1
|
Özbek M, Beyaz F, Öztop M, Karaca H, Cabir A, Kiryar BF. Anatolian ground squirrel (Spermophilus xanthoprymnus) retina: Comparative expression of synaptophysin, NeuN, calbindin-D28k, parvalbumin, glial fibrillary acidic protein, and Iba-1 during pre-hibernation and hibernation. Anat Rec (Hoboken) 2025. [PMID: 40377082 DOI: 10.1002/ar.25682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 04/20/2025] [Accepted: 04/26/2025] [Indexed: 05/18/2025]
Abstract
Hibernation induces significant molecular and cellular adaptations in the retina to maintain function under reduced metabolic conditions. This study aimed to investigate the expression of neuronal, synaptic, and glial markers in the retina of Spermophilus xanthoprymnus during pre-hibernation and hibernation periods using immunohistochemical staining. Synaptophysin expression, restricted to the inner plexiform layer (IPL) and outer plexiform layer (OPL) during pre-hibernation, significantly increased in both layers during hibernation, with additional expression observed in the outer nuclear layer. NeuN immunoreactivity remained unchanged in the ganglion cell layer (GCL) but increased notably in the INL during hibernation. Calbindin-D28k expression, prominent in the INL and plexiform layers during pre-hibernation, decreased markedly in hibernation. In contrast, parvalbumin expression increased across all retinal layers, except the photoreceptor layer, during hibernation. Glial fibrillary acidic protein (GFAP) expression, observed in the NFL and GCL, was significantly reduced during hibernation. Iba-1 immunoreactivity, sparse in the IPL and OPL during pre-hibernation, showed a pronounced increase in the IPL, OPL, and INL during hibernation periods. In conclusion, the expression of synaptophysin, NeuN, calbindin-D28k, parvalbumin, GFAP, and Iba-1 was investigated for the first time in the retina of the Anatolian ground squirrel during pre-hibernation and hibernation. This study reveals region-specific shifts in retinal marker expression during pre-hibernation and hibernation, providing a basis for future research into visual system adaptations and retinal plasticity under metabolic suppression.
Collapse
Affiliation(s)
- Mehmet Özbek
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Feyzullah Beyaz
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
- Department of Neuroscience, Gevher Nesibe Genome and Stem Cell Institute, Erciyes University, Kayseri, Turkey
| | - Mustafa Öztop
- Department of Biology, Faculty of Arts and Sciences, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Harun Karaca
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Ahmet Cabir
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Begüm Fatma Kiryar
- Department of Neuroscience, Gevher Nesibe Genome and Stem Cell Institute, Erciyes University, Kayseri, Turkey
| |
Collapse
|
2
|
Ali AH, Hachem M, Ahmmed MK. Compound-Specific Isotope Analysis as a Potential Approach for Investigation of Cerebral Accumulation of Docosahexaenoic Acid: Previous Milestones and Recent Trends. Mol Neurobiol 2025; 62:5816-5837. [PMID: 39633088 PMCID: PMC11953176 DOI: 10.1007/s12035-024-04643-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Docosahexaenoic acid (DHA, C22:6 n-3), a predominant omega-3 polyunsaturated fatty acid in brain, plays a vital role in cerebral development and exhibits functions with potential therapeutic effects (synaptic function, neurogenesis, brain inflammation regulation) in neurodegenerative diseases. The most common approaches of studying the cerebral accretion and metabolism of DHA involve the use of stable or radiolabeled tracers. Although these methods approved kinetic modeling of ratios and turnovers for fatty acids, they are associated with excessive costs, restrictive studies, and singular dosing effects. Compound-specific isotope analysis (CSIA) is recognized as a cost-effective alternative approach for investigating DHA metabolism in vitro and in vivo. This method involves determining variations in 13C content to identify the sources of specific compounds. This review comprehensively discusses a summary of different methods and recent advancements in CSIA application in studying DHA turnover in brain. Following, the ability and applications of CSIA by using gas-chromatography combined with isotope ratio mass-spectrometry to differentiate between natural endogenous DHA in brain and exogenous DHA are also highlighted. In general, the efficiency of CSIA has been demonstrated in utilizing natural 13C enrichment to distinguish between the incorporation of newly synthesized or pre-existing DHA into the brain and other body tissues, eliminating the need of tracers. This review provides comprehensive knowledge, which will have potential applications in both academia and industry for advancing the understanding in neurobiology and enhancing the development of nutritional strategies and pharmaceutical interventions targeting brain health.
Collapse
Affiliation(s)
- Abdelmoneim H Ali
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), P.O. Box 15551, Al Ain, United Arab Emirates
| | - Mayssa Hachem
- Department of Chemistry, College of Engineering and Physical Sciences, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates.
- Healthcare Engineering Innovation Group, Khalifa University of Sciences and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Mirja Kaizer Ahmmed
- Department of Fishing and Post-Harvest Technology, Faculty of Fisheries, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram, 4225, Bangladesh
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, 7647, New Zealand
| |
Collapse
|
3
|
Simões‐Pires EN, Torrente D, Singh P, Strickland S, Norris EH. Synergistic effects of the Aβ/fibrinogen complex on synaptotoxicity, neuroinflammation, and blood-brain barrier damage in Alzheimer's disease models. Alzheimers Dement 2025; 21:e70119. [PMID: 40344319 PMCID: PMC12061846 DOI: 10.1002/alz.70119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/16/2024] [Accepted: 01/12/2025] [Indexed: 05/11/2025]
Abstract
INTRODUCTION Alzheimer's disease (AD) is characterized by amyloid-beta (Aβ), hyperphosphorylated tau, chronic neuroinflammation, blood-brain barrier (BBB) damage, and synaptic dysfunction, leading to neuronal loss and cognitive deficits. Vascular proteins, including fibrinogen, extravasate into the brain, further contributing to damage and inflammation. Fibrinogen's interaction with Aβ is well-established, but how this interaction contributes to synaptic dysfunction in AD is unknown. METHODS Organotypic hippocampal cultures (OHC) were exposed to Aβ42 oligomers, fibrinogen, or Aβ42/fibrinogen complexes. Synaptotoxicity was analyzed by Western blot. Aβ42 oligomers, fibrinogen, or their complexes were intracerebroventricularly injected into mice. Histopathological AD markers, synaptotoxicity, neuroinflammation, and vascular markers were observed by Western blot and immunofluorescence. RESULTS Aβ42/fibrinogen complexes led to synaptic loss, tau181 phosphorylation, neuroinflammation, and BBB disruption, independent of Mac1/CD11b receptor signaling. Blocking Aβ42/fibrinogen complex formation prevented synaptotoxicity. DISCUSSION These findings indicate that the Aβ42/fibrinogen complex has a synergistic impact on hippocampal synaptotoxicity and neuroinflammation. HIGHLIGHTS Fibrinogen binds to the central region of Aβ, forming a plasmin-resistant complex. The Aβ/fibrinogen complex induces synaptotoxicity, inflammation, and BBB disruption. Synaptotoxicity induced by the complex is independent of Mac1 receptor signaling.
Collapse
Affiliation(s)
- Elisa Nicoloso Simões‐Pires
- Patricia and John Rosenwald Laboratory of Neurobiology and GeneticsThe Rockefeller UniversityNew YorkNew YorkUSA
| | - Daniel Torrente
- Patricia and John Rosenwald Laboratory of Neurobiology and GeneticsThe Rockefeller UniversityNew YorkNew YorkUSA
| | - Pradeep Singh
- Patricia and John Rosenwald Laboratory of Neurobiology and GeneticsThe Rockefeller UniversityNew YorkNew YorkUSA
| | - Sidney Strickland
- Patricia and John Rosenwald Laboratory of Neurobiology and GeneticsThe Rockefeller UniversityNew YorkNew YorkUSA
| | - Erin H. Norris
- Patricia and John Rosenwald Laboratory of Neurobiology and GeneticsThe Rockefeller UniversityNew YorkNew YorkUSA
| |
Collapse
|
4
|
McGeachan RI, Meftah S, Taylor LW, Catterson JH, Negro D, Bonthron C, Holt K, Tulloch J, Rose JL, Gobbo F, Chang YY, Elliott J, McLay L, King D, Liaquat I, Spires-Jones TL, Booker SA, Brennan PM, Durrant CS. Divergent actions of physiological and pathological amyloid-β on synapses in live human brain slice cultures. Nat Commun 2025; 16:3753. [PMID: 40307257 PMCID: PMC12044016 DOI: 10.1038/s41467-025-58879-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/01/2025] [Indexed: 05/02/2025] Open
Abstract
In Alzheimer's disease, amyloid beta (Aβ) and tau pathology are thought to drive synapse loss. However, there is limited information on how endogenous levels of tau, Aβ and other biomarkers relate to patient characteristics, or how manipulating physiological levels of Aβ impacts synapses in living adult human brain. Using live human brain slice cultures, we report that Aβ1-40 and tau release levels vary with donor age and brain region, respectively. Release of other biomarkers such as KLK-6, NCAM-1, and Neurogranin vary between brain region, while TDP-43 and NCAM-1 release is impacted by sex. Pharmacological manipulation of Aβ in either direction results in a loss of synaptophysin puncta, with increased physiological Aβ triggering potentially compensatory synaptic transcript changes. In contrast, treatment with Aβ-containing Alzheimer's disease brain extract results in post-synaptic Aβ uptake and pre-synaptic puncta loss without affecting synaptic transcripts. These data reveal distinct effects of physiological and pathological Aβ on synapses in human brain tissue.
Collapse
Affiliation(s)
- Robert I McGeachan
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
- The Hospital for Small Animals, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, UK
| | - Soraya Meftah
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Lewis W Taylor
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - James H Catterson
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Danilo Negro
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Calum Bonthron
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Kristján Holt
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Jane Tulloch
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Jamie L Rose
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Francesco Gobbo
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Ya Yin Chang
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Jamie Elliott
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Lauren McLay
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Declan King
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Imran Liaquat
- Department of Clinical Neuroscience, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh, UK
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Sam A Booker
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, The University of Edinburgh, Edinburgh, UK
| | - Paul M Brennan
- Department of Clinical Neuroscience, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh, UK
- Translational Neurosurgery, The Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Cancer Research UK Brain Tumour Centre of Excellence, CRUK Edinburgh Centre, The University of Edinburgh, Edinburgh, UK
| | - Claire S Durrant
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK.
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
5
|
Xue YY, Zhang ZS, Lin RR, Huang HF, Zhu KQ, Chen DF, Wu ZY, Tao QQ. CD2AP deficiency aggravates Alzheimer's disease phenotypes and pathology through p38 MAPK activation. Transl Neurodegener 2024; 13:64. [PMID: 39696695 PMCID: PMC11657702 DOI: 10.1186/s40035-024-00454-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common form of neurodegenerative disorder, which is characterized by a decline in cognitive abilities. Genome-wide association and clinicopathological studies have demonstrated that the CD2-associated protein (CD2AP) gene is one of the most important genetic risk factors for AD. However, the precise mechanisms by which CD2AP is linked to AD pathogenesis remain unclear. METHODS The spatiotemporal expression pattern of CD2AP was determined. Then, we generated and characterized an APP/PS1 mouse model with neuron-specific Cd2ap deletion, using immunoblotting, immunofluorescence, enzyme-linked immunosorbent assay, electrophysiology and behavioral tests. Additionally, we established a stable CD2AP-knockdown SH-SY5Y cell line to further elucidate the specific molecular mechanisms by which CD2AP contributes to AD pathogenesis. Finally, the APP/PS1 mice with neuron-specific Cd2ap deletion were treated with an inhibitor targeting the pathway identified above to further validate our findings. RESULTS CD2AP is widely expressed in various regions of the mouse brain, with predominant expression in neurons and vascular endothelial cells. In APP/PS1 mice, neuronal knockout of Cd2ap significantly aggravated tau pathology, synaptic impairments and cognitive deficits. Mechanistically, the knockout of Cd2ap activated p38 mitogen-activated protein kinase (MAPK) signaling, which contributed to increased tau phosphorylation, synaptic injury, neuronal apoptosis and cognitive impairment. Furthermore, the phenotypes of neuronal Cd2ap knockout were ameliorated by a p38 MAPK inhibitor. CONCLUSION Our study presents the first in vivo evidence that CD2AP deficiency exacerbates the phenotypes and pathology of AD through the p38 MAPK pathway, identifying CD2AP/p38 MAPK as promising therapeutic targets for AD.
Collapse
Affiliation(s)
- Yan-Yan Xue
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine and Liangzhu Laboratory, 88 Jiefang Road, Hangzhou, 310009, China
| | - Zhe-Sheng Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine and Liangzhu Laboratory, 88 Jiefang Road, Hangzhou, 310009, China
| | - Rong-Rong Lin
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine and Liangzhu Laboratory, 88 Jiefang Road, Hangzhou, 310009, China
| | - Hui-Fen Huang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine and Liangzhu Laboratory, 88 Jiefang Road, Hangzhou, 310009, China
| | - Ke-Qing Zhu
- National Health and Disease Human Brain Tissue Resource Center and Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Dian-Fu Chen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine and Liangzhu Laboratory, 88 Jiefang Road, Hangzhou, 310009, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Zhi-Ying Wu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine and Liangzhu Laboratory, 88 Jiefang Road, Hangzhou, 310009, China.
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, 200031, China.
| | - Qing-Qing Tao
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine and Liangzhu Laboratory, 88 Jiefang Road, Hangzhou, 310009, China.
| |
Collapse
|
6
|
Shen YR, Zaballa S, Bech X, Sancho-Balsells A, Rodríguez-Navarro I, Cifuentes-Díaz C, Seyit-Bremer G, Chun SH, Straub T, Abante J, Merino-Valverde I, Richart L, Gupta V, Li HY, Ballasch I, Alcázar N, Alberch J, Canals JM, Abad M, Serrano M, Klein R, Giralt A, Del Toro D. Expansion of the neocortex and protection from neurodegeneration by in vivo transient reprogramming. Cell Stem Cell 2024; 31:1741-1759.e8. [PMID: 39426381 DOI: 10.1016/j.stem.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 07/08/2024] [Accepted: 09/18/2024] [Indexed: 10/21/2024]
Abstract
Yamanaka factors (YFs) can reverse some aging features in mammalian tissues, but their effects on the brain remain largely unexplored. Here, we induced YFs in the mouse brain in a controlled spatiotemporal manner in two different scenarios: brain development and adult stages in the context of neurodegeneration. Embryonic induction of YFs perturbed cell identity of both progenitors and neurons, but transient and low-level expression is tolerated by these cells. Under these conditions, YF induction led to progenitor expansion, an increased number of upper cortical neurons and glia, and enhanced motor and social behavior in adult mice. Additionally, controlled YF induction is tolerated by principal neurons in the adult dorsal hippocampus and prevented the development of several hallmarks of Alzheimer's disease, including cognitive decline and altered molecular signatures, in the 5xFAD mouse model. These results highlight the powerful impact of YFs on neural proliferation and their potential use in brain disorders.
Collapse
Affiliation(s)
- Yi-Ru Shen
- Department of Molecules-Signaling-Development, Max-Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - Sofia Zaballa
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain; CIBERNED, 08036 Barcelona, Spain
| | - Xavier Bech
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain; CIBERNED, 08036 Barcelona, Spain
| | - Anna Sancho-Balsells
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain; CIBERNED, 08036 Barcelona, Spain
| | - Irene Rodríguez-Navarro
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain; CIBERNED, 08036 Barcelona, Spain
| | - Carmen Cifuentes-Díaz
- Inserm UMR-S 1270, Sorbonne Université, Science and Engineering Faculty, and Institut du Fer a Moulin, 75005 Paris, France
| | - Gönül Seyit-Bremer
- Department of Molecules-Signaling-Development, Max-Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - Seung Hee Chun
- Department of Molecules-Signaling-Development, Max-Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - Tobias Straub
- Bioinformatics Core, Biomedical Center, Faculty of Medicine, Lugwig-Maximilians University (LMU), 82152 Martinsried, Germany
| | - Jordi Abante
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain; Laboratory of Stem Cells and Regenerative Medicine, University of Barcelona, 08036 Barcelona, Spain; Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; Department of Mathematics & Computer Science, University of Barcelona, Barcelona, Spain
| | | | - Laia Richart
- Cambridge Institute of Science, Altos Labs, Granta Park, Cambridge CB21 6GP, UK
| | - Vipul Gupta
- Cambridge Institute of Science, Altos Labs, Granta Park, Cambridge CB21 6GP, UK
| | - Hao-Yi Li
- Department of Molecules-Signaling-Development, Max-Planck Institute for Biological Intelligence, 82152 Martinsried, Germany; Institute of Precision Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Ivan Ballasch
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain; CIBERNED, 08036 Barcelona, Spain
| | - Noelia Alcázar
- Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Jordi Alberch
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain; CIBERNED, 08036 Barcelona, Spain; Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Josep M Canals
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain; Laboratory of Stem Cells and Regenerative Medicine, University of Barcelona, 08036 Barcelona, Spain; Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Maria Abad
- Cambridge Institute of Science, Altos Labs, Granta Park, Cambridge CB21 6GP, UK; Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Manuel Serrano
- Cambridge Institute of Science, Altos Labs, Granta Park, Cambridge CB21 6GP, UK; Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Rüdiger Klein
- Department of Molecules-Signaling-Development, Max-Planck Institute for Biological Intelligence, 82152 Martinsried, Germany.
| | - Albert Giralt
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain; CIBERNED, 08036 Barcelona, Spain; Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain.
| | - Daniel Del Toro
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain; CIBERNED, 08036 Barcelona, Spain; Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain.
| |
Collapse
|
7
|
Oye Mintsa Mi-Mba MF, Lebbadi M, Alata W, Julien C, Emond V, Tremblay C, Fortin S, Barrow CJ, Bilodeau JF, Calon F. Differential impact of eicosapentaenoic acid and docosahexaenoic acid in an animal model of Alzheimer's disease. J Lipid Res 2024; 65:100682. [PMID: 39490923 DOI: 10.1016/j.jlr.2024.100682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024] Open
Abstract
Dietary supplementation with n-3 polyunsaturated fatty acids improves cognitive performance in several animal models of Alzheimer's disease (AD), an effect often associated with reduced amyloid-beta and/or tau pathologies. However, it remains unclear to what extent eicosapentaenoic (EPA) provides additional benefits compared to docosahexaenoic acid (DHA). Here, male and female 3xTg-AD mice were fed for 3 months (13-16 months of age) the following diets: (1) control (no DHA/EPA), (2) DHA (1.1g/kg) and low EPA (0.4g/kg), or (3) DHA (0.9g/kg) with high EPA (9.2g/kg). The DHA and DHA + EPA diets respectively increased DHA by 19% and 8% in the frontal cortex of 3xTg-AD mice, compared to controls. Levels of EPA, which were below the detection limit after the control diet, reached 0.14% and 0.29% of total brain fatty acids after the DHA and DHA + EPA diet, respectively. DHA and DHA + EPA diets lowered brain arachidonic acid levels and the n-6:n-3 docosapentaenoic acid ratio. Brain uptake of free 14C-DHA measured through intracarotid brain perfusion, but not of 14C-EPA, was lower in 3xTg-AD than in NonTg mice. DHA and DHA + EPA diets in 3xTg-AD mice reduced cortical soluble phosphorylated tau (pS202) (-34% high-DHA, -34% DHA + EPA, P < 0.05) while increasing p21-activated kinase (+58% and +83%, P < 0.001; respectively). High EPA intake lowered insoluble phosphorylated tau (-31% vs. DHA, P < 0.05). No diet effect on amyloid-beta levels was observed. In conclusion, dietary intake of DHA and EPA leads to differential changes in brain PUFA while altering cerebral biomarkers consistent with beneficial effects against AD-like neuropathology.
Collapse
Affiliation(s)
- Méryl-Farelle Oye Mintsa Mi-Mba
- Faculty of Pharmacy, Laval University, Quebec, QC, Canada; Centre Hospitalier de l'Université Laval (CHUL) Research Center, Quebec, QC, Canada
| | - Meryem Lebbadi
- Faculty of Pharmacy, Laval University, Quebec, QC, Canada; Centre Hospitalier de l'Université Laval (CHUL) Research Center, Quebec, QC, Canada
| | - Waël Alata
- Faculty of Pharmacy, Laval University, Quebec, QC, Canada; Centre Hospitalier de l'Université Laval (CHUL) Research Center, Quebec, QC, Canada
| | - Carl Julien
- Faculty of Pharmacy, Laval University, Quebec, QC, Canada; Centre Hospitalier de l'Université Laval (CHUL) Research Center, Quebec, QC, Canada
| | - Vincent Emond
- Centre Hospitalier de l'Université Laval (CHUL) Research Center, Quebec, QC, Canada
| | - Cyntia Tremblay
- Centre Hospitalier de l'Université Laval (CHUL) Research Center, Quebec, QC, Canada
| | - Samuel Fortin
- Centre de recherche sur les biotechnologies marines, Rimouski, QC, Canada
| | - Colin J Barrow
- Centre for Sustainable Bioproducts, Deakin University Geelong, Victoria, Australia
| | - Jean-François Bilodeau
- Centre Hospitalier de l'Université Laval (CHUL) Research Center, Quebec, QC, Canada; Department of medicine, Faculty of Medecine, Laval University, Quebec, QC, Canada
| | - Frédéric Calon
- Faculty of Pharmacy, Laval University, Quebec, QC, Canada; Centre Hospitalier de l'Université Laval (CHUL) Research Center, Quebec, QC, Canada.
| |
Collapse
|
8
|
Smith ME, Bazinet RP. Unraveling brain palmitic acid: Origin, levels and metabolic fate. Prog Lipid Res 2024; 96:101300. [PMID: 39222711 DOI: 10.1016/j.plipres.2024.101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
In the human brain, palmitic acid (16:0; PAM) comprises nearly half of total brain saturates and has been identified as the third most abundant fatty acid overall. Brain PAM supports the structure of membrane phospholipids, provides energy, and regulates protein stability. Sources underlying the origin of brain PAM are both diet and endogenous synthesis via de novo lipogenesis (DNL), primarily from glucose. However, studies investigating the origin of brain PAM are limited to tracer studies utilizing labelled (14C/11C/3H/2H) PAM, and results vary based on the model and tracer used. Nevertheless, there is evidence PAM is synthesized locally in the brain, in addition to obtained directly from the diet. Herein, we provide an overview of brain PAM origin, entry to the brain, metabolic fate, and factors influencing brain PAM kinetics and levels, the latter in the context of age, as well as neurological diseases and psychiatric disorders. Additionally, we briefly summarize the role of PAM in signaling at the level of the brain. We add to the literature a rudimentary summary on brain PAM metabolism.
Collapse
Affiliation(s)
- Mackenzie E Smith
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
9
|
Moreno-Rodriguez M, Perez SE, Martinez-Gardeazabal J, Manuel I, Malek-Ahmadi M, Rodriguez-Puertas R, Mufson EJ. Frontal Cortex Lipid Alterations During the Onset of Alzheimer's Disease. J Alzheimers Dis 2024; 98:1515-1532. [PMID: 38578893 DOI: 10.3233/jad-231485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Background Although sporadic Alzheimer's disease (AD) is a neurodegenerative disorder of unknown etiology, familial AD is associated with specific gene mutations. A commonality between these forms of AD is that both display multiple pathogenic events including cholinergic and lipid dysregulation. Objective We aimed to identify the relevant lipids and the activity of their related receptors in the frontal cortex and correlating them with cognition during the progression of AD. Methods MALDI-mass spectrometry imaging (MSI) and functional autoradiography was used to evaluate the distribution of phospholipids/sphingolipids and the activity of cannabinoid 1 (CB1), sphingosine 1-phosphate 1 (S1P1), and muscarinic M2/M4 receptors in the frontal cortex (FC) of people that come to autopsy with premortem clinical diagnosis of AD, mild cognitive impairment (MCI), and no cognitive impairment (NCI). Results MALDI-MSI revealed an increase in myelin-related lipids, such as diacylglycerol (DG) 36:1, DG 38:5, and phosphatidic acid (PA) 40:6 in the white matter (WM) in MCI compared to NCI, and a downregulation of WM phosphatidylinositol (PI) 38:4 and PI 38:5 levels in AD compared to NCI. Elevated levels of phosphatidylcholine (PC) 32:1, PC 34:0, and sphingomyelin 38:1 were observed in discrete lipid accumulations in the FC supragranular layers during disease progression. Muscarinic M2/M4 receptor activation in layers V-VI decreased in AD compared to MCI. CB1 receptor activity was upregulated in layers V-VI, while S1P1 was downregulated within WM in AD relative to NCI. Conclusions FC WM lipidomic alterations are associated with myelin dyshomeostasis in prodromal AD, suggesting WM lipid maintenance as a potential therapeutic target for dementia.
Collapse
Affiliation(s)
- Marta Moreno-Rodriguez
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Sylvia E Perez
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, USA
| | | | - Ivan Manuel
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Spain
- Neurodegenerative Diseases, BioBizkaia Health Research Institute, Barakaldo, Spain
| | | | - Rafael Rodriguez-Puertas
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Spain
- Neurodegenerative Diseases, BioBizkaia Health Research Institute, Barakaldo, Spain
| | - Elliott J Mufson
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
10
|
Chong JR, Chai YL, Xing H, Herr DR, Wenk MR, Francis PT, Ballard C, Aarsland D, Silver DL, Chen CP, Cazenave‐Gassiot A, Lai MKP. Decreased DHA-containing phospholipids in the neocortex of dementia with Lewy bodies are associated with soluble Aβ 42 , phosphorylated α-synuclein, and synaptopathology. Brain Pathol 2023; 33:e13190. [PMID: 37463072 PMCID: PMC10580008 DOI: 10.1111/bpa.13190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
Docosahexaenoic acid (DHA) is an essential omega-3 polyunsaturated fatty acid implicated in cognitive functions by promoting synaptic protein expression. While alterations of specific DHA-containing phospholipids have been described in the neocortex of patients with Alzheimer's disease (AD), the status of these lipids in dementia with Lewy bodies (DLB), known to manifest aggregated α-synuclein-containing Lewy bodies together with variable amyloid pathology, is unclear. In this study, post-mortem samples from the parietal cortex of 25 DLB patients and 17 age-matched controls were processed for phospholipidomics analyses using a liquid chromatography-tandem mass spectrometry (LC-MS/MS) platform. After controlling for false discovery rate, six out of the 46 identified putative DHA-phospholipid species were significantly decreased in DLB, with only one showing increase. Altered putative DHA-phospholipid species were subsequently validated with further LC-MS/MS measurements. Of the DHA-containing phospholipid (DCP) species showing decreases, five negatively correlated with soluble beta-amyloid (Aβ42) levels, whilst three also correlated with phosphorylated α-synuclein (all p < 0.05). Furthermore, five of these phospholipid species correlated with deficits of presynaptic Rab3A, postsynaptic neurogranin, or both (all p < 0.05). Finally, we found altered immunoreactivities of brain lysolipid DHA transporter, MFSD2A, and the fatty acid binding protein FABP5 in DLB parietal cortex. In summary, we report alterations of specific DCP species in DLB, as well as their associations with markers of neuropathological burden and synaptopathology. These results support the potential role of DHA perturbations in DLB as well as therapeutic targets.
Collapse
Affiliation(s)
- Joyce R. Chong
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeKent RidgeSingapore
- Memory, Aging and Cognition CentreNational University Health SystemKent RidgeSingapore
| | - Yuek Ling Chai
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeKent RidgeSingapore
- Memory, Aging and Cognition CentreNational University Health SystemKent RidgeSingapore
| | - Huayang Xing
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeKent RidgeSingapore
| | - Deron R. Herr
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeKent RidgeSingapore
| | - Markus R. Wenk
- Department of BiochemistryYong Loo Lin School of Medicine, National University of SingaporeKent RidgeSingapore
- Singapore Lipidomics Incubator (SLING), Life Sciences InstituteNational University of SingaporeKent RidgeSingapore
| | | | - Clive Ballard
- College of Medicine and HealthUniversity of ExeterExeterUK
| | - Dag Aarsland
- Department of Old Age PsychiatryInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
- Centre for Age‐Related MedicineStavanger University HospitalStavangerNorway
| | - David L. Silver
- Signature Research Program in Cardiovascular and Metabolic DisordersDuke‐National University of Singapore (NUS) Medical SchoolOutramSingapore
| | - Christopher P. Chen
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeKent RidgeSingapore
- Memory, Aging and Cognition CentreNational University Health SystemKent RidgeSingapore
| | - Amaury Cazenave‐Gassiot
- Department of BiochemistryYong Loo Lin School of Medicine, National University of SingaporeKent RidgeSingapore
- Singapore Lipidomics Incubator (SLING), Life Sciences InstituteNational University of SingaporeKent RidgeSingapore
| | - Mitchell K. P. Lai
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeKent RidgeSingapore
- Memory, Aging and Cognition CentreNational University Health SystemKent RidgeSingapore
- College of Medicine and HealthUniversity of ExeterExeterUK
| |
Collapse
|
11
|
Go MJ, Kim JM, Lee HL, Kim TY, Joo SG, Kim JH, Lee HS, Kim DO, Heo HJ. Anti-Amnesia-like Effect of Pinus densiflora Extract by Improving Apoptosis and Neuroinflammation on Trimethyltin-Induced ICR Mice. Int J Mol Sci 2023; 24:14084. [PMID: 37762386 PMCID: PMC10531555 DOI: 10.3390/ijms241814084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
This study was conducted to investigate the anti-amnestic property of Korean red pine bark extract (KRPBE) on TMT-induced cognitive decline in ICR mice. As a result of looking at behavioral function, the consumption of KRPBE improved the spatial work ability, short-term learning, and memory ability by Y-maze, passive avoidance, and Morris water maze tests. KRPBE suppressed antioxidant system damage by assessing the SOD activity, reduced GSH content, and MDA levels in brain tissue. In addition, it had a protective effect on cholinergic and synaptic systems by regulating ACh levels, AChE activity, and protein expression levels of ChAT, AChE, SYP, and PSD-95. Also, the KRPBE ameliorated TMT-induced mitochondrial damage by regulating the ROS content, MMP, and ATP levels. Treatment with KRPBE suppressed Aβ accumulation and phosphorylation of tau and reduced the expression level of BAX/BCl-2 ratio and caspase 3, improving oxidative stress-induced apoptosis. Moreover, treatment with KRPBE improved cognitive dysfunction by regulating the neuro-inflammatory protein expression levels of p-JNK, p-Akt, p-IκB-α, COX-2, and IL-1β. Based on these results, the extract of Korean red pine bark, which is discarded as a byproduct of forestry, might be used as an eco-friendly material for functional foods or pharmaceuticals by having an anti-amnesia effect on cognitive impairment.
Collapse
Affiliation(s)
- Min Ji Go
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (M.J.G.); (J.M.K.); (H.L.L.); (T.Y.K.); (S.G.J.); (J.H.K.); (H.S.L.)
| | - Jong Min Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (M.J.G.); (J.M.K.); (H.L.L.); (T.Y.K.); (S.G.J.); (J.H.K.); (H.S.L.)
| | - Hyo Lim Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (M.J.G.); (J.M.K.); (H.L.L.); (T.Y.K.); (S.G.J.); (J.H.K.); (H.S.L.)
| | - Tae Yoon Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (M.J.G.); (J.M.K.); (H.L.L.); (T.Y.K.); (S.G.J.); (J.H.K.); (H.S.L.)
| | - Seung Gyum Joo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (M.J.G.); (J.M.K.); (H.L.L.); (T.Y.K.); (S.G.J.); (J.H.K.); (H.S.L.)
| | - Ju Hui Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (M.J.G.); (J.M.K.); (H.L.L.); (T.Y.K.); (S.G.J.); (J.H.K.); (H.S.L.)
| | - Han Su Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (M.J.G.); (J.M.K.); (H.L.L.); (T.Y.K.); (S.G.J.); (J.H.K.); (H.S.L.)
| | - Dae-Ok Kim
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea;
| | - Ho Jin Heo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (M.J.G.); (J.M.K.); (H.L.L.); (T.Y.K.); (S.G.J.); (J.H.K.); (H.S.L.)
| |
Collapse
|
12
|
Gul S, Attaullah S, Alsugoor MH, Bawazeer S, Shah SA, Khan S, Salahuddin HS, Ullah M. Folicitin abrogates scopolamine induced oxidative stress, hyperlipidemia mediated neuronal synapse and memory dysfunction in mice. Heliyon 2023; 9:e16930. [PMID: 37416682 PMCID: PMC10320035 DOI: 10.1016/j.heliyon.2023.e16930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 07/08/2023] Open
Abstract
No effective drug treatment is available for Alzheimer disease, thus the need arise to develop efficient drugs for its treatment. Natural products have pronounced capability in treating Alzheimer disease therefore current study aimed to evaluate the neuro-protective capability of folicitin against scopolamine-induced Alzheimer disease neuropathology in mice. Experimental mice were divided into four groups i.e. control (single dose of 250 μL saline), scopolamine-administered group (1 mg/kg administered for three weeks), scopolamine plus folicitin-administered group (scopolamine 1 mg/kg administration for three weeks followed by folicitin administration for last two weeks) and folicitin-administered group (20 mg/kg administered for 5 alternate days). Results of behavioral tests and Western blot indicated that folicitin has the capability of recovering the memory against scopolamine-induced memory impairment by reducing the oxidative stress through up-regulating the endogenous antioxidant system like nuclear factor erythroid 2-related factor and Heme oxygenase-1 while prohibiting phosphorylated c-Jun N-terminal kinase. Similarly, folicitin also improved the synaptic dysfunction by up-regulating SYP and PSD95. Scopolamine-induced hyperglycemia and hyperlipidemia were abolished by folicitin as evidenced through random blood glucose test, glucose tolerance test and lipid profile test. All these results revealed that folicitin being a potent anti-oxidant is capable of improving synaptic dysfunction and reducing oxidative stress through Nrf-2/HO-1 pathway, thus plays a key role in treating Alzheimer disease as well as possess hyperglycemic and hyperlipidemic effect. Furthermore, a detailed study is suggested.
Collapse
Affiliation(s)
- Seema Gul
- Department of Zoology, Islamia College Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Sobia Attaullah
- Department of Zoology, Islamia College Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Mahdi H. Alsugoor
- Umme Al-Qura University, Faculty of Pharmacy, Department of Pharmacognosy, Makkah, Saudi Arabia
| | - Sami Bawazeer
- Umme Al-Qura University, Faculty of Pharmacy, Department of Pharmacognosy, Makkah, Saudi Arabia
| | - Shahid Ali Shah
- Neuro Molecular Medicine Research Centre (NMMRC), Ring Road, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Sanaullah Khan
- Department of Zoology, University of Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | | | - Mujeeb Ullah
- Department of Zoology, Islamia College Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
13
|
Ferré-González L, Lloret A, Cháfer-Pericás C. Systematic review of brain and blood lipidomics in Alzheimer's disease mouse models. Prog Lipid Res 2023; 90:101223. [PMID: 36871907 DOI: 10.1016/j.plipres.2023.101223] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
Alzheimer's disease (AD) diagnosis is based on invasive and expensive biomarkers. Regarding AD pathophysiological mechanisms, there is evidence of a link between AD and aberrant lipid homeostasis. Alterations in lipid composition have been observed in blood and brain samples, and transgenic mouse models represent a promising approach. Nevertheless, there is great variability among studies in mice for the determination of different types of lipids in targeted and untargeted methods. It could be explained by the different variables (model, age, sex, analytical technique), and experimental conditions used. The aim of this work is to review the studies on lipid alteration in brain tissue and blood samples from AD mouse models, focusing on different experimental parameters. As result, great disparity has been observed among the reviewed studies. Brain studies showed an increase in gangliosides, sphingomyelins, lysophospholipids and monounsaturated fatty acids and a decrease in sulfatides. In contrast, blood studies showed an increase in phosphoglycerides, sterols, diacylglycerols, triacylglycerols and polyunsaturated fatty acids, and a decrease in phospholipids, lysophospholipids and monounsaturated fatty acids. Thus, lipids are closely related to AD, and a consensus on lipidomics studies could be used as a diagnostic tool and providing insight into the mechanisms involved in AD.
Collapse
Affiliation(s)
- Laura Ferré-González
- Alzheimer's Disease Research Group, Health Research Institute La Fe, Valencia, Spain
| | - Ana Lloret
- Department of Physiology, Faculty of Medicine, University of Valencia, Health Research Institute INCLIVA, Valencia, Spain.
| | | |
Collapse
|
14
|
Aging decreases docosahexaenoic acid transport across the blood-brain barrier in C57BL/6J mice. PLoS One 2023; 18:e0281946. [PMID: 36795730 PMCID: PMC9934487 DOI: 10.1371/journal.pone.0281946] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/05/2023] [Indexed: 02/17/2023] Open
Abstract
Nutrients are actively taken up by the brain via various transporters at the blood-brain barrier (BBB). A lack of specific nutrients in the aged brain, including decreased levels of docosahexaenoic acid (DHA), is associated with memory and cognitive dysfunction. To compensate for decreased brain DHA, orally supplied DHA must be transported from the circulating blood to the brain across the BBB through transport carriers, including major facilitator superfamily domain-containing protein 2a (MFSD2A) and fatty acid-binding protein 5 (FABP5) that transport esterified and non-esterified DHA, respectively. Although it is known that the integrity of the BBB is altered during aging, the impact of aging on DHA transport across the BBB has not been fully elucidated. We used 2-, 8-, 12-, and 24-month-old male C57BL/6 mice to evaluate brain uptake of [14C]DHA, as the non-esterified form, using an in situ transcardiac brain perfusion technique. Primary culture of rat brain endothelial cells (RBECs) was used to evaluate the effect of siRNA-mediated MFSD2A knockdown on cellular uptake of [14C]DHA. We observed that the 12- and 24-month-old mice exhibited significant reductions in brain uptake of [14C]DHA and decreased MFSD2A protein expression in the brain microvasculature compared with that of the 2-month-old mice; nevertheless, FABP5 protein expression was up-regulated with age. Brain uptake of [14C]DHA was inhibited by excess unlabeled DHA in 2-month-old mice. Transfection of MFSD2A siRNA into RBECs decreased the MFSD2A protein expression levels by 30% and reduced cellular uptake of [14C]DHA by 20%. These results suggest that MFSD2A is involved in non-esterified DHA transport at the BBB. Therefore, the decreased DHA transport across the BBB that occurs with aging could be due to age-related down-regulation of MFSD2A rather than FABP5.
Collapse
|
15
|
Martínez-Gardeazabal J, Moreno-Rodríguez M, de San Román EG, Abad B, Manuel I, Rodríguez-Puertas R. Mass Spectrometry for the Advancement of Lipid Analysis in Alzheimer's Research. Methods Mol Biol 2023; 2561:245-259. [PMID: 36399274 DOI: 10.1007/978-1-0716-2655-9_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Recent technical advances in mass spectrometry, as applied to the analytical chemistry of lipid molecules, enable the simultaneous detection of the multiplicity of lipid complex species present in the human brain. This, in combination with quantitative studies carried out in plasma samples, helps to identify disease biomarkers including for Alzheimer's disease (AD). Mass spectrometry imaging (MSI) is particularly powerful for the anatomical localization of lipids in brain slices, identifying lipid modifications in postmortem frozen samples from AD patients.Human brain tissues are sectioned in a cryostat and then covered with a chemical matrix, such as mercaptobenzothiazole (MBT) or α-cyano-4-hydroxycinnamic acid (CHCA), to ionize the lipid molecules either by sublimation or by spraying. We describe the use of matrix-assisted laser desorption ionization (MALDI) in an LTQ-Orbitrap-XL mass spectrometer to scan brain tissue slices with high spatial resolution, analyzing 50 μm cell layers. The lipid spectra obtained for each pixel are transformed to color-coded intensity maps of hundreds of lipid species included those within a single tissue slice.
Collapse
Affiliation(s)
- Jonatan Martínez-Gardeazabal
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Marta Moreno-Rodríguez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | | | - Beatriz Abad
- Faculty of Science and Technology, Central Analysis Service, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Iván Manuel
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
- Neurodegenerative Diseases, BioCruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Rafael Rodríguez-Puertas
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.
- Neurodegenerative Diseases, BioCruces Bizkaia Health Research Institute, Barakaldo, Spain.
| |
Collapse
|
16
|
Blusztajn JK, Aytan N, Rajendiran T, Mellott TJ, Soni T, Burant CF, Serrano GE, Beach TG, Lin H, Stein TD. Cerebral Gray and White Matter Monogalactosyl Diglyceride Levels Rise with the Progression of Alzheimer's Disease. J Alzheimers Dis 2023; 95:1623-1634. [PMID: 37718815 PMCID: PMC10911245 DOI: 10.3233/jad-230543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
BACKGROUND Multiple studies have reported brain lipidomic abnormalities in Alzheimer's disease (AD) that affect glycerophospholipids, sphingolipids, and fatty acids. However, there is no consensus regarding the nature of these abnormalities, and it is unclear if they relate to disease progression. OBJECTIVE Monogalactosyl diglycerides (MGDGs) are a class of lipids which have been recently detected in the human brain. We sought to measure their levels in postmortem human brain and determine if these levels correlate with the progression of the AD-related traits. METHODS We measured MGDGs by ultrahigh performance liquid chromatography tandem mass spectrometry in postmortem dorsolateral prefrontal cortex gray matter and subcortical corona radiata white matter samples derived from three cohorts of participants: the Framingham Heart Study, the Boston University Alzheimer's Disease Research Center, and the Arizona Study of Aging and Neurodegenerative Disorders/Brain and Body Donation Program (total n = 288). RESULTS We detected 40 molecular species of MGDGs (including diacyl and alkyl/acyl compounds) and found that the levels of 29 of them, as well as total MGDG levels, are positively associated with AD-related traits including pathologically confirmed AD diagnosis, clinical dementia rating, Braak and Braak stage, neuritic plaque score, phospho-Tau AT8 immunostaining density, levels of phospho-Tau396 and levels of Aβ40. Increased MGDG levels were present in both gray and white matter, indicating that they are widespread and likely associated with myelin-producing oligodendrocytes-the principal cell type of white matter. CONCLUSIONS Our data implicate the MGDG metabolic defect as a central correlate of clinical and pathological progression in AD.
Collapse
Affiliation(s)
- Jan Krzysztof Blusztajn
- Boston University Chobanian & Avedisian School of Medicine
- Boston University Alzheimer’s Disease Research Center
| | - Nurgul Aytan
- Boston University Chobanian & Avedisian School of Medicine
- Boston University Alzheimer’s Disease Research Center
| | | | | | | | | | | | | | | | - Thor D. Stein
- Boston University Chobanian & Avedisian School of Medicine
- Boston University Alzheimer’s Disease Research Center
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA
- VA Bedford Healthcare System, U.S. Department of Veteran Affairs, Bedford, MA
| |
Collapse
|
17
|
Agadagba SK, Lim LW, Chan LLH. Advances in transcorneal electrical stimulation: From the eye to the brain. Front Cell Neurosci 2023; 17:1134857. [PMID: 36937185 PMCID: PMC10019785 DOI: 10.3389/fncel.2023.1134857] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/07/2023] [Indexed: 03/06/2023] Open
Abstract
The mammalian brain is reported to contain about 106-109 neurons linked together to form complex networks. Physiologically, the neuronal networks interact in a rhythmic oscillatory pattern to coordinate the brain's functions. Neuromodulation covers a broad range of techniques that can alter neuronal network activity through the targeted delivery of electrical or chemical stimuli. Neuromodulation can be used to potentially treat medical conditions and can serve as a research tool for studying neural functions. Typically, the main method of neuromodulation is to electrically stimulate specific structures in both the central and peripheral nervous systems via surgically implanted electrodes. Therefore, it is imperative to explore novel and safer methods for altering neuronal network activity. Transcorneal electrical stimulation (TES) has rapidly emerged as a non-invasive neuromodulatory technique that can exert beneficial effects on the brain through the eyes. There is substantial evidence to show that TES can change the brain oscillations in rodents. Moreover, the molecular data clearly shows that TES can also activate non-visual brain regions. In this review, we first summarize the use of TES in the retina and then discuss its effects in the brain through the eye-brain connection. We then comprehensively review the substantial evidence from electrophysiological, behavioral, and molecular studies on the role of TES on modulating neurons in the brain. Lastly, we discuss the implications and possible future directions of the research on TES as a non-invasive tool for neuromodulation of the brain via directly stimulating the mammalian eye.
Collapse
Affiliation(s)
| | - Lee Wei Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Leanne Lai Hang Chan
- Department of Electrical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
- *Correspondence: Leanne Lai Hang Chan
| |
Collapse
|
18
|
Kansakar U, Trimarco V, Mone P, Varzideh F, Lombardi A, Santulli G. Choline supplements: An update. Front Endocrinol (Lausanne) 2023; 14:1148166. [PMID: 36950691 PMCID: PMC10025538 DOI: 10.3389/fendo.2023.1148166] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/07/2023] [Indexed: 03/08/2023] Open
Abstract
In this comprehensive review, we examine the main preclinical and clinical investigations assessing the effects of different forms of choline supplementation currently available, including choline alfoscerate (C8H20NO6P), also known as alpha-glycerophosphocholine (α-GPC, or GPC), choline bitartrate, lecithin, and citicoline, which are cholinergic compounds and precursors of acetylcholine. Extensively used as food supplements, they have been shown to represent an effective strategy for boosting memory and enhancing cognitive function.
Collapse
Affiliation(s)
- Urna Kansakar
- Department of Medicine, Division of Cardiology, Einstein Institute for Aging Research, Montefiore Health System, New York, NY, United States
| | | | - Pasquale Mone
- Department of Medicine, Division of Cardiology, Einstein Institute for Aging Research, Montefiore Health System, New York, NY, United States
- ASL Avellino, Montefiore Health System, New York, NY, United States
| | - Fahimeh Varzideh
- Department of Medicine, Division of Cardiology, Einstein Institute for Aging Research, Montefiore Health System, New York, NY, United States
| | - Angela Lombardi
- Department of Microbiology and Immunology, Montefiore Health System, New York, NY, United States
- *Correspondence: Angela Lombardi,
| | - Gaetano Santulli
- Department of Medicine, Division of Cardiology, Einstein Institute for Aging Research, Montefiore Health System, New York, NY, United States
- University of Naples “Federico II”, Naples, Italy
- Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Montefiore Health System, New York, NY, United States
| |
Collapse
|
19
|
Sharma HS, Muresanu DF, Nozari A, Lafuente JV, Buzoianu AD, Tian ZR, Huang H, Feng L, Bryukhovetskiy I, Manzhulo I, Wiklund L, Sharma A. Neuroprotective Effects of Nanowired Delivery of Cerebrolysin with Mesenchymal Stem Cells and Monoclonal Antibodies to Neuronal Nitric Oxide Synthase in Brain Pathology Following Alzheimer's Disease Exacerbated by Concussive Head Injury. ADVANCES IN NEUROBIOLOGY 2023; 32:139-192. [PMID: 37480461 DOI: 10.1007/978-3-031-32997-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Concussive head injury (CHI) is one of the major risk factors in developing Alzheimer's disease (AD) in military personnel at later stages of life. Breakdown of the blood-brain barrier (BBB) in CHI leads to extravasation of plasma amyloid beta protein (ΑβP) into the brain fluid compartments precipitating AD brain pathology. Oxidative stress in CHI or AD is likely to enhance production of nitric oxide indicating a role of its synthesizing enzyme neuronal nitric oxide synthase (NOS) in brain pathology. Thus, exploration of the novel roles of nanomedicine in AD or CHI reducing NOS upregulation for neuroprotection are emerging. Recent research shows that stem cells and neurotrophic factors play key roles in CHI-induced aggravation of AD brain pathologies. Previous studies in our laboratory demonstrated that CHI exacerbates AD brain pathology in model experiments. Accordingly, it is quite likely that nanodelivery of NOS antibodies together with cerebrolysin and mesenchymal stem cells (MSCs) will induce superior neuroprotection in AD associated with CHI. In this review, co-administration of TiO2 nanowired cerebrolysin - a balanced composition of several neurotrophic factors and active peptide fragments, together with MSCs and monoclonal antibodies (mAb) to neuronal NOS is investigated for superior neuroprotection following exacerbation of brain pathology in AD exacerbated by CHI based on our own investigations. Our observations show that nanowired delivery of cerebrolysin, MSCs and neuronal NOS in combination induces superior neuroprotective in brain pathology in AD exacerbated by CHI, not reported earlier.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Hongyun Huang
- Beijing Hongtianji Neuroscience Academy, Beijing, China
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Igor Manzhulo
- Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| |
Collapse
|
20
|
Correlation between Mild Cognitive Impairment and Sarcopenia: The Prospective Role of Lipids and Basal Metabolic Rate in the Link. Nutrients 2022; 14:nu14245321. [PMID: 36558480 PMCID: PMC9783732 DOI: 10.3390/nu14245321] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
There is evidence of correlation between mild cognitive impairment (MCI) and sarcopenia (SA). However, the influencing factors and the mechanism, such as age-related lipid redistribution, remain unknown. This study aimed to clarify the role of dietary fats and erythrocyte lipids profile combined with basal metabolic rate (BMR) in the link between MCI and SA. A total of 1050 participants aged 65 to 85 were divided into control, MCI, SA and MCI and SA groups. Bioelectrical impedance analysis was used to evaluate appendicular lean mass and BMR. Cognition and dietary nutrition were detected by neuropsychological tests and food frequency questionnaires. UHPLC-QExactive-MS/MS and UHPLC-Qtrap-MS/MS were used to conduct the lipidomics analysis. Lower dietary intake of different phospholipids, unsaturated fatty acids and kinds of choline were significantly associated with MCI and SA. Least absolute shrinkage and selection operator, multivariate logistic regression, receiver operating characteristic curve and validation tests provided evidence that specific phospholipids, unsaturated fatty acids and BMR might be the critical factors in the processing of MCI and SA, as well as in their link. The lipidomic analysis observed a clear discrimination of the lipid profiles in the individuals who are in MCI, SA, or MCI and SA, compared with the control. Lower expressions in certain phospholipid species, such as sphingomyelin and phosphatidylethanolamines, decreased phosphatidylcholine with more unsaturated double bonds, lower level of lipids with C20:5 and C20:4, higher level of lipids with C18:2 and lipids with a remodeled length of acyl chain, might be closely related to the link between MCI and SA. Inadequate dietary intake and lower concentrations of the erythrocyte lipid profile of phospholipids and unsaturated fatty acids with a lower level of BMR might be the key points that lead to progress in MCI and SA, as well as in their link. They could be used as the prospective biomarkers for the higher risk of cognitive decline and/or SA in elderly population.
Collapse
|
21
|
Sharma L, Sharma A, Kumar D, Asthana MK, Lalhlenmawia H, Kumar A, Bhattacharyya S, Kumar D. Promising protein biomarkers in the early diagnosis of Alzheimer's disease. Metab Brain Dis 2022; 37:1727-1744. [PMID: 35015199 DOI: 10.1007/s11011-021-00847-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/23/2021] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is an insidious, multifactorial disease that involves the devastation of neurons leading to cognitive impairments. Alzheimer's have compounded pathologies of diverse nature, including proteins as one important factor along with mutated genes and enzymes. Although various review articles have proposed biomarkers, still, the statistical importance of proteins is missing. Proteins associated with AD include amyloid precursor protein, glial fibrillary acidic protein, calmodulin-like skin protein, hepatocyte growth factor, matrix Metalloproteinase-2. These proteins play a crucial role in the AD hypothesis which includes the tau hypothesis, amyloid-beta (Aβ) hypothesis, cholinergic neuron damage, etc. The present review highlights the role of major proteins and their physiological functions in the early diagnosis of AD. Altered protein expression results in cognitive impairment, synaptic dysfunction, neuronal degradation, and memory loss. On the medicinal ground, efforts of making anti-amyloid, anti-tau, anti-inflammatory treatments are on the peak, having these proteins as putative targets. Few proteins, e.g., Amyloid precursor protein results in the formation of non-soluble sticky Aβ40 and Aβ42 monomers that, over time, aggregate into plaques in the cortical and limbic brain areas and neurogranin is believed to regulate calcium-mediated signaling pathways and thus modulating synaptic plasticity are few putative and potential forthcoming targets for developing effective anti-AD therapies. These proteins may help to diagnose the disease early, bode well for the successful discovery and development of therapeutic and preventative regimens for this devasting public health problem.
Collapse
Affiliation(s)
- Lalit Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, 173229, India
| | - Aditi Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, 173229, India
| | - Deepak Kumar
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, 173229, India
| | - Manish Kumar Asthana
- Department of Humanities & Social Sciences, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - H Lalhlenmawia
- Department of Pharmacy, Regional Institute of Paramedical and Nursing Sciences, Zemabawk, Aizawl, 796017, India
| | - Ashwani Kumar
- Council of Scientific and Industrial Research, Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, 176061, India
| | - Sanjib Bhattacharyya
- Department of Pharmaceutical Sciences and Chinese Traditional Medicine, Southwest University, Chongqing, 400715, People's Republic of China.
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, 173 229, India.
| |
Collapse
|
22
|
Deng J, Feng X, Zhou L, He C, Li H, Xia J, Ge Y, Zhao Y, Song C, Chen L, Yang Z. Heterophyllin B, a cyclopeptide from Pseudostellaria heterophylla, improves memory via immunomodulation and neurite regeneration in i.c.v.Aβ-induced mice. Food Res Int 2022; 158:111576. [DOI: 10.1016/j.foodres.2022.111576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/04/2022]
|
23
|
Huynh VN, Benavides GA, Johnson MS, Ouyang X, Chacko BK, Osuma E, Mueller T, Chatham J, Darley-Usmar VM, Zhang J. Acute inhibition of OGA sex-dependently alters the networks associated with bioenergetics, autophagy, and neurodegeneration. Mol Brain 2022; 15:22. [PMID: 35248135 PMCID: PMC8898497 DOI: 10.1186/s13041-022-00906-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/11/2022] [Indexed: 11/10/2022] Open
Abstract
The accumulation of neurotoxic proteins characteristic of age-related neurodegenerative pathologies such as Alzheimer's and Parkinson's diseases is associated with the perturbation of metabolism, bioenergetics, and mitochondrial quality control. One approach to exploit these interactions therapeutically is to target the pathways that regulate metabolism. In this respect, the nutrient-sensing hexosamine biosynthesis pathway is of particular interest since it introduces a protein post-translational modification known as O-GlcNAcylation, which modifies different proteins in control versus neurodegenerative disease postmortem brains. A potent inhibitor of the O-GlcNAcase enzyme that removes the modification from proteins, Thiamet G (TG), has been proposed to have potential benefits in Alzheimer's disease. We tested whether key factors in the O-GlcNAcylation are correlated with mitochondrial electron transport and proteins related to the autophagy/lysosomal pathways in the cortex of male and female mice with and without exposure to TG (10 mg/kg i.p.). Mitochondrial complex activities were measured in the protein homogenates, and a panel of metabolic, autophagy/lysosomal proteins and O-GlcNAcylation enzymes were assessed by either enzyme activity assay or by western blot analysis. We found that the networks associated with O-GlcNAcylation enzymes and activities with mitochondrial parameters, autophagy-related proteins as well as neurodegenerative disease-related proteins exhibited sex and TG dependent differences. Taken together, these studies provide a framework of interconnectivity for multiple O-GlcNAc-dependent pathways in mouse brain of relevance to aging and sex/age-dependent neurodegenerative pathogenesis and response to potential therapies.
Collapse
Affiliation(s)
- Van N Huynh
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, BMRII-534, 901 19th Street S., Birmingham, AL, 35294-0017, USA
| | - Gloria A Benavides
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, BMRII-534, 901 19th Street S., Birmingham, AL, 35294-0017, USA
| | - Michelle S Johnson
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, BMRII-534, 901 19th Street S., Birmingham, AL, 35294-0017, USA
| | - Xiaosen Ouyang
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, BMRII-534, 901 19th Street S., Birmingham, AL, 35294-0017, USA
| | - Balu K Chacko
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, BMRII-534, 901 19th Street S., Birmingham, AL, 35294-0017, USA
| | - Edie Osuma
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, BMRII-534, 901 19th Street S., Birmingham, AL, 35294-0017, USA
| | - Toni Mueller
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, BMRII-534, 901 19th Street S., Birmingham, AL, 35294-0017, USA
| | - John Chatham
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, BMRII-534, 901 19th Street S., Birmingham, AL, 35294-0017, USA
| | - Victor M Darley-Usmar
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, BMRII-534, 901 19th Street S., Birmingham, AL, 35294-0017, USA
| | - Jianhua Zhang
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, BMRII-534, 901 19th Street S., Birmingham, AL, 35294-0017, USA.
- Birmingham VA Medical Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
24
|
Triiodothyronine attenuates neurocognitive dysfunction induced by sevoflurane in the developing brain of neonatal rats. J Affect Disord 2022; 297:455-462. [PMID: 34715171 DOI: 10.1016/j.jad.2021.10.086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 09/22/2021] [Accepted: 10/23/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Whilst concerns have been raised about the detrimental effects of general anaesthetics on the brain's development and function in the young, reports have indicated that thyroid hormones are able to promote neurogenesis in the developing brain. This present study aimed to investigate the effects of triiodothyronine (T3) on the neonatal rat brain, following sevoflurane exposure. METHODS Postnatal day 7 (P7) ratpups were treated with Triiodothyronine (T3) (1 µg/100 g body weight, i.p. injection, once/day for 3 days) after 2% sevoflurane exposure for 6 h. They were sacrificed at either P7 (immediately), P15 or P30 and their brains were harvested to assess cell death, proliferation in the hippocampus, N-methyl-D-aspartate (NMDA) receptor subunit A and B, and a post-synaptic protein (PSD-95 in the hippocampus,). Neuro-behavioral changes in other cohorts between P27 and P30 were evaluated with Morris water maze and open field tests. RESULTS Sevoflurane exposure caused cell death and suppressed the proliferation of astrocytes and neurons, as well as the dendritic growth of neurons in the hippocampus which were all reversed by the administration of T3. Moreover, cognitive function, including learning, memory, and adaptability to a new environment, were impaired by sevoflurane exposure, which was also negated by T3 treatment. Furthermore, sevoflurane decreased the expression of NMDA receptor subunits NR2A and NR2B, as well as PSD-95 in the hippocampus at P15 and those effects of sevoflurane were abolished by T3 administration. CONCLUSIONS A potential therapeutic role of T3 in protecting general anesthetic induced neuronal injury in the developing brain is likely to occur through enhancing expression of PSD-95 and the NMDA NR2A and NR2B expression.
Collapse
|
25
|
Santos G, Díaz M. Dimensional Changes in Lipid Rafts from Human Brain Cortex Associated to Development of Alzheimer's Disease. Predictions from an Agent-Based Mathematical Model. Int J Mol Sci 2021; 22:ijms222212181. [PMID: 34830060 PMCID: PMC8620379 DOI: 10.3390/ijms222212181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/02/2021] [Accepted: 11/07/2021] [Indexed: 11/30/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease caused by abnormal functioning of critical physiological processes in nerve cells and aberrant accumulation of protein aggregates in the brain. The initial cause remains elusive—the only unquestionable risk factor for the most frequent variant of the disease is age. Lipid rafts are microdomains present in nerve cell membranes and they are known to play a significant role in the generation of hallmark proteinopathies associated to AD, namely senile plaques, formed by aggregates of amyloid β peptides. Recent studies have demonstrated that human brain cortex lipid rafts are altered during early neuropathological phases of AD as defined by Braak and Braak staging. The lipid composition and physical properties of these domains appear altered even before clinical symptoms are detected. Here, we use a coarse grain molecular dynamics mathematical model to predict the dimensional evolution of these domains using the experimental data reported by our group in human frontal cortex. The model predicts significant size and frequency changes which are detectable at the earliest neuropathological stage (ADI/II) of Alzheimer’s disease. Simulations reveal a lower number and a larger size in lipid rafts from ADV/VI, the most advanced stage of AD. Paralleling these changes, the predictions also indicate that non-rafts domains undergo simultaneous alterations in membrane peroxidability, which support a link between oxidative stress and AD progression. These synergistic changes in lipid rafts dimensions and non-rafts peroxidability are likely to become part of a positive feedback loop linked to an irreversible amyloid burden and neuronal death during the evolution of AD neuropathology.
Collapse
Affiliation(s)
- Guido Santos
- Systems Biology and Mathematical Modelling Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Biology Section, Science School, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
- Correspondence:
| | - Mario Díaz
- Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, Edaphology and Geology, Biology Section, Science School, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain;
- IUETSP (Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias), Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| |
Collapse
|
26
|
Garcia-Romeu A, Darcy S, Jackson H, White T, Rosenberg P. Psychedelics as Novel Therapeutics in Alzheimer's Disease: Rationale and Potential Mechanisms. Curr Top Behav Neurosci 2021; 56:287-317. [PMID: 34734390 DOI: 10.1007/7854_2021_267] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Serotonin 2A receptor (5-HT2AR) agonist "classic psychedelics" are drawing increasing interest as potential mental health treatments. Recent work suggests psychedelics can exert persisting anxiolytic and antidepressant effects lasting up to several months after a single administration. Data indicate acute subjective drug effects as important psychological factors involved in observed therapeutic benefits. Additionally, animal models have shown an important role for 5-HT2AR agonists in modulating learning and memory function with relevance for Alzheimer's Disease (AD) and related dementias. A number of biological mechanisms of action are under investigation to elucidate 5-HT2AR agonists' therapeutic potential, including enhanced neuroplasticity, anti-inflammatory effects, and alterations in brain functional connectivity. These diverse lines of research are reviewed here along with a discussion of AD pathophysiology and neuropsychiatric symptoms to highlight classic psychedelics as potential novel pharmacotherapies for patients with AD. Human clinical research suggests a possible role for high-dose psychedelic administration in symptomatic treatment of depressed mood and anxiety in early-stage AD. Preclinical data indicate a potential for low- or high-dose psychedelic treatment regimens to slow or reverse brain atrophy, enhance cognitive function, and slow progression of AD. In conclusion, rationale and potential approaches for preliminary research with psychedelics in patients with AD are presented, and ramifications of this line of investigation for development of novel AD treatments are discussed.
Collapse
Affiliation(s)
- Albert Garcia-Romeu
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Sean Darcy
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hillary Jackson
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Toni White
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Memory and Alzheimer's Treatment Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Paul Rosenberg
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Memory and Alzheimer's Treatment Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
27
|
Asaro A, Sinha R, Bakun M, Kalnytska O, Carlo-Spiewok AS, Rubel T, Rozeboom A, Dadlez M, Kaminska B, Aronica E, Malik AR, Willnow TE. ApoE4 disrupts interaction of sortilin with fatty acid-binding protein 7 essential to promote lipid signaling. J Cell Sci 2021; 134:272562. [PMID: 34557909 PMCID: PMC8572006 DOI: 10.1242/jcs.258894] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/16/2021] [Indexed: 11/20/2022] Open
Abstract
Sortilin is a neuronal receptor for apolipoprotein E (apoE). Sortilin-dependent uptake of lipidated apoE promotes conversion of polyunsaturated fatty acids (PUFA) into neuromodulators that induce anti-inflammatory gene expression in the brain. This neuroprotective pathway works with the apoE3 variant but is lost with the apoE4 variant, the main risk factor for Alzheimer's disease (AD). Here, we elucidated steps in cellular handling of lipids through sortilin, and why they are disrupted by apoE4. Combining unbiased proteome screens with analyses in mouse models, we uncover interaction of sortilin with fatty acid-binding protein 7 (FABP7), the intracellular carrier for PUFA in the brain. In the presence of apoE3, sortilin promotes functional expression of FABP7 and its ability to elicit lipid-dependent gene transcription. By contrast, apoE4 binding blocks sortilin-mediated sorting, causing catabolism of FABP7 and impairing lipid signaling. Reduced FABP7 levels in the brain of AD patients expressing apoE4 substantiate the relevance of these interactions for neuronal lipid homeostasis. Taken together, we document interaction of sortilin with mediators of extracellular and intracellular lipid transport that provides a mechanistic explanation for loss of a neuroprotective lipid metabolism in AD.
Collapse
Affiliation(s)
- Antonino Asaro
- Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Rishabhdev Sinha
- Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Magda Bakun
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | | | | | - Tymon Rubel
- Warsaw University of Technology, Institute of Radioelectronics and Multimedia Technology, 00-665 Warsaw, Poland
| | - Annemieke Rozeboom
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, 1105AZ Amsterdam, The Netherlands.,Center for Neuroscience, Amsterdam Institute for Life Sciences, University of Amsterdam, 1098XH Amsterdam, The Netherlands
| | - Michal Dadlez
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland.,Biology Department, Institute of Genetics and Biotechnology02-106 Warsaw, Poland
| | - Bozena Kaminska
- Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, 1105AZ Amsterdam, The Netherlands
| | - Anna R Malik
- Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany.,Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Thomas E Willnow
- Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany.,Department of Medical Biochemistry, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
28
|
Le Douce J, Delétage N, Bourdès V, Lemarchant S, Godfrin Y. Subcommissural Organ-Spondin-Derived Peptide Restores Memory in a Mouse Model of Alzheimer's Disease. Front Neurosci 2021; 15:651094. [PMID: 34194293 PMCID: PMC8236707 DOI: 10.3389/fnins.2021.651094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is a devastating neurodegenerative disease that affects millions of older people worldwide and is characterized by a progressive deterioration of cognitive functions, including learning and memory. There are currently very few approved treatments (i.e., acetylcholinesterase inhibitors such as donepezil), all of which are limited to the symptomatic control of AD and are associated with side effects that may result in discontinuation of treatment. Therefore, there is an urgent need to develop disease-modifying treatments to prevent AD-induced cognitive deficits. Subcommissural organ (SCO)-spondin is a brain-specific glycoprotein produced during embryogenesis and has a substantial impact on neuronal development. In the current study, we sought to evaluate the protective effects of the linear (NX210) and cyclized (NX210c) forms of a SCO-spondin-derived peptide on learning and memory in a mouse model of AD. Mice received an intracerebroventricular injection of Aβ25–35 oligomers and were subsequently treated with intraperitoneal injections of vehicle, NX210 or NX210c of different doses (ranging from 0.1 to 30 mg/kg) and therapy paradigms (early or late stand-alone treatments, combination with donepezil or second-line treatment). Cognitive function was evaluated using Y-Maze, step-through latency passive avoidance (STPA) and Morris water maze (MWM) tests for up to 4 months. Early stage daily treatment with NX210 and NX210c decreased the levels of common pathological markers and features of AD, including Aβ1–42, phosphorylated-tau, inflammation, astrogliosis and lipid peroxidation. Meanwhile, use of these drugs increased the levels of synaptophysin and postsynaptic density protein 95. Regardless of the experimental paradigm used, NX210 and NX210c prevented Aβ25–35-induced decrease in spontaneous alternations (Y-Maze) and step-through latency into the dark compartment (STPA), and Aβ25–35-induced increase in time needed to locate the immersed platform during the learning phase and decrease in time spent in the target quadrant during the retention phase (MWM). Interestingly, this study provides the novel evidence that the native and oxidized cyclic forms of the SCO-spondin-derived peptide reduce pathological factors associated with AD and restore learning and memory at both early and late disease stages. Overall, this study sheds light on the therapeutic potential of this innovative disease-modifying peptide to restore memory function in patients with AD.
Collapse
Affiliation(s)
| | | | | | | | - Yann Godfrin
- Axoltis Pharma, Lyon, France.,Godfrin Life-Sciences, Caluire-et-Cuire, France
| |
Collapse
|
29
|
Abstract
Vitamin E, discovered in 1922, is essential for pregnant rats to carry their babies to term. However, 100 years later, the molecular mechanisms for the vitamin E requirement during embryogenesis remain unknown. Vitamin E's role during pregnancy has been difficult to study and thus, a vitamin E-deficient (E-) zebrafish embryo model was developed. Vitamin E deficiency in zebrafish embryos initiates lipid peroxidation, depletes a specific phospholipid (DHA-phosphatidyl choline), causes secondary deficiencies of choline, betaine and critical thiols (such as glutathione), and dysregulates energy metabolism. Vitamin E deficiency not only distorts the carefully programmed development of the nervous system, but it leads to defects in several developing organs. Both the α-tocopherol transfer protein and vitamin E are necessary for embryonic development, neurogenesis and cognition in this model and likely in human embryos. Elucidation of the control mechanisms for the cellular and metabolic pathways involved in the molecular dysregulation caused by vitamin E deficiency will lead to important insights into abnormal neurogenesis and embryonic malformations.
Collapse
|
30
|
Smith AD, Jernerén F, Refsum H. ω-3 fatty acids and their interactions. Am J Clin Nutr 2021; 113:775-778. [PMID: 33711096 DOI: 10.1093/ajcn/nqab013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- A David Smith
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Fredrik Jernerén
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Helga Refsum
- Department of Pharmacology, University of Oxford, Oxford, UK.,Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
31
|
Mamun A, Islam A, Eto F, Sato T, Kahyo T, Setou M. Mass spectrometry-based phospholipid imaging: methods and findings. Expert Rev Proteomics 2021; 17:843-854. [PMID: 33504247 DOI: 10.1080/14789450.2020.1880897] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Imaging is a technique used for direct visualization of the internal structure or distribution of biomolecules of a living system in a two-dimensional or three-dimensional fashion. Phospholipids are important structural components of biological membranes and have been reported to be associated with various human diseases. Therefore, the visualization of phospholipids is crucial to understand the underlying mechanism of cellular and molecular processes in normal and diseased conditions. Areas covered: Mass spectrometry imaging (MSI) has enabled the label-free imaging of individual phospholipids in biological tissues and cells. The commonly used MSI techniques include matrix-assisted laser desorption ionization-MSI (MALDI-MSI), desorption electrospray ionization-MSI (DESI-MSI), and secondary ion mass spectrometry (SIMS) imaging. This special report described those methods, summarized the findings, and discussed the future development for the imaging of phospholipids. Expert opinion: Phospholipids imaging in complex biological samples has been significantly benefited from the development of MSI methods. In MALDI-MSI, novel matrix that produces homogenous crystals exclusively with polar lipids is important for phospholipids imaging with greater efficiency and higher spatial resolution. DESI-MSI has the potential of live imaging of the biological surface while SIMS is expected to image at the subcellular level in the near future.
Collapse
Affiliation(s)
- Al Mamun
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine , Hamamatsu, Shizuoka, Japan
| | - Ariful Islam
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine , Hamamatsu, Shizuoka, Japan
| | - Fumihiro Eto
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine , Hamamatsu, Shizuoka, Japan
| | - Tomohito Sato
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine , Hamamatsu, Shizuoka, Japan
| | - Tomoaki Kahyo
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine , Hamamatsu, Shizuoka, Japan
| | - Mitsutoshi Setou
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine , Hamamatsu, Shizuoka, Japan.,International Mass Imaging Center, Hamamatsu University School of Medicine , Hamamatsu, Shizuoka, Japan.,Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center , Hamamatsu, Shizuoka, Japan
| |
Collapse
|
32
|
Garcez ML, Cassoma RCS, Mina F, Bellettini-Santos T, da Luz AP, Schiavo GL, Medeiros EB, Campos ACBF, da Silva S, Rempel LCT, Steckert AV, Barichello T, Budni J. Folic acid prevents habituation memory impairment and oxidative stress in an aging model induced by D-galactose. Metab Brain Dis 2021; 36:213-224. [PMID: 33219893 DOI: 10.1007/s11011-020-00647-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/13/2020] [Indexed: 01/22/2023]
Abstract
The present study aimed to evaluate the effect of folic acid treatment in an animal model of aging induced by D-galactose (D-gal). For this propose, adult male Wistar rats received D-gal intraperitoneally (100 mg/kg) and/or folic acid orally (5 mg/kg, 10 mg/kg or 50 mg/kg) for 8 weeks. D-gal caused habituation memory impairment, and folic acid (10 mg/kg and 50 mg/kg) reversed this effect. However, folic acid 50 mg/kg per se caused habituation memory impairment. D-gal increased the lipid peroxidation and oxidative damage to proteins in the prefrontal cortex and hippocampus from rats. Folic acid (5 mg/kg, 10 mg/kg, or 50 mg/kg) partially reversed the oxidative damage to lipids in the hippocampus, but not in the prefrontal cortex, and reversed protein oxidative damage in the prefrontal cortex and hippocampus. D-gal induced synaptophysin and BCL-2 decrease in the hippocampus and phosphorylated tau increase in the prefrontal cortex. Folic acid was able to reverse these D-gal-related alterations in the protein content. The present study shows folic acid supplementation as an alternative during the aging to prevent cognitive impairment and brain alterations that can cause neurodegenerative diseases. However, additional studies are necessary to elucidate the effect of folic acid in aging.
Collapse
Affiliation(s)
- Michelle Lima Garcez
- Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Ricardo Chiengo Sapalo Cassoma
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Francielle Mina
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Tatiani Bellettini-Santos
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Aline Pereira da Luz
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Gustavo Luis Schiavo
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Eduarda Behenck Medeiros
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Ana Carolina Brunatto Falchetti Campos
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Sabrina da Silva
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Lisienny Campoli Tono Rempel
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Amanda Valnier Steckert
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - Josiane Budni
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil.
| |
Collapse
|
33
|
Balakrishnan J, Kannan S, Govindasamy A. Structured form of DHA prevents neurodegenerative disorders: A better insight into the pathophysiology and the mechanism of DHA transport to the brain. Nutr Res 2020; 85:119-134. [PMID: 33482601 DOI: 10.1016/j.nutres.2020.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022]
Abstract
Docosahexaenoic acid (DHA) is one of the most important fatty acids that plays a critical role in maintaining proper brain function and cognitive development. Deficiency of DHA leads to several neurodegenerative disorders and, therefore, dietary supplementations of these fatty acids are essential to maintain cognitive health. However, the complete picture of how DHA is incorporated into the brain is yet to be explored. In general, the de novo synthesis of DHA is poor, and targeting the brain with specific phospholipid carriers provides novel insights into the process of reduction of disease progression. Recent studies have suggested that compared to triacylglycerol form of DHA, esterified form of DHA (i.e., lysophosphatidylcholine [lysoPC]) is better incorporated into the brain. Free DHA is transported across the outer membrane leaflet of the blood-brain barrier via APOE4 receptors, whereas DHA-lysoPC is transported across the inner membrane leaflet of the blood-brain barrier via a specific protein called Mfsd2a. Dietary supplementation of this lysoPC specific form of DHA is a novel therapy and is used to decrease the risk of various neurodegenerative disorders. Currently, structured glycerides of DHA - novel nutraceutical agents - are being widely used for the prevention and treatment of various neurological diseases. However, it is important to fully understand their metabolic regulation and mechanism of transportation to the brain. This article comprehensively reviews various studies that have evaluated the bioavailability of DHA, mechanisms of DHA transport, and role of DHA in preventing neurodegenerative disorders, which provides better insight into the pathophysiology of these disorders and use of structured DHA in improving neurological health.
Collapse
Affiliation(s)
- Jeyakumar Balakrishnan
- Central Research Laboratory, Vinayaka Mission's Medical College and Hospital, Vinayaka Mission's Research Foundation (Deemed to be University), Karaikal, Puducherry, India.
| | - Suganya Kannan
- Central Research Laboratory, Vinayaka Mission's Medical College and Hospital, Vinayaka Mission's Research Foundation (Deemed to be University), Karaikal, Puducherry, India
| | - Ambujam Govindasamy
- Department of General Surgery, Vinayaka Mission's Medical College and Hospital, Vinayaka Mission Research Foundation (Deemed to be University), Karaikal. Puducherry, India
| |
Collapse
|
34
|
Sánchez-Sarasúa S, Ribes-Navarro A, Beltrán-Bretones MT, Sánchez-Pérez AM. AAV delivery of shRNA against IRS1 in GABAergic neurons in rat hippocampus impairs spatial memory in females and male rats. Brain Struct Funct 2020; 226:163-178. [PMID: 33245394 DOI: 10.1007/s00429-020-02155-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 10/06/2020] [Indexed: 12/25/2022]
Abstract
Brain insulin resistance is a major factor leading to impaired cognitive function and it is considered as the onset of Alzheimer´s disease. Insulin resistance is intimately linked to inflammatory conditions, many studies have revealed how pro-inflammatory cytokines lead to insulin resistance, by inhibiting IRS1 function. Thus, the dysfunction of insulin signaling is concomitant with inflammatory biomarkers. However, the specific effect of IRS1 impaired function in otherwise healthy brain has not been dissected out. So, we decided in our study, to study the specific role of IRS1 in the hippocampus, in the absence of comorbidities. To that end, shRNA against rat and human IRS1 was designed and tested in cultured HEK cells to evaluate mRNA levels and specificity. The best candidate sequence was encapsulated in an AAV vector (strain DJ8) under the control of the cytomegalovirus promoter and together with the green fluorescent protein gene as a reporter. AAV-CMV-shIRS1-EGFP and control AAV-CMV-EGFP were inoculated into the dorsal hippocampus of female and male Wistar rats. One month later, animals undertook a battery of behavioral paradigms evaluating spatial and social memory and anxiety. Our results suggest that females displayed increased susceptibility to AAV-shIRS1 in the novel recognition object paradigm; whereas both females and males show impaired performance in the T maze when infected with AAV-shIRS1 compared to control. Anxiety parameters were not affected by AAV-shIRS1 infection. We observed specific fluorescence within the hilum of the dentate gyrus, in immuno-characterized parvalbumin and somatostatin neurons. AAV DJ8 did not enter astrocytes. Intense green fibers were found in the fornix, mammillary bodies, and in the medial septum indicating that hippocampal efferent had been efficiently targeted by the AAV DJ8 infection. We observed that AAV-shIRS1 reduced significantly synaptophysin labeling in hippocampal-septal projections compared to controls. These results support that, small alterations in the insulin/IGF1 pathway in specific hippocampal circuitries can underlie alterations in synaptic plasticity and affect behavior, in the absence of inflammatory conditions.
Collapse
Affiliation(s)
| | - Alberto Ribes-Navarro
- Department of Medicine, Universitat Jaume I, Castellón, Spain.,Instituto de Acuicultura de Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | | | | |
Collapse
|
35
|
Shamir DB, Deng Y, Wu Q, Modak S, Congdon EE, Sigurdsson EM. Dynamics of Internalization and Intracellular Interaction of Tau Antibodies and Human Pathological Tau Protein in a Human Neuron-Like Model. Front Neurol 2020; 11:602292. [PMID: 33324339 PMCID: PMC7727311 DOI: 10.3389/fneur.2020.602292] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
We and others have shown in various in vivo, ex vivo and cell culture models that several tau antibodies interact with pathological tau within neurons. To further clarify this interaction in a dynamic human model, we differentiated SH-SY5Y cells with retinoic acid and BDNF to create a neuron-like model. Therein, tau antibodies were primarily taken up by receptor-mediated endocytosis, and prevented toxicity of human brain-derived paired helical filament-enriched tau (PHF). Subsequently, we monitored in real-time the interaction of antibodies and PHF within endocytic cellular compartments. Cells were pre-treated with fluorescently-tagged PHF and then incubated with tau antibodies, 4E6, 6B2, or non-specific isotype control IgG1 labeled with a pH sensitive dye. The uptake and binding of the efficacious antibody, 4E6, to PHF occurred mainly within the soma, whereas the ineffective antibody, 6B2, and ineffective control IgG1, were visualized via the processes and showed limited colocalization with PHF within this period. In summary, we have developed a neuron-like model that clarifies the early intracellular dynamics of the interaction of tau antibodies with pathological tau, and identifies features associated with efficacy. Since the model is entirely human, it is suitable to verify the therapeutic potential of humanized antibodies prior to extensive clinical trials.
Collapse
Affiliation(s)
- Dov B Shamir
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
| | - Yan Deng
- Microscopy Core, New York University Grossman School of Medicine, New York, NY, United States
| | - Qian Wu
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
| | - Swananda Modak
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
| | - Erin E Congdon
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States.,Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
36
|
Roux A, Wang X, Becker K, Ma J. Modeling α-Synucleinopathy in Organotypic Brain Slice Culture with Preformed α-Synuclein Amyloid Fibrils. JOURNAL OF PARKINSONS DISEASE 2020; 10:1397-1410. [PMID: 32716318 PMCID: PMC7683096 DOI: 10.3233/jpd-202026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background: Synucleinopathy is a group of neurodegenerative disorders characterized by neurodegeneration and accumulation of alpha-synuclein (α-syn) aggregates in various brain regions. The detailed mechanism of α-syn-caused neurotoxicity remains obscure, which is partly due to the lack of a suitable model that retains the in vivo three-dimensional cellular network and allows a convenient dissection of the neurotoxic pathways. Recent studies revealed that the pre-formed recombinant α-syn amyloid fibrils (PFFs) induce a robust accumulation of pathogenic α-syn species in cultured cells and animals. Objective: Our goal is to determine whether PFFs are able to induce the pathogenic α-syn accumulation and neurotoxicity in organotypic brain slice culture, an ex vivo system that retains the in vivo three-dimensional cell-cell connections. Methods/Results: Adding PFFs to cultured wild-type rat or mouse brain slices induced a time-dependent accumulation of pathogenic α-syn species, which was indicated by α-syn phosphorylated at serine 129 (pα-syn). The PFF-induced pα-syn was abolished in brain slices prepared from α-syn null mice, suggesting that the pα-syn is from the phosphorylation of endogenous α-syn. Human PFFs also induced pα-syn in brain slices prepared from mice expressing human α-syn on a mouse α-syn-null background. Furthermore, the synaptophysin immunoreactivity was inversely associated with pα-syn accumulation and an increase of neuronal loss was detected. Conclusion: PFF-treatment of brain slices is able to induce key pathological features of synucleinopathy: pα-syn accumulation and neurotoxicity. This model will be useful for investigating the neurotoxic mechanism and evaluating efficacy of therapeutic approaches.
Collapse
Affiliation(s)
- Amandine Roux
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Xinhe Wang
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Katelyn Becker
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Jiyan Ma
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| |
Collapse
|
37
|
Ju Y, Chakravarty H, Tam KY. An Isoquinolinium Dual Inhibitor of Cholinesterases and Amyloid β Aggregation Mitigates Neuropathological Changes in a Triple-Transgenic Mouse Model of Alzheimer's Disease. ACS Chem Neurosci 2020; 11:3346-3357. [PMID: 33001625 DOI: 10.1021/acschemneuro.0c00464] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder affecting millions of people worldwide. The underlying pathologic mechanisms of AD are unclear. Over the decades, the development of single target agent did not lead to any successful treatment for AD. A multitarget agent that could tackle more than one AD phenotype may be helpful as a treatment strategy. Cholinesterases (ChEs) including acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), are currently the drug targets with approved treatments. Moreover, amyloid beta (Aβ) deposition is a hallmark of AD that receives considerable attention. Herein, 9Q, a previously reported dual target inhibitor dealing with cholinergic dysfunction and amyloid deposition for AD treatment, has undergone thorough investigations. In vitro studies revealed that 9Q exhibited over 80% inhibition of ChE activity at 100 μM and more than 30% inhibition of Aβ aggregation at 1 mM concentration. Moreover 9Q was able to penetrate the blood-brain barrier (BBB) and enhance the cerebral acetylcholine level in triple transgenic AD (3xTg-AD) mice. Following one month treatment with 9Q, the amyloid burden and the cognitive deficits in 3xTg-AD mice were significantly ameliorated. It was observed that 9Q treatment mitigated synapse dysfunction, decreased amyloidogenic APP processing, and reduced the tau pathology in 3xTg-AD mice. Taken together, our results suggested that dual inhibition of cholinesterases and Aβ aggregation could be a promising approach in AD treatment.
Collapse
Affiliation(s)
- Yaojun Ju
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China
| | - Harapriya Chakravarty
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China
| | - Kin Yip Tam
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China
| |
Collapse
|
38
|
Fan CH, Lin CW, Huang HJ, Lee-Chen GJ, Sun YC, Lin W, Chen CM, Chang KH, Su MT, Hsieh-Li HM. LMDS-1, a potential TrkB receptor agonist provides a safe and neurotrophic effect for early-phase Alzheimer's disease. Psychopharmacology (Berl) 2020; 237:3173-3190. [PMID: 32748031 DOI: 10.1007/s00213-020-05602-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022]
Abstract
RATIONALE The signaling pathways of tropomyosin-related kinase B (TrkB) receptor play a pivotal role in axonal sprouting, proliferation of dendritic arbor, synaptic plasticity, and neuronal differentiation. The levels of BDNF and TrkB receptor were reduced in patients with Alzheimer's disease (AD). OBJECTIVES The activation of TrkB signaling pathways is a potential strategy for AD therapies. We intended to identify potential TrkB agonists to activate the neuroprotective signaling to alleviate the pathological features of AD mice. RESULTS Both of the Aβ-deteriorated hippocampal primary neurons and mouse models were generated and showed AD characteristics. We first investigated 12 potential TrkB agonists with primary hippocampal neurons of mice. Both 7,8-DHF and LMDS-1 were identified to have better effect than the other compounds on dendritic arborization of the neurons and were further applied to the Aβ-injected mouse model. The short-term cognitive behavior and pathology in the mice were improved by LMDS-1. Further investigation indicated that LMDS-1 activated the TrkB through phosphorylation at Y516 rather than Y816. In addition, the ERK but not CaMKII or Akt was activated in the mouse hippocampus with LMDS-1 administration. LMDS-1 treatment also upregulated CREB and BDNF while downregulated the GSK3β active form and tau phosphorylation. CONCLUSIONS This study suggests that LMDS-1 upregulates the expression of BDNF and ameliorates the early-phase phenotypes of the AD-like mice through the pTrkB (Y516)-ERK-CREB pathway. In addition, LMDS-1 has better effect than 7,8-DHF in ameliorating the behavioral and pathological features of AD-like mice.
Collapse
Affiliation(s)
- Chia-Hao Fan
- Department of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Chia-Wei Lin
- Department of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Hei-Jen Huang
- Department of Nursing, Mackay Junior College of Medicine, Nursing and Management, Taipei, 11260, Taiwan
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Ying-Chieh Sun
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Wenwei Lin
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan, 33305, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan, 33305, Taiwan
| | - Ming-Tsan Su
- Department of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan.
| | - Hsiu Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan.
| |
Collapse
|
39
|
Belaya I, Ivanova M, Sorvari A, Ilicic M, Loppi S, Koivisto H, Varricchio A, Tikkanen H, Walker FR, Atalay M, Malm T, Grubman A, Tanila H, Kanninen KM. Astrocyte remodeling in the beneficial effects of long-term voluntary exercise in Alzheimer's disease. J Neuroinflammation 2020; 17:271. [PMID: 32933545 PMCID: PMC7493971 DOI: 10.1186/s12974-020-01935-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/19/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Increased physical exercise improves cognitive function and reduces pathology associated with Alzheimer's disease (AD). However, the mechanisms underlying the beneficial effects of exercise in AD on the level of specific brain cell types remain poorly investigated. The involvement of astrocytes in AD pathology is widely described, but their exact role in exercise-mediated neuroprotection warrant further investigation. Here, we investigated the effect of long-term voluntary physical exercise on the modulation of the astrocyte state. METHODS Male 5xFAD mice and their wild-type littermates had free access to a running wheel from 1.5 to 7 months of age. A battery of behavioral tests was used to assess the effects of voluntary exercise on cognition and learning. Neuronal loss, impairment in neurogenesis, beta-amyloid (Aβ) deposition, and inflammation were evaluated using a variety of histological and biochemical measurements. Sophisticated morphological analyses were performed to delineate the specific involvement of astrocytes in exercise-induced neuroprotection in the 5xFAD mice. RESULTS Long-term voluntary physical exercise reversed cognitive impairment in 7-month-old 5xFAD mice without affecting neurogenesis, neuronal loss, Aβ plaque deposition, or microglia activation. Exercise increased glial fibrillary acid protein (GFAP) immunoreactivity and the number of GFAP-positive astrocytes in 5xFAD hippocampi. GFAP-positive astrocytes in hippocampi of the exercised 5xFAD mice displayed increases in the numbers of primary branches and in the soma area. In general, astrocytes distant from Aβ plaques were smaller in size and possessed simplified processes in comparison to plaque-associated GFAP-positive astrocytes. Morphological alterations of GFAP-positive astrocytes occurred concomitantly with increased astrocytic brain-derived neurotrophic factor (BDNF) and restoration of postsynaptic protein PSD-95. CONCLUSIONS Voluntary physical exercise modulates the reactive astrocyte state, which could be linked via astrocytic BDNF and PSD-95 to improved cognition in 5xFAD hippocampi. The molecular pathways involved in this modulation could potentially be targeted for benefit against AD.
Collapse
Affiliation(s)
- Irina Belaya
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211, Kuopio, Finland
| | - Mariia Ivanova
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211, Kuopio, Finland
| | - Annika Sorvari
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211, Kuopio, Finland
| | - Marina Ilicic
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, The University of Newcastle, University Dr, Callaghan, NSW, 2308, Australia
| | - Sanna Loppi
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211, Kuopio, Finland
| | - Hennariikka Koivisto
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211, Kuopio, Finland
| | - Alessandra Varricchio
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211, Kuopio, Finland
| | - Heikki Tikkanen
- Institute of Biomedicine, University of Eastern Finland, FI-70211, Kuopio, Finland
| | - Frederick R Walker
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, The University of Newcastle, University Dr, Callaghan, NSW, 2308, Australia
| | - Mustafa Atalay
- Institute of Biomedicine, University of Eastern Finland, FI-70211, Kuopio, Finland
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211, Kuopio, Finland
| | - Alexandra Grubman
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Australia
| | - Heikki Tanila
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211, Kuopio, Finland
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211, Kuopio, Finland.
| |
Collapse
|
40
|
Singh H, Thakur S, Sahajpal NS, Singh H, Singh A, Sohal HS, Jain SK. Recent Advances in the Novel Formulation of Docosahexaenoic Acid for Effective Delivery, Associated Challenges and Its Clinical Importance. Curr Drug Deliv 2020; 17:483-504. [DOI: 10.2174/1567201817666200512103402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/03/2020] [Accepted: 02/02/2020] [Indexed: 11/22/2022]
Abstract
Docosahexaenoic Acid (DHA) is an essential polyunsaturated omega-3 fatty acid, and a fundamental structural component of the phospholipid membranes, especially of neural and retinal cells. DHA is found to be critical for the normal development and functioning of neurons and synaptogenesis in the brain, and is required during pre- and post-natal stages of life. DHA has also been observed to exhibit neuroprotective, cardioprotective, and anti-inflammatory properties. However, geographical dietary variations and poor economic conditions lead to insufficient DHA levels resulting in various health deficits like improper brain development, cognitive disorders, and other clinical complications. Thus, to prevent its deficiency-induced derangements, several authorities recommend DHA as a supplement during pregnancy, infancy, and throughout adulthood. In past decades, the soft gelatin capsule was only feasible resolute of DHA, but due to their limitations and invention of new technologies; it led to the development of new dosage forms with improved physicochemical characteristics of DHA. This article will discuss in detail about the role of DHA in brain development, microalgae oil as an emerging source of DHA, clinical- and pharmacological-activities of DHA, issues related to DHA oil, current formulation of DHA along with their application, limitations, and strategies used for improvement and future prospectives.
Collapse
Affiliation(s)
- Harmanpreet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143105, Punjab, India
| | - Shubham Thakur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143105, Punjab, India
| | - Nikhil Shri Sahajpal
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143105, Punjab, India
| | - Harjeet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143105, Punjab, India
| | - Amrinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143105, Punjab, India
| | - Harminder Singh Sohal
- Department of Orthopaedics, Government Medical College, Amritsar 143001, Punjab, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143105, Punjab, India
| |
Collapse
|
41
|
Atorvastatin Improves Mitochondrial Function and Prevents Oxidative Stress in Hippocampus Following Amyloid-β 1-40 Intracerebroventricular Administration in Mice. Mol Neurobiol 2020; 57:4187-4201. [PMID: 32683653 DOI: 10.1007/s12035-020-02026-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022]
Abstract
Amyloid-β (Aβ) peptides play a significant role in the pathogenesis of Alzheimer's disease (AD). Neurotoxic effects promoted by Aβ peptides involve glutamate transmission impairment, decrease of neurotrophic factors, mitochondrial dysfunction, oxidative stress, synaptotoxicity, and neuronal degeneration. Here, we assessed the early events evoked by Aβ1-40 on the hippocampus. Additionally, we sought to unravel the molecular mechanisms of atorvastatin preventive effect on Aβ-induced hippocampal damage. Mice were treated orally (p.o.) with atorvastatin 10 mg/kg/day during 7 consecutive days before the intracerebroventricular (i.c.v.) infusion of Aβ1-40 (400 pmol/site). Twenty-four hours after Aβ1-40 infusion, a reduced content of mature BDNF/proBDNF ratio was observed in Aβ-treated mice. However, there is no alteration in synaptophysin, PSD-95, and doublecortin immunocontent in the hippocampus. Aβ1-40 promoted an increase in reactive oxygen species (ROS) and nitric oxide (NO) generation in hippocampal slices, and atorvastatin prevented this oxidative burst. Mitochondrial OXPHOS was measured by high-resolution respirometry. At this time point, Aβ1-40 did not alter the O2 consumption rates (OCR) related to phosphorylating state associated with complexes I and II, and the maximal OCR. However, atorvastatin increased OCR of phosphorylating state associated with complex I and complexes I and II, maximal OCR of complexes I and II, and OCR associated with mitochondrial spare capacity. Atorvastatin treatment improved mitochondrial function in the rodent hippocampus, even after Aβ infusion, pointing to a promising effect of improving brain mitochondria bioenergetics. Therefore, atorvastatin could act as an adjuvant in battling the symptoms of AD to preventing or delaying the disease progression.
Collapse
|
42
|
Asaro A, Carlo-Spiewok AS, Malik AR, Rothe M, Schipke CG, Peters O, Heeren J, Willnow TE. Apolipoprotein E4 disrupts the neuroprotective action of sortilin in neuronal lipid metabolism and endocannabinoid signaling. Alzheimers Dement 2020; 16:1248-1258. [PMID: 32588544 DOI: 10.1002/alz.12121] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 04/12/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Apolipoprotein E (apoE) is a carrier for brain lipids and the most important genetic risk factor for Alzheimer's disease (AD). ApoE binds the receptor sortilin, which mediates uptake of apoE-bound cargo into neurons. The significance of this uptake route for brain lipid homeostasis and AD risk seen with apoE4, but not apoE3, remains unresolved. METHODS Combining neurolipidomics in patient specimens with functional studies in mouse models, we interrogated apoE isoform-specific functions for sortilin in brain lipid metabolism and AD. RESULTS Sortilin directs the uptake and conversion of polyunsaturated fatty acids into endocannabinoids, lipid-based neurotransmitters that act through nuclear receptors to sustain neuroprotective gene expression in the brain. This sortilin function requires apoE3, but is disrupted by binding of apoE4, compromising neuronal endocannabinoid metabolism and action. DISCUSSION We uncovered the significance of neuronal apoE receptor sortilin in facilitating neuroprotective actions of brain lipids, and its relevance for AD risk seen with apoE4.
Collapse
Affiliation(s)
- Antonino Asaro
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | | | - Anna R Malik
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | | | - Carola G Schipke
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Berlin Institute of Health, Berlin, Germany
| | - Oliver Peters
- Department of Psychiatry, Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Center for Neurodegenerative Diseases, Berlin, Germany
| | - Joerg Heeren
- Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas E Willnow
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
43
|
Zhang Y, Wu G, Zhang Y, Wang X, Jin Q, Zhang H. Advances in exogenous docosahexaenoic acid-containing phospholipids: Sources, positional isomerism, biological activities, and advantages. Compr Rev Food Sci Food Saf 2020; 19:1420-1448. [PMID: 33337094 DOI: 10.1111/1541-4337.12543] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/05/2020] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Abstract
In recent years, docosahexaenoic acid-containing phospholipids (DHA-PLs) have attracted much attention because of theirs unique health benefits. Compared with other forms of docosahexaenoic acid (DHA), DHA-PLs possess superior biological effects (e.g., anticancer, lipid metabolism regulation, visual development, and brain and nervous system biochemical reactions), more intricate metabolism mechanisms, and a stronger attraction to consumer. The production of DHA-PLs is hampered by several challenges associated with the limited content of DHA-PLs in natural sources, incomplete utilization of by-products, few microorganisms for DHA-PLs production, high cost, and complex process of artificial preparation of DHA-PLs. In this article, the sources, biological activities, and commercial applications of DHA-PLs were summarized, with intensive discussions on advantages of DHA-PLs over DHA, isomerism of DHA in phospholipids (PLs), and brain health. The excellent biological characteristics of DHA-PLs are primarily concerned with DHA and PLs. The metabolic fate of different DHA-PLs varies from the position of DHA in PLs to polar groups in DHA-PLs. Overall, well understanding of DHA-PLs about their sources and characteristics is critical to accelerate the production of DHA-PLs, economically enhance the value of DHA-PLs, and improve the applicability of DHA-PLs and the acceptance of consumers.
Collapse
Affiliation(s)
- Yao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Yanjie Zhang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xingguo Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Qingzhe Jin
- School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Hui Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
44
|
Islam A, Takeyama E, Mamun MA, Sato T, Horikawa M, Takahashi Y, Kikushima K, Setou M. Green Nut Oil or DHA Supplementation Restored Decreased Distribution Levels of DHA Containing Phosphatidylcholines in the Brain of a Mouse Model of Dementia. Metabolites 2020; 10:metabo10040153. [PMID: 32316172 PMCID: PMC7240946 DOI: 10.3390/metabo10040153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023] Open
Abstract
Dementia is a major public health concern nowadays. Reduced levels of brain docosahexaenoic acid (DHA) and DHA-phosphatidylcholines (DHA-PCs) in dementia patients were reported previously. Recently, we have reported that supplementation of green nut oil (GNO) or DHA improves memory function and distribution levels of brain DHA in senescence accelerated mice P8 (SAMP8). GNO is extracted from Plukenetia volubilis seeds, and SAMP8 is a well-known model mouse of dementia. In this current study, we examined the results of GNO or DHA supplementation in the distribution levels of brain DHA-PCs in same model mouse of dementia using desorption electrospray ionization (DESI) mass spectrometry imaging (MSI). We observed significantly decreased distribution of brain DHA-PCs, PC (16:0_22:6), and PC (18:0_22:6) in SAMP8 mice compared to wild type mice, and GNO or DHA treatment restored the decreased distribution levels of PC (16:0_22:6) and PC (18:0_22:6) in the brain of SAMP8 mice. These results indicate that GNO or DHA supplementation can ameliorate the decreased distribution of brain DHA-PCs in dementia, and could be potentially used for the prevention and treatment of dementia.
Collapse
Affiliation(s)
- Ariful Islam
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan; (A.I.); (M.A.M.); (T.S.); (M.H.); (Y.T.); (K.K.)
| | - Emiko Takeyama
- Department of Food Science and Nutrition, Graduate School of Human Life Sciences, Showa Women’s University, Taishido, Setagaya-ku, Tokyo 154-8533, Japan;
- Institute of Women’s Health Sciences, Showa Women’s University, Taishido, Setagaya-ku, Tokyo 154-8533, Japan
| | - Md. Al Mamun
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan; (A.I.); (M.A.M.); (T.S.); (M.H.); (Y.T.); (K.K.)
| | - Tomohito Sato
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan; (A.I.); (M.A.M.); (T.S.); (M.H.); (Y.T.); (K.K.)
- International Mass Imaging Center, Hamamatsu University School of Medicine, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Makoto Horikawa
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan; (A.I.); (M.A.M.); (T.S.); (M.H.); (Y.T.); (K.K.)
- International Mass Imaging Center, Hamamatsu University School of Medicine, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Yutaka Takahashi
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan; (A.I.); (M.A.M.); (T.S.); (M.H.); (Y.T.); (K.K.)
| | - Kenji Kikushima
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan; (A.I.); (M.A.M.); (T.S.); (M.H.); (Y.T.); (K.K.)
- International Mass Imaging Center, Hamamatsu University School of Medicine, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan; (A.I.); (M.A.M.); (T.S.); (M.H.); (Y.T.); (K.K.)
- International Mass Imaging Center, Hamamatsu University School of Medicine, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Correspondence: ; Tel.: +81-053-435-2086
| |
Collapse
|
45
|
Jiang LX, Huang GD, Su F, Wang H, Zhang C, Yu X. Vortioxetine administration attenuates cognitive and synaptic deficits in 5×FAD mice. Psychopharmacology (Berl) 2020; 237:1233-1243. [PMID: 31953648 DOI: 10.1007/s00213-020-05452-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/02/2020] [Indexed: 01/10/2023]
Abstract
RATIONALE AND OBJECTIVE Vortioxetine has been reported to exhibit a variety of neurobiological functions and neuroprotective effects. In the present study, we aimed to investigate the effects of vortioxetine on cognitive performance in a transgenic mouse model of Alzheimer's disease (AD). METHODS We administered vortioxetine (10 mg/kg, i.p., every day, for approximately 6 weeks), which acts on multiple 5-serotonin (5-HT) receptors, to 3.5-month-old 5×FAD mice. Subsequently, we used the open field (OF) test to detect anxiety-like behavior in the mice. The novel object recognition (NOR) test and Morris water maze (MWM) were used to assess the cognitive states of the 5×FAD mice. We also measured the levels of insoluble amyloid plaques and soluble β-amyloid (Aβ) plaques. Finally, we explored the expression levels of postsynaptic density protein 95 (PSD95), synaptophysin (SYP), and synaptotagmin-1 (SYT1) in the hippocampus of the mice. RESULTS The administration of vortioxetine effectively reversed the reduction in anxiety-type behaviors in 5×FAD mice and improved the impairment in recognition memory and spatial reference memory. However, we did not find that vortioxetine decreased or delayed the formation of amyloid plaques or Aβ. Interestingly, we found a significant increase in the expression levels of PSD95, SYP, and SYT1 in the 5×FAD mice after vortioxetine treatment compared with the control group. CONCLUSION These results demonstrate that vortioxetine may improve cognitive impairment in 5×FAD mice. The role in cognitive improvement may be related to the beneficial effects of vortioxetine on synaptic function.
Collapse
Affiliation(s)
- Li-Xin Jiang
- School of Mental Health, Wenzhou Medical University, Chashan Higher Education Park, Ouhai District, Wenzhou, 325035, China
- Peking University Institute of Mental Health (Sixth Hospital), No. 51 Huayuanbei Road, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Mental Disorders & NHC Key Laboratory of Mental Health, Peking University, Beijing, 100191, China
- Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, Beijing, 100191, China
| | - Geng-Di Huang
- Peking University Institute of Mental Health (Sixth Hospital), No. 51 Huayuanbei Road, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Mental Disorders & NHC Key Laboratory of Mental Health, Peking University, Beijing, 100191, China
- Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, Beijing, 100191, China
| | - Feng Su
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, No.10 Xitoutiao, You'anmenwai, Fengtai District, Beijing, 100069, China
| | - Huali Wang
- Peking University Institute of Mental Health (Sixth Hospital), No. 51 Huayuanbei Road, Haidian District, Beijing, 100191, China.
- National Clinical Research Center for Mental Disorders & NHC Key Laboratory of Mental Health, Peking University, Beijing, 100191, China.
- Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, Beijing, 100191, China.
| | - Chen Zhang
- Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, Beijing, 100191, China.
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, No.10 Xitoutiao, You'anmenwai, Fengtai District, Beijing, 100069, China.
| | - Xin Yu
- School of Mental Health, Wenzhou Medical University, Chashan Higher Education Park, Ouhai District, Wenzhou, 325035, China.
- Peking University Institute of Mental Health (Sixth Hospital), No. 51 Huayuanbei Road, Haidian District, Beijing, 100191, China.
- National Clinical Research Center for Mental Disorders & NHC Key Laboratory of Mental Health, Peking University, Beijing, 100191, China.
- Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, Beijing, 100191, China.
| |
Collapse
|
46
|
Kaya I, Jennische E, Lange S, Tarik Baykal A, Malmberg P, Fletcher JS. Brain region-specific amyloid plaque-associated myelin lipid loss, APOE deposition and disruption of the myelin sheath in familial Alzheimer's disease mice. J Neurochem 2020; 154:84-98. [PMID: 32141089 DOI: 10.1111/jnc.14999] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/07/2020] [Accepted: 03/02/2020] [Indexed: 12/17/2022]
Abstract
There is emerging evidence that amyloid beta (Aβ) aggregates forming neuritic plaques lead to impairment of the lipid-rich myelin sheath and glia. In this study, we examined focal myelin lipid alterations and the disruption of the myelin sheath associated with amyloid plaques in a widely used familial Alzheimer's disease (AD) mouse model; 5xFAD. This AD mouse model has Aβ42 peptide-rich plaque deposition in the brain parenchyma. Matrix-assisted laser desorption/ionization imaging mass spectrometry of coronal brain tissue sections revealed focal Aβ plaque-associated depletion of multiple myelin-associated lipid species including sulfatides, galactosylceramides, and specific plasmalogen phopshatidylethanolamines in the hippocampus, cortex, and on the edges of corpus callosum. Certain phosphatidylcholines abundant in myelin were also depleted in amyloid plaques on the edges of corpus callosum. Further, lysophosphatidylethanolamines and lysophosphatidylcholines, implicated in neuroinflammation, were found to accumulate in amyloid plaques. Double staining of the consecutive sections with fluoromyelin and amyloid-specific antibody revealed amyloid plaque-associated myelin sheath disruption on the edges of the corpus callosum which is specifically correlated with plaque-associated myelin lipid loss only in this region. Further, apolipoprotein E, which is implicated in depletion of sulfatides in AD brain, is deposited in all the Aβ plaques which suggest apolipoprotein E might mediate sulfatide depletion as a consequence of an immune response to Aβ deposition. This high-spatial resolution matrix-assisted laser desorption/ionization imaging mass spectrometry study in combination with (immuno) fluorescence staining of 5xFAD mouse brain provides new understanding of morphological, molecular and immune signatures of Aβ plaque pathology-associated myelin lipid loss and myelin degeneration in a brain region-specific manner. Read the Editorial Highlight for this article on page 7.
Collapse
Affiliation(s)
- Ibrahim Kaya
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Eva Jennische
- Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Stefan Lange
- Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Per Malmberg
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - John S Fletcher
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
47
|
Chang LYL, Ardiles AO, Tapia-Rojas C, Araya J, Inestrosa NC, Palacios AG, Acosta ML. Evidence of Synaptic and Neurochemical Remodeling in the Retina of Aging Degus. Front Neurosci 2020; 14:161. [PMID: 32256305 PMCID: PMC7095275 DOI: 10.3389/fnins.2020.00161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/11/2020] [Indexed: 02/06/2023] Open
Abstract
Accumulation of amyloid-beta (Aβ) peptides is regarded as the hallmark of neurodegenerative alterations in the brain of Alzheimer’s disease (AD) patients. In the eye, accumulation of Aβ peptides has also been suggested to be a trigger of retinal neurodegenerative mechanisms. Some pathological aspects associated with Aβ levels in the brain are synaptic dysfunction, neurochemical remodeling and glial activation, but these changes have not been established in the retina of animals with Aβ accumulation. We have employed the Octodon degus in which Aβ peptides accumulated in the brain and retina as a function of age. This current study investigated microglial morphology, expression of PSD95, synaptophysin, Iba-1 and choline acetyltransferase (ChAT) in the retina of juvenile, young and adult degus using immunolabeling methods. Neurotransmitters glutamate and gamma-aminobutyric acid (GABA) were detected using immunogold labeling and glutamate receptor subunits were quantified using Western blotting. There was an age-related increase in presynaptic and a decrease in post-synaptic retinal proteins in the retinal plexiform layers. Immunolabeling showed changes in microglial morphology characteristic of intermediate stages of activation around the optic nerve head (ONH) and decreasing activation toward the peripheral retina. Neurotransmitter expression pattern changed at juvenile ages but was similar in adults. Collectively, the results suggest that microglial activation, synaptic remodeling and neurotransmitter changes may be consequent to, or parallel to Aβ peptide and phosphorylated tau accumulation in the retina.
Collapse
Affiliation(s)
- Lily Y-L Chang
- School of Optometry and Vision Science, The University of Auckland, Auckland, New Zealand
| | - Alvaro O Ardiles
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Cheril Tapia-Rojas
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Center for Aging and Regeneration, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Joaquin Araya
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Nibaldo C Inestrosa
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Center for Aging and Regeneration, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Adrian G Palacios
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Monica L Acosta
- School of Optometry and Vision Science, The University of Auckland, Auckland, New Zealand.,New Zealand National Eye Centre, The University of Auckland, Auckland, New Zealand.,Faculty of Medical and Health Sciences, Centre for Brain Research, The University of Auckland, Auckland, New Zealand.,Brain Research New Zealand - Rangahau Roro Aotearoa, Auckland, New Zealand
| |
Collapse
|
48
|
Li W, Lu Q, Li X, Liu H, Sun L, Lu X, Zhao Y, Liu P. Anti-Alzheimer's disease activity of secondary metabolites from Xanthoceras sorbifolia Bunge. Food Funct 2020; 11:2067-2079. [PMID: 32141445 DOI: 10.1039/c9fo01138b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Xanthoceras sorbifolia Bunge is an edible oil tree species peculiar to China and it has long been used as a traditional medicine for enuresis in children. In this study, we investigated the active components in X. sorbifolia and eight barrigenol-type triterpenoids were isolated and identified. All the isolated compounds were tested first for H2O2-induced oxidative stress on human SH-SY5Y cells. Then Y-maze, Morris water maze, novel object recognition and passive avoidance tests were conducted to evaluate the improved effect of selected compounds with neuroprotective activity on ICV Aβ1-42 mice. Among all the tested compounds, XS-8 exhibited significant protective effects against learning and memory impairments induced by ICV-Aβ1-42. The XS-8 treatment significantly altered Aβ-induced hippocampal oxidative defense (increased MDA, nitrite and decreased SOD, glutathione) and pro-inflammatory levels (increased IL-1β and IL-18). The present study strongly suggests that X. sorbifolia is a promising plant resource for AD use and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Wei Li
- Department of Functional Food and Wine, Shenyang pharmaceutical university, Shenyang, 110016, China.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Kim SK, Ko YH, Lee SY, Jang CG. Memory-enhancing effects of 7,3′,4′-trihydroxyisoflavone by regulation of cholinergic function and BDNF signaling pathway in mice. Food Chem Toxicol 2020; 137:111160. [DOI: 10.1016/j.fct.2020.111160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/06/2020] [Accepted: 01/22/2020] [Indexed: 12/12/2022]
|
50
|
Wang XL, Deng YX, Gao YM, Dong YT, Wang F, Guan ZZ, Hong W, Qi XL. Activation of α7 nAChR by PNU-282987 improves synaptic and cognitive functions through restoring the expression of synaptic-associated proteins and the CaM-CaMKII-CREB signaling pathway. Aging (Albany NY) 2020; 12:543-570. [PMID: 31905173 PMCID: PMC6977648 DOI: 10.18632/aging.102640] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/23/2019] [Indexed: 01/14/2023]
Abstract
Ligands of nicotinic acetylcholine receptors (nAChRs) are widely considered as potential therapeutic agents. The present study used primary hippocampus cells and APPswe/PSEN1dE9 double-transgenic mice models to study the possible therapeutic effect and underlying mechanism of the specific activation of α7 nAChR by PNU-282987 in the pathogenesis of Alzheimer’s disease. The results indicated that activation of α7 nAChR attenuated the Aβ-induced cell apoptosis, decreased the deposition of Aβ, increased the expression of synaptic-associated proteins, and maintained synaptic morphology. Furthermore, in the APP/PS1_DT mice model, activation of α7 nAChR attenuated Aβ-induced synaptic loss, reduced the deposition of Aβ in the hippocampus, maintained the integral structure of hippocampus-derived synapse, and activated the calmodulin (CaM)-calmodulin-dependent protein kinase II (CaMKII)-cAMP response element-binding protein signaling pathway by upregulation of its key signaling proteins. In addition, activation of α7 nAChR improved the learning and memory abilities of the APP/PS1_DT mice. Collectively, the activation of α7 nAChR by PNU-282987 attenuated the toxic effect of Aβ in vivo and in vitro, which including reduced deposition of Aβ in the hippocampus, maintained synaptic morphology by partially reversing the expression levels of synaptic-associated proteins, activation of the Ca2+ signaling pathway, and improvement of the cognitive abilities of APP/PS1_DT mice.
Collapse
Affiliation(s)
- Xiao-Ling Wang
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang 550004, P.R. China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang 550004, P.R. China.,School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550004, P.R. China
| | - Yu-Xin Deng
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang 550004, P.R. China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang 550004, P.R. China.,School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550004, P.R. China
| | - Yu-Mei Gao
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang 550004, P.R. China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang 550004, P.R. China
| | - Yang-Ting Dong
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang 550004, P.R. China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang 550004, P.R. China
| | - Fan Wang
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University , Guiyang 550004, P.R. China
| | - Zhi-Zhong Guan
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang 550004, P.R. China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang 550004, P.R. China.,Department of Pathology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, P. R. China
| | - Wei Hong
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang 550004, P.R. China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang 550004, P.R. China
| | - Xiao-Lan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang 550004, P.R. China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang 550004, P.R. China
| |
Collapse
|