tau assay system is anticipated in Alzheimer disease (AD) to elucidate their etiological roles. We developed a highly sensitive and selective ELISA for high-molecular-weight oligomer tau (HMWoTau) with LLOQ of 0.3 pg/well for the first time, using a novel mouse monoclonal antibody APNmAb005. The target molecule was identified as HMWoTau with circa 2000 kD as a minimum size and the more oligomerized species (>5000 kD), in combination analysis with Size-Exclusion-Chromatography and Sucrose-Density-Gradient-Centrifugation for both recombinant human (rh) Tau-derived aggregates and AD brain-lysates in PBS(-). HMWoTau was labeled by Thioflavin S and visualized as a homogeneous globular particle (about 30 nm in diameter) by two different technologies of atomic force microscopy and dSTORM-Nanoimager. Specific quantitation was also confirmed by immune-absorption, rhHMWoTau-spiked, and cross-reactivity studies. APNmAb005 failed to detect the HMWoTau signal by treatment with DTT/SDS under no influence on the pan-tau antibody, indicating its conformation-specific recognition. APNmAb005-ELISA showed AD-specific and statistically significant ELISA signals from 1 ng brain lysate protein/well. Analysis of the frontal neocortex (N = 40, Braak stage I-VI) by ELISA revealed the detection-limit levels of HMWoTau species at stage I-III, and drastic and statistically significant increases at stage V/VI (AD). By contrast, total Tau and p181 Tau showed 1/4-1/5 levels of AD even at Stage I, while both tau species also showed a statistically significant increase in AD. In sum, our novel APNmAb005-ELISA clarified the disease-specific increase in HMWoTau species and will be useful for not only further etiological elucidation but also the potential diagnostics in AD and relevant tauopathy.
Collapse
Affiliation(s)
- Hiroaki Fukumoto
- Department of Preclinical Research Division, APRINOIA Therapeutics Inc., Tokyo, Japan
| | - Tzu-Huei Kao
- Department of Preclinical Research Division, APRINOIA Therapeutics Inc., Tokyo, Japan
| | | | | | - Masaomi Miyamoto
- Department of Preclinical Research Division, APRINOIA Therapeutics Inc., Tokyo, Japan
| |
Collapse
|
18
|
Samelson AJ, Ariqat N, McKetney J, Rohanitazangi G, Bravo CP, Bose R, Travaglini KJ, Lam VL, Goodness D, Dixon G, Marzette E, Jin J, Tian R, Tse E, Abskharon R, Pan H, Carroll EC, Lawrence RE, Gestwicki JE, Eisenberg D, Kanaan NM, Southworth DR, Gross JD, Gan L, Swaney DL, Kampmann M. CRISPR screens in iPSC-derived neurons reveal principles of tau proteostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.16.545386. [PMID: 37398204 PMCID: PMC10312804 DOI: 10.1101/2023.06.16.545386] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Aggregation of the protein tau defines tauopathies, which include Alzheimer's disease and frontotemporal dementia. Specific neuronal subtypes are selectively vulnerable to tau aggregation and subsequent dysfunction and death, but the underlying mechanisms are unknown. To systematically uncover the cellular factors controlling the accumulation of tau aggregates in human neurons, we conducted a genome-wide CRISPRi-based modifier screen in iPSC-derived neurons. The screen uncovered expected pathways, including autophagy, but also unexpected pathways, including UFMylation and GPI anchor synthesis. We discover that the E3 ubiquitin ligase CUL5SOCS4 is a potent modifier of tau levels in human neurons, ubiquitinates tau, and is a correlated with vulnerability to tauopathies in mouse and human. Disruption of mitochondrial function promotes proteasomal misprocessing of tau, which generates tau proteolytic fragments like those in disease and changes tau aggregation in vitro. These results reveal new principles of tau proteostasis in human neurons and pinpoint potential therapeutic targets for tauopathies.
Collapse
Affiliation(s)
- Avi J Samelson
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
| | - Nabeela Ariqat
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
| | - Justin McKetney
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA
| | - Gita Rohanitazangi
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
| | - Celeste Parra Bravo
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Rudra Bose
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
| | | | - Victor L Lam
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Darrin Goodness
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
| | - Gary Dixon
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
| | - Emily Marzette
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
| | - Julianne Jin
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
| | - Ruilin Tian
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
| | - Eric Tse
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Romany Abskharon
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, UCLA, Los Angeles, CA USA
| | - Henry Pan
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
| | - Emma C Carroll
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
- Department of Chemistry, San José State University, San José, CA, USA
| | - Rosalie E Lawrence
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute UCSF, San Francisco, CA, USA
| | - Jason E Gestwicki
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - David Eisenberg
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, UCLA, Los Angeles, CA USA
- Howard Hughes Medical Institute UCLA, Los Angeles, CA, USA
| | - Nicholas M Kanaan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Daniel R Southworth
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - John D Gross
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Li Gan
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Danielle L Swaney
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
19
|
Wu J, Wu J, Chen T, Cai J, Ren R. Protein aggregation and its affecting mechanisms in neurodegenerative diseases. Neurochem Int 2024; 180:105880. [PMID: 39396709 DOI: 10.1016/j.neuint.2024.105880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/15/2024]
Abstract
Protein aggregation serves as a critical pathological marker in a spectrum of neurodegenerative diseases (NDs), including the formation of amyloid β (Aβ) and Tau neurofibrillary tangles in Alzheimer's disease, as well as α-Synuclein (α-Syn) aggregates in Parkinson's disease, Parkinson's disease-related dementia (PDD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). A significant proportion of patients with amyotrophic lateral sclerosis (ALS) exhibit TDP-43 aggregates. Moreover, a confluence of brain protein pathologies, such as Aβ, Tau, α-Syn, and TDP-43, has been identified in individual NDs cases, highlighting the intricate interplay among these proteins that is garnering heightened scrutiny. Importantly, protein aggregation is modulated by an array of factors, with burgeoning evidence suggesting that it frequently results from perturbations in protein homeostasis, influenced by the cellular membrane milieu, metal ion concentrations, post-translational modifications, and genetic mutations. This review delves into the pathological underpinnings of protein aggregation across various NDs and elucidates the intercommunication among disparate proteins within the same disease context. Additionally, we examine the pathogenic mechanisms by which diverse factors impinge upon protein aggregation, offering fresh perspectives for the future therapeutic intervention of NDs.
Collapse
Affiliation(s)
- Junyun Wu
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Jianan Wu
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Tao Chen
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Jing Cai
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.
| | - Reng Ren
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
20
|
Parra Bravo C, Naguib SA, Gan L. Cellular and pathological functions of tau. Nat Rev Mol Cell Biol 2024; 25:845-864. [PMID: 39014245 DOI: 10.1038/s41580-024-00753-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/18/2024]
Abstract
Tau protein is involved in various cellular processes, including having a canonical role in binding and stabilization of microtubules in neurons. Tauopathies are neurodegenerative diseases marked by the abnormal accumulation of tau protein aggregates in neurons, as seen, for example, in conditions such as frontotemporal dementia and Alzheimer disease. Mutations in tau coding regions or that disrupt tau mRNA splicing, tau post-translational modifications and cellular stress factors (such as oxidative stress and inflammation) increase the tendency of tau to aggregate and interfere with its clearance. Pathological tau is strongly implicated in the progression of neurodegenerative diseases, and the propagation of tau aggregates is associated with disease severity. Recent technological advancements, including cryo-electron microscopy and disease models derived from human induced pluripotent stem cells, have increased our understanding of tau-related pathology in neurodegenerative conditions. Substantial progress has been made in deciphering tau aggregate structures and the molecular mechanisms that underlie protein aggregation and toxicity. In this Review, we discuss recent insights into the diverse cellular functions of tau and the pathology of tau inclusions and explore the potential for therapeutic interventions.
Collapse
Affiliation(s)
- Celeste Parra Bravo
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Sarah A Naguib
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Li Gan
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
21
|
Perbet R, Mate de Gerando A, Glynn C, Donahue C, Gaona A, Taddei RN, Gomez-Isla T, Lathuiliere A, Hyman BT. In situ seeding assay: A novel technique for direct tissue localization of bioactive tau. J Neuropathol Exp Neurol 2024; 83:870-881. [PMID: 38917443 DOI: 10.1093/jnen/nlae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
Proteins exhibiting prion-like properties are implicated in tauopathies. The prion-like traits of tau influence disease progression and correlate with severity. Techniques to measure tau bioactivity such as RT-QuIC and biosensor cells lack spatial specificity. Therefore, we developed a histological probe aimed at detecting and localizing bioactive tau in situ. We first induced the recruitment of a tagged probe by bioactive Tau in human brain tissue slices using biosensor cell lysates containing a fluorescent probe. We then enhanced sensitivity and flexibility by designing a recombinant probe with a myc tag. The probe design aimed to replicate the recruitment process seen in prion-like mechanisms based on the cryo-EM structure of tau aggregates in Alzheimer disease (AD). Using this novel probe, we observed selective staining of misfolded tau in pre- and post-synaptic structures within neurofibrillary tangles and neurites, whether or not associated with neuritic plaques. The probe specifically targeted AD-associated bioactive tau and did not recognize bioactive tau from other neurodegenerative diseases. Electron microscopy and immunolabeling further confirmed the identification of fibrillar and non-fibrillar tau. Finally, we established a correlation between quantifying bioactive tau using this technique and gold standard biosensor cells. This technique presents a robust approach for detecting bioactive tau in AD tissues and has potential applications for deciphering mechanisms of tau propagation and degradation pathways.
Collapse
Affiliation(s)
- Romain Perbet
- Neurology Department, Massachusetts General Hospital, Harvard University, Boston, MA, United States
| | | | - Calina Glynn
- Neurology Department, Massachusetts General Hospital, Harvard University, Boston, MA, United States
- Structural Biology, Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - Cameron Donahue
- Neurology Department, Massachusetts General Hospital, Harvard University, Boston, MA, United States
| | - Angelica Gaona
- Neurology Department, Massachusetts General Hospital, Harvard University, Boston, MA, United States
| | - Raquel N Taddei
- Neurology Department, Massachusetts General Hospital, Harvard University, Boston, MA, United States
- Department of Neurology, Dementia Research Institute, University College London, London, United Kingdom
| | - Teresa Gomez-Isla
- Neurology Department, Massachusetts General Hospital, Harvard University, Boston, MA, United States
| | - Aurelien Lathuiliere
- Neurology Department, Massachusetts General Hospital, Harvard University, Boston, MA, United States
- Memory Center, Department of Rehabilitation and Geriatrics, Geneva University Hospital and University of Geneva, Geneva, Switzerland
| | - Bradley T Hyman
- Neurology Department, Massachusetts General Hospital, Harvard University, Boston, MA, United States
| |
Collapse
|
22
|
Panayi N, Schulz P, He P, Hanna B, Lifshitz J, Rowe RK, Sierks MR. Traumatic Brain Injury in Mice Generates Early-Stage Alzheimer's Disease Related Protein Pathology that Correlates with Neurobehavioral Deficits. Mol Neurobiol 2024; 61:7567-7582. [PMID: 38411868 DOI: 10.1007/s12035-024-04035-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/09/2024] [Indexed: 02/28/2024]
Abstract
Traumatic brain injury (TBI) increases the long-term risk of neurodegenerative diseases, including Alzheimer's disease (AD). Here, we demonstrate that protein variant pathology generated in brain tissue of an experimental TBI mouse model is similar to protein variant pathology observed during early stages of AD, and that subacute accumulation of AD associated variants of amyloid beta (Aβ) and tau in the TBI mouse model correlated with behavioral deficits. Male C57BL/6 mice were subjected to midline fluid percussion injury or to sham injury, after which sensorimotor function (rotarod, neurological severity score), cognitive deficit (novel object recognition), and affective deficits (elevated plus maze, forced swim task) were assessed post-injury (DPI). Protein pathology at 7, 14, and 28 DPI was measured in multiple brain regions using an immunostain panel of reagents selectively targeting different neurodegenerative disease-related variants of Aβ, tau, TDP-43, and alpha-synuclein. Overall, TBI resulted in sensorimotor deficits and accumulation of AD-related protein variant pathology near the impact site, both of which returned to sham levels by 14 DPI. Individual mice, however, showed persistent behavioral deficits and/or accumulation of toxic protein variants at 28 DPI. Behavioral outcomes of each mouse were correlated with levels of seven different protein variants in ten brain regions at specific DPI. Out of 21 significant correlations between protein variant levels and behavioral deficits, 18 were with variants of Aβ or tau. Correlations at 28 DPI were all between a single Aβ or tau variant, both of which are strongly associated with human AD cases. These data provide a direct mechanistic link between protein pathology resulting from TBI and the hallmarks of AD.
Collapse
Affiliation(s)
- Nicholas Panayi
- Chemical Engineering, The School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287-6106, USA
| | - Philip Schulz
- Chemical Engineering, The School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287-6106, USA
| | - Ping He
- Chemical Engineering, The School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287-6106, USA
| | - Brandon Hanna
- Chemical Engineering, The School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287-6106, USA
| | - Jonathan Lifshitz
- Department of Psychiatry, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
- Phoenix Veteran Affairs Health Care System, Phoenix, AZ, USA
| | - Rachel K Rowe
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Michael R Sierks
- Chemical Engineering, The School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287-6106, USA.
| |
Collapse
|
23
|
Scheiblich H, Eikens F, Wischhof L, Opitz S, Jüngling K, Cserép C, Schmidt SV, Lambertz J, Bellande T, Pósfai B, Geck C, Spitzer J, Odainic A, Castro-Gomez S, Schwartz S, Boussaad I, Krüger R, Glaab E, Di Monte DA, Bano D, Dénes Á, Latz E, Melki R, Pape HC, Heneka MT. Microglia rescue neurons from aggregate-induced neuronal dysfunction and death through tunneling nanotubes. Neuron 2024; 112:3106-3125.e8. [PMID: 39059388 DOI: 10.1016/j.neuron.2024.06.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/12/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
Microglia are crucial for maintaining brain health and neuron function. Here, we report that microglia establish connections with neurons using tunneling nanotubes (TNTs) in both physiological and pathological conditions. These TNTs facilitate the rapid exchange of organelles, vesicles, and proteins. In neurodegenerative diseases like Parkinson's and Alzheimer's disease, toxic aggregates of alpha-synuclein (α-syn) and tau accumulate within neurons. Our research demonstrates that microglia use TNTs to extract neurons from these aggregates, restoring neuronal health. Additionally, microglia share their healthy mitochondria with burdened neurons, reducing oxidative stress and normalizing gene expression. Disrupting mitochondrial function with antimycin A before TNT formation eliminates this neuroprotection. Moreover, co-culturing neurons with microglia and promoting TNT formation rescues suppressed neuronal activity caused by α-syn or tau aggregates. Notably, TNT-mediated aggregate transfer is compromised in microglia carrying Lrrk22(Gly2019Ser) or Trem2(T66M) and (R47H) mutations, suggesting a role in the pathology of these gene variants in neurodegenerative diseases.
Collapse
Affiliation(s)
- Hannah Scheiblich
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases, Bonn, Germany; Max-Planck-Institute for Biology of Ageing, Cologne, Germany
| | - Frederik Eikens
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases, Bonn, Germany; Max-Planck-Institute for Biology of Ageing, Cologne, Germany
| | - Lena Wischhof
- German Center for Neurodegenerative Diseases, Bonn, Germany; Max-Planck-Institute for Biology of Ageing, Cologne, Germany
| | - Sabine Opitz
- Institute of Neuropathology, University of Bonn, Bonn, Germany
| | - Kay Jüngling
- Institute of Physiology I, Westfälische Wilhelms-University Münster, Münster, Germany
| | - Csaba Cserép
- Institute of Experimental Medicine, Budapest, Hungary
| | - Susanne V Schmidt
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | | | - Tracy Bellande
- Institut François Jacob, CEA and Laboratory of Neurodegenerative Diseases, Fontenay-aux-Roses, France
| | - Balázs Pósfai
- Institute of Experimental Medicine, Budapest, Hungary
| | - Charlotte Geck
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Jasper Spitzer
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Alexandru Odainic
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection & Immunity, University of Melbourne, Melbourne, VIC, Australia
| | | | | | - Ibrahim Boussaad
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Rejko Krüger
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | | | - Daniele Bano
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Ádám Dénes
- Institute of Experimental Medicine, Budapest, Hungary
| | - Eike Latz
- German Center for Neurodegenerative Diseases, Bonn, Germany; Institute of innate immunity, University Hospital Bonn, Bonn, Germany
| | - Ronald Melki
- Institut François Jacob, CEA and Laboratory of Neurodegenerative Diseases, Fontenay-aux-Roses, France
| | - Hans-Christian Pape
- Institute of Physiology I, Westfälische Wilhelms-University Münster, Münster, Germany
| | - Michael T Heneka
- German Center for Neurodegenerative Diseases, Bonn, Germany; Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg; Institute of innate immunity, University Hospital Bonn, Bonn, Germany; Department of Infectious Diseases and Immunology, University of Massachusetts, Medical School, Worcester, MA, USA.
| |
Collapse
|
24
|
Mate de Gerando A, Khasnavis A, Welikovitch LA, Bhavsar H, Glynn C, Quittot N, Perbet R, Hyman BT. Aqueous extractable nonfibrillar and sarkosyl extractable fibrillar Alzheimer's disease tau seeds have distinct properties. Acta Neuropathol Commun 2024; 12:145. [PMID: 39252090 PMCID: PMC11382398 DOI: 10.1186/s40478-024-01849-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024] Open
Abstract
Pathological tau fibrils in progressive supranuclear palsy, frontotemporal dementia, chronic traumatic encephalopathy, and Alzheimer's disease each have unique conformations, and post-translational modifications that correlate with unique disease characteristics. However, within Alzheimer's disease (AD), both fibrillar (sarkosyl insoluble (AD SARK tau)), and nonfibrillar (aqueous extractable high molecular weight (AD HMW tau)) preparations have been suggested to be seed-competent. We now explore if these preparations are similar or distinct in their in vivo seeding characteristics. Using an in vivo amplification and time-course paradigm we demonstrate that, for AD HMW and AD SARK tau species, the amplified material is biochemically similar to the original sample. The HMW and SARK materials also show different clearance, propagation kinetics, and propagation patterns. These data indicate the surprising co-occurrence of multiple distinct tau species within the same AD brain, supporting the idea that multiple tau conformers - both fibrillar and nonfibrillar- can impact phenotype in AD.
Collapse
Affiliation(s)
- Anastasie Mate de Gerando
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Cambridge, MA, USA
| | - Anita Khasnavis
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Harshil Bhavsar
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Calina Glynn
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Cambridge, MA, USA
| | - Noe Quittot
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Romain Perbet
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Cambridge, MA, USA.
| |
Collapse
|
25
|
Sheng L, Bhalla R. Biomarkers and Target-Specific Small-Molecule Drugs in Alzheimer's Diagnostic and Therapeutic Research: From Amyloidosis to Tauopathy. Neurochem Res 2024; 49:2273-2302. [PMID: 38844706 PMCID: PMC11310295 DOI: 10.1007/s11064-024-04178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/31/2024] [Accepted: 05/22/2024] [Indexed: 08/09/2024]
Abstract
Alzheimer's disease (AD) is the most common type of human dementia and is responsible for over 60% of diagnosed dementia cases worldwide. Abnormal deposition of β-amyloid and the accumulation of neurofibrillary tangles have been recognised as the two pathological hallmarks targeted by AD diagnostic imaging as well as therapeutics. With the progression of pathological studies, the two hallmarks and their related pathways have remained the focus of researchers who seek for AD diagnostic and therapeutic strategies in the past decades. In this work, we reviewed the development of the AD biomarkers and their corresponding target-specific small molecule drugs for both diagnostic and therapeutic applications, underlining their success, failure, and future possibilities.
Collapse
Affiliation(s)
- Li Sheng
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
| | - Rajiv Bhalla
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| |
Collapse
|
26
|
Takebe G, Okazaki S, Ottevaere H. Effect of Aggregated Lysozyme on Fluorescence Properties of Rose Bengal. Chemphyschem 2024:e202400554. [PMID: 39176999 DOI: 10.1002/cphc.202400554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/28/2024] [Accepted: 08/22/2024] [Indexed: 08/24/2024]
Abstract
Protein aggregates cause abnormal states and trigger various diseases, including neurodegenerative disorders. This study examined whether the xanthene dye derivative Rose Bengal could track a series of conformational changes in protein aggregates. Using lysozyme as a model protein, aggregated proteins were prepared by heating under acidic conditions. The absorption spectra, steady-state fluorescence spectra, fluorescence quantum yield, fluorescence lifetime, and phosphorescence lifetime of a solution containing Rose Bengal in the presence of aggregated lysozyme were measured to identify their spectroscopic characteristics. The absorption spectrum of Rose Bengal changed significantly during the formation of agglomerates in heated lysozyme. Additionally, the fluorescence intensity decreased during the initial stages of the aggregation process with an increase in heating time, followed by an increase in intensity along with a red-shift of the peak wavelength. The decrease in quantum yield with a fixed fluorescence lifetime supported the formation of a nonfluorescent ground-state complex between Rose Bengal and the aggregated lysozyme. Based on the characteristic changes in absorption and fluorescence properties observed during the aggregation process, Rose Bengal is considered an excellent indicator for the sensitive discernment of aggregated proteins.
