1
|
Liu D, Vandenberg CJ, Sini P, Waldmeier L, Baumgartinger R, Pisarsky L, Petroczi G, Ratnayake G, Scott CL, Ford CE. The antibody-drug conjugate targeting ROR1, NBE-002, is active in high-grade serous ovarian cancer preclinical models. Ther Adv Med Oncol 2025; 17:17588359251332471. [PMID: 40297621 PMCID: PMC12034953 DOI: 10.1177/17588359251332471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/18/2025] [Indexed: 04/30/2025] Open
Abstract
Background Novel therapeutics are urgently needed for high-grade serous ovarian cancer (HGSOC). We identified the receptor tyrosine kinase-like orphan receptor 1 (ROR1) as a therapeutic target. NBE-002, an antibody-drug conjugate (ADC) consisting of a humanised anti-ROR1 antibody, huXBR1-402, linked to a highly potent anthracycline-derivative (PNU), has activity in ROR1-positive haematologic malignancies. Objectives This study explored the anti-cancer effects of NBE-002 alone and in combination with standard HGSOC therapies, carboplatin, paclitaxel and olaparib. Design A ROR1-ADC was tested in cell lines and in vivo models of HGSOC. Methods Different ROR1-targeting antibodies and payload compositions were constructed and tested in vitro. The dose effect of NBE-002 alone and in combination with carboplatin, paclitaxel or olaparib was analysed in ROR1+ HGSOC cell lines. Growth inhibition and apoptosis were monitored by live cell imaging and combination effects determined. Ten HGSOC PDX models were treated with NBE-002 alone, or in combination with carboplatin or olaparib, over 4 weeks and tumour volume and overall survival evaluated. Results Synergistic interaction was observed in two out of five HGSOC cell lines treated with NBE-002 and carboplatin (PEO4 and OC023, chemo-resistant), in one out of five treated with NBE-002 and olaparib (PEO1, BRCA2 mutated, HR deficient) and none of five treated with NBE-002 and paclitaxel. In vivo, NBE-002 exhibited activity in PA-1 xenografts and three HGSOC PDX models with high ROR1 expression, platinum sensitivity and homologous recombination DNA repair deficient (HRD). When NBE-002 was combined with carboplatin, activity was observed in 7 of 10 ROR1-expressing PDX models, regardless of platinum or HRD status. The activity was demonstrated in combination with olaparib in both PDX tested, one HRD and one HRD reverted. Conclusion The ROR1-targeting ADC, NBE-002, has therapeutic potential in HGSOC, with single agent activity observed both in vitro and in vivo. Broader clinical applications were evident when NBE-002 was combined with carboplatin or olaparib.
Collapse
Affiliation(s)
- Dongli Liu
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Cassandra J. Vandenberg
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Patrizia Sini
- Boehringer Ingelheim RCV GmbH & Co KG, Wien, Austria
| | | | | | | | | | | | - Clare L. Scott
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Royal Women’s Hospital, Parkville, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Caroline E. Ford
- Gynaecological Cancer Research Group, Lowy Cancer Research Centre and School of Clinical Medicine, Faculty of Medicine and Health, Level 2 Lowy Cancer Research Centre, University of New South Wales, Kensington, NSW 2052, Australia
| |
Collapse
|
2
|
Tigu AB, Munteanu R, Moldovan C, Rares D, Kegyes D, Tomai R, Moisoiu V, Ghiaur G, Tomuleasa C, Einsele H, Gulei D, Croce CM. Therapeutic advances in the targeting of ROR1 in hematological cancers. Cell Death Discov 2024; 10:471. [PMID: 39551787 PMCID: PMC11570672 DOI: 10.1038/s41420-024-02239-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024] Open
Abstract
Receptor tyrosine kinases (RTKs) are key cell surface receptors involved in cell communication and signal transduction, with great importance in cell growth, differentiation, survival, and metabolism. Dysregulation of RTKs, such as EGFR, VEGFR, HER2 or ROR, could lead to various diseases, particularly cancers. ROR1 has emerged as a promising target in hematological malignancies. The development of ROR1 targeted therapies is continuously growing leading to remarkable novel therapeutical approaches using mAbs, antibody-drug conjugates, several small molecules or CAR T cells which have shown encouraging preclinical results. In the hematological field, mAbs, small molecules, BiTEs or CAR T cell therapies displayed promising outcomes with the clinical trials data encouraging the use of anti-ROR1 therapies. This paper aims to offer a comprehensive analysis of the current landscape of ROR1-targeted therapies in hematological malignancies marking the innovative approaches with promising preclinical and clinical. Offering a better understanding of structural and functional aspects of ROR1 could lead to new perspectives in targeting a wide spectrum of malignancies.
Collapse
Affiliation(s)
- Adrian-Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Raluca Munteanu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Cristian Moldovan
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Drula Rares
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Kegyes
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Radu Tomai
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Vlad Moisoiu
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Gabriel Ghiaur
- Division of Hematological Malignancies, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania.
| | - Hermann Einsele
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
- Department of Medicine, University of Würzburg, Würzburg, Germany
| | - Diana Gulei
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
3
|
Mittelstädt A, Anthuber A, David P, Podolska M, Bénard A, Brunner M, Krautz C, Jacobsen A, Denz A, Weber K, Merkel S, Hackner D, Buniatov T, Roßdeutsch L, Klösch B, Swierzy I, Hansen FJ, Strobel D, Zopf Y, Baur JO, Van Deun J, Immanuel Geppert C, Gießl A, Lettmaier S, Semrau S, Grützmann R, Kouhestani D, Weber GF. Exosomal ROR1 in peritoneal fluid identifies peritoneal disseminated PDAC and is associated with poor survival. Front Immunol 2024; 15:1253072. [PMID: 38846943 PMCID: PMC11153717 DOI: 10.3389/fimmu.2024.1253072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 05/07/2024] [Indexed: 06/09/2024] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest forms of cancer and peritoneal dissemination is one major cause for this poor prognosis. Exosomes have emerged as promising biomarkers for gastrointestinal cancers and can be found in all kinds of bodily fluids, also in peritoneal fluid (PF). This is a unique sample due to its closeness to gastrointestinal malignancies. The receptor tyrosine kinase-like orphan receptor 1 (ROR1) has been identified as a potential biomarker in human cancers and represents a promising target for an immunotherapy approach, which could be considered for future treatment strategies. Here we prospectively analyzed the exosomal surface protein ROR1 (exo-ROR1) in PF in localized PDAC patients (PER-) on the one hand and peritoneal disseminated tumor stages (PER+) on the other hand followed by the correlation of exo-ROR1 with clinical-pathological parameters. Methods Exosomes were isolated from PF and plasma samples of non-cancerous (NC) (n = 15), chronic pancreatitis (CP) (n = 4), localized PDAC (PER-) (n = 18) and peritoneal disseminated PDAC (PER+) (n = 9) patients and the surface protein ROR1 was detected via FACS analysis. Additionally, soluble ROR1 in PF was analyzed. ROR1 expression in tissue was investigated using western blots (WB), qPCR, and immunohistochemistry (IHC). Exosome isolation was proven by Nano Tracking Analysis (NTA), WB, Transmission electron microscopy (TEM), and BCA protein assay. The results were correlated with clinical data and survival analysis was performed. Results PDAC (PER+) patients have the highest exo-ROR1 values in PF and can be discriminated from NC (p <0.0001), PDAC (PER-) (p <0.0001), and CP (p = 0.0112). PDAC (PER-) can be discriminated from NC (p = 0.0003). In plasma, exo-ROR1 is not able to distinguish between the groups. While there is no expression of ROR1 in the exocrine pancreatic tissue, PDAC and peritoneal metastasis show expression of ROR1. High exo-ROR1 expression in PF is associated with lower overall survival (p = 0.0482). Conclusion With exo-ROR1 in PF we found a promising diagnostic and prognostic biomarker possibly discriminating between NC, PDAC (PER-) and PDAC (PER+) and might shed light on future diagnostic and therapeutic concepts in PDAC.
Collapse
Affiliation(s)
- Anke Mittelstädt
- Department of Surgery, University Hospital Erlangen, Erlangen, Germany
| | - Anna Anthuber
- Department of Surgery, University Hospital Erlangen, Erlangen, Germany
| | - Paul David
- Department of Surgery, University Hospital Erlangen, Erlangen, Germany
| | | | - Alan Bénard
- Department of Surgery, University Hospital Erlangen, Erlangen, Germany
| | | | - Christian Krautz
- Department of Surgery, University Hospital Erlangen, Erlangen, Germany
| | - Anne Jacobsen
- Department of Surgery, University Hospital Erlangen, Erlangen, Germany
| | - Axel Denz
- Department of Surgery, University Hospital Erlangen, Erlangen, Germany
| | - Klaus Weber
- Department of Surgery, University Hospital Erlangen, Erlangen, Germany
| | - Susanne Merkel
- Department of Surgery, University Hospital Erlangen, Erlangen, Germany
| | - Danilo Hackner
- Department of Surgery, University Hospital Erlangen, Erlangen, Germany
| | - Timur Buniatov
- Department of Surgery, University Hospital Erlangen, Erlangen, Germany
| | - Lotta Roßdeutsch
- Department of Surgery, University Hospital Erlangen, Erlangen, Germany
| | - Bettina Klösch
- Department of Surgery, University Hospital Erlangen, Erlangen, Germany
| | - Izabella Swierzy
- Department of Surgery, University Hospital Erlangen, Erlangen, Germany
| | | | - Deike Strobel
- Department of Gastroenterology, University Hospital Erlangen, Erlangen, Germany
| | - Yurdagül Zopf
- Department of Gastroenterology, University Hospital Erlangen, Erlangen, Germany
| | - Jan-Ole Baur
- Department of Internal Medicine 5, University Hospital Erlangen, Erlangen, Germany
| | - Jan Van Deun
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | | | - Andreas Gießl
- Department of Ophthalmology, University Hospital Erlangen, Erlangen, Germany
| | - Sebastian Lettmaier
- Department of Radiation Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Sabine Semrau
- Department of Radiation Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Robert Grützmann
- Department of Surgery, University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Comprehensive Cancer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Dina Kouhestani
- Department of Surgery, University Hospital Erlangen, Erlangen, Germany
| | - Georg F. Weber
- Department of Surgery, University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Comprehensive Cancer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
4
|
Mouawad N, Ruggeri E, Capasso G, Martinello L, Visentin A, Frezzato F, Trentin L. How receptor tyrosine kinase-like orphan receptor 1 meets its partners in chronic lymphocytic leukemia. Hematol Oncol 2024; 42:e3250. [PMID: 38949887 DOI: 10.1002/hon.3250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 07/03/2024]
Abstract
Chronic lymphocytic leukemia (CLL) is the most common leukemia in western societies, recognized by clinical and molecular heterogeneity. Despite the success of targeted therapies, acquired resistance remains a challenge for relapsed and refractory CLL, as a consequence of mutations in the target or the upregulation of other survival pathways leading to the progression of the disease. Research on proteins that can trigger such pathways may define novel therapies for a successful outcome in CLL such as the receptor tyrosine kinase-like orphan receptor 1 (ROR1). ROR1 is a signaling receptor for Wnt5a, with an important role during embryogenesis. The aberrant expression on CLL cells and several types of tumors, is involved in cell proliferation, survival, migration as well as drug resistance. Antibody-based immunotherapies and small-molecule compounds emerged to target ROR1 in preclinical and clinical studies. Efforts have been made to identify new prognostic markers having predictive value to refine and increase the detection and management of CLL. ROR1 can be considered as an attractive target for CLL diagnosis, prognosis, and treatment. It can be clinically effective alone and/or in combination with current approved agents. In this review, we summarize the scientific achievements in targeting ROR1 for CLL diagnosis, prognosis, and treatment.
Collapse
MESH Headings
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Humans
- Receptor Tyrosine Kinase-like Orphan Receptors/metabolism
- Prognosis
- Molecular Targeted Therapy
- Animals
- Biomarkers, Tumor/metabolism
Collapse
Affiliation(s)
- Nayla Mouawad
- Hematology Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Edoardo Ruggeri
- Hematology Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Guido Capasso
- Hematology Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Leonardo Martinello
- Hematology Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Andrea Visentin
- Hematology Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Federica Frezzato
- Hematology Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Livio Trentin
- Hematology Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
| |
Collapse
|
5
|
Wang J, Ford JC, Mitra AK. Defining the Role of Metastasis-Initiating Cells in Promoting Carcinogenesis in Ovarian Cancer. BIOLOGY 2023; 12:1492. [PMID: 38132318 PMCID: PMC10740540 DOI: 10.3390/biology12121492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Ovarian cancer is the deadliest gynecological malignancy with a high prevalence of transcoelomic metastasis. Metastasis is a multi-step process and only a small percentage of cancer cells, metastasis-initiating cells (MICs), have the capacity to finally establish metastatic lesions. These MICs maintain a certain level of stemness that allows them to differentiate into other cell types with distinct transcriptomic profiles and swiftly adapt to external stresses. Furthermore, they can coordinate with the microenvironment, through reciprocal interactions, to invade and establish metastases. Therefore, identifying, characterizing, and targeting MICs is a promising strategy to counter the spread of ovarian cancer. In this review, we provided an overview of OC MICs in the context of characterization, identification through cell surface markers, and their interactions with the metastatic niche to promote metastatic colonization.
Collapse
Affiliation(s)
- Ji Wang
- Indiana University School of Medicine-Bloomington, Indiana University, Bloomington, IN 47405, USA; (J.W.); (J.C.F.)
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, IN 46202, USA
| | - James C. Ford
- Indiana University School of Medicine-Bloomington, Indiana University, Bloomington, IN 47405, USA; (J.W.); (J.C.F.)
| | - Anirban K. Mitra
- Indiana University School of Medicine-Bloomington, Indiana University, Bloomington, IN 47405, USA; (J.W.); (J.C.F.)
