1
|
Xiong H, Guo J. Targeting Hepatic Stellate Cells for the Prevention and Treatment of Liver Cirrhosis and Hepatocellular Carcinoma: Strategies and Clinical Translation. Pharmaceuticals (Basel) 2025; 18:507. [PMID: 40283943 PMCID: PMC12030350 DOI: 10.3390/ph18040507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Hepatic stellate cells (HSC) are the major source of myofibroblasts (MFB) in fibrosis and cancer- associated fibroblasts (CAF) in both primary and metastatic liver cancer. Over the past few decades, there has been significant progress in understanding the cellular and molecular mechanisms by which liver fibrosis and HCC occur, as well as the key roles of HSC in their pathogenesis. HSC-targeted approaches using specific surface markers and receptors may enable the selective delivery of drugs, oligonucleotides, and therapeutic peptides that exert optimized anti-fibrotic and anti-HCC effects. Recent advances in omics, particularly single-cell sequencing and spatial transcriptomics, hold promise for identifying new HSC targets for diagnosing and treating liver fibrosis/cirrhosis and liver cancer.
Collapse
Affiliation(s)
- Hao Xiong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Shanghai Institute of Liver Diseases, Fudan University, Shanghai 200032, China;
- Department of Internal Medicine, Shanghai Medical College, Fu Dan University, Shanghai 200032, China
| | - Jinsheng Guo
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Shanghai Institute of Liver Diseases, Fudan University, Shanghai 200032, China;
- Department of Internal Medicine, Shanghai Medical College, Fu Dan University, Shanghai 200032, China
| |
Collapse
|
2
|
Sholi E, Loveland AB, Korostelev AA. Assay for ribosome stimulation of angiogenin nuclease activity. Methods Enzymol 2024; 711:381-404. [PMID: 39952716 PMCID: PMC11839171 DOI: 10.1016/bs.mie.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
Angiogenin (RNase 5) is an unusual member of the RNase A family with very weak RNase activity and a preference for tRNA. The tRNAs cleaved by angiogenin are thought to have a variety of roles in cellular processes including translation reprogramming, apoptosis, angiogenesis, and neuroprotection. We recently demonstrated that angiogenin is potently activated by the cytoplasmic 80S ribosome. Angiogenin's binding to the ribosome rearranges the C-terminus of the protein, opening the active site for the cleavage of tRNA delivered to the ribosomal A site which angiogenin occupies. Here, we describe the biochemical procedure to test angiogenin's activation by the ribosome using the assay termed the Ribosome Stimulated Angiogenin Nuclease Assay (RiSANA). RiSANA can be used to test the activity of wild-type or mutant angiogenin, or other RNases, against different tRNAs and with different ribosome complexes. For example, given that angiogenin has been implicated in anti-microbial activity, we tested the ability of bacterial 70S ribosomes to stimulate angiogenin activity and found that the E. coli ribosome does not stimulate angiogenin. We also assayed whether angiogenin's closest homolog, RNase 4, could be stimulated by the ribosome, but unlike angiogenin this enzyme was not further activated by the ribosome. The RiSANA assay promises to reveal new aspects of angiogenin mechanism and may aid in the development of new diagnostic tools and therapeutics.
Collapse
Affiliation(s)
- Emily Sholi
- RNA Therapeutics Institute, UMass Chan Medical School, Plantation Street, Worcester, MA, United States
| | - Anna B Loveland
- RNA Therapeutics Institute, UMass Chan Medical School, Plantation Street, Worcester, MA, United States.
| | - Andrei A Korostelev
- RNA Therapeutics Institute, UMass Chan Medical School, Plantation Street, Worcester, MA, United States.
| |
Collapse
|
3
|
Gotte G. Effects of Pathogenic Mutants of the Neuroprotective RNase 5-Angiogenin in Amyotrophic Lateral Sclerosis (ALS). Genes (Basel) 2024; 15:738. [PMID: 38927674 PMCID: PMC11202570 DOI: 10.3390/genes15060738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease that affects the motoneurons. More than 40 genes are related with ALS, and amyloidogenic proteins like SOD1 and/or TDP-43 mutants are directly involved in the onset of ALS through the formation of polymorphic fibrillogenic aggregates. However, efficacious therapeutic approaches are still lacking. Notably, heterozygous missense mutations affecting the gene coding for RNase 5, an enzyme also called angiogenin (ANG), were found to favor ALS onset. This is also true for the less-studied but angiogenic RNase 4. This review reports the substrate targets and illustrates the neuroprotective role of native ANG in the neo-vascularization of motoneurons. Then, it discusses the molecular determinants of many pathogenic ANG mutants, which almost always cause loss of function related to ALS, resulting in failures in angiogenesis and motoneuron protection. In addition, ANG mutations are sometimes combined with variants of other factors, thereby potentiating ALS effects. However, the activity of the native ANG enzyme should be finely balanced, and not excessive, to avoid possible harmful effects. Considering the interplay of these angiogenic RNases in many cellular processes, this review aims to stimulate further investigations to better elucidate the consequences of mutations in ANG and/or RNase 4 genes, in order to achieve early diagnosis and, possibly, successful therapies against ALS.
Collapse
Affiliation(s)
- Giovanni Gotte
- Biological Chemistry Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| |
Collapse
|
4
|
Tutusaus A, Sanduzzi-Zamparelli M, Boix L, Rider P, Subías S, García de Frutos P, Colell A, Marí M, Reig M, Morales A. Induction of the Inflammasome Pathway by Tyrosine Kinase Inhibitors Provides an Actionable Therapeutic Target for Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:1491. [PMID: 38672578 PMCID: PMC11048610 DOI: 10.3390/cancers16081491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
During the last decade, tyrosine kinase inhibitors (TKIs) sorafenib and regorafenib have been standard systemic treatments for advanced hepatocellular carcinoma (HCC). Previous data associated sorafenib with inflammasome activation. However, the role of the inflammasome in sorafenib and regorafenib signaling has not been described in liver cancer patients. For this purpose, we analyzed inflammasome-related transcriptomic changes in a murine HCC model. Our data confirmed inflammasome activation after both TKI treatments, sharing a similar pattern of increased gene expression. According to human database results, transcriptional increase of inflammasome genes is associated with poorer prognosis for male liver cancer patients, suggesting a sex-dependent role for inflammasome activation in HCC therapy. In biopsies of HCC and its surrounding tissue, we detected durable increases in the inflammasome activation pattern after sorafenib or regorafenib treatment in male patients. Further supporting its involvement in sorafenib action, inflammasome inhibition (MCC950) enhanced sorafenib anticancer activity in experimental HCC models, while no direct in vitro effect was observed in HCC cell lines. Moreover, activated human THP-1 macrophages released IL-1β after sorafenib administration, while 3D Hep3B spheres displayed increased tumor growth after IL-1β addition, pointing to the liver microenvironment as a key player in inflammasome action. In summary, our results unveil the inflammasome pathway as an actionable target in sorafenib or regorafenib therapy and associate an inflammasome signature in HCC and surrounding tissue with TKI administration. Therefore, targeting inflammasome activation, principally in male patients, could help to overcome sorafenib or regorafenib resistance and enhance the efficacy of TKI treatments in HCC.
Collapse
Affiliation(s)
- Anna Tutusaus
- Department of Cell Death and Proliferation, IIBB-CSIC, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (A.T.); (P.R.); (P.G.d.F.); (A.C.); (M.M.)
- Barcelona Clinic Liver Cancer (BCLC) Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.S.-Z.); (L.B.)
| | - Marco Sanduzzi-Zamparelli
- Barcelona Clinic Liver Cancer (BCLC) Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.S.-Z.); (L.B.)
- Liver Unit, Hospital Clinic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, CIBEREHD, ISCIII, 28029 Madrid, Spain
- Departament de Medicina, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Loreto Boix
- Barcelona Clinic Liver Cancer (BCLC) Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.S.-Z.); (L.B.)
- Liver Unit, Hospital Clinic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, CIBEREHD, ISCIII, 28029 Madrid, Spain
| | - Patricia Rider
- Department of Cell Death and Proliferation, IIBB-CSIC, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (A.T.); (P.R.); (P.G.d.F.); (A.C.); (M.M.)
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Silvia Subías
- Department of Cell Death and Proliferation, IIBB-CSIC, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (A.T.); (P.R.); (P.G.d.F.); (A.C.); (M.M.)
| | - Pablo García de Frutos
- Department of Cell Death and Proliferation, IIBB-CSIC, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (A.T.); (P.R.); (P.G.d.F.); (A.C.); (M.M.)
- Unidad Asociada (IMIM), IIBB-CSIC, 08036 Barcelona, Spain
- CIBERCV, ISCIII, 28029 Madrid, Spain
| | - Anna Colell
- Department of Cell Death and Proliferation, IIBB-CSIC, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (A.T.); (P.R.); (P.G.d.F.); (A.C.); (M.M.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28029 Madrid, Spain
| | - Montserrat Marí
- Department of Cell Death and Proliferation, IIBB-CSIC, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (A.T.); (P.R.); (P.G.d.F.); (A.C.); (M.M.)
| | - María Reig
- Barcelona Clinic Liver Cancer (BCLC) Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.S.-Z.); (L.B.)
- Liver Unit, Hospital Clinic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, CIBEREHD, ISCIII, 28029 Madrid, Spain
- Departament de Medicina, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Albert Morales
- Department of Cell Death and Proliferation, IIBB-CSIC, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (A.T.); (P.R.); (P.G.d.F.); (A.C.); (M.M.)
- Barcelona Clinic Liver Cancer (BCLC) Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.S.-Z.); (L.B.)
| |
Collapse
|
5
|
Strusi G, Suelzu CM, Weldon S, Giffin J, Münsterberg AE, Bao Y. Combination of Phenethyl Isothiocyanate and Dasatinib Inhibits Hepatocellular Carcinoma Metastatic Potential through FAK/STAT3/Cadherin Signalling and Reduction of VEGF Secretion. Pharmaceutics 2023; 15:2390. [PMID: 37896150 PMCID: PMC10610226 DOI: 10.3390/pharmaceutics15102390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Cancerous cells are characterised by their ability to invade, metastasise, and induce angiogenesis. Tumour cells use various molecules that can be targeted to reverse these processes. Dasatinib, a potent Src inhibitor, has shown promising results in treating hepatocellular carcinoma (HCC) in vitro and in vivo. However, its effectiveness is limited by focal adhesion kinase (FAK) activation. Isothiocyanates, on the other hand, are phytochemicals with broad anticancer activity and FAK inhibition capabilities. This study evaluated the synergistic effect of dasatinib and phenethyl isothiocyanate (PEITC) on HCC. The combination was tested using various assays, including MTT, adhesion, scratch, Boyden chamber, chorioallantoic membrane (CAM), and yolk sac membrane (YSM) assays to evaluate the effect of the drug combination on HCC metastatic potential and angiogenesis in vitro and in vivo. The results showed that the combination inhibited the adhesion, migration, and invasion of HepG2 cells and reduced xenograft volume in the CAM assay. Additionally, the combination reduced angiogenesis in vitro, diminishing the growth of vessels in the tube formation assay. The inhibition of FAK/STAT3 signalling led to increased E-cadherin expression and reduced VEGF secretion, reducing HCC metastatic potential. Therefore, a combination of PEITC and dasatinib could be a potential therapeutic strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Gabriele Strusi
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| | | | - Shannon Weldon
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK (A.E.M.)
| | - Jennifer Giffin
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK (A.E.M.)
| | - Andrea E. Münsterberg
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK (A.E.M.)
| | - Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
6
|
Castillo-Lopez E, Pacífico C, Sener-Aydemir A, Hummel K, Nöbauer K, Ricci S, Rivera-Chacon R, Reisinger N, Razzazi-Fazeli E, Zebeli Q, Kreuzer-Redmer S. Diet and phytogenic supplementation substantially modulate the salivary proteome in dairy cows. J Proteomics 2023; 273:104795. [PMID: 36535624 DOI: 10.1016/j.jprot.2022.104795] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/30/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Phytogenic compounds may influence salivation or salivary properties. However, their effects on the bovine salivary proteome have not been evaluated. We investigated changes in the bovine salivary proteome due to transition from forage to high-concentrate diet, with and without supplementation with a phytogenic feed additive. Eight non-lactating cows were fed forage, then transitioned to a 65% concentrate diet (DM basis) over a week. Cows were control (n = 4, CON) or supplemented with a phytogenic feed additive (n = 4, PHY). Proteomic analysis was conducted using liquid chromatography coupled with mass spectrometry. We identified 1233 proteins; 878 were bovine proteins, 189 corresponded to bacteria, and 166 were plant proteins. Between forage and high-concentrate, 139 proteins were differentially abundant (P < 0.05), with 48 proteins having a log2FC difference > |2|. The salivary proteome reflected shifts in processes involving nutrient utilization, body tissue accretion, and immune response. Between PHY and CON, 195 proteins were differently abundant (P < 0.05), with 37 having a log2FC difference > |2|; 86 proteins were increased by PHY, including proteins involved in smell recognition. Many differentially abundant proteins correlated (r > |0.70|) with salivary bicarbonate, total mucins or pH. Results provide novel insights into the bovine salivary proteome using a non-invasive approach, and the association of specific proteins with major salivary properties influencing rumen homeostasis. SIGNIFICANCE: Phytogenic compounds may stimulate salivation due to their olfactory properties, but their effects on the salivary proteome have not been investigated. We investigated the effect of high-concentrate diets and supplementation with a phytogenic additive on the salivary proteome of cows. We show that analysis of cows' saliva can be a non-invasive approach to detect effects occurring not only in the gut, but also systemically including indications for gut health and immune response. Thus, results provide unique insights into the bovine salivary proteome, and will have a crucial contribution to further understand animal response in terms of nutrient utilization and immune activity due to the change from forage to a high-energy diet. Additionally, our findings reveal changes due to supplementation with a phytogenic feed additive with regard to health and olfactory stimulation. Furthermore, findings suggest an association between salivary proteins and other components like bicarbonate content.
Collapse
Affiliation(s)
- Ezequias Castillo-Lopez
- University of Veterinary Medicine Vienna, Institute of Animal Nutrition and Functional Plant Compounds, Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria.
| | - Cátia Pacífico
- University of Veterinary Medicine Vienna, Institute of Animal Nutrition and Functional Plant Compounds, Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| | - Arife Sener-Aydemir
- University of Veterinary Medicine Vienna, Institute of Animal Nutrition and Functional Plant Compounds, Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| | - Karin Hummel
- University of Veterinary Medicine Vienna, VetCore Facility (Proteomics), Vienna, Austria
| | - Katharina Nöbauer
- University of Veterinary Medicine Vienna, VetCore Facility (Proteomics), Vienna, Austria
| | - Sara Ricci
- University of Veterinary Medicine Vienna, Institute of Animal Nutrition and Functional Plant Compounds, Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| | - Raul Rivera-Chacon
- University of Veterinary Medicine Vienna, Institute of Animal Nutrition and Functional Plant Compounds, Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| | | | - Ebrahim Razzazi-Fazeli
- University of Veterinary Medicine Vienna, VetCore Facility (Proteomics), Vienna, Austria
| | - Qendrim Zebeli
- University of Veterinary Medicine Vienna, Institute of Animal Nutrition and Functional Plant Compounds, Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| | - Susanne Kreuzer-Redmer
- University of Veterinary Medicine Vienna, Institute of Animal Nutrition and Functional Plant Compounds, Nutrigenomics Unit, Vienna, Austria.
| |
Collapse
|
7
|
Wu NN, Wang L, Wang L, Xu X, Lopaschuk GD, Zhang Y, Ren J. Site-specific ubiquitination of VDAC1 restricts its oligomerization and mitochondrial DNA release in liver fibrosis. Exp Mol Med 2023; 55:269-280. [PMID: 36658227 PMCID: PMC9898252 DOI: 10.1038/s12276-022-00923-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 01/20/2023] Open
Abstract
Mitochondrial DNA (mtDNA) released through protein oligomers, such as voltage-dependent anion channel 1 (VDAC1), triggers innate immune activation and thus contributes to liver fibrosis. Here, we investigated the role of Parkin, an important regulator of mitochondria, and its regulation of VDAC1-mediated mtDNA release in liver fibrosis. The circulating mitochondrial DNA (mtDNA) and protein levels of liver Parkin and VDAC1 were upregulated in patients with liver fibrosis. A 4-week CCl4 challenge induced release of mtDNA, activation of STING signaling, a decline in autophagy, and apoptosis in mouse livers, and the knockout of Parkin aggravated these effects. In addition, Parkin reduced mtDNA release and prevented VDAC1 oligomerization in a manner dependent on its E3 activity in hepatocytes. We found that site-specific ubiquitination of VDAC1 at lysine 53 by Parkin interrupted VDAC1 oligomerization and prevented mtDNA release into the cytoplasm under stress. The ubiquitination-defective VDAC1 K53R mutant predominantly formed oligomers that resisted suppression by Parkin. Hepatocytes expressing VDAC1 K53R exhibited mtDNA release and thus activated the STING signaling pathway in hepatic stellate cells, and this effect could not be abolished by Parkin. We propose that the ubiquitination of VDAC1 at a specific site by Parkin confers protection against liver fibrosis by interrupting VDAC1 oligomerization and mtDNA release.
Collapse
Affiliation(s)
- Ne N. Wu
- grid.413087.90000 0004 1755 3939Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, 200032 China ,National Clinical Research Center for Interventional Medicine, Shanghai, 200032 China
| | - Lifeng Wang
- grid.13394.3c0000 0004 1799 3993Department of Physiology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang 830000 China
| | - Lu Wang
- grid.233520.50000 0004 1761 4404Institute of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi’an, 710032 China ,grid.233520.50000 0004 1761 4404State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi’an, 710032 China
| | - Xihui Xu
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032 China
| | - Gary D. Lopaschuk
- grid.17089.370000 0001 2190 316XCardiovascular Research Centre, University of Alberta, Edmonton, Alberta T6G 2S2 Canada
| | - Yingmei Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, 200032, China. .,National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, 200032, China. .,National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China. .,Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
8
|
Merritt JC, Richbart SD, Moles EG, Cox AJ, Brown KC, Miles SL, Finch PT, Hess JA, Tirona MT, Valentovic MA, Dasgupta P. Anti-cancer activity of sustained release capsaicin formulations. Pharmacol Ther 2022; 238:108177. [PMID: 35351463 PMCID: PMC9510151 DOI: 10.1016/j.pharmthera.2022.108177] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022]
Abstract
Capsaicin (trans-8-methyl-N-vanillyl-6-noneamide) is a hydrophobic, lipophilic vanilloid phytochemical abundantly found in chili peppers and pepper extracts. Several convergent studies show that capsaicin displays robust cancer activity, suppressing the growth, angiogenesis and metastasis of several human cancers. Despite its potent cancer-suppressing activity, the clinical applications of capsaicin as a viable anti-cancer drug have remained problematic due to its poor bioavailability and aqueous solubility properties. In addition, the administration of capsaicin is associated with adverse side effects like gastrointestinal cramps, stomach pain, nausea and diarrhea and vomiting. All these hurdles may be circumvented by encapsulation of capsaicin in sustained release drug delivery systems. Most of the capsaicin-based the sustained release drugs have been tested for their pain-relieving activity. Only a few of these formulations have been investigated as anti-cancer agents. The present review describes the physicochemical properties, bioavailability, and anti-cancer activity of capsaicin-sustained release agents. The asset of such continuous release capsaicin formulations is that they display better solubility, stability, bioavailability, and growth-suppressive activity than the free drug. The encapsulation of capsaicin in sustained release carriers minimizes the adverse side effects of capsaicin. In summary, these capsaicin-based sustained release drug delivery systems have the potential to function as novel chemotherapies, unique diagnostic imaging probes and innovative chemosensitization agents in human cancers.
Collapse
Affiliation(s)
- Justin C Merritt
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Stephen D Richbart
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Emily G Moles
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Ashley J Cox
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Kathleen C Brown
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Sarah L Miles
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Paul T Finch
- Department of Oncology, Edwards Cancer Center, Joan C. Edwards School of Medicine, Marshall University, 1400 Hal Greer Boulevard, Huntington, WV 25755, United States
| | - Joshua A Hess
- Department of Oncology, Edwards Cancer Center, Joan C. Edwards School of Medicine, Marshall University, 1400 Hal Greer Boulevard, Huntington, WV 25755, United States
| | - Maria T Tirona
- Department of Hematology-Oncology, Edwards Cancer Center, Joan C. Edwards School of Medicine, Marshall University, 1400 Hal Greer Boulevard, Huntington, WV 25755, United States
| | - Monica A Valentovic
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Piyali Dasgupta
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States.
| |
Collapse
|
9
|
Dios-Barbeito S, González R, Cadenas M, García LF, Victor VM, Padillo FJ, Muntané J. Impact of nitric oxide in liver cancer microenvironment. Nitric Oxide 2022; 128:1-11. [DOI: 10.1016/j.niox.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022]
|
10
|
Cucarull B, Tutusaus A, Rider P, Hernáez-Alsina T, Cuño C, García de Frutos P, Colell A, Marí M, Morales A. Hepatocellular Carcinoma: Molecular Pathogenesis and Therapeutic Advances. Cancers (Basel) 2022; 14:cancers14030621. [PMID: 35158892 PMCID: PMC8833604 DOI: 10.3390/cancers14030621] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the most common form of liver cancer, continues to be a serious medical problem with poor prognosis, without major therapeutic improvement for years and increasing incidence. Fortunately, advances in systemic treatment options are finally arriving for HCC patients. After a decade of sorafenib as a standard therapy for advanced HCC, several tyrosine kinase inhibitors (TKIs), antiangiogenic antibodies, and immune checkpoint inhibitors have reached the clinic. Although infections by hepatitis B virus and hepatitis C virus remain principal factors for HCC development, the rise of non- alcoholic steatohepatitis from diabetes mellitus or metabolic syndrome is impeding HCC decline. Knowledge of specific molecular mechanisms, based on the etiology and the HCC microenvironment that influence tumor growth and immune control, will be crucial for physician decision-making among a variety of drugs to prescribe. In addition, markers of treatment efficacy are needed to speed the movement of patients towards other potentially effective treatments. Consequently, research to provide scientific data for the evidence-based management of liver cancer is guaranteed in the coming years and discussed here.
Collapse
Affiliation(s)
- Blanca Cucarull
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (P.R.); (C.C.); (P.G.d.F.); (A.C.)
| | - Anna Tutusaus
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (P.R.); (C.C.); (P.G.d.F.); (A.C.)
| | - Patricia Rider
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (P.R.); (C.C.); (P.G.d.F.); (A.C.)
| | | | - Carlos Cuño
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (P.R.); (C.C.); (P.G.d.F.); (A.C.)
| | - Pablo García de Frutos
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (P.R.); (C.C.); (P.G.d.F.); (A.C.)
- Unidad Asociada (IMIM), IIBB-CSIC, CIBERCV, IDIBAPS, 08036 Barcelona, Spain
| | - Anna Colell
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (P.R.); (C.C.); (P.G.d.F.); (A.C.)
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08036 Barcelona, Spain
| | - Montserrat Marí
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (P.R.); (C.C.); (P.G.d.F.); (A.C.)
- Correspondence: (M.M.); (A.M.); Tel.: +34-932558314 (M.M. & A.M.)
| | - Albert Morales
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (P.R.); (C.C.); (P.G.d.F.); (A.C.)
- Barcelona Clinic Liver Cancer Group, Liver Unit, Hospital Clínic of Barcelona, University of Barcelona, CIBEREHD, IDIBAPS, 08036 Barcelona, Spain
- Correspondence: (M.M.); (A.M.); Tel.: +34-932558314 (M.M. & A.M.)
| |
Collapse
|
11
|
Garnett ER, Raines RT. Emerging biological functions of ribonuclease 1 and angiogenin. Crit Rev Biochem Mol Biol 2021; 57:244-260. [PMID: 34886717 DOI: 10.1080/10409238.2021.2004577] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pancreatic-type ribonucleases (ptRNases) are a large family of vertebrate-specific secretory endoribonucleases. These enzymes catalyze the degradation of many RNA substrates and thereby mediate a variety of biological functions. Though the homology of ptRNases has informed biochemical characterization and evolutionary analyses, the understanding of their biological roles is incomplete. Here, we review the functions of two ptRNases: RNase 1 and angiogenin. RNase 1, which is an abundant ptRNase with high catalytic activity, has newly discovered roles in inflammation and blood coagulation. Angiogenin, which promotes neovascularization, is now known to play roles in the progression of cancer and amyotrophic lateral sclerosis, as well as in the cellular stress response. Ongoing work is illuminating the biology of these and other ptRNases.
Collapse
Affiliation(s)
- Emily R Garnett
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ronald T Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
12
|
Kupper N, Huppertz B. The endogenous exposome of the pregnant mother: Placental extracellular vesicles and their effect on the maternal system. Mol Aspects Med 2021; 87:100955. [PMID: 33612320 DOI: 10.1016/j.mam.2021.100955] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/28/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022]
Abstract
During pregnancy, there is an intense crosstalk between mother and placenta. During the entire time of pregnancy, the maternal system deals with a huge amount of foreign (fetal) material released from the placenta, which can be referred to as placental exposome. Besides the release of hormones and growth factors, the placenta releases a variety of extracellular vesicles into maternal blood. These vesicles contain specific molecules including proteins, lipids, DNA as well as miRNA, all of which may have specific sites and modes of action on maternal cells. During normal pregnancy, the fine-tuning of factors and vesicles helps maintaining a viable and healthy pregnancy. However, in pregnancy pathologies such as preeclampsia, quantity and quality of the placenta-derived vesicles are altered leading to a deleterious effect on the maternal vascular system. This review focuses on the different types of placenta-derived extracellular vesicles in pregnancy with special emphasis on the interplay between these placental vesicles and the maternal system. Additionally, it displays new techniques and ideas for the analysis of the placental exposome with placental extracellular vesicles as a key aspect.
Collapse
Affiliation(s)
- Nadja Kupper
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Berthold Huppertz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria.
| |
Collapse
|
13
|
Angiogenin (ANG)-Ribonuclease Inhibitor (RNH1) System in Protein Synthesis and Disease. Int J Mol Sci 2021; 22:ijms22031287. [PMID: 33525475 PMCID: PMC7866052 DOI: 10.3390/ijms22031287] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 12/16/2022] Open
Abstract
Protein synthesis is a highly complex process executed by well-organized translation machinery. Ribosomes, tRNAs and mRNAs are the principal components of this machinery whereas RNA binding proteins and ribosome interacting partners act as accessory factors. Angiogenin (ANG)-Ribonuclease inhibitor (RNH1) system is one such accessory part of the translation machinery that came into focus afresh due to its unconventional role in the translation. ANG is conventionally known for its ability to induce blood vessel formation and RNH1 as a "sentry" to protect RNAs from extracellular RNases. However, recent studies suggest them to be important in translation regulation. During cell homeostasis, ANG in the nucleus promotes rRNA transcription. While under stress, ANG translocates to the cytosol and cleaves tRNA into fragments which inhibit ribosome biogenesis and protein synthesis. RNH1, which intimately interacts with ANG to inhibit its ribonucleolytic activity, can also bind to the 40S ribosomes and control translation by yet to be known mechanisms. Here, we review recent advancement in the knowledge of translation regulation by the ANG-RNH1 system. We also gather information about this system in cell homeostasis as well as in pathological conditions such as cancer and ribosomopathies. Additionally, we discuss the future research directions and therapeutic potential of this system.
Collapse
|
14
|
Huang X, Chen Z, Zhang N, Zhu C, Lin X, Yu J, Chen Z, Lan P, Wan Y. Increase in CD4 +FOXP3 + regulatory T cell number and upregulation of the HGF/c-Met signaling pathway during the liver metastasis of colorectal cancer. Oncol Lett 2020; 20:2113-2118. [PMID: 32782528 PMCID: PMC7400973 DOI: 10.3892/ol.2020.11785] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 03/25/2020] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is the third and second most common type of cancer diagnosed in males and females, respectively, and is the fourth leading cause of cancer-associated mortality worldwide. Liver metastasis is the primary cause of mortality in patients with CRC, and therefore requires therapeutic focus. Regulatory T cells (Tregs) and hepatic stellate cells (HSCs) are potentially involved in regulating the immune response during liver metastasis. The aim of the present study was to evaluate the influence of CD4+ forkhead box p3 (Foxp3)+ Tregs and the HGF/c-Met signaling pathway in the liver metastasis of CRC. A model of the latter was established using Balb/c mice via splenic injection of human CRC cells (CT-26 line). The mice were monitored for 3 weeks after being injected, and the spleens and livers were removed on day 22 for further analysis. Moreover, the single-cell suspensions were labeled with CD4 and Foxp3 antibodies, and were analyzed using flow cytometry. Expression levels of α-smooth muscle actin (SMA), hepatocyte growth factor (HGF) and hepatocyte growth factor receptor (c-Met) were analyzed using immunohistochemistry. Mice injected with CT-26 cells exhibited signs of illness and significant weight loss, compared with the control mice (P=0.013), and they also developed liver metastases, at an average of 20.5 tumors per mouse. Pathological evaluation using hematoxylin and eosin staining confirmed the tumors as liver metastases of CRC. The numbers of CD4+ T cells were significantly decreased in the spleen (P<0.001) and liver (P=0.003) of tumor-bearing mice, while the proportions of CD4+FOXP3+ Tregs increased significantly in the spleen (P<0.001) and liver (P=0.026) compared with that in the controls. Additionally, α-SMA, HGF and c-Met levels increased significantly during metastatic growth in the liver. In conclusion, CD4+FOXP3+ Treg levels increased and the HGF/c-Met pathway was upregulated during the liver metastasis of CRC in mice, indicating the presence of potential therapeutic targets.
Collapse
Affiliation(s)
- Xiaoming Huang
- Department of Hepatobiliary Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510655, P.R. China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Zexian Chen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510655, P.R. China.,Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Nanrong Zhang
- Department of Anesthesiology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Caiyan Zhu
- Department of Pharmacy, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xutao Lin
- Department of Endoscopy Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Jiandong Yu
- Department of Hepatobiliary Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Zhiping Chen
- Department of Hepatobiliary Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Ping Lan
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510655, P.R. China.,Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Yunle Wan
- Department of Hepatobiliary Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510655, P.R. China
| |
Collapse
|
15
|
Barry AE, Baldeosingh R, Lamm R, Patel K, Zhang K, Dominguez DA, Kirton KJ, Shah AP, Dang H. Hepatic Stellate Cells and Hepatocarcinogenesis. Front Cell Dev Biol 2020; 8:709. [PMID: 32850829 PMCID: PMC7419619 DOI: 10.3389/fcell.2020.00709] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatic stellate cells (HSCs) are a significant component of the hepatocellular carcinoma (HCC) tumor microenvironment (TME). Activated HSCs transform into myofibroblast-like cells to promote fibrosis in response to liver injury or chronic inflammation, leading to cirrhosis and HCC. The hepatic TME is comprised of cellular components, including activated HSCs, tumor-associated macrophages, endothelial cells, immune cells, and non-cellular components, such as growth factors, proteolytic enzymes and their inhibitors, and other extracellular matrix (ECM) proteins. Interactions between HCC cells and their microenvironment have become topics under active investigation. These interactions within the hepatic TME have the potential to drive carcinogenesis and create challenges in generating effective therapies. Current studies reveal potential mechanisms through which activated HSCs drive hepatocarcinogenesis utilizing matricellular proteins and paracrine crosstalk within the TME. Since activated HSCs are primary secretors of ECM proteins during liver injury and inflammation, they help promote fibrogenesis, infiltrate the HCC stroma, and contribute to HCC development. In this review, we examine several recent studies revealing the roles of HSCs and their clinical implications in the development of fibrosis and cirrhosis within the hepatic TME.
Collapse
Affiliation(s)
- Anna E Barry
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA, United States.,Sidney Kimmel Cancer Center, Philadelphia, PA, United States
| | - Rajkumar Baldeosingh
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA, United States.,Sidney Kimmel Cancer Center, Philadelphia, PA, United States
| | - Ryan Lamm
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Keyur Patel
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Kai Zhang
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA, United States.,Sidney Kimmel Cancer Center, Philadelphia, PA, United States
| | - Dana A Dominguez
- Department of General Surgery, UCSF East Bay, Oakland, CA, United States
| | - Kayla J Kirton
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Ashesh P Shah
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Hien Dang
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA, United States.,Sidney Kimmel Cancer Center, Philadelphia, PA, United States
| |
Collapse
|
16
|
Plummer R, Hu GF, Liu T, Yoo J. Angiogenin regulates PKD activation and COX-2 expression induced by TNF-α and bradykinin in the colonic myofibroblast. Biochem Biophys Res Commun 2020; 525:870-876. [PMID: 32171525 DOI: 10.1016/j.bbrc.2020.02.169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The myofibroblast is a gastrointestinal stromal cell that is a target of tumor necrosis factor-alpha (TNF-α), a pro-inflammatory cytokine strongly implicated in colitis-associated cancer. Crosstalk between TNF-α and other pro-inflammatory mediators amplify inflammatory signaling but the mechanism is unknown. Angiogenin (ANG) is a 14-kDa angiogenesis protein that is regulated in patients with inflammatory bowel disease. However, the role of ANG on inflammatory mediator crosstalk in the myofibroblast is unknown. METHODS The human colonic myofibroblast cell line 18Co, as well as primary mouse and human colonic myofibroblasts, were exposed to TNF-α (10 ng/ml) and bradykinin (BK, 100 nM). ANG was quantified by ELISA. The expression of cyclo-oxygenase-2 (COX-2) and phosphorylation of PKD was assessed by Western Blot. RESULTS Primary mouse and human colonic myofibroblasts exposed to TNF-α/BK led to enhanced PKD phosphorylation and synergistic COX-2 expression. 18Co cells secrete high levels of ANG (24h, 265 ± 5 pg/ml). The monoclonal antibody 26-2F, which neutralizes ANG, inhibited TNF-α/BK-mediated PKD phosphorylation and synergistic COX-2 expression in primary human myofibroblasts. Likewise, in primary mouse myofibroblasts that do not express ANG (ANG-KO), TNF-α/BK failed to enhance PKD phosphorylation and COX-2 expression. CONCLUSIONS TNF-α/BK enhance PKD phosphorylation and COX-2 expression in primary mouse and human colonic myofibroblasts. Angiogenin is produced by the myofibroblast, and inhibition of ANG signaling, either by its absence (ANG-KO) or by pharmacologic inhibition, blocks enhanced PKD phosphorylation and synergistic COX-2 expression induced by TNF-α/BK. ANG mediates crosstalk signaling between TNF-α/BK in the regulation of stroma-derived COX-2 and may be a novel therapeutic target for the management of colitis-associated cancer.
Collapse
Affiliation(s)
- Robert Plummer
- Department of Medicine, Tufts University School of Medicine, Tufts Medical Center, Boston, MA, 02111, USA
| | - Guo-Fu Hu
- Department of Medicine, Tufts University School of Medicine, Tufts Medical Center, Boston, MA, 02111, USA
| | - Tiegang Liu
- Department of Surgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - James Yoo
- Department of Surgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
17
|
Cucarull B, Tutusaus A, Subías M, Stefanovic M, Hernáez-Alsina T, Boix L, Reig M, García de Frutos P, Marí M, Colell A, Bruix J, Morales A. Regorafenib Alteration of the BCL-xL/MCL-1 Ratio Provides a Therapeutic Opportunity for BH3-Mimetics in Hepatocellular Carcinoma Models. Cancers (Basel) 2020; 12:E332. [PMID: 32024199 PMCID: PMC7073154 DOI: 10.3390/cancers12020332] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The multikinase inhibitor regorafenib, approved as second-line treatment for hepatocellular carcinoma (HCC) after sorafenib failure, may induce mitochondrial damage. BH3-mimetics, inhibitors of specific BCL-2 proteins, are valuable drugs in cancer therapy to amplify mitochondrial-dependent cell death. METHODS In in vitro and in vivo HCC models, we tested regorafenib's effect on the BCL-2 network and the efficacy of BH3-mimetics on HCC treatment. RESULTS In hepatoma cell lines and Hep3B liver spheroids, regorafenib cytotoxicity was potentiated by BCL-xL siRNA transfection or pharmacological inhibition (A-1331852), while BCL-2 antagonism had no effect. Mitochondrial outer membrane permeabilization, cytochrome c release, and caspase-3 activation mediated A-1331852/regorafenib-induced cell death. In a patient-derived xenograft (PDX) HCC model, BCL-xL inhibition stimulated regorafenib activity, drastically decreasing tumor growth. Moreover, regorafenib-resistant HepG2 cells displayed increased BCL-xL and reduced MCL-1 expression, while A-1331852 reinstated regorafenib efficacy in vitro and in a xenograft mouse model. Interestingly, BCL-xL levels, associated with poor prognosis in liver and colorectal cancer, and the BCL-xL/MCL-1 ratio were detected as being increased in HCC patients. CONCLUSION Regorafenib primes tumor cells to BH3-mimetic-induced cell death, allowing BCL-xL inhibition with A-1331852 or other strategies based on BCL-xL degradation to enhance regorafenib efficacy, offering a novel approach for HCC treatment, particularly for tumors with an elevated BCL-xL/MCL-1 ratio.
Collapse
Affiliation(s)
- Blanca Cucarull
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (M.S.); (M.S.); (P.G.d.F.); (M.M.); (A.C.)
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Anna Tutusaus
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (M.S.); (M.S.); (P.G.d.F.); (M.M.); (A.C.)
| | - Miguel Subías
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (M.S.); (M.S.); (P.G.d.F.); (M.M.); (A.C.)
| | - Milica Stefanovic
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (M.S.); (M.S.); (P.G.d.F.); (M.M.); (A.C.)
- Department of Radiation Oncology, Catalan Institute of Oncology (ICO)-IDIBELL, L’Hospitalet, 08908 Barcelona, Spain
| | | | - Loreto Boix
- Barcelona Clinic Liver Cancer Group, Liver Unit, Hospital Clínic of Barcelona, University of Barcelona, CIBEREHD, IDIBAPS, 08036 Barcelona, Spain; (L.B.); (M.R.); (J.B.)
| | - María Reig
- Barcelona Clinic Liver Cancer Group, Liver Unit, Hospital Clínic of Barcelona, University of Barcelona, CIBEREHD, IDIBAPS, 08036 Barcelona, Spain; (L.B.); (M.R.); (J.B.)
| | - Pablo García de Frutos
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (M.S.); (M.S.); (P.G.d.F.); (M.M.); (A.C.)
- Centro de Investigación Biomédica en Red sobre Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Montserrat Marí
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (M.S.); (M.S.); (P.G.d.F.); (M.M.); (A.C.)
| | - Anna Colell
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (M.S.); (M.S.); (P.G.d.F.); (M.M.); (A.C.)
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Jordi Bruix
- Barcelona Clinic Liver Cancer Group, Liver Unit, Hospital Clínic of Barcelona, University of Barcelona, CIBEREHD, IDIBAPS, 08036 Barcelona, Spain; (L.B.); (M.R.); (J.B.)
| | - Albert Morales
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (M.S.); (M.S.); (P.G.d.F.); (M.M.); (A.C.)
- Barcelona Clinic Liver Cancer Group, Liver Unit, Hospital Clínic of Barcelona, University of Barcelona, CIBEREHD, IDIBAPS, 08036 Barcelona, Spain; (L.B.); (M.R.); (J.B.)
| |
Collapse
|
18
|
Chiou NT, Kageyama R, Ansel KM. Selective Export into Extracellular Vesicles and Function of tRNA Fragments during T Cell Activation. Cell Rep 2019; 25:3356-3370.e4. [PMID: 30566862 PMCID: PMC6392044 DOI: 10.1016/j.celrep.2018.11.073] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/29/2018] [Accepted: 11/15/2018] [Indexed: 12/12/2022] Open
Abstract
The discovery of microRNA (miRNA) sorting into extracellular vesicles (EVs) revealed a novel mode of intercellular communication and uncovered a link between cellular endomembrane compartments and small RNAs in EV-secreting cells. Using a two-step ultracentrifugation procedure to isolate EVs released by T cells, we found that 45% of tRNA fragments (tRFs), but fewer than 1% of miRNAs, were significantly enriched in EVs compared with the corresponding cellular RNA. T cell activation induced the EV-mediated release of a specific set of tRFs derived from the 5' end and 3'-internal region of tRNAs without variable loops. Inhibition of EV biogenesis pathways specifically led to the accumulation of these activation-induced EV-enriched tRFs within multivesicular bodies (MVBs). Introducing antisense oligonucleotides to inhibit these tRFs enhanced T cell activation. Taken together, these results demonstrate that T cells selectively release tRFs into EVs via MVBs and suggest that this process may remove tRFs that repress immune activation.
Collapse
Affiliation(s)
- Ni-Ting Chiou
- Sandler Asthma Basic Research Center and Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Robin Kageyama
- Sandler Asthma Basic Research Center and Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - K Mark Ansel
- Sandler Asthma Basic Research Center and Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
19
|
Tutusaus A, de Gregorio E, Cucarull B, Cristóbal H, Aresté C, Graupera I, Coll M, Colell A, Gausdal G, Lorens JB, García de Frutos P, Morales A, Marí M. A Functional Role of GAS6/TAM in Nonalcoholic Steatohepatitis Progression Implicates AXL as Therapeutic Target. Cell Mol Gastroenterol Hepatol 2019; 9:349-368. [PMID: 31689560 PMCID: PMC7013198 DOI: 10.1016/j.jcmgh.2019.10.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS GAS6 signaling, through the TAM receptor tyrosine kinases AXL and MERTK, participates in chronic liver pathologies. Here, we addressed GAS6/TAM involvement in Non-Alcoholic SteatoHepatitis (NASH) development. METHODS GAS6/TAM signaling was analyzed in cultured primary hepatocytes, hepatic stellate cells (HSC) and Kupffer cells (KCs). Axl-/-, Mertk-/- and wild-type C57BL/6 mice were fed with Chow, High Fat Choline-Deficient Methionine-Restricted (HFD) or methionine-choline-deficient (MCD) diet. HSC activation, liver inflammation and cytokine/chemokine production were measured by qPCR, mRNA Array analysis, western blotting and ELISA. GAS6, soluble AXL (sAXL) and MERTK (sMERTK) levels were analyzed in control individuals, steatotic and NASH patients. RESULTS In primary mouse cultures, GAS6 or MERTK activation protected primary hepatocytes against lipid toxicity via AKT/STAT-3 signaling, while bemcentinib (small molecule AXL inhibitor BGB324) blocked AXL-induced fibrogenesis in primary HSCs and cytokine production in LPS-treated KCs. Accordingly; bemcentinib diminished liver inflammation and fibrosis in MCD- and HFD-fed mice. Upregulation of AXL and ADAM10/ADAM17 metalloproteinases increased sAXL in HFD-fed mice. Transcriptome profiling revealed major reduction in fibrotic- and inflammatory-related genes in HFD-fed mice after bemcentinib administration. HFD-fed Mertk-/- mice exhibited enhanced NASH, while Axl-/- mice were partially protected. In human serum, sAXL levels augmented even at initial stages, whereas GAS6 and sMERTK increased only in cirrhotic NASH patients. In agreement, sAXL increased in HFD-fed mice before fibrosis establishment, while bemcentinib prevented liver fibrosis/inflammation in early NASH. CONCLUSION AXL signaling, increased in NASH patients, promotes fibrosis in HSCs and inflammation in KCs, while GAS6 protects cultured hepatocytes against lipotoxicity via MERTK. Bemcentinib, by blocking AXL signaling and increasing GAS6 levels, reduces experimental NASH, revealing AXL as an effective therapeutic target for clinical practice.
Collapse
Affiliation(s)
- Anna Tutusaus
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain,Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Estefanía de Gregorio
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain
| | - Blanca Cucarull
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain,Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Helena Cristóbal
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain
| | - Cristina Aresté
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain
| | - Isabel Graupera
- Liver Unit, Hospital Clínic, Biomedical Research Networking Center in Hepatic and Digestive Diseases, Barcelona, Spain
| | - Mar Coll
- Liver Unit, Hospital Clínic, Biomedical Research Networking Center in Hepatic and Digestive Diseases, Barcelona, Spain
| | - Anna Colell
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain
| | | | - James B. Lorens
- BerGenBio AS, Bergen, Norway,Department of Biomedicine, Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Pablo García de Frutos
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain,Correspondence Address correspondence to: Montserrat Marí, PhD, Albert Morales, PhD, or Pablo García de Frutos, PhD, Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), C/ Rosselló 161, 6th Floor, 08036 Barcelona, Spain. fax: +34-93-3638301.
| | - Albert Morales
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain,Barcelona Clinic Liver Cancer Group, Liver Unit, Hospital Clínic, Biomedical Research Networking Center in Hepatic and Digestive Diseases, Barcelona, Spain,Correspondence Address correspondence to: Montserrat Marí, PhD, Albert Morales, PhD, or Pablo García de Frutos, PhD, Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), C/ Rosselló 161, 6th Floor, 08036 Barcelona, Spain. fax: +34-93-3638301.
| | - Montserrat Marí
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain,Correspondence Address correspondence to: Montserrat Marí, PhD, Albert Morales, PhD, or Pablo García de Frutos, PhD, Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), C/ Rosselló 161, 6th Floor, 08036 Barcelona, Spain. fax: +34-93-3638301.
| |
Collapse
|
20
|
Sevoflurane Protects Hepatocytes From Ischemic Injury by Reducing Reactive Oxygen Species Signaling of Hepatic Stellate Cells: Translational Findings Based on a Clinical Trial. Anesth Analg 2019; 127:1058-1065. [PMID: 30216289 DOI: 10.1213/ane.0000000000003692] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Randomized controlled trials (RCTs) data demonstrate that sevoflurane postconditioning improves clinical outcomes of liver resection with inflow occlusion, presumably due to hepatocyte protection from ischemic injury. However, mechanisms remain unclear. This study examines liver biopsy samples obtained in an RCT of sevoflurane postconditioning to test the hypothesis that sevoflurane attenuates hepatocyte apoptosis. METHODS Messenger ribonucleic acid (mRNA) of pro- and antiapoptotic regulators Bax and B-cell lymphoma 2 (Bcl2) was examined in hepatic biopsies obtained during the RCT. Hepatic stellate cells (HSCs) and hepatocytes were exposed to hypoxia/reoxygenation (H/R) in vitro to evaluate the effect of sevoflurane postconditioning on apoptosis. The role of HSC as a potential apoptosis trigger in hepatocytes through the production of reactive oxygen species induced by H/R was explored by transferring supernatants from H/R-exposed HSC to hepatocytes as target cells. RESULTS In patients of the RCT, the Bax/Bcl2 mRNA ratio in liver tissue was markedly decreased in the sevoflurane arm (25% ± 21% reduction; P = .001). In vitro, H/R increased reactive oxygen species production in HSC by 33% ± 16% (P = .025), while it was abolished in the presence of sevoflurane (P < .001). In hepatocytes, caspase was minimally activated by H/R. However, incubation of hepatocytes with supernatants of HSC, previously exposed to H/R, increased caspase activity by 28% ± 13% (P < .001). When exposed to supernatants from HSC undergoing sevoflurane postconditioning, caspase activation in hepatocytes was reduced by 20% ± 9% (P < .001), similarly to the sevoflurane effect on the BAX/Bcl2 mRNA ratio in the liver samples. CONCLUSIONS The study shows that sevoflurane postconditioning affects apoptosis of hepatocytes after ischemia-reperfusion injury in patients. It also demonstrates that HSC may be the effector cells of sevoflurane protection.
Collapse
|
21
|
Chua V, Orloff M, Teh JL, Sugase T, Liao C, Purwin TJ, Lam BQ, Terai M, Ambrosini G, Carvajal RD, Schwartz G, Sato T, Aplin AE. Stromal fibroblast growth factor 2 reduces the efficacy of bromodomain inhibitors in uveal melanoma. EMBO Mol Med 2019; 11:emmm.201809081. [PMID: 30610113 PMCID: PMC6365926 DOI: 10.15252/emmm.201809081] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Alterations in transcriptional programs promote tumor development and progression and are targetable by bromodomain and extraterminal (BET) protein inhibitors. However, in a multi‐site clinical trial testing the novel BET inhibitor, PLX51107, in solid cancer patients, liver metastases of uveal melanoma (UM) patients progressed rapidly following treatment. Mechanisms of resistance to BET inhibitors in UM are unknown. We show that fibroblast growth factor 2 (FGF2) rescued UM cells from growth inhibition by BET inhibitors, and FGF2 effects were reversible by FGF receptor (FGFR) inhibitors. BET inhibitors also increased FGFR protein expression in UM cell lines and in patient tumor samples. Hepatic stellate cells (HSCs) secrete FGF2, and HSC‐conditioned medium provided resistance of UM cells to BET inhibitors. PLX51107 was ineffective in vivo, but the combination of a FGFR inhibitor, AZD4547, and PLX51107 significantly suppressed the growth of xenograft UM tumors formed from subcutaneous inoculation of UM cells with HSCs and orthotopically in the liver. These results suggest that co‐targeting of FGFR signaling is required to increase the responses of metastatic UM to BET inhibitors.
Collapse
Affiliation(s)
- Vivian Chua
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Marlana Orloff
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jessica Lf Teh
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Takahito Sugase
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Connie Liao
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Timothy J Purwin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Bao Q Lam
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Mizue Terai
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Grazia Ambrosini
- The Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Richard D Carvajal
- The Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA.,Division of Hematology/Oncology, Columbia University Medical Center, New York, NY, USA
| | - Gary Schwartz
- The Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA.,Division of Hematology/Oncology, Columbia University Medical Center, New York, NY, USA
| | - Takami Sato
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrew E Aplin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA .,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
22
|
Chua V, Orloff M, Teh JL, Sugase T, Liao C, Purwin TJ, Lam BQ, Terai M, Ambrosini G, Carvajal RD, Schwartz G, Sato T, Aplin AE. Stromal fibroblast growth factor 2 reduces the efficacy of bromodomain inhibitors in uveal melanoma. EMBO Mol Med 2019; 11:emmm.201809081. [PMID: 30610113 DOI: 10.1525/emmm.201809081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023] Open
Abstract
Alterations in transcriptional programs promote tumor development and progression and are targetable by bromodomain and extraterminal (BET) protein inhibitors. However, in a multi-site clinical trial testing the novel BET inhibitor, PLX51107, in solid cancer patients, liver metastases of uveal melanoma (UM) patients progressed rapidly following treatment. Mechanisms of resistance to BET inhibitors in UM are unknown. We show that fibroblast growth factor 2 (FGF2) rescued UM cells from growth inhibition by BET inhibitors, and FGF2 effects were reversible by FGF receptor (FGFR) inhibitors. BET inhibitors also increased FGFR protein expression in UM cell lines and in patient tumor samples. Hepatic stellate cells (HSCs) secrete FGF2, and HSC-conditioned medium provided resistance of UM cells to BET inhibitors. PLX51107 was ineffective in vivo, but the combination of a FGFR inhibitor, AZD4547, and PLX51107 significantly suppressed the growth of xenograft UM tumors formed from subcutaneous inoculation of UM cells with HSCs and orthotopically in the liver. These results suggest that co-targeting of FGFR signaling is required to increase the responses of metastatic UM to BET inhibitors.
Collapse
Affiliation(s)
- Vivian Chua
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Marlana Orloff
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jessica Lf Teh
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Takahito Sugase
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Connie Liao
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Timothy J Purwin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Bao Q Lam
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Mizue Terai
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Grazia Ambrosini
- The Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Richard D Carvajal
- The Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
- Division of Hematology/Oncology, Columbia University Medical Center, New York, NY, USA
| | - Gary Schwartz
- The Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
- Division of Hematology/Oncology, Columbia University Medical Center, New York, NY, USA
| | - Takami Sato
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrew E Aplin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
23
|
Hu JL, Luo WJ, Wang H. Angiogenin Upregulation Independently Predicts Unfavorable Overall Survival in Proneural Subtype of Glioblastoma. Technol Cancer Res Treat 2019; 18:1533033819846636. [PMID: 31072237 PMCID: PMC6515846 DOI: 10.1177/1533033819846636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Objective: Angiogenin is a small protein that exerts potent stimulating effects on angiogenesis. In this study, we aimed to examine the expression of angiogenin in different subtypes of glioblastoma and estimated its independent prognostic value. Methods: The genomic and survival data from The Cancer Genome Atlas-glioblastoma were extracted for a secondary study. Results The expression of angiogenin was upregulated in glioblastoma tissues and varied significantly in different subtypes. Although the proneural subtype had the lowest angiogenin expression, high angiogenin expression was associated with significantly worse overall survival. However, this association was not observed in other subtypes. By performing univariate and multivariate analysis using Cox regression model, we observed that high angiogenin expression was an independent indicator of shorter overall survival in proneural glioblastoma (hazard ratio: 1.669, 95% confidence interval: 1.033-2.696, P = .036), after adjustment of age, gender, isocitrate dehydrogenase 1 mutation, temozolomide chemotherapy and radiation therapy. In addition, we also observed a correlation between elevated angiogenin expression and the hypomethylated status of its DNA. The hypermethylation group had significantly better overall survival. Conclusions: Angiogenin upregulation might serve as a biomarker for unfavorable overall survival in the proneural subtype of glioblastoma.
Collapse
Affiliation(s)
- Ji-Liang Hu
- 1 Department of Neurosurgery, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Wei-Jian Luo
- 1 Department of Neurosurgery, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Hao Wang
- 1 Department of Neurosurgery, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
| |
Collapse
|
24
|
Wang YN, Lee HH, Hung MC. A novel ligand-receptor relationship between families of ribonucleases and receptor tyrosine kinases. J Biomed Sci 2018; 25:83. [PMID: 30449278 PMCID: PMC6241042 DOI: 10.1186/s12929-018-0484-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ribonuclease is known to participate in host defense system against pathogens, such as parasites, bacteria, and virus, which results in innate immune response. Nevertheless, its potential impact to host cells remains unclear. Of interest, several ribonucleases do not act as catalytically competent enzymes, suggesting that ribonucleases may be associated with certain intrinsic functions other than their ribonucleolytic activities. Most recently, human pancreatic ribonuclease 5 (hRNase5; also named angiogenin; hereinafter referred to as hRNase5/ANG), which belongs to the human ribonuclease A superfamily, has been demonstrated to function as a ligand of epidermal growth factor receptor (EGFR), a member of the receptor tyrosine kinase family. As a newly identified EGFR ligand, hRNase5/ANG associates with EGFR and stimulates EGFR and the downstream signaling in a catalytic-independent manner. Notably, hRNase5/ANG, whose level in sera of pancreatic cancer patients, serves as a non-invasive serum biomarker to stratify patients for predicting the sensitivity to EGFR-targeted therapy. Here, we describe the hRNase5/ANG-EGFR pair as an example to highlight a ligand-receptor relationship between families of ribonucleases and receptor tyrosine kinases, which are thought as two unrelated protein families associated with distinct biological functions. The notion of serum biomarker-guided EGFR-targeted therapies will also be discussed. Furthering our understanding of this novel ligand-receptor interaction will shed new light on the search of ligands for their cognate receptors, especially those orphan receptors without known ligands, and deepen our knowledge of the fundamental research in membrane receptor biology and the translational application toward the development of precision medicine.
Collapse
Affiliation(s)
- Ying-Nai Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - Heng-Huan Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030 USA
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, TX 77030 USA
- Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung, 404 Taiwan
| |
Collapse
|
25
|
Zou B, Liu X, Gong Y, Cai C, Li P, Xing S, Pokhrel B, Zhang B, Li J. A novel 12-marker panel of cancer-associated fibroblasts involved in progression of hepatocellular carcinoma. Cancer Manag Res 2018; 10:5303-5311. [PMID: 30464627 PMCID: PMC6225911 DOI: 10.2147/cmar.s176152] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND/AIM Cancer-associated fibroblasts (CAFs) are important factors in the progression of hepatocellular carcinoma (HCC). But the characterization of these cells remains incomplete. This study aims to identify a panel of markers for CAFs that are associated with HCC progression. MATERIALS AND METHODS The sequencing data and clinicopathological characteristics of 366 patients were obtained from the Cancer Genome Atlas (TCGA) database (366 HCC tissues and there were 50/366 cases with corresponding normal liver tissues). In vitro validation of the markers was performed by quantitative real-time PCR using the hepatic stellate cell line LX2 induced by the HCC cell line Huh7. The activation of LX2 was confirmed by α-smooth muscle actin and fibroblast activation protein, using quantitative real-time PCR and immunofluorescence staining. In vivo detections of the 12 markers were done in 40 tissue samples (30 HCC and 10 normal). RESULTS We successfully identified 12 CAF markers from TCGA data: FGF5, CXCL5, IGFL2, MMP1, ADAM32, ADAM18, IGFL1, FGF8, FGF17, FGF19, FGF4, and FGF23. The 12-marker panel was associated with the pathological and clinical progressions of HCC. All 12 markers were upregulated in vitro. In vivo expressions of these markers were paralleled with those in TCGA data. CONCLUSION A 12-marker panel of CAFs in HCC is identified, which is associated with both pathological and clinical progressions of cancer.
Collapse
Affiliation(s)
- Baojia Zou
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China, ;
| | - Xialei Liu
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China, ;
| | - Yihang Gong
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China, ;
| | - Chaonong Cai
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China, ;
| | - Peiping Li
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China, ;
| | - Shan Xing
- Department of Clinical Laboratory, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Bibesh Pokhrel
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China, ;
| | - Baimeng Zhang
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China, ;
| | - Jian Li
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China, ;
| |
Collapse
|
26
|
Phosphorylation of NHERF1 S279 and S301 differentially regulates breast cancer cell phenotype and metastatic organotropism. Biochim Biophys Acta Mol Basis Dis 2018; 1865:26-37. [PMID: 30326259 DOI: 10.1016/j.bbadis.2018.10.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/21/2018] [Accepted: 10/11/2018] [Indexed: 02/08/2023]
Abstract
Metastatic cancer cells are highly plastic for the expression of different tumor phenotype hallmarks and organotropism. This plasticity is highly regulated but the dynamics of the signaling processes orchestrating the shift from one cell phenotype and metastatic organ pattern to another are still largely unknown. The scaffolding protein NHERF1 has been shown to regulate the expression of different neoplastic phenotypes through its PDZ domains, which forms the mechanistic basis for metastatic organotropism. This reprogramming activity was postulated to be dependent on its differential phosphorylation patterns. Here, we show that NHERF1 phosphorylation on S279/S301 dictates several tumor phenotypes such as in vivo invasion, NHE1-mediated matrix digestion, growth and vasculogenic mimicry. Remarkably, injecting mice with cells having differential NHERF1 expression and phosphorylation drove a shift from the predominantly lung colonization (WT NHERF1) to predominately bone colonization (double S279A/S301A mutant), indicating that NHERF1 phosphorylation also acts as a signaling switch in metastatic organotropism.
Collapse
|
27
|
Magrì A, Tabbì G, Breglia R, De Gioia L, Fantucci P, Bruschi M, Bonomo RP, La Mendola D. Copper ion interaction with the RNase catalytic site fragment of the angiogenin protein: an experimental and theoretical investigation. Dalton Trans 2018. [PMID: 28636006 DOI: 10.1039/c7dt01209h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The angiogenin protein (Ang) is a member of the vertebrate-specific secreted ribonucleases and one of the most potent angiogenic factors known. Ang is a normal constituent of human plasma and its concentration increases under some physiological and pathological conditions to promote neovascularization. Ang was originally identified as an angiogenic tumour factor, but its biological activity has been found to extend from inducing angiogenesis to promoting cell survival in different neurodegenerative diseases. Ang exhibits weak ribonucleolytic activity, which is critical for its biological functions. The RNase catalytic sites are two histidine residues, His-13 and His-114, and the lysine Lys-40. Copper is also an essential cofactor in angiogenesis and influences angiogenin's biological properties. The main Cu(ii) anchoring site of Ang is His-114, where metal binding inhibits RNase activity of the protein. To reveal the Cu(ii) coordination environment in the C-terminal domain of the Ang protein, we report on the characterization, by means of potentiometric, voltammetric, and spectroscopic (CD, UV-Vis and EPR) methods and DFT calculations, of Cu(ii) complexes formed with a peptide fragment including the Ang sequence 112-117 (PVHLDQ). Potentiometric titrations indicated that [CuLH-2] is the predominant species at physiological pH. EPR, voltammetric data and DFT calculations are consistent with a CuN3O2 coordination mode in which a distorted square pyramidal arrangement of the peptide was observed with the equatorial positions occupied by the nitrogen atoms of the deprotonated amides of the Asp and Leu residues, the δ-N atom of histidine and the oxygen atom of the aspartic carboxylic group. Moreover, two analogous peptides encompassing the PVHLNQ and LVHLDQ sequences were also characterized by using thermodynamic, spectroscopic and DFT studies to reveal the role they play in Cu(ii) complex formation by the carboxylate side chain of the Asp and Pro residues, a known breaking-point in metal coordination.
Collapse
Affiliation(s)
- Antonio Magrì
- Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), Via P. Gaifami 18, 95126 Catania, Italy
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Thomas SP, Hoang TT, Ressler VT, Raines RT. Human angiogenin is a potent cytotoxin in the absence of ribonuclease inhibitor. RNA (NEW YORK, N.Y.) 2018; 24:1018-1027. [PMID: 29748193 PMCID: PMC6049508 DOI: 10.1261/rna.065516.117] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/08/2018] [Indexed: 05/13/2023]
Abstract
Angiogenin (ANG) is a secretory ribonuclease that promotes the proliferation of endothelial cells, leading to angiogenesis. This function relies on its ribonucleolytic activity, which is low for simple RNA substrates. Upon entry into the cytosol, ANG is sequestered by the ribonuclease inhibitor protein (RNH1). We find that ANG is a potent cytotoxin for RNH1-knockout HeLa cells, belying its inefficiency as a nonspecific catalyst. The toxicity does, however, rely on the ribonucleolytic activity of ANG and a cytosolic localization, which lead to the accumulation of particular tRNA fragments (tRFs), such as tRF-5 Gly-GCC. These up-regulated tRFs are highly cytotoxic at physiological concentrations. Although ANG is well-known for its promotion of cell growth, our results reveal that ANG can also cause cell death.
Collapse
Affiliation(s)
- Sydney P Thomas
- Graduate Program in Cell and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Trish T Hoang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Valerie T Ressler
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Ronald T Raines
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
29
|
Mekala S, Tulimilli SV, Geesala R, Manupati K, Dhoke NR, Das A. Cellular crosstalk mediated by platelet-derived growth factor BB and transforming growth factor β during hepatic injury activates hepatic stellate cells. Can J Physiol Pharmacol 2018; 96:728-741. [PMID: 29558627 DOI: 10.1139/cjpp-2017-0768] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Apoptotic hepatocytes release factors that activate hepatic stellate cells (HSCs), thereby inducing hepatic fibrosis. In the present study, in vivo and in vitro injury models were established using acetaminophen, ethanol, carbon tetrachloride, or thioacetamide. Histology of hepatotoxicant-induced diseased hepatic tissue correlated with differential expression of fibrosis-related genes. A marked increase in co-staining of transforming growth factor β receptor type II (TGFRIIβ) - desmin or α-smooth muscle actin - platelet-derived growth factor receptor β (PDGFRβ), markers of activated HSCs, in liver sections of these hepatotoxicant-treated mice also depicted an increase in Annexin V - cytokeratin expressing hepatocytes. To understand the molecular mechanisms of disease pathology, in vitro experiments were designed using the conditioned medium (CM) of hepatotoxicant-treated HepG2 cells supplemented to HSCs. A significant increase in HSC proliferation, migration, and expression of fibrosis-related genes and protein was observed, thereby suggesting the characteristics of an activated phenotype. Treating HepG2 cells with hepatotoxicants resulted in a significant increase in mRNA expression of platelet-derived growth factor BB (PDGF-BB) and transforming growth factor β (TGFβ). CM supplemented to HSCs resulted in increased phosphorylation of PDGFRβ and TGFRIIβ along with its downstream effectors, extracellular signal-related kinase 1/2 and focal adhesion kinase. Neutralizing antibodies against PDGF-BB and TGFβ effectively perturbed the hepatotoxicant-treated HepG2 cell CM-induced activation of HSCs. This study suggests PDGF-BB and TGFβ as potential molecular targets for developing anti-fibrotic therapeutics.
Collapse
Affiliation(s)
- Sowmya Mekala
- a Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad - 500 007, TS, India
- b Academy of Scientific and Innovative Research (AcSIR), 2 Rafi Marg, New Delhi - 110 001, India
| | - SubbaRao V Tulimilli
- a Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad - 500 007, TS, India
| | - Ramasatyaveni Geesala
- a Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad - 500 007, TS, India
- b Academy of Scientific and Innovative Research (AcSIR), 2 Rafi Marg, New Delhi - 110 001, India
| | - Kanakaraju Manupati
- a Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad - 500 007, TS, India
- b Academy of Scientific and Innovative Research (AcSIR), 2 Rafi Marg, New Delhi - 110 001, India
| | - Neha R Dhoke
- a Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad - 500 007, TS, India
- b Academy of Scientific and Innovative Research (AcSIR), 2 Rafi Marg, New Delhi - 110 001, India
| | - Amitava Das
- a Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad - 500 007, TS, India
- b Academy of Scientific and Innovative Research (AcSIR), 2 Rafi Marg, New Delhi - 110 001, India
| |
Collapse
|
30
|
Cătană CS, Pichler M, Giannelli G, Mader RM, Berindan-Neagoe I. Non-coding RNAs, the Trojan horse in two-way communication between tumor and stroma in colorectal and hepatocellular carcinoma. Oncotarget 2018; 8:29519-29534. [PMID: 28392501 PMCID: PMC5438748 DOI: 10.18632/oncotarget.15706] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/24/2017] [Indexed: 12/29/2022] Open
Abstract
In a continuous and mutual exchange of information, cancer cells are invariably exposed to microenvironment transformation. This continuous alteration of the genetic, molecular and cellular peritumoral stroma background has become as critical as the management of primary tumor progression events in cancer cells. The communication between stroma and tumor cells within the extracellular matrix is one of the triggers in colon and liver carcinogenesis. All non- codingRNAs including long non-coding RNAs, microRNAs and ultraconserved genes play a critical role in almost all cancers and are responsible for the modulation of the tumor microenvironment in several malignant processes such as initiation, progression and dissemination. This review details the involvement of non codingRNAs in the evolution of human colorectal carcinoma and hepatocellular carcinoma in relationship with the microenvironment. Recent research has shown that a considerable number of dysregulated non- codingRNAs could be valuable diagnostic and prognostic biomarkers in cancer. Therefore, more in-depth knowledge of the role non- codingRNAs play in stroma-tumor communication and of the complex regulatory mechanisms between ultraconserved genes and microRNAs supports the validation of future effective therapeutic targets in patients suffering from hepatocellular and colorectal carcinoma, two distinctive entities which share quite a lot common non-coding RNAs.
Collapse
Affiliation(s)
- Cristina- Sorina Cătană
- Department of Medical Biochemistry, ""Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Martin Pichler
- Department of Internal Medicine, Division of Oncology, Medical University of Graz, Graz, Austria
| | - Gianluigi Giannelli
- Department of Internal Medicine, Immunology and Infectious Diseases, Section of Internal Medicine, University of Bari Medical School, Bari, Italy
| | - Robert M Mader
- Department of Medicine I, Comprehensive Cancer Center of the Medical University of Vienna, Austria
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Institute of Doctoral Studies, ""Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Experimental Pathology, "Ion Chiricuta" Institute of Oncology, Cluj-Napoca, Romania.,Medfuture Research Center for Advanced Medicine, Cluj-Napoca, Romania
| |
Collapse
|
31
|
Maki T, Morancho A, Segundo PMS, Hayakawa K, Takase H, Liang AC, Gabriel-Salazar M, Medina-Gutiérrez E, Washida K, Montaner J, Lok J, Lo EH, Arai K, Rosell A. Endothelial Progenitor Cell Secretome and Oligovascular Repair in a Mouse Model of Prolonged Cerebral Hypoperfusion. Stroke 2018; 49:1003-1010. [PMID: 29511131 PMCID: PMC5871569 DOI: 10.1161/strokeaha.117.019346] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/05/2018] [Accepted: 01/31/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND PURPOSE Endothelial progenitor cells (EPCs) have been extensively investigated as a therapeutic approach for repairing the vascular system in cerebrovascular diseases. Beyond vascular regeneration per se, EPCs may also release factors that affect the entire neurovascular unit. Here, we aim to study the effects of the EPC secretome on oligovascular remodeling in a mouse model of white matter injury after prolonged cerebral hypoperfusion. METHODS The secretome of mouse EPCs was analyzed with a proteome array. In vitro, the effects of the EPC secretome and its factor angiogenin were assessed on primary oligodendrocyte precursor cells and mature human cerebral microvascular endothelial cells (hCMED/D3). In vivo, mice were subjected to permanent bilateral common carotid artery stenosis, then treated with EPC secretome at 24 hours and at 1 week, and cognitive outcome was evaluated with the Y maze test together with oligodendrocyte precursor cell proliferation/differentiation and vascular density in white matter at 4 weeks. RESULTS Multiple growth factors, cytokines, and proteases were identified in the EPC secretome, including angiogenin. In vitro, the EPC secretome significantly enhanced endothelial and oligodendrocyte precursor cell proliferation and potentiated oligodendrocyte precursor cell maturation. Angiogenin was proved to be a key factor since pharmacological blockade of angiogenin signaling negated the positive effects of the EPC secretome. In vivo, treatment with the EPC secretome increased vascular density, myelin, and mature oligodendrocytes in white matter and rescued cognitive function in the mouse hypoperfusion model. CONCLUSIONS Factors secreted by EPCs may ameliorate white matter damage in the brain by boosting oligovascular remodeling.
Collapse
Affiliation(s)
- Takakuni Maki
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Anna Morancho
- Neurovascular Research Laboratory, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Spain
| | - Pablo Martinez-San Segundo
- Neurovascular Research Laboratory, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Spain
| | - Kazuhide Hayakawa
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Hajime Takase
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Anna C. Liang
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Marina Gabriel-Salazar
- Neurovascular Research Laboratory, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Spain
| | - Esperanza Medina-Gutiérrez
- Neurovascular Research Laboratory, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Spain
| | - Kazuo Washida
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Joan Montaner
- Neurovascular Research Laboratory, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Spain
| | - Josephine Lok
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Eng H. Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Anna Rosell
- From the Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown (T.M., K.H., H.T., A.C.L., K.W., J.L., E.H.L., K.A.); and Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Spain (A.M., P.M.-S.S., M.G.-S., E.M.-G., J.M., A.R.).
| |
Collapse
|
32
|
Chatzileontiadou DSM, Tsika AC, Diamantopoulou Z, Delbé J, Badet J, Courty J, Skamnaki VT, Parmenopoulou V, Komiotis D, Hayes JM, Spyroulias GA, Leonidas DD. Evidence for Novel Action at the Cell-Binding Site of Human Angiogenin Revealed by Heteronuclear NMR Spectroscopy, in silico and in vivo Studies. ChemMedChem 2018; 13:259-269. [PMID: 29314771 DOI: 10.1002/cmdc.201700688] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/18/2017] [Indexed: 12/11/2022]
Abstract
A member of the ribonuclease A superfamily, human angiogenin (hAng) is a potent angiogenic factor. Heteronuclear NMR spectroscopy combined with induced-fit docking revealed a dual binding mode for the most antiangiogenic compound of a series of ribofuranosyl pyrimidine nucleosides that strongly inhibit hAng's angiogenic activity in vivo. While modeling suggests the potential for simultaneous binding of the inhibitors at the active and cell-binding sites, NMR studies indicate greater affinity for the cell-binding site than for the active site. Additionally, molecular dynamics simulations at 100 ns confirmed the stability of binding at the cell-binding site with the predicted protein-ligand interactions, in excellent agreement with the NMR data. This is the first time that a nucleoside inhibitor is reported to completely inhibit the angiogenic activity of hAng in vivo by exerting dual inhibitory activity on hAng, blocking both the entrance of hAng into the cell and its ribonucleolytic activity.
Collapse
Affiliation(s)
- Demetra S M Chatzileontiadou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece.,Current address: Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Australia
| | | | - Zoi Diamantopoulou
- Laboratoire de Recherche sur la Croissance Cellulaire, la Réparation et la Régénération Tissulaires (CRRET), Université Paris-EST Créteil, CNRS ERL 9215, France.,Current address: Cancer Research (UK) Manchester Institute, Manchester, UK
| | - Jean Delbé
- Laboratoire de Recherche sur la Croissance Cellulaire, la Réparation et la Régénération Tissulaires (CRRET), Université Paris-EST Créteil, CNRS ERL 9215, France
| | - Josette Badet
- INSERM U1139, Université Paris Descartes, 4 avenue de l'Observatoire, 75006, Paris, France
| | - José Courty
- Laboratoire de Recherche sur la Croissance Cellulaire, la Réparation et la Régénération Tissulaires (CRRET), Université Paris-EST Créteil, CNRS ERL 9215, France
| | - Vassiliki T Skamnaki
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Vanessa Parmenopoulou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Dimitri Komiotis
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Joseph M Hayes
- Centre for Materials Science and School of Physical Sciences & Computing, University of Central Lancashire, Preston, PR1 2HE, UK
| | | | - Demetres D Leonidas
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| |
Collapse
|
33
|
Chan OTM, Furuya H, Pagano I, Shimizu Y, Hokutan K, Dyrskjøt L, Jensen JB, Malmstrom PU, Segersten U, Janku F, Rosser CJ. Association of MMP-2, RB and PAI-1 with decreased recurrence-free survival and overall survival in bladder cancer patients. Oncotarget 2017; 8:99707-99721. [PMID: 29245935 PMCID: PMC5725126 DOI: 10.18632/oncotarget.20686] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 07/12/2017] [Indexed: 01/06/2023] Open
Abstract
Background We previously reported an accurate urine-based bladder cancer (BCa)-associated diagnostic signature that can be used to non-invasively detect BCa. In this study, we investigated whether a component of this signature could risk stratify patients with BCa. Methods Utilizing immunohistochemistry, we investigated angiogenin, MMP-2, p53, RB and PAI-1 expression from 939 patients with BCa. The expression levels were scored by assigning a proportion score and an intensity score to yield a total staining score for each protein. The expressions of each protein individually and as an aggregate were then correlated with progression-free survival (PFS), cancer-specific survival (CSS) and overall survival (OS). Results Differential expressions of these markers were noted in BCa. With multivariate analysis in non-muscle invasive bladder cancer (NMIBC) age, tumor grade portended a worse PFS, while age, tumor grade, nodal status, MMP2, RB and PAI-1 expression portended a worse OS. As for multivariate analysis in muscle invasive bladder cancer (MIBC), age MMP-2 and RB were associated with a worse PFS, while age, nodal status, MMP-2, RB and PAI-1 were associated with a worse OS. Using Kaplan-Meier survival analysis, we noted a significant reduction in OS as more of the five biomarkers were expressed in a tumor. Thus, overall, high expressions of MMP-2, RB and/or PAI-1 in bladder tumors were markers of poor prognosis. Conclusion Individually, MMP-2, RB and PAI-1, as well as in aggregate correlated with poor survival in patients with BCa. Thus, patients whose bladder tumors express these biomarkers may benefit from early radical treatment and/or neoadjuvant or adjuvant therapies.
Collapse
Affiliation(s)
- Owen T M Chan
- Clinical and Translational Research Program University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Hideki Furuya
- Clinical and Translational Research Program University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Ian Pagano
- Cancer Prevention and Control Program Research Program University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Yoshiko Shimizu
- Clinical and Translational Research Program University of Hawaii Cancer Center, Honolulu, HI, USA.,Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Kanani Hokutan
- Clinical and Translational Research Program University of Hawaii Cancer Center, Honolulu, HI, USA.,Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Lars Dyrskjøt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | - Per-Uno Malmstrom
- Departments of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Ulrika Segersten
- Departments of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Filip Janku
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Charles J Rosser
- Clinical and Translational Research Program University of Hawaii Cancer Center, Honolulu, HI, USA
| |
Collapse
|
34
|
Meyer T, Koch A, Ebert EV, Czech B, Mueller M, Bosserhoff A, Lang SA, Hellerbrand C. Effect of melanoma cells on proliferation and migration of activated hepatic stellate cells in vitro. Pathol Res Pract 2017; 213:400-404. [DOI: 10.1016/j.prp.2016.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/16/2016] [Indexed: 12/28/2022]
|
35
|
Sub-chronic 90-day toxicity of neamine in SD rats and its anti-liver cancer activity in vitro and in vivo. Toxicol Appl Pharmacol 2017; 315:50-59. [PMID: 27940282 DOI: 10.1016/j.taap.2016.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/25/2016] [Accepted: 12/07/2016] [Indexed: 11/21/2022]
Abstract
Neamine, an inhibitor of angiogenin (ANG), is a new investigative anticancer drug currently in preclinical stage. Here we report the 90-day sub-chronic toxicity of neamine in SD rats and its anti-liver cancer activity in vitro and in vivo. Neamine has a No Observed Adverse Effect Level (NOAEL) of 12 and 16mg·kg-1·d-1 for female and male rats, respectively. No mortality was found. The adverse effects included increased organ coefficients of spleen and kidney, increased BUN in both female and male rats at high dose, increased CR and decreased organ coefficients of heart and liver in male rats at high dose. All of which, except the kidney coefficient and BUN in males, returned to normal levels after 28-day recovery. Histopathological examination revealed vacuolar degeneration of glomerulus, degeneration of renal tubules and cast in the kidneys, which were also recovered except in males of high-dosing group. These results indicate that kidney is the most susceptible organ for neamine toxicity. Tissue microarray analysis validated that ANG is up-regulated in hepatocellular carcinoma accompanied by increased nuclear translocation, suggesting that ANG is a possible target for drug development in liver cancer treatment. Neamine blocked nuclear translocation of ANG in HUVEC and HepG2 cells, and inhibited ANG-stimulated cell proliferation without affecting basal level cell proliferation. Neamine also inhibited progression of HepG2 xenografts in athymic mice accompanied by decreased angiogenesis and cancer cell proliferation. These results suggest that neamine is a specific ANG inhibitor with low toxicity and high anti-liver cancer efficacy.
Collapse
|
36
|
Abstract
Cell microenvironment consists of various types of cells which communicate with each other by vast number of secreted proteins. An unbiased profiling of these secreted proteins on a global scale is often critical for understanding the intercellular signaling in an autocrine or paracrine manner. Mass spectrometry-based proteomics has become one of the most popular technology for characterization of the secreted proteins. In this chapter, we discuss the standard workflow for secreted proteins characterization, including harvesting secreted proteins from conditioned media, digesting the obtained proteins, liquid chromatography-mass spectrometry analysis, and downstream data analysis.
Collapse
|
37
|
Peres R, Furuya H, Pagano I, Shimizu Y, Hokutan K, Rosser CJ. Angiogenin contributes to bladder cancer tumorigenesis by DNMT3b-mediated MMP2 activation. Oncotarget 2016; 7:43109-43123. [PMID: 27317771 PMCID: PMC5190012 DOI: 10.18632/oncotarget.10097] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/14/2016] [Indexed: 12/31/2022] Open
Abstract
Epigenetic-mediated gene activation/silencing plays a crucial role in human tumorigenesis. Eliciting the underlying mechanism behind certain epigenetic changes is essential for understanding tumor biology. Previous studies in human cancers revealed an unrecognized interplay between Angiogenin (ANG) and matrix metalloproteinase-2 (MMP2) leading to pronounced tumorigenesis. Here we provide multiple lines of evidence further indicating ANG oncogenic potential. ANG expression resulted in the hypomethylated state of the MMP2 gene, which led to increased gene expression of MMP2. More than that, our global DNA methylation microarray analysis showed that gene manipulation of ANG affected a variety of pathways, such as cell migration, angiogenesis and specifically, tumor suppressor genes. Mechanistically, ANG negatively regulated DNA methyltransferase 3b (DNMT3b) enzymatic activity by down-regulating its expression and inhibiting its recruitment to the MMP2 promoter. Consistent with this, ANG-MMP2 overexpression and DNMT3b underexpression correlated with reduction in disease free survival of human bladder cancer patients. Together, the results continue to establish ANG as an oncoprotein and further reveal that ANG contributes to oncogenesis by the activation of MMP2 through modulation of DNMT3b functions.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinogenesis/genetics
- Cell Line, Tumor
- Cell Movement
- DNA (Cytosine-5-)-Methyltransferases/metabolism
- DNA Methylation
- Disease-Free Survival
- Down-Regulation
- Enzyme-Linked Immunosorbent Assay
- Epigenesis, Genetic
- Gene Expression Regulation, Neoplastic
- Genes, Tumor Suppressor
- Humans
- Kaplan-Meier Estimate
- Matrix Metalloproteinase 2/metabolism
- Neovascularization, Pathologic/metabolism
- Oncogene Proteins/genetics
- Oncogene Proteins/metabolism
- Promoter Regions, Genetic
- RNA Interference
- RNA, Small Interfering/metabolism
- Ribonuclease, Pancreatic/genetics
- Ribonuclease, Pancreatic/metabolism
- Urinary Bladder Neoplasms/genetics
- Urinary Bladder Neoplasms/mortality
- Urinary Bladder Neoplasms/pathology
- DNA Methyltransferase 3B
Collapse
Affiliation(s)
- Rafael Peres
- University of Hawaii Cancer Center, Clinical & Translational Research Program, Honolulu, HI, USA
| | - Hideki Furuya
- University of Hawaii Cancer Center, Clinical & Translational Research Program, Honolulu, HI, USA
| | - Ian Pagano
- University of Hawaii Cancer Center, Cancer Prevention and Control Program, Honolulu, HI, USA
| | - Yoshiko Shimizu
- University of Hawaii Cancer Center, Clinical & Translational Research Program, Honolulu, HI, USA
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Kanani Hokutan
- University of Hawaii Cancer Center, Clinical & Translational Research Program, Honolulu, HI, USA
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Charles J. Rosser
- University of Hawaii Cancer Center, Clinical & Translational Research Program, Honolulu, HI, USA
| |
Collapse
|
38
|
Sheng J, Xu Z. Three decades of research on angiogenin: a review and perspective. Acta Biochim Biophys Sin (Shanghai) 2016; 48:399-410. [PMID: 26705141 DOI: 10.1093/abbs/gmv131] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/23/2015] [Indexed: 01/17/2023] Open
Abstract
As a member of the vertebrate-specific secreted ribonucleases, angiogenin (ANG) was first isolated and identified solely by its ability to induce new blood vessel formation, and now, it has been recognized to play important roles in various physiological and pathological processes through regulating cell proliferation, survival, migration, invasion, and/or differentiation. ANG exhibits very weak ribonucleolytic activity that is critical for its biological functions, and exerts its functions through activating different signaling transduction pathways in different target cells. A series of recent studies have indicated that ANG contributes to cellular nucleic acid metabolism. Here, we comprehensively review the results of studies regarding the structure, mechanism, and function of ANG over the past three decades. Moreover, current problems and future research directions of ANG are discussed. The understanding of the function and mechanism of ANG in a wide context will help to better delineate its roles in diseases, especially in cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jinghao Sheng
- Institute of Environmental Health, Zhejiang University School of Public Health, Hangzhou 310058, China Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhengping Xu
- Institute of Environmental Health, Zhejiang University School of Public Health, Hangzhou 310058, China Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
39
|
Zhao X, Jiang K, Liang B, Huang X. Anticancer effect of xanthohumol induces growth inhibition and apoptosis of human liver cancer through NF-κB/p53-apoptosis signaling pathway. Oncol Rep 2015; 35:669-75. [PMID: 26718026 PMCID: PMC4689487 DOI: 10.3892/or.2015.4455] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 09/23/2015] [Indexed: 12/29/2022] Open
Abstract
Xanthohumol may prevent and cure diabetes and atherosis, have oxidation resistance and antiviral function as well as anticancer effect preventing cancer cell metastasis. We investigate whether the anticancer effect of xanthohumol induces growth inhibition and apoptosis of human liver cancer through NF-κB/p53-apoptosis signaling pathway. Human liver cancer HepG2 cell were treated with 10, 20, 30 and 40 µM xanthohumol for 48 h. The present study showed that the anticancer effect of xanthohumol was effective in inhibiting proliferation and inducing apoptosis of human liver cancer HepG2 cells. Furthermore, the caspase-3 activity of human liver cancer HepG2 cells was increased by xanthohumol. In addition, 48-h treatment with xanthohumol suppressed NF-κB expression and promoted p53, cleaved PARP, AIF and cytochrome c expression and downregulated XIAP and Bcl-2/Bax expression in human liver cancer HepG2 cells. Therefore, the anticancer effect of xanthohumol induces growth inhibition and apoptosis of human liver cancer through the NF-κB/p53-apoptosis signaling pathway.
Collapse
Affiliation(s)
- Xiangqian Zhao
- Hospital and Institute of Hepatobiliary Surgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Kai Jiang
- Hospital and Institute of Hepatobiliary Surgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Bin Liang
- Hospital and Institute of Hepatobiliary Surgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Xiaoqiang Huang
- Hospital and Institute of Hepatobiliary Surgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|