Collapse
Affiliation(s)
- Gen Takebe
- Central Research Laboratory, Hamamatsu Photonics K.K., 5000, Hirakuchi, Hamana-ku, Hamamatsu City, Shizuoka Pref., Japan
- Brussels Photonics (B-PHOT), Department of Applied Physics and Photonics, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Shigetoshi Okazaki
- Central Research Laboratory, Hamamatsu Photonics K.K., 5000, Hirakuchi, Hamana-ku, Hamamatsu City, Shizuoka Pref., Japan
| | - Heidi Ottevaere
- Brussels Photonics (B-PHOT), Department of Applied Physics and Photonics, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| |
Collapse
|
27
|
Scaduto P, Marcatti M, Bhatt N, Kayed R, Taglialatela G. Calcineurin inhibition prevents synaptic plasticity deficit induced by brain-derived tau oligomers. Brain Commun 2024; 6:fcae277. [PMID: 39239152 PMCID: PMC11375858 DOI: 10.1093/braincomms/fcae277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/08/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024] Open
Abstract
Compelling evidence suggests that cognitive decline in Alzheimer's disease is associated with the accumulation and aggregation of tau protein, with the most toxic aggregates being in the form of oligomers. This underscores the necessity for direct isolation and analysis of brain-derived tau oligomers from patients with Alzheimer's disease, potentially offering novel perspectives into tau toxicity. Alzheimer's brain-derived tau oligomers are potent inhibitors of synaptic plasticity; however, the involved mechanism is still not fully understood. We previously reported a significantly reduced incidence of Alzheimer's disease in ageing humans chronically treated with a Food and Drug Administration-approved calcineurin inhibitor, FK506 (tacrolimus), used as an immunosuppressant after solid organ transplant. Using a combination of electrophysiological and RNA-sequencing techniques, we provide here evidence that FK506 has the potential to block the acute toxic effect of brain-derived tau oligomers on synaptic plasticity, as well as to restore the levels of some key synaptic mRNAs. These results further support FK506 as a promising novel therapeutic strategy for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Pietro Scaduto
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch (UTMB), 301 University Blvd, Galveston, TX 77555, USA
| | - Michela Marcatti
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch (UTMB), 301 University Blvd, Galveston, TX 77555, USA
| | - Nemil Bhatt
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch (UTMB), 301 University Blvd, Galveston, TX 77555, USA
| | - Rakez Kayed
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch (UTMB), 301 University Blvd, Galveston, TX 77555, USA
| | - Giulio Taglialatela
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch (UTMB), 301 University Blvd, Galveston, TX 77555, USA
| |
Collapse
|
28
|
Zampar S, Di Gregorio SE, Grimmer G, Watts JC, Ingelsson M. "Prion-like" seeding and propagation of oligomeric protein assemblies in neurodegenerative disorders. Front Neurosci 2024; 18:1436262. [PMID: 39161653 PMCID: PMC11330897 DOI: 10.3389/fnins.2024.1436262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024] Open
Abstract
Intra- or extracellular aggregates of proteins are central pathogenic features in most neurodegenerative disorders. The accumulation of such proteins in diseased brains is believed to be the end-stage of a stepwise aggregation of misfolded monomers to insoluble cross-β fibrils via a series of differently sized soluble oligomers/protofibrils. Several studies have shown how α-synuclein, amyloid-β, tau and other amyloidogenic proteins can act as nucleating particles and thereby share properties with misfolded forms, or strains, of the prion protein. Although the roles of different protein assemblies in the respective aggregation cascades remain unclear, oligomers/protofibrils are considered key pathogenic species. Numerous observations have demonstrated their neurotoxic effects and a growing number of studies have indicated that they also possess seeding properties, enabling their propagation within cellular networks in the nervous system. The seeding behavior of oligomers differs between the proteins and is also affected by various factors, such as size, shape and epitope presentation. Here, we are providing an overview of the current state of knowledge with respect to the "prion-like" behavior of soluble oligomers for several of the amyloidogenic proteins involved in neurodegenerative diseases. In addition to providing new insight into pathogenic mechanisms, research in this field is leading to novel diagnostic and therapeutic opportunities for neurodegenerative diseases.
Collapse
Affiliation(s)
- Silvia Zampar
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Sonja E. Di Gregorio
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Gustavo Grimmer
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Joel C. Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Martin Ingelsson
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Public Health/Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
29
|
Jury-Garfe N, Redding-Ochoa J, You Y, Martínez P, Karahan H, Chimal-Juárez E, Johnson TS, Zhang J, Resnick S, Kim J, Troncoso JC, Lasagna-Reeves CA. Enhanced microglial dynamics and a paucity of tau seeding in the amyloid plaque microenvironment contribute to cognitive resilience in Alzheimer's disease. Acta Neuropathol 2024; 148:15. [PMID: 39102080 PMCID: PMC11300572 DOI: 10.1007/s00401-024-02775-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/09/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
Asymptomatic Alzheimer's disease (AsymAD) describes the status of individuals with preserved cognition but identifiable Alzheimer's disease (AD) brain pathology (i.e., beta-amyloid (Aβ) deposits, neuritic plaques, and neurofibrillary tangles) at autopsy. In this study, we investigated the postmortem brains of a cohort of AsymAD subjects to gain insight into the mechanisms underlying resilience to AD pathology and cognitive decline. Our results showed that AsymAD cases exhibit enrichment in core plaques, decreased filamentous plaque accumulation, and increased plaque-surrounding microglia. Less pathological tau aggregation in dystrophic neurites was found in AsymAD brains than in AD brains, and tau seeding activity was comparable to that in healthy brains. We used spatial transcriptomics to characterize the plaque niche further and revealed autophagy, endocytosis, and phagocytosis as the pathways associated with the genes upregulated in the AsymAD plaque niche. Furthermore, the levels of ARP2 and CAP1, which are actin-based motility proteins that participate in the dynamics of actin filaments to allow cell motility, were increased in the microglia surrounding amyloid plaques in AsymAD cases. Our findings suggest that the amyloid-plaque microenvironment in AsymAD cases is characterized by the presence of microglia with highly efficient actin-based cell motility mechanisms and decreased tau seeding compared with that in AD brains. These two mechanisms can potentially protect against the toxic cascade initiated by Aβ, preserving brain health, and slowing AD pathology progression.
Collapse
Affiliation(s)
- Nur Jury-Garfe
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Neurosciences Research Building 214G, 320 West 15th Street, Indianapolis, IN, 46202, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Javier Redding-Ochoa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Yanwen You
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Neurosciences Research Building 214G, 320 West 15th Street, Indianapolis, IN, 46202, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Pablo Martínez
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Neurosciences Research Building 214G, 320 West 15th Street, Indianapolis, IN, 46202, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hande Karahan
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Neurosciences Research Building 214G, 320 West 15th Street, Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, USA
| | - Enrique Chimal-Juárez
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Neurosciences Research Building 214G, 320 West 15th Street, Indianapolis, IN, 46202, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Travis S Johnson
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, USA
| | - Jie Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Susan Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging and National Institute of Health, Baltimore, MD, USA
| | - Jungsu Kim
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Neurosciences Research Building 214G, 320 West 15th Street, Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, USA
| | - Juan C Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Cristian A Lasagna-Reeves
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Neurosciences Research Building 214G, 320 West 15th Street, Indianapolis, IN, 46202, USA.
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
30
|
Yoo CJ, Choi Y, Bok E, Lin Y, Cheon M, Lee YH, Kim J. Complement receptor 4 mediates the clearance of extracellular tau fibrils by microglia. FEBS J 2024; 291:3499-3520. [PMID: 38715400 DOI: 10.1111/febs.17150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/08/2024] [Accepted: 04/18/2024] [Indexed: 08/03/2024]
Abstract
Tauopathies exhibit a characteristic accumulation of misfolded tau aggregates in the brain. Tau pathology shows disease-specific spatiotemporal propagation through intercellular transmission, which is closely correlated with the progression of clinical manifestations. Therefore, identifying molecular mechanisms that prevent tau propagation is critical for developing therapeutic strategies for tauopathies. The various innate immune receptors, such as complement receptor 3 (CR3) and complement receptor 4 (CR4), have been reported to play a critical role in the clearance of various extracellular toxic molecules by microglia. However, their role in tau clearance has not been studied yet. In the present study, we investigated the role of CR3 and CR4 in regulating extracellular tau clearance. We found that CR4 selectively binds to tau fibrils but not to tau monomers, whereas CR3 does not bind to either of them. Inhibiting CR4, but not CR3, significantly reduces the uptake of tau fibrils by BV2 cells and primary microglia. By contrast, inhibiting CR4 has no effect on the uptake of tau monomers by BV2 cells. Furthermore, inhibiting CR4 suppresses the clearance of extracellular tau fibrils, leading to more seed-competent tau fibrils remaining in the extracellular space relative to control samples. We also provide evidence that the expression of CR4 is upregulated in the brains of human Alzheimer's disease patients and the PS19 mouse model of tauopathy. Taken together, our data strongly support that CR4 is a previously undescribed receptor for the clearance of tau fibrils in microglia and may represent a novel therapeutic target for tauopathy.
Collapse
Affiliation(s)
- Chang Jae Yoo
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), South Korea
| | - Youngtae Choi
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Eugene Bok
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Yuxi Lin
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang, South Korea
| | - Mookyung Cheon
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Young-Ho Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang, South Korea
- Bio-Analytical Science, University of Science and Technology, Daejeon, South Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si, South Korea
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
| | - Jaekwang Kim
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea
| |
Collapse
|
31
|
Ma R, Mu Q, Xi Y, Liu G, Liu C. Nanotechnology for tau pathology in Alzheimer's disease. Mater Today Bio 2024; 27:101145. [PMID: 39070098 PMCID: PMC11283088 DOI: 10.1016/j.mtbio.2024.101145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Tau protein aggregation is a defining characteristic of Alzheimer's disease (AD), leading to the formation of neurofibrillary tangles that disrupt neural communication and ultimately result in cognitive decline. Nanotechnology presents novel strategies for both diagnosing and treating Alzheimer's disease. Nanotechnology. It has become a revolutionary tool in the fight against Alzheimer's disease, particularly in addressing the pathological accumulation of tau protein. This review explores the relationship between tau-related neurophysiology and the utilization of nanotechnology for AD treatment, focusing on the application of nanomaterials to regulate tau phosphorylation, hinder tau aggregation and propagation, stabilize microtubules, eliminate pathological tau and emphasize the potential of nanotechnology in developing personalized therapies and monitoring treatment responses in AD patients. This review combines tau-related neurophysiology with nanotechnology to provide new insights for further understanding and treating Alzheimer's disease.
Collapse
Affiliation(s)
- Rongrong Ma
- State Key Laboratory of Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Qianwen Mu
- State Key Laboratory of Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yue Xi
- State Key Laboratory of Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Chao Liu
- State Key Laboratory of Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518000, China
| |
Collapse
|
32
|
Martinez P, Jury-Garfe N, Patel H, You Y, Perkins A, You Y, Lee-Gosselin A, Vidal R, Lasagna-Reeves CA. Phosphorylation at serine 214 correlates with tau seeding activity in an age-dependent manner in two mouse models for tauopathies and is required for tau transsynaptic propagation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.22.604618. [PMID: 39211286 PMCID: PMC11361173 DOI: 10.1101/2024.07.22.604618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Pathological aggregation and propagation of hyperphosphorylated and aberrant forms of tau are critical features of the clinical progression of Alzheimer's disease and other tauopathies. To better understand the correlation between these pathological tau species and disease progression, we profiled the temporal progression of tau seeding activity and the levels of various phospho- and conformational tau species in the brains of two mouse models of human tauopathies. Our findings indicate that tau seeding is an early event that occurs well before the appearance of AT8-positive NFT. Specifically, we observed that tau phosphorylation in serine 214 (pTau-Ser214) positively correlates to tau seeding activity during disease progression in both mouse models. Furthermore, we found that the histopathology of pTau-Ser214 appears much earlier and has a distinct pattern and compartmentalization compared to the pathology of AT8, demonstrating the diversity of tau species within the same region of the brain. Importantly, we also observed that preventing the phosphorylation of tau at Ser214 significantly decreases tau propagation in mouse primary neurons, and seeding activity in a Drosophila model of tauopathy, suggesting a role for this tau phosphorylation in spreading pathological forms of tau. Together, these results suggest that the diverse spectrum of soluble pathological tau species could be responsible for the distinct pathological properties of tau and that it is critical to dissect the nature of the tau seed in the context of disease progression.
Collapse
|
33
|
Lantero-Rodriguez J, Camporesi E, Montoliu-Gaya L, Gobom J, Piotrowska D, Olsson M, Burmann IM, Becker B, Brinkmalm A, Burmann BM, Perkinton M, Ashton NJ, Fox NC, Lashley T, Zetterberg H, Blennow K, Brinkmalm G. Tau protein profiling in tauopathies: a human brain study. Mol Neurodegener 2024; 19:54. [PMID: 39026372 PMCID: PMC11264707 DOI: 10.1186/s13024-024-00741-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/26/2024] [Indexed: 07/20/2024] Open
Abstract
Abnormal accumulation of misfolded and hyperphosphorylated tau protein in brain is the defining feature of several neurodegenerative diseases called tauopathies, including Alzheimer's disease (AD). In AD, this pathological change is reflected by highly specific cerebrospinal fluid (CSF) tau biomarkers, including both phosphorylated and non-phosphorylated variants. Interestingly, despite tau pathology being at the core of all tauopathies, CSF tau biomarkers remain unchanged in certain tauopathies, e.g., progressive supranuclear palsy (PSP), Pick's disease (PiD), and corticobasal neurodegeneration (CBD). To better understand commonalities and differences between tauopathies, we report a multiplex assay combining immunoprecipitation and high-resolution mass spectrometry capable of detecting and quantifying peptides from different tau protein isoforms as well as non-phosphorylated and phosphorylated peptides, including those carrying multiple phosphorylations. We investigated the tau proteoforms in soluble and insoluble fractions of brain tissue from subjects with autopsy-confirmed tauopathies, including sporadic AD (n = 10), PSP (n = 11), PiD (n = 10), and CBD (n = 10), and controls (n = 10). Our results demonstrate that non-phosphorylated tau profiles differ across tauopathies, generally showing high abundance of microtubule-binding region (MTBR)-containing peptides in insoluble protein fractions compared with controls; the AD group showed 12-72 times higher levels of MTBR-containing aggregates. Quantification of tau isoforms showed the 3R being more abundant in PiD and the 4R isoform being more abundant in CBD and PSP in the insoluble fraction. Twenty-three different phosphorylated peptides were quantified. Most phosphorylated peptides were measurable in all investigated tauopathies. All phosphorylated peptides were significantly increased in AD insoluble fraction. However, doubly and triply phosphorylated peptides were significantly increased in AD even in the soluble fraction. Results were replicated using a validation cohort comprising AD (n = 10), CBD (n = 10), and controls (n = 10). Our study demonstrates that abnormal levels of phosphorylation and aggregation do indeed occur in non-AD tauopathies, however, both appear pronouncedly increased in AD, becoming a distinctive characteristic of AD pathology.
Collapse
Affiliation(s)
- Juan Lantero-Rodriguez
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Elena Camporesi
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Laia Montoliu-Gaya
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Johan Gobom
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Diana Piotrowska
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Maria Olsson
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Irena Matečko Burmann
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Bruno Becker
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Ann Brinkmalm
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Björn M Burmann
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Michael Perkinton
- AstraZeneca Neuroscience Innovative Medicines, MedImmune Ltd, Cambridge, CB21 6GH, UK
| | - Nicholas J Ashton
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
- Department of Old Age Psychiatry, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, Maurice, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Nick C Fox
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute, University College London, London, UK
| | - Tammaryn Lashley
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
| | - Henrik Zetterberg
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute, University College London, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Gunnar Brinkmalm
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.
| |
Collapse
|
34
|
Shi H, Mirzaei N, Koronyo Y, Davis MR, Robinson E, Braun GM, Jallow O, Rentsendorj A, Ramanujan VK, Fert-Bober J, Kramerov AA, Ljubimov AV, Schneider LS, Tourtellotte WG, Hawes D, Schneider JA, Black KL, Kayed R, Selenica MLB, Lee DC, Fuchs DT, Koronyo-Hamaoui M. Identification of retinal oligomeric, citrullinated, and other tau isoforms in early and advanced AD and relations to disease status. Acta Neuropathol 2024; 148:3. [PMID: 38980423 PMCID: PMC11233395 DOI: 10.1007/s00401-024-02760-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/07/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
This study investigates various pathological tau isoforms in the retina of individuals with early and advanced Alzheimer's disease (AD), exploring their connection with disease status. Retinal cross-sections from predefined superior-temporal and inferior-temporal subregions and corresponding brains from neuropathologically confirmed AD patients with a clinical diagnosis of either mild cognitive impairment (MCI) or dementia (n = 45) were compared with retinas from age- and sex-matched individuals with normal cognition (n = 30) and non-AD dementia (n = 4). Retinal tau isoforms, including tau tangles, paired helical filament of tau (PHF-tau), oligomeric-tau (Oligo-tau), hyperphosphorylated-tau (p-tau), and citrullinated-tau (Cit-tau), were stereologically analyzed by immunohistochemistry and Nanostring GeoMx digital spatial profiling, and correlated with clinical and neuropathological outcomes. Our data indicated significant increases in various AD-related pretangle tau isoforms, especially p-tau (AT8, 2.9-fold, pS396-tau, 2.6-fold), Cit-tau at arginine residue 209 (CitR209-tau; 4.1-fold), and Oligo-tau (T22+, 9.2-fold), as well as pretangle and mature tau tangle forms like MC-1-positive (1.8-fold) and PHF-tau (2.3-fold), in AD compared to control retinas. MCI retinas also exhibited substantial increases in Oligo-tau (5.2-fold), CitR209-tau (3.5-fold), and pS396-tau (2.2-fold). Nanostring GeoMx analysis confirmed elevated retinal p-tau at epitopes: Ser214 (2.3-fold), Ser396 (2.6-fold), Ser404 (2.4-fold), and Thr231 (1.8-fold), particularly in MCI patients. Strong associations were found between retinal tau isoforms versus brain pathology and cognitive status: a) retinal Oligo-tau vs. Braak stage, neurofibrillary tangles (NFTs), and CDR cognitive scores (ρ = 0.63-0.71), b) retinal PHF-tau vs. neuropil threads (NTs) and ABC scores (ρ = 0.69-0.71), and c) retinal pS396-tau vs. NTs, NFTs, and ABC scores (ρ = 0.67-0.74). Notably, retinal Oligo-tau strongly correlated with retinal Aβ42 and arterial Aβ40 forms (r = 0.76-0.86). Overall, this study identifies and quantifies diverse retinal tau isoforms in MCI and AD patients, underscoring their link to brain pathology and cognition. These findings advocate for further exploration of retinal tauopathy biomarkers to facilitate AD detection and monitoring via noninvasive retinal imaging.
Collapse
Affiliation(s)
- Haoshen Shi
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Nazanin Mirzaei
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Miyah R Davis
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Edward Robinson
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Gila M Braun
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Ousman Jallow
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - V Krishnan Ramanujan
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Justyna Fert-Bober
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Andrei A Kramerov
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Applied Cell Biology and Physiology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alexander V Ljubimov
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Applied Cell Biology and Physiology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lon S Schneider
- Departments of Psychiatry and the Behavioral Sciences and Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Warren G Tourtellotte
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Applied Cell Biology and Physiology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Debra Hawes
- Department of Pathology Program in Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Julie A Schneider
- Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Maj-Linda B Selenica
- Sanders-Brown Center On Aging, Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Daniel C Lee
- Sanders-Brown Center On Aging, Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA.
- Division of Applied Cell Biology and Physiology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
35
|
Gaikwad S, Puangmalai N, Sonawane M, Montalbano M, Price R, Iyer MS, Ray A, Moreno S, Kayed R. Nasal tau immunotherapy clears intracellular tau pathology and improves cognitive functions in aged tauopathy mice. Sci Transl Med 2024; 16:eadj5958. [PMID: 38959324 DOI: 10.1126/scitranslmed.adj5958] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/11/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
Pathological tau aggregates cause cognitive decline in neurodegenerative tauopathies, including Alzheimer's disease (AD). These aggregates are prevalent within intracellular compartments. Current tau immunotherapies have shown limited efficacy in clearing intracellular tau aggregates and improving cognition in clinical trials. In this study, we developed toxic tau conformation-specific monoclonal antibody-2 (TTCM2), which selectively recognized pathological tau aggregates in brain tissues from patients with AD, dementia with Lewy bodies (DLB), and progressive supranuclear palsy (PSP). TTCM2 potently inhibited tau-seeding activity, an essential mechanism underlying tauopathy progression. To effectively target intracellular tau aggregates and ensure rapid delivery to the brain, TTCM2 was loaded in micelles (TTCM2-ms) and administered through the intranasal route. We found that intranasally administered TTCM2-ms efficiently entered the brain in hTau-tauopathy mice, targeting pathological tau in intracellular compartments. Moreover, a single intranasal dose of TTCM2-ms effectively cleared pathological tau, elevated synaptic proteins, and improved cognitive functions in aged tauopathy mice. Mechanistic studies revealed that TTCM2-ms cleared intracellular, synaptic, and seed-competent tau aggregates through tripartite motif-containing 21 (TRIM21), an intracellular antibody receptor and E3 ubiquitin ligase known to facilitate proteasomal degradation of cytosolic antibody-bound proteins. TRIM21 was found to be essential for TTCM2-ms-mediated clearance of tau pathology. Our study collectively provides evidence of the effectiveness of nasal tau immunotherapy in targeting and clearing intracellular tau pathology through TRIM21 and enhancing cognition in aged tauopathy mice. This study could be valuable in designing effective tau immunotherapies for AD and other tauopathies.
Collapse
Affiliation(s)
- Sagar Gaikwad
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Nicha Puangmalai
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Minal Sonawane
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mauro Montalbano
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Rachel Price
- Department of Science, University "Roma Tre," Viale G. Marconi 446 00146 Rome, Italy
| | | | | | - Sandra Moreno
- Department of Science, University "Roma Tre," Viale G. Marconi 446 00146 Rome, Italy
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
36
|
Ali A, Holman AP, Rodriguez A, Matveyenka M, Kurouski D. Tubulin-binding region alters tau-lipid interactions and changes toxicity of tau fibrils formed in the presence of phosphatidylserine lipids. Protein Sci 2024; 33:e5078. [PMID: 38895991 PMCID: PMC11187861 DOI: 10.1002/pro.5078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
Alzheimer's disease is the fastest-growing neurodegenerative disease that affects over six million Americans. The abnormal aggregation of amyloid β peptide and Tau protein is the expected molecular cause of the loss of neurons in brains of AD patients. A growing body of evidence indicates that lipids can alter the aggregation rate of amyloid β peptide and modify the toxicity of amyloid β aggregates. However, the role of lipids in Tau aggregation remains unclear. In this study, we utilized a set of biophysical methods to determine the extent to which phospatidylserine (PS) altered the aggregation properties of Tau isoforms with one (1N4R) and two (2N4R) N terminal inserts that enhance the binding of Tau to tubulin. We found that the length and saturation of fatty acids (FAs) in PS altered the aggregation rate of 2N4R isoform, while no changes in the aggregation rate of 1N4R were observed. These results indicate that N terminal inserts play an important role in protein-lipid interactions. We also found that PS could change the toxicity of 1N4R and 2N4R Tau fibrils, as well as alter molecular mechanisms by which these aggregates exert cytotoxicity to neurons. Finally, we found that although Tau fibrils formed in the presence and absence of PS endocytosed by cells, only fibril species that were formed in the presence of PS exert strong impairment of the cell mitochondria.
Collapse
Affiliation(s)
- Abid Ali
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
| | - Aidan P. Holman
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
- Department of EntomologyTexas A&M UniversityCollege StationTexasUSA
| | - Axell Rodriguez
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
| | - Mikhail Matveyenka
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
| | - Dmitry Kurouski
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
- Department of Biomedical EngineeringTexas A&M UniversityCollege StationTexasUSA
| |
Collapse
|
37
|
Segura L, Santos N, Flores R, Sikazwe D, McGibbon M, Blay V, Cheng KH. Exploring Tau Fibril-Disaggregating and Antioxidating Molecules Binding to Membrane-Bound Amyloid Oligomers Using Machine Learning-Enhanced Docking and Molecular Dynamics. Molecules 2024; 29:2818. [PMID: 38930883 PMCID: PMC11206291 DOI: 10.3390/molecules29122818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Intracellular tau fibrils are sources of neurotoxicity and oxidative stress in Alzheimer's. Current drug discovery efforts have focused on molecules with tau fibril disaggregation and antioxidation functions. However, recent studies suggest that membrane-bound tau-containing oligomers (mTCOs), smaller and less ordered than tau fibrils, are neurotoxic in the early stage of Alzheimer's. Whether tau fibril-targeting molecules are effective against mTCOs is unknown. The binding of epigallocatechin-3-gallate (EGCG), CNS-11, and BHT-CNS-11 to in silico mTCOs and experimental tau fibrils was investigated using machine learning-enhanced docking and molecular dynamics simulations. EGCG and CNS-11 have tau fibril disaggregation functions, while the proposed BHT-CNS-11 has potential tau fibril disaggregation and antioxidation functions like EGCG. Our results suggest that the three molecules studied may also bind to mTCOs. The predicted binding probability of EGCG to mTCOs increases with the protein aggregate size. In contrast, the predicted probability of CNS-11 and BHT-CNS-11 binding to the dimeric mTCOs is higher than binding to the tetrameric mTCOs for the homo tau but not for the hetero tau-amylin oligomers. Our results also support the idea that anionic lipids may promote the binding of molecules to mTCOs. We conclude that tau fibril-disaggregating and antioxidating molecules may bind to mTCOs, and that mTCOs may also be useful targets for Alzheimer's drug design.
Collapse
Affiliation(s)
- Luthary Segura
- Neuroscience Department, Trinity University, San Antonio, TX 78212, USA;
| | - Natalia Santos
- Physics Department, Trinity University, San Antonio, TX 78212, USA;
| | - Rafael Flores
- Pharmaceutical Sciences Department, Feik School of Pharmacy, University of the Incarnate Word, San Antonio, TX 78209, USA; (R.F.); (D.S.)
| | - Donald Sikazwe
- Pharmaceutical Sciences Department, Feik School of Pharmacy, University of the Incarnate Word, San Antonio, TX 78209, USA; (R.F.); (D.S.)
| | - Miles McGibbon
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh EH9 3BF, UK;
| | - Vincent Blay
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA;
| | - Kwan H. Cheng
- Neuroscience Department, Trinity University, San Antonio, TX 78212, USA;
- Physics Department, Trinity University, San Antonio, TX 78212, USA;
| |
Collapse
|
38
|
Balusu S, De Strooper B. The necroptosis cell death pathway drives neurodegeneration in Alzheimer's disease. Acta Neuropathol 2024; 147:96. [PMID: 38852117 PMCID: PMC11162975 DOI: 10.1007/s00401-024-02747-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
Although apoptosis, pyroptosis, and ferroptosis have been implicated in AD, none fully explains the extensive neuronal loss observed in AD brains. Recent evidence shows that necroptosis is abundant in AD, that necroptosis is closely linked to the appearance of Tau pathology, and that necroptosis markers accumulate in granulovacuolar neurodegeneration vesicles (GVD). We review here the neuron-specific activation of the granulovacuolar mediated neuronal-necroptosis pathway, the potential AD-relevant triggers upstream of this pathway, and the interaction of the necrosome with the endo-lysosomal pathway, possibly providing links to Tau pathology. In addition, we underscore the therapeutic potential of inhibiting necroptosis in neurodegenerative diseases such as AD, as this presents a novel avenue for drug development targeting neuronal loss to preserve cognitive abilities. Such an approach seems particularly relevant when combined with amyloid-lowering drugs.
Collapse
Affiliation(s)
- Sriram Balusu
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain and Disease Research, 3000, Leuven, Belgium.
- Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium.
| | - Bart De Strooper
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain and Disease Research, 3000, Leuven, Belgium.
- Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium.
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK.
| |
Collapse
|
39
|
Penny LK, Lofthouse R, Arastoo M, Porter A, Palliyil S, Harrington CR, Wischik CM. Considerations for biomarker strategies in clinical trials investigating tau-targeting therapeutics for Alzheimer's disease. Transl Neurodegener 2024; 13:25. [PMID: 38773569 PMCID: PMC11107038 DOI: 10.1186/s40035-024-00417-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/24/2024] [Indexed: 05/24/2024] Open
Abstract
The use of biomarker-led clinical trial designs has been transformative for investigating amyloid-targeting therapies for Alzheimer's disease (AD). The designs have ensured the correct selection of patients on these trials, supported target engagement and have been used to support claims of disease modification and clinical efficacy. Ultimately, this has recently led to approval of disease-modifying, amyloid-targeting therapies for AD; something that should be noted for clinical trials investigating tau-targeting therapies for AD. There is a clear overlap of the purpose of biomarker use at each stage of clinical development between amyloid-targeting and tau-targeting clinical trials. However, there are differences within the potential context of use and interpretation for some biomarkers in particular measurements of amyloid and utility of soluble, phosphorylated tau biomarkers. Given the complexities of tau in health and disease, it is paramount that therapies target disease-relevant tau and, in parallel, appropriate assays of target engagement are developed. Tau positron emission tomography, fluid biomarkers reflecting tau pathology and downstream measures of neurodegeneration will be important both for participant recruitment and for monitoring disease-modification in tau-targeting clinical trials. Bespoke design of biomarker strategies and interpretations for different modalities and tau-based targets should also be considered.
Collapse
Affiliation(s)
- Lewis K Penny
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
- Scottish Biologics Facility, University of Aberdeen, Aberdeen, UK
- TauRx Therapeutics Ltd, Aberdeen, UK
| | - Richard Lofthouse
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
- Scottish Biologics Facility, University of Aberdeen, Aberdeen, UK
| | - Mohammad Arastoo
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
- Scottish Biologics Facility, University of Aberdeen, Aberdeen, UK
| | - Andy Porter
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
- Scottish Biologics Facility, University of Aberdeen, Aberdeen, UK
| | - Soumya Palliyil
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
- Scottish Biologics Facility, University of Aberdeen, Aberdeen, UK
| | - Charles R Harrington
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
- GT Diagnostics (UK) Ltd, Aberdeen, UK
- TauRx Therapeutics Ltd, Aberdeen, UK
| | - Claude M Wischik
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK.