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, IN 46202, USA
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
6
|
Wang C, Wang J, Che S, Zhao H. CAR-T cell therapy for hematological malignancies: History, status and promise. Heliyon 2023; 9:e21776. [PMID: 38027932 PMCID: PMC10658259 DOI: 10.1016/j.heliyon.2023.e21776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
For many years, the methods of cancer treatment are usually surgery, chemotherapy and radiation therapy. Although these methods help to improve the condition, most tumors still have a poor prognosis. In recent years, immunotherapy has great potential in tumor treatment. Chimeric antigen receptor T-cell immunotherapy (CAR-T) uses the patient's own T cells to express chimeric antigen receptors. Chimeric antigen receptor (CAR) recognizes tumor-associated antigens and kills tumor cells. CAR-T has achieved good results in the treatment of hematological tumors. In 2017, the FDA approved the first CAR-T for the treatment of B-cell acute lymphoblastic leukemia (ALL). In October of the same year, the FDA approved CAR-T to treat B-cell lymphoma. In order to improve and enhance the therapeutic effect, CAR-T has become a research focus in recent years. The structure of CAR, the targets of CAR-T treatment, adverse reactions and improvement measures during the treatment process are summarized. This review is an attempt to highlight recent and possibly forgotten findings of advances in chimeric antigen receptor T cell for treatment of hematological tumors.
Collapse
Affiliation(s)
- Chao Wang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| | - Jianpeng Wang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| | - Shusheng Che
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| | - Hai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| |
Collapse
|
7
|
Heabah NAEG, Darwish SA, Eid AM. Evaluation of the prognostic significance of receptor tyrosine kinase-like orphan receptor 1 (ROR1) in lung carcinoma and its relation to lymphangiogenesis and epithelial mesenchymal transition. Pathol Res Pract 2023; 248:154703. [PMID: 37481855 DOI: 10.1016/j.prp.2023.154703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Exploring the carcinogenic mechanisms of lung carcinoma helps to discover novel prognostic biomarkers and develop new therapeutic options to improve patient's survival. Receptor Tyrosine Kinase-Like Orphan Receptor 1 (ROR1), a transmembrane protein, contributes to cancer progression and metastasis; via stimulation of epithelial mesenchymal transition (EMT) and promotion of angiogenesis. This makes ROR1 an important target for tumor therapy. This study aimed to evaluate expression of ROR1, E-cadherin (a marker of EMT), and D2-40 (a marker of lymphangiogenesis) in lung carcinoma and associate their expressions with the available clinicopathological parameters and patients' survival. Immunohistochemical staining using ROR1, E-cadherin, and D2-40 was performed for 78 cases of lung carcinoma. Kaplan-Meier survival curves and Cox-regression analysis were done. High ROR1 expression was detected in 46.2% of cases. Significant relations were found between high ROR1 expression and larger tumor size (P < 0.001), poorly differentiated tumors (P = 0.001), advanced tumor stages (P < 0.001), positive lymph nodal status (P < 0.001), decreased E-cadherin expression (P < 0.001), and high lymphovascular density (LVD) (P < 0.001). Patients' progression free survival (PFS) and overall survival (OS) were shorter with high ROR1 expression. High ROR1 expression, high LVD, large tumor size, and adenocarcinoma histopathological type were independent risk factors for OS in lung carcinoma patients. High ROR1 expression is associated with poor prognostic parameters in lung carcinoma patients including higher grade, advanced stages, high LVD, epithelial mesenchymal transition, as well as decreased PFS and OS.
Collapse
Affiliation(s)
| | - Sara A Darwish
- Clinical Oncology and Nuclear Medicine Department, Faculty of Medicine, Tanta University, Egypt
| | | |
Collapse
|
8
|
Piki E, Dini A, Raivola J, Salokas K, Zhang K, Varjosalo M, Pellinen T, Välimäki K, Veskimäe KT, Staff S, Hautaniemi S, Murumägi A, Ungureanu D. ROR1-STAT3 signaling contributes to ovarian cancer intra-tumor heterogeneity. Cell Death Discov 2023; 9:222. [PMID: 37400436 DOI: 10.1038/s41420-023-01527-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 07/05/2023] Open
Abstract
Wnt pathway dysregulation through genetic and non-genetic alterations occurs in multiple cancers, including ovarian cancer (OC). The aberrant expression of the non-canonical Wnt signaling receptor ROR1 is thought to contribute to OC progression and drug resistance. However, the key molecular events mediated by ROR1 that are involved in OC tumorigenesis are not fully understood. Here, we show that ROR1 expression is enhanced by neoadjuvant chemotherapy, and Wnt5a binding to ROR1 can induce oncogenic signaling via AKT/ERK/STAT3 activation in OC cells. Proteomics analysis of isogenic ROR1-knockdown OC cells identified STAT3 as a downstream effector of ROR1 signaling. Transcriptomics analysis of clinical samples (n = 125) revealed that ROR1 and STAT3 are expressed at higher levels in stromal cells than in epithelial cancer cells of OC tumors, and these findings were corroborated by multiplex immunohistochemistry (mIHC) analysis of an independent OC cohort (n = 11). Our results show that ROR1 and its downstream STAT3 are co-expressed in epithelial as well as stromal cells of OC tumors, including cancer-associated fibroblasts or CAFs. Our data provides the framework to expand the clinical utility of ROR1 as a therapeutic target to overcome OC progression.
Collapse
Affiliation(s)
- Emilia Piki
- Disease Networks Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014, Oulu, Finland
| | - Alice Dini
- Disease Networks Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014, Oulu, Finland
| | - Juuli Raivola
- Applied Tumor Genomics, Research Program Unit, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Kari Salokas
- Institute of Biotechnology, University of Helsinki, 00014, Helsinki, Finland
| | - Kaiyang Zhang
- Research Program in Systems Oncology, Research Program Unit, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, 00014, Helsinki, Finland
| | - Teijo Pellinen
- Institute for Molecular Medicine Finland, FIMM, Helsinki Institute of Life Science (HiLIFE) University of Helsinki, 00014, Helsinki, Finland
| | - Katja Välimäki
- Institute for Molecular Medicine Finland, FIMM, Helsinki Institute of Life Science (HiLIFE) University of Helsinki, 00014, Helsinki, Finland
| | - Kristina Tabor Veskimäe
- Department of Obstetrics and Gynecology, Tampere University Hospital and Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland
| | - Synnöve Staff
- Department of Obstetrics and Gynecology, Tampere University Hospital and Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland
| | - Sampsa Hautaniemi
- Research Program in Systems Oncology, Research Program Unit, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Astrid Murumägi
- Institute for Molecular Medicine Finland, FIMM, Helsinki Institute of Life Science (HiLIFE) University of Helsinki, 00014, Helsinki, Finland
| | - Daniela Ungureanu
- Disease Networks Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014, Oulu, Finland.
- Applied Tumor Genomics, Research Program Unit, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.
| |
Collapse
|
9
|
He Q, Hu H, Yang F, Song D, Zhang X, Dai X. Advances in chimeric antigen receptor T cells therapy in the treatment of breast cancer. Biomed Pharmacother 2023; 162:114609. [PMID: 37001182 DOI: 10.1016/j.biopha.2023.114609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Breast cancer (BC) is the most frequently occurring cancer type seriously threatening the lives of women worldwide. Clinically, the high frequency of diverse resistance to current therapeutic strategies advocates a demand to develop novel and effective approaches for the efficient treatment of BC. The chimeric antigen receptor T (CAR-T) cells therapy, one of the immunotherapies, has displayed powerful capacity to specifically kill and eliminate tumors. Due to the success of CAR-T therapy achieved in treating hematological malignancy, the effect of CAR-T cells therapy has been tested in various human diseases including breast cancer. This review summarized and discussed the landscape of the CAR-T therapy for breast cancer, including the advances, challenge and countermeasure of CAR-T therapy in research and clinical application. The roles of potential antigen targets, tumor microenvironment, immune escape in regulating CAR-T therapy, the combination of CAR-T therapy with other therapeutic strategies to further enhance therapeutic efficacy of CAR-T treatment were also highlighted. Therefore, our review provided a comprehensive understanding of CAR-T cell therapy in breast cancer which will awake huge interests for future in-depth investigation of CAR-T based therapy in cancer treatment.
Collapse
|
10
|
Gambles MT, Yang J, Kopeček J. Multi-targeted immunotherapeutics to treat B cell malignancies. J Control Release 2023; 358:232-258. [PMID: 37121515 PMCID: PMC10330463 DOI: 10.1016/j.jconrel.2023.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
The concept of multi-targeted immunotherapeutic systems has propelled the field of cancer immunotherapy into an exciting new era. Multi-effector molecules can be designed to engage with, and alter, the patient's immune system in a plethora of ways. The outcomes can vary from effector cell recruitment and activation upon recognition of a cancer cell, to a multipronged immune checkpoint blockade strategy disallowing evasion of the cancer cells by immune cells, or to direct cancer cell death upon engaging multiple cell surface receptors simultaneously. Here, we review the field of multi-specific immunotherapeutics implemented to treat B cell malignancies. The mechanistically diverse strategies are outlined and discussed; common B cell receptor antigen targeting strategies are outlined and summarized; and the challenges of the field are presented along with optimistic insights for the future.
Collapse
Affiliation(s)
- M Tommy Gambles
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| | - Jiyuan Yang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jindřich Kopeček
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
11
|
Lee KJ, Kim NH, Kim HS, Kim Y, Lee JJ, Kim JH, Cho HY, Jeong SY, Park ST. The Role of ROR1 in Chemoresistance and EMT in Endometrial Cancer Cells. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59050994. [PMID: 37241228 DOI: 10.3390/medicina59050994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Background and Objectives: Receptor tyrosine kinase-like orphan receptor type 1 (ROR1) plays a critical role in embryogenesis and is overexpressed in many malignant cells. These characteristics allow ROR1 to be a potential new target for cancer treatment. The aim of this study was to investigate the role of ROR1 through in vitro experiments in endometrial cancer cell lines. Materials and Methods: ROR1 expression was identified in endometrial cancer cell lines using Western blot and RT-qPCR. The effects of ROR1 on cell proliferation, invasion, migration, and epithelial-mesenchymal transition (EMT) markers were analyzed in two endometrial cancer cell lines (HEC-1 and SNU-539) using either ROR1 silencing or overexpression. Additionally, chemoresistance was examined by identifying MDR1 expression and IC50 level of paclitaxel. Results: The ROR1 protein and mRNA were highly expressed in SNU-539 and HEC-1 cells. High ROR1 expression resulted in a significant increase in cell proliferation, migration, and invasion. It also resulted in a change of EMT markers expression, a decrease in E-cadherin expression, and an increase in Snail expression. Moreover, cells with ROR1 overexpression had a higher IC50 of paclitaxel and significantly increased MDR1 expression. Conclusions: These in vitro experiments showed that ROR1 is responsible for EMT and chemoresistance in endometrial cancer cell lines. Targeting ROR1 can inhibit cancer metastasis and may be a potential treatment method for patients with endometrial cancer who exhibit chemoresistance.
Collapse
Affiliation(s)
- Kyung-Jun Lee
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea
| | - Nam-Hyeok Kim
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea
| | - Hyeong Su Kim
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea
- Division of Hemato-Oncology, Department of Internal Medicine, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea
| | - Youngmi Kim
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jae-Jun Lee
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea
- Department of Anesthesiology and Pain Medicine, Chuncheon Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea
| | - Jung Han Kim
- Division of Hemato-Oncology, Department of Internal Medicine, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea
| | - Hye-Yon Cho
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea
- Department of Obstetrics and Gynecology, Dongtan Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Hwaseong 18450, Republic of Korea
| | - Soo Young Jeong
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea
- Department of Obstetrics and Gynecology, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea
| | - Sung Taek Park
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea
- Department of Obstetrics and Gynecology, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea
| |
Collapse
|
12
|
Ghaderi A, Okhovat MA, Lehto J, De Petris L, Manouchehri Doulabi E, Kokhaei P, Zhong W, Rassidakis GZ, Drakos E, Moshfegh A, Schultz J, Olin T, Österborg A, Mellstedt H, Hojjat-Farsangi M. A Small Molecule Targeting the Intracellular Tyrosine Kinase Domain of ROR1 (KAN0441571C) Induced Significant Apoptosis of Non-Small Cell Lung Cancer (NSCLC) Cells. Pharmaceutics 2023; 15:pharmaceutics15041148. [PMID: 37111634 PMCID: PMC10145660 DOI: 10.3390/pharmaceutics15041148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023] Open
Abstract
The ROR1 receptor tyrosine kinase is expressed in embryonic tissues but is absent in normal adult tissues. ROR1 is of importance in oncogenesis and is overexpressed in several cancers, such as NSCLC. In this study, we evaluated ROR1 expression in NSCLC patients (N = 287) and the cytotoxic effects of a small molecule ROR1 inhibitor (KAN0441571C) in NSCLC cell lines. ROR1 expression in tumor cells was more frequent in non-squamous (87%) than in squamous (57%) carcinomas patients, while 21% of neuroendocrine tumors expressed ROR1 (p = 0.0001). A significantly higher proportion of p53 negative patients in the ROR1+ group than in the p53 positive non-squamous NSCLC patients (p = 0.03) was noted. KAN0441571C dephosphorylated ROR1 and induced apoptosis (Annexin V/PI) in a time- and dose-dependent manner in five ROR1+ NSCLC cell lines and was superior compared to erlotinib (EGFR inhibitor). Apoptosis was confirmed by the downregulation of MCL-1 and BCL-2, as well as PARP and caspase 3 cleavage. The non-canonical Wnt pathway was involved. The combination of KAN0441571C and erlotinib showed a synergistic apoptotic effect. KAN0441571C also inhibited proliferative (cell cycle analyses, colony formation assay) and migratory (scratch wound healing assay) functions. Targeting NSCLC cells by a combination of ROR1 and EGFR inhibitors may represent a novel promising approach for the treatment of NSCLC patients.
