1
|
Lu X, Chen D, Wang M, Song X, Ermine K, Hao S, Jha A, Huang Y, Kang Y, Qiu H, Lenz HJ, Li S, Jin Z, Yu J, Zhang L. Depletion of oxysterol-binding proteins by OSW-1 triggers RIP1/RIP3-independent necroptosis and sensitization to cancer immunotherapy. Cell Death Differ 2025:10.1038/s41418-025-01521-8. [PMID: 40329104 DOI: 10.1038/s41418-025-01521-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 04/18/2025] [Accepted: 04/30/2025] [Indexed: 05/08/2025] Open
Abstract
Oxysterol-binding proteins (OSBPs), lipid transfer proteins functioning at intracellular membrane contact sites, are recently found to be dysregulated in cancer and promote cancer cell survival. However, their role as potential targets in cancer therapy remains largely unexplored. In this study, we found OSW-1, a natural compound and OSBP inhibitor, potently and selectively kills colon cancer cells by activating a previously unknown necroptosis pathway that is independent of receptor-interacting protein 1 (RIP1) and RIP3. OSW-1 stabilizes p53 and degrades OSBPs to promote endoplasmic reticulum (ER) stress and glycogen synthase kinase 3β (GSK3β)/Tip60-mediated p53 acetylation at Lysine 120, which selectively induces its target PUMA. PUMA-mediated mitochondrial calcium influx activates calcium/calmodulin-dependent protein kinase IIδ (CamKIIδ) to promote mixed lineage kinase domain-like (MLKL) phosphorylation and necroptotic cell death. Furthermore, OSW-1-induced necroptosis is highly immunogenic and sensitizes syngeneic colorectal tumors to anti-PD-1 immunotherapy. Together, our results identified a novel RIP1/RIP3-independent necroptosis pathway underlying the extremely potent anticancer activity of OSW-1, which can be harnessed to develop new anticancer therapies by selectively stimulating antitumor immunity.
Collapse
Affiliation(s)
- Xinyan Lu
- Department of Medicine, Keck School of Medicine of University of Southern California (USC), Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, CA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dongshi Chen
- Department of Medicine, Keck School of Medicine of University of Southern California (USC), Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, CA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Min Wang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xiangping Song
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kaylee Ermine
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Suisui Hao
- Department of Medicine, Keck School of Medicine of University of Southern California (USC), Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, CA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anupma Jha
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yixian Huang
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmaceutical Sciences, Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ying Kang
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Haibo Qiu
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Heinz-Josef Lenz
- Department of Medicine, Keck School of Medicine of University of Southern California (USC), Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Song Li
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmaceutical Sciences, Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zhendong Jin
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Jian Yu
- Department of Medicine, Keck School of Medicine of University of Southern California (USC), Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, CA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lin Zhang
- Department of Medicine, Keck School of Medicine of University of Southern California (USC), Los Angeles, CA, USA.
- Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, CA, USA.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Johnson L, Sarosiek KA. Role of intrinsic apoptosis in environmental exposure health outcomes. Trends Mol Med 2024; 30:56-73. [PMID: 38057226 DOI: 10.1016/j.molmed.2023.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 12/08/2023]
Abstract
Environmental exposures are linked to diseases of high public health concern, including cancer, neurodegenerative disorders, and autoimmunity. These diseases are caused by excessive or insufficient cell death, prompting investigation of mechanistic links between environmental toxicants and dysregulation of cell death pathways, including apoptosis. This review describes how legacy and emerging environmental exposures target the intrinsic apoptosis pathway to potentially drive pathogenesis. Recent discoveries reveal that dynamic regulation of apoptosis may heighten the vulnerability of healthy tissues to exposures in children, and that apoptotic signaling can guide immune responses, tissue repair, and tumorigenesis. Understanding how environmental toxicants dysregulate apoptosis will uncover opportunities to deploy apoptosis-modulating agents for the treatment or prevention of exposure-linked diseases.
Collapse
Affiliation(s)
- Lissah Johnson
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Laboratory for Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Kristopher A Sarosiek
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Laboratory for Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Cancer Center, Boston, MA, USA.
| |
Collapse
|
3
|
Antonelli F. 3D Cell Models in Radiobiology: Improving the Predictive Value of In Vitro Research. Int J Mol Sci 2023; 24:10620. [PMID: 37445795 DOI: 10.3390/ijms241310620] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Cancer is intrinsically complex, comprising both heterogeneous cellular composition and extracellular matrix. In vitro cancer research models have been widely used in the past to model and study cancer. Although two-dimensional (2D) cell culture models have traditionally been used for cancer research, they have many limitations, such as the disturbance of interactions between cellular and extracellular environments and changes in cell morphology, polarity, division mechanism, differentiation and cell motion. Moreover, 2D cell models are usually monotypic. This implies that 2D tumor models are ineffective at accurately recapitulating complex aspects of tumor cell growth, as well as their radiation responses. Over the past decade there has been significant uptake of three-dimensional (3D) in vitro models by cancer researchers, highlighting a complementary model for studies of radiation effects on tumors, especially in conjunction with chemotherapy. The introduction of 3D cell culture approaches aims to model in vivo tissue interactions with radiation by positioning itself halfway between 2D cell and animal models, and thus opening up new possibilities in the study of radiation response mechanisms of healthy and tumor tissues.
Collapse
Affiliation(s)
- Francesca Antonelli
- Laboratory of Biomedical Technologies, Division of Health Protection Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy
| |
Collapse
|
4
|
Xie D, Huang Q, Zhou P. Drug Discovery Targeting Post-Translational Modifications in Response to DNA Damages Induced by Space Radiation. Int J Mol Sci 2023; 24:ijms24087656. [PMID: 37108815 PMCID: PMC10142602 DOI: 10.3390/ijms24087656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
DNA damage in astronauts induced by cosmic radiation poses a major barrier to human space exploration. Cellular responses and repair of the most lethal DNA double-strand breaks (DSBs) are crucial for genomic integrity and cell survival. Post-translational modifications (PTMs), including phosphorylation, ubiquitylation, and SUMOylation, are among the regulatory factors modulating a delicate balance and choice between predominant DSB repair pathways, such as non-homologous end joining (NHEJ) and homologous recombination (HR). In this review, we focused on the engagement of proteins in the DNA damage response (DDR) modulated by phosphorylation and ubiquitylation, including ATM, DNA-PKcs, CtIP, MDM2, and ubiquitin ligases. The involvement and function of acetylation, methylation, PARylation, and their essential proteins were also investigated, providing a repository of candidate targets for DDR regulators. However, there is a lack of radioprotectors in spite of their consideration in the discovery of radiosensitizers. We proposed new perspectives for the research and development of future agents against space radiation by the systematic integration and utilization of evolutionary strategies, including multi-omics analyses, rational computing methods, drug repositioning, and combinations of drugs and targets, which may facilitate the use of radioprotectors in practical applications in human space exploration to combat fatal radiation hazards.
Collapse
Affiliation(s)
- Dafei Xie
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology (BKLRB), Beijing Institute of Radiation Medicine, Taiping Road 27th, Haidian District, Beijing 100850, China
| | - Qi Huang
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology (BKLRB), Beijing Institute of Radiation Medicine, Taiping Road 27th, Haidian District, Beijing 100850, China
- Department of Preventive Medicine, School of Public Health, University of South China, Changsheng West Road 28th, Zhengxiang District, Hengyang 421001, China
| | - Pingkun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology (BKLRB), Beijing Institute of Radiation Medicine, Taiping Road 27th, Haidian District, Beijing 100850, China
- Department of Preventive Medicine, School of Public Health, University of South China, Changsheng West Road 28th, Zhengxiang District, Hengyang 421001, China
| |
Collapse
|
5
|
Wang X, Li W, Dong Y, Zhang Y, Huo Q, Lu L, Zhang J, Zhao Y, Fan S, Dong H, Li D. Ferrostatin-1 mitigates ionizing radiation-induced intestinal injuries by inhibiting apoptosis and ferroptosis: an in vitro and in vivo study. Int J Radiat Biol 2023; 99:1607-1618. [PMID: 36947642 DOI: 10.1080/09553002.2023.2194399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/10/2023] [Indexed: 03/24/2023]
Abstract
PURPOSE Intestinal injuries caused by ionizing radiation (IR) are a major complication of radiotherapy. Ferrostatin-1 (Fer-1) exerts antioxidant and anti-inflammatory effects. We investigated the influence of Fer-1 on IR-induced intestinal damage and explored the possible mechanisms. MATERIALS AND METHODS IEC-6 cells were administrated with Fer-1 for 30 min and subsequently subjected to 9.0 Gy-irradiation. Flow cytometry, qPCR, and WB were used to detect changes. For in vivo experiments, Fer-1 was given intraperitoneally to mice at 1 h before and 24 h after 9.0 Gy total body irradiation (TBI) respectively. Three days after TBI, the small intestines were isolated for analysis. The diversity and composition of the gut microbiota were analyzed by 16S rRNA gene sequencing. RESULTS In vitro, Fer-1 protected IEC-6 cells from IR injury by reducing the production of ROS and inhibiting both ferroptosis and apoptosis. In vivo, Fer-1 enhanced the survival rates of mice subjected to lethal doses of IR and restored intestinal structure and physiological function. Further investigation showed that Fer-1 protected IEC-6 cells and mice by inhibiting the p53-mediated apoptosis signaling pathway and restoring the gut-microbe balance. CONCLUSION This study confirms that Fer-1 protects intestinal injuries through suppressing apoptosis and ferroptosis.
Collapse
Affiliation(s)
- Xinyue Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Wenxuan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Yinping Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Yuanyang Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Qidong Huo
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Lu Lu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Junling Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Yu Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Hui Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Deguan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| |
Collapse
|
6
|
Dou Y, Pizarro T, Zhou L. Organoids as a Model System for Studying Notch Signaling in Intestinal Epithelial Homeostasis and Intestinal Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1347-1357. [PMID: 35752229 PMCID: PMC9552028 DOI: 10.1016/j.ajpath.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/16/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Organoid culture is an approach that allows three-dimensional growth for stem cells to self-organize and develop multicellular structures. Intestinal organoids have been widely used to study cellular or molecular processes in stem cell and cancer research. These cultures possess the ability to maintain cellular complexity as well as recapitulate many properties of the human intestinal epithelium, thereby providing an ideal in vitro model to investigate cellular and molecular signaling pathways. These include, but are not limited to, the mechanisms required for maintaining balanced populations of epithelial cells. Notch signaling is one of the major pathways of regulating stem cell functions in the gut, driving proliferation and controlling cell fate determination. Notch also plays an important role in regulating tumor progression and metastasis. Understanding how Notch pathway regulates epithelial regeneration and differentiation by using intestinal organoids is critical for studying both homeostasis and pathogenesis of intestinal stem cells that can lead to discoveries of new targets for drug development to treat intestinal diseases. In addition, use of patient-derived organoids can provide effective personalized medicine. This review summarizes the current literature regarding epithelial Notch pathways regulating intestinal homeostasis and regeneration, highlighting the use of organoid cultures and their potential therapeutic applications.
Collapse
Affiliation(s)
- Yingtong Dou
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Theresa Pizarro
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Lan Zhou
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio.
| |
Collapse
|
7
|
Kucukbagriacik Y, Dastouri M, Ozgur-Buyukatalay E, Akarca Dizakar O, Yegin K. Investigation of oxidative damage, antioxidant balance, DNA repair genes, and apoptosis due to radiofrequency-induced adaptive response in mice. Electromagn Biol Med 2022; 41:389-401. [PMID: 36062506 DOI: 10.1080/15368378.2022.2117187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This study aims to determine whether exposure to non-ionizing radiofrequency fields could induce an adaptive response (AR) in adult mice and to reveal potential molecular mechanisms triggered by RF-induced AR. The study was performed on 24 adult male Swiss-Albino mice. The average mass of the mice was 37 g. Four groups of adult mice, each consisting of 6, were formed. The radiofrequency group (R) and the adaptive response group (RB) were exposed to 900 MHz of global system for mobile communications (GSM) signal at 0.339 W/kg (1 g average specific absorption rate) 4 h/day for 7 days, while the control group (C) and the bleomycin group (B) were not exposed. 20 minutes after the last radiofrequency field (RF) exposure, the mice in the B and RB groups were injected intraperitoneal (ip) bleomycin (BLM), 37.5 mg/kg. All the animals were sacrificed 30 minutes after the BLM injection. Oxidative damage and antioxidant mechanism were subsequently investigated in the blood samples. Changes in the expression of the genes involved in DNA repair were detected in the liver tissue. TUNEL method was used to determine the apoptosis developed by DNA fragmentation in the liver tissue. The RB group, which produced an adaptive response, was compared with the control group. According to the results, the increase of reactive oxygen species (ROS) in the RB group may have played an important role in triggering the adaptive response and producing the required minimum stress level. Furthermore, tumor suppressor 53(p53), oxo guanine DNA glycosylase (OGG-1) levels responsible for DNA repair mechanism genes expression were increased in conjunction with the increase in ROS. The change in the poly (ADP-ribose) polymerase 1 (PARP-1) and glutathione peroxidase 1 (GPx-1) gene expression were not statistically significant. The antioxidant enzyme levels of superoxide dismutase (SOD), catalase (CAT), and total antioxidant capacity (TAC) were decreased in the group with adaptive response. According to the data obtained from terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analysis, apoptosis was decreased in the RB group due to the decrease in cell death, which might have resulted from an increase in gene expression responsible for DNA repair mechanisms. The results of our study show that exposure to RF radiation may create a protective reaction against the bleomycin. The minimal oxidative stress due to the RF exposure leads to an adaptive response in the genes that play a role in the DNA repair mechanism and enzymes, enabling the survival of the cell.
Collapse
Affiliation(s)
- Yusuf Kucukbagriacik
- Department of Biophysics, Yozgat Bozok University, Medical School, Yozgat, Turkey
| | - Mohammadreza Dastouri
- Department of Biotechnology, Biotechnology Institute, Ankara University, Ankara, Turkey
| | | | - Ozen Akarca Dizakar
- Department of Histology and Embryology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Korkut Yegin
- Department of Electrical and Electronics Engineering, Ege University, Izmir, Turkey
| |
Collapse
|
8
|
Satoh H, Ochi S, Mizuno K, Saga Y, Ujita S, Toyoda M, Nishiyama Y, Tada K, Matsushita Y, Deguchi Y, Suzuki K, Tanaka Y, Ueda H, Inaba T, Hosoi Y, Morita A, Aoki S. Design, synthesis and biological evaluation of 2-pyrrolone derivatives as radioprotectors. Bioorg Med Chem 2022; 67:116764. [PMID: 35635928 DOI: 10.1016/j.bmc.2022.116764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 11/02/2022]
Abstract
It is known that p53 is an important transcription factor and plays a central role in ionizing radiation (IR)-induced DNA damage responses such as cell cycle arrest, DNA repair and apoptosis. We previously reported that regulating p53 protein is an effective strategy for modulating cell fate by reducing the acute side effects of radiation therapy. Herein, we report on the discovery of STK160830 as a new radioprotector from a chemical library at The University of Tokyo and the design, synthesis and biological evaluation of its derivatives. The radioprotective activity of STK160830 itself and its derivatives that were synthesized in this work was evaluated using a leukemia cell line, MOLT-4 cells as a model of normal cells that express the p53 protein in a structure-activity relationships (SAR) study. The experimental results suggest that a direct relationship exists between the inhibitory effect of these STK160830 derivatives on the expression level of p53 and their radioprotective activity and that the suppression of p53 by STK160830 derivatives contribute to protecting MOLT-4 cells from apoptosis that is induced by exposure to radiation.
Collapse
Affiliation(s)
- Hidetoshi Satoh
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Shintaro Ochi
- Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Kosuke Mizuno
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yutaka Saga
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Shohei Ujita
- Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Miyu Toyoda
- Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yuichi Nishiyama
- Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Kasumi Tada
- Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yosuke Matsushita
- Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan; Department of Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Yuichi Deguchi
- Center for Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Keiji Suzuki
- Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Hiroshi Ueda
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Toshiya Inaba
- Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Yoshio Hosoi
- Department of Radiation Biology, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Akinori Morita
- Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Research Institute for Biomedical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
9
|
Feng Z, Gong H, Fu J, Xu X, Song Y, Yan X, Mabrouk I, Zhou Y, Wang Y, Fu X, Sui Y, Liu T, Li C, Liu Z, Tian X, Sun L, Guo K, Sun Y, Hu J. In Ovo Injection of CHIR-99021 Promotes Feather Follicle Development via Modulating the Wnt Signaling Pathway and Transcriptome in Goose Embryos ( Anser cygnoides). Front Physiol 2022; 13:858274. [PMID: 35669574 PMCID: PMC9164139 DOI: 10.3389/fphys.2022.858274] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Feather performs important physiological functions in birds, and it is also one of the economic productions in goose farming. Understanding and modulating feather follicle development during embryogenesis are essential for bird biology and the poultry industry. CHIR-99021 is a potent Wnt/β-catenin signaling pathway activator associated with feather follicle development. In this study, goose embryos (Anser cygnoides) received an in ovo injection of CHIR-9902, which was conducted at the beginning of feather follicle development (E9). The results showed that feather growth and feather follicle development were promoted. The Wnt signaling pathway was activated by the inhibition of GSK-3β. Transcriptomic analyses showed that the transcription changes were related to translation, metabolism, energy transport, and stress in dorsal tissue of embryos that received CHIR-99021, which might be to adapt and coordinate the promoting effects of CHIR-99021 on feather follicle development. This study suggests that in ovo injection of CHIR-99021 is a potential strategy to improve feather follicle development and feather-related traits for goose farming and provides profiling of the Wnt signaling pathway and transcriptome in dorsal tissue of goose embryos for further understanding of feather follicle development.
Collapse
Affiliation(s)
- Ziqiang Feng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Haizhou Gong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jinhong Fu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xiaohui Xu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yupu Song
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xiaomin Yan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Ichraf Mabrouk
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yuxuan Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yudong Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xianou Fu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yujian Sui
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Tuoya Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Chuanghang Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Zebei Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xu Tian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Le Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Keying Guo
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yongfeng Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China,Key Laboratory of Animal Production, Product Quality and Security (Jilin Agricultural University), Ministry of Education, Changchun, China,*Correspondence: Yongfeng Sun, ; Jingtao Hu,
| | - Jingtao Hu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China,*Correspondence: Yongfeng Sun, ; Jingtao Hu,
| |
Collapse
|
10
|
Targeting metabolism to overcome cancer drug resistance: A promising therapeutic strategy for diffuse large B cell lymphoma. Drug Resist Updat 2022; 61:100822. [DOI: 10.1016/j.drup.2022.100822] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/21/2022] [Accepted: 02/27/2022] [Indexed: 02/07/2023]
|
11
|
Chen G, Han Y, Zhang H, Tu W, Zhang S. Radiotherapy-Induced Digestive Injury: Diagnosis, Treatment and Mechanisms. Front Oncol 2021; 11:757973. [PMID: 34804953 PMCID: PMC8604098 DOI: 10.3389/fonc.2021.757973] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy is one of the main therapeutic methods for treating cancer. The digestive system consists of the gastrointestinal tract and the accessory organs of digestion (the tongue, salivary glands, pancreas, liver and gallbladder). The digestive system is easily impaired during radiotherapy, especially in thoracic and abdominal radiotherapy. In this review, we introduce the physical classification, basic pathogenesis, clinical characteristics, predictive/diagnostic factors, and possible treatment targets of radiotherapy-induced digestive injury. Radiotherapy-induced digestive injury complies with the dose-volume effect and has a radiation-based organ correlation. Computed tomography (CT), MRI (magnetic resonance imaging), ultrasound (US) and endoscopy can help diagnose and evaluate the radiation-induced lesion level. The latest treatment approaches include improvement in radiotherapy (such as shielding, hydrogel spacers and dose distribution), stem cell transplantation and drug administration. Gut microbiota modulation may become a novel approach to relieving radiogenic gastrointestinal syndrome. Finally, we summarized the possible mechanisms involved in treatment, but they remain varied. Radionuclide-labeled targeting molecules (RLTMs) are promising for more precise radiotherapy. These advances contribute to our understanding of the assessment and treatment of radiation-induced digestive injury.
Collapse
Affiliation(s)
- Guangxia Chen
- Department of Gastroenterology, The First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Yi Han
- Department of Gastroenterology, The First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Haihan Zhang
- Department of Gastroenterology, The First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Wenling Tu
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Shuyu Zhang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China.,West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Leibowitz BJ, Zhao G, Wei L, Ruan H, Epperly M, Chen L, Lu X, Greenberger JS, Zhang L, Yu J. Interferon b drives intestinal regeneration after radiation. SCIENCE ADVANCES 2021; 7:eabi5253. [PMID: 34613772 PMCID: PMC8494436 DOI: 10.1126/sciadv.abi5253] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/16/2021] [Indexed: 05/14/2023]
Abstract
The cGAS-STING cytosolic DNA sensing pathway is critical for host defense. Here, we report that cGAS-STING–dependent type 1 interferon (IFN) response drives intestinal regeneration and animal recovery from radiation injury. STING deficiency has no effect on radiation-induced DNA damage or crypt apoptosis but abrogates epithelial IFN-β production, local inflammation, innate transcriptional response, and subsequent crypt regeneration. cGAS KO, IFNAR1 KO, or CCR2 KO also abrogates radiation-induced acute crypt inflammation and regeneration. Impaired intestinal regeneration and survival in STING-deficient mice are fully rescued by a single IFN-β treatment given 48 hours after irradiation but not by wild-type (WT) bone marrow. IFN-β treatment remarkably improves the survival of WT mice and Lgr5+ stem cell regeneration through elevated compensatory proliferation and more rapid DNA damage removal. Our findings support that inducible IFN-β production in the niche couples ISC injury and regeneration and its potential use to treat acute radiation injury.
Collapse
Affiliation(s)
- Brian J. Leibowitz
- Department of Pathology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Guangyi Zhao
- Department of Pathology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Liang Wei
- Department of Pathology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Hang Ruan
- Department of Pathology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Michael Epperly
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Lujia Chen
- Department of Medical Informatics, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Xinghua Lu
- Department of Medical Informatics, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Joel S. Greenberger
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Lin Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Jian Yu
- Department of Pathology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
13
|
Habara O, Logan CY, Kanai-Azuma M, Nusse R, Takase HM. WNT signaling in pre-granulosa cells is required for ovarian folliculogenesis and female fertility. Development 2021; 148:261700. [PMID: 33914868 PMCID: PMC8126407 DOI: 10.1242/dev.198846] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/26/2021] [Indexed: 01/26/2023]
Abstract
In mammalian ovaries, immature oocytes are reserved in primordial follicles until their activation for potential ovulation. Precise control of primordial follicle activation (PFA) is essential for reproduction, but how this is achieved is unclear. Here, we show that canonical wingless-type MMTV integration site family (WNT) signaling is pivotal for pre-granulosa cell (pre-GC) activation during PFA. We identified several WNT ligands expressed in pre-GCs that act in an autocrine manner. Inhibition of WNT secretion from pre-GCs/GCs by conditional knockout (cKO) of the wntless (Wls) gene led to female infertility. In Wls cKO mice, GC layer thickness was greatly reduced in growing follicles, which resulted in impaired oocyte growth with both an abnormal, sustained nuclear localization of forkhead box O3 (FOXO3) and reduced phosphorylation of ribosomal protein S6 (RPS6). Constitutive stabilization of β-catenin (CTNNB1) in pre-GCs/GCs induced morphological changes of pre-GCs from a squamous into a cuboidal form, though it did not influence oocyte activation. Our results reveal that canonical WNT signaling plays a permissive role in the transition of pre-GCs to GCs, which is an essential step to support oocyte growth.
Collapse
Affiliation(s)
- Okiko Habara
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Catriona Y Logan
- Howard Hughes Medical Institute, Department of Developmental Biology and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Masami Kanai-Azuma
- Department of Experimental Animal Model for Human Disease, Center for Experimental Animals, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Roeland Nusse
- Howard Hughes Medical Institute, Department of Developmental Biology and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hinako M Takase
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan.,Department of Experimental Animal Model for Human Disease, Center for Experimental Animals, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| |
Collapse
|
14
|
Hong T, Wang R, Wang X, Yang S, Wang W, Gao Q, Zhang X. Interplay Between the Intestinal Microbiota and Acute Graft-Versus-Host Disease: Experimental Evidence and Clinical Significance. Front Immunol 2021; 12:644982. [PMID: 33815399 PMCID: PMC8010685 DOI: 10.3389/fimmu.2021.644982] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/26/2021] [Indexed: 12/23/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative therapy for many hematological disorders and autoimmune diseases, but acute graft-versus-host disease (aGVHD) has remained a major obstacle that limits allo-HSCT and exhibits a daunting mortality rate. The gastrointestinal system is among the most common sites affected by aGVHD. Experimental advances in the field of intestinal microbiota research enhanced our understanding - not only of the quantity and diversity of intestinal microbiota - but also their association with homeostasis of the immune system and disease pathogenesis, including that of aGVHD. Meanwhile, ever-growing clinical evidence suggest that the intestinal microbiota is dysregulated in patients who develop aGVHD and that the imbalance may affect clinical outcomes, indicating a potential predictive role for microbiota dysregulation in aGVHD severity and prognosis. The current animal and human studies investigating the intestinal microbiota in aGVHD and the understanding of the influence and management of the microbiota in the clinic are reviewed herein. Taken together, monitoring and remodeling the intestinal microecology following allo-HSCT may provide us with promising avenues for diagnosing, preventing or treating aGVHD in the clinic.
Collapse
Affiliation(s)
- Tao Hong
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Rui Wang
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shijie Yang
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Weihao Wang
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiangguo Gao
- Department of Cell Biology, College of Basic Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
15
|
Begum N, Rajendra Prasad N, Kanimozhi G, Agilan B. Apigenin prevents gamma radiation-induced gastrointestinal damages by modulating inflammatory and apoptotic signalling mediators. Nat Prod Res 2021; 36:1631-1635. [PMID: 33673794 DOI: 10.1080/14786419.2021.1893316] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The objective of this study was to evaluate the protective effect of apigenin against radiation-induced gastrointestinal (GI) damages in whole-body irradiated (WBI) Swiss albino mice. Swiss albino mice were pre-treated with apigenin (15 mg/kg body wt.) intraperitoneally for six consecutive days, and on the seventh day, the mice were exposed to 7 Gy WBI. Histological findings revealed a deterioration of the crypt-villus architecture in the 7 Gy irradiated mice intestine. Conversely, apigenin pre-treatment ameliorated radiation-induced intestinal damages and restored intestinal crypt-villus architecture. Besides, apigenin modulates 7 Gy radiation-induced apoptotic markers (p53, p21, Bax, caspase-3, -9) expression in the GI tissue of WBI mice. Furthermore, apigenin prevented radiation-induced activation of NF-kB expression in the GI tissue. Therefore, the present results indicate apigenin's radioprotective effect through modulating NF-kB mediated apoptotic signalling in the WBI intestinal tissue.
Collapse
Affiliation(s)
- Naziya Begum
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India.,Department of Chemistry, College of Natural and Computational Sciences, Debre Berhan University, Debre Berhan, Ethiopia
| | - N Rajendra Prasad
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - G Kanimozhi
- Department of Biochemistry, Dharumapuram Gnanambikai Government Arts College for Women, Mayiladuthurai, Tamil Nadu, India
| | - B Agilan
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, India
| |
Collapse
|
16
|
p53 dynamics vary between tissues and are linked with radiation sensitivity. Nat Commun 2021; 12:898. [PMID: 33563973 PMCID: PMC7873198 DOI: 10.1038/s41467-021-21145-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/21/2020] [Indexed: 12/14/2022] Open
Abstract
Radiation sensitivity varies greatly between tissues. The transcription factor p53 mediates the response to radiation; however, the abundance of p53 protein does not correlate well with the extent of radiosensitivity across tissues. Given recent studies showing that the temporal dynamics of p53 influence the fate of cultured cells in response to irradiation, we set out to determine the dynamic behavior of p53 and its impact on radiation sensitivity in vivo. We find that radiosensitive tissues show prolonged p53 signaling after radiation, while more resistant tissues show transient p53 activation. Sustaining p53 using a small molecule (NMI801) that inhibits Mdm2, a negative regulator of p53, reduced viability in cell culture and suppressed tumor growth. Our work proposes a mechanism for the control of radiation sensitivity and suggests tools to alter the dynamics of p53 to enhance tumor clearance. Similar approaches can be used to enhance killing of cancer cells or reduce toxicity in normal tissues following genotoxic therapies. p53 mediates the response to irradiation, however, tissues with similar levels of p53 have different radiation sensitivities. Here, the authors show that the in vivo p53 dynamics varies in these tissues after radiation, and the use of Mdm2 inhibitor to sustain p53 activity enhances radiosensitivity.
Collapse
|
17
|
Kurokawa K, Hayakawa Y, Koike K. Plasticity of Intestinal Epithelium: Stem Cell Niches and Regulatory Signals. Int J Mol Sci 2020; 22:ijms22010357. [PMID: 33396437 PMCID: PMC7795504 DOI: 10.3390/ijms22010357] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 12/13/2022] Open
Abstract
The discovery of Lgr5+ intestinal stem cells (ISCs) triggered a breakthrough in the field of ISC research. Lgr5+ ISCs maintain the homeostasis of the intestinal epithelium in the steady state, while these cells are susceptible to epithelial damage induced by chemicals, pathogens, or irradiation. During the regeneration process of the intestinal epithelium, more quiescent +4 stem cells and short-lived transit-amplifying (TA) progenitor cells residing above Lgr5+ ISCs undergo dedifferentiation and act as stem-like cells. In addition, several recent reports have shown that a subset of terminally differentiated cells, including Paneth cells, tuft cells, or enteroendocrine cells, may also have some degree of plasticity in specific situations. The function of ISCs is maintained by the neighboring stem cell niches, which strictly regulate the key signal pathways in ISCs. In addition, various inflammatory cytokines play critical roles in intestinal regeneration and stem cell functions following epithelial injury. Here, we summarize the current understanding of ISCs and their niches, review recent findings regarding cellular plasticity and its regulatory mechanism, and discuss how inflammatory cytokines contribute to epithelial regeneration.
Collapse
Affiliation(s)
| | - Yoku Hayakawa
- Correspondence: ; Tel.: +81-3-3815-5411; Fax: +81-3-5800-8812
| | | |
Collapse
|
18
|
Fu G, Chen S, Liang L, Li X, Tang P, Rao X, Pan M, Xu X, Li Y, Yao Y, Zhou Y, Gao J, Mo S, Cai S, Peng J, Zhang Z, Clevers H, Gao J, Hua G. SIRT1 inhibitors mitigate radiation-induced GI syndrome by enhancing intestinal-stem-cell survival. Cancer Lett 2020; 501:20-30. [PMID: 33359449 DOI: 10.1016/j.canlet.2020.12.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/04/2020] [Accepted: 12/21/2020] [Indexed: 01/20/2023]
Abstract
High-dose radiation exposure induces gastrointestinal (GI) stem cell death, resulting in denudation of the intestinal mucosa and lethality from GI syndrome, for which there is currently no effective therapy. Studying an intestinal organoid-based functional model, we found that Sirtuin1(SIRT1) inhibition through genetic knockout or pharmacologic inhibition significantly improved mouse and human intestinal organoid survival after irradiation. Remarkably, mice administered with two doseages of SIRT1 inhibitors at 24 and 96 h after lethal irradiation promoted Lgr5+ intestinal stem cell and crypt recovery, with improved mouse survival (88.89% of mice in the treated group vs. 0% of mice in the control group). Moreover, our data revealed that SIRT1 inhibition increased p53 acetylation, resulting in the stabilization of p53 and likely contributing to the survival of intestinal epithelial cells post-radiation. These results demonstrate that SIRT1 inhibitors are effective clinical countermeasures to mitigate GI toxicity from potentially lethal radiation exposure.
Collapse
Affiliation(s)
- Guoxiang Fu
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shengzhi Chen
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Liping Liang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Xiaomeng Li
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Peiyuan Tang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xinxin Rao
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Mengxue Pan
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaoya Xu
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yuanchuang Li
- Research and Early Development, D1Med Technology (Shanghai) Inc, Shanghai, 200235, China
| | - Ye Yao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Yi Zhou
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jun Gao
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Shaobo Mo
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Sanjun Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Junjie Peng
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhen Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Hans Clevers
- Hubrecht Institute, KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584CT, Utrecht, the Netherlands
| | - Jianjun Gao
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Guoqiang Hua
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
19
|
Current and Future Perspectives of the Use of Organoids in Radiobiology. Cells 2020; 9:cells9122649. [PMID: 33317153 PMCID: PMC7764598 DOI: 10.3390/cells9122649] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
The majority of cancer patients will be treated with radiotherapy, either alone or together with chemotherapy and/or surgery. Optimising the balance between tumour control and the probability of normal tissue side effects is the primary goal of radiation treatment. Therefore, it is imperative to understand the effects that irradiation will have on both normal and cancer tissue. The more classical lab models of immortal cell lines and in vivo animal models have been fundamental to radiobiological studies to date. However, each of these comes with their own limitations and new complementary models are required to fill the gaps left by these traditional models. In this review, we discuss how organoids, three-dimensional tissue-resembling structures derived from tissue-resident, embryonic or induced pluripotent stem cells, overcome the limitations of these models and thus have a growing importance in the field of radiation biology research. The roles of organoids in understanding radiation-induced tissue responses and in moving towards precision medicine are examined. Finally, the limitations of organoids in radiobiology and the steps being made to overcome these limitations are considered.
Collapse
|
20
|
Morita A, Wang B, Tanaka K, Katsube T, Murakami M, Shimokawa T, Nishiyama Y, Ochi S, Satoh H, Nenoi M, Aoki S. Protective Effects of p53 Regulatory Agents Against High-LET Radiation-Induced Injury in Mice. Front Public Health 2020; 8:601124. [PMID: 33344403 PMCID: PMC7744379 DOI: 10.3389/fpubh.2020.601124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/12/2020] [Indexed: 12/30/2022] Open
Abstract
Radiation damage to normal tissues is one of the most serious concerns in radiation therapy, and the tolerance dose of the normal tissues limits the therapeutic dose to the patients. p53 is well known as a transcription factor closely associated with radiation-induced cell death. We recently demonstrated the protective effects of several p53 regulatory agents against low-LET X- or γ-ray-induced damage. Although it was reported that high-LET heavy ion radiation (>85 keV/μm) could cause p53-independent cell death in some cancer cell lines, whether there is any radioprotective effect of the p53 regulatory agents against the high-LET radiation injury in vivo is still unclear. In the present study, we verified the efficacy of these agents on bone marrow and intestinal damages induced by high-LET heavy-ion irradiation in mice. We used a carbon-beam (14 keV/μm) that was shown to induce a p53-dependent effect and an iron-beam (189 keV/μm) that was shown to induce a p53-independent effect in a previous study. Vanadate significantly improved 60-day survival rate in mice treated with total-body carbon-ion (p < 0.0001) or iron-ion (p < 0.05) irradiation, indicating its effective protection of the hematopoietic system from radiation injury after high-LET irradiation over 85 keV/μm. 5CHQ also significantly increased the survival rate after abdominal carbon-ion (p < 0.02), but not iron-ion irradiation, suggesting the moderate relief of the intestinal damage. These results demonstrated the effectiveness of p53 regulators on acute radiation syndrome induced by high-LET radiation.
Collapse
Affiliation(s)
- Akinori Morita
- Department of Biomedical Science and Technology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Bing Wang
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kaoru Tanaka
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Takanori Katsube
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Masahiro Murakami
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Takashi Shimokawa
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yuichi Nishiyama
- Department of Biomedical Science and Technology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Shintaro Ochi
- Department of Biomedical Science and Technology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Hidetoshi Satoh
- Department of Medicinal and Life Science, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Mitsuru Nenoi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Shin Aoki
- Department of Medicinal and Life Science, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| |
Collapse
|
21
|
Daniel AR, Lee CL, Oh P, Luo L, Ma Y, Kirsch DG. Inhibiting Glycogen Synthase Kinase-3 Mitigates the Hematopoietic Acute Radiation Syndrome in a Sex- and Strain-dependent Manner in Mice. HEALTH PHYSICS 2020; 119:315-321. [PMID: 32175929 PMCID: PMC7398824 DOI: 10.1097/hp.0000000000001243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The Radiation and Nuclear Countermeasures Program at the National Institute of Allergy and Infectious Diseases (NIAID) mandated that medical countermeasures for treating Acute Radiation Syndrome (ARS) must have efficacy when administered at least 24 h after radiation exposure. At this time point, many cells within key target tissues, such as the hematopoietic system and the gastrointestinal (GI) tract, will already be dead. Therefore, drugs that promote the regeneration of surviving cells may improve outcomes. The serine/threonine kinase glycogen synthase kinase-3 (GSK-3) regulates stem and progenitor cell self-renewal and regeneration in the hematopoietic and GI compartments. We tested inhibition of GSK-3β by SB216763 24 h after total body irradiation (TBI) and sub-total body irradiation (SBI). Here, we show that subcutaneous administration of SB216763 promotes the regeneration of surviving hematopoietic stem/progenitor cells (HSPCs), including myeloid progenitor cells, and improves survival of C57Bl/6 male mice when administered 24 h after TBI. However, these results were not recapitulated in female C57Bl/6 animals, suggesting a sex difference in GSK-3β signaling in HSPCs. Subcutaneous administration of SB216763 in male mice stimulated activation of Sox2 transcription but failed to induce Sox2 transcription in female C57Bl/6 mice. Using TCF/lef-GFP reporter mice, we examined Wnt signaling in HSPCs of irradiated male and female mice treated with SB216763. GSK-3 inhibition elevated Wnt reporter activity in HSPCs isolated from male but not female mice. SB216763 did not mitigate hematopoietic ARS in males or females of a second strain of wild-type mice, C3H. In addition, administration of SB216763 did not mitigate hematopoietic ARS beyond the currently available standard approved therapy of ciprofloxacin and granulocyte-colony stimulating factor (G-CSF) in male C57Bl/6 mice. Further, SB216763 did not mitigate GI-ARS after SBI in C57Bl/6 male mice. The lack of efficacy in both sexes and multiple strains of mice indicate that SB216763 is not suitable for further drug development as a mitigator of ARS. Our studies demonstrate that activation of Wnt signaling in HSPCs promotes hematopoietic regeneration following radiation exposure, and targeting this pathway downstream of GSK-3β may mitigate ARS in a sex- and strain-independent manner.
Collapse
Affiliation(s)
- Andrea R. Daniel
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Chang-Lung Lee
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Patrick Oh
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Lixia Luo
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Yan Ma
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - David G. Kirsch
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
22
|
Song X, Shen L, Tong J, Kuang C, Zeng S, Schoen RE, Yu J, Pei H, Zhang L. Mcl-1 inhibition overcomes intrinsic and acquired regorafenib resistance in colorectal cancer. Theranostics 2020; 10:8098-8110. [PMID: 32724460 PMCID: PMC7381732 DOI: 10.7150/thno.45363] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022] Open
Abstract
Intrinsic and acquired resistance to targeted therapies is a significant clinical problem in cancer. We previously showed that resistance to regorafenib, a multi-kinase inhibitor for treating colorectal cancer (CRC) patients, can be caused by mutations in the tumor suppressor FBW7, which block degradation of the pro-survival Bcl-2 family protein Mcl-1. We tested if Mcl-1 inhibition can be used to develop a precision combination therapy for overcoming regorafenib resistance. METHODS Small-molecule Mcl-1 inhibitors were tested on CRC cells with knock-in (KI) of a non-degradable Mcl-1. Effects of Mcl-1 inhibitors on regorafenib sensitivity were determined in FBW7-mutant and -wild-type (WT) CRC cells and tumors, and in those with acquired regorafenib resistance due to enriched FBW7 mutations. Furthermore, translational potential was explored by establishing and analyzing FBW7-mutant and -WT patient-derived organoid (PDO) and xenograft (PDX) tumor models. RESULTS We found that highly potent and specific Mcl-1 inhibitors such as S63845 overcame regorafenib resistance by restoring apoptosis in multiple regorafenib-resistant CRC models. Mcl-1 inhibition re-sensitized CRC tumors with intrinsic and acquired regorafenib resistance in vitro and in vivo, including those with FBW7 mutations. Importantly, Mcl-1 inhibition also sensitized FBW7-mutant PDO and PDX models to regorafenib. In contrast, Mcl-1 inhibition had no effect in FBW7-WT CRCs. CONCLUSIONS Our results demonstrate that Mcl-1 inhibitors can overcome intrinsic and acquired regorafenib resistance in CRCs by restoring apoptotic response. FBW7 mutations might be a potential biomarker predicting for response to the regorafenib/Mcl-1 inhibitor combination.
Collapse
Affiliation(s)
- Xiangping Song
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Lin Shen
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Jingshan Tong
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Robert E. Schoen
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213. USA
| | - Jian Yu
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213. USA
| | - Haiping Pei
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Lin Zhang
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
23
|
Leonetti D, Estéphan H, Ripoche N, Dubois N, Aguesse A, Gouard S, Brossard L, Chiavassa S, Corre I, Pecqueur C, Neunlist M, Hadchity E, Gaugler MH, Mahé MM, Paris F. Secretion of Acid Sphingomyelinase and Ceramide by Endothelial Cells Contributes to Radiation-Induced Intestinal Toxicity. Cancer Res 2020; 80:2651-2662. [PMID: 32291318 DOI: 10.1158/0008-5472.can-19-1527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 12/16/2019] [Accepted: 04/08/2020] [Indexed: 11/16/2022]
Abstract
Ceramide-induced endothelial cell apoptosis boosts intestinal stem cell radiosensitivity. However, the molecular connection between these two cellular compartments has not been clearly elucidated. Here we report that ceramide and its related enzyme acid sphingomyelinase (ASM) are secreted by irradiated endothelial cells and act as bystander factors to enhance the radiotoxicity of intestinal epithelium. Ceramide and the two isoforms of ASM were acutely secreted in the blood serum of wild-type mice after 15 Gy radiation dose, inducing a gastrointestinal syndrome. Interestingly, serum ceramide was not enhanced in irradiated ASMKO mice, which are unable to develop intestinal failure injury. Because ASM/ceramide were secreted by primary endothelial cells, their contribution was studied in intestinal epithelium dysfunction using coculture of primary endothelial cells and intestinal T84 cells. Adding exogenous ASM or ceramide enhanced epithelial cell growth arrest and death. Conversely, blocking their secretion by endothelial cells using genetic, pharmacologic, or immunologic approaches abolished intestinal T84 cell radiosensitivity. Use of enteroid models revealed ASM and ceramide-mediated deleterious mode-of-action: when ceramide reduced the number of intestinal crypt-forming enteroids without affecting their structure, ASM induced a significant decrease of enteroid growth without affecting their number. Identification of specific and different roles for ceramide and ASM secreted by irradiated endothelial cells opens new perspectives in the understanding of intestinal epithelial dysfunction after radiation and defines a new class of potential therapeutic radiomitigators. SIGNIFICANCE: This study identifies secreted ASM and ceramide as paracrine factors enhancing intestinal epithelial dysfunction, revealing a previously unknown class of mediators of radiosensitivity.
Collapse
Affiliation(s)
| | - Hala Estéphan
- Université de Nantes, INSERM, CNRS, CRCINA, Nantes, France.,Anti-Tumor Therapeutic Targeting Laboratory, Faculty of Sciences, Lebanese University, Hadath, Lebanon
| | | | - Nolwenn Dubois
- Université de Nantes, INSERM, CNRS, CRCINA, Nantes, France.,ICO, Saint-Herblain, France
| | - Audrey Aguesse
- Université de Nantes, INRA UMR 1280 Physiologie des Adaptations Nutritionnelles, Nantes, France.,CRNHO, West Human Nutrition Research Center, Nantes, France
| | | | - Lisa Brossard
- The Enteric Nervous System in Gut and Brain Disorders, INSERM, Université de Nantes, Institut des Maladies de l'Appareil Digestif, Nantes, France
| | | | - Isabelle Corre
- Université de Nantes, INSERM, CNRS, CRCINA, Nantes, France
| | | | - Michel Neunlist
- The Enteric Nervous System in Gut and Brain Disorders, INSERM, Université de Nantes, Institut des Maladies de l'Appareil Digestif, Nantes, France
| | - Elie Hadchity
- Anti-Tumor Therapeutic Targeting Laboratory, Faculty of Sciences, Lebanese University, Hadath, Lebanon
| | | | - Maxime M Mahé
- The Enteric Nervous System in Gut and Brain Disorders, INSERM, Université de Nantes, Institut des Maladies de l'Appareil Digestif, Nantes, France
| | - François Paris
- Université de Nantes, INSERM, CNRS, CRCINA, Nantes, France. .,ICO, Saint-Herblain, France
| |
Collapse
|
24
|
Sisakht M, Darabian M, Mahmoodzadeh A, Bazi A, Shafiee SM, Mokarram P, Khoshdel Z. The role of radiation induced oxidative stress as a regulator of radio-adaptive responses. Int J Radiat Biol 2020; 96:561-576. [PMID: 31976798 DOI: 10.1080/09553002.2020.1721597] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Purpose: Various sources of radiation including radiofrequency, electromagnetic radiation (EMR), low- dose X-radiation, low-level microwave radiation and ionizing radiation (IR) are indispensable parts of modern life. In the current review, we discussed the adaptive responses of biological systems to radiation with a focus on the impacts of radiation-induced oxidative stress (RIOS) and its molecular downstream signaling pathways.Materials and methods: A comprehensive search was conducted in Web of Sciences, PubMed, Scopus, Google Scholar, Embase, and Cochrane Library. Keywords included Mesh terms of "radiation," "electromagnetic radiation," "adaptive immunity," "oxidative stress," and "immune checkpoints." Manuscripts published up until December 2019 were included.Results: RIOS induces various molecular adaptors connected with adaptive responses in radiation exposed cells. One of these adaptors includes p53 which promotes various cellular signaling pathways. RIOS also activates the intrinsic apoptotic pathway by depolarization of the mitochondrial membrane potential and activating the caspase apoptotic cascade. RIOS is also involved in radiation-induced proliferative responses through interaction with mitogen-activated protein kinases (MAPks) including p38 MAPK, ERK, and c-Jun N-terminal kinase (JNK). Protein kinase B (Akt)/phosphoinositide 3-kinase (PI3K) signaling pathway has also been reported to be involved in RIOS-induced proliferative responses. Furthermore, RIOS promotes genetic instability by introducing DNA structural and epigenetic alterations, as well as attenuating DNA repair mechanisms. Inflammatory transcription factors including macrophage migration inhibitory factor (MIF), nuclear factor κB (NF-κB), and signal transducer and activator of transcription-3 (STAT-3) paly major role in RIOS-induced inflammation.Conclusion: In conclusion, RIOS considerably contributes to radiation induced adaptive responses. Other possible molecular adaptors modulating RIOS-induced responses are yet to be divulged in future studies.
Collapse
Affiliation(s)
- Mohsen Sisakht
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Darabian
- Department of Radiology, Faculty of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Mahmoodzadeh
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Bazi
- Faculty of Allied Medical Sciences, Zabol University of Medical Sciences, Zabol, Iran
| | - Sayed Mohammad Shafiee
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooneh Mokarram
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Khoshdel
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
25
|
Zhang X, Fisher R, Hou W, Shields D, Epperly MW, Wang H, Wei L, Leibowitz BJ, Yu J, Alexander LM, VAN Pijkeren JP, Watkins S, Wipf P, Greenberger JS. Second-generation Probiotics Producing IL-22 Increase Survival of Mice After Total Body Irradiation. In Vivo 2020; 34:39-50. [PMID: 31882461 PMCID: PMC6984118 DOI: 10.21873/invivo.11743] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/21/2019] [Accepted: 09/27/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND/AIM Intestinal damage induced by total body irradiation (TBI) reduces leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5)-expressing stem cells, goblet, and Paneth cells, breaching the epithelial lining, and facilitating bacterial translocation, sepsis, and death. MATERIALS AND METHODS Survival was measured after TBI in animals that received wild-type or recombinant bacteria producing interleukin-22 (IL-22). Changes in survival due to microbially delivered IL-22 were measured. Lactobacillus reuteri producing IL-22, or Escherichia coli-IL-22 were compared to determine which delivery system is better. RESULTS C57BL/6 mice receiving IL-22 probiotics at 24 h after 9.25 Gy TBI, demonstrated green fluorescent protein-positive bacteria in the intestine, doubled the number of Lgr5+ intestinal stem cells, and increased 30-day survival. Bacteria were localized to the jejunum, ileum, and colon. CONCLUSION Second-generation probiotics appear to be valuable for mitigation of TBI, and radiation protection during therapeutic total abdominal irradiation.
Collapse
Affiliation(s)
- Xichen Zhang
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Renee Fisher
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Wen Hou
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Donna Shields
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Michael W Epperly
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Hong Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Liang Wei
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Brian J Leibowitz
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Jian Yu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Laura M Alexander
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, U.S.A
| | | | - Simon Watkins
- Center for Imaging, Department of Pathology, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Joel S Greenberger
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A.
| |
Collapse
|
26
|
Blutt SE, Klein OD, Donowitz M, Shroyer N, Guha C, Estes MK. Use of organoids to study regenerative responses to intestinal damage. Am J Physiol Gastrointest Liver Physiol 2019; 317:G845-G852. [PMID: 31589468 PMCID: PMC7132322 DOI: 10.1152/ajpgi.00346.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intestinal organoid cultures provide an in vitro model system for studying pathways and mechanisms involved in epithelial damage and repair. Derived from either embryonic or induced pluripotent stem cells or adult intestinal stem cells or tissues, these self-organizing, multicellular structures contain polarized mature cells that recapitulate both the physiology and heterogeneity of the intestinal epithelium. These cultures provide a cutting-edge technology for defining regenerative pathways that are induced following radiation or chemical damage, which directly target the cycling intestinal stem cell, or damage resulting from viral, bacterial, or parasitic infection of the epithelium. Novel signaling pathways or biological mechanisms identified from organoid studies that mediate regeneration of the epithelium following damage are likely to be important targets of preventive or therapeutic modalities to mitigate intestinal injury. The evolution of these cultures to include more components of the intestinal wall and the ability to genetically modify them are key components for defining the mechanisms that modulate epithelial regeneration.
Collapse
Affiliation(s)
- Sarah E. Blutt
- 1Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Ophir D. Klein
- 2Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, California,3Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, California
| | - Mark Donowitz
- 4Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland,5Department of Medicine, Gastroenterology and Hepatology Division, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Noah Shroyer
- 6Department of Medicine, Divisions of Gastroenterology and Hepatology and Infectious Diseases, Baylor College of Medicine, Houston, Texas
| | - Chandan Guha
- 7Department of Radiation Oncology, Albert Einstein, Bronx, New York
| | - Mary K. Estes
- 1Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas,6Department of Medicine, Divisions of Gastroenterology and Hepatology and Infectious Diseases, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
27
|
Bykov VN, Grebenyuk AN, Ushakov IB. The Use of Radioprotective Agents to Prevent Effects Associated with Aging. BIOL BULL+ 2019. [DOI: 10.1134/s1062359019120021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Krayem M, Sabbah M, Najem A, Wouters A, Lardon F, Simon S, Sales F, Journe F, Awada A, Ghanem GE, Van Gestel D. The Benefit of Reactivating p53 under MAPK Inhibition on the Efficacy of Radiotherapy in Melanoma. Cancers (Basel) 2019; 11:E1093. [PMID: 31374895 PMCID: PMC6721382 DOI: 10.3390/cancers11081093] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 12/15/2022] Open
Abstract
Radiotherapy (RT) in patients with melanoma historically showed suboptimal results, because the disease is often radioresistant due to various mechanisms such as scavenging free radicals by thiols, pigmentary machinery, or enhanced DNA repair. However, radiotherapy has been utilized as adjuvant therapy after the complete excision of primary melanoma and lymph nodes to reduce the rate of nodal recurrences in high-risk patients. The resistance of melanoma cells to radiotherapy may also be in relation with the constitutive activation of the MAPK pathway and/or with the inactivation of p53 observed in about 90% of melanomas. In this study, we aimed to assess the potential benefit of adding RT to BRAF-mutated melanoma cells under a combined p53 reactivation and MAPK inhibition in vitro and in a preclinical animal model. We found that the combination of BRAF inhibition (vemurafenib, which completely shuts down the MAPK pathway), together with p53 reactivation (PRIMA-1Met) significantly enhanced the radiosensitivity of BRAF-mutant melanoma cells. This was accompanied by an increase in both p53 expression and activity. Of note, we found that radiation alone markedly promoted both ERK and AKT phosphorylation, thus contributing to radioresistance. The combination of vemurafenib and PRIMA-1Met caused the inactivation of both MAPK kinase and PI3K/AKT pathways. Furthermore, when combined with radiotherapy, it was able to significantly enhance melanoma cell radiosensitivity. Interestingly, in nude mice bearing melanoma xenografts, the latter triple combination had not only a synergistic effect on tumor growth inhibition, but also a potent control on tumor regrowth in all animals after finishing the triple combination therapy. RT alone had only a weak effect. In conclusion, we provide a basis for a strategy that may overcome the radioresistance of BRAF-mutated melanoma cells to radiotherapy. Whether this will translate into a rational to use radiotherapy in the curative setting in BRAF-mutated melanoma patients deserves consideration.
Collapse
Affiliation(s)
- Mohammad Krayem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Rue Héger-Bordet 1, 1000 Brussels, Belgium.
- Department of Radiation Oncology, Institut Jules Bordet, Université libre de Bruxelles, 1000 Brussels, Belgium.
| | - Malak Sabbah
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Rue Héger-Bordet 1, 1000 Brussels, Belgium
| | - Ahmad Najem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Rue Héger-Bordet 1, 1000 Brussels, Belgium
| | - An Wouters
- Center for Oncological Research (CORE), University of Antwerp, 2610 Wilrijk, Belgium
| | - Filip Lardon
- Center for Oncological Research (CORE), University of Antwerp, 2610 Wilrijk, Belgium
| | - Stephane Simon
- Department of Radiation Oncology, Institut Jules Bordet, Université libre de Bruxelles, 1000 Brussels, Belgium
| | - François Sales
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Rue Héger-Bordet 1, 1000 Brussels, Belgium
| | - Fabrice Journe
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Rue Héger-Bordet 1, 1000 Brussels, Belgium
- Department of Human Anatomy and Experimental Oncology, Université de Mons (UMons), Research Institute for Health Sciences and Technology, 7000 Mons, Belgium
| | - Ahmad Awada
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Rue Héger-Bordet 1, 1000 Brussels, Belgium
- Department of Internal Medicine, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Ghanem E Ghanem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Rue Héger-Bordet 1, 1000 Brussels, Belgium
| | - Dirk Van Gestel
- Department of Radiation Oncology, Institut Jules Bordet, Université libre de Bruxelles, 1000 Brussels, Belgium
| |
Collapse
|
29
|
Cao X, Wen P, Fu Y, Gao Y, Qi X, Chen B, Tao Y, Wu L, Xu A, Lu H, Zhao G. Radiation induces apoptosis primarily through the intrinsic pathway in mammalian cells. Cell Signal 2019; 62:109337. [PMID: 31173879 DOI: 10.1016/j.cellsig.2019.06.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/13/2022]
Abstract
Radiation-induced tumor cells death is the theoretical basis of tumor radiotherapy. Death signaling disorder is the most important factor for radioresistance. However, the signaling pathway(s) leading to radiation-triggered cell death is (are) still not completely known. To better understand the cell death signaling induced by radiation, the immortalized mouse embryonic fibroblast (MEF) deficient in "initiator" caspases, "effector" caspases or different Bcl-2 family proteins together with human colon carcinoma cell HCT116 were used. Our data indicated that radiation selectively induced the activation of caspase-9 and caspase-3/7 but not caspase-8 by triggering mitochondrial outer membrane permeabilization (MOMP). Importantly, the role of radiation in MOMP is independent of the activation of both "initiator" and "effector" caspases. Furthermore, both proapoptotic and antiapoptotic Bcl-2 family proteins were involved in radiation-induced apoptotic signaling. Overall, our study indicated that radiation specifically triggered the intrinsic apoptotic signaling pathway through Bcl-2 family protein-dependent mitochondrial permeabilization, which indicates targeting mitochondria is a promising strategy for cancer radiotherapy.
Collapse
Affiliation(s)
- Xianbin Cao
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, PR China; University of Science and Technology of China, Hefei, PR China
| | - Pengbo Wen
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, PR China; University of Science and Technology of China, Hefei, PR China
| | - Yanfang Fu
- School of Natural Resources and Environment, Chizhou University, Chizhou, Anhui 247000, PR China
| | - Yang Gao
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, PR China; University of Science and Technology of China, Hefei, PR China
| | - Xiaojing Qi
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, PR China; University of Science and Technology of China, Hefei, PR China
| | - Bin Chen
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, PR China; University of Science and Technology of China, Hefei, PR China
| | - Yinping Tao
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, PR China; University of Science and Technology of China, Hefei, PR China
| | - Lijun Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, PR China
| | - An Xu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, PR China
| | - Huayi Lu
- Second Hospital, Jilin University, Changchun, PR China.
| | - Guoping Zhao
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, PR China.
| |
Collapse
|
30
|
Comparison of Proton and Photon Beam Irradiation in Radiation-Induced Intestinal Injury Using a Mouse Model. Int J Mol Sci 2019; 20:ijms20081894. [PMID: 30999572 PMCID: PMC6514697 DOI: 10.3390/ijms20081894] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/12/2022] Open
Abstract
When radiotherapy is applied to the abdomen or pelvis, normal tissue toxicity in the gastrointestinal (GI) tract is considered a major dose-limiting factor. Proton beam therapy has a specific advantage in terms of reduced doses to normal tissues. This study investigated the fundamental differences between proton- and X-ray-induced intestinal injuries in mouse models. C57BL/6J mice were irradiated with 6-MV X-rays or 230-MeV protons and were sacrificed after 84 h. The number of surviving crypts per circumference of the jejunum was identified using Hematoxylin and Eosin staining. Diverse intestinal stem cell (ISC) populations and apoptotic cells were analyzed using immunohistochemistry (IHC) and a terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL) assay, respectively. The crypt microcolony assay revealed a radiation-dose-dependent decrease in the number of regenerative crypts in the mouse jejunum; proton irradiation was more effective than X-ray irradiation with a relative biological effectiveness of 1.14. The jejunum is the most sensitive to radiations, followed by the ileum and the colon. Both types of radiation therapy decreased the number of radiosensitive, active cycling ISC populations. However, a higher number of radioresistant, reserve ISC populations and Paneth cells were eradicated by proton irradiation than X-ray irradiation, as shown in the IHC analyses. The TUNEL assay revealed that proton irradiation was more effective in enhancing apoptotic cell death than X-ray irradiation. This study conducted a detailed analysis on the effects of proton irradiation versus X-ray irradiation on intestinal crypt regeneration in mouse models. Our findings revealed that proton irradiation has a direct effect on ISC populations, which may result in an increase in the risk of GI toxicity during proton beam therapy.
Collapse
|
31
|
Nag D, Bhanja P, Riha R, Sanchez-Guerrero G, Kimler BF, Tsue TT, Lominska C, Saha S. Auranofin Protects Intestine against Radiation Injury by Modulating p53/p21 Pathway and Radiosensitizes Human Colon Tumor. Clin Cancer Res 2019; 25:4791-4807. [DOI: 10.1158/1078-0432.ccr-18-2751] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/23/2018] [Accepted: 03/25/2019] [Indexed: 02/06/2023]
|
32
|
Mortezaee K, Salehi E, Mirtavoos-Mahyari H, Motevaseli E, Najafi M, Farhood B, Rosengren RJ, Sahebkar A. Mechanisms of apoptosis modulation by curcumin: Implications for cancer therapy. J Cell Physiol 2019; 234:12537-12550. [PMID: 30623450 DOI: 10.1002/jcp.28122] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022]
Abstract
Cancer incidences are growing and cause millions of deaths worldwide. Cancer therapy is one of the most important challenges in medicine. Improving therapeutic outcomes from cancer therapy is necessary for increasing patients' survival and quality of life. Adjuvant therapy using various types of antibodies or immunomodulatory agents has suggested modulating tumor response. Resistance to apoptosis is the main reason for radioresistance and chemoresistance of most of the cancers, and also one of the pivotal targets for improving cancer therapy is the modulation of apoptosis signaling pathways. Apoptosis can be induced by intrinsic or extrinsic pathways via stimulation of several targets, such as membrane receptors of tumor necrosis factor-α and transforming growth factor-β, and also mitochondria. Curcumin is a naturally derived agent that induces apoptosis in a variety of different tumor cell lines. Curcumin also activates redox reactions within cells inducing reactive oxygen species (ROS) production that leads to the upregulation of apoptosis receptors on the tumor cell membrane. Curcumin can also upregulate the expression and activity of p53 that inhibits tumor cell proliferation and increases apoptosis. Furthermore, curcumin has a potent inhibitory effect on the activity of NF-κB and COX-2, which are involved in the overexpression of antiapoptosis genes such as Bcl-2. It can also attenuate the regulation of antiapoptosis PI3K signaling and increase the expression of MAPKs to induce endogenous production of ROS. In this paper, we aimed to review the molecular mechanisms of curcumin-induced apoptosis in cancer cells. This action of curcumin could be applicable for use as an adjuvant in combination with other modalities of cancer therapy including radiotherapy and chemotherapy.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Ensieh Salehi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanifeh Mirtavoos-Mahyari
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Rhonda J Rosengren
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
33
|
Kwon J, Li YH, Jo YJ, Oh Y, Namgoong S, Kim NH. Inhibition of MEK1/2 and GSK3 (2i system) affects blastocyst quality and early differentiation of porcine parthenotes. PeerJ 2019; 6:e5840. [PMID: 30643672 PMCID: PMC6327883 DOI: 10.7717/peerj.5840] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/28/2018] [Indexed: 02/06/2023] Open
Abstract
Inhibition of both MEK1/2 and glycogen synthase kinase-3 (GSK3; 2i system) facilitates the maintenance of naïve stemness for embryonic stem cells in various mammalian species. However, the effect of the inhibition of the 2i system on porcine early embryogenesis is unknown. We investigated the effect of the 2i system on early embryo development, expression of pluripotency-related genes, and epigenetic modifications. Inhibition of MEK1/2 (by PD0325901) and/or GSK3 (by CHIR99021) did not alter the developmental potential of porcine parthenogenetic embryos, but improved blastocyst quality, as judged by the blastocyst cell number, diameter, and reduction in the number of apoptotic cells. The expression levels of octamer-binding transcription factor 4 and SOX2, the primary transcription factors that maintain embryonic pluripotency, were significantly increased by 2i treatments. Epigenetic modification-related gene expression was altered upon 2i treatment. The collective results indicate that the 2i system in porcine embryos improved embryo developmental potential and blastocyst quality by regulating epigenetic modifications and pluripotency-related gene expression.
Collapse
Affiliation(s)
- Jeongwoo Kwon
- Department of Animal Sciences, Chungbuk National University, Cheongju, Chungcheongbuk-do, Republic of Korea
| | - Ying-Hua Li
- Department of Animal Sciences, Agricultural College, Yanbian University, Yanji, China
| | - Yu-Jin Jo
- Department of Animal Sciences, Chungbuk National University, Cheongju, Chungcheongbuk-do, Republic of Korea
| | - YoungJin Oh
- Genetic Engineering, Cheongchungbuk-do Veterinary Service Laboratory, Cheongju, Cheongchungbuk-do, Republic of Korea
| | - Suk Namgoong
- Department of Animal Sciences, Chungbuk National University, Cheongju, Chungcheongbuk-do, Republic of Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Cheongju, Chungcheongbuk-do, Republic of Korea
| |
Collapse
|
34
|
Fabbrizi MR, Warshowsky KE, Zobel CL, Hallahan DE, Sharma GG. Molecular and epigenetic regulatory mechanisms of normal stem cell radiosensitivity. Cell Death Discov 2018; 4:117. [PMID: 30588339 PMCID: PMC6299079 DOI: 10.1038/s41420-018-0132-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/01/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022] Open
Abstract
Ionizing radiation (IR) therapy is a major cancer treatment modality and an indispensable auxiliary treatment for primary and metastatic cancers, but invariably results in debilitating organ dysfunctions. IR-induced depletion of neural stem/progenitor cells in the subgranular zone of the dentate gyrus in the hippocampus where neurogenesis occurs is considered largely responsible for deficiencies such as learning, memory, and spatial information processing in patients subjected to cranial irradiation. Similarly, IR therapy-induced intestinal injuries such as diarrhea and malabsorption are common side effects in patients with gastrointestinal tumors and are believed to be caused by intestinal stem cell drop out. Hematopoietic stem cell transplantation is currently used to reinstate blood production in leukemia patients and pre-clinical treatments show promising results in other organs such as the skin and kidney, but ethical issues and logistic problems make this route difficult to follow. An alternative way to restore the injured tissue is to preserve the stem cell pool located in that specific tissue/organ niche, but stem cell response to ionizing radiation is inadequately understood at the molecular mechanistic level. Although embryonic and fetal hypersensity to IR has been very well known for many decades, research on embryonic stem cell models in culture concerning molecular mechanisms have been largely inconclusive and often in contradiction of the in vivo observations. This review will summarize the latest discoveries on stem cell radiosensitivity, highlighting the possible molecular and epigenetic mechanism(s) involved in DNA damage response and programmed cell death after ionizing radiation therapy specific to normal stem cells. Finally, we will analyze the possible contribution of stem cell-specific chromatin's epigenetic constitution in promoting normal stem cell radiosensitivity.
Collapse
Affiliation(s)
- Maria Rita Fabbrizi
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108 USA
| | - Kacie E. Warshowsky
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108 USA
| | - Cheri L. Zobel
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108 USA
| | - Dennis E. Hallahan
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108 USA
- Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO 63108 USA
| | - Girdhar G. Sharma
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108 USA
- Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO 63108 USA
| |
Collapse
|
35
|
Bohin N, Carlson EA, Samuelson LC. Genome Toxicity and Impaired Stem Cell Function after Conditional Activation of CreER T2 in the Intestine. Stem Cell Reports 2018; 11:1337-1346. [PMID: 30449703 PMCID: PMC6294112 DOI: 10.1016/j.stemcr.2018.10.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022] Open
Abstract
With the tamoxifen-inducible CreERT2 system, genetic recombination can be temporally controlled in a cell-type-specific manner in intact animals, permitting dissection of the molecular underpinnings of mammalian physiology. Here we present a significant drawback to CreERT2 technology for analysis of intestinal stem cells. Using the intestine-specific Villin-CreERT2 mouse strain, we observed delayed intestinal regeneration post irradiation. Villin-CreERT2 activation was associated with DNA damage and cryptic loxP site cleavage. Analysis of stem cell-specific CreERT2 strains showed that the genome toxicity impairs function of crypt base columnar stem cells, resulting in loss of organoid initiating activity. Importantly, the stem cell impairment is short-lived, with return to normal by 7 days post tamoxifen treatment. Our findings demonstrate that mouse genetic experiments that utilize CreERT2 should consider the confounding effects of enhanced stem cell sensitivity to genome toxicity resulting from CreERT2 activation. Intestinal stem cell (ISC) toxicity induced in mice by CreERT2 activation Impaired organoid formation after activation of ISC-specific CreERT2 strains Genotoxicity and impaired crypt regeneration in Villin-CreERT2 mice Impaired ISC function and genotoxicity repaired by 7 days after activation
Collapse
Affiliation(s)
- Natacha Bohin
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Cellular & Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Elizabeth A Carlson
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Linda C Samuelson
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Cellular & Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
36
|
Ren J, Niu Z, Li X, Yang J, Gao M, Li X, Zhang T, Fang L, Zhang B, Wang J, Su Y, Wang F. A novel morphometry system automatically assessing the growth and regeneration of intestinal organoids. Biochem Biophys Res Commun 2018; 506:1052-1058. [PMID: 30409423 DOI: 10.1016/j.bbrc.2018.10.181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 02/07/2023]
Abstract
As compared with 2D cell line cultures, 3D intestinal organoids are better at maximally recapitulating the physiological features of stem cells in vivo. However, the complex 3D structure is an obstacle which must be objectively and automatically evaluated to assess colony growth and regeneration. Meanwhile, no internal standard currently exists for evaluating the size of heterogeneities in organoids or defining those regenerating colonies. Herein, we developed a simple morphometry system to image MTT-stained organoids. The growth curve of organoids can be automatically generated based upon analyzing the integrated optical density using software. Referencing the definition standards of in vivo regenerating crypts, the perimeters of crypts cultured 24 h after seeding were selected as an "Organoid Unit" to further evaluate colony survival rate and colony size heterogeneities after exposure to varying doses of irradiation. Moreover, the morphometry-based quantification data collected confirmed other findings associated with radiation sensitizing effects of ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related protein (ATR) inhibitor and the radiation protective effect of IL-22. In summary, the novel organoid morphometry system combined with a new internal reference is a practical means for standardizing assessment of growth, survival and regeneration of intestinal organoid colonies. This method has promise to facilitate drug screens in intestinal and other organoid systems.
Collapse
Affiliation(s)
- Jiong Ren
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University, Gaotanyan Street 30(#), Shapingba, Chongqing, 400038, China
| | - Zhibin Niu
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University, Gaotanyan Street 30(#), Shapingba, Chongqing, 400038, China
| | - Xiaoqin Li
- Chongqing Health Center for Women and Children, China
| | - Jie Yang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University, Gaotanyan Street 30(#), Shapingba, Chongqing, 400038, China
| | - Meijiao Gao
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University, Gaotanyan Street 30(#), Shapingba, Chongqing, 400038, China
| | - Xudong Li
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University, Gaotanyan Street 30(#), Shapingba, Chongqing, 400038, China
| | - Tao Zhang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University, Gaotanyan Street 30(#), Shapingba, Chongqing, 400038, China
| | - Lei Fang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University, Gaotanyan Street 30(#), Shapingba, Chongqing, 400038, China
| | - Boyang Zhang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University, Gaotanyan Street 30(#), Shapingba, Chongqing, 400038, China
| | - Junping Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University, Gaotanyan Street 30(#), Shapingba, Chongqing, 400038, China
| | - Yongping Su
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University, Gaotanyan Street 30(#), Shapingba, Chongqing, 400038, China
| | - Fengchao Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University, Gaotanyan Street 30(#), Shapingba, Chongqing, 400038, China.
| |
Collapse
|
37
|
Janke LJ, Ward JM, Vogel P. Classification, Scoring, and Quantification of Cell Death in Tissue Sections. Vet Pathol 2018; 56:33-38. [DOI: 10.1177/0300985818800026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The analysis and description of the appearance of cell death in tissue sections can add valuable information to research studies. The scoring/grading and quantification of cell death can be used either as part of a larger scoring scheme or as the final end point of a study. The degree of precision needed is study dependent and will be determined by the question being addressed and the complexity of the model. The methods one uses to quantify cell death are often guided by the tissue of interest. For example, in the brain, it is sometimes necessary to examine death of specific neuronal populations, whereas in more homogeneous tissue such as a tumor xenograft, quantification can be done on a whole-slide basis. In addition to examination of hematoxylin and eosin (HE)–stained sections, immunohistochemistry can be employed to highlight areas of cell death or to identify specific types of cell death, for example, when differentiating apoptosis from necrosis. Automated quantification can be useful in generating statistically comparable data from HE-stained or immunolabeled samples. The rapidly expanding classification of cell death requires the use of multiple techniques to identify them in vivo. This article will provide examples of how different methods of examining and quantifying cell death are used in a variety of research areas, ranging from semiquantitative evaluation in HE-stained intestine to automated quantification of immunohistochemistry-immunolabeled brain and tumor xenografts. The recently described process of necroptosis will be discussed briefly, with the description and example of the methods used to differentiate this from apoptosis.
Collapse
Affiliation(s)
- Laura J. Janke
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | | | - Peter Vogel
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
38
|
Li J, Li J, Zhang SY, Li RX, Lin X, Mi YL, Zhang CQ. Culture and characterization of chicken small intestinal crypts. Poult Sci 2018; 97:1536-1543. [PMID: 29509914 DOI: 10.3382/ps/pey010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Indexed: 12/16/2022] Open
Abstract
The integrity and normal function of the small intestinal epithelium depends critically on the rapid renewal of epithelial cells from basal stem cells. The intensive proliferation that fuels this self-renewal process is confined to the intestinal crypts. Establishment of suitable protocols for crypt isolation and culture is pivotal for the studies of intestinal self-renewal mechanisms. In this study, chicken small intestinal crypts were isolated, purified, and further cultured in a Matrigel 3-D culture system. The growth factor concentration assay on the fourth d of culture showed that Group C (50 ng/mL epidermal growth factor (EGF), 100 ng/mL Noggin, and 500 ng/mL R-spondin 1) supplement in culture medium could significantly enlarge the diameter of organoids when compared with Group A (5 ng/mL EGF, 10 ng/mL Noggin, 50 ng/mL, and R-spondin 1) and Group B (10 ng/mL EGF, 20 ng/mL Noggin, and 100 ng/mL R-spondin 1) by 188.4% (P = 0.026) and 176.9% (P = 0.034), respectively. Transmission electron microscopy, neutral red staining, and 5-ethynyl-2΄-deoxyuridine incorporation demonstrated the integrated structure, high viability, and proliferative activity in cultured chicken intestinal organoids. In addition, intestinal stem cell marker genes (Olfm4, Znrf3, Hopx, and Lgr5) also could be detected in cultured intestinal organoids. Furthermore, CHIR99021 (a glycogen synthase kinase 3β inhibitor) could enhance the expression of Olfm4, Znrf3, Hopx, and Lgr5 by 750% (P = 0.001), 467% (P < 0.001), 450% (P < 0.001), and 333% (P = 0.008), respectively, indicating the responsiveness of the cultured chicken intestinal organoids to exogenous stimulus. This study modified a murine culture model and optimized it to provide a chicken intestinal organoid model for use as a physiological or pathological research platform in vitro.
Collapse
Affiliation(s)
- J Li
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - J Li
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - S Y Zhang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - R X Li
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - X Lin
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Y L Mi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - C Q Zhang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
39
|
Vincek AS, Patel J, Jaganathan A, Green A, Pierre-Louis V, Arora V, Rehmann J, Mezei M, Zhou MM, Ohlmeyer M, Mujtaba S. Inhibitor of CBP Histone Acetyltransferase Downregulates p53 Activation and Facilitates Methylation at Lysine 27 on Histone H3. Molecules 2018; 23:molecules23081930. [PMID: 30072621 PMCID: PMC6222455 DOI: 10.3390/molecules23081930] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 12/22/2022] Open
Abstract
Tumor suppressor p53-directed apoptosis triggers loss of normal cells, which contributes to the side-effects from anticancer therapies. Thus, small molecules with potential to downregulate the activation of p53 could minimize pathology emerging from anticancer therapies. Acetylation of p53 by the histone acetyltransferase (HAT) domain is the hallmark of coactivator CREB-binding protein (CBP) epigenetic function. During genotoxic stress, CBP HAT-mediated acetylation is essential for the activation of p53 to transcriptionally govern target genes, which control cellular responses. Here, we present a small molecule, NiCur, which blocks CBP HAT activity and downregulates p53 activation upon genotoxic stress. Computational modeling reveals that NiCur docks into the active site of CBP HAT. On CDKN1A promoter, the recruitment of p53 as well as RNA Polymerase II and levels of acetylation on histone H3 were diminished by NiCur. Specifically, NiCur reduces the levels of acetylation at lysine 27 on histone H3, which concomitantly increases the levels of trimethylation at lysine 27. Finally, NiCur attenuates p53-directed apoptosis by inhibiting the Caspase 3 activity and cleavage of Poly (ADP-ribose) polymerase (PARP) in normal gastrointestinal epithelial cells. Collectively, NiCur demonstrates the potential to reprogram the chromatin landscape and modulate biological outcomes of CBP-mediated acetylation under normal and disease conditions.
Collapse
Affiliation(s)
- Adam S Vincek
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Jigneshkumar Patel
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Anbalagan Jaganathan
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- One Bungtown Rd, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY 11724, USA.
| | - Antonia Green
- Department of Physical Science, St. Joseph's College, 245 Clinton Avenue, Brooklyn, NY 11205, USA.
| | - Valerie Pierre-Louis
- Department of Physical Science, St. Joseph's College, 245 Clinton Avenue, Brooklyn, NY 11205, USA.
| | - Vimal Arora
- Department of Biology, City University of New York, Medgar Evers College, Brooklyn, NY 11225, USA.
| | - Jill Rehmann
- Department of Physical Science, St. Joseph's College, 245 Clinton Avenue, Brooklyn, NY 11205, USA.
| | - Mihaly Mezei
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Ming-Ming Zhou
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Michael Ohlmeyer
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Shiraz Mujtaba
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- Department of Biology, City University of New York, Medgar Evers College, Brooklyn, NY 11225, USA.
| |
Collapse
|
40
|
Kuo B, Szabó E, Lee SC, Balogh A, Norman D, Inoue A, Ono Y, Aoki J, Tigyi G. The LPA 2 receptor agonist Radioprotectin-1 spares Lgr5-positive intestinal stem cells from radiation injury in murine enteroids. Cell Signal 2018; 51:23-33. [PMID: 30063964 DOI: 10.1016/j.cellsig.2018.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/22/2018] [Accepted: 07/24/2018] [Indexed: 01/07/2023]
Abstract
Rapidly proliferating cells are highly sensitive to ionizing radiation and can undergo apoptosis if the oxidative and genotoxic injury exceed the defensive and regenerative capacity of the cell. Our earlier work has established the antiapoptotic action of the growth factor-like lipid mediator lysophosphatidic acid (LPA). Activation of the LPA2 GPCR has been hypothesized to elicit antiapoptotic and regenerative actions of LPA. Based on this hypothesis we developed a novel nonlipid agonist of LPA2, which we designated Radioprotectin-1 (RP-1). We tested RP-1 at the six murine LPA GPCR subtypes using the transforming growth factor alpha shedding assay and found that it had a 25 nM EC50 that is similar to that of LPA18:1 at 32 nM. RP-1 effectively reduced apoptosis induced by γ-irradiation and the radiomimetic drug Adriamycin only in cells that expressed LPA2 either endogenously or after transfection. RP-1 reduced γ-H2AX levels in irradiated mouse embryonic fibroblasts transduced with the human LPA2 GPCR but was ineffective in vector transduced MEF control cells and significantly increased clonogenic survival after γ-irradiation. γ-Irradiation induced the expression of lpar2 transcripts that was further enhanced by RP-1 exposure within 30 min after irradiation. RP-1 decreased the mortality of C57BL/6 mice in models of the hematopoietic and gastrointestinal acute radiation syndromes. Using Lgr5-EGFP-CreER;Tdtomatoflox transgenic mice, we found that RP-1 increased the survival and growth of intestinal enteroids via the enhanced survival of Lgr5+ intestinal stem cells. Taken together, our results suggest that the LPA2-specific agonist RP-1 exerts its radioprotective and radiomitigative action through specific activation of the upregulated LPA2 GPCR in Lgr5+ stem cells.
Collapse
Affiliation(s)
- Bryan Kuo
- Research Division, VA Medical Center, 1030 Jefferson Avenue, Memphis, TN 38104, United States; Department of Physiology, University of Tennessee Health Science Center Memphis, 3N Dunlap Street, Memphis, TN 38163, United States
| | - Erzsébet Szabó
- Department of Physiology, University of Tennessee Health Science Center Memphis, 3N Dunlap Street, Memphis, TN 38163, United States
| | - Sue Chin Lee
- Department of Physiology, University of Tennessee Health Science Center Memphis, 3N Dunlap Street, Memphis, TN 38163, United States
| | - Andrea Balogh
- Department of Physiology, University of Tennessee Health Science Center Memphis, 3N Dunlap Street, Memphis, TN 38163, United States
| | - Derek Norman
- Research Division, VA Medical Center, 1030 Jefferson Avenue, Memphis, TN 38104, United States; Department of Physiology, University of Tennessee Health Science Center Memphis, 3N Dunlap Street, Memphis, TN 38163, United States
| | - Asuka Inoue
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Yuki Ono
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Junken Aoki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Gábor Tigyi
- Research Division, VA Medical Center, 1030 Jefferson Avenue, Memphis, TN 38104, United States; Department of Physiology, University of Tennessee Health Science Center Memphis, 3N Dunlap Street, Memphis, TN 38163, United States.
| |
Collapse
|
41
|
Leibowitz BJ, Yang L, Wei L, Buchanan ME, Rachid M, Parise RA, Beumer JH, Eiseman JL, Schoen RE, Zhang L, Yu J. Targeting p53-dependent stem cell loss for intestinal chemoprotection. Sci Transl Med 2018; 10:eaam7610. [PMID: 29437148 PMCID: PMC5827930 DOI: 10.1126/scitranslmed.aam7610] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 10/30/2017] [Accepted: 12/01/2017] [Indexed: 12/27/2022]
Abstract
The gastrointestinal (GI) epithelium is the fastest renewing adult tissue and is maintained by tissue-specific stem cells. Treatment-induced GI side effects are a major dose-limiting factor for chemotherapy and abdominal radiotherapy and can decrease the quality of life in cancer patients and survivors. p53 is a key regulator of the DNA damage response, and its activation results in stimulus- and cell type-specific outcomes via distinct effectors. We demonstrate that p53-dependent PUMA induction mediates chemotherapy-induced intestinal injury in mice. Genetic ablation of Puma, but not of p53, protects against chemotherapy-induced lethal GI injury. Blocking chemotherapy-induced loss of LGR5+ stem cells by Puma KO or a small-molecule PUMA inhibitor (PUMAi) prevents perturbation of the stem cell niche, rapid activation of WNT and NOTCH signaling, and stem cell exhaustion during repeated exposures. PUMAi also protects human and mouse colonic organoids against chemotherapy-induced apoptosis and damage but does not protect cancer cells in vitro or in vivo. Therefore, targeting PUMA is a promising strategy for normal intestinal chemoprotection because it selectively blocks p53-dependent stem cell loss but leaves p53-dependent protective effects intact.
Collapse
Affiliation(s)
- Brian J Leibowitz
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Liheng Yang
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Liang Wei
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Monica E Buchanan
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Madani Rachid
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | | | - Jan H Beumer
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261, USA
| | - Julie L Eiseman
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261, USA
| | - Robert E Schoen
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Lin Zhang
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Jian Yu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
42
|
The GS-nitroxide JP4-039 improves intestinal barrier and stem cell recovery in irradiated mice. Sci Rep 2018; 8:2072. [PMID: 29391546 PMCID: PMC5794877 DOI: 10.1038/s41598-018-20370-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/17/2018] [Indexed: 12/18/2022] Open
Abstract
Total body irradiation (TBI) leads to dose- and tissue-specific lethality. In the current study, we demonstrate that a mitochondrion-targeted nitroxide JP4-039 given once 24 hours after 9–10 Gy TBI significantly improves mouse survival, and the recovery of intestinal barrier, differentiation and stem cell functions. The GI-protective effects are associated with rapid and selective induction of tight junction proteins and cytokines including TGF-β, IL-10, IL-17a, IL-22 and Notch signaling long before bone marrow depletion. However, no change was observed in crypt death or the expression of prototypic pro-inflammatory cytokines such as TNF-α, IL-6 or IL-1β. Surprisingly, bone marrow transplantation (BMT) performed 24 hours after TBI improves intestinal barrier and stem cell recovery with induction of IL-10, IL-17a, IL-22, and Notch signaling. Further, BMT-rescued TBI survivors display increased intestinal permeability, impaired ISC function and proliferation, but not obvious intestinal inflammation or increased epithelial death. These findings identify intestinal epithelium as a novel target of radiation mitigation, and potential strategies to enhance ISC recovery and regeneration after accidental or medical exposures.
Collapse
|
43
|
Kim CK, Yang VW, Bialkowska AB. The Role of Intestinal Stem Cells in Epithelial Regeneration Following Radiation-Induced Gut Injury. CURRENT STEM CELL REPORTS 2017; 3:320-332. [PMID: 29497599 PMCID: PMC5818549 DOI: 10.1007/s40778-017-0103-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Purpose of Review Intestinal epithelial cells show remarkable plasticity in regenerating the epithelium following radiation injury. In this review, we explore the regenerative capacity and mechanisms of various populations of intestinal stem cells (ISCs) in response to ionizing radiation. Recent Findings Ionizing radiation targets mitotic cells that include “active” ISCs and progenitor cells. Lineage-tracing experiments showed that several different cell types identified by a single or combination of markers are capable of regenerating the epithelium, confirming that ISCs exhibit a high degree of plasticity. However, the identities of the contributing cells marked by various markers require further validation. Summary Following radiation injury, quiescent and/or radioresistant cells become active stem cells to regenerate the epithelium. Looking forward, understanding the mechanisms by which ISCs govern tissue regeneration is crucial to determine therapeutic approaches to promote intestinal epithelial regeneration following injury.
Collapse
Affiliation(s)
- Chang-Kyung Kim
- 1Department of Medicine, Stony Brook University School of Medicine, HSC T-17, Rm. 090, Stony Brook, NY 11794 USA
| | - Vincent W Yang
- 1Department of Medicine, Stony Brook University School of Medicine, HSC T-17, Rm. 090, Stony Brook, NY 11794 USA.,2Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY 11794 USA
| | - Agnieszka B Bialkowska
- 1Department of Medicine, Stony Brook University School of Medicine, HSC T-17, Rm. 090, Stony Brook, NY 11794 USA
| |
Collapse
|
44
|
Micewicz ED, Kim K, Iwamoto KS, Ratikan JA, Cheng G, Boxx GM, Damoiseaux RD, Whitelegge JP, Ruchala P, Nguyen C, Purbey P, Loo J, Deng G, Jung ME, Sayre JW, Norris AJ, Schaue D, McBride WH. 4-(Nitrophenylsulfonyl)piperazines mitigate radiation damage to multiple tissues. PLoS One 2017; 12:e0181577. [PMID: 28732024 PMCID: PMC5521796 DOI: 10.1371/journal.pone.0181577] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/03/2017] [Indexed: 01/08/2023] Open
Abstract
Our ability to use ionizing radiation as an energy source, as a therapeutic agent, and, unfortunately, as a weapon, has evolved tremendously over the past 120 years, yet our tool box to handle the consequences of accidental and unwanted radiation exposure remains very limited. We have identified a novel group of small molecule compounds with a 4-nitrophenylsulfonamide (NPS) backbone in common that dramatically decrease mortality from the hematopoietic acute radiation syndrome (hARS). The group emerged from an in vitro high throughput screen (HTS) for inhibitors of radiation-induced apoptosis. The lead compound also mitigates against death after local abdominal irradiation and after local thoracic irradiation (LTI) in models of subacute radiation pneumonitis and late radiation fibrosis. Mitigation of hARS is through activation of radiation-induced CD11b+Ly6G+Ly6C+ immature myeloid cells. This is consistent with the notion that myeloerythroid-restricted progenitors protect against WBI-induced lethality and extends the possible involvement of the myeloid lineage in radiation effects. The lead compound was active if given to mice before or after WBI and had some anti-tumor action, suggesting that these compounds may find broader applications to cancer radiation therapy.
Collapse
Affiliation(s)
- Ewa D. Micewicz
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Kwanghee Kim
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Keisuke S. Iwamoto
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Josephine A. Ratikan
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Genhong Cheng
- Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Gayle M. Boxx
- Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Robert D. Damoiseaux
- Molecular Screening Shared Resource, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Julian P. Whitelegge
- Pasarow Mass Spectrometry Laboratory, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Piotr Ruchala
- Pasarow Mass Spectrometry Laboratory, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Christine Nguyen
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Prabhat Purbey
- Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Joseph Loo
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Gang Deng
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Michael E. Jung
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California, United States of America
| | - James W. Sayre
- School of Public Health, Biostatistics and Radiology, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Andrew J. Norris
- BCN Biosciences, LLC, Pasadena, California, United States of America
| | - Dörthe Schaue
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| | - William H. McBride
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
45
|
Singh VK, Hanlon BK, Santiago PT, Seed TM. A review of radiation countermeasures focusing on injury-specific medicinals and regulatory approval status: part III. Countermeasures under early stages of development along with 'standard of care' medicinal and procedures not requiring regulatory approval for use. Int J Radiat Biol 2017; 93:885-906. [PMID: 28657400 DOI: 10.1080/09553002.2017.1332440] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Terrorist attacks, with their intent to maximize psychological and economic damage as well as inflicting sickness and death on given targeted populations, are an ever-growing worldwide concern in government and public sectors as they become more frequent, violent, and sensational. If given the chance, it is likely that terrorists will use radiological or nuclear weapons. To thwart these sinister efforts, both physical and medical countermeasures against these weapons are currently being researched and developed so that they can be utilized by the first responders, military, and medical providers alike. This is the third article of a three-part series in which we have reviewed additional radiation countermeasures that are currently under early preclinical phases of development using largely animal models and have listed and discussed clinical support measures, including agents used for radiation-induced emesis, as well as countermeasures not requiring Food and Drug Administration approval. CONCLUSIONS Despite the significant progress that has been made in this area during the last several years, additional effort is needed in order to push promising new agents, currently under development, through the regulatory pipeline. This pipeline for new promising drugs appears to be unreasonably slow and cumbersome; possible reasons for this inefficiency are briefly discussed. Significant and continued effort needs to be afforded to this research and development area, as to date, there is no approved radioprotector that can be administered prior to high dose radiation exposure. This represents a very significant, unmet medical need and a significant security issue. A large number of agents with potential to interact with different biological targets are under development. In the next few years, several additional radiation countermeasures will likely receive Food and Drug Administration approval, increasing treatment options for victims exposed to unwanted ionizing irradiation.
Collