1
|
Md-Zain BM, Wan-Mustafa WAS, Tingga RCT, Gani M, Mohd-Ridwan AR. High-Throughput DNA Metabarcoding for the Gut Microbiome Assessment of Captive White-Handed Gibbon and Siamang. J Med Primatol 2025; 54:e70009. [PMID: 40012216 DOI: 10.1111/jmp.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/18/2024] [Accepted: 02/04/2025] [Indexed: 02/28/2025]
Abstract
BACKGROUND The gut microbiota plays a vital role in primates' overall health and well-being, including small apes (Hylobatidae). The symbiotic relationships between bacteria and the gut aid food digestion, maintain host health, and help them adapt to their environment, including captive conditions. Despite being listed as endangered in the International Union for Conservation of Nature (IUCN) red list category, molecular studies on the small ape's gut microbiome are limited compared to other primates. This study aimed to characterize the gut microbiota of captive small apes at Zoo Taiping and Night Safari, Peninsular Malaysia, by evaluating their microbial communities. METHODS Seven fecal samples from Hylobatidae (white-handed gibbon and siamang) were collected, and the bacteria therein were successfully isolated and subjected to high-throughput sequencing of the 16S rRNA gene. RESULTS The acquired amplicon sequence variants (ASVs) were successfully classified into 17 phyla, 82 families, 164 genera, and 43 species of microbes. Each small ape exhibited a unique gut microbiota profile. The phyla Bacteroidota and Firmicutes were dominant in each individual. Environmental conditions and host genetics are among the factors that influence the small ape's gut microbiome composition. CONCLUSIONS These findings provide valuable insights into the gut microbiota composition of small apes at Zoo Taiping and Night Safari, thus contributing to the health management and welfare efforts of small apes in captivity.
Collapse
Affiliation(s)
- Badrul Munir Md-Zain
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Wan Ainin Sofiya Wan-Mustafa
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Roberta Chaya Tawie Tingga
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- Centre for Pre-University Studies, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Millawati Gani
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- National Wildlife Forensic Laboratory (NWFL), Department of Wildlife and National Parks (PERHILITAN) Peninsular Malaysia, Kuala Lumpur, Malaysia
| | - Abd Rahman Mohd-Ridwan
- Centre for Pre-University Studies, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| |
Collapse
|
2
|
Adade E, Tawiah PO, Roos C, Chuma IS, Lubinza CC, Mfinanga SGM, Knauf S, Sylverken AA. Antimicrobial susceptibility profile of oral and rectal microbiota of non-human primate species in Ghana: A threat to human health. Vet Med Sci 2023; 10:e1271. [PMID: 37733757 PMCID: PMC10804077 DOI: 10.1002/vms3.1271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND The potential for the transfer of zoonotic diseases, including bacteria between human and non-human primates (NHPs), is expected to rise. It is posited that NHPs that live in close contact with humans serve as sentinels and reservoirs for antibiotic-resistant bacteria. OBJECTIVES The objective was to characterize the oral and rectal bacteria in Ghanaian NHPs and profile the antimicrobial susceptibility of the isolated bacteria. METHODS Oral and rectal swabs were obtained from 40 immobilized wild and captive NHPs from 7 locations in Ghana. Standard bacteriological procedures were used in the isolation, preliminary identification, automated characterization and antimicrobial susceptibility test (AST) of bacteria using the Vitek 2 Compact system. RESULTS Gram-negative bacteria dominated isolates from the rectal swabs (n = 76, 85.4%), whereas Gram-positive bacteria were more common in the oral swabs (n = 41, 82%). Staphylococcus haemolyticus (n = 7, 14%) was the most occurring bacterial species isolated from the oral swabs, whereas Escherichia coli (n = 32, 36%) dominated bacteria isolates from rectal swabs. Enterobacter spp. had the highest (39%) average phenotypic resistance to antimicrobials that were used for AST, whereas a trend of high resistance was recorded against norfloxacin, Ampicillin and Tetracycline in Gram-negative bacteria. Similarly, among Gram-positive bacteria, Staphylococcus spp. had the highest (25%) average phenotypic resistance to antimicrobials used for AST, and a trend of high resistance was recorded against penicillin G and oxacillin. CONCLUSIONS This study has established that apparently healthy NHPs that live in anthropized environments in Ghana harbour zoonotic and antimicrobial resistant bacteria.
Collapse
Affiliation(s)
- Eugene Adade
- Department of Theoretical and Applied BiologyKwame Nkrumah University of Science and TechnologyKumasiGhana
- Kumasi Centre for Collaborative Research in Tropical MedicineKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Patrick Ofori Tawiah
- Department of Theoretical and Applied BiologyKwame Nkrumah University of Science and TechnologyKumasiGhana
- Kumasi Centre for Collaborative Research in Tropical MedicineKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics LaboratoryGerman Primate CenterLeibniz Institute for Primate ResearchGöttingenGermany
| | | | - Clara Clavery Lubinza
- National Institute for Medical ResearchMuhimbili Medical Research CentreDar es SalaamTanzania
| | | | - Sascha Knauf
- Institute of International Animal Health/One HealthFriedrich‐Loeffler‐InstitutFederal Institute for Animal HealthGreifswald – Insel RiemsGermany
| | - Augustina Angelina Sylverken
- Department of Theoretical and Applied BiologyKwame Nkrumah University of Science and TechnologyKumasiGhana
- Kumasi Centre for Collaborative Research in Tropical MedicineKwame Nkrumah University of Science and TechnologyKumasiGhana
| |
Collapse
|
3
|
Mangombi-Pambou JB, Granjon L, Flirden F, Kane M, Niang Y, Davoust B, Fenollar F, Mediannikov O. Molecular Survey of Rodent-Borne Infectious Agents in the Ferlo Region, Senegal. Genes (Basel) 2023; 14:1107. [PMID: 37239466 PMCID: PMC10218615 DOI: 10.3390/genes14051107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Zoonotic pathogens are responsible for most infectious diseases in humans, with rodents being important reservoir hosts for many of these microorganisms. Rodents, thus, pose a significant threat to public health. Previous studies in Senegal have shown that rodents harbour a diversity of microorganisms, including human pathogens. Our study aimed to monitor the prevalence of infectious agents in outdoor rodents, which can be the cause of epidemics. We screened 125 rodents (both native and expanding) from the Ferlo region, around Widou Thiengoly, for different microorganisms. Analysis, performed on rodent spleens, detected bacteria from the Anaplasmataceae family (20%), Borrelia spp. (10%), Bartonella spp. (24%) and Piroplasmida (2.4%). Prevalences were similar between native and the expanding (Gerbillus nigeriae) species, which has recently colonised the region. We identified Borrelia crocidurae, the agent responsible for tick-borne relapsing fever, which is endemic in Senegal. We also identified two other not-yet-described bacteria of the genera Bartonella and Ehrlichia that were previously reported in Senegalese rodents. Additionally, we found a potential new species, provisionally referred to here as Candidatus Anaplasma ferloense. This study highlights the diversity of infectious agents circulating in rodent populations and the importance of describing potential new species and evaluating their pathogenicity and zoonotic potential.
Collapse
Affiliation(s)
- Joa Braïthe Mangombi-Pambou
- Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon;
- Department of Epidemiology of Parasitic Diseases, Aix-Marseille University, IRD, AP-HM, MEPHI, 13005 Marseille, France; (F.F.); (B.D.)
- IHU Méditerranée Infection, 13005 Marseille, France;
| | - Laurent Granjon
- CBGP, IRD, CIRAD, INRAE, Institut Agro, University Montpellier, 34000 Montpellier, France;
| | - Fabien Flirden
- Department of Epidemiology of Parasitic Diseases, Aix-Marseille University, IRD, AP-HM, MEPHI, 13005 Marseille, France; (F.F.); (B.D.)
- IHU Méditerranée Infection, 13005 Marseille, France;
| | - Mamadou Kane
- BIOPASS, CBGP-IRD, ISRA, UCAD, CIRAD, Campus de Bel-Air, Dakar 1386, Senegal; (M.K.)
| | - Youssoupha Niang
- BIOPASS, CBGP-IRD, ISRA, UCAD, CIRAD, Campus de Bel-Air, Dakar 1386, Senegal; (M.K.)
| | - Bernard Davoust
- Department of Epidemiology of Parasitic Diseases, Aix-Marseille University, IRD, AP-HM, MEPHI, 13005 Marseille, France; (F.F.); (B.D.)
- IHU Méditerranée Infection, 13005 Marseille, France;
| | - Florence Fenollar
- IHU Méditerranée Infection, 13005 Marseille, France;
- IRD, AP-HM, SSA, VITROME, Aix-Marseille University, 13005 Marseille, France
| | - Oleg Mediannikov
- Department of Epidemiology of Parasitic Diseases, Aix-Marseille University, IRD, AP-HM, MEPHI, 13005 Marseille, France; (F.F.); (B.D.)
- IHU Méditerranée Infection, 13005 Marseille, France;
| |
Collapse
|
4
|
Boundenga L, Makouloutou-Nzassi P, Ngoubangoye B. A review of Gabonese gorillas and their pathogens: Diversity, transfer and One Health approach to avoid future outbreaks? FRONTIERS IN PARASITOLOGY 2023; 2:1115316. [PMID: 39816808 PMCID: PMC11731632 DOI: 10.3389/fpara.2023.1115316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/15/2023] [Indexed: 01/18/2025]
Abstract
In Africa, great apes, among which gorillas, are the reservoir of several infectious agents, some of which have zoonotic potential. However, scientific reports summarizing data on the pathogens harbored by some primate species still need to be published for the scientific community, conservation, and public health actors. In the case of Gabon, despite its outstanding biodiversity, particularly in great apes, and the history of outbreaks involving wildlife, there is a lack of reports on pathogens found in some ape species living in the vicinity of the human being. Thus, it is becoming urgent for us to synthesize the available data on pathogens (parasites, bacteria, and viruses) identified in gorillas living in different ecosystems of Gabon to assess the risks for the human population. Therefore, this review article presents the diversity of pathogens identified in gorillas in Gabon, their impact on primates' health, the cases of transfer between gorillas and humans, and the interest in a One Health approach for prevention and a better understanding of the ecology of gorilla's diseases infection in Gabon.
Collapse
Affiliation(s)
- Larson Boundenga
- Unité de Recherches en Ecologie de la Santé (URES), Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
- Department of Anthropology, University of Durham, Durham, United Kingdom
| | - Patrice Makouloutou-Nzassi
- Unité de Recherches en Ecologie de la Santé (URES), Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
- Departement de Biologie et Ecologie Animales, Institut de Recherches en Ecologie Tropicale (IRET), Centre National de Recherche Scientifique et Technologique (CENAREST), Libreville, Gabon
| | - Barthelemy Ngoubangoye
- Department of Anthropology, University of Durham, Durham, United Kingdom
- Centre de Primatologie, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
| |
Collapse
|
5
|
Zou D, Chang J, Lu S, Xu J, Hu P, Zhang K, Sun X, Guo W, Li Y, Liu Z, Ren H. Analysis of virulence proteins in pathogenic Acinetobacter baumannii to provide early warning of zoonotic risk. Microbiol Res 2023; 266:127222. [DOI: 10.1016/j.micres.2022.127222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/18/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
|
6
|
Mason B, Petrzelkova KJ, Kreisinger J, Bohm T, Cervena B, Fairet E, Fuh T, Gomez A, Knauf S, Maloueki U, Modry D, Shirley MH, Tagg N, Wangue N, Pafco B. Gastrointestinal symbiont diversity in wild gorilla: a comparison of bacterial and strongylid communities across multiple localities. Mol Ecol 2022; 31:4127-4145. [PMID: 35661299 DOI: 10.1111/mec.16558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/17/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022]
Abstract
Western lowland gorillas (Gorilla gorilla gorilla) are Critically Endangered and show continued population decline. Consequently, pressure mounts to better understand their conservation threats and ecology. Gastrointestinal symbionts, such as bacterial and eukaryotic communities, are believed to play vital roles in the physiological landscape of the host. Gorillas host a broad spectrum of eucaryotes, so called parasites, with strongylid nematodes being particularly prevalent. While these communities are partially consistent, they are also shaped by various ecological factors, such as diet or habitat type. To investigate gastrointestinal symbionts of wild western lowland gorillas, we analysed 215 faecal samples from individuals in five distinct localities across the Congo Basin, using high-throughput sequencing techniques. We describe the gut bacterial microbiome and genetic diversity of strongylid communities, including strain-level identification of amplicon sequence variants (ASVs). We identified strongylid ASVs from eight genera and bacterial ASVs from twenty phyla. We compared these communities across localities, with reference to varying environmental factors among populations, finding differences in alpha diversity and community compositions of both gastrointestinal components. Moreover, we also investigated covariation between strongylid nematodes and the bacterial microbiome, finding correlations between strongylid taxa and Prevotellaceae and Rikenellaceae ASVs that were consistent across multiple localities. Our research highlights complexity of the bacterial microbiome and strongylid communities in several gorilla populations and emphasizes potential interactions between these two symbiont communities. This study provides a framework for ongoing research into strongylid nematode diversity, and their interactions with the bacterial microbiome, amongst great apes.