Collapse
Affiliation(s)
- Amineh Ghaderi
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Mohammad-Ali Okhovat
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Jemina Lehto
- Kancera AB, Nanna Svartz Väg 4, 171 65 Solna, Sweden
| | - Luigi De Petris
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
- Thoracic Oncology Center, Karolinska Comprehensive Cancer Center, 171 76 Solna, Sweden
| | - Ehsan Manouchehri Doulabi
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Parviz Kokhaei
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
- Department of Immunology, Arak University of Medical Sciences, Arak 3848170001, Iran
| | - Wen Zhong
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Georgios Z. Rassidakis
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Elias Drakos
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
- Department of Pathology, Medical School, University of Crete, 700 13 Heraklion, Greece
| | - Ali Moshfegh
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
- Kancera AB, Nanna Svartz Väg 4, 171 65 Solna, Sweden
| | - Johan Schultz
- Kancera AB, Nanna Svartz Väg 4, 171 65 Solna, Sweden
| | - Thomas Olin
- Kancera AB, Nanna Svartz Väg 4, 171 65 Solna, Sweden
| | - Anders Österborg
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital Solna, 171 64 Solna, Sweden
| | - Håkan Mellstedt
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
| |
Collapse
|
13
|
Hasan K, Kipps TJ. Impact of cortactin in cancer progression on Wnt5a/ROR1 signaling pathway. Oncotarget 2023; 14:207-209. [PMID: 36944183 PMCID: PMC10030148 DOI: 10.18632/oncotarget.28386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
|
14
|
Jahangirian E, Zargan J, Rabbani H, Zamani J. Investigating the inhibitory and penetrating properties of three novel anticancer and antimicrobial scorpion peptides via molecular docking and molecular dynamic simulation. J Biomol Struct Dyn 2023; 41:15354-15385. [PMID: 36927377 DOI: 10.1080/07391102.2023.2188956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
The two types of bladder cancer, muscle invasive and non-muscle invasive (NMIBC), are among the most prevalent cancers worldwide. Despite this, even though muscle-invasive bladder cancer is more deadly, NMIBC requires more therapy due to a greater recurrence rate and more extended and expensive care. Immunotherapy, intravesical chemotherapy, cystoscopy, and transurethral resection (TUR) are among the treatments available. Crude scorpion venomand purified proteins and peptides, can suppress cancer metastasis in an in vitro or in vivo context, suppress cancer growth, halt the cell cycle, and cause cell apoptosis, according to an increasing number of experimental and preclinical studies. In this research, three novels discovered peptides (P2, P3 and P4. ProteomeXchange: PXD036231) from Buthotus saulcyi and, Odontobuthus doriae scorpions were used along with a peptide called pantinin (as a control). The phylogenetic tree showed that the peptides belong to Chaperonin HSP60, Chrysophsin2 and Pheromone-binding protein2, respectively. These peptides were docked with four known antigens, BAGE, BLCAP, PRAME and ROR1 related to bladder cancer and three bacterial antigens FliC, FliD and FimH to investigate their antimicrobial and anticancer properties. The results showed that peptides 2 and 3 have the best binding rate. The MD simulation results also confirmed the binding of peptides 2 and 3 to antigens. The penetration power of peptides 2 and 3 in the membrane of cancer cells and bacterial cells was also simulated, and the results of RMSD and PD confirmed it. QSAR suggests that peptides 2 and 3 can act as anti-cancer and anti-microbial peptides.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ehsan Jahangirian
- Department of Biology, Faculty of Basic Science, Imam Hossein University, Tehran, Iran
| | - Jamil Zargan
- Department of Biology, Faculty of Basic Science, Imam Hossein University, Tehran, Iran
| | - Hodjattallah Rabbani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Javad Zamani
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
15
|
Osorio-Rodríguez DA, Camacho BA, Ramírez-Segura C. Anti-ROR1 CAR-T cells: Architecture and performance. Front Med (Lausanne) 2023; 10:1121020. [PMID: 36873868 PMCID: PMC9981679 DOI: 10.3389/fmed.2023.1121020] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/24/2023] [Indexed: 02/19/2023] Open
Abstract
The receptor tyrosine kinase-like orphan receptor 1 (ROR1) is a membrane receptor that plays a key role in development. It is highly expressed during the embryonic stage and relatively low in some normal adult tissues. Malignancies such as leukemia, lymphoma, and some solid tumors overexpress ROR1, making it a promising target for cancer treatment. Moreover, immunotherapy with autologous T-cells engineered to express a ROR1-specific chimeric antigen receptor (ROR1 CAR-T cells) has emerged as a personalized therapeutic option for patients with tumor recurrence after conventional treatments. However, tumor cell heterogeneity and tumor microenvironment (TME) hinder successful clinical outcomes. This review briefly describes the biological functions of ROR1 and its relevance as a tumor therapeutic target, as well as the architecture, activity, evaluation, and safety of some ROR1 CAR-T cells used in basic research and clinical trials. Finally, the feasibility of applying the ROR1 CAR-T cell strategy in combination with therapies targeting other tumor antigens or with inhibitors that prevent tumor antigenic escape is also discussed. Clinical trial registration https://clinicaltrials.gov/, identifier NCT02706392.
Collapse
Affiliation(s)
- Daniel Andrés Osorio-Rodríguez
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud (IDCBIS), Bogotá, Colombia
| | | | - César Ramírez-Segura
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud (IDCBIS), Bogotá, Colombia.,Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud (IDCBIS), Bogotá, Colombia
| |
Collapse
|
16
|
Jeong SY, Lee KJ, Cha J, Park SY, Kim HS, Kim JH, Lee JJ, Kim N, Park ST. Meta-Analysis of Survival Effects of Receptor Tyrosine Kinase-like Orphan Receptor 1 (ROR1). MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58121867. [PMID: 36557069 PMCID: PMC9784027 DOI: 10.3390/medicina58121867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Background and Objectives: Identification and targeting of membrane proteins in tumor cells is one of the key steps in the development of cancer drugs. The receptor tyrosine kinase-like orphan receptor (ROR) type 1 is a type-I transmembrane protein expressed in various cancer tissues, which is in contrast to its limited expression in normal tissues. These characteristics make ROR1 a candidate target for cancer treatment. This study aimed to identify the prognostic value of ROR1 expression in cancers. Materials and Methods: We conducted a comprehensive systematic search of electronic databases (PubMed) from their inception to September 2021. The included studies assessed the effect of ROR1 on overall survival (OS) and progression-free survival (PFS). Hazard ratios (HR) from collected data were pooled in a meta-analysis using Revman version 5.4 with generic inverse-variance and random effects modeling. Results: A total of fourteen studies were included in the final analysis. ROR1 was associated with worse OS (HR 1.95, 95% confidence interval (CI) 1.50−2.54; p < 0.001) with heterogeneity. The association between poor OS and ROR1 expression was high in endometrial cancer, followed by ovarian cancer, and diffuse large B cell lymphoma. In addition, ROR1 was associated with poor PFS (HR 1.84, 95% CI 1.60−2.10; p < 0.001), but heterogeneity was not statistically significant. In subgroup analysis, high ROR1 expression showed a significantly higher rate of advanced stage or lymph node metastasis. Conclusions: This meta-analysis provides evidence that ROR1 expression is associated with adverse outcome in cancer survival. This result highlights ROR1 as a target for developmental therapeutics in cancers.
Collapse
Affiliation(s)
- Soo Young Jeong
- Department of Obstetrics and Gynecology, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea
| | - Kyung-jun Lee
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jieum Cha
- Department of Obstetrics and Gynecology, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea
| | - So Yoon Park
- Department of Obstetrics and Gynecology, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea
| | - Hyeong Su Kim
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea
- Division of Hemato-Oncology, Department of Internal Medicine, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea
| | - Jung Han Kim
- Division of Hemato-Oncology, Department of Internal Medicine, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea
| | - Jae-Jun Lee
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea
- Departments of Anesthesiology and Pain Medicine, Chuncheon Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea
| | - Namhyeok Kim
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea
| | - Sung Taek Park
- Department of Obstetrics and Gynecology, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea
- Correspondence: ; Tel.: +82-2-829-5151; Fax: +82-2-833-5323
| |
Collapse
|
17
|
John M, Ford CE. Pan-Tissue and -Cancer Analysis of ROR1 and ROR2 Transcript Variants Identify Novel Functional Significance for an Alternative Splice Variant of ROR1. Biomedicines 2022; 10:biomedicines10102559. [PMID: 36289823 PMCID: PMC9599429 DOI: 10.3390/biomedicines10102559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
ROR1/2 are putative druggable targets increasing in significance in translational oncology. Expression of ROR1/2 mRNA and transcript variants has not been systematically examined thus far. ROR1/2 transcript variant sequences, signal peptides for cell surface localisation, and mRNA and transcript variant expression were examined in 34 transcriptomic datasets including 33 cancer types and 54 non-diseased human tissues. ROR1/2 have four and eight transcript variants, respectively. ROR1/2 mRNA and transcript variant expression was detected in various non-diseased tissues. Our analysis identifies predominant expression of ROR1 transcript variant ENST00000545203, which lacks a signal peptide for cell surface localisation, rather than the predicted principal variant ENST00000371079. ENST00000375708 is the predominantly expressed transcript variant of ROR2. ROR1/2 expression in healthy human tissues should be carefully considered for safety assessment of targeted therapy. Studies exploring the function and significance of the predominantly expressed ROR1 transcript variant ENST00000545203 are warranted.
Collapse
Affiliation(s)
- Miya John
- Correspondence: (M.J.); (C.E.F.); Tel.: +61-2-9385-1451 (C.E.F.)
| | - Caroline E. Ford
- Correspondence: (M.J.); (C.E.F.); Tel.: +61-2-9385-1451 (C.E.F.)
| |
Collapse
|
18
|
Multiomics characterization implicates PTK7 in ovarian cancer EMT and cell plasticity and offers strategies for therapeutic intervention. Cell Death Dis 2022; 13:714. [PMID: 35977930 PMCID: PMC9386025 DOI: 10.1038/s41419-022-05161-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 01/21/2023]
Abstract
Most patients with ovarian cancer (OC) are diagnosed at a late stage when there are very few therapeutic options and a poor prognosis. This is due to the lack of clearly defined underlying mechanisms or an oncogenic addiction that can be targeted pharmacologically, unlike other types of cancer. Here, we identified protein tyrosine kinase 7 (PTK7) as a potential new therapeutic target in OC following a multiomics approach using genetic and pharmacological interventions. We performed proteomics analyses upon PTK7 knockdown in OC cells and identified novel downstream effectors such as synuclein-γ (SNCG), SALL2, and PP1γ, and these findings were corroborated in ex vivo primary samples using PTK7 monoclonal antibody cofetuzumab. Our phosphoproteomics analyses demonstrated that PTK7 modulates cell adhesion and Rho-GTPase signaling to sustain epithelial-mesenchymal transition (EMT) and cell plasticity, which was confirmed by high-content image analysis of 3D models. Furthermore, using high-throughput drug sensitivity testing (525 drugs) we show that targeting PTK7 exhibited synergistic activity with chemotherapeutic agent paclitaxel, CHK1/2 inhibitor prexasertib, and PLK1 inhibitor GSK461364, among others, in OC cells and ex vivo primary samples. Taken together, our study provides unique insight into the function of PTK7, which helps to define its role in mediating aberrant Wnt signaling in ovarian cancer.
Collapse
|
19
|
Vetrivel S, Zhang R, Engel M, Oßwald A, Watts D, Chen A, Wielockx B, Sbiera S, Reincke M, Riester A. Characterization of Adrenal miRNA-Based Dysregulations in Cushing's Syndrome. Int J Mol Sci 2022; 23:ijms23147676. [PMID: 35887024 PMCID: PMC9320303 DOI: 10.3390/ijms23147676] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/04/2022] [Accepted: 07/10/2022] [Indexed: 02/05/2023] Open
Abstract
MiRNAs are important epigenetic players with tissue- and disease-specific effects. In this study, our aim was to investigate the putative differential expression of miRNAs in adrenal tissues from different forms of Cushing’s syndrome (CS). For this, miRNA-based next-generation sequencing was performed in adrenal tissues taken from patients with ACTH-independent cortisol-producing adrenocortical adenomas (CPA), from patients with ACTH-dependent pituitary Cushing’s disease (CD) after bilateral adrenalectomy, and from control subjects. A confirmatory QPCR was also performed in adrenals from patients with other CS subtypes, such as primary bilateral macronodular hyperplasia and ectopic CS. Sequencing revealed significant differences in the miRNA profiles of CD and CPA. QPCR revealed the upregulated expression of miR-1247-5p in CPA and PBMAH (log2 fold change > 2.5, p < 0.05). MiR-379-5p was found to be upregulated in PBMAH and CD (log2 fold change > 1.8, p < 0.05). Analyses of miR-1247-5p and miR-379-5p expression in the adrenals of mice which had been exposed to short-term ACTH stimulation showed no influence on the adrenal miRNA expression profiles. For miRNA-specific target prediction, RNA-seq data from the adrenals of CPA, PBMAH, and control samples were analyzed with different bioinformatic platforms. The analyses revealed that both miR-1247-5p and miR-379-5p target specific genes in the WNT signaling pathway. In conclusion, this study identified distinct adrenal miRNAs as being associated with CS subtypes.
Collapse
Affiliation(s)
- Sharmilee Vetrivel
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, Ludwig-Maximilians-University, 80336 Munich, Germany; (S.V.); (R.Z.); (A.O.); (M.R.)
| | - Ru Zhang
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, Ludwig-Maximilians-University, 80336 Munich, Germany; (S.V.); (R.Z.); (A.O.); (M.R.)
| | - Mareen Engel
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; (M.E.); (A.C.)
| | - Andrea Oßwald
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, Ludwig-Maximilians-University, 80336 Munich, Germany; (S.V.); (R.Z.); (A.O.); (M.R.)
| | - Deepika Watts
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, 01307 Dresden, Germany; (D.W.); (B.W.)
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; (M.E.); (A.C.)
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ben Wielockx
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, 01307 Dresden, Germany; (D.W.); (B.W.)
| | - Silviu Sbiera
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, 97080 Würzburg, Germany;
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, Ludwig-Maximilians-University, 80336 Munich, Germany; (S.V.); (R.Z.); (A.O.); (M.R.)
| | - Anna Riester
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, Ludwig-Maximilians-University, 80336 Munich, Germany; (S.V.); (R.Z.); (A.O.); (M.R.)
- Correspondence: ; Tel.: +49-89-440052111
| |
Collapse
|
20
|
Bemani P, Moazen S, Nadimi E, Nejatollahi F. Development of Human Recombinant Antibodies Against ROR1 Tumor Antigen. Rep Biochem Mol Biol 2022; 11:282-288. [PMID: 36164620 PMCID: PMC9455193 DOI: 10.52547/rbmb.11.2.282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is an oncofetal antigen expressed on many types of cancer cells, but not normal adult cells. ROR1 antigen contributes to cancer development and progression by several signaling pathways. ROR1 expression has been associated with tumor growth, survival, and metastasis. In this study specific human recombinant antibodies were selected against ROR1 antigen for their use in cancer immunotherapy. METHODS Phage display technology was used to produce phage antibody from a human scFv library. Phage concentration was determined to confirm the phage rescue process. Panning procedure was performed to isolate specific scFv clones against ROR1 epitope. Phage ELISA was done to evaluate the reactivity of the selected scFvs. RESULTS Two specific human scFvs with frequencies of 20% and 25% were selected against ROR1 peptide. The antibodies showed specific reaction to the corresponding epitopes in phage ELISA. DISCUSSION Cancer targeted therapy using human specific antibodies is a new strategy, which is used in cancer therapy. The selected specific scFvs that target ROR1 epitope are human antibodies that originated from a human library and have the potential to be used in clinic in cancer immunotherapy of ROR1 positive tumors without induction of human anti mouse antibody (HAMA) response.
Collapse
Affiliation(s)
- Peyman Bemani
- Recombinant antibody laboratory, Department of Immunology, Shiraz University of Medical Sciences, Shiraz Iran.
| | - Setareh Moazen
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver BC, Canada.
| | - Elham Nadimi
- Recombinant antibody laboratory, Department of Immunology, Shiraz University of Medical Sciences, Shiraz Iran.
| | - Foroogh Nejatollahi
- Recombinant antibody laboratory, Department of Immunology, Shiraz University of Medical Sciences, Shiraz Iran.
| |
Collapse
|
21
|
Huang G, Mao J. Identification of a 12-Gene Signature and Hub Genes Involved in Kidney Wilms Tumor via Integrated Bioinformatics Analysis. Front Oncol 2022; 12:877796. [PMID: 35480093 PMCID: PMC9038080 DOI: 10.3389/fonc.2022.877796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 01/23/2023] Open
Abstract
Wilms tumor (WT), also known as nephroblastoma, is a rare primary malignancy in all kinds of tumor. With the development of second-generation sequencing, the discovery of new tumor markers and potential therapeutic targets has become easier. This study aimed to explore new WT prognostic biomarkers. In this study, WT-miRNA datasets GSE57370 and GSE73209 were selected for expression profiling to identify differentially expressed genes. The key gene miRNA, namely hsa-miR-30c-5p, was identified by overlapping, and the target gene of candidate hsa-miR-30c-5p was predicted using an online database. Furthermore, 384 genes were obtained by intersecting them with differentially expressed genes in the TARGET-WT database, and the genes were analyzed for pathway and functional enrichment. Kaplan–Meier survival analysis of the 384 genes yielded a total of 25 key genes associated with WT prognosis. Subsequently, a prediction model with 12 gene signatures (BCL6, CCNA1, CTHRC1, DGKD, EPB41L4B, ERRFI1, LRRC40, NCEH1, NEBL, PDSS1, ROR1, and RTKN2) was developed. The model had good predictive power for the WT prognosis at 1, 3, and 5 years (AUC: 0.684, 0.762, and 0.774). Finally, ERRFI1 (hazard ratios [HR] = 1.858, 95% confidence intervals [CI]: 1.298–2.660) and ROR1 (HR = 0.780, 95% CI: 0.609–0.998) were obtained as independent predictors of prognosis in WT patients by single, multifactorial Cox analysis.
Collapse
|
22
|
Chen G, Qiu L, Gao J, Wang J, Dang J, Li L, Jin Z, Liu X. Stress Hormones: Emerging Targets in Gynecological Cancers. Front Cell Dev Biol 2021; 9:699487. [PMID: 34307378 PMCID: PMC8299464 DOI: 10.3389/fcell.2021.699487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/09/2021] [Indexed: 01/06/2023] Open
Abstract
In the past decade, several discoveries have documented the existence of innervation in ovarian cancer and cervical cancer. Notably, various neurotransmitters released by the activation of the sympathetic nervous system can promote the proliferation and metastasis of tumor cells and regulate immune cells in the tumor microenvironment. Therefore, a better understanding of the mechanisms involving neurotransmitters in the occurrence and development of gynecological cancers will be beneficial for exploring the feasibility of using inexpensive β-blockers and dopamine agonists in the clinical treatment of gynecological cancers. Additionally, this article provides some new insights into targeting tumor innervation and neurotransmitters in the tumor microenvironment.
Collapse
Affiliation(s)
- Guoqiang Chen
- Department of Obstetrics and Gynecology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Lei Qiu
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Jinghai Gao
- Department of Obstetrics and Gynecology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jianhong Dang
- Department of Obstetrics and Gynecology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Lingling Li
- Department of Obstetrics and Gynecology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhijun Jin
- Department of Obstetrics and Gynecology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiaojun Liu
- Department of Obstetrics and Gynecology, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
23
|
Nema S, Kallianpur S, Kumar A, Nema R, Vishwakarma S, Nema SK. Do patients with oral squamous cell carcinoma express receptor tyrosine kinase-like orphan receptor 1? Results of an observational study. J Oral Maxillofac Pathol 2021; 25:105-109. [PMID: 34349419 PMCID: PMC8272474 DOI: 10.4103/jomfp.jomfp_293_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 09/25/2020] [Accepted: 10/16/2020] [Indexed: 12/14/2022] Open
Abstract
Context The receptor tyrosine kinase-like orphan receptor 1 (ROR1) is a transmembrane protein of the receptor tyrosine kinase family. The expression of ROR1 has been linked to cancers. Aims This study aimed to investigate the expression of ROR1 in oral squamous cell carcinoma (OSCC). Settings and Design This prospective observational study was conducted at a tertiary referral center for treatment of oral carcinoma from November 2013 to December 2016. Subjects and Methods One-step quantitative reverse transcription-polymerase chain reaction (30 oral cancer tissues and ten normal oral tissue samples) was performed to characterize the expression of the ROR1 gene in oral cancer. Statistical Analysis Used Analyses of all tumor samples were carried out at least twice, and the mean value was calculated. The differences in ROR1 messenger RNA (mRNA) expression between OSCC tissue and nontumorous gingival tissue was statistically analyzed using Mann-Whitney U-test. The correlations between the clinicopathological parameters and ROR1 mRNA expression were analyzed using Kruskal-Wallis test χ2 value. Results There were 17, 5, 3 and 1 cases of OSCC of buccal mucosa, tongue and lower alveolus lip, respectively. Nearly 88.5% of cases had a history of tobacco consumption. The most common OSCC type was T2N1M0. There was no difference in ROR1 fold change between controls and cases (P = 0.06), but there was a trend for downregulation of ROR1 expression from controls to cases. Subgroup analysis revealed the downregulation of ROR1 expression in controls versus Grade II that was significant (P = 0.04). Conclusions There was no change in the expression of ROR1 between cases and controls. A study involving a larger sample size needs to be formulated and conducted for investigating the relation between expression and regulation of ROR1 in OSCC.
Collapse
Affiliation(s)
- Swati Nema
- Department of Oral Pathology and Microbiology, Peoples College of Dental Sciences Peoples University, Bhopal, Madhya Pradesh, India
| | - Shreenivas Kallianpur
- Department of Oral Pathology and Microbiology, Peoples College of Dental Sciences Peoples University, Bhopal, Madhya Pradesh, India
| | - Ashok Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Rajeev Nema
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Supriya Vishwakarma
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Sandeep Kumar Nema
- Associate Professor of Orthopedics Jawaharlal Institute of Postgraduate Medical Education and Research Pondicherry, Pondicherry, India
| |
Collapse
|
24
|
Lopez-Bergami P, Barbero G. The emerging role of Wnt5a in the promotion of a pro-inflammatory and immunosuppressive tumor microenvironment. Cancer Metastasis Rev 2021; 39:933-952. [PMID: 32435939 DOI: 10.1007/s10555-020-09878-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Wnt5a is the prototypical activator of the non-canonical Wnt pathways, and its overexpression has been implicated in the progression of several tumor types by promoting cell motility, invasion, EMT, and metastasis. Recent evidences have revealed a novel role of Wnt5a in the phosphorylation of the NF-κB subunit p65 and the activation of the NF-κB pathway in cancer cells. In this article, we review the molecular mechanisms and mediators defining a Wnt5a/NF-κB signaling pathway and propose that the aberrant expression of Wnt5a in some tumors drives a Wnt5a/NF-κB/IL-6/STAT3 positive feedback loop that amplifies the effects of Wnt5a. The evidences discussed here suggest that Wnt5a has a double effect on the tumor microenvironment. First, it activates an autocrine ROR1/Akt/p65 pathway that promotes inflammation and chemotaxis of immune cells. Then, Wnt5a activates a TLR/MyD88/p50 pathway exclusively in myelomonocytic cells promoting the synthesis of the anti-inflammatory cytokine IL-10 and a tolerogenic phenotype. As a result of these mechanisms, Wnt5a plays a negative role on immune cell function that contributes to an immunosuppressive tumor microenvironment and would contribute to resistance to immunotherapy. Finally, we summarized the development of different strategies targeting either Wnt5a or the Wnt5a receptor ROR1 that can be helpful for cancer therapy by contributing to generate a more immunostimulatory tumor microenvironment.
Collapse
Affiliation(s)
- Pablo Lopez-Bergami
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimonides, Hidalgo 775, Buenos Aires, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Gastón Barbero
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimonides, Hidalgo 775, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
25
|
Abstract
Caveolae are specialised and dynamic plasma membrane subdomains, involved in many cellular functions including endocytosis, signal transduction, mechanosensing and lipid storage, trafficking, and metabolism. Two protein families are indispensable for caveola formation and function, namely caveolins and cavins. Mutations of genes encoding these caveolar proteins cause serious pathological conditions such as cardiomyopathies, skeletal muscle diseases, and lipodystrophies. Deregulation of caveola-forming protein expression is associated with many types of cancers including prostate cancer. The distinct function of secretion of the prostatic fluid, and the unique metabolic phenotype of prostate cells relying on lipid metabolism as a main bioenergetic pathway further suggest a significant role of caveolae and caveolar proteins in prostate malignancy. Accumulating in vitro, in vivo, and clinical evidence showed the association of caveolin-1 with prostate cancer grade, stage, metastasis, and drug resistance. In contrast, cavin-1 was found to exhibit tumour suppressive roles. Studies on prostate cancer were the first to show the distinct function of the caveolar proteins depending on their localisation within the caveolar compartment or as cytoplasmic or secreted proteins. In this review, we summarise the roles of caveola-forming proteins in prostate cancer and the potential of exploiting them as therapeutic targets or biological markers.
Collapse
|
26
|
Menck K, Heinrichs S, Baden C, Bleckmann A. The WNT/ROR Pathway in Cancer: From Signaling to Therapeutic Intervention. Cells 2021; 10:cells10010142. [PMID: 33445713 PMCID: PMC7828172 DOI: 10.3390/cells10010142] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
The WNT pathway is one of the major signaling cascades frequently deregulated in human cancer. While research had initially focused on signal transduction centered on β-catenin as a key effector activating a pro-tumorigenic transcriptional response, nowadays it is known that WNT ligands can also induce a multitude of β-catenin-independent cellular pathways. Traditionally, these comprise WNT/planar cell polarity (PCP) and WNT/Ca2+ signaling. In addition, signaling via the receptor tyrosine kinase-like orphan receptors (RORs) has gained increasing attention in cancer research due to their overexpression in a multitude of tumor entities. Active WNT/ROR signaling has been linked to processes driving tumor development and progression, such as cell proliferation, survival, invasion, or therapy resistance. In adult tissue, the RORs are largely absent, which has spiked the interest in them for targeted cancer therapy. Promising results in preclinical and initial clinical studies are beginning to unravel the great potential of such treatment approaches. In this review, we summarize seminal findings on the structure and expression of the RORs in cancer, their downstream signaling, and its output in regard to tumor cell function. Furthermore, we present the current clinical anti-ROR treatment strategies and discuss the state-of-the-art, as well as the challenges of the different approaches.
Collapse
Affiliation(s)
- Kerstin Menck
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Münster, Germany; (K.M.); (S.H.); (C.B.)
- West German Cancer Center, University Hospital Münster, 48149 Münster, Germany
| | - Saskia Heinrichs
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Münster, Germany; (K.M.); (S.H.); (C.B.)
- West German Cancer Center, University Hospital Münster, 48149 Münster, Germany
| | - Cornelia Baden
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Münster, Germany; (K.M.); (S.H.); (C.B.)
- West German Cancer Center, University Hospital Münster, 48149 Münster, Germany
| | - Annalen Bleckmann
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Münster, Germany; (K.M.); (S.H.); (C.B.)
- West German Cancer Center, University Hospital Münster, 48149 Münster, Germany
- Department of Hematology/Medical Oncology, University Medical Center Göttingen, 37099 Göttingen, Germany
- Correspondence: ; Tel.: +49-0251-8352712
| |
Collapse
|
27
|
Ovarian Cancer Stem Cells: Characterization and Role in Tumorigenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1330:151-169. [PMID: 34339036 DOI: 10.1007/978-3-030-73359-9_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ovarian cancer is a heterogenous disease with variable clinicopathological and molecular mechanisms being responsible for tumorigenesis. Despite substantial technological improvement, lack of early diagnosis contributes to its highest mortality. Ovarian cancer is considered to be the most lethal female gynaecological cancer across the world. Conventional treatment modules with platinum- and Taxane-based chemotherapy can cause an initial satisfactory improvement in ovarian cancer patients. However, approximately 75-80% patients of advanced stage ovarian cancer, experience relapse and nearly 40% have overall poor survival rate. It has been observed that a subpopulation of cells referred as cancer stem cells (CSCs), having self renewal property, escape the conventional chemotherapy because of their quiescent nature. Later, these CSCs following its interaction with microenvironment and release of various inflammatory cytokines, chemokines and matrix metalloproteinases, induce invasion and propagation to distant organs of the body mainly peritoneal cavity. These CSCs can be enriched by their specific surface markers such as CD44, CD117, CD133 and intracellular enzyme such as aldehyde dehydrogenase. This tumorigenicity is further aggravated by the epithelial to mesenchymal transition of CSCs and neovascularisation via epigenetic reprogramming and over-expression of various signalling cascades such as Wnt/β-catenin, NOTCH, Hedgehog, etc. to name a few. Hence, a comprehensive understanding of various cellular events involving interaction between cancer cells and cancer stem cells as well as its surrounding micro environmental components would be of unmet need to achieve the ultimate goal of better management of ovarian cancer patients. This chapter deals with the impact of ovarian cancer stem cells in tumorigenesis which would help in the implementation of basic research into the clinical field in the form of translational research in order to reduce the morbidity and mortality in ovarian cancer patients through amelioration of diagnosis and impoverishment of therapeutic resistance.
Collapse
|
28
|
Chen Y, Chen Z, Tang Y, Xiao Q. The involvement of noncanonical Wnt signaling in cancers. Biomed Pharmacother 2020; 133:110946. [PMID: 33212376 DOI: 10.1016/j.biopha.2020.110946] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2020] [Accepted: 10/25/2020] [Indexed: 12/18/2022] Open
Abstract
Wnt signaling is one of the key cascades regulating normal tissue development and has been tightly associated with cancer. The Wnt signaling can be subdivided into two categories: canonical & noncanonical. Noncanonical Wnt signaling pathways mainly include Wnt/PCP (planar cell polarity) signaling and Wnt-cGMP (cyclic guanosine monophosphate) /Ca2+ signaling. It has been well studied by previous researches that noncanonical Wnt signaling regulates multiple cell functions including proliferation, differentiation, adhesion, polarity, motility, and migration. The aberrant activation or inhibition of noncanonical Wnt signaling is crucial in cancer progression, exerting both oncogenic and tumor-suppressive effects. Recent studies show the involvement of noncanonical Wnt in regulating cancer cell invasion, metastasis, metabolism, and inflammation. Here, we review current insights into novel components of non-canonical signalings and describe their involvement in various cancer types. We also summarize recent biological and clinical discoveries that outline non-canonical Wnt signaling in tumorigenesis. Finally, we provide an overview of current strategies to target non-canonical Wnt signaling in cancer and challenges that are associated with such approaches.
Collapse
Affiliation(s)
- Yongfeng Chen
- Department of General Surgery, Zhejiang Yuhuan People's Hospital, Taizhou, Zhejiang, China
| | - Zhengxi Chen
- Department of Orthodontics, Shanghai Ninth People׳s Hospital, School of Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai, China; Department of Cell Biology, Yale School of Medicine, New Haven, CT, United States
| | - Yin Tang
- Omni Family Health, Bakersfield, CA, United States
| | - Qian Xiao
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, United States.
| |
Collapse
|
29
|
Schiavone G, Epistolio S, Martin V, Molinari F, Barizzi J, Mazzucchelli L, Frattini M, Wannesson L. Functional and clinical significance of ROR1 in lung adenocarcinoma. BMC Cancer 2020; 20:1085. [PMID: 33172431 PMCID: PMC7653802 DOI: 10.1186/s12885-020-07587-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/29/2020] [Indexed: 11/10/2022] Open
Abstract
Background Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is normally detectable in embryonic tissues and absent in adult tissues. ROR1 was shown to inhibit apoptosis, potentiate EGFR signaling and reported to be overexpressed and associated with poor prognosis in several tumor models. This study aimed to assess the expression of ROR1 in lung adenocarcinoma (AC) patients. Methods We analyzed ROR1 expression by quantitative real-time PCR (qRT-PCR) in 56 histologically confirmed lung AC, stage I to IV, in addition we evaluated its association with TTF-1 (thyroid transcription factor-1) expression and the main molecular alterations involved in lung cancerogenesis. Results ROR1 overexpression was observed in 28.6% of the entire cohort, using a cut-off of 1, or in 51.8% of the cases using the median value as threshold. Among patients without any genetic alteration, ROR1 overexpression was observed in 34.8% considering a cut-off of 1 and 52.2% considering the median value. The distribution of ROR1 was homogeneous among the different molecular categories: we found no association of ROR1 expression and the presence of gene mutations/rearrangements or the expression of TTF-1. Conclusions ROR1 overexpression could constitute a potential therapeutic target because altered in a consistent number of lung AC, especially in cases without druggable genetic alterations. ROR1 expression is independent of classical lung cancer molecular alterations and not correlated, in a Caucasian cohort, to TTF-1 expression.
Collapse
Affiliation(s)
- Giovanna Schiavone
- Istituto Oncologico della Svizzera Italiana, Via Ospedale, 6500, Bellinzona, Switzerland.
| | - Samantha Epistolio
- Istituto Cantonale di Patologia, Via in Selva 24, 6600, Locarno, Switzerland
| | - Vittoria Martin
- Istituto Cantonale di Patologia, Via in Selva 24, 6600, Locarno, Switzerland
| | - Francesca Molinari
- Istituto Cantonale di Patologia, Via in Selva 24, 6600, Locarno, Switzerland
| | - Jessica Barizzi
- Istituto Cantonale di Patologia, Via in Selva 24, 6600, Locarno, Switzerland
| | - Luca Mazzucchelli
- Istituto Cantonale di Patologia, Via in Selva 24, 6600, Locarno, Switzerland
| | - Milo Frattini
- Istituto Cantonale di Patologia, Via in Selva 24, 6600, Locarno, Switzerland
| | - Luciano Wannesson
- Istituto Oncologico della Svizzera Italiana, Via Ospedale, 6500, Bellinzona, Switzerland
| |
Collapse
|
30
|
Karvonen H, Arjama M, Kaleva L, Niininen W, Barker H, Koivisto-Korander R, Tapper J, Pakarinen P, Lassus H, Loukovaara M, Bützow R, Kallioniemi O, Murumägi A, Ungureanu D. Glucocorticoids induce differentiation and chemoresistance in ovarian cancer by promoting ROR1-mediated stemness. Cell Death Dis 2020; 11:790. [PMID: 32989221 PMCID: PMC7522257 DOI: 10.1038/s41419-020-03009-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023]
Abstract
Glucocorticoids are routinely used in the clinic as anti-inflammatory and immunosuppressive agents as well as adjuvants during cancer treatment to mitigate the undesirable side effects of chemotherapy. However, recent studies have indicated that glucocorticoids may negatively impact the efficacy of chemotherapy by promoting tumor cell survival, heterogeneity, and metastasis. Here, we show that dexamethasone induces upregulation of ROR1 expression in ovarian cancer (OC), including platinum-resistant OC. Increased ROR1 expression resulted in elevated RhoA, YAP/TAZ, and BMI-1 levels in a panel of OC cell lines as well as primary ovarian cancer patient-derived cells, underlining the translational relevance of our studies. Importantly, dexamethasone induced differentiation of OC patient-derived cells ex vivo according to their molecular subtype and the phenotypic expression of cell differentiation markers. High-throughput drug testing with 528 emerging and clinical oncology compounds of OC cell lines and patient-derived cells revealed that dexamethasone treatment increased the sensitivity to several AKT/PI3K targeted kinase inhibitors, while significantly decreasing the efficacy of chemotherapeutics such as taxanes, as well as anti-apoptotic compounds such as SMAC mimetics. On the other hand, targeting ROR1 expression increased the efficacy of taxane drugs and SMAC mimetics, suggesting new combinatorial targeted treatments for patients with OC.
Collapse
Affiliation(s)
- Hanna Karvonen
- Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland
| | - Mariliina Arjama
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, 00290, Helsinki, Finland
| | - Laura Kaleva
- Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland
| | - Wilhelmiina Niininen
- Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland
| | - Harlan Barker
- Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland.,Fimlab Ltd., Tampere University Hospital, 33520, Tampere, Finland
| | - Riitta Koivisto-Korander
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Johanna Tapper
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Päivi Pakarinen
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Heini Lassus
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Mikko Loukovaara
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Ralf Bützow
- Department of Pathology, University of Helsinki and HUSLAB, Helsinki University Hospital, PO Box 400, 00290, Helsinki, Finland
| | - Olli Kallioniemi
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, 00290, Helsinki, Finland.,Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, 171 65, Solna, Sweden
| | - Astrid Murumägi
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, 00290, Helsinki, Finland
| | - Daniela Ungureanu
- Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland. .,Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, FI-00014, Helsinki, Finland.
| |
Collapse
|
31
|
Zhang J, Zhang W, Zhang Q. Ectopic expression of ROR1 prevents cochlear hair cell loss in guinea pigs with noise-induced hearing loss. J Cell Mol Med 2020; 24:9101-9113. [PMID: 34008309 PMCID: PMC7417695 DOI: 10.1111/jcmm.15545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 05/25/2020] [Accepted: 06/03/2020] [Indexed: 11/28/2022] Open
Abstract
Noise-induced hearing loss (NIHL) is one of the most frequent disabilities in industrialized countries. Evidence shows that hair cell loss in the auditory end organ is responsible for the majority of various ear pathological conditions. The functional roles of the receptor tyrosine kinase ROR1 have been underscored in various tumours. In this study, we evaluated the ability of ROR1 to influence cochlear hair cell loss of guinea pigs with NIHL. The NIHL model was developed in guinea pigs, with subsequent measurement of the auditory brainstem response (ABR). Gain-of-function experiments were employed to explore the role of ROR1 in NIHL. The interaction between ROR1 and Wnt5a and their functions in the cochlear hair cell loss were further analysed in response to alteration of ROR1 and Wnt5a. Guinea pigs with NIHL demonstrated elevated ABR threshold and down-regulated ROR1, Wnt5a and NF-κB p65. The up-regulation of ROR1 was shown to decrease the cochlear hair cell loss and the expression of pro-apoptotic gene (Bax, p53) in guinea pig cochlea, but promoted the expression of anti-apoptotic gene (Bcl-2) and the fluorescence intensity of cleaved-caspase-3. ROR1 interacted with Wnt5a to activate the NF-κB signalling pathway through inducing phosphorylation and translocation of p65. Furthermore, Wnt5a overexpression decreased the cochlear hair cell loss. Collectively, this study suggested the protection of overexpression of ROR1 against cochlear hair cell loss in guinea pigs with NIHL via the Wnt5a-dependent NF-κB signalling pathway.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Children’s RehabilitationLinyi People’s HospitalLinyiChina
| | - Wei Zhang
- Electrocardiogram RoomLinyi People’s HospitalLinyiChina
| | - Qinliang Zhang
- Department of Children’s RehabilitationLinyi People’s HospitalLinyiChina
| |
Collapse
|
32
|
Bayat AA, Sadeghi N, Fatemi R, Nowroozi MR, Ohadian Moghadam S, Borzuee M, Radmanesh A, Khodadoost M, Sarrafzadeh AR, Zarei O, Rabbani H. Monoclonal Antibody Against ROR1 Induces Apoptosis in Human Bladder Carcinoma Cells. Avicenna J Med Biotechnol 2020; 12:165-171. [PMID: 32695279 PMCID: PMC7368111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 03/16/2020] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Receptor tyrosine kinase-like Orphan Receptor 1 (ROR1) is one of the promising cell surface antigens for targeting cancer cells. The aim of this study was to evaluate ROR1 cell surface expression in bladder cancer cells using a murine anti-ROR1 monoclonal antibody (mAb) called 5F1-B10 as well as investigate its potential in apoptosis induction. METHODS Expression of ROR1 in two human bladder cell lines, 5637 and EJ138, as well as a non-cancerous human cell line, Human Fetal Foreskin Fibroblast (HFFF), was examined by flow cytometry and immunocytochemistry. Immunohistochemical staining of cancer and normal bladder tissues was also performed. RESULTS The flow cytometry results showed that 5F1-B10 mAb could recognize ROR1 molecules in 86.1% and 45.6% of 5637 and EJ138 cells, respectively. The expression level of ROR1 was 5.49% in HFFF cells. The immunocytochemistry and immunohistochemistry staining results also confirmed the presence of ROR1 on the surface of both bladder cancer cells and tissues, respectively. The obtained data from apoptosis assay demonstrated that 5F1-B10 mAb could induce apoptosis in both 5637 and EJ138 cell lines. CONCLUSION Taken together, our finding indicates the role of ROR1 in bladder cancer cell survival and suggests this receptor might be a promising target for developing novel therapeutic agents against bladder carcinoma.