- GT Diagnostics (UK) Ltd, Aberdeen, UK.
- TauRx Therapeutics Ltd, Aberdeen, UK.
| |
Collapse
|
40
|
Ellis MJ, Lekka C, Holden KL, Tulmin H, Seedat F, O'Brien DP, Dhayal S, Zeissler ML, Knudsen JG, Kessler BM, Morgan NG, Todd JA, Richardson SJ, Stefana MI. Identification of high-performing antibodies for the reliable detection of Tau proteoforms by Western blotting and immunohistochemistry. Acta Neuropathol 2024; 147:87. [PMID: 38761203 PMCID: PMC11102361 DOI: 10.1007/s00401-024-02729-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 05/20/2024]
Abstract
Antibodies are essential research tools whose performance directly impacts research conclusions and reproducibility. Owing to its central role in Alzheimer's disease and other dementias, hundreds of distinct antibody clones have been developed against the microtubule-associated protein Tau and its multiple proteoforms. Despite this breadth of offer, limited understanding of their performance and poor antibody selectivity have hindered research progress. Here, we validate a large panel of Tau antibodies by Western blot (79 reagents) and immunohistochemistry (35 reagents). We address the reagents' ability to detect the target proteoform, selectivity, the impact of protein phosphorylation on antibody binding and performance in human brain samples. While most antibodies detected Tau at high levels, many failed to detect it at lower, endogenous levels. By WB, non-selective binding to other proteins affected over half of the antibodies tested, with several cross-reacting with the related MAP2 protein, whereas the "oligomeric Tau" T22 antibody reacted with monomeric Tau by WB, thus calling into question its specificity to Tau oligomers. Despite the presumption that "total" Tau antibodies are agnostic to post-translational modifications, we found that phosphorylation partially inhibits binding for many such antibodies, including the popular Tau-5 clone. We further combine high-sensitivity reagents, mass-spectrometry proteomics and cDNA sequencing to demonstrate that presumptive Tau "knockout" human cells continue to express residual protein arising through exon skipping, providing evidence of previously unappreciated gene plasticity. Finally, probing of human brain samples with a large panel of antibodies revealed the presence of C-term-truncated versions of all main Tau brain isoforms in both control and tauopathy donors. Ultimately, we identify a validated panel of Tau antibodies that can be employed in Western blotting and/or immunohistochemistry to reliably detect even low levels of Tau expression with high selectivity. This work represents an extensive resource that will enable the re-interpretation of published data, improve reproducibility in Tau research, and overall accelerate scientific progress.
Collapse
Affiliation(s)
- Michael J Ellis
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Christiana Lekka
- Islet Biology Group, Department of Clinical & Biomedical Sciences, Exeter Centre of Excellence in Diabetes (EXCEED), University of Exeter, RILD Building, Exeter, UK
| | - Katie L Holden
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Hanna Tulmin
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Faheem Seedat
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
- Nuffield Department of Women's and Reproductive Health, Women's Centre, University of Oxford, John Radcliffe Hospital, Level 3, Oxford, UK
| | - Darragh P O'Brien
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Shalinee Dhayal
- Islet Biology Group, Department of Clinical & Biomedical Sciences, Exeter Centre of Excellence in Diabetes (EXCEED), University of Exeter, RILD Building, Exeter, UK
| | - Marie-Louise Zeissler
- Islet Biology Group, Department of Clinical & Biomedical Sciences, Exeter Centre of Excellence in Diabetes (EXCEED), University of Exeter, RILD Building, Exeter, UK
| | - Jakob G Knudsen
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Oxford, Radcliffe, UK
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Benedikt M Kessler
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Noel G Morgan
- Islet Biology Group, Department of Clinical & Biomedical Sciences, Exeter Centre of Excellence in Diabetes (EXCEED), University of Exeter, RILD Building, Exeter, UK
| | - John A Todd
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Sarah J Richardson
- Islet Biology Group, Department of Clinical & Biomedical Sciences, Exeter Centre of Excellence in Diabetes (EXCEED), University of Exeter, RILD Building, Exeter, UK
| | - M Irina Stefana
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK.
| |
Collapse
|
41
|
Soliman AS, Umstead A, Lamp J, Vega IE. EFhd2 co-aggregates with monomeric and filamentous tau in vitro. Front Neurosci 2024; 18:1373410. [PMID: 38765673 PMCID: PMC11100465 DOI: 10.3389/fnins.2024.1373410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024] Open
Abstract
Tauopathies are characterized by the abnormal buildup of tau protein, with early oligomeric forms associated with neurodegeneration and the later neurofibrillary tangles possibly conferring neuroprotection. The molecular mechanisms governing the formation of these tau species are unclear. Lately, there has been an increased focus on examining the interactions between tau and other proteins, along with their influence on the aggregation of tau. Our previous work revealed EFhd2's association with pathological tau in animal models and tauopathy brains. Herein, we examined the impact of EFhd2 on monomeric and filamentous tau in vitro. The results demonstrated that EFhd2 incubation with monomeric full length human tau (hTau40) formed amorphous aggregates, where both EFhd2 and hTau40 colocalized. Moreover, EFhd2 is entangled with arachidonic acid (ARA)-induced filamentous hTau40. Furthermore, EFhd2-induced aggregation with monomeric and filamentous hTau40 is EFhd2 concentration dependent. Using sandwich ELISA assays, we assessed the reactivity of TOC1 and Alz50-two conformation-specific tau antibodies-to EFhd2-hTau40 aggregates (in absence and presence of ARA). No TOC1 signal was detected in EFhd2 aggregates with monomeric hTau40 whereas EFhd2 aggregates with hTau in the presence of ARA showed a higher signal compared to hTau40 filaments. In contrast, EFhd2 aggregates with both monomeric and filamentous hTau40 reduced Alz50 reactivity. Taken together, our results illustrate for the first time that EFhd2, a tau-associated protein, interacts with monomeric and filamentous hTau40 to form large aggregates that are starkly different from tau oligomers and filaments. Given these findings and previous research, we hypothesize that EFhd2 may play a role in the formation of tau aggregates. Nevertheless, further in vivo studies are imperative to test this hypothesis.
Collapse
Affiliation(s)
- Ahlam S. Soliman
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Neuroscience Program, Michigan State University, East Lansing, MI, United States
| | - Andrew Umstead
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Integrated Mass Spectrometry Unit, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Jared Lamp
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Irving E. Vega
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Neuroscience Program, Michigan State University, East Lansing, MI, United States
- Integrated Mass Spectrometry Unit, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Michigan Alzheimer's Disease Research Center, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
42
|
Zheng H, Sun H, Cai Q, Tai HC. The Enigma of Tau Protein Aggregation: Mechanistic Insights and Future Challenges. Int J Mol Sci 2024; 25:4969. [PMID: 38732197 PMCID: PMC11084794 DOI: 10.3390/ijms25094969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Tau protein misfolding and aggregation are pathological hallmarks of Alzheimer's disease and over twenty neurodegenerative disorders. However, the molecular mechanisms of tau aggregation in vivo remain incompletely understood. There are two types of tau aggregates in the brain: soluble aggregates (oligomers and protofibrils) and insoluble filaments (fibrils). Compared to filamentous aggregates, soluble aggregates are more toxic and exhibit prion-like transmission, providing seeds for templated misfolding. Curiously, in its native state, tau is a highly soluble, heat-stable protein that does not form fibrils by itself, not even when hyperphosphorylated. In vitro studies have found that negatively charged molecules such as heparin, RNA, or arachidonic acid are generally required to induce tau aggregation. Two recent breakthroughs have provided new insights into tau aggregation mechanisms. First, as an intrinsically disordered protein, tau is found to undergo liquid-liquid phase separation (LLPS) both in vitro and inside cells. Second, cryo-electron microscopy has revealed diverse fibrillar tau conformations associated with different neurodegenerative disorders. Nonetheless, only the fibrillar core is structurally resolved, and the remainder of the protein appears as a "fuzzy coat". From this review, it appears that further studies are required (1) to clarify the role of LLPS in tau aggregation; (2) to unveil the structural features of soluble tau aggregates; (3) to understand the involvement of fuzzy coat regions in oligomer and fibril formation.
Collapse
Affiliation(s)
| | | | | | - Hwan-Ching Tai
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|
43
|
Basheer N, Buee L, Brion JP, Smolek T, Muhammadi MK, Hritz J, Hromadka T, Dewachter I, Wegmann S, Landrieu I, Novak P, Mudher A, Zilka N. Shaping the future of preclinical development of successful disease-modifying drugs against Alzheimer's disease: a systematic review of tau propagation models. Acta Neuropathol Commun 2024; 12:52. [PMID: 38576010 PMCID: PMC10993623 DOI: 10.1186/s40478-024-01748-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/21/2024] [Indexed: 04/06/2024] Open
Abstract
The transcellular propagation of the aberrantly modified protein tau along the functional brain network is a key hallmark of Alzheimer's disease and related tauopathies. Inoculation-based tau propagation models can recapitulate the stereotypical spread of tau and reproduce various types of tau inclusions linked to specific tauopathy, albeit with varying degrees of fidelity. With this systematic review, we underscore the significance of judicious selection and meticulous functional, biochemical, and biophysical characterization of various tau inocula. Furthermore, we highlight the necessity of choosing suitable animal models and inoculation sites, along with the critical need for validation of fibrillary pathology using confirmatory staining, to accurately recapitulate disease-specific inclusions. As a practical guide, we put forth a framework for establishing a benchmark of inoculation-based tau propagation models that holds promise for use in preclinical testing of disease-modifying drugs.
Collapse
Affiliation(s)
- Neha Basheer
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10, Bratislava, Slovakia
| | - Luc Buee
- Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, University of Lille, 59000, Lille, France.
| | - Jean-Pierre Brion
- Faculty of Medicine, Laboratory of Histology, Alzheimer and Other Tauopathies Research Group (CP 620), ULB Neuroscience Institute (UNI), Université Libre de Bruxelles, 808, Route de Lennik, 1070, Brussels, Belgium
| | - Tomas Smolek
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10, Bratislava, Slovakia
| | - Muhammad Khalid Muhammadi
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10, Bratislava, Slovakia
| | - Jozef Hritz
- CEITEC Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Tomas Hromadka
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10, Bratislava, Slovakia
| | - Ilse Dewachter
- Biomedical Research Institute, BIOMED, Hasselt University, 3500, Hasselt, Belgium
| | - Susanne Wegmann
- German Center for Neurodegenerative Diseases, Charitéplatz 1, 10117, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Isabelle Landrieu
- CNRS EMR9002 - BSI - Integrative Structural Biology, 59000, Lille, France
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, University of Lille, 59000, Lille, France
| | - Petr Novak
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10, Bratislava, Slovakia
| | - Amritpal Mudher
- School of Biological Sciences, Faculty of Environment and Life Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Norbert Zilka
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10, Bratislava, Slovakia.