Collapse
Affiliation(s)
- Bethan Mason
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic.,Institute of Vertebrate Biology, Czech Academy of Sciences
| | - Klara J Petrzelkova
- Institute of Vertebrate Biology, Czech Academy of Sciences.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences.,Liberec Zoo, Liberec, Czech Republic
| | | | - Torsten Bohm
- African Parks, Odzala-Kokoua National Park, Republic of, Congo
| | | | - Emilie Fairet
- SFM Safari Gabon, Loango National Park, Gabon.,Wildlife Conservation Society, New York, NY, USA
| | | | - Andres Gomez
- Department of Animal Science, University of Minnesota Twin Cities, St. Paul, Minnesota
| | - Sascha Knauf
- Institute of International Animal Health / One Health, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald - Insel Riems, Germany
| | - Ulrich Maloueki
- African Parks, Odzala-Kokoua National Park, Republic of, Congo
| | - David Modry
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences.,Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources/CINeZ, Czech University of Life Sciences Prague
| | - Matthew H Shirley
- SFM Safari Gabon, Loango National Park, Gabon.,Institute of Environment, Florida International University, North Miami, FL, USA
| | - Nikki Tagg
- Project Grands Singes, , Centre for Research and Conservation, Royal Zoological Society of Antwerp
| | | | - Barbora Pafco
- Institute of Vertebrate Biology, Czech Academy of Sciences
| |
Collapse
|
7
|
Fontsere C, Frandsen P, Hernandez-Rodriguez J, Niemann J, Scharff-Olsen CH, Vallet D, Le Gouar P, Ménard N, Navarro A, Siegismund HR, Hvilsom C, Gilbert MTP, Kuhlwilm M, Hughes D, Marques-Bonet T. The genetic impact of an Ebola outbreak on a wild gorilla population. BMC Genomics 2021; 22:735. [PMID: 34635054 PMCID: PMC8504571 DOI: 10.1186/s12864-021-08025-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/13/2021] [Indexed: 11/10/2022] Open
Abstract
Background Numerous Ebola virus outbreaks have occurred in Equatorial Africa over the past decades. Besides human fatalities, gorillas and chimpanzees have also succumbed to the fatal virus. The 2004 outbreak at the Odzala-Kokoua National Park (Republic of Congo) alone caused a severe decline in the resident western lowland gorilla (Gorilla gorilla gorilla) population, with a 95% mortality rate. Here, we explore the immediate genetic impact of the Ebola outbreak in the western lowland gorilla population. Results Associations with survivorship were evaluated by utilizing DNA obtained from fecal samples from 16 gorilla individuals declared missing after the outbreak (non-survivors) and 15 individuals observed before and after the epidemic (survivors). We used a target enrichment approach to capture the sequences of 123 genes previously associated with immunology and Ebola virus resistance and additionally analyzed the gut microbiome which could influence the survival after an infection. Our results indicate no changes in the population genetic diversity before and after the Ebola outbreak, and no significant differences in microbial community composition between survivors and non-survivors. However, and despite the low power for an association analysis, we do detect six nominally significant missense mutations in four genes that might be candidate variants associated with an increased chance of survival. Conclusion This study offers the first insight to the genetics of a wild great ape population before and after an Ebola outbreak using target capture experiments from fecal samples, and presents a list of candidate loci that may have facilitated their survival. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08025-y.
Collapse
Affiliation(s)
- Claudia Fontsere
- Institut de Biologia Evolutiva, (CSIC-Universitat Pompeu Fabra), PRBB, Doctor Aiguader 88, 08003, Barcelona, Catalonia, Spain.
| | - Peter Frandsen
- Research and Conservation, Copenhagen Zoo, 2000, Frederiksberg, Denmark.,Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Jessica Hernandez-Rodriguez
- Institut de Biologia Evolutiva, (CSIC-Universitat Pompeu Fabra), PRBB, Doctor Aiguader 88, 08003, Barcelona, Catalonia, Spain.,Genomics of Health Research Group, Hospital Universitari Son Espases (HUSE) and Institut d'Investigacions Sanitaries de Balears (IDISBA), Palma, Spain
| | - Jonas Niemann
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, 1353, Copenhagen, Denmark
| | | | - Dominique Vallet
- UMR 6553, ECOBIO: Ecosystems, Biodiversity, Evolution, CNRS/University of Rennes 1, Station Biologique de Paimpont, 35380, Paimpont, France
| | - Pascaline Le Gouar
- UMR 6553, ECOBIO: Ecosystems, Biodiversity, Evolution, CNRS/University of Rennes 1, Station Biologique de Paimpont, 35380, Paimpont, France
| | - Nelly Ménard
- UMR 6553, ECOBIO: Ecosystems, Biodiversity, Evolution, CNRS/University of Rennes 1, Station Biologique de Paimpont, 35380, Paimpont, France
| | - Arcadi Navarro
- Institut de Biologia Evolutiva, (CSIC-Universitat Pompeu Fabra), PRBB, Doctor Aiguader 88, 08003, Barcelona, Catalonia, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA, 08010, Barcelona, Catalonia, Spain.,CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), 08036, Barcelona, Spain.,BarcelonaBeta Brain Research Center, Pasqual Maragall Foundation, 08005, Barcelona, Spain
| | - Hans R Siegismund
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Christina Hvilsom
- Research and Conservation, Copenhagen Zoo, 2000, Frederiksberg, Denmark
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, 1353, Copenhagen, Denmark.,University Museum, NTNU, Trondheim, Norway
| | - Martin Kuhlwilm
- Institut de Biologia Evolutiva, (CSIC-Universitat Pompeu Fabra), PRBB, Doctor Aiguader 88, 08003, Barcelona, Catalonia, Spain. .,Department of Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - David Hughes
- Institut de Biologia Evolutiva, (CSIC-Universitat Pompeu Fabra), PRBB, Doctor Aiguader 88, 08003, Barcelona, Catalonia, Spain.,Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.,MRC Integrative Epidemiology Unit at University of Bristol, Bristol, UK
| | - Tomas Marques-Bonet
- Institut de Biologia Evolutiva, (CSIC-Universitat Pompeu Fabra), PRBB, Doctor Aiguader 88, 08003, Barcelona, Catalonia, Spain. .,Institucio Catalana de Recerca i Estudis Avançats (ICREA, 08010, Barcelona, Catalonia, Spain. .,CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain. .,Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
8
|
Betts EL, Hoque S, Torbe L, Bailey JR, Ryan H, Toller K, Breakell V, Carpenter AI, Diana A, Matechou E, Gentekaki E, Tsaousis AD. Parasites, Drugs and Captivity: Blastocystis-Microbiome Associations in Captive Water Voles. BIOLOGY 2021; 10:457. [PMID: 34067374 PMCID: PMC8224621 DOI: 10.3390/biology10060457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022]
Abstract
(1) Background: Blastocystis is a microbial eukaryote inhabiting the gastrointestinal tract of a broad range of animals including humans. Several studies have shown that the organism is associated with specific microbial profiles and bacterial taxa that have been deemed beneficial to intestinal and overall health. Nonetheless, these studies are focused almost exclusively on humans, while there is no similar information on other animals. (2) Methods: Using a combination of conventional PCR, cloning and sequencing, we investigated presence of Blastocystis along with Giardia and Cryptosporidium in 16 captive water voles sampled twice from a wildlife park. We also characterised their bacterial gut communities. (3) Results: Overall, alpha and beta diversities between water voles with and without Blastocystis did not differ significantly. Differences were noted only on individual taxa with Treponema and Kineothrix being significantly reduced in Blastocystis positive water voles. Grouping according to antiprotozoal treatment and presence of other protists did not reveal any differences in the bacterial community composition either. (4) Conclusion: Unlike human investigations, Blastocystis does not seem to be associated with specific gut microbial profiles in water voles.
Collapse
Affiliation(s)
- Emma L. Betts
- Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (E.L.B.); (S.H.); (L.T.); (J.R.B.)
| | - Sumaiya Hoque
- Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (E.L.B.); (S.H.); (L.T.); (J.R.B.)
| | - Lucy Torbe
- Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (E.L.B.); (S.H.); (L.T.); (J.R.B.)
| | - Jessica R. Bailey
- Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (E.L.B.); (S.H.); (L.T.); (J.R.B.)
| | - Hazel Ryan
- Wildwood Trust, Herne Common, Herne Bay CT6 7LQ, UK; (H.R.); (K.T.); (V.B.)
| | - Karen Toller
- Wildwood Trust, Herne Common, Herne Bay CT6 7LQ, UK; (H.R.); (K.T.); (V.B.)
| | - Vicki Breakell
- Wildwood Trust, Herne Common, Herne Bay CT6 7LQ, UK; (H.R.); (K.T.); (V.B.)
| | - Angus I. Carpenter
- School of Animal, Rural and Environmental Sciences, Brackenhurst Campus, Nottingham Trent University, Nottinghamshire NG1 4FQ, UK;
| | - Alex Diana
- School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury CT2 7NJ, UK; (A.D.); (E.M.)
| | - Eleni Matechou
- School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury CT2 7NJ, UK; (A.D.); (E.M.)
| | - Eleni Gentekaki
- School of Science and Human Gut Microbiome for Health Research Unit, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Anastasios D. Tsaousis
- Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (E.L.B.); (S.H.); (L.T.); (J.R.B.)
| |
Collapse
|
9
|
Methicillin-Resistant and Methicillin-Susceptible Staphylococcus from Vervet Monkeys ( Chlorocebus sabaeus) in Saint Kitts. Antibiotics (Basel) 2021; 10:antibiotics10030290. [PMID: 33802161 PMCID: PMC8000491 DOI: 10.3390/antibiotics10030290] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 11/26/2022] Open
Abstract
Antimicrobial resistance has been described in all ecosystems, including wildlife. Here we investigated the presence of methicillin-resistant and susceptible staphylococci in both colony-born and wild vervet monkeys (Chlorocebus sabaeus). Through selective isolation, PCR, MALDI-TOF, and whole-genome sequencing, methicillin-resistant and susceptible Staphylococcus spp. isolated from vervet monkeys were characterized. We obtained putatively methicillin-resistant staphylococci from 29 of the 34 nasal samples collected. Strains were identified by MALDI-TOF analysis. Staphylococcus cohnii (n = 15) was the most commonly isolated species, while nine other species were isolated one or two times. PCR analysis indicated that eight [28%] strains were mecA positive. The whole-genome sequencing [WGS] included eight methicillin-resistant strains (S. epidermidis (n = 2), S. cohnii (n = 3), S. arlettae (n = 2) and S. hominis (n = 1)), nine additional S. cohnii strains and two strains that could not be identified by MALDI-TOF, but genetically characterized as one S. cohnii and one S. warneri. Different resistance genes carried by different mobile genetic elements, mainly blaZ (n = 10) and tet(K) (n = 5) were found, while msr(A), cat, fosB, dfrG, erm(C), mph(C) and str were identified in one to three strains. Phylogenetic analysis of the S. cohnii strains based on SNPs indicated four clusters associated with colony born or wild. In addition, one singleton S. cohnii isolated did not form a separate group and clustered within other S. cohnii strains submitted to the NCBI. In this study, we demonstrated the presence of AMR and mobile genetic elements to both colony-born and wild vervet monkeys. We also identified a previously undescribed prevalence of S. cohnii in the nasal flora of these monkeys, which merits further investigation.
Collapse
|
10
|
Mangombi JB, N’dilimabaka N, Lekana-Douki JB, Banga O, Maghendji-Nzondo S, Bourgarel M, Leroy E, Fenollar F, Mediannikov O. First investigation of pathogenic bacteria, protozoa and viruses in rodents and shrews in context of forest-savannah-urban areas interface in the city of Franceville (Gabon). PLoS One 2021; 16:e0248244. [PMID: 33684147 PMCID: PMC7939261 DOI: 10.1371/journal.pone.0248244] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/23/2021] [Indexed: 12/29/2022] Open
Abstract
Rodents are reservoirs of numerous zoonotic diseases caused by bacteria, protozoans, or viruses. In Gabon, the circulation and maintenance of rodent-borne zoonotic infectious agents are poorly studied and are often limited to one type of pathogen. Among the three existing studies on this topic, two are focused on a zoonotic virus, and the third is focused on rodent Plasmodium. In this study, we searched for a wide range of bacteria, protozoa and viruses in different organs of rodents from the town of Franceville in Gabon. Samples from one hundred and ninety-eight (198) small mammals captured, including two invasive rodent species, five native rodent species and 19 shrews belonging to the Soricidae family, were screened. The investigated pathogens were bacteria from the Rickettsiaceae and Anaplasmataceae families, Mycoplasma spp., Bartonella spp., Borrelia spp., Orientia spp., Occidentia spp., Leptospira spp., Streptobacillus moniliformis, Coxiella burnetii, and Yersinia pestis; parasites from class Kinetoplastida spp. (Leishmania spp., Trypanosoma spp.), Piroplasmidae spp., and Toxoplasma gondii; and viruses from Paramyxoviridae, Hantaviridae, Flaviviridae and Mammarenavirus spp. We identified the following pathogenic bacteria: Anaplasma spp. (8.1%; 16/198), Bartonella spp. (6.6%; 13/198), Coxiella spp. (5.1%; 10/198) and Leptospira spp. (3.5%; 7/198); and protozoans: Piroplasma sp. (1%; 2/198), Toxoplasma gondii (0.5%; 1/198), and Trypanosoma sp. (7%; 14/198). None of the targeted viral genes were detected. These pathogens were found in Gabonese rodents, mainly Lophuromys sp., Lemniscomys striatus and Praomys sp. We also identified new genotypes: Candidatus Bartonella gabonensis and Uncultured Anaplasma spp. This study shows that rodents in Gabon harbor some human pathogenic bacteria and protozoans. It is necessary to determine whether the identified microorganisms are capable of undergoing zoonotic transmission from rodents to humans and if they may be responsible for human cases of febrile disease of unknown etiology in Gabon.
Collapse
Affiliation(s)
- Joa Braïthe Mangombi
- Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
- Aix Marseille Univ, IRD, AP-HM, Microbes, VITROME, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Nadine N’dilimabaka
- Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
- Département de Biologie, Faculté des sciences, Université des Sciences et Techniques de Masuku (USTM), Franceville, Gabon
| | - Jean-Bernard Lekana-Douki
- Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
- Département de Parasitologie, Université des Sciences de la Santé (USS), Owendo, Libreville
| | - Octavie Banga
- Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
| | - Sydney Maghendji-Nzondo
- Département Epidémiologie-Biostatistique et Informatique Médicale (DEBIM), Université des Sciences de la Santé (USS), Owendo, Libreville
| | - Mathieu Bourgarel
- CIRAD, UMR ASTRE, Harare, Zimbabwe
- ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France
| | - Eric Leroy
- Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
- UMR MIVEGEC IRD-CNRS-UM, IRD, Montpellier, France
| | - Florence Fenollar
- Aix Marseille Univ, IRD, AP-HM, Microbes, VITROME, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Oleg Mediannikov
- IHU Méditerranée Infection, Marseille, France
- Aix Marseille Univ, IRD, AP-HM, Microbes, MEPHI, Marseille, France
| |
Collapse
|
11
|
Rampelli S, Turroni S, Mallol C, Hernandez C, Galván B, Sistiaga A, Biagi E, Astolfi A, Brigidi P, Benazzi S, Lewis CM, Warinner C, Hofman CA, Schnorr SL, Candela M. Components of a Neanderthal gut microbiome recovered from fecal sediments from El Salt. Commun Biol 2021; 4:169. [PMID: 33547403 PMCID: PMC7864912 DOI: 10.1038/s42003-021-01689-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 01/05/2021] [Indexed: 12/19/2022] Open
Abstract
A comprehensive view of our evolutionary history cannot ignore the ancestral features of our gut microbiota. To provide some glimpse into the past, we searched for human gut microbiome components in ancient DNA from 14 archeological sediments spanning four stratigraphic units of El Salt Middle Paleolithic site (Spain), including layers of unit X, which has yielded well-preserved Neanderthal occupation deposits dating around 50 kya. According to our findings, bacterial genera belonging to families known to be part of the modern human gut microbiome are abundantly represented only across unit X samples, showing that well-known beneficial gut commensals, such as Blautia, Dorea, Roseburia, Ruminococcus, Faecalibacterium and Bifidobacterium already populated the intestinal microbiome of Homo since as far back as the last common ancestor between humans and Neanderthals.
Collapse
Affiliation(s)
- Simone Rampelli
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, Bologna, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, Bologna, Italy
| | - Carolina Mallol
- Department of Geography and History, University of La Laguna, Campus de Guajara, La Laguna, Tenerife, Spain.,Archaeological Micromorphology and Biomarker Research Lab, University of La Laguna, Avenida Astrofísico Francisco Sánchez 2, La Laguna, Tenerife, Spain.,ICArEHB - Interdisciplinary Center for Archaeology and the Evolution of Human Behaviour, Universidade do Algarve, Campus de Gambelas, Edificio 1, Faro, Portugal
| | - Cristo Hernandez
- Department of Geography and History, University of La Laguna, Campus de Guajara, La Laguna, Tenerife, Spain
| | - Bertila Galván
- Department of Geography and History, University of La Laguna, Campus de Guajara, La Laguna, Tenerife, Spain
| | - Ainara Sistiaga
- Earth, Atmospheric and Planetary Sciences Department, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, USA.,GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Oester Voldgade 5-7, Copenhagen, Denmark
| | - Elena Biagi
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, Bologna, Italy
| | - Annalisa Astolfi
- "Giorgio Prodi" Cancer Research Center, University of Bologna, Via Massarenti 11, Bologna, Italy.,Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Fossato di Mortara 70, Ferrara, Italy
| | - Patrizia Brigidi
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti 9, Bologna, Italy
| | - Stefano Benazzi
- Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, Ravenna, Italy.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, Germany
| | - Cecil M Lewis
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, 101 David L. Boren Blvd, Norman, OK, USA.,Department of Anthropology, University of Oklahoma, 455W Lindsey St, Norman, OK, USA
| | - Christina Warinner
- Department of Anthropology, University of Oklahoma, 455W Lindsey St, Norman, OK, USA.,Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, Jena, Germany
| | - Courtney A Hofman
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, 101 David L. Boren Blvd, Norman, OK, USA.,Department of Anthropology, University of Oklahoma, 455W Lindsey St, Norman, OK, USA
| | - Stephanie L Schnorr
- Konrad Lorenz Institute for Evolution and Cognition Research, Martinstraße 12, Klosterneuburg, Austria. .,Department of Anthropology, University of Nevada, 4505S. Maryland Pkwy, Las Vegas, NV, USA.
| | - Marco Candela
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, Bologna, Italy.
| |
Collapse
|
12
|
Qi H, Liu D, Zou Y, Wang N, Tian H, Xiao C. Description and genomic characterization of Streptococcus symci sp. nov., isolated from a child's oropharynx. Antonie van Leeuwenhoek 2021; 114:113-127. [PMID: 33387140 PMCID: PMC7878260 DOI: 10.1007/s10482-020-01505-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/25/2020] [Indexed: 01/01/2023]
Abstract
Using the culturomics approach, we isolated a new Streptococcus species, strain C17T, from the oropharynx mucosa sample of a healthy 5-year-old child living in Shenyang, China. We studied the phenotypic, phylogenetic, and genomic characteristics of strain C17T, which was identified as a Gram-positive, coccus-shaped, non-motile, aerobic, catalase-negative bacteria. Its growth temperatures ranged from 20 to 42 °C, with optimal growth at 37 °C. Acid production could be inhibited by two sugars, trehalose and raffinose. In C17T, the reactions for enzyme lipase (C14) were confirmed to be negative, whereas those for alkaline phosphatase, α-glucosidase, and hippuric acid hydrolysis were positive. The C17T genome contained 2,189,419 base pairs (bp), with an average G+C content of 39.95%, encoding 2092 genes in total. The 16S ribosomal RNA sequence showed 99.8% similarity with the newly identified Streptococcus pseudopneumoniae ATCC BAA-960T. The main fatty acid components in C17T were C16:0, C18:1 w7c, C18:0, and C18:1 w9c, all of which can be found in other species of the Streptococcus genus. Strain C17T showed high susceptibility to clindamycin, linezolid, vancomycin, chloramphenicol, and cefepime, and moderate susceptibility to erythromycin. The obtained dDDH value between strain C17T and the closest species was 52.9%. In addition, the whole genome sequence of strain C17T had an 82.21–93.40% average nucleotide identity (ANI) with those strains of closely related Streptococcus species, indicating that the strain C17T was unique among all Streptococcus species. Based on these characteristics, we determine that C17T is a novel species, named Streptococcus symci sp. nov. (= GDMCC 1.1633 = JCM 33582).
Collapse
Affiliation(s)
- He Qi
- Liaoning University of Traditional Chinese Medicine, Shenyang, People's Republic of China
- Department of Medical technology, Medical Science Institute of Liaoning, Shenyang, People's Republic of China
| | - Defeng Liu
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang, Liao Ning, People's Republic of China
| | - Yang Zou
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang, Liao Ning, People's Republic of China
| | - Nan Wang
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang, Liao Ning, People's Republic of China
| | - Han Tian
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang, Liao Ning, People's Republic of China
| | - Chunling Xiao
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang, Liao Ning, People's Republic of China.
| |
Collapse
|
13
|
Houghton KM, Stewart LC. Temperature-gradient incubation isolates multiple competitive species from a single environmental sample. Access Microbiol 2020; 2:acmi000081. [PMID: 32974564 PMCID: PMC7470311 DOI: 10.1099/acmi.0.000081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022] Open
Abstract
High-throughput sequencing has allowed culture-independent investigation into a wide variety of microbiomes, but sequencing studies still require axenic culture experiments to determine ecological roles, confirm functional predictions and identify useful compounds and pathways. We have developed a new method for culturing and isolating multiple microbial species with overlapping ecological niches from a single environmental sample, using temperature-gradient incubation. This method was more effective than standard serial dilution-to-extinction at isolating methanotrophic bacteria. It also highlighted discrepancies between culture-dependent and -independent techniques; 16S rRNA gene amplicon sequencing of the same sample did not accurately reflect cultivatable strains using this method. We propose that temperature-gradient incubation could be used to separate out and study previously ‘unculturable’ strains, which co-exist in both natural and artificial environments.
Collapse
Affiliation(s)
- Karen M Houghton
- GNS Science, Wairakei Research Centre, 114 Karetoto Rd, Taupō 3384, New Zealand
| | - Lucy C Stewart
- GNS Science, 1 Fairway Drive, Avalon, Lower Hutt 5010, New Zealand
| |
Collapse
|
14
|
An effective culturomics approach to study the gut microbiota of mammals. Res Microbiol 2020; 171:290-300. [PMID: 32898701 DOI: 10.1016/j.resmic.2020.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023]
Abstract
The microbial characterization of the mammal's gut is an emerging research area, wherein culturomics methodologies applied to human samples are transposed to the animal context without improvement. In this work, using Egyptian mongoose as a model, we explore wet bench conditions to define an effective experimental design based on culturomics and DNA barcoding with potential application to different mammal species. After testing a battery of solid media and enrichments, we show that YCFA-based media, in aerobic and anaerobic conditions, together with PDA supplemented with chloramphenicol, are sufficient to maximize bacterial and fungal microbiota diversity. The pasteurization of the sample enrichment before cultivation is central to gain insight into sporogenic communities. We suggest the application of this optimized culturomics strategy to accurately expand knowledge on the microbial richness of mammals' gut, maximizing the application of common laboratory resources, without dramatic time and consumables expenditure but with high resolution of microbial landscapes. The analysis of ten fecal samples proved adequate to assess the core gastrointestinal microbiota of the mesocarnivore under analysis. This approach may empower most microbiology laboratories, particularly the veterinary, to perform studies on mammal's microbiota, and, in contrast with metagenomics, enabling the recovery of live bacteria for further studies.
Collapse
|
15
|
Rodents as Hosts of Pathogens and Related Zoonotic Disease Risk. Pathogens 2020; 9:pathogens9030202. [PMID: 32164206 PMCID: PMC7157691 DOI: 10.3390/pathogens9030202] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 12/25/2022] Open
Abstract
Rodents are known to be reservoir hosts for at least 60 zoonotic diseases and are known to play an important role in their transmission and spread in different ways. We sampled different rodent communities within and around human settlements in Northern Senegal, an area subjected to major environmental transformations associated with global changes. Herein, we conducted an epidemiological study on their bacterial communities. One hundred and seventy-one (171) invasive and native rodents were captured, 50 from outdoor trapping sites and 121 rodents from indoor habitats, consisting of five species. The DNA of thirteen pathogens was successfully screened on the rodents' spleens. We found: 2.3% of spleens positive to Piroplasmida and amplified one which gave a potentially new species Candidatus "Theileria senegalensis"; 9.35% of Bartonella spp. and amplified 10, giving three genotypes; 3.5% of filariasis species; 18.12% of Anaplasmataceae species and amplified only 5, giving a new potential species Candidatus "Ehrlichia senegalensis"; 2.33% of Hepatozoon spp.; 3.5% of Kinetoplastidae spp.; and 15.2% of Borrelia spp. and amplified 8 belonging all to Borrelia crocidurae. Some of the species of pathogens carried by the rodents of our studied area may be unknown because most of those we have identified are new species. In one bacterial taxon, Anaplasma, a positive correlation between host body mass and infection was found. Overall, male and invasive rodents appeared less infected than female and native ones, respectively.
Collapse
|
16
|
Gu W, Wang W, Tong P, Liu C, Jia J, Lu C, Han Y, Sun X, Kuang D, Li N, Dai J. Comparative genomic analysis of Proteus spp. isolated from tree shrews indicated unexpectedly high genetic diversity. PLoS One 2020; 15:e0229125. [PMID: 32084183 PMCID: PMC7034874 DOI: 10.1371/journal.pone.0229125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
Proteus spp. are commensal gastrointestinal bacteria in many hosts, but information regarding the mutual relationships between these bacteria and their hosts is limited. The tree shrew is an alternative laboratory animal widely used for human disease research. However, little is known about the relationship between Proteus spp. and tree shrews. In this study, the complete genome sequencing method was used to analyse the characteristics of Proteus spp. isolated from tree shrews, and comparative genomic analysis was performed to reveal their relationships. The results showed that 36 Proteus spp. bacteria were isolated, including 34 Proteus mirabilis strains and two Proteus vulgaris strains. The effective rate of sequencing was 93.53%±2.73%, with an average GC content of 39.94%±0.25%. Briefly, 3682.89±90.37, 2771.36±36.01 and 2832.06±42.49 genes were annotated in the NCBI non-redundant nucleotide database (NR), SwissProt database and KEGG database, respectively. The high proportions of macrolide-, vancomycin-, bacitracin-, and tetracycline-resistance profiles of the strains were annotated in the Antibiotic Resistance Genes Database (ARDB). Flagella, lipooligosaccharides, type 1 fimbriae and P fimbriae were the most abundantly annotated virulence factors in the Virulence Factor Database (VFDB). SNP variants indicated high proportions of base transitions (Ts), homozygous mutations (Hom) and non-synonymous mutations (Non-Syn) in Proteus spp. (P<0.05). Phylogenetic analysis of Proteus spp. and other references revealed high genetic diversity for strains isolated from tree shrews, and host specificity of Proteus spp. bacteria was not found. Overall, this study provided important information on characteristics of genome for Proteus spp. isolated from tree shrews.
Collapse
Affiliation(s)
- Wenpeng Gu
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Center for Disease Control and Prevention, Kunming, China
| | - Wenguang Wang
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Pinfen Tong
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Chenxiu Liu
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Jie Jia
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Caixia Lu
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Yuanyuan Han
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Xiaomei Sun
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Dexuan Kuang
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Na Li
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Jiejie Dai
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
- * E-mail:
| |
Collapse
|
17
|
Heaton CJ, Gerbig GR, Sensius LD, Patel V, Smith TC. Staphylococcus aureus Epidemiology in Wildlife: A Systematic Review. Antibiotics (Basel) 2020; 9:E89. [PMID: 32085586 PMCID: PMC7168057 DOI: 10.3390/antibiotics9020089] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/05/2020] [Accepted: 02/13/2020] [Indexed: 01/05/2023] Open
Abstract
Staphylococcus aureus is a common bacterial colonizer of humans and a variety of animal species. Many strains have zoonotic potential, moving between humans and animals, including livestock, pets, and wildlife. We examined publications reporting on S. aureus presence in a variety of wildlife species in order to more cohesively review distribution of strains and antibiotic resistance in wildlife. Fifty-one studies were included in the final qualitative synthesis. The most common types documented included ST398, ST425, ST1, ST133, ST130, and ST15. A mix of methicillin-resistant and methicillin-susceptible strains were noted. A number of molecular types were identified that were likely to be found in wildlife species, including those that are commonly found in humans or other animal species (including livestock). Additional research should include follow-up in geographic areas that are under-sampled in this study, which is dominated by European studies.
Collapse
Affiliation(s)
| | | | | | | | - Tara C. Smith
- Kent State University, College of Public Health, Kent, OH 44240, USA; (C.J.H.); (G.R.G.); (L.D.S.); (V.P.)
| |
Collapse
|
18
|
Abou Abdallah R, Okdah L, Bou Khalil J, Anani H, Fournier PE, Raoult D, Bittar F. Draft genome and description of Chryseobacterium phocaeense sp. nov.: a new bacterial species isolated from the sputum of a cystic fibrosis patient. Arch Microbiol 2019; 201:1361-1368. [DOI: 10.1007/s00203-019-01704-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/21/2019] [Accepted: 07/10/2019] [Indexed: 11/28/2022]
|
19
|
Culturomics of the plant prokaryotic microbiome and the dawn of plant-based culture media - A review. J Adv Res 2019; 19:15-27. [PMID: 31341666 PMCID: PMC6630032 DOI: 10.1016/j.jare.2019.04.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 12/22/2022] Open
Abstract
The plant microbiome culturomics is substantially lagging behind the human microbiome. Conventional chemically-synthetic culture media recover < 10% of plant-associated microbiota. Plant-based culture media (PCM) are introduced as a novel tool for plant microbiome culturomics. PCM extended the microbiota culturability to recover unculturable bacterial taxa. Streamlined- and large-genomes conspicuously contribute to the dilemma of unculturability.
Improving cultivability of a wider range of bacterial and archaeal community members, living natively in natural environments and within plants, is a prerequisite to better understanding plant-microbiota interactions and their functions in such very complex systems. Sequencing, assembling, and annotation of pure microbial strain genomes provide higher quality data compared to environmental metagenome analyses, and can substantially improve gene and protein database information. Despite the comprehensive knowledge which already was gained using metagenomic and metatranscriptomic methods, there still exists a big gap in understanding in vivo microbial gene functioning in planta, since many differentially expressed genes or gene families are not yet annotated. Here, the progress in culturing procedures for plant microbiota depending on plant-based culture media, and their proficiency in obtaining single prokaryotic isolates of novel and rapidly increasing candidate phyla are reviewed. As well, the great success of culturomics of the human microbiota is considered with the main objective of encouraging microbiologists to continue minimizing the gap between the microbial richness in nature and the number of species in culture, for the benefit of both basic and applied microbiology. The clear message to fellow plant microbiologists is to apply plant-tailored culturomic techniques that might open up novel procedures to obtain not-yet-cultured organisms and extend the known plant microbiota repertoire to unprecedented levels.
Collapse
|
20
|
de Melo CMF, Daneze ER, Mendes NS, de Souza Ramos IA, Morales-Donoso JA, Fernandes SJ, Machado RZ, André MR, da Rosa Sobreira MF. Genetic diversity and hematological and biochemical alterations in Alouatta primates naturally infected with hemoplasmas in Brazil. Comp Immunol Microbiol Infect Dis 2019; 63:104-111. [PMID: 30961804 DOI: 10.1016/j.cimid.2019.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 12/23/2022]
Abstract
Mycoplasma spp. and Bartonella spp. are Gram-negative bacteria transmitted by arthropod vectors that infect red blood cells of several mammal species. This study investigated the occurrence and genetic diversity of hemoplasmas and Bartonella spp. in 68 howler monkeys kept in captivity in São Paulo, a southeastern state in Brazil. In addition, possible hematological, biochemical and electrophoretic changes of serum proteins associated with the occurrence of hemoplasmas and Bartonella spp. in captive primates were also investigated. The cPCR results showed that all sampled howler monkeys were negative for Bartonella spp. based on the gltA gene. The cPCR results indicated that 18 (26.47%) non-human primates (NHP) were positive for hemoplasmas based on the 16S rRNA gene. Monocyte and lymphocyte counts were higher in hemoplasma-positive howlers (P < 0.05). Platelet counts decreased in nonhuman primates (NHP) positive for hemoplasmas (P < 0.05). The results from the blood serum proteinogram and biochemistry analyses were not significantly different between NHPs positive and negative for hemotrophic mycoplasmas. Phylogenetic analysis using Bayesian Inference (BI) based on the 16S rRNA gene positioned the obtained sequences close to 'Candidatus Mycoplasma kahanei'. The analysis of sequence diversity of the 16S rRNA gene showed that 5 different genotypes are circulating in NHP in Brazil and in the world; besides, a clear separation between the sequences of hemoplasmas that infect NHP of the Sapajus and Alouatta genus in Brazil was found, probably corresponding to two different species. The pathogenic potential of this hemoplasma species in NHP should be further investigated.
Collapse
Affiliation(s)
- Cristiane Maria Fernandes de Melo
- Laboratory of Immunoparasitology, Department of Veterinary Pathology, Universidade Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, SP, Brazil
| | - Edmilson Rodrigo Daneze
- Laboratory of Immunoparasitology, Department of Veterinary Pathology, Universidade Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, SP, Brazil
| | - Natalia Serra Mendes
- Laboratory of Immunoparasitology, Department of Veterinary Pathology, Universidade Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, SP, Brazil
| | - Inalda Angelica de Souza Ramos
- Laboratory of Immunoparasitology, Department of Veterinary Pathology, Universidade Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, SP, Brazil
| | - Jorge Alfonso Morales-Donoso
- Department of Genetics and Animal Breeding, Universidade Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, SP, Brazil
| | - Simone J Fernandes
- Laboratory of Immunoparasitology, Department of Veterinary Pathology, Universidade Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, SP, Brazil
| | - Rosangela Zacarias Machado
- Laboratory of Immunoparasitology, Department of Veterinary Pathology, Universidade Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, SP, Brazil
| | - Marcos Rogério André
- Laboratory of Immunoparasitology, Department of Veterinary Pathology, Universidade Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, SP, Brazil.
| | | |
Collapse
|
21
|
Draft genome and description of Cohnella massiliensis sp. nov., a new bacterial species isolated from the blood culture of a hemodialysis patient. Arch Microbiol 2019; 201:305-312. [DOI: 10.1007/s00203-018-1612-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 10/27/2022]
|
22
|
Angelakis E, Bachar D, Yasir M, Musso D, Djossou F, Melenotte C, Robert C, Davoust B, Gaborit B, Azhar E, Bibi F, Dutour A, Raoult D. Comparison of the gut microbiota of obese individuals from different geographic origins. New Microbes New Infect 2019; 27:40-47. [PMID: 30581574 PMCID: PMC6296163 DOI: 10.1016/j.nmni.2018.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/14/2018] [Indexed: 01/19/2023] Open
Abstract
Few studies have examined the interaction of human geography, microbial community structure and obesity. We tested obese adult volunteers from France, Saudi Arabia, French Polynesia and from a traditional population in the village of Trois-Sauts in French Guiana by sequencing the V3-V4 region. We also sequenced homemade fermented cachiri beers that were obtained from the traditional Amazonian population and are highly consumed by this population. We found that French and Saudis had significantly less richness and biodiversity in their gut microbiota than Amazonians and Polynesians (p <0.05). Principle coordinate analysis of the overall composition of the genera communities revealed that the microbiomes of Amazonians clustered independently from the other obese individuals. Moreover, we found that Amazonians presented significantly stricter anaerobic genera than the Saudis, French and Polynesians (p < 0.001). Polynesians presented significantly lower relative abundance of Lactobacillus sp. than French (p 0.01) and Saudis (p 0.05). Treponema berlinense and Treponema succinifaciens were only present in the gut microbiome of Amazonians. The cachiri beers presented significantly more bacterial species in common with the gut microbiome of Amazonians (p < 0.005). Obese individuals with different origins present modifications in their gut microbiota, and we provide evidence that the cachiri beers influenced the gut microbiome of Amazonians.
Collapse
Affiliation(s)
- E. Angelakis
- Aix Marseille Université, IRD, APHM, VITROME, IHU-Méditerranée Infection, Marseille, France
- Laboratory of Medical Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | - D. Bachar
- Aix Marseille Université, IRD, APHM, VITROME, IHU-Méditerranée Infection, Marseille, France
| | - M. Yasir
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - D. Musso
- Unit of Emerging Infectious Diseases, Institut Louis Malardé, Tahiti, French Polynesia
| | - F. Djossou
- Centre Hospitalier de Cayenne Andree Rosemon, Cayenne, French Guiana
| | - C. Melenotte
- Aix Marseille Université, IRD, APHM, VITROME, IHU-Méditerranée Infection, Marseille, France
| | - C. Robert
- Aix Marseille Université, IRD, APHM, VITROME, IHU-Méditerranée Infection, Marseille, France
| | - B. Davoust
- Aix Marseille Université, IRD, APHM, VITROME, IHU-Méditerranée Infection, Marseille, France
| | - B. Gaborit
- Department of Endocrinology, Metabolic Diseases and Nutrition, CHU Nord, Marseille, France
- Inserm U1062, INRA U1260, Faculté de Médecine, Marseille, France
| | - E.I. Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - F. Bibi
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - A. Dutour
- Department of Endocrinology, Metabolic Diseases and Nutrition, CHU Nord, Marseille, France
- Inserm U1062, INRA U1260, Faculté de Médecine, Marseille, France
| | - D. Raoult
- Aix Marseille Université, IRD, APHM, VITROME, IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
23
|
Angelakis E, Bachar D, Yasir M, Musso D, Djossou F, Gaborit B, Brah S, Diallo A, Ndombe G, Mediannikov O, Robert C, Azhar E, Bibi F, Nsana N, Parra HJ, Akiana J, Sokhna C, Davoust B, Dutour A, Raoult D. Treponema species enrich the gut microbiota of traditional rural populations but are absent from urban individuals. New Microbes New Infect 2019; 27:14-21. [PMID: 30555706 PMCID: PMC6276622 DOI: 10.1016/j.nmni.2018.10.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/18/2018] [Accepted: 10/25/2018] [Indexed: 01/16/2023] Open
Abstract
There is a significant gap in our knowledge of the microbe-host relationship between urban and traditional rural populations. We conducted a large-scale study to examine the gut microbiota of different traditional rural and urban lifestyles in human populations. Using high-throughput 16S ribosomal RNA gene amplicon sequencing, we tested urban French, Saudi, Senegalese, Nigerian and Polynesian individuals as well as individuals living in traditional rural societies, including Amazonians from French Guiana, Congolese Pygmies, Saudi Bedouins and Algerian Tuaregs. The gut microbiota from individuals living in traditional rural settings clustered differently and presented significantly higher diversity than those of urban populations (p 0.01). The bacterial taxa identified by class analysis as contributing most significantly to each cluster were Phascolarctobacterium for traditional rural individuals and Bifidobacterium for urban individuals. Spirochaetae were only present in the gut microbiota of individuals from traditional rural societies, and the gut microbiota of all traditional rural populations was enriched with Treponema succinifaciens. Cross-transmission of Treponema from termites or swine to humans or the increased use of antibiotics in nontraditional populations may explain why Treponema is present only in the gut microbiota of traditional rural populations.
Collapse
Affiliation(s)
- E. Angelakis
- Aix-Marseille Université, IRD, APHM, VITROME, IHU Méditerranée Infection, France
- Laboratory of Medical Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | - D. Bachar
- Aix-Marseille Université, IRD, APHM, VITROME, IHU Méditerranée Infection, France
| | - M. Yasir
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - D. Musso
- Unit of Emerging Infectious Diseases, Institut Louis Malardé, Tahiti, French Polynesia
| | - F. Djossou
- Centre Hospitalier de Cayenne Andree Rosemon, Cayenne, French Guiana
| | - B. Gaborit
- NORT, Aix-Marseille Université, INSERM, INRA, France
- Department of Endocrinology, Metabolic Diseases and Nutrition, CHU Nord, Marseille, France
- Hôpital National de Niamey, Niamey, Niger
| | - S. Brah
- Service de Médecine Interne et Générale, Niger
| | - A. Diallo
- Aix-Marseille Université, IRD, APHM, VITROME, IHU Méditerranée Infection, France
| | - G.M. Ndombe
- Laboratoire national de santé publique, Brazzaville, République populaire du Congo
| | - O. Mediannikov
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU Méditerranée Infection, France
| | - C. Robert
- Aix-Marseille Université, IRD, APHM, VITROME, IHU Méditerranée Infection, France
| | - E.I. Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - F. Bibi
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - N.S. Nsana
- Laboratoire national de santé publique, Brazzaville, République populaire du Congo
| | - H.-J. Parra
- Laboratoire national de santé publique, Brazzaville, République populaire du Congo
| | - J. Akiana
- Laboratoire national de santé publique, Brazzaville, République populaire du Congo
| | - C. Sokhna
- Aix-Marseille Université, IRD, APHM, VITROME, IHU Méditerranée Infection, France
| | - B. Davoust
- Aix-Marseille Université, IRD, APHM, VITROME, IHU Méditerranée Infection, France
| | - A. Dutour
- NORT, Aix-Marseille Université, INSERM, INRA, France
- Department of Endocrinology, Metabolic Diseases and Nutrition, CHU Nord, Marseille, France
| | - D. Raoult
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU Méditerranée Infection, France
| |
Collapse
|
24
|
Meng X, Lai XH, Lu S, Liu S, Chen C, Zhou D, Yang J, Jin D, Xu J. Actinomyces tangfeifanii sp. nov., isolated from the vulture Aegypius monachus. Int J Syst Evol Microbiol 2018; 68:3701-3706. [PMID: 30351263 DOI: 10.1099/ijsem.0.003013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A novel, Gram-stain-positive, catalase-positive, non-spore-forming, short rod-shaped strain (VUL4_3T) was isolated from rectal swabs of Old World vultures (Aegypius monachus) from the Tibet-Qinghai Plateau, China. Based on the results of biochemical tests and 16S rRNA gene sequence comparison, strain VUL4_3T was determined to be a member of the genus Actinomyces that is closely related to the type strains of Actinomyces liubingyangii (97.7 % 16S rRNA gene sequence similarity) and Actinomyces marimammalium (96.5 %). Optimal growth occurred at 37 °C, pH 6-7 and with 1 % (w/v) NaCl. The typical major cellular fatty acids of strain VUL4_3T were C18 : 1ω9c, C16 : 0 and C18 : 0. The VUL4_3T genome contained 2 207 832 bp with an average G+C content of 51.9 mol%. DNA-DNA hybridization values between strain VUL4_3T and the above two species of the genus Actinomyces showed less than 32 % DNA-DNA relatedness, supporting a novel species status of strain VUL4_3T. Based on the phenotypic data and phylogenetic inference, the novel species Actinomycestangfeifanii sp. nov. is proposed. The type strain is VUL4_3T (=CGMCC 4.7369T=DSM 103436T).
Collapse
Affiliation(s)
- Xiangli Meng
- 1State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
- 2Ningbo International Travel Healthcare Center, Ningbo Customs District People's Republic of China, Ningbo 315012, PR China
| | - Xin-He Lai
- 3School of Biology and Food Sciences, Shangqiu Normal University, Shangqiu, Henan 476000, PR China
| | - Shan Lu
- 1State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Sha Liu
- 1State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
- 4Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Cuixia Chen
- 1State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Donggen Zhou
- 2Ningbo International Travel Healthcare Center, Ningbo Customs District People's Republic of China, Ningbo 315012, PR China
| | - Jing Yang
- 1State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Dong Jin
- 1State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Jianguo Xu
- 1State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
- 5Shanghai Institute for Emerging and Re-emerging infectious diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China
| |
Collapse
|
25
|
Davoust B, Levasseur A, Mediannikov O. Studies of nonhuman primates: key sources of data on zoonoses and microbiota. New Microbes New Infect 2018; 26:S104-S108. [PMID: 30402252 PMCID: PMC6205567 DOI: 10.1016/j.nmni.2018.08.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/21/2018] [Accepted: 08/21/2018] [Indexed: 12/11/2022] Open
Abstract
The genetic and morphologic similarities between primates and humans means that much information obtained from primates may be applied to humans, and vice versa. However, habitat loss, hunting and the continued presence of humans have a negative effect on the biology and behaviour of almost all nonhuman primates. Noninvasive methods such as stool collection are among the safest alternative ways to study the multiple aspects of the biology of primates. Many epidemiologic issues (e.g. pathogen detection, microbiota studies) may be easily studied using stool samples from primates. Primates are undoubtedly among the first candidates suspected of becoming the source of one of the next emerging epidemic of zoonotic origin, as has already been observed with HIV, malaria and monkeypox. The Institut Hospitalo-Universitaire Méditerranée Infection in Marseille actively participates in the study, mostly epidemiologic, of nonhuman primates, using mostly stool samples.
Collapse
Affiliation(s)
- B Davoust
- Microbes, Evolution, Phylogeny and Infection (MEФI), UMR Aix-Marseille Université, IRD, APHM, IHU Méditerranée Infection, Marseille, France
| | - A Levasseur
- Microbes, Evolution, Phylogeny and Infection (MEФI), UMR Aix-Marseille Université, IRD, APHM, IHU Méditerranée Infection, Marseille, France
| | - O Mediannikov
- Microbes, Evolution, Phylogeny and Infection (MEФI), UMR Aix-Marseille Université, IRD, APHM, IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
26
|
Clayton JB, Gomez A, Amato K, Knights D, Travis DA, Blekhman R, Knight R, Leigh S, Stumpf R, Wolf T, Glander KE, Cabana F, Johnson TJ. The gut microbiome of nonhuman primates: Lessons in ecology and evolution. Am J Primatol 2018; 80:e22867. [PMID: 29862519 DOI: 10.1002/ajp.22867] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 03/23/2018] [Accepted: 04/20/2018] [Indexed: 02/06/2023]
Abstract
The mammalian gastrointestinal (GI) tract is home to trillions of bacteria that play a substantial role in host metabolism and immunity. While progress has been made in understanding the role that microbial communities play in human health and disease, much less attention has been given to host-associated microbiomes in nonhuman primates (NHPs). Here we review past and current research exploring the gut microbiome of NHPs. First, we summarize methods for characterization of the NHP gut microbiome. Then we discuss variation in gut microbiome composition and function across different NHP taxa. Finally, we highlight how studying the gut microbiome offers new insights into primate nutrition, physiology, and immune system function, as well as enhances our understanding of primate ecology and evolution. Microbiome approaches are useful tools for studying relevant issues in primate ecology. Further study of the gut microbiome of NHPs will offer new insight into primate ecology and evolution as well as human health.
Collapse
Affiliation(s)
- Jonathan B Clayton
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota.,GreenViet Biodiversity Conservation Center, Son Tra District, Danang, Vietnam.,Primate Microbiome Project, Minneapolis, Minnesota
| | - Andres Gomez
- Primate Microbiome Project, Minneapolis, Minnesota.,Department of Animal Science, University of Minnesota, St Paul, Minnesota
| | - Katherine Amato
- Primate Microbiome Project, Minneapolis, Minnesota.,Department of Anthropology, Northwestern University, Evanston, Illinois
| | - Dan Knights
- Primate Microbiome Project, Minneapolis, Minnesota.,Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota.,Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Dominic A Travis
- Primate Microbiome Project, Minneapolis, Minnesota.,Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, Minnesota
| | - Ran Blekhman
- Primate Microbiome Project, Minneapolis, Minnesota.,Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota.,Department of Ecology, Evolution, and Behavior, University of Minnesota, Falcon Heights, Minnesota
| | - Rob Knight
- Primate Microbiome Project, Minneapolis, Minnesota.,Department of Computer Science & Engineering, UC San Diego, La Jolla, California.,Department of Pediatrics, UC San Diego, La Jolla, California.,Center for Microbiome Innovation, UC San Diego, La Jolla, California
| | - Steven Leigh
- Primate Microbiome Project, Minneapolis, Minnesota.,Department of Anthropology, University of Colorado Boulder, Boulder, Colorado.,C.R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois
| | - Rebecca Stumpf
- Primate Microbiome Project, Minneapolis, Minnesota.,C.R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois.,Department of Anthropology, University of Illinois, Urbana, Illinois
| | - Tiffany Wolf
- Primate Microbiome Project, Minneapolis, Minnesota.,Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, Minnesota
| | - Kenneth E Glander
- Primate Microbiome Project, Minneapolis, Minnesota.,Department of Evolutionary Anthropology, Duke University, Durham, North Carolina
| | - Francis Cabana
- Primate Microbiome Project, Minneapolis, Minnesota.,Wildlife Nutrition Centre, Wildlife Reserves Singapore, Singapore
| | - Timothy J Johnson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota.,Primate Microbiome Project, Minneapolis, Minnesota.,University of Minnesota, Mid-Central Research and Outreach Center, Willmar, Minnesota
| |
Collapse
|
27
|
Krynak KL, Burke DJ, Martin RA, Dennis PM. Gut microbiome composition is associated with cardiac disease in zoo-housed western lowland gorillas (Gorilla gorilla gorilla). FEMS Microbiol Lett 2018; 364:3966717. [PMID: 28859316 DOI: 10.1093/femsle/fnx149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 07/11/2017] [Indexed: 01/04/2023] Open
Abstract
Cardiac disease is a leading cause of mortality in zoo-housed western lowland gorillas (Gorilla gorilla gorilla). The gut microbiome is associated with cardiac disease in humans and similarly the gut microbiome may be associated with cardiac diseases in close relatives of humans, such as gorillas. We assessed the relationship between cardiac disease and gut bacterial composition in eight zoo-housed male western lowland gorillas (N = 4 with and N = 4 without cardiac disease) utilizing 16S rRNA gene analysis on the Illumina MiSeq sequencing platform. We found bacterial composition differences between gorillas with and without cardiac disease. Bacterial operational taxonomic units from phyla Bacteroidetes, Spirochaetes, Proteobacteria and Firmicutes were significant indicators of cardiac disease. Our results suggest that further investigations between diet and cardiac disease could improve the management and health of zoo-housed populations of this endangered species.
Collapse
Affiliation(s)
- Katherine L Krynak
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106-7078, USA.,Conservation and Science Cleveland Metroparks, Cleveland, OH 44109, USA.,Department of Biological and Allied Health Sciences, Ohio Northern University, Ada, OH 45810, USA
| | | | - Ryan A Martin
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106-7078, USA
| | - Patricia M Dennis
- Conservation and Science Cleveland Metroparks, Cleveland, OH 44109, USA.,Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
28
|
Spergser J, Loncaric I, Tichy A, Fritz J, Scope A. The cultivable autochthonous microbiota of the critically endangered Northern bald ibis (Geronticus eremita). PLoS One 2018; 13:e0195255. [PMID: 29617453 PMCID: PMC5884550 DOI: 10.1371/journal.pone.0195255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 03/19/2018] [Indexed: 12/31/2022] Open
Abstract
The critically endangered Northern bald ibis (Geronticus eremita) is a migratory bird that became extinct in Europe centuries ago. Since 2014, the Northern bald ibis is subject to an intensive rehabilitation and conservation regime aiming to reintroduce the bird in its original distribution range in Central Europe and concurrently to maintain bird health and increase population size. Hitherto, virtually nothing is known about the microbial communities associated with the ibis species; an information pivotal for the veterinary management of these birds. Hence, the present study was conducted to provide a baseline description of the cultivable microbiota residing in the Northern bald ibis. Samples derived from the choana, trachea, crop and cloaca were examined employing a culturomic approach in order to identify microbes at each sampling site and to compare their frequency among age classes, seasonal appearances and rearing types. In total, 94 microbial species including 14 potentially new bacterial taxa were cultivated from the Northern bald ibis with 36, 58 and 59 bacterial species isolated from the choana, crop and cloaca, respectively. The microbiota of the Northern bald ibis was dominated by members of the phylum Firmicutes, followed by Proteobacteria, Actinobacteria, Bacteroidetes and Fusobacteria, altogether phylotypes commonly observed within avian gut environments. Differences in relative abundances of various microbial taxa were evident among sample types indicating mucosa-specific colonisation properties and tissue tropism. Besides, results of the present study indicate that the composition of microbiota was also affected by age, season (environment) and rearing type. While the prevalence of traditional pathogenic microbial species was extremely low, several opportunists including Clostridium perfringens toxotype A were frequently present in samples indicating that the Northern bald ibis may represent an important animal reservoir for these pathogens. In summary, the presented study provides a first inventory of the cultivable microbiota residing in the critically endangered Northern bald ibis and represents a first step in a wider investigation of the ibis microbiome with the ultimate goal to contribute to the management and survival of this critically endangered bird.
Collapse
Affiliation(s)
- Joachim Spergser
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
- * E-mail:
| | - Igor Loncaric
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Alexander Tichy
- Bioinformatics and Biostatistics Platform, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | | | - Alexandra Scope
- Clinical Unit of Internal Medicine Small Animals, Department/Clinic for Companion Animals and Horses, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
29
|
Hamad I, Ranque S, Azhar EI, Yasir M, Jiman-Fatani AA, Tissot-Dupont H, Raoult D, Bittar F. Culturomics and Amplicon-based Metagenomic Approaches for the Study of Fungal Population in Human Gut Microbiota. Sci Rep 2017; 7:16788. [PMID: 29196717 PMCID: PMC5711903 DOI: 10.1038/s41598-017-17132-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 11/15/2017] [Indexed: 12/17/2022] Open
Abstract
Herein, the mycobiota was characterized in fecal samples from sick patients and healthy subjects, collected from different geographical locations and using both culturomics and amplicon-based metagenomics approaches. Using the culturomics approach, a total of 17,800 fungal colonies were isolated from 14 fecal samples, and resulted in the isolation of 41 fungal species, of which 10 species had not been previously reported in the human gut. Deep sequencing of fungal-directed ITS1 and ITS2 amplicons led to the detection of a total of 142 OTUs and 173 OTUs from the ITS1 and ITS2 regions, respectively. Ascomycota composed the largest fraction of the total OTUs analyzed (78.9% and 68.2% of the OTUs from the ITS1 and ITS2 regions, respectively), followed by Basidiomycota (16.9% and 30.1% of the OTUs from the ITS1 and ITS2 regions, respectively). Interestingly, the results demonstrate that the ITS1/ITS2 amplicon sequencing provides different information about gut fungal communities compared to culturomics, though both approaches complete each other in assessing fungal diversity in fecal samples. We also report higher fungal diversity and abundance in patients compared to healthy subjects. In conclusion, combining both culturomic and amplicon-based metagenomic approaches may be a novel strategy towards analyzing fungal compositions in the human gut.
Collapse
Affiliation(s)
- Ibrahim Hamad
- Aix Marseille University, CNRS 7278, IRD 198, Inserm 1095, AP-HM, URMITE, IHU Méditerranée Infection, Marseille, France
- Charmo University, Charmo Research Center, 46023, Chamchamal, Sulaimani, Iraq
| | - Stéphane Ranque
- Aix Marseille University, CNRS 7278, IRD 198, Inserm 1095, AP-HM, URMITE, IHU Méditerranée Infection, Marseille, France
| | - Esam I Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Yasir
- Special Infectious Agents Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Asif A Jiman-Fatani
- Special Infectious Agents Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hervé Tissot-Dupont
- Aix Marseille University, CNRS 7278, IRD 198, Inserm 1095, AP-HM, URMITE, IHU Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Aix Marseille University, CNRS 7278, IRD 198, Inserm 1095, AP-HM, URMITE, IHU Méditerranée Infection, Marseille, France
| | - Fadi Bittar
- Aix Marseille University, CNRS 7278, IRD 198, Inserm 1095, AP-HM, URMITE, IHU Méditerranée Infection, Marseille, France.
| |
Collapse
|
30
|
Seck EH, Beye M, Traore SI, Khelaifia S, Michelle C, Couderc C, Brah S, Fournier PE, Raoult D, Bittar F. Bacillus kwashiorkori sp. nov., a new bacterial species isolated from a malnourished child using culturomics. Microbiologyopen 2017; 7. [PMID: 29076642 PMCID: PMC5822343 DOI: 10.1002/mbo3.535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/15/2017] [Indexed: 12/16/2022] Open
Abstract
Strain SIT6T was isolated from the fecal flora of a severely malnourished child as part of a broad “culturomics” study aiming to maximize the culture conditions for the in‐depth exploration of the human microbiota. An analysis of the 16S rRNA gene sequence showed that strain SIT6T shared 94.1% 16S rRNA gene sequence similarity with Bacillus thermoamylovorans DKPT (NR_029151), the phylogenetically closest type species. Colonies are creamy white, circular, 4–5 mm in diameter after cultivation at 37°C for 24 hr on 5% sheep blood‐enriched Colombia agar. Growth occurs at temperatures in the range of 25–56°C (optimally at 37°C). Strain SIT6T is a gram‐positive, facultative anaerobic rod and motile by means of peritrichous flagella and sporulating; it is catalase and oxidase positive. The 2,784,637‐bp‐long genome, composed of 16 contigs, has a G+C content of 35.19%. Of the 2,646 predicted genes, 2,572 were protein‐coding genes and 74 were RNAs. The major fatty acids are saturated species (15:0 iso, 16:0 and 17:0 anteiso). Of the 14 detected fatty acids, 11 are saturated, either linear or branched (iso and anteiso). Digital DNA–DNA hybridization (dDDH) estimation and average genomic identity of orthologous gene sequences (AGIOS) of the strain SIT6T against genomes of the type strains of related species ranged between 18.6% and 38.3% and between 54.77% and 65.50%, respectively. According to our taxonogenomics results, we propose the creation of Bacillus kwashiorkori sp. nov. that contains the type strain SIT6T (=CSUR P2452T, =DSM 29059T).
Collapse
Affiliation(s)
- El Hadji Seck
- Aix-Marseille Univ, CNRS 7278, AP-HM, IRD 198, INSERM 1095, URMITE, IHU Méditerranée Infection, Marseille, France
| | - Mamadou Beye
- Aix-Marseille Univ, CNRS 7278, AP-HM, IRD 198, INSERM 1095, URMITE, IHU Méditerranée Infection, Marseille, France
| | - Sory Ibrahima Traore
- Aix-Marseille Univ, CNRS 7278, AP-HM, IRD 198, INSERM 1095, URMITE, IHU Méditerranée Infection, Marseille, France
| | - Saber Khelaifia
- Aix-Marseille Univ, CNRS 7278, AP-HM, IRD 198, INSERM 1095, URMITE, IHU Méditerranée Infection, Marseille, France
| | - Caroline Michelle
- Aix-Marseille Univ, CNRS 7278, AP-HM, IRD 198, INSERM 1095, URMITE, IHU Méditerranée Infection, Marseille, France
| | - Carine Couderc
- Aix-Marseille Univ, CNRS 7278, AP-HM, IRD 198, INSERM 1095, URMITE, IHU Méditerranée Infection, Marseille, France
| | | | - Pierre-Edouard Fournier
- Aix-Marseille Univ, CNRS 7278, AP-HM, IRD 198, INSERM 1095, URMITE, IHU Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Aix-Marseille Univ, CNRS 7278, AP-HM, IRD 198, INSERM 1095, URMITE, IHU Méditerranée Infection, Marseille, France.,King Fahd Medical Research Center, Special Infectious Agents Unit, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fadi Bittar
- Aix-Marseille Univ, CNRS 7278, AP-HM, IRD 198, INSERM 1095, URMITE, IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
31
|
Genotyping ofBartonellabacteria and their animal hosts: current status and perspectives. Parasitology 2017; 145:543-562. [DOI: 10.1017/s0031182017001263] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SUMMARYGrowing evidence demonstrates that bacterial species diversity is substantial, and many of these species are pathogenic in some contexts or hosts. At the same time, laboratories and museums have collected valuable animal tissue and ectoparasite samples that may contain substantial novel information on bacterial prevalence and diversity. However, the identification of bacterial species is challenging, partly due to the difficulty in culturing many microbes and the reliance on molecular data. Although the genomics revolution will surely add to our knowledge of bacterial systematics, these approaches are not accessible to all researchers and rely predominantly on cultured isolates. Thus, there is a need for comprehensive molecular analyses capable of accurately genotyping bacteria from animal tissues or ectoparasites using common methods that will facilitate large-scale comparisons of species diversity and prevalence. To illustrate the challenges of genotyping bacteria, we focus on the genusBartonella, vector-borne bacteria common in mammals. We highlight the value and limitations of commonly used techniques for genotyping bartonellae and make recommendations for researchers interested in studying the diversity of these bacteria in various samples. Our recommendations could be applicable to many bacterial taxa (with some modifications) and could lead to a more complete understanding of bacterial species diversity.
Collapse
|
32
|
Mori M, Mertens K, Cutler SJ, Santos AS. Critical Aspects for Detection of Coxiella burnetii. Vector Borne Zoonotic Dis 2017; 17:33-41. [PMID: 28055578 DOI: 10.1089/vbz.2016.1958] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Coxiella burnetii is a globally distributed zoonotic γ-proteobacterium with an obligatory intracellular lifestyle. It is the causative agent of Q fever in humans and of coxiellosis among ruminants, although the agent is also detected in ticks, birds, and various other mammalian species. Requirements for intracellular multiplication together with the necessity for biosafety level 3 facilities restrict the cultivation of C. burnetii to specialized laboratories. Development of a novel medium formulation enabling axenic growth of C. burnetii has facilitated fundamental genetic studies. This review provides critical insights into direct diagnostic methods currently available for C. burnetii. It encompasses molecular detection methods, isolation, and propagation of the bacteria and its genetic characterization. Differentiation of C. burnetii from Coxiella-like organisms is an essential diagnostic prerequisite, particularly when handling and analyzing ticks.
Collapse
Affiliation(s)
- Marcella Mori
- 1 Bacterial Zoonoses of Livestock, Operational Directorate Bacterial Diseases, Veterinary and Agrochemical Research Centre, CODA-CERVA , Brussels, Belgium .,2 Belgian Reference Centre for Coxiella burnetii and Bartonella , Brussels, Belgium
| | - Katja Mertens
- 3 Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute for Bacterial Infections and Zoonoses , Jena, Germany
| | | | - Ana Sofia Santos
- 5 Centre for Vector and Infectious Diseases Research, National Institute of Health Doutor Ricardo Jorge , Águas de Moura, Portugal
| |
Collapse
|
33
|
Meng X, Lu S, Lai XH, Wang Y, Wen Y, Jin D, Yang J, Xu J. Actinomyces liubingyangii sp. nov. isolated from the vulture Gypaetus barbatus. Int J Syst Evol Microbiol 2017. [PMID: 28629506 DOI: 10.1099/ijsem.0.001884] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two strains (VUL4_1T and VUL4_2) of Gram-staining-positive, catalase-negative, non-spore-forming short rods were isolated from rectal swabs of Old World vultures (Gypaetus barbatus) in the Tibet-Qinghai Plateau, China. Analysis of morphological characteristics and biochemical tests indicated that the two strains closely resembled each other but were distinct from other species of the genus Actinomyces previously described. Based on the results of 16S rRNA gene sequence comparison and genome analysis, strains were determined to be members of the genus Actinomyces, closely related to the type strains of Actinomyces marimammalium (96.4 % 16S rRNA gene sequence similarity), Actinomyceshongkongensis (92.4 %), Actinomyceshordeovulneris (92.3 %) and Actinomycesnasicola (92.2 %), respectively. Optimal growth conditions were 37 °C, pH 6-7, with 1 % (w/v) NaCl. Strain VUL4_1T contained C18 : 1ω9c and C16 : 0 as the major cellular fatty acids and diphosphatidylglycerol as the major component of the polar lipids. The genomic DNA G+C content of VUL4_1T was 54.9 mol%. Strain VUL4_1T showed less than 70 % DNA-DNA relatedness with other species of the genus Actinomyces, further supporting strain VUL4_1T as a representative of a novel species. Based on the phenotypic data and phylogenetic inference, a novel species, Actinomyces liubingyangii sp. nov., is proposed with VUL4_1T (=CGMCC 4.7370T=DSM 104050T) as the type strain.
Collapse
Affiliation(s)
- Xiangli Meng
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Shan Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Xin-He Lai
- Department of Pediatrics & Institute of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Yiting Wang
- Institute for Immunization and Prevention, Beijing Center for Diseases Prevention and Control, Beijing, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Yumeng Wen
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Dong Jin
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Jing Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China.,Shanghai Institute for Emerging and Remerging Infectious Diseases, Shanghai Public Health Clinical Center, Jinshan, Shanghai, PR China
| |
Collapse
|
34
|
Meng X, Lu S, Wang Y, Lai XH, Wen Y, Jin D, Yang J, Bai X, Zhang G, Pu J, Lan R, Xu J. Actinomyces vulturis sp. nov., isolated from Gyps himalayensis. Int J Syst Evol Microbiol 2017. [PMID: 28629509 DOI: 10.1099/ijsem.0.001851] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Two strains of Gram-stain-positive, facultatively anaerobic, non-spore-forming short rods (VUL7T and VUL8) were isolated from rectal swabs of Old World vultures, namely Gyps himalayensis, in Tibet-Qinghai Plateau, China. Optimal growth occurred at 37 °C, pH 6-7, with 1 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences classified the two strains to the genus Actinomyces, with highest 16S rRNA gene sequence similarity (95 %) to type strains of Actinomyces haliotis, Actinomyces radicidentis and Actinomyces urogenitalis. The major cellular fatty acids were C18 : 1ω9c and C16 : 0. MK-10(H4) was the major respiratory quinone. The genomic DNA G+C content of the isolate was 54.4 mol%. DNA-DNA hybridization values with the most closely related species ofthe genusActinomyces was 24.6 %. The two strains can be differentiated from the most closely related species such as A. haliotis, A. radicidentis, A. graevenitzii and A. urogenitalis by a list of carbohydrate fermentations and enzyme activities. On the basis of physiological, biochemical and phylogenetic analysis, strains VUL7T and VUL8 represent novel species of the genus Actinomyces, for which the name Actinomyces vulturis sp. nov. is proposed. The type strain is VUL7T (=CGMCC 4.7366T=DSM 103437T).
Collapse
Affiliation(s)
- Xiangli Meng
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Shan Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Yiting Wang
- Institute for Immunization and Prevention, Beijing Center for Diseases Prevention and Control, Beijing 100013, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Xin-He Lai
- Institute of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Yumeng Wen
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Dong Jin
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Jing Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Xiangning Bai
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Gui Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Ji Pu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Riuting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Jianguo Xu
- Shanghai Institute for Emerging and Remerging Infectious Diseases, Shanghai Public Health Clinical Center, Jinshan, Shanghai, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| |
Collapse
|
35
|
Description of Chryseobacterium timonianum sp. nov., isolated from a patient with pneumonia. Antonie Van Leeuwenhoek 2017; 110:1121-1132. [PMID: 28509971 DOI: 10.1007/s10482-017-0885-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/05/2017] [Indexed: 10/19/2022]
Abstract
Using a polyphasic taxonomic strategy, an aerobic, Gram-negative, non-motile, yellow pigmented rod isolated from a sputum sample of a patient with pneumonia was characterised. This bacterial strain, designated G972T, could not be identified by our systematic MALDI-TOF screening on a MicroFlex. This led to the sequencing of the 16S rRNA gene, which shows 98.57% sequence identity with that of Chryseobacterium indologenes 16777T, the phylogenetic closely related type strain of a species with standing in nomenclature, which putatively classifies it as a new species. The major cell fatty acids were identified as 13-methyl-tetradecanoic acid (61%), 3-hydroxy-heptadecanoic acid (16%) and 15-methyl-11-hexadecenoic acid (11%). D-glucose, D-mannose, aesculin, D-maltose, D-trehalose, and gentibiose are the main carbon source. Digital DNA-DNA hybridization (dDDH) estimation and average nucleotide identity values (ANI) of the strain G972T against genomes of the type strains of related species ranged between 18.9 and 32.8% and between 71.46 and 83.61%, respectively, thus confirming again the new species status of the strain. Here, we describe the characteristics of this organism, complete genome sequence and annotation. The 5,390,132 bp size genome contains 4867 protein-coding genes, 89 RNAs (three genes are 5S rRNA, one gene is 16S rRNA, one gene is 23S rRNA and 84 tRNAs) with 35.51% GC content. Finally, on the basis of these polyphasic data, consisting of phenotypic and genomic analyses, we conclude that strain strain G972T (= DSM 103388T = CSUR P2233T) represents a novel species for which we propose the name Chryseobacterium timonianum. The 16S rRNA and genome sequences are available in GenBank database under accession numbers LT161886 and FJVD00000000.
Collapse
|
36
|
Kambouris ME, Pavlidis C, Skoufas E, Arabatzis M, Kantzanou M, Velegraki A, Patrinos GP. Culturomics: A New Kid on the Block of OMICS to Enable Personalized Medicine. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2017; 22:108-118. [PMID: 28402209 DOI: 10.1089/omi.2017.0017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This innovation analysis highlights the underestimated and versatile potential of the new field of culturomics and examines its relation to other OMICS system sciences such as infectiomics, metabolomics, phenomics, and pharmacomicrobiomics. The advent of molecular biology, followed by the emergence of various disciplines of the genomics, and most importantly metagenomics, brought about the sharp decline of conventional microbiology methods. Emergence of culturomics has a natural synergy with therapeutic and clinical genomic approaches so as to realize personalized medicine. Notably, the concept of culturomics expands on that of phenomics and allows a reintroduction of the culture-based phenotypic characterization into the 21st century research repertoire, bolstered by robust technology for automated and massive execution, but its potential is largely unappreciated at present; the few available references show unenthusiastic pursuit and in narrow applications. This has not to be so: depending on the specific brand of culturomics, the scope of applications may extend to medicine, agriculture, environmental sciences, pharmacomicrobiomics, and biotechnology innovation. Moreover, culturomics may produce Big Data. This calls for a new generation of data scientists and innovative ways of harnessing and valorizing Big Data beyond classical genomics. Much more detailed and objective classification and identification of microbiota may soon be at hand through culturomics, thus enabling precision diagnosis toward truly personalized medicine. Culturomics may both widen the scope of microbiology and improve its contributions to diagnostics and personalized medicine, characterizing microbes and determining their associations with health and disease dynamics.
Collapse
Affiliation(s)
- Manousos E Kambouris
- 1 The Golden Helix Foundation , London, United Kingdom .,2 Department of Oenology and Beverage Technology, School of Food Technology, Higher Technological Educational Institute , Athens, Greece
| | | | - Efthymios Skoufas
- 3 Department of Pharmacy, School of Health Sciences, University of Patras , Patras, Greece
| | - Michael Arabatzis
- 4 Department of Microbiology, School of Medicine, National and Kapodistrian University of Athens , Athens Greece
| | - Maria Kantzanou
- 5 Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens , Athens, Greece
| | - Aristea Velegraki
- 4 Department of Microbiology, School of Medicine, National and Kapodistrian University of Athens , Athens Greece
| | - George P Patrinos
- 3 Department of Pharmacy, School of Health Sciences, University of Patras , Patras, Greece .,6 Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University , Al-Ain, United Arab Emirates
| |
Collapse
|
37
|
Drzewiecka D. Significance and Roles of Proteus spp. Bacteria in Natural Environments. MICROBIAL ECOLOGY 2016; 72:741-758. [PMID: 26748500 PMCID: PMC5080321 DOI: 10.1007/s00248-015-0720-6] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 12/13/2015] [Indexed: 05/04/2023]
Abstract
Proteus spp. bacteria were first described in 1885 by Gustav Hauser, who had revealed their feature of intensive swarming growth. Currently, the genus is divided into Proteus mirabilis, Proteus vulgaris, Proteus penneri, Proteus hauseri, and three unnamed genomospecies 4, 5, and 6 and consists of 80 O-antigenic serogroups. The bacteria are known to be human opportunistic pathogens, isolated from urine, wounds, and other clinical sources. It is postulated that intestines are a reservoir of these proteolytic organisms. Many wild and domestic animals may be hosts of Proteus spp. bacteria, which are commonly known to play a role of parasites or commensals. However, interesting examples of their symbiotic relationships with higher organisms have also been described. Proteus spp. bacteria present in soil or water habitats are often regarded as indicators of fecal pollution, posing a threat of poisoning when the contaminated water or seafood is consumed. The health risk may also be connected with drug-resistant strains sourcing from intestines. Positive aspects of the bacteria presence in water and soil are connected with exceptional features displayed by autochthonic Proteus spp. strains detected in these environments. These rods acquire various metabolic abilities allowing their adaptation to different environmental conditions, such as high concentrations of heavy metals or toxic substances, which may be exploited as sources of energy and nutrition by the bacteria. The Proteus spp. abilities to tolerate or utilize polluting compounds as well as promote plant growth provide a possibility of employing these microorganisms in bioremediation and environmental protection.
Collapse
Affiliation(s)
- Dominika Drzewiecka
- Department of General Microbiology, Institute of Microbiology, Biotechnology and Immunology, University of Łódź, 90-237, Łódź, Poland.
| |
Collapse
|
38
|
Su C, Zuo R, Liu W, Sun Y, Li Z, Jin X, Jia K, Yang Y, Zhang H. Fecal Bacterial Composition of Sichuan Snub-Nosed Monkeys (Rhinopithecus roxellana). INT J PRIMATOL 2016. [DOI: 10.1007/s10764-016-9918-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
39
|
Sato S, Kabeya H, Yoshino A, Sekine W, Suzuki K, Tamate HB, Yamazaki S, Chomel BB, Maruyama S. Japanese Macaques (Macaca fuscata) as Natural Reservoir of Bartonella quintana. Emerg Infect Dis 2016; 21:2168-70. [PMID: 26584238 PMCID: PMC4672446 DOI: 10.3201/eid2112.150632] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Bartonella quintana bacteremia was detected in 6 (13.3%) of 45 wild-caught Japanese macaques (Macaca fuscata). Multilocus sequence typing of the isolates revealed that Japanese macaques were infected with a new and specific B. quintana sequence type. Free-ranging Japanese macaques thus represent another natural reservoir of B. quintana.
Collapse
|
40
|
Guy J, Mottron L, Berthiaume C, Bertone A. A Developmental Perspective of Global and Local Visual Perception in Autism Spectrum Disorder. J Autism Dev Disord 2016. [PMID: 27371139 DOI: 10.1007/s10803-016-2834-1.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Individuals with autism spectrum disorder (ASD) demonstrate superior performances on visuo-spatial tasks emphasizing local information processing; however, findings from studies involving hierarchical stimuli are inconsistent. Wide age ranges and group means complicate their interpretability. Children and adolescents with and without ASD completed a Navon task wherein they identified global and local stimuli composed of either consistent or inconsistent letters. Trajectories of reaction time in global and local conditions were similar within and between groups when consistent and inconsistent stimuli were considered together, but the effect of local-to-global interference was significantly higher in participants with than without ASD. Age was not a significant predictor of local-to-global interference, suggesting that this effect emerges in childhood and persists throughout adolescence in ASD.
Collapse
Affiliation(s)
- Jacalyn Guy
- Perceptual Neuroscience Laboratory for Autism and Development, McGill University, 3724 McTavish Street, Montreal, QC, H3A 1Y2, Canada. .,Integrated Program in Neuroscience, McGill University, Montreal, Canada.
| | - Laurent Mottron
- Centre d'excellence en Troubles envahissants du développement de l'Université de Montréal (CETEDUM), Hôpital Rivière-des-Prairies, Montreal, Canada
| | - Claude Berthiaume
- Centre d'excellence en Troubles envahissants du développement de l'Université de Montréal (CETEDUM), Hôpital Rivière-des-Prairies, Montreal, Canada
| | - Armando Bertone
- Perceptual Neuroscience Laboratory for Autism and Development, McGill University, 3724 McTavish Street, Montreal, QC, H3A 1Y2, Canada.,Centre d'excellence en Troubles envahissants du développement de l'Université de Montréal (CETEDUM), Hôpital Rivière-des-Prairies, Montreal, Canada.,School/Applied Child Psychology, Department of Educational and Counseling Psychology, McGill University, Montreal, Canada
| |
Collapse
|
41
|
Abstract
The Planctomycetes genus Gemmata is represented by both uncultured organisms and cultured Gemmata obscuriglobus and 'Gemmata massiliana' organisms. Their plasmidless 9.2 Mb genomes encode a complex cell plan, cell signaling capacities, antibiotic and trace metal resistance and multidrug resistance efflux pumps. As they lack iron metabolism pathways, they are fastidious. Gemmata spp. are mainly found in aquatic and soil environments but have also been found in hospital water networks in close proximity to patients, in animals, on human skin, the gut microbiota and in the blood of aplastic leukemic patients. Due to their panoply of attack and defense mechanisms and their recently demonstrated association with humans, the potential of Gemmata organisms to behave as opportunistic pathogens should be more widely recognized.
Collapse
Affiliation(s)
- Rita Aghnatios
- Aix Marseille Université, URMITE, UMR CNRS 7278, IRD 198, INSERM 1095. Faculté de Médecine, Marseille 13005, France
| | - Michel Drancourt
- Aix Marseille Université, URMITE, UMR CNRS 7278, IRD 198, INSERM 1095. Faculté de Médecine, Marseille 13005, France
| |
Collapse
|
42
|
Keita MB, Padhmanabhan R, Robert C, Delaporte E, Raoult D, Fournier PE, Bittar F. Non-contiguous-Finished Genome Sequence and Description of Paenibacillus camerounensis sp. nov. MICROBIAL ECOLOGY 2016; 71:990-998. [PMID: 26714966 DOI: 10.1007/s00248-015-0722-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 12/15/2015] [Indexed: 06/05/2023]
Abstract
Strain G4(T) was isolated from the stool sample of a wild gorilla (Gorilla gorilla gorilla) from Cameroon. It is a facultative anaerobic, Gram-negative, rod-shaped bacterium. This strain exhibits a 16S rRNA nucleotide sequence similarity of 97.48% with Paenibacillus typhae, the phylogenetically closest species with standing nomenclature. Moreover, the strain G4(T) presents some phenotypic differences when compared to other Paenibacillus species and shows a low MALDI-TOF Mass Spectrometry score that does not allow any identification. Thus, it is likely that this strain represents a new species. Here, we describe the characteristics of this organism, complete genome sequence, and annotation. The 6,933,847 bp size genome (1 chromosome but no plasmid) contains 5972 protein-coding genes and 54 RNAs genes, including 44 tRNA genes. In addition, digital DNA-DNA hybridization values for the genome of the strain G4(T) against the closest Paenibacillus genomes range between 19.7 and 22.1, once again confirming its new status as a new species. On the basis of these polyphasic data, consisting of phenotypic and genomic analyses, we propose the creation of Paenibacillus camerounensis sp. nov. that contains the strain G4(T).
Collapse
Affiliation(s)
| | | | - Catherine Robert
- Faculté de médecine, URMITE, Aix-Marseille Université, Marseille, France
| | | | - Didier Raoult
- Faculté de médecine, URMITE, Aix-Marseille Université, Marseille, France
- King Fahad Medical Research Center, King Abdul Aziz University, Jeddah, Saudi Arabia
| | | | - Fadi Bittar
- Faculté de médecine, URMITE, Aix-Marseille Université, Marseille, France.
| |
Collapse
|
43
|
Hadjadj L, Rathored J, Keita MB, Michelle C, Levasseur A, Raoult D, Fournier PE, Rolain JM, Bittar F. Non contiguous-finished genome sequence and description of Microbacterium gorillae sp. nov. Stand Genomic Sci 2016; 11:32. [PMID: 27087892 PMCID: PMC4832456 DOI: 10.1186/s40793-016-0152-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 04/08/2016] [Indexed: 11/10/2022] Open
Abstract
Strain G3(T) (CSUR P207 = DSM 26203) was isolated from the fecal sample of a wild gorilla (Gorilla gorilla subsp gorilla) from Cameroon. It is a Gram-positive, facultative anaerobic short rod. This strain exhibits a 16S rRNA sequence similarity of 98.2 % with Microbacterium thalassium, the closest validly published Microbacterium species and member of the family Microbacteriaceae. Moreover, it shows a low MALDI-TOF-MS score (1.1 to 1.3) that does not allow any identification. Thus, it is likely that this strain represents a new species. Here we describe the phenotypic features of this organism, the complete genome sequence and annotation. The 3,692,770 bp long genome (one chromosome but no plasmid) contains 3,505 protein-coding and 61 RNA genes, including 4 rRNA genes. In addition, digital DNA-DNA hybridization values for the genome of the strain G3(T) against the closest Microbacterium genomes range between 19.7 to 20.5, once again confirming its new status as a new species. On the basis of these polyphasic data, consisting of phenotypic and genomic analyses, we propose the creation of Microbacterium gorillae sp. nov. that contains the strain G3(T).
Collapse
Affiliation(s)
- Linda Hadjadj
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM63, CNRS7278, IRD 198, Inserm 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France
| | - Jaishriram Rathored
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM63, CNRS7278, IRD 198, Inserm 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France
| | - Mamadou Bhoye Keita
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM63, CNRS7278, IRD 198, Inserm 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France
| | - Caroline Michelle
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM63, CNRS7278, IRD 198, Inserm 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France
| | - Anthony Levasseur
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM63, CNRS7278, IRD 198, Inserm 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France
| | - Didier Raoult
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM63, CNRS7278, IRD 198, Inserm 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France ; King Fahad Medical Research Center, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Pierre-Edouard Fournier
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM63, CNRS7278, IRD 198, Inserm 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France
| | - Jean-Marc Rolain
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM63, CNRS7278, IRD 198, Inserm 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France
| | - Fadi Bittar
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM63, CNRS7278, IRD 198, Inserm 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France
| |
Collapse
|
44
|
Beneficial Effect of Bidens pilosa on Body Weight Gain, Food Conversion Ratio, Gut Bacteria and Coccidiosis in Chickens. PLoS One 2016; 11:e0146141. [PMID: 26765226 PMCID: PMC4713076 DOI: 10.1371/journal.pone.0146141] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/13/2015] [Indexed: 01/19/2023] Open
Abstract
In the interests of food safety and public health, plants and their compounds are now re-emerging as an alternative approach to treat gastrointestinal diseases in chickens. Here, we studied the impact of the edible medicinal plant, B. pilosa, on growth performance, gut bacteria and coccidiosis in chickens. First, we found that B. pilosa significantly elevated body weight gain and lowered feed conversion ratio in chickens. Next, we showed that B. pilosa reduced cecal damage as evidenced by increased hemorrhage, villus destruction and decreased villus-to-crypt ratio in chicken ceca. We also performed pyrosequencing of the PCR ampilcons based on the 16S rRNA genes of gut bacteria in chickens. Metagenomic analysis indicated that the chicken gut bacteria belonged to 6 phyla, 6 classes, 6 orders, 9 families, and 8 genera. More importantly, we found that B. pilosa affected the composition of bacteria. This change in bacteria composition was correlated with body weight gain, feed conversion ratio and gut pathology in chickens. Collectively, this work suggests that B. pilosa has beneficial effects on growth performance and protozoan infection in chickens probably via modulation of gut bacteria.
Collapse
|
45
|
Hugon P, Dufour JC, Colson P, Fournier PE, Sallah K, Raoult D. A comprehensive repertoire of prokaryotic species identified in human beings. THE LANCET. INFECTIOUS DISEASES 2015; 15:1211-1219. [PMID: 26311042 DOI: 10.1016/s1473-3099(15)00293-5] [Citation(s) in RCA: 239] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 02/17/2015] [Accepted: 02/27/2015] [Indexed: 02/07/2023]
Abstract
The compilation of the complete prokaryotic repertoire associated with human beings as commensals or pathogens is a major goal for the scientific and medical community. The use of bacterial culture techniques remains a crucial step to describe new prokaryotic species. The large number of officially acknowledged bacterial species described since 1980 and the recent increase in the number of recognised pathogenic species have highlighted the absence of an exhaustive compilation of species isolated in human beings. By means of a thorough investigation of several large culture databases and a search of the scientific literature, we built an online database containing all human-associated prokaryotic species described, whether or not they had been validated and have standing in nomenclature. We list 2172 species that have been isolated in human beings. They were classified in 12 different phyla, mostly in the Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes phyla. Our online database is useful for both clinicians and microbiologists and forms part of the Human Microbiome Project, which aims to characterise the whole human microbiota and help improve our understanding of the human predisposition and susceptibility to infectious agents.
Collapse
Affiliation(s)
- Perrine Hugon
- Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France
| | - Jean-Charles Dufour
- Assistance Publique des Hôpitaux de Marseille, BioSTIC, Pôle de Santé Publique, Marseille, France; Aix-Marseille Université, UMR912 SESSTIM (AMU-INSERM-IRD), Marseille, France
| | - Philippe Colson
- Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France
| | - Pierre-Edouard Fournier
- Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France
| | - Kankoe Sallah
- Aix-Marseille Université, UMR912 SESSTIM (AMU-INSERM-IRD), Marseille, France
| | - Didier Raoult
- Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France; Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
46
|
Sato S, Kabeya H, Yoshino A, Sekine W, Suzuki K, Tamate HB, Yamazaki S, Chomel BB, Maruyama S. Japanese Macaques (Macaca fuscata) as Natural Reservoir ofBartonella quintana. Emerg Infect Dis 2012. [DOI: 10.3201/eid/2112.150632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|