Collapse
Affiliation(s)
- Ali-Ahmad Bayat
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Niloufar Sadeghi
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Ramina Fatemi
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | | | | | - Mohadeseh Borzuee
- Uro-Oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Radmanesh
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Mahmood Khodadoost
- Faculty of Traditional Medicine, Traditional Medicine and Materia Medica Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Omid Zarei
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Hodjattallah Rabbani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
33
|
Zuber E, Schweitzer D, Allen D, Parte S, Kakar SS. Stem Cells in Ovarian Cancer and Potential Therapies. PROCEEDINGS OF STEM CELL RESEARCH AND ONCOGENESIS 2020; 8:e1001. [PMID: 32776013 PMCID: PMC7413600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Elena Zuber
- Department of Physiology, University of Louisville, Louisville, KY40202
| | - Diana Schweitzer
- Department of Physiology, University of Louisville, Louisville, KY40202
| | - Dominick Allen
- Department of Physiology, University of Louisville, Louisville, KY40202
| | - Seema Parte
- Department of Biochemistry and Molecular Biology, University of Nebraska, Omaha, NE-68198-5870
| | - Sham S. Kakar
- Department of Physiology, University of Louisville, Louisville, KY40202
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202
| |
Collapse
|
34
|
Shin JH, Yoon HJ, Kim SM, Lee JH, Myoung H. Analyzing the factors that influence occult metastasis in oral tongue cancer. J Korean Assoc Oral Maxillofac Surg 2020; 46:99-107. [PMID: 32364349 PMCID: PMC7222618 DOI: 10.5125/jkaoms.2020.46.2.99] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/06/2020] [Accepted: 01/28/2020] [Indexed: 11/07/2022] Open
Abstract
Objectives We accessed the various clinico-histopathological factors, and their association with occult metastasis (OM) in oral tongue squamous cell carcinoma (OTSCC). Materials and Methods One hundred-nine patients with OTSCC were divided into the elective neck dissection (END) group and the watchful waiting (WW) group. Age, sex, T-stage, depth of invasion and differentiation were evaluated to determine the correlation between clinico-histopathological factors and OM. For immunohistochemical analysis, paraffin-embedded blocks of 41 OTSCC specimens were examined with antibodies (VEGF-c, c-Met, and ROR1). Results The group with tumor thickness of oral tongue cancer ≥3 mm had higher incidence of OM than those with a thickness of <3 mm. The depth of invasion was statistically correlated with OM (P=0.022). Immunohistochemical analysis showed that high expression of VEGF-c (P=0.043), c-Met (P=0.009), and ROR-1 (P=0.003) were statistically correlated with OM. Conclusion The analysis of these clinico-histopathological and immunohistochemical factors can help to determine neck dissection in clinically negative (cN0) patients.
Collapse
Affiliation(s)
- Jung-Hyun Shin
- Department of Oral and Maxillofacial Surgery, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea.,Department of Oral and Maxillofacial Surgery, Dankook University Jukjeon Dental Hospital, Yongin, Korea
| | - Hye-Jung Yoon
- Department of Oral Pathology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Soung-Min Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Jong-Ho Lee
- Department of Oral and Maxillofacial Surgery, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Hoon Myoung
- Department of Oral and Maxillofacial Surgery, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
35
|
Caras IW. Two cancer stem cell-targeted therapies in clinical trials as viewed from the standpoint of the cancer stem cell model. Stem Cells Transl Med 2020; 9:821-826. [PMID: 32281289 PMCID: PMC7381803 DOI: 10.1002/sctm.19-0424] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/07/2020] [Accepted: 03/21/2020] [Indexed: 12/26/2022] Open
Abstract
A key implication of the cancer stem cell model is that for a cancer therapy to be curative, it is imperative to eliminate the cancer stem cells (CSCs) that drive tumor progression. The California Institute for Regenerative Medicine is supporting two novel approaches that target CSCs, one an antibody‐mediated immunotherapy targeting CD47 and the other an antibody targeting ROR1. This article summarizes the evidence that CSCs are targeted and discusses the results of early clinical trials within the context of the CSC model.
Collapse
Affiliation(s)
- Ingrid W Caras
- California Institute for Regenerative Medicine, Oakland, California, USA
| |
Collapse
|
36
|
Yan X, Zhang H, Ke J, Zhang Y, Dai C, Zhu M, Jiang F, Zhu H, Zhang L, Zuo X, Li W, Yin X, Wan X. Progesterone receptor inhibits the proliferation and invasion of endometrial cancer cells by up regulating Krüppel-like factor 9. Transl Cancer Res 2020; 9:2220-2230. [PMID: 35117582 PMCID: PMC8798504 DOI: 10.21037/tcr.2020.03.53] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/10/2020] [Indexed: 12/19/2022]
Abstract
Background Krüppel-like factor 9 (KLF9) is one of the most important members of the KLF family, and is abnormally expressed in many tumors. However, the detailed function of KLF9 in endometrial cancer (EC) was barely investigated. Methods In this study, a total of 52 paired EC tissues were recruited to detect the KLF9 expression. Then a serial of phenotypic experiments and mechanism researches were performed. Results The results showed that KLF9 expression was decreased in EC tissues, and the reduced expression of KLF9 is associated with highly metastatic capacity of EC cells. KLF9 could inhibit the proliferation and invasion of EC cells by inhibiting the Wnt/β-catenin signaling pathway. Progesterone receptor (PR) could bind to KLF9 promoter and a positive correlation between KLF9 and PR expression was witnessed. Conclusions Taken together, the reduction of KLF9 induced by PR might participate in the development of EC and targeting KLF9 may provide a novel strategy for EC management.
Collapse
Affiliation(s)
- Xiaofang Yan
- Department of Obstetrics and Gynecology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200000, China.,Department of Gynecology and Obstetrics, Yixing People's Hospital, Yixing 214200, China
| | - Huilin Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200000, China.,Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210000, China
| | - Jieqi Ke
- Department of Obstetrics and Gynecology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200000, China
| | - Yongli Zhang
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200080, China
| | - Chenyun Dai
- Department of Translation Medicine, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 210000, China
| | - Mei Zhu
- Department of Translation Medicine, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 210000, China
| | - Feizhou Jiang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Hongdi Zhu
- Department of Gynecology and Obstetrics, Yixing People's Hospital, Yixing 214200, China
| | - Ling Zhang
- Department of Gynecology and Obstetrics, Yixing People's Hospital, Yixing 214200, China
| | - Xin Zuo
- Department of Gynecology and Obstetrics, Yixing People's Hospital, Yixing 214200, China
| | - Weiling Li
- Department of Gynecology and Obstetrics, Yixing People's Hospital, Yixing 214200, China
| | - Xiufeng Yin
- Department of Gynecology and Obstetrics, Yixing People's Hospital, Yixing 214200, China
| | - Xiaoping Wan
- Department of Obstetrics and Gynecology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200000, China.,Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200080, China
| |
Collapse
|
37
|
Kotrbová A, Ovesná P, Gybel' T, Radaszkiewicz T, Bednaříková M, Hausnerová J, Jandáková E, Minář L, Crha I, Weinberger V, Záveský L, Bryja V, Pospíchalová V. WNT signaling inducing activity in ascites predicts poor outcome in ovarian cancer. Am J Cancer Res 2020; 10:537-552. [PMID: 31903136 PMCID: PMC6929979 DOI: 10.7150/thno.37423] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 10/04/2019] [Indexed: 12/14/2022] Open
Abstract
High grade serous carcinoma of the ovary, fallopian tube, and peritoneum (HGSC) is the deadliest gynecological disease which results in a five-year survival rate of 30% or less. HGSC is characterized by the early and rapid development of metastases accompanied by a high frequency of ascites i.e. the pathological accumulation of fluid in peritoneum. Ascites constitute a complex tumor microenvironment and contribute to disease progression by largely unknown mechanisms. Methods: Malignant ascites obtained from HGSC patients who had undergone cytoreductive surgery were tested for their ability to induce WNT signaling in the Kuramochi cell line, a novel and clinically relevant in vitro model of HGSC. Next, cancer spheroids (the main form of metastatic cancer cells in ascites) were evaluated with respect to WNT signaling. Kuramochi cells were used to determine the role of individual WNT signaling branches in the adoption of metastatic stem cell-like behavior by HGSC cells. Furthermore, we analyzed genomic and transcriptomic data on WNT/Planar Cell Polarity (PCP) components retrieved from public cancer databases and corroborated with primary patient samples and validated antibodies on the protein level. Results: We have shown that ascites are capable of inducing WNT signaling in primary HGSC cells and HGSC cell line, Kuramochi. Importantly, patients whose ascites cannot activate WNT pathway present with less aggressive disease and a considerably better outcome including overall survival (OS). Functionally, the activation of non-canonical WNT/PCP signaling by WNT5A (and not canonical WNT/β-catenin signaling by WNT3A) promoted the metastatic stem-cell (metSC) like behavior (i.e. self-renewal, migration, and invasion) of HGSC cells. The pharmacological inhibition of casein kinase 1 (CK1) as well as genetic ablation (dishevelled 3 knock out) of the pathway blocked the WNT5A-induced effect. Additionally, WNT/PCP pathway components were differentially expressed between healthy and tumor tissue as well as between the primary tumor and metastases. Additionally, ascites which activated WNT/PCP signaling contained the typical WNT/PCP ligand WNT5A and interestingly, patients with high levels of WNT5A protein in their ascites exhibited poor progression-free survival (PFS) and OS in comparison to patients with low or undetectable ascitic WNT5A. Together, our results suggest the existence of a positive feedback loop between tumor cells producing WNT ligands and ascites that distribute WNT activity to cancer cells in the peritoneum, in order to promote their pro-metastatic features and drive HGSC progression. Conclusions: Our results highlight the role of WNT/PCP signaling in ovarian cancerogenesis, indicate a possible therapeutic potential of CK1 inhibitors for HGSC, and strongly suggest that the detection of WNT pathway inducing activity ascites (or WNT5A levels in ascites as a surrogate marker) could be a novel prognostic tool for HGSC patients.
Collapse
|
38
|
Li R, Liu T, Shi J, Luan W, Wei X, Yu J, Mao H, Liu P. ROR2 induces cell apoptosis via activating IRE1α/JNK/CHOP pathway in high-grade serous ovarian carcinoma in vitro and in vivo. J Transl Med 2019; 17:428. [PMID: 31878941 PMCID: PMC6933631 DOI: 10.1186/s12967-019-02178-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 12/12/2019] [Indexed: 12/15/2022] Open
Abstract
Background Epithelial ovarian cancer (EOC) is the most lethal cancer in female genital tumors. New disease markers and novel therapeutic strategies are urgent to identify considering the current status of treatment. Receptor tyrosine kinases family plays critical roles in embryo development and disease progression. However, ambivalent research conclusions of ROR2 make its role in tumor confused and the underlying mechanism is far from being understood. In this study, we sought to clarify the effects of ROR2 on high-grade serous ovarian carcinoma (HGSOC) cells and reveal the mechanism. Methods Immunohistochemistry assay and western-blot assay were used to detect proteins expression. ROR2 overexpression adenovirus and Lentivirus were used to create ROR2 overexpression model in vitro and in vivo, respectively. MTT assay, colony formation assay and transwell assay were used to measure the proliferation, invasion and migration ability of cancer cells. Flow cytometry assay was used to detect cell apoptosis rate. Whole transcriptome analysis was used to explore the differentially expressed genes between ROR2 overexpression group and negative control group. SiRNA targeted IRE1α was used to knockdown IRE1α. Kira6 was used to inhibit phosphorylation of IRE1α. Results Expression of ROR2 was significantly lower in HGSOC tissues compared to normal fallopian tube epithelium or ovarian surface epithelium tissues. In HGSOC cohort, patients with advanced stages or positive lymph nodes were prone to express lower ROR2. Overexpression of ROR2 could repress the proliferation of HGSOC cells and induce cell apoptosis. RNA sequencing analysis indicated that ROR2 overexpression could induce unfold protein response. The results were also confirmed by upregulation of BIP and phosphorylated IRE1α. Furthermore, pro-death factors like CHOP, phosphorylated JNK and phosphorylated c-Jun were also upregulated. IRE1α knockdown or Kira6 treatment could reverse the apoptosis induced by ROR2 overexpression. Finally, tumor xenograft experiment showed ROR2 overexpression could significantly repress the growth rate and volume of transplanted tumors. Conclusions Taken together, ROR2 downregulation was associated with HGSOC development and progression. ROR2 overexpression could repress cell proliferation and induce cell apoptosis in HGSOC cells. And the underlying mechanism might be the activation of IRE1α/JNK/CHOP pathway induced by ROR2.
Collapse
Affiliation(s)
- Rui Li
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Tianfeng Liu
- Department of Gynecology and Obstetrics, Linyi People's Hospital, 27 Jiefang Road, Linyi, 276003, Shandong, People's Republic of China
| | - Juanjuan Shi
- Department of Gynecology and Obstetrics, Affiliated Tengzhou Center People's Hospital of Jining Medical University, 181 Xing Tan Road, Tengzhou, 277599, Shandong, People's Republic of China
| | - Wenqing Luan
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Xuan Wei
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Jiangtao Yu
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Hongluan Mao
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China.
| | - Peishu Liu
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
39
|
A crucial role of fibroblast growth factor 2 in the differentiation of hair follicle stem cells toward endothelial cells in a STAT5-dependent manner. Differentiation 2019; 111:70-78. [PMID: 31715508 DOI: 10.1016/j.diff.2019.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 11/23/2022]
Abstract
Fibroblast growth factor (FGF2) is reported to affect the proliferation, differentiation, and survival abilities of stem cells. In this study, we hypothesize that FGF2 might promote the differentiation of hair follicle stem cell (HFSCs) into endothelial cells (ECs), in a manner dependent on STAT5 activation. We first treated human HFSCs with recombinant human FGF2 to determine the involvement of FGF2 in the differentiation of HFSCs. Then the expression of EC-specific markers including von Willebrand factor (vWF), VE-cadherin, CD31, FLT-1, KDR and Tie2 was evaluated using immunofluorescence and flow cytometry, while the expression of HFSC-specific markers such as K15, K19, Lgr5, Sox9 and Lhx2 was determined by flow cytometry. Next, in vitro tube formation was performed to confirm the function of FGF2, and low-density lipoprotein (LDL) uptake by ECs and HFSCs was studied by Dil-acetylated LDL assay. In addition, we transduced FGF2-treated HFSCs with constitutive-active or dominant-negative STAT5A adenovirus vectors. FGF2 up-regulated the expression of EC-specific markers, and promoted the differentiation of HFSCs into ECs, tube formation and LDL uptake. The phosphorylated STAT5 was translocated into the nucleus of HFSCs after FGF2 treatment, but this translocation was blocked by the dominant-negative STAT5A mutant. FGF2 increased the differentiation potential through the activation of STAT5 in vivo. Taken together, we find that FGF2 promotes the differentiation of HFSCs into ECs via activated STAT5, which gives a new perspective on the role of FGF2 in the development of ischemic vascular disease.
Collapse
|
40
|
Hasan MK, Widhopf GF, Zhang S, Lam SM, Shen Z, Briggs SP, Parker BA, Kipps TJ. Wnt5a induces ROR1 to recruit cortactin to promote breast-cancer migration and metastasis. NPJ Breast Cancer 2019; 5:35. [PMID: 31667337 PMCID: PMC6814774 DOI: 10.1038/s41523-019-0131-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 09/20/2019] [Indexed: 01/27/2023] Open
Abstract
ROR1 is a conserved oncoembryonic surface protein expressed in breast cancer. Here we report that ROR1 associates with cortactin in primary breast-cancer cells or in MCF7 transfected to express ROR1. Wnt5a also induced ROR1-dependent tyrosine phosphorylation of cortactin (Y421), which recruited ARHGEF1 to activate RhoA and promote breast-cancer-cell migration; such effects could be inhibited by cirmtuzumab, a humanized mAb specific for ROR1. Furthermore, treatment of mice bearing breast-cancer xenograft with cirmtuzumab inhibited cortactin phosphorylation in vivo and impaired metastatic development. We established that the proline at 841 of ROR1 was required for it to recruit cortactin and ARHGEF1, activate RhoA, and enhance breast-cancer-cell migration in vitro or development of metastases in vivo. Collectively, these studies demonstrate that the interaction of ROR1 with cortactin plays an important role in breast-cancer-cell migration and metastasis.
Collapse
Affiliation(s)
- Md Kamrul Hasan
- Moores Cancer Center, University of California San Diego, La Jolla, CA USA
| | - George F. Widhopf
- Moores Cancer Center, University of California San Diego, La Jolla, CA USA
| | - Suping Zhang
- Moores Cancer Center, University of California San Diego, La Jolla, CA USA
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pharmacology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518060 Guangdong China
| | - Sharon M. Lam
- Moores Cancer Center, University of California San Diego, La Jolla, CA USA
| | - Zhouxin Shen
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA USA
| | - Steven P. Briggs
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA USA
| | - Barbara A. Parker
- Moores Cancer Center, University of California San Diego, La Jolla, CA USA
| | - Thomas J. Kipps
- Moores Cancer Center, University of California San Diego, La Jolla, CA USA
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pharmacology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518060 Guangdong China
| |
Collapse
|
41
|
Mao Y, Fan W, Hu H, Zhang L, Michel J, Wu Y, Wang J, Jia L, Tang X, Xu L, Chen Y, Zhu J, Feng Z, Xu L, Yin R, Tang Q. MAGE-A1 in lung adenocarcinoma as a promising target of chimeric antigen receptor T cells. J Hematol Oncol 2019; 12:106. [PMID: 31640756 PMCID: PMC6805483 DOI: 10.1186/s13045-019-0793-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cancer/testis antigens (CTAs) are a special type of tumor antigen and are believed to act as potential targets for cancer immunotherapy. METHODS In this study, we first screened a rational CTA MAGE-A1 for lung adenocarcinoma (LUAD) and explored the detailed characteristics of MAGE-A1 in LUAD development through a series of phenotypic experiments. Then, we developed a novel MAGE-A1-CAR-T cell (mCART) using lentiviral vector based on our previous MAGE-A1-scFv. The anti-tumor effects of this mCART were finally investigated in vitro and in vivo. RESULTS The results showed striking malignant behaviors of MAGE-A1 in LUAD development, which further validated the rationality of MAGE-A1 as an appropriate target for LUAD treatment. Then, the innovative mCART was successfully constructed, and mCART displayed encouraging tumor-inhibitory efficacy in LUAD cells and xenografts. CONCLUSIONS Taken together, our data suggest that MAGE-A1 is a promising candidate marker for LUAD therapy and the MAGE-A1-specific CAR-T cell immunotherapy may be an effective strategy for the treatment of MAGE-A1-positive LUAD.
Collapse
Affiliation(s)
- Yuan Mao
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The Fourth Clinical College of Nanjing Medical University, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
- NHC Key Laboratory of Antibody Technique, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- Department of Hematology and Oncology, Department of Geriatric Lung Cancer Laboratory, Geriatric Hospital of Nanjing Medical University, Jiangsu Province Geriatric Hospital, Nanjing, China
| | - Weifei Fan
- Department of Hematology and Oncology, Department of Geriatric Lung Cancer Laboratory, Geriatric Hospital of Nanjing Medical University, Jiangsu Province Geriatric Hospital, Nanjing, China
| | - Hao Hu
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Louqian Zhang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The Fourth Clinical College of Nanjing Medical University, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
| | - Jerod Michel
- Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Yaqin Wu
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Wang
- Department of Hematology and Oncology, Department of Geriatric Lung Cancer Laboratory, Geriatric Hospital of Nanjing Medical University, Jiangsu Province Geriatric Hospital, Nanjing, China
| | - Lizhou Jia
- NHC Key Laboratory of Antibody Technique, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaojun Tang
- NHC Key Laboratory of Antibody Technique, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Li Xu
- Department of Pathology, Jiangsu Cancer Hospital, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Chen
- Department of Pathology, Jiangsu Cancer Hospital, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jin Zhu
- Huadong Medical Institute of Biotechniques, Nanjing, China
| | - Zhenqing Feng
- NHC Key Laboratory of Antibody Technique, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Lin Xu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The Fourth Clinical College of Nanjing Medical University, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China.
| | - Rong Yin
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The Fourth Clinical College of Nanjing Medical University, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China.
| | - Qi Tang
- NHC Key Laboratory of Antibody Technique, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
42
|
A fully chimeric IgG antibody for ROR1 suppresses ovarian cancer growth in vitro and in vivo. Biomed Pharmacother 2019; 119:109420. [PMID: 31536932 DOI: 10.1016/j.biopha.2019.109420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Over-expression of Receptor-tyrosine-kinase-like Orphan Receptor 1 (ROR1) in cancer cells has been reported in the context of several tumors (including ovarian cancer) and is associated with poor prognosis. The aim of this study was to construct a fully chimeric anti-ROR1 IgG antibody (ROR1-IgG) and investigate its antitumor activity against ovarian cancer cells, bothin vitro and in vivo. METHODS A fully chimeric anti-ROR1 IgG antibody (ROR1-IgG) eukaryotic expression vector was constructed and ROR1-IgG antibody was expressed in CHO cells. The characteristics of ROR1-IgG were investigated by ELISA, SPR, Western blotting, FACS and fluorescence staining analyses. CCK8 and wound healing assays were performed to determine inhibition and migration capacity of ovarian cancer cells after treatment with ROR1-IgGin vitro. Further, the antitumor activity of ROR1-IgG was assessed in vivo using tumor-mice xenograft model. RESULTS The results showed that ROR1-IgG could specifically bind to ROR1-positive cells (HO8910 and A2780) with a high affinity. Functional studies revealed that ROR1-IgG inhibited the malignant behavior of ROR1-positive cells (HO8910 and A2780) in a time- and dose-dependent manner. These effects were not observed in ROR1-negative lose386 cells. The tumor inhibition rates following treatment with low, medium, and high concentrations of ROR1-IgG were approximately 47.72%, 53.79%, and 60.51%, respectively. In addition, the expression of Bcl-2 was obviously reduced while that of Bax was distinctly elevated in xenografts. CONCLUSIONS Collectively, our findings suggest that ROR1-IgG may be a novel therapeutic agent for patients with ROR1-positive ovarian cancer.
Collapse
|
43
|
Wang Y, Chen S, Tian W, Zhang Q, Jiang C, Qian L, Liu Y. High-Expression HBO1 Predicts Poor Prognosis in Gastric Cancer. Am J Clin Pathol 2019; 152:517-526. [PMID: 31247063 DOI: 10.1093/ajcp/aqz065] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES Our goal was to assess the expression of histone acetyltransferase binding to origin recognition complex 1 (HBO1) in gastric cancer and the effect on prognosis for the patients. METHODS We used quantitative reverse transcription polymerase chain reaction, Western blot, and tissue microarray immunohistochemistry to investigate the expressions of HBO1 messenger RNA (mRNA) and protein in gastric cancer tissues. Online resources, including Oncomine and Kaplan-Meier Plotter, were used to further assess the correlation between HBO1 expression and the prognosis of the patients with gastric cancer. RESULTS HBO1 mRNA and protein expressions in gastric cancer tissues were both significantly higher than those in normal tissues. The correlations between high HBO1 expression and differentiation, invasive depth (T), lymph node metastasis (N), distant metastasis (M), TNM staging, and serum carcinoembryonic antigen levels were positive. High HBO1 expression was negatively correlated with survival time in patients with gastric cancer. CONCLUSIONS HBO1 might be a valuable biomarker to evaluate the prognosis of patients with gastric cancer.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Sufang Chen
- Department of Medical Imaging and Laboratory, Xiangnan University, Chenzhou, China
| | - Wei Tian
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Qing Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Chunyi Jiang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Li Qian
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Ying Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
44
|
Dave H, Butcher D, Anver M, Bollard CM. ROR1 and ROR2-novel targets for neuroblastoma. Pediatr Hematol Oncol 2019; 36:352-364. [PMID: 31441359 DOI: 10.1080/08880018.2019.1646365] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/22/2019] [Accepted: 07/16/2019] [Indexed: 10/26/2022]
Abstract
Background: Despite advances in immunotherapeutic strategies for neuroblastoma (NBL), relapse remains a significant cause of mortality for high risk patients. The discovery of novel tumor associated antigens to improve efficacy and minimize the toxicities of immunotherapy is therefore warranted. Receptor Tyrosine Kinase-like Orphan Receptor-1 and 2 (ROR1 and ROR2) have been found to be expressed in several malignancies with limited expression in healthy tissues. Objectives: Given their role in tumor migration and proliferation and the fact that they were originally cloned from a NBL cell line, we hypothesized that ROR1 and ROR2 could serve as potential targets for anti-ROR1 and anti-ROR2 based immunotherapies in NBL. Methods: We characterized the mRNA and protein expression of ROR1 and ROR2 in NBL cell lines and tissue microarrays of patient samples. To explore the potential of ROR1 targeting, we performed in vitro cytotoxicity assays against NBL using NK92 cells as effector cells. Results: Both ROR1 and ROR2 are expressed across all stages of NBL. In patients with non-MYC amplified tumors, expression of ROR1/ROR2 correlated with survival and prognosis. Moreover, in a proof-of-concept experiment, pretreatment of NBL cell line with anti-ROR1 antibody showed additive cytotoxicity with NK92 cells. Conclusions: ROR1 and ROR2 could serve as novel targets for immunotherapy in NBL. The additive effect of anti-ROR1 antibodies with NK cells needs to be explored further to evaluate the possibility of combining anti-ROR1 antibodies with immune effectors such as NK92 cells as a potential off-the shelf immunotherapy for NBL and other ROR1 expressing malignancies.
Collapse
Affiliation(s)
- Hema Dave
- Center for Cancer and Immunology Research, Children's National Health System, The George Washington University , Washington , DC , USA
| | - Donna Butcher
- Pathology/Histotechnology Laboratory, National Cancer Institute , Frederick , Maryland , USA
| | - Miriam Anver
- Pathology/Histotechnology Laboratory, National Cancer Institute , Frederick , Maryland , USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Health System, The George Washington University , Washington , DC , USA
| |
Collapse
|
45
|
Karvonen H, Barker H, Kaleva L, Niininen W, Ungureanu D. Molecular Mechanisms Associated with ROR1-Mediated Drug Resistance: Crosstalk with Hippo-YAP/TAZ and BMI-1 Pathways. Cells 2019; 8:cells8080812. [PMID: 31382410 PMCID: PMC6721603 DOI: 10.3390/cells8080812] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
Abstract
Signaling via the Wnt-related receptor tyrosine kinase-like orphan receptor 1 (ROR1) triggers tumorigenic features associated with cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT), while aberrant expression of ROR1 is strongly linked to advanced disease progression and chemoresistance. Several recent studies have shown that Wnt5a binding to ROR1 promotes oncogenic signaling by activating multiple pathways such as RhoA/Rac1 GTPases and PI3K/AKT, which in turn could induce transcriptional coactivator YAP/TAZ or polycomb complex protein BMI-1 signaling, respectively, to sustain stemness, metastasis and ultimately drug-resistance. These data point towards a new feedback loop during cancer development, linking Wnt5a-ROR1 signaling activation to YAP/TAZ or BMI-1 upregulation that could play an important role in disease progression and treatment resistance. This review focuses on the crosstalk between Wnt5a-ROR1 and YAP/TAZ or the BMI-1 signaling network, together with the current advancements in targeted strategies for ROR1-positive cancers.
Collapse
Affiliation(s)
- Hanna Karvonen
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, 33520 Tampere, Finland
| | - Harlan Barker
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| | - Laura Kaleva
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, 33520 Tampere, Finland
| | - Wilhelmiina Niininen
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, 33520 Tampere, Finland
| | - Daniela Ungureanu
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland.
- Tays Cancer Center, Tampere University Hospital, 33520 Tampere, Finland.
| |
Collapse
|
46
|
Zhou J, Yi Y, Wang C, Su C, Luo Y. Identification of a 3-mRNA signature as a novel potential prognostic biomarker in patients with ovarian serous cystadenocarcinoma in G2 and G3. Oncol Lett 2019; 18:3545-3552. [PMID: 31579405 PMCID: PMC6757305 DOI: 10.3892/ol.2019.10701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 07/03/2019] [Indexed: 12/25/2022] Open
Abstract
The use of mRNAs as biomarkers serves to diagnose, treat, as well as aid the prognosis of cancer. The present study involved an analysis of mRNAs in the cell cycle at the G2 and G3 tumor grades for the prognosis of ovarian serous cystadenocarcinoma (OSC) using 364 clinical samples (G2:G3=42:322). Statistics aided the identification of NPFFR2, XPNPEP2 and CELA3B; the 3-mRNA model that allows for classification of patients into high- and low-risk groups using a median value of 0.9580745. The rates of survival varied (P=0.00149) and the independent detection of stratification of the risk of this disease was validated with success using the 3-mRNA signature, which was demonstrated to be more successful than the weight model. This approach was revealed to provide the prognosis of grade G2 and G3 in patients with OSC compared with factors used traditionally. Compared with traditional factors, this 3-mRNA model was demonstrated to be the only and independent prognostic factor for patients with G2 and G3 stage OSC. A literature survey was also performed in the present study in order to assess the role of the 3 genes and indirectly prove their effectiveness. The establishment of this new genetic model will enhance prospective prognosis and treatment for patients with OSC.
Collapse
Affiliation(s)
- Jiahua Zhou
- Pediatric Surgery II Ward, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, P.R. China
| | - Yeye Yi
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, P.R. China
| | - Congjun Wang
- Pediatric Surgery II Ward, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, P.R. China
| | - Cheng Su
- Pediatric Surgery II Ward, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, P.R. China
| | - Yige Luo
- Pediatric Surgery II Ward, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, P.R. China
| |
Collapse
|
47
|
Kenda Suster N, Virant-Klun I. Presence and role of stem cells in ovarian cancer. World J Stem Cells 2019; 11:383-397. [PMID: 31396367 PMCID: PMC6682502 DOI: 10.4252/wjsc.v11.i7.383] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/23/2019] [Accepted: 06/13/2019] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer is the deadliest gynecological malignancy. It is typically diagnosed at advanced stages of the disease, with metastatic sites disseminated widely within the abdominal cavity. Ovarian cancer treatment is challenging due to high disease recurrence and further complicated pursuant to acquired chemoresistance. Cancer stem cell (CSC) theory proposes that both tumor development and progression are driven by undifferentiated stem cells capable of self-renewal and tumor-initiation. The most recent evidence revealed that CSCs in terms of ovarian cancer are not only responsible for primary tumor growth, metastasis and relapse of disease, but also for the development of chemoresistance. As the elimination of this cell population is critical for increasing treatment success, a deeper understanding of ovarian CSCs pathobiology, including epithelial-mesenchymal transition, signaling pathways and tumor microenvironment, is needed. Finally, before introducing new therapeutic agents for ovarian cancer, targeting CSCs, accurate identification of different ovarian stem cell subpopulations, including the very small embryonic-like stem cells suggested as progenitors, is necessary. To these ends, reliable markers of ovarian CSCs should be identified. In this review, we present the current knowledge and a critical discussion concerning ovarian CSCs and their clinical role.
Collapse
Affiliation(s)
- Natasa Kenda Suster
- Department of Gynecology, Division of Obstetrics and Gynecology, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia
| | - Irma Virant-Klun
- Department of Human Reproduction, Division of Obstetrics and Gynecology, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia
| |
Collapse
|
48
|
Ma X, Liu B, Yang J, Hu K. Solution structure, dynamics and function investigation of Kringle domain of human receptor tyrosine kinase-like orphan receptor 1. J Biomol Struct Dyn 2019; 38:2229-2239. [PMID: 31232192 DOI: 10.1080/07391102.2019.1635914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Receptor tyrosine kinase-like orphan receptor 1 (ROR1) has been recently proposed as a potential target for cancer treatment. It was suggested that monoclonal antibodies (mAb) against the Kringle (KNG) domain of ROR1 could induce apoptosis of chronic lymphocytic leukemia cells. Here, we reported the determination of the solution structure of human ROR1-KNG (hROR1-KNG), investigation of its dynamic properties and potential binding interface by NMR spectroscopy. The obtained NMR structure of hROR1-KNG exhibits an open form at Asn47-His50 and shows obvious differences from other canonical KNGs at the corresponding lysine binding site, which implies that hROR1-KNG may interact with some non-canonical ligands. Dynamics analysis of hROR1-KNG reveal a faster local motion around the α-turn and 310-helix, which may provide flexibility to protect the proximal hydrophobic core in solution or facilitate the binding of other molecules. The intermediate-to-slow conformational exchange of Cys77-Ile79 may influence the conformation determination of disulfide bond Cys53-Cys77. Binding interface of hROR1-KNG for mAb R11 was analyzed and compared with the epitope for the functional mAbs. Previous study implies that hROR1-KNG may be involved in mediating the heterooligomerization between ROR1 and ROR2 in vivo. However, apparently, no direct interaction between hROR1-KNG and hROR2-KNG was observed from chemical shift perturbation experiment. Our work lays foundation to further functional study on interactions of hROR1-KNG with other biological relevant partners.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xiaofang Ma
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming, People's Republic of China.,University of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Bin Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming, People's Republic of China.,University of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jiahui Yang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Kaifeng Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming, People's Republic of China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| |
Collapse
|
49
|
Saleh RR, Antrás JF, Peinado P, Pérez-Segura P, Pandiella A, Amir E, Ocaña A. Prognostic value of receptor tyrosine kinase-like orphan receptor (ROR) family in cancer: A meta-analysis. Cancer Treat Rev 2019; 77:11-19. [PMID: 31174180 DOI: 10.1016/j.ctrv.2019.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/25/2019] [Accepted: 05/26/2019] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Identification of membrane proteins expressed exclusively on tumor cells is a goal for cancer drug development. The receptor tyrosine kinase-like orphan receptor type 1 and 2 (ROR1/2), are type-I transmembrane proteins expressed in cancer but not in adult normal tissue. Here, we explore the prognostic role ROR1/2 expression on patient outcome. METHODS A systematic search of electronic databases identified publications exploring the effect of ROR1/2 on overall survival (OS). Hazard ratios (HR) from collected data were pooled in a meta-analysis using generic inverse-variance and random effects modeling. Subgroup analyses were conducted based on disease site or tumor type. RESULTS Twenty five studies met the inclusion criteria. ROR1 was associated with worse overall survival (HR 2.13, 95% confidence interval (CI) 1.62-2.80; P < 0.001) with subgroup analysis showing the strongest association between ROR1 and OS was in lung cancer. There was no significant difference between solid tumors and hematological malignancies (HR 2.15, 95% CI 1.52-3.06 vs. HR 2.02, 95% CI 1.46-2.84; subgroup difference P = 0.80). ROR2 was also associated with worse OS (HR 1.84, 95% CI 1.43-2.38; P < 0.001). There was no significant difference between disease sites although the highest association seen was in head and neck cancers (HR 3.19, 95% CI 1.13-8.97) and the lowest in gynecological cancers (HR 1.19, 95% CI 0.71-2.00; subgroup difference P = 0.10). CONCLUSIONS ROR1 and ROR2 expression is associated with adverse outcome in several tumors. ROR1/2 warrants study as a target for developmental therapeutics.
Collapse
Affiliation(s)
- Ramy R Saleh
- Division of Medical Oncology & Hematology, Department of Medicine, Princess Margaret Cancer Centre and the University of Toronto, Toronto, Ontario, Canada
| | - Jesús Fuentes Antrás
- Experimental Therapeutics Unit, Medical Oncology Department. Hospital Clínico San Carlos, and IdISSC, Madrid, Spain
| | - Paloma Peinado
- Experimental Therapeutics Unit, Medical Oncology Department. Hospital Clínico San Carlos, and IdISSC, Madrid, Spain
| | - Pedro Pérez-Segura
- Experimental Therapeutics Unit, Medical Oncology Department. Hospital Clínico San Carlos, and IdISSC, Madrid, Spain
| | - Atanasio Pandiella
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain; CIC-Universidad de Salamanca, Salamanca, Spain
| | - Eitan Amir
- Division of Medical Oncology & Hematology, Department of Medicine, Princess Margaret Cancer Centre and the University of Toronto, Toronto, Ontario, Canada
| | - Alberto Ocaña
- Experimental Therapeutics Unit, Medical Oncology Department. Hospital Clínico San Carlos, and IdISSC, Madrid, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain; Centro Regional de Investigaciones Biomédicas, Castilla-La Mancha University (UCLM), Albacete, Spain.
| |
Collapse
|
50
|
Mao Y, Xu L, Wang J, Zhang L, Hou N, Xu J, Wang L, Yang S, Chen Y, Xiong L, Zhu J, Fan W, Xu J. ROR1 associates unfavorable prognosis and promotes lymphoma growth in DLBCL by affecting PI3K/Akt/mTOR signaling pathway. Biofactors 2019; 45:416-426. [PMID: 30801854 DOI: 10.1002/biof.1498] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 01/02/2019] [Accepted: 01/31/2019] [Indexed: 12/23/2022]
Abstract
The receptor-tyrosine-kinase (RTK)-like orphan receptor 1 (ROR1) is a transmembrane glycoprotein regarded as a tumor-associated antigen. ROR1 plays an important role in cancer development, but the detailed function of ROR1 in diffuse large B-cell lymphoma (DLBCL) remains unclear. In this study, we first detected ROR1 expression and evaluated the relationship between ROR1 expression and the clinicopathological characteristics of DLBCL patients. Next we employed shRNA-mediated knockdown of ROR1 in DLBCL cell line to explore the characteristics of ROR1 in DLBCL development both in vitro and in vivo. The results showed a significantly higher level of ROR1 in DLBCL tissues than in lymphatic hyperplasia tissues. High ROR1 expression was correlated with unfavorable prognosis in DLBCL patients. Furthermore, ROR1 knockdown inhibited the growth and induced the apoptosis in DLBCL cells and xenografts. In addition, shROR1 inhibited activation of the PI3K/Akt/mTOR signaling pathway, both in vitro and in vivo. Taken together, our results suggest that ROR1 is a novel prognostic marker for DLBCL survival and ROR1 significantly promotes DLBCL tumorigenesis by regulating the PI3K/Akt/mTOR signaling pathway. Targeting ROR1 may provide a promising strategy for DLBCL treatment. © 2019 BioFactors, 45(3):416-426, 2019.
Collapse
Affiliation(s)
- Yuan Mao
- Department of Hematology and Oncology, Department of Geriatric Lung Cancer Laboratory, Geriatric Hospital of Nanjing Medical University, Jiangsu Province Geriatric Hospital, Nanjing, China
| | - Li Xu
- Department of Pathology, Jiangsu Cancer Hospital, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Wang
- Department of Hematology and Oncology, Department of Geriatric Lung Cancer Laboratory, Geriatric Hospital of Nanjing Medical University, Jiangsu Province Geriatric Hospital, Nanjing, China
| | - Louqian Zhang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China
| | - Nan Hou
- Department of Hematology and Oncology, Department of Geriatric Lung Cancer Laboratory, Geriatric Hospital of Nanjing Medical University, Jiangsu Province Geriatric Hospital, Nanjing, China
- Department of Hematology and Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Juqing Xu
- Department of Hematology and Oncology, Department of Geriatric Lung Cancer Laboratory, Geriatric Hospital of Nanjing Medical University, Jiangsu Province Geriatric Hospital, Nanjing, China
| | - Lin Wang
- Department of Hematology and Oncology, Department of Geriatric Lung Cancer Laboratory, Geriatric Hospital of Nanjing Medical University, Jiangsu Province Geriatric Hospital, Nanjing, China
| | - Shu Yang
- Department of Hematology and Oncology, Department of Geriatric Lung Cancer Laboratory, Geriatric Hospital of Nanjing Medical University, Jiangsu Province Geriatric Hospital, Nanjing, China
| | - Yan Chen
- Department of Pathology, Jiangsu Cancer Hospital, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lin Xiong
- Department of Pathology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jin Zhu
- Huadong Medical Institute of Biotechniques, Nanjing, China
| | - Weifei Fan
- Department of Hematology and Oncology, Department of Geriatric Lung Cancer Laboratory, Geriatric Hospital of Nanjing Medical University, Jiangsu Province Geriatric Hospital, Nanjing, China
| | - Jiaren Xu
- Department of Hematology and Oncology, Department of Geriatric Lung Cancer Laboratory, Geriatric Hospital of Nanjing Medical University, Jiangsu Province Geriatric Hospital, Nanjing, China
- Department of Hematology and Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|