1
|
Ghiasi M, Kheirandish Zarandi P, Dayani A, Salimi A, Shokri E. Potential therapeutic effects and nano-based delivery systems of mesenchymal stem cells and their isolated exosomes to alleviate acute respiratory distress syndrome caused by COVID-19. Regen Ther 2024; 27:319-328. [PMID: 38650667 PMCID: PMC11035022 DOI: 10.1016/j.reth.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/03/2024] [Accepted: 03/15/2024] [Indexed: 04/25/2024] Open
Abstract
The severe respiratory effects of the coronavirus disease 2019 (COVID-19) pandemic have necessitated the immediate development of novel treatments. The majority of COVID-19-related fatalities are due to acute respiratory distress syndrome (ARDS). Consequently, this virus causes massive and aberrant inflammatory conditions, which must be promptly managed. Severe respiratory disorders, notably ARDS and acute lung injury (ALI), may be treated safely and effectively using cell-based treatments, mostly employing mesenchymal stem cells (MSCs). Since the high potential of these cells was identified, a great deal of research has been conducted on their use in regenerative medicine and complementary medicine. Multiple investigations have demonstrated that MSCs and their products, especially exosomes, inhibit inflammation. Exosomes serve a critical function in intercellular communication by transporting molecular cargo from donor cells to receiver cells. MSCs and their derived exosomes (MSCs/MSC-exosomes) may improve lung permeability, microbial and alveolar fluid clearance, and epithelial and endothelial repair, according to recent studies. This review focuses on COVID-19-related ARDS clinical studies involving MSCs/MSC-exosomes. We also investigated the utilization of Nano-delivery strategies for MSCs/MSC-exosomes and anti-inflammatory agents to enhance COVID-19 treatment.
Collapse
Affiliation(s)
- Mohsen Ghiasi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Abdolreza Dayani
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Salimi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ehsan Shokri
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
2
|
Rex V, Zargari R, Stempel M, Halle S, Brinkmann MM. The innate and T-cell mediated immune response during acute and chronic gammaherpesvirus infection. Front Cell Infect Microbiol 2023; 13:1146381. [PMID: 37065193 PMCID: PMC10102517 DOI: 10.3389/fcimb.2023.1146381] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Immediately after entry into host cells, viruses are sensed by the innate immune system, leading to the activation of innate antiviral effector mechanisms including the type I interferon (IFN) response and natural killer (NK) cells. This innate immune response helps to shape an effective adaptive T cell immune response mediated by cytotoxic T cells and CD4+ T helper cells and is also critical for the maintenance of protective T cells during chronic infection. The human gammaherpesvirus Epstein-Barr virus (EBV) is a highly prevalent lymphotropic oncovirus that establishes chronic lifelong infections in the vast majority of the adult population. Although acute EBV infection is controlled in an immunocompetent host, chronic EBV infection can lead to severe complications in immunosuppressed patients. Given that EBV is strictly host-specific, its murine homolog murid herpesvirus 4 or MHV68 is a widely used model to obtain in vivo insights into the interaction between gammaherpesviruses and their host. Despite the fact that EBV and MHV68 have developed strategies to evade the innate and adaptive immune response, innate antiviral effector mechanisms still play a vital role in not only controlling the acute infection but also shaping an efficient long-lasting adaptive immune response. Here, we summarize the current knowledge about the innate immune response mediated by the type I IFN system and NK cells, and the adaptive T cell-mediated response during EBV and MHV68 infection. Investigating the fine-tuned interplay between the innate immune and T cell response will provide valuable insights which may be exploited to design better therapeutic strategies to vanquish chronic herpesviral infection.
Collapse
Affiliation(s)
- Viktoria Rex
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Razieh Zargari
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Markus Stempel
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
- Virology and Innate Immunity Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stephan Halle
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
- *Correspondence: Stephan Halle, ; Melanie M. Brinkmann,
| | - Melanie M. Brinkmann
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
- Virology and Innate Immunity Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
- *Correspondence: Stephan Halle, ; Melanie M. Brinkmann,
| |
Collapse
|
3
|
Broussard G, Ni G, Zhang Z, Li Q, Cano P, Dittmer DP, Damania B. Barrier-to-autointegration factor 1 promotes gammaherpesvirus reactivation from latency. Nat Commun 2023; 14:434. [PMID: 36746947 PMCID: PMC9902469 DOI: 10.1038/s41467-023-35898-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/06/2023] [Indexed: 02/08/2023] Open
Abstract
Gammaherpesviruses, including Kaposi sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV), are DNA viruses that are globally associated with human cancers and establish lifelong latency in the human population. Detection of gammaherpesviral infection by the cGAS-STING innate immune DNA-sensing pathway is critical for suppressing viral reactivation from latency, a process that promotes viral pathogenesis and transmission. We report that barrier-to-autointegration factor 1 (BAF)-mediated suppression of the cGAS-STING signaling pathway is necessary for reactivation of KSHV and EBV. We demonstrate a role for BAF in destabilizing cGAS expression and show that inhibiting BAF expression in latently infected, reactivating, or uninfected cells leads to increased type I interferon-mediated antiviral responses and decreased viral replication. Furthermore, BAF overexpression resulted in decreased cGAS expression at the protein level. These results establish BAF as a key regulator of the lifecycle of gammaherpesviruses and a potential target for treating viral infections and malignancies.
Collapse
Affiliation(s)
- Grant Broussard
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Guoxin Ni
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Zhigang Zhang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Qian Li
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Patricio Cano
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Dirk P Dittmer
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
4
|
Sun X, Huang LY, Pan HX, Li LJ, Wang L, Pei GQ, Wang Y, Zhang Q, Cheng HX, He CQ, Wei Q. Bone marrow mesenchymal stem cells and exercise restore motor function following spinal cord injury by activating PI3K/AKT/mTOR pathway. Neural Regen Res 2022; 18:1067-1075. [PMID: 36254995 PMCID: PMC9827790 DOI: 10.4103/1673-5374.355762] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Although many therapeutic interventions have shown promise in treating spinal cord injury, focusing on a single aspect of repair cannot achieve successful and functional regeneration in patients following spinal cord injury . In this study, we applied a combinatorial approach for treating spinal cord injury involving neuroprotection and rehabilitation, exploiting cell transplantation and functional sensorimotor training to promote nerve regeneration and functional recovery. Here, we used a mouse model of thoracic contusive spinal cord injury to investigate whether the combination of bone marrow mesenchymal stem cell transplantation and exercise training has a synergistic effect on functional restoration. Locomotor function was evaluated by the Basso Mouse Scale, horizontal ladder test, and footprint analysis. Magnetic resonance imaging, histological examination, transmission electron microscopy observation, immunofluorescence staining, and western blotting were performed 8 weeks after spinal cord injury to further explore the potential mechanism behind the synergistic repair effect. In vivo, the combination of bone marrow mesenchymal stem cell transplantation and exercise showed a better therapeutic effect on motor function than the single treatments. Further investigations revealed that the combination of bone marrow mesenchymal stem cell transplantation and exercise markedly reduced fibrotic scar tissue, protected neurons, and promoted axon and myelin protection. Additionally, the synergistic effects of bone marrow mesenchymal stem cell transplantation and exercise on spinal cord injury recovery occurred via the PI3K/AKT/mTOR pathway. In vitro, experimental evidence from the PC12 cell line and primary cortical neuron culture also demonstrated that blocking of the PI3K/AKT/mTOR pathway would aggravate neuronal damage. Thus, bone marrow mesenchymal stem cell transplantation combined with exercise training can effectively restore motor function after spinal cord injury by activating the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Xin Sun
- Rehabilitation Medical Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan Province, China
| | - Li-Yi Huang
- Rehabilitation Medical Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan Province, China
| | - Hong-Xia Pan
- Rehabilitation Medical Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan Province, China
| | - Li-Juan Li
- Rehabilitation Medical Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan Province, China
| | - Lu Wang
- Rehabilitation Medical Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan Province, China
| | - Gai-Qin Pei
- Rehabilitation Medical Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan Province, China
| | - Yang Wang
- Rehabilitation Medical Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan Province, China
| | - Qing Zhang
- Rehabilitation Medical Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan Province, China
| | - Hong-Xin Cheng
- Rehabilitation Medical Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan Province, China
| | - Cheng-Qi He
- Rehabilitation Medical Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan Province, China
| | - Quan Wei
- Rehabilitation Medical Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan Province, China,Correspondence to: Quan Wei, .
| |
Collapse
|
5
|
Sharma A, Kulkarni R, Sane H, Awad N, Bopardikar A, Joshi A, Baweja S, Joshi M, Vishwanathan C, Gokulchandran N, Badhe P, Khan M, Paranjape A, Kulkarni P, Methal AK. Phase 1 clinical trial for intravenous administration of mesenchymal stem cells derived from umbilical cord and placenta in patients with moderate COVID-19 virus pneumonia: results of stage 1 of the study. AMERICAN JOURNAL OF STEM CELLS 2022; 11:37-55. [PMID: 35873716 PMCID: PMC9301142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE Mesenchymal stem cells can serve as a therapeutic option for COVID-19. Their immunomodulatory and anti-inflammatory properties can regulate the exaggerated inflammatory response and promote recovery of lung damage. METHOD Phase-1, single-centre open-label, prospective clinical trial was conducted to evaluate the safety and efficacy of intravenous administration of mesenchymal stem cells derived from umbilical cord and placenta in moderate COVID-19. The study was done in 2 stages with total 20 patients. Herein, the results of stage 1 including first 10 patients receiving 100 million cells on day 1 and 4 with a follow up of 6 months have been discussed. RESULTS No adverse events were recorded immediately after the administration of MSCs or on follow up. There was no deterioration observed in clinical, laboratory and radiological parameters. All symptoms of the study group resolved within 10 days. Levels of inflammatory biomarkers such as NLR, CRP, IL6, ferritin and D-dimer improved in all patients after intervention along with improved oxygenation demonstrated by improvement in the SpO2/FiO2 ratio and PaO2/FiO2 ratio. None of the patients progressed to severe stage. 9 out of 10 patients were discharged within 9 days of their admission. Improvements were noted in chest x-ray and chest CT scan scores at day 7 in most patients. No post-covid fibrosis was observed on chest CT 28 days after intervention and Chest X ray after 6 months of the intervention. CONCLUSION Administration of 100 million mesenchymal stem cells in combination with standard treatment was found to be safe and resulted in prevention of the cytokine storm, halting of the disease progression and acceleration of recovery in moderate COVID-19. This clinical trial has been registered with the Clinical Trial Registry- India (CTRI) as CTRI/2020/08/027043. http://www.ctri.nic.in/Clinicaltrials/pmaindet2.php?trialid=43175.
Collapse
Affiliation(s)
- Alok Sharma
- Department of Neurosurgery, LTMG Hospital and LTM Medical CollegeMumbai, Maharashtra, India
- Department of Medical Services and Clinical Research, NeuroGen Brain & Spine InstituteNavi Mumbai, Maharashtra, India
| | | | - Hemangi Sane
- Department of Research & Development, NeuroGen Brain & Spine InstituteNavi Mumbai, Maharashtra, India
| | - Nilkanth Awad
- Department of Pulmonary Medicine, LTMG Hospital and LTM Medical CollegeSion, Mumbai, Maharashtra, India
| | | | - Anagha Joshi
- Department of Radiology, LTMG Hospital and LTM Medical CollegeMumbai, Maharashtra, India
| | - Sujata Baweja
- Department of Microbiology, LTMG Hospital and LTM Medical CollegeMumbai, Maharashtra, India
| | - Mohan Joshi
- Dean, LTMG Hospital and LTM Medical CollegeMumbai, Maharashtra, India
| | | | - Nandini Gokulchandran
- Department of Medical Services and Clinical Research, NeuroGen Brain & Spine InstituteNavi Mumbai, Maharashtra, India
| | - Prerna Badhe
- Department of Regenerative Laboratory, NeuroGen Brain and Spine InstituteSeawoods, Navi Maharashtra, India
| | - Mazhar Khan
- Department of Neurosurgery, LTMG Hospital and LTM Medical CollegeMumbai, Maharashtra, India
| | - Amruta Paranjape
- Department of Research & Development, NeuroGen Brain & Spine InstituteNavi Mumbai, Maharashtra, India
| | - Pooja Kulkarni
- Department of Research & Development, NeuroGen Brain & Spine InstituteNavi Mumbai, Maharashtra, India
| | - Arjun K Methal
- Department of Research & Development, NeuroGen Brain & Spine InstituteNavi Mumbai, Maharashtra, India
| |
Collapse
|
6
|
Lange PT, White MC, Damania B. Activation and Evasion of Innate Immunity by Gammaherpesviruses. J Mol Biol 2022; 434:167214. [PMID: 34437888 PMCID: PMC8863980 DOI: 10.1016/j.jmb.2021.167214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/20/2022]
Abstract
Gammaherpesviruses are ubiquitous pathogens that establish lifelong infections in the vast majority of adults worldwide. Importantly, these viruses are associated with numerous malignancies and are responsible for significant human cancer burden. These virus-associated cancers are due, in part, to the ability of gammaherpesviruses to successfully evade the innate immune response throughout the course of infection. In this review, we will summarize the current understanding of how gammaherpesviruses are detected by innate immune sensors, how these viruses evade recognition by host cells, and how this knowledge can inform novel therapeutic approaches for these viruses and their associated diseases.
Collapse
Affiliation(s)
- Philip T Lange
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. https://twitter.com/langept
| | - Maria C White
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. https://twitter.com/maria_c_white
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
7
|
Clinical efficacy and mechanism of mesenchymal stromal cells in treatment of COVID-19. Stem Cell Res Ther 2022; 13:61. [PMID: 35130977 PMCID: PMC8822653 DOI: 10.1186/s13287-022-02743-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/25/2022] [Indexed: 02/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a highly infectious epidemic disease that has seriously affected human health worldwide. To date, however, there is still no definitive drug for the treatment of COVID-19. Cell-based therapies could represent a new breakthrough. Over the past several decades, mesenchymal stromal cells (MSCs) have proven to be ideal candidates for the treatment of many viral infectious diseases due to their immunomodulatory and tissue repair or regeneration promoting properties, and several relevant clinical trials for the treatment of COVID-19 have been registered internationally. Herein, we systematically summarize the clinical efficacy of MSCs in the treatment of COVID-19 based on published results, including mortality, time to symptom improvement, computed tomography (CT) imaging, cytokines, and safety, while elaborating on the possible mechanisms underpinning the effects of MSCs, to provide a reference for subsequent studies.