- AXON Neuroscience R&D Services SE, Dubravska Cesta 9, 845 10, Bratislava, Slovakia.
| |
Collapse
|
44
|
Arar S, Haque MA, Bhatt N, Zhao Y, Kayed R. Effect of Natural Osmolytes on Recombinant Tau Monomer: Propensity of Oligomerization and Aggregation. ACS Chem Neurosci 2024; 15:1366-1377. [PMID: 38503425 PMCID: PMC10995947 DOI: 10.1021/acschemneuro.3c00614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/21/2024] Open
Abstract
The pathological misfolding and aggregation of the microtubule associated protein tau (MAPT), a full length Tau2N4R with 441aa, is considered the principal disease relevant constituent in tauopathies including Alzheimer's disease (AD) with an imbalanced ratio in 3R/4R isoforms. The exact cellular fluid composition, properties, and changes that coincide with tau misfolding, seed formation, and propagation events remain obscure. The proteostasis network, along with the associated osmolytes, is responsible for maintaining the presence of tau in its native structure or dealing with misfolding. In this study, for the first time, the roles of natural brain osmolytes are being investigated for their potential effects on regulating the conformational stability of the tau monomer (tauM) and its propensity to aggregate or disaggregate. Herein, the effects of physiological osmolytes myo-inositol, taurine, trimethyl amine oxide (TMAO), betaine, sorbitol, glycerophosphocholine (GPC), and citrulline on tau's aggregation state were investigated. The overall results indicate the ability of sorbitol and GPC to maintain the monomeric form and prevent aggregation of tau, whereas myo-inositol, taurine, TMAO, betaine, and citrulline promote tau aggregation to different degrees, as revealed by protein morphology in atomic force microscopy images. Biochemical and biophysical methods also revealed that tau proteins adopt different conformations under the influence of these osmolytes. TauM in the presence of all osmolytes expressed no toxicity when tested by a lactate dehydrogenase assay. Investigating the conformational stability of tau in the presence of osmolytes may provide a better understanding of the complex nature of tau aggregation in AD and the protective and/or chaotropic nature of osmolytes.
Collapse
Affiliation(s)
- Sharif Arar
- Mitchell
Center for Neurodegenerative Diseases, University
of Texas Medical Branch, Galveston, Texas 77555, United States
- Departments
of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Department
of Chemistry, School of Science, The University
of Jordan, Amman 11942, Jordan
| | - Md Anzarul Haque
- Mitchell
Center for Neurodegenerative Diseases, University
of Texas Medical Branch, Galveston, Texas 77555, United States
- Departments
of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Nemil Bhatt
- Mitchell
Center for Neurodegenerative Diseases, University
of Texas Medical Branch, Galveston, Texas 77555, United States
- Departments
of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Yingxin Zhao
- Department
of Internal Medicine, University of Texas
Medical Branch, Galveston, Texas 77555, United States
- Institute
for Translational Sciences, University of
Texas Medical Branch, Galveston, Texas 77555, United States
| | - Rakez Kayed
- Mitchell
Center for Neurodegenerative Diseases, University
of Texas Medical Branch, Galveston, Texas 77555, United States
- Departments
of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
45
|
Das-Earl P, Schreihofer DA, Sumien N, Schreihofer AM. Temporal and region-specific tau hyperphosphorylation in the medulla and forebrain coincides with development of functional changes in male obese Zucker rats. J Neurophysiol 2024; 131:689-708. [PMID: 38416718 PMCID: PMC11305650 DOI: 10.1152/jn.00409.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 03/01/2024] Open
Abstract
Metabolic syndrome (MetS) is associated with development of tauopathies that contribute to cognitive decline. Without functional leptin receptors, male obese Zucker rats (OZRs) develop MetS, and they have increased phosphorylated tau (ptau) with impaired cognitive function. In addition to regulating energy balance, leptin enhances activation of the hippocampus, which is essential for spatial learning and memory. Whether spatial learning and memory are always impaired in OZRs or develop with MetS is unknown. We hypothesized that male OZRs develop MetS traits that promote regional increases in ptau and functional deficits associated with those brain regions. In the medulla and cortex, tau-pSer199,202 and tau-pSer396 were comparable in juvenile (7-8 wk old) lean Zucker rats (LZRs) and OZRs but increased in 18- to 19-wk-old OZRs. Elevated tau-pSer396 was concentrated in the dorsal vagal complex of the medulla, and by this age OZRs had hypertension with increased arterial pressure variability. In the hippocampus, tau-pSer199,202 and tau-pSer396 were still comparable in 18- to 19-wk-old OZRs and LZRs but elevated in 28- to 29-wk-old OZRs, with emergence of deficits in Morris water maze performance. Comparable escape latencies observed during acquisition in 18- to 19-wk-old OZRs and LZRs were increased in 28- to 29-wk-old OZRs, with greater use of nonspatial search strategies. Increased ptau developed with changes in the insulin/phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway in the hippocampus and cortex but not medulla, suggesting different underlying mechanisms. These data demonstrate that leptin is not required for spatial learning and memory in male OZRs. Furthermore, early development of MetS-associated autonomic dysfunction by the medulla may be predictive of later hippocampal dysfunction and cognitive impairment.NEW & NOTEWORTHY Male obese Zucker rats (OZRs) lack functional leptin receptors and develop metabolic syndrome (MetS). At 16-19 wk, OZRs are insulin resistant, with increased ptau in dorsal medulla and impaired autonomic regulation of AP. At 28-29 wk OZRs develop increased ptau in hippocampus with deficits in spatial learning and memory. Juvenile OZRs lack elevated ptau and these deficits, demonstrating that leptin is not essential for normal function. Elevated ptau and deficits emerge before the onset of diabetes in insulin-resistant OZRs.
Collapse
Affiliation(s)
- Paromita Das-Earl
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Derek A Schreihofer
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Nathalie Sumien
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Ann M Schreihofer
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| |
Collapse
|
46
|
Balczon R, Lin MT, Voth S, Nelson AR, Schupp JC, Wagener BM, Pittet JF, Stevens T. Lung endothelium, tau, and amyloids in health and disease. Physiol Rev 2024; 104:533-587. [PMID: 37561137 PMCID: PMC11281824 DOI: 10.1152/physrev.00006.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/26/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
Lung endothelia in the arteries, capillaries, and veins are heterogeneous in structure and function. Lung capillaries in particular represent a unique vascular niche, with a thin yet highly restrictive alveolar-capillary barrier that optimizes gas exchange. Capillary endothelium surveys the blood while simultaneously interpreting cues initiated within the alveolus and communicated via immediately adjacent type I and type II epithelial cells, fibroblasts, and pericytes. This cell-cell communication is necessary to coordinate the immune response to lower respiratory tract infection. Recent discoveries identify an important role for the microtubule-associated protein tau that is expressed in lung capillary endothelia in the host-pathogen interaction. This endothelial tau stabilizes microtubules necessary for barrier integrity, yet infection drives production of cytotoxic tau variants that are released into the airways and circulation, where they contribute to end-organ dysfunction. Similarly, beta-amyloid is produced during infection. Beta-amyloid has antimicrobial activity, but during infection it can acquire cytotoxic activity that is deleterious to the host. The production and function of these cytotoxic tau and amyloid variants are the subject of this review. Lung-derived cytotoxic tau and amyloid variants are a recently discovered mechanism of end-organ dysfunction, including neurocognitive dysfunction, during and in the aftermath of infection.
Collapse
Affiliation(s)
- Ron Balczon
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Mike T Lin
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Sarah Voth
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Monroe, Louisiana, United States
| | - Amy R Nelson
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Jonas C Schupp
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University, New Haven, Connecticut, United States
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
| | - Brant M Wagener
- Department of Anesthesiology and Perioperative Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| |
Collapse
|
47
|
Shi H, Mirzaei N, Koronyo Y, Davis MR, Robinson E, Braun GM, Jallow O, Rentsendorj A, Ramanujan VK, Fert-Bober J, Kramerov AA, Ljubimov AV, Schneider LS, Tourtellotte WG, Hawes D, Schneider JA, Black KL, Kayed R, Selenica MLB, Lee DC, Fuchs DT, Koronyo-Hamaoui M. Identification of retinal tau oligomers, citrullinated tau, and other tau isoforms in early and advanced AD and relations to disease status. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.579999. [PMID: 38405854 PMCID: PMC10888760 DOI: 10.1101/2024.02.13.579999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Importance This study identifies and quantifies diverse pathological tau isoforms in the retina of both early and advanced-stage Alzheimer's disease (AD) and determines their relationship with disease status. Objective A case-control study was conducted to investigate the accumulation of retinal neurofibrillary tangles (NFTs), paired helical filament (PHF)-tau, oligomeric tau (oligo-tau), hyperphosphorylated tau (p-tau), and citrullinated tau (Cit-tau) in relation to the respective brain pathology and cognitive dysfunction in mild cognitively impaired (MCI) and AD dementia patients versus normal cognition (NC) controls. Design setting and participants Eyes and brains from donors diagnosed with AD, MCI (due to AD), and NC were collected (n=75 in total), along with clinical and neuropathological data. Brain and retinal cross-sections-in predefined superior-temporal and inferior-temporal (ST/IT) subregions-were subjected to histopathology analysis or Nanostring GeoMx digital spatial profiling. Main outcomes and measure Retinal burden of NFTs (pretangles and mature tangles), PHF-tau, p-tau, oligo-tau, and Cit-tau was assessed in MCI and AD versus NC retinas. Pairwise correlations revealed associations between retinal and brain parameters and cognitive status. Results Increased retinal NFTs (1.8-fold, p=0.0494), PHF-tau (2.3-fold, p<0.0001), oligo-tau (9.1-fold, p<0.0001), CitR 209 -tau (4.3-fold, p<0.0001), pSer202/Thr205-tau (AT8; 4.1-fold, p<0.0001), and pSer396-tau (2.8-fold, p=0.0015) were detected in AD patients. Retinas from MCI patients showed significant increases in NFTs (2.0-fold, p=0.0444), CitR 209 -tau (3.5-fold, p=0.0201), pSer396-tau (2.6-fold, p=0.0409), and, moreover, oligo-tau (5.8-fold, p=0.0045). Nanostring GeoMx quantification demonstrated upregulated retinal p-tau levels in MCI patients at phosphorylation sites of Ser214 (2.3-fold, p=0.0060), Ser396 (1.8-fold, p=0.0052), Ser404 (2.4-fold, p=0.0018), and Thr231 (3.3-fold, p=0.0028). Strong correlations were found between retinal tau forms to paired-brain pathology and cognitive status: a) retinal oligo-tau vs. Braak stage (r=0.60, P=0.0002), b) retinal PHF-tau vs. ABC average score (r=0.64, P=0.0043), c) retinal pSer396-tau vs. brain NFTs (r=0.68, P<0.0001), and d) retinal pSer202/Thr205-tau vs. MMSE scores (r= -0.77, P=0.0089). Conclusions and Relevance This study reveals increases in immature and mature retinal tau isoforms in MCI and AD patients, highlighting their relationship with brain pathology and cognition. The data provide strong incentive to further explore retinal tauopathy markers that may be useful for early detection and monitoring of AD staging through noninvasive retinal imaging.
Collapse
|
48
|
De Leiris N, Perret P, Lombardi C, Gözel B, Chierici S, Millet P, Debiossat M, Bacot S, Tournier BB, Chames P, Lenormand JL, Ghezzi C, Fagret D, Moulin M. A single-domain antibody for the detection of pathological Tau protein in the early stages of oligomerization. J Transl Med 2024; 22:163. [PMID: 38365700 PMCID: PMC10870657 DOI: 10.1186/s12967-024-04987-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/12/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Soluble oligomeric forms of Tau protein have emerged as crucial players in the propagation of Tau pathology in Alzheimer's disease (AD). Our objective is to introduce a single-domain antibody (sdAb) named 2C5 as a novel radiotracer for the efficient detection and longitudinal monitoring of oligomeric Tau species in the human brain. METHODS The development and production of 2C5 involved llama immunization with the largest human Tau isoform oligomers of different maturation states. Subsequently, 2C5 underwent comprehensive in vitro characterization for affinity and specificity via Enzyme-Linked Immunosorbent Assay and immunohistochemistry on human brain slices. Technetium-99m was employed to radiolabel 2C5, followed by its administration to healthy mice for biodistribution analysis. RESULTS 2C5 exhibited robust binding affinity towards Tau oligomers (Kd = 6.280 nM ± 0.557) and to Tau fibers (Kd = 5.024 nM ± 0.453), with relatively weaker binding observed for native Tau protein (Kd = 1791 nM ± 8.714) and amyloid peptide (Kd > 10,000 nM). Remarkably, this SdAb facilitated immuno-histological labeling of pathological forms of Tau in neurons and neuritic plaques, yielding a high-contrast outcome in AD patients, closely mirroring the performance of reference antibodies AT8 and T22. Furthermore, 2C5 SdAb was successfully radiolabeled with 99mTc, preserving stability for up to 6 h post-radiolabeling (radiochemical purity > 93%). However, following intravenous injection into healthy mice, the predominant uptake occurred in kidneys, amounting to 115.32 ± 3.67, 97.70 ± 43.14 and 168.20 ± 34.52% of injected dose per gram (% ID/g) at 5, 10 and 45 min respectively. Conversely, brain uptake remained minimal at all measured time points, registering at 0.17 ± 0.03, 0.12 ± 0.07 and 0.02 ± 0.01% ID/g at 5, 10 and 45 min post-injection respectively. CONCLUSION 2C5 demonstrates excellent affinity and specificity for pathological Tau oligomers, particularly in their early stages of oligomerization. However, the current limitation of insufficient blood-brain barrier penetration necessitates further modifications before considering its application in nuclear medicine imaging for humans.
Collapse
Affiliation(s)
- Nicolas De Leiris
- University Grenoble Alpes, Clinique Universitaire de Médecine Nucléaire, INSERM, Centre Hospitalier Universitaire Grenoble Alpes, LRB, CS 10217, 38043, Grenoble CEDEX 9, France.
| | - Pascale Perret
- University Grenoble Alpes, INSERM, LRB, 38000, Grenoble, France
| | | | - Bülent Gözel
- University Grenoble Alpes, INSERM, LRB, 38000, Grenoble, France
| | - Sabine Chierici
- University Grenoble Alpes, CNRS, DCM, 38000, Grenoble, France
| | - Philippe Millet
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland
| | | | - Sandrine Bacot
- University Grenoble Alpes, INSERM, LRB, 38000, Grenoble, France
| | - Benjamin B Tournier
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland
| | - Patrick Chames
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | | | | | - Daniel Fagret
- University Grenoble Alpes, INSERM, LRB, 38000, Grenoble, France
| | - Marcelle Moulin
- University Grenoble Alpes, INSERM, LRB, 38000, Grenoble, France
| |
Collapse
|
49
|
Kauwe G, Pareja-Navarro KA, Yao L, Chen JH, Wong I, Saloner R, Cifuentes H, Nana AL, Shah S, Li Y, Le D, Spina S, Grinberg LT, Seeley WW, Kramer JH, Sacktor TC, Schilling B, Gan L, Casaletto KB, Tracy TE. KIBRA repairs synaptic plasticity and promotes resilience to tauopathy-related memory loss. J Clin Invest 2024; 134:e169064. [PMID: 38299587 PMCID: PMC10836803 DOI: 10.1172/jci169064] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 11/21/2023] [Indexed: 02/02/2024] Open
Abstract
Synaptic plasticity is obstructed by pathogenic tau in the brain, representing a key mechanism that underlies memory loss in Alzheimer's disease (AD) and related tauopathies. Here, we found that reduced levels of the memory-associated protein KIdney/BRAin (KIBRA) in the brain and increased KIBRA protein levels in cerebrospinal fluid are associated with cognitive impairment and pathological tau levels in disease. We next defined a mechanism for plasticity repair in vulnerable neurons using the C-terminus of the KIBRA protein (CT-KIBRA). We showed that CT-KIBRA restored plasticity and memory in transgenic mice expressing pathogenic human tau; however, CT-KIBRA did not alter tau levels or prevent tau-induced synapse loss. Instead, we found that CT-KIBRA stabilized the protein kinase Mζ (PKMζ) to maintain synaptic plasticity and memory despite tau-mediated pathogenesis. Thus, our results distinguished KIBRA both as a biomarker of synapse dysfunction and as the foundation for a synapse repair mechanism to reverse cognitive impairment in tauopathy.
Collapse
Affiliation(s)
- Grant Kauwe
- Buck Institute for Research on Aging, Novato, California, USA
| | | | - Lei Yao
- Buck Institute for Research on Aging, Novato, California, USA
| | - Jackson H. Chen
- Buck Institute for Research on Aging, Novato, California, USA
| | - Ivy Wong
- Buck Institute for Research on Aging, Novato, California, USA
| | - Rowan Saloner
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Helen Cifuentes
- Buck Institute for Research on Aging, Novato, California, USA
| | - Alissa L. Nana
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Samah Shah
- Buck Institute for Research on Aging, Novato, California, USA
| | - Yaqiao Li
- Gladstone Institutes, San Francisco, Califoria, USA
| | - David Le
- Gladstone Institutes, San Francisco, Califoria, USA
| | - Salvatore Spina
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Lea T. Grinberg
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California, USA
- Weill Institute for Neurosciences, Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | - William W. Seeley
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California, USA
- Weill Institute for Neurosciences, Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | - Joel H. Kramer
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Todd C. Sacktor
- The Robert F. Furchgott Center of Neural and Behavioral Science, Departments of Physiology and Pharmacology, Anesthesiology, and Neurology, State University of New York Health Sciences University, Brooklyn, New York, USA
| | | | - Li Gan
- Helen and Robert Appel Alzheimer Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - Kaitlin B. Casaletto
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Tara E. Tracy
- Buck Institute for Research on Aging, Novato, California, USA
| |
Collapse
|
50
|
Bhatt N, Puangmalai N, Sengupta U, Jerez C, Kidd M, Gandhi S, Kayed R. C9orf72-associated dipeptide protein repeats form A11-positive oligomers in amyotrophic lateral sclerosis and frontotemporal dementia. J Biol Chem 2024; 300:105628. [PMID: 38295729 PMCID: PMC10844744 DOI: 10.1016/j.jbc.2024.105628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/19/2023] [Accepted: 12/24/2023] [Indexed: 02/12/2024] Open
Abstract
Hexanucleotide repeat expansion in C9orf72 is one of the most common causes of amyotrophic lateral sclerosis and frontotemporal dementia. The hexanucleotide expansion, formed by GGGGCC (G4C2) repeats, leads to the production of five dipeptide protein repeats (DPRs) via repeat-associated non-AUG translation. Among the five dipeptide repeats, Gly-Arg, Pro-Arg, and Gly-Ala form neuronal inclusions that contain aggregates of the peptides. Several studies have attempted to model DPR-associated toxicity using various repeat lengths, which suggests a unique conformation that is cytotoxic and is independent of the repeat length. However, the structural characteristics of DPR aggregates have yet to be determined. Increasing evidence suggests that soluble species, such as oligomers, are the main cause of toxicity in proteinopathies, such as Alzheimer's and Parkinson's disease. To investigate the ability of DPRs to aggregate and form toxic oligomers, we adopted a reductionist approach using small dipeptide repeats of 3, 6, and 12. This study shows that DPRs, particularly glycine-arginine and proline-arginine, form oligomers that exhibit distinct dye-binding properties and morphologies. Importantly, we also identified toxic DPR oligomers in amyotrophic lateral sclerosis and frontotemporal dementia postmortem brains that are morphologically similar to those generated recombinantly. This study demonstrates that, similar to soluble oligomers formed by various amyloid proteins, DPR oligomers are toxic, independent of their repeat length.
Collapse
Affiliation(s)
- Nemil Bhatt
- Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch, Galveston, Texas, USA; Department of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Nicha Puangmalai
- Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch, Galveston, Texas, USA; Department of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Urmi Sengupta
- Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch, Galveston, Texas, USA; Department of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Cynthia Jerez
- Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch, Galveston, Texas, USA; Department of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Madison Kidd
- Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch, Galveston, Texas, USA; Department of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Shailee Gandhi
- Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch, Galveston, Texas, USA; Department of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch, Galveston, Texas, USA; Department of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA.
| |
Collapse
|