Collapse
|
8
|
Taechangam N, Kol A, Arzi B, Borjesson DL. Multipotent Stromal Cells and Viral Interaction: Current Implications for Therapy. Stem Cell Rev Rep 2022; 18:214-227. [PMID: 34347271 PMCID: PMC8335712 DOI: 10.1007/s12015-021-10224-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2021] [Indexed: 12/29/2022]
Abstract
Multipotent stromal cells (MSCs) are widely utilized in therapy for their immunomodulatory properties, but their usage in infectious viral diseases is less explored. This review aimed to collate the current novel use of MSCs in virus-associated conditions, including MSC's susceptibility to virus infection, antiviral properties of MSCs and their effects on cell-based immune response and implementation of MSC therapy in animal models and human clinical trials of viral diseases. Recent discoveries shed lights on MSC's capability in suppressing viral replication and augmenting clearance through enhancement of antiviral immunity. MSC therapy may maintain a crucial balance between aiding pathogen clearance and suppressing hyperactive immune response.
Collapse
Affiliation(s)
- Nopmanee Taechangam
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA USA
| | - Amir Kol
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA USA
| | - Boaz Arzi
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA USA
| | - Dori L. Borjesson
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA USA
| |
Collapse
|
9
|
Cinat D, Coppes RP, Barazzuol L. DNA Damage-Induced Inflammatory Microenvironment and Adult Stem Cell Response. Front Cell Dev Biol 2021; 9:729136. [PMID: 34692684 PMCID: PMC8531638 DOI: 10.3389/fcell.2021.729136] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/18/2021] [Indexed: 12/14/2022] Open
Abstract
Adult stem cells ensure tissue homeostasis and regeneration after injury. Due to their longevity and functional requirements, throughout their life stem cells are subject to a significant amount of DNA damage. Genotoxic stress has recently been shown to trigger a cascade of cell- and non-cell autonomous inflammatory signaling pathways, leading to the release of pro-inflammatory factors and an increase in the amount of infiltrating immune cells. In this review, we discuss recent evidence of how DNA damage by affecting the microenvironment of stem cells present in adult tissues and neoplasms can affect their maintenance and long-term function. We first focus on the importance of self-DNA sensing in immunity activation, inflammation and secretion of pro-inflammatory factors mediated by activation of the cGAS-STING pathway, the ZBP1 pathogen sensor, the AIM2 and NLRP3 inflammasomes. Alongside cytosolic DNA, the emerging roles of cytosolic double-stranded RNA and mitochondrial DNA are discussed. The DNA damage response can also initiate mechanisms to limit division of damaged stem/progenitor cells by inducing a permanent state of cell cycle arrest, known as senescence. Persistent DNA damage triggers senescent cells to secrete senescence-associated secretory phenotype (SASP) factors, which can act as strong immune modulators. Altogether these DNA damage-mediated immunomodulatory responses have been shown to affect the homeostasis of tissue-specific stem cells leading to degenerative conditions. Conversely, the release of specific cytokines can also positively impact tissue-specific stem cell plasticity and regeneration in addition to enhancing the activity of cancer stem cells thereby driving tumor progression. Further mechanistic understanding of the DNA damage-induced immunomodulatory response on the stem cell microenvironment might shed light on age-related diseases and cancer, and potentially inform novel treatment strategies.
Collapse
Affiliation(s)
- Davide Cinat
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Robert P Coppes
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Lara Barazzuol
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
10
|
Zani-Ruttenstock E, Antounians L, Khalaj K, Figueira RL, Zani A. The Role of Exosomes in the Treatment, Prevention, Diagnosis, and Pathogenesis of COVID-19. Eur J Pediatr Surg 2021; 31:326-334. [PMID: 34161984 DOI: 10.1055/s-0041-1731294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The novel coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), continues to be a major health concern. In search for novel treatment strategies against COVID-19, exosomes have attracted the attention of scientists and pharmaceutical companies worldwide. Exosomes are small extracellular vesicles, secreted by all types of cells, and considered as key mediators of intercellular communication and stem-cell paracrine signaling. Herein, we reviewed the most recent literature about the role of exosomes as potential agents for treatment, prevention, diagnosis, and pathogenesis of COVID-19. Several studies and ongoing clinical trials have been investigating the anti-inflammatory, immunomodulatory, and reparative effects of exosomes derived from mesenchymal stem/stromal cells for COVID-19-related acute lung injury. Other studies reported that exosomes play a key role in convalescent plasma therapy for COVID-19, and that they could be of use for the treatment of COVID-19 Kawasaki's-like multisystem inflammatory syndrome and as drug delivery nanocarriers for antiviral therapy. Harnessing some advantageous aspects of exosome biology, such as their endogenous origin, capability of crossing biological barriers, high stability in circulation, and low toxicity and immunogenicity, several companies have been testing exosome-based vaccines against SARS-CoV-2. As they carry cargos that mimic the status of parent cells, exosomes can be isolated from a variety of sources, including plasma, and employed as biomarkers of COVID-19. Lastly, there is growing evidence supporting the role of exosomes in COVID-19 infection, spread, reactivation, and reinfection. The lessons learned using exosomes for COVID-19 will help determine their efficacy and applicability in other clinical conditions.
Collapse
Affiliation(s)
- Elke Zani-Ruttenstock
- Division of General and Thoracic Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lina Antounians
- Division of General and Thoracic Surgery, Hospital for Sick Children, Toronto, Ontario, Canada.,Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kasra Khalaj
- Division of General and Thoracic Surgery, Hospital for Sick Children, Toronto, Ontario, Canada.,Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rebeca L Figueira
- Division of General and Thoracic Surgery, Hospital for Sick Children, Toronto, Ontario, Canada.,Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Augusto Zani
- Division of General and Thoracic Surgery, Hospital for Sick Children, Toronto, Ontario, Canada.,Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Banimohamad‐Shotorbani B, Farajpour H, Sefat F, Khosroshahi SA, Shafaei H, Heidari keshel S. Efficacy of mesenchymal stromal cells and cellular products in improvement of symptoms for COVID-19 and similar lung diseases. Biotechnol Bioeng 2021; 118:2168-2183. [PMID: 33629351 PMCID: PMC8014656 DOI: 10.1002/bit.27729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/06/2021] [Accepted: 02/24/2021] [Indexed: 12/21/2022]
Abstract
At the end of 2019, respiratory coronavirus diseases 2019 (COVID-19) appeared and spread rapidly in the world. Besides several mutations, the outcome of this pandemic was the death up to 15% of hospitalized patients. Mesenchymal stromal cell therapy as a therapeutic strategy seemed successful in treatment of several diseases. Not only mesenchymal stromal cells of several tissues, but also their secreted extracellular vesicles and even secretome indicated beneficial therapeutic function. All of these three options were studied for treatment of COVID-19 as well as those respiratory diseases that have similar symptom. Fortunately, most of the outcomes were promising and optimistic. In this paper, we review in-vivo and clinical studies which have been used different sources of mesenchymal stromal cell, secreted extracellular vesicles, and secretome to improve and treat symptoms of COVID-19 and similar lung diseases.
Collapse
Affiliation(s)
- Behnaz Banimohamad‐Shotorbani
- Student Research CommitteeUniversity of Medical SciencesTabrizIran
- Department of Tissue Engineering, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | - Hekmat Farajpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Farshid Sefat
- Department of Biomedical and Electronics Engineering, School of EngineeringUniversity of BradfordBradfordUK
- School of Engineering, Interdisciplinary Research Center in Polymer Science & Technology (Polymer IRC)University of BradfordBradfordUK
| | - Shiva Ahdi Khosroshahi
- Department of Medical Biotechnology, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | - Hajar Shafaei
- Department of Tissue Engineering, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
- Department of Anatomical Sciences, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
| | - Saeed Heidari keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
12
|
Pathak L, Gayan S, Pal B, Talukdar J, Bhuyan S, Sandhya S, Yeger H, Baishya D, Das B. Coronavirus Activates an Altruistic Stem Cell-Mediated Defense Mechanism that Reactivates Dormant Tuberculosis: Implications in Coronavirus Disease 2019 Pandemic. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1255-1268. [PMID: 33887214 PMCID: PMC8054533 DOI: 10.1016/j.ajpath.2021.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 01/08/2023]
Abstract
We postulate that similar to bacteria, adult stem cells may also exhibit an altruistic defense mechanism to protect their niche against external threat. Herein, we report mesenchymal stem cell (MSC)–based altruistic defense against a mouse model of coronavirus, murine hepatitis virus-1 (MHV-1) infection of lung. MHV-1 infection led to reprogramming of CD271+ MSCs in the lung to an enhanced stemness phenotype that exhibits altruistic behavior, as per previous work in human embryonic stem cells. The reprogrammed MSCs exhibited transient expansion for 2 weeks, followed by apoptosis and expression of stemness genes. The conditioned media of the reprogrammed MSCs exhibited direct antiviral activity in an in vitro model of MHV-1–induced toxicity to type II alveolar epithelial cells by increasing their survival/proliferation and decreasing viral load. Thus, the reprogrammed MSCs can be identified as altruistic stem cells (ASCs), which exert a unique altruistic defense against MHV-1. In a mouse model of MSC-mediated Mycobacterium tuberculosis (MTB) dormancy, MHV-1 infection in the lung exhibited 20-fold lower viral loads than the MTB-free control mice on the third week of viral infection, and exhibited six-fold increase of ASCs, thereby enhancing the altruistic defense. Notably, these ASCs exhibited intracellular replication of MTB, and their extracellular release. Animals showed tuberculosis reactivation, suggesting that dormant MTB may exploit ASCs for disease reactivation.
Collapse
Affiliation(s)
- Lekhika Pathak
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, India
| | - Sukanya Gayan
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, India
| | - Bidisha Pal
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, India; Department of Stem Cell and Infection, Thoreau Lab for Global Health, University of Massachusetts, Lowell, Massachusetts
| | - Joyeeta Talukdar
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, India
| | - Seema Bhuyan
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, India
| | - Sorra Sandhya
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, India
| | - Herman Yeger
- Department of Pediatric Laboratory Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Debabrat Baishya
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, India; Department of Bioengineering and Technology, Gauhati University, Guwahati, India
| | - Bikul Das
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, India; Department of Stem Cell and Infection, Thoreau Lab for Global Health, University of Massachusetts, Lowell, Massachusetts.
| |
Collapse
|
13
|
Yu K, Tian H, Deng H. PPM1G restricts innate immune signaling mediated by STING and MAVS and is hijacked by KSHV for immune evasion. SCIENCE ADVANCES 2020; 6:6/47/eabd0276. [PMID: 33219031 PMCID: PMC7679160 DOI: 10.1126/sciadv.abd0276] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/07/2020] [Indexed: 05/10/2023]
Abstract
The adaptor proteins, STING and MAVS, are components of critical pathogen-sensing pathways that induce innate immunity. Phosphorylation of either adaptor results in activation of the type I interferon pathway. How this phosphorylation is regulated and how it is manipulated by pathogens remain largely unknown. Here, we identified host protein phosphatase, Mg2+/Mn2+ dependent 1G (PPM1G) as a negative regulator of innate immune pathways and showed that this host system is hijacked by Kaposi's sarcoma-associated herpesvirus (KSHV). Mechanistically, KSHV tegument protein ORF33 interacts with STING/MAVS and enhances recruitment of PPM1G to dephosphorylate p-STING/p-MAVS for immunosuppression. Inhibition of PPM1G expression improves the antiviral response against both DNA and RNA viruses. Collectively, our study shows that PPM1G restricts both cytosolic DNA- and RNA-sensing pathways to naturally balance the intensity of the antiviral response. Manipulation of PPM1G by KSHV provides an important strategy for immune evasion.
Collapse
Affiliation(s)
- Kuai Yu
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huabin Tian
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongyu Deng
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
14
|
Taghavi-Farahabadi M, Mahmoudi M, Soudi S, Hashemi SM. Hypothesis for the management and treatment of the COVID-19-induced acute respiratory distress syndrome and lung injury using mesenchymal stem cell-derived exosomes. Med Hypotheses 2020; 144:109865. [PMID: 32562911 PMCID: PMC7242964 DOI: 10.1016/j.mehy.2020.109865] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 05/21/2020] [Indexed: 12/31/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a member of the coronaviridae that causes respiratory disorders. After infection, large amounts of inflammatory cytokines are secreted, known as the cytokine storm. These cytokines can cause pulmonary damage induced by inflammation resulting in acute respiratory distress syndrome (ARDS), and even death. One of the therapeutic approaches for treatment of ARDS is a mesenchymal stem cell (MSC). MSCs suppress inflammation and reduce lung injury through their immunomodulatory properties. MSCs also have the potential to prevent apoptosis of the lung cells and regenerate them. But our suggestion is using MSCs-derived exosomes. Because these exosomes apply the same immunomodulatory and tissue repair effects of MSCs and they don't have problems associated to cell maintenance and injections. For investigation the hypothesis, MSCs should be isolated from tissues and characterized. Then, the exosomes should be isolated from the supernatants and characterized. These exosomes should be injected into a transgenic animal for COVID-19. In the final section, lung function assessment, histological examination, micro-CT, differential leukocyte, viral load analysis, cytokine assay, and CRP level analysis can be investigated. COVID-19 treatment is currently focused on supportive therapies and no vaccine has been developed for it. So, numerous researches are needed to find potential therapies. Since the pathogenesis of this disease was identified in previous studies and can cause lung injury with ARDS, investigation of the therapeutic approaches that can suppress inflammation, cytokine storm and ARDS can be helpful in finding a novel therapeutic approach for this disease.
Collapse
Affiliation(s)
- Mahsa Taghavi-Farahabadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahmoudi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Soudi
- Department of immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Denys M, Léon A, Robert C, Saulnier N, Josson-Schramme A, Legrand L, Wimel L, Maddens S, Pronost S. Biosafety Evaluation of Equine Umbilical Cord-Derived Mesenchymal Stromal Cells by Systematic Pathogen Screening in Peripheral Maternal Blood and Paired UC-MSCs. Biopreserv Biobank 2020; 18:73-81. [PMID: 31904273 DOI: 10.1089/bio.2019.0071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Background: The growing interest in mesenchymal stromal cells (MSCs) in equine medicine, together with the development of MSC biobanking for allogeneic use, raises concerns about biosafety of such products. MSCs derived from umbilical cord (UC) carry an inherent risk of contamination by environmental conditions and vertical transmission of pathogens from broodmares. There is yet no report in the scientific literature about horses being contaminated by infected MSC products, and no consensus about systematic infectious screening of umbilical cord-derived mesenchymal stromal cells (UC-MSCs) to ensure microbiological safety of therapeutic products. Objectives: To develop a standard protocol to ensure UC-MSC microbiological safety and to assess the risk of vertical transmission of common intracellular pathogens from broodmares to paired UC-MSCs. Study Design and Methods: Eighty-four UC and paired peripheral maternal blood (PMB) samples were collected between 2014 and 2016. Sterility was monitored by microbiological control tests. Maternal contamination was tested by systematical PMB PCR screening for 14 pathogens and a Coggins test. In case of a PCR-positive result regarding one or several pathogen(s) in PMB, a PCR analysis for the detected pathogen(s) was then conducted on the associated UC-MSCs. Results: Ten out of 84 UC samples were contaminated upon extraction and 6/84 remained positive in primo culture. The remaining 78/84 paired PMB & UC-MSC samples were evaluated for vertical transmission; 37/78 PMB samples were PCR positive for Equid herpesvirus (EHV)-1, EHV-2, EHV-5, Theileria equi, Babesia caballi, and/or Mycoplasma spp. Hepacivirus was detected in 2/27 cases and Theiler Diseases Associated Virus in 0/27 cases (not performed on all samples due to late addition). All paired UC-MSC samples tested for the specific pathogen(s) detected in PMB were negative (37/37). Main Limitations: More data are needed regarding MSC susceptibility to most pathogens detected in PMB. Conclusions: In-process microbiological controls combined with PMB PCR screening provide a comprehensive assessment of UC-MSC exposure to infectious risk, vertical transmission risk appearing inherently low.
Collapse
Affiliation(s)
- Marie Denys
- VetAgro Sup, Université de Lyon, Marcy l'Etoile, France
| | - Albertine Léon
- LABÉO Frank Duncombe, Saint Contest, France.,U2RM, Normandie Univ, UNICAEN, Caen, France
| | | | | | | | - Loïc Legrand
- LABÉO Frank Duncombe, Saint Contest, France.,BIOTARGEN, Normandie Univ, UNICAEN, Caen, France
| | - Laurence Wimel
- Experimental Farm, French Horse and Riding Institute (IFCE), Chamberet, France
| | | | - Stéphane Pronost
- LABÉO Frank Duncombe, Saint Contest, France.,BIOTARGEN, Normandie Univ, UNICAEN, Caen, France
| |
Collapse
|
16
|
A Human Gain-of-Function STING Mutation Causes Immunodeficiency and Gammaherpesvirus-Induced Pulmonary Fibrosis in Mice. J Virol 2019; 93:JVI.01806-18. [PMID: 30463976 DOI: 10.1128/jvi.01806-18] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/15/2018] [Indexed: 12/11/2022] Open
Abstract
We previously generated STING N153S knock-in mice that have a human disease-associated gain-of-function mutation in STING. Patients with this mutation (STING N154S in humans) develop STING-associated vasculopathy with onset in infancy (SAVI), a severe pediatric autoinflammatory disease characterized by pulmonary fibrosis. Since this mutation promotes the upregulation of antiviral type I interferon-stimulated genes (ISGs), we hypothesized that STING N153S knock-in mice may develop more severe autoinflammatory disease in response to a virus challenge. To test this hypothesis, we infected heterozygous STING N153S mice with murine gammaherpesvirus 68 (γHV68). STING N153S mice were highly vulnerable to infection and developed pulmonary fibrosis after infection. In addition to impairing CD8+ T cell responses and humoral immunity, STING N153S also promoted the replication of γHV68 in cultured macrophages. In further support of a combined innate and adaptive immunodeficiency, γHV68 infection was more severe in Rag1-/- STING N153S mice than in Rag1-/- littermate mice, which completely lack adaptive immunity. Thus, a gain-of-function STING mutation creates a combined innate and adaptive immunodeficiency that leads to virus-induced pulmonary fibrosis.IMPORTANCE A variety of human rheumatologic disease-causing mutations have recently been identified. Some of these mutations are found in viral nucleic acid-sensing proteins, but whether viruses can influence the onset or progression of these human diseases is less well understood. One such autoinflammatory disease, called STING-associated vasculopathy with onset in infancy (SAVI), affects children and leads to severe lung disease. We generated mice with a SAVI-associated STING mutation and infected them with γHV68, a common DNA virus that is related to human Epstein-Barr virus. Mice with the human disease-causing STING mutation were more vulnerable to infection than wild-type littermate control animals. Furthermore, the STING mutant mice developed lung fibrosis similar to that of patients with SAVI. These findings reveal that a human STING mutation creates severe immunodeficiency, leading to virus-induced lung disease in mice.
Collapse
|
17
|
Naik S, Larsen SB, Cowley CJ, Fuchs E. Two to Tango: Dialog between Immunity and Stem Cells in Health and Disease. Cell 2018; 175:908-920. [PMID: 30388451 PMCID: PMC6294328 DOI: 10.1016/j.cell.2018.08.071] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/26/2018] [Accepted: 08/29/2018] [Indexed: 12/14/2022]
Abstract
Stem cells regenerate tissues in homeostasis and under stress. By taking cues from their microenvironment or "niche," they smoothly transition between these states. Immune cells have surfaced as prominent members of stem cell niches across the body. Here, we draw parallels between different stem cell niches to explore the context-specific interactions that stem cells have with tissue-resident and recruited immune cells. We also highlight stem cells' innate ability to sense and respond to stress and the enduring memory that forms from such encounters. This fascinating crosstalk holds great promise for novel therapies in inflammatory diseases and regenerative medicine.
Collapse
Affiliation(s)
- Shruti Naik
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| | - Samantha B Larsen
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Christopher J Cowley
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
18
|
Francica BJ, Ghasemzadeh A, Desbien AL, Theodros D, Sivick KE, Reiner GL, Hix Glickman L, Marciscano AE, Sharabi AB, Leong ML, McWhirter SM, Dubensky TW, Pardoll DM, Drake CG. TNFα and Radioresistant Stromal Cells Are Essential for Therapeutic Efficacy of Cyclic Dinucleotide STING Agonists in Nonimmunogenic Tumors. Cancer Immunol Res 2018; 6:422-433. [PMID: 29472271 DOI: 10.1158/2326-6066.cir-17-0263] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 10/03/2017] [Accepted: 02/07/2018] [Indexed: 12/20/2022]
Abstract
The cGAS-STING cytosolic DNA sensing pathway may play an integral role in the initiation of antitumor immune responses. Studies evaluating the immunogenicity of various cyclic dinucleotide (CDN) STING agonists administered by intratumoral (i.t.) injection showed potent induction of inflammation, tumor necrosis, and, in some cases, durable tumor-specific adaptive immunity. However, the specific immune mechanisms underlying these responses remain incompletely defined. The majority of these studies have focused on the effect of CDNs on immune cells but have not conclusively interrogated the role of stromal cells in the acute rejection of the CDN-injected tumor. Here, we revealed a mechanism of STING agonist-mediated tumor response that relied on both stromal and immune cells to achieve tumor regression and clearance. Using knockout and bone marrow chimeric mice, we showed that although bone marrow-derived TNFα was necessary for CDN-induced necrosis, STING signaling in radioresistant stromal cells was also essential for CDN-mediated tumor rejection. These results provide evidence for crosstalk between stromal and hematopoietic cells during CDN-mediated tumor collapse after i.t. administration. These mechanistic insights may prove critical in the clinical development of STING agonists. Cancer Immunol Res; 6(4); 422-33. ©2018 AACR.
Collapse
Affiliation(s)
- Brian J Francica
- Aduro Biotech, Berkeley, California
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ali Ghasemzadeh
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Medicine, Division of Hematology/Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | | | - Debebe Theodros
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | | | - Ariel E Marciscano
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andrew B Sharabi
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
- University of California San Diego School of Medicine, San Diego, California
| | | | | | | | - Drew M Pardoll
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Charles G Drake
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Medicine, Division of Hematology/Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| |
Collapse
|
19
|
Raicevic G, Najar M, Busser H, Crompot E, Bron D, Toungouz M, Lagneaux L. Comparison and immunobiological characterization of retinoic acid inducible gene-I-like receptor expression in mesenchymal stromal cells. Sci Rep 2017; 7:2896. [PMID: 28588282 PMCID: PMC5460162 DOI: 10.1038/s41598-017-02850-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 04/20/2017] [Indexed: 01/06/2023] Open
Abstract
Due to their immunomodulatory and regenerative properties, Mesenchymal stromal cells (MSC) have generated major interests in several clinical settings including transplantation and inflammatory diseases. MSC functions can be influenced by their tissue origin. Their microenvironment strongly affects their biology notably through TLR sensing. In this study, we show that MSC isolated from four different sources express another type of cytosolic pathogen recognition receptors known as retinoic acid inducible gene-I (RIG-I)-like receptors (RLR). RLR activation in MSC induces the production of Type I IFN (IFN-β) and Type III IFN (IFN-λ1). The highest producers are adipose tissue(AT)-MSC. We further show that Interferon production is induced through TBK1/IKK-ε signaling and IRF7 phosphorylation. Depending on MSC source, the knockdown of TLR3 and/or RIG-I decreases the MSC response to RLR ligand poly(I:C)/Lyovec. Among the different MSC types, AT-MSCs display the highest sensitivity to viral stimuli as shown by the alteration of their viability after prolonged stimulation. Our work indicates that this could be linked to an increase of pro-apoptotic Noxa expression. Finally, the expression of IDO1 and LIF upon RLR activation indicate the increase of MSC immunomodulatory potential, especially in AT-MSCs. Altogether, these data should be considered when designing MSC-based therapy in clinical settings where inflammation or infection are present.
Collapse
Affiliation(s)
- Gordana Raicevic
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium.
| | - Mehdi Najar
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Hélène Busser
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Emerence Crompot
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Dominique Bron
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
- Department of Hematology, Jules Bordet Institute, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Michel Toungouz
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
- Department of Immunology-Hematology-Transfusion, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
20
|
Wang J, Wang R, Yang J, Yang X, Hu S, Wang H, Zhou C, Xiong W, Wen Q, Ma L. Glucocorticoids differentially regulate the innate immune responses of TLR4 and the cytosolic DNA sensing pathway. Int Immunopharmacol 2017; 47:190-198. [DOI: 10.1016/j.intimp.2017.03.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/22/2017] [Accepted: 03/22/2017] [Indexed: 10/19/2022]
|
21
|
Wang J, Wang R, Wang H, Yang X, Yang J, Xiong W, Wen Q, Ma L. Glucocorticoids Suppress Antimicrobial Autophagy and Nitric Oxide Production and Facilitate Mycobacterial Survival in Macrophages. Sci Rep 2017; 7:982. [PMID: 28428627 PMCID: PMC5430514 DOI: 10.1038/s41598-017-01174-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/22/2017] [Indexed: 01/21/2023] Open
Abstract
Chronic administration of glucocorticoids has been shown to render individuals highly susceptible to mycobacterial infection and lead to reactivation of latent bacilli. However, the effect of glucocorticoids on innate anti-mycobacterial defense, especially in macrophages remains largely unknown. Here, we found that glucocorticoids inhibited the innate immune response, antimicrobial nitric oxide production and autophagy in mycobacteria-challenged macrophages. Meanwhile, maturation and acidification of mycobacterial phagosomes were attenuated in RAW264.7 cells after glucocorticoids treatment. Consequently, we observed a glucocorticoid-induced increase in the survival of intracellular mycobacteria in both primary macrophages and cell lines. Glucocorticoids treatment decreased the activation of TBK1 kinase, which promotes the maturation of autophagosomes. Inhibition of TBK1 also decreased the production of nitric oxide. Furthermore, several autophagy-related genes were down-regulated, while activation of the Akt/mTOR signaling pathway was increased after glucocorticoids treatment, which may account for autophagy inhibition during mycobacterial infection. Restoration of autophagy with the agonist rapamycin abolished glucocorticoid-mediated enhancement of mycobacterial survival, suggesting that glucocorticoids blocked anti-mycobacterial defense via autophagy inhibition. Collectively, this study demonstrates that glucocorticoids impair innate antimicrobial autophagy and promote mycobacterial survival in macrophages, which is a novel mechanism for glucocorticoid-mediated immunosuppression. Our findings may provide important clues for tuberculosis prevention.
Collapse
Affiliation(s)
- Jinli Wang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Ruining Wang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Hui Wang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Xiaofan Yang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Jiahui Yang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Wenjing Xiong
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Qian Wen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Li Ma
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
22
|
Long-term safety of umbilical cord mesenchymal stem cells transplantation for systemic lupus erythematosus: a 6-year follow-up study. Clin Exp Med 2016; 17:333-340. [PMID: 27270729 DOI: 10.1007/s10238-016-0427-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 05/02/2016] [Indexed: 12/19/2022]
Abstract
The aim of this study is to assess the long-term safety of allogeneic umbilical cord mesenchymal stem cells (UC MSCs) transplantation for patients with refractory systemic lupus erythematosus (SLE). Nine SLE patients, who were refractory to steroid and immunosuppressive drugs treatment and underwent MSCs transplantation in 2009, were enrolled. One million allogeneic UC MSCs per kilogram of body weight were infused intravenously at days 0 and 7. The possible adverse events, including immediately after MSCs infusions, as well as the long-term safety profiles were observed. Blood and urine routine test, liver function, electrocardiogram, chest radiography and serum levels of tumor markers, including alpha fetal protein (AFP), cancer embryo antigen (CEA), carbohydrate antigen 155 (CA155) and CA199, were assayed before and 1, 2, 4 and 6 years after MSCs transplantation. All the patients completed two times of MSCs infusions. One patient had mild dizzy and warm sensation 5 min after MSCs infusion, and the symptoms disappeared quickly. No other adverse event, including fluster, headache, nausea or vomit, was observed. There was no change in peripheral white blood cell count, red blood cell count and platelet number in these patients after followed up for 6 years. Liver functional analysis showed that serum alanine aminotransferase, glutamic-oxalacetic transaminase, total bilirubin and direct bilirubin remained in normal range after MSCs infusions. No newly onset abnormality was detected on electrocardiogram and chest radiography. Moreover, we found no rise of serum tumor markers, including AFP, CEA, CA125 and CA199, before and 6 years after MSCs infusions. Our long-term observational study demonstrated a good safety profile of allogeneic UC MSCs in SLE patients.
Collapse
|
23
|
Yang K, Wu Y, Xie H, Li M, Ming S, Li L, Li M, Wu M, Gong S, Huang X. Macrophage-mediated inflammatory response decreases mycobacterial survival in mouse MSCs by augmenting NO production. Sci Rep 2016; 6:27326. [PMID: 27251437 PMCID: PMC4890015 DOI: 10.1038/srep27326] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/12/2016] [Indexed: 12/28/2022] Open
Abstract
Mycobacterium tuberculosis (MTB) is a hard-to-eradicate intracellular microbe, which escapes host immune attack during latent infection. Recent studies reveal that mesenchymal stem cells (MSCs) provide a protective niche for MTB to maintain latency. However, the regulation of mycobacterial residency in MSCs in the infectious microenvironment remains largely unknown. Here, we found that macrophage-mediated inflammatory response during MTB infection facilitated the clearance of bacilli residing in mouse MSCs. Higher inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production were observed in mouse MSCs under macrophage-mediated inflammatory circumstance. Blocking NO production in MSCs increased the survival of intracellular mycobacteria, indicating NO-mediated antimycobacterial activity. Moreover, both nuclear factor κB (NF-κB) and Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathways were involved in iNOS expression and NO production in inflammatory microenvironment. Furthermore, pro-inflammatory cytokine interleukin-1β could trigger NO production in MSCs and exert anti-mycobacterial activity via NF-κB signaling pathway. Neutralization of interleukin-1β in macrophage-mediated inflammatory microenvironment dampened the ability of mouse MSCs to produce NO. Together, our findings demonstrated that macrophage-mediated inflammatory response during mycobacterial infection promotes the clearance of bacilli in mouse MSCs by increasing NO production, which may provide a better understanding of latent MTB infection.
Collapse
Affiliation(s)
- Kun Yang
- Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Institute of Tuberculosis Control, Key laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Yongjian Wu
- Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Institute of Tuberculosis Control, Key laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Heping Xie
- Department of Traditional Chinese Medicine, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Miao Li
- Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Institute of Tuberculosis Control, Key laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Siqi Ming
- Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Institute of Tuberculosis Control, Key laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Liyan Li
- Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Institute of Tuberculosis Control, Key laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Meiyu Li
- Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Institute of Tuberculosis Control, Key laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Minhao Wu
- Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Institute of Tuberculosis Control, Key laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Sitang Gong
- Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xi Huang
- Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Institute of Tuberculosis Control, Key laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| |
Collapse
|
24
|
microRNA-146a promotes mycobacterial survival in macrophages through suppressing nitric oxide production. Sci Rep 2016; 6:23351. [PMID: 27025258 PMCID: PMC4812255 DOI: 10.1038/srep23351] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/02/2016] [Indexed: 12/17/2022] Open
Abstract
Macrophages play a crucial role in host innate anti-mycobacterial defense, which is tightly regulated by multiple factors, including microRNAs. Our previous study showed that a panel of microRNAs was markedly up-regulated in macrophages upon mycobacterial infection. Here, we investigated the biological function of miR-146a during mycobacterial infection. miR-146a expression was induced both in vitro and in vivo after Mycobacterium bovis BCG infection. The inducible miR-146a could suppress the inducible nitric oxide (NO) synthase (iNOS) expression and NO generation, thus promoting mycobacterial survival in macrophages. Inhibition of endogenous miR-146a increased NO production and mycobacterial clearance. Moreover, miR-146a attenuated the activation of nuclear factor κB and mitogen-activated protein kinases signaling pathways during BCG infection, which in turn repressed iNOS expression. Mechanistically, miR-146a directly targeted tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) at post-transcriptional level. Silencing TRAF6 decreased iNOS expression and NO production in BCG-infected macrophages, while overexpression of TRAF6 reversed miR-146a-mediated inhibition of NO production and clearance of mycobacteria. Therefore, we demonstrated a novel role of miR-146a in the modulation of host defense against mycobacterial infection by repressing NO production via targeting TRAF6, which may provide a promising therapeutic target for tuberculosis.
Collapse
|
25
|
An Y, wei W, Jing H, Ming L, Liu S, Jin Y. Bone marrow mesenchymal stem cell aggregate: an optimal cell therapy for full-layer cutaneous wound vascularization and regeneration. Sci Rep 2015; 5:17036. [PMID: 26594024 PMCID: PMC4655471 DOI: 10.1038/srep17036] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/26/2015] [Indexed: 12/13/2022] Open
Abstract
Cutaneous wounds are among the most common soft tissue injuries. Wounds involving dermis suffer more from outside influence and higher risk of chronic inflammation. Therefore the appearance and function restoration has become an imperative in tissue engineering research. In this study, cell-aggregates constructed with green fluorescent protein-expressing (GFP+) rat bone marrow mesenchymal stem cells (BMMSCs) were applied to rat acute full-layer cutaneous wound model to confirm its pro-regeneration ability and compare its regenerative efficacy with the currently thriving subcutaneous and intravenous stem cell administration strategy, with a view to sensing the advantages, disadvantages and the mechanism behind. According to results, cell-aggregates cultured in vitro enjoyed higher expression of several pro-healing genes than adherent cultured cells. Animal experiments showed better vascularization along with more regular dermal collagen deposition for cell-aggregate transplanted models. Immunofluorescence staining on inflammatory cells indicated a shorter inflammatory phase for cell-aggregate group, which was backed up by further RT-PCR. The in situ immunofluorescence staining manifested a higher GFP+-cell engraftment for cell-aggregate transplanted models versus cell administered ones. Thus it is safe to say the BMMSCs aggregate could bring superior cutaneous regeneration for full layer cutaneous wound to BMMSCs administration, both intravenous and subcutaneous.
Collapse
Affiliation(s)
- Yulin An
- State Key Laboratory of Military Stomatology, Center of Tissue Engineering, School of Stomatology, The Fourth Military Medical University, No. 145 Changlexi Road, Xi'an, Shaanxi 710032, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, No. 145 Changlexi Road, Xi'an, Shaanxi 710032, China.,Zhen Jiang Entry-Exit Inspection And Quarantine Bureau, No. 84 Dongwu Road, Zhen Jiang, Jiang Su 212000, China
| | - Wei wei
- State Key Laboratory of Military Stomatology, Center of Tissue Engineering, School of Stomatology, The Fourth Military Medical University, No. 145 Changlexi Road, Xi'an, Shaanxi 710032, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, No. 145 Changlexi Road, Xi'an, Shaanxi 710032, China.,State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, No. 145 Changlexi Road, Xi'an 710032, China
| | - Huan Jing
- State Key Laboratory of Military Stomatology, Center of Tissue Engineering, School of Stomatology, The Fourth Military Medical University, No. 145 Changlexi Road, Xi'an, Shaanxi 710032, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, No. 145 Changlexi Road, Xi'an, Shaanxi 710032, China
| | - Leiguo Ming
- State Key Laboratory of Military Stomatology, Center of Tissue Engineering, School of Stomatology, The Fourth Military Medical University, No. 145 Changlexi Road, Xi'an, Shaanxi 710032, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, No. 145 Changlexi Road, Xi'an, Shaanxi 710032, China
| | - Shiyu Liu
- State Key Laboratory of Military Stomatology, Center of Tissue Engineering, School of Stomatology, The Fourth Military Medical University, No. 145 Changlexi Road, Xi'an, Shaanxi 710032, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, No. 145 Changlexi Road, Xi'an, Shaanxi 710032, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology, Center of Tissue Engineering, School of Stomatology, The Fourth Military Medical University, No. 145 Changlexi Road, Xi'an, Shaanxi 710032, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, No. 145 Changlexi Road, Xi'an, Shaanxi 710032, China
| |
Collapse
|
26
|
Karijolich J, Abernathy E, Glaunsinger BA. Infection-Induced Retrotransposon-Derived Noncoding RNAs Enhance Herpesviral Gene Expression via the NF-κB Pathway. PLoS Pathog 2015; 11:e1005260. [PMID: 26584434 PMCID: PMC4652899 DOI: 10.1371/journal.ppat.1005260] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/13/2015] [Indexed: 02/07/2023] Open
Abstract
Short interspersed nuclear elements (SINEs) are highly abundant, RNA polymerase III-transcribed noncoding retrotransposons that are silenced in somatic cells but activated during certain stresses including viral infection. How these induced SINE RNAs impact the host-pathogen interaction is unknown. Here we reveal that during murine gammaherpesvirus 68 (MHV68) infection, rapidly induced SINE RNAs activate the antiviral NF-κB signaling pathway through both mitochondrial antiviral-signaling protein (MAVS)-dependent and independent mechanisms. However, SINE RNA-based signaling is hijacked by the virus to enhance viral gene expression and replication. B2 RNA expression stimulates IKKβ-dependent phosphorylation of the major viral lytic cycle transactivator protein RTA, thereby enhancing its activity and increasing progeny virion production. Collectively, these findings suggest that SINE RNAs participate in the innate pathogen response mechanism, but that herpesviruses have evolved to co-opt retrotransposon activation for viral benefit. Short interspersed nuclear elements (SINEs) are noncoding mobile genetic elements that are present at ~106 copies per mammalian genome, roughly comprising 10% of mammalian genomic real estate. SINEs are typically transcriptionally silenced, though in some cases viral infection can promote their expression, yet to an unknown functional outcome. Thus, SINE elements represent the largest class of infection-inducible noncoding RNAs that are functionally uncharacterized. Here, we reveal that SINE RNAs play a critical role in the host-pathogen interaction in that they are required for efficient murine gammaherpesvirus 68 (MHV68) replication and gene expression. We demonstrate that SINE RNAs, both exogenously expressed and infection-induced, are robust activators of the IKKβ kinase, a key signaling molecule in the innate immune response. Activation of the IKKβ kinase by SINE RNA is mediated through both MAVS-dependent and independent mechanisms. Moreover, we demonstrate the activation of the IKKβ via SINE RNA is required to drive the phosphorylation of MHV68 RTA, the main viral transcriptional activator, which enhances its transcriptional activating property. Collectively, we reveal the first example of a role for SINE RNAs in the host-pathogen interaction and identify them as a key immune signaling molecule early during infection. Though SINE RNAs activate the innate immune response, MHV68 has co-opted SINE-mediate innate immune activation to enhance the viral lifecycle.
Collapse
Affiliation(s)
- John Karijolich
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Emma Abernathy
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Britt A. Glaunsinger
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
27
|
Wu JJ, Li W, Shao Y, Avey D, Fu B, Gillen J, Hand T, Ma S, Liu X, Miley W, Konrad A, Neipel F, Stürzl M, Whitby D, Li H, Zhu F. Inhibition of cGAS DNA Sensing by a Herpesvirus Virion Protein. Cell Host Microbe 2015; 18:333-44. [PMID: 26320998 PMCID: PMC4567405 DOI: 10.1016/j.chom.2015.07.015] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/16/2015] [Accepted: 07/30/2015] [Indexed: 12/20/2022]
Abstract
Invading viral DNA can be recognized by the host cytosolic DNA sensor, cyclic GMP-AMP (cGAMP) synthase (cGAS), resulting in production of the second messenger cGAMP, which directs the adaptor protein STING to stimulate production of type I interferons (IFNs). Although several DNA viruses are sensed by cGAS, viral strategies targeting cGAS are virtually unknown. We report here that Kaposi's sarcoma-associated herpesvirus (KSHV) ORF52, an abundant gammaherpesvirus-specific tegument protein, subverts cytosolic DNA sensing by directly inhibiting cGAS enzymatic activity through a mechanism involving both cGAS binding and DNA binding. Moreover, ORF52 homologs in other gammaherpesviruses also inhibit cGAS activity and similarly bind cGAS and DNA, suggesting conserved inhibitory mechanisms. Furthermore, KSHV infection evokes cGAS-dependent responses that can limit the infection, and an ORF52 null mutant exhibits increased cGAS signaling. Our findings reveal a mechanism through which gammaherpesviruses antagonize host cGAS DNA sensing.
Collapse
Affiliation(s)
- Jian-jun Wu
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Wenwei Li
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Yaming Shao
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Denis Avey
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Bishi Fu
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Joseph Gillen
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Travis Hand
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Siming Ma
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Xia Liu
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Wendell Miley
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Andreas Konrad
- Division of Molecular and Experimental Surgery, Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Frank Neipel
- Institute of Clinical and Molecular Virology, University of Erlangen-Nürnberg, Schlossgarten 4, D-91054 Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Denise Whitby
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Hong Li
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA; Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Fanxiu Zhu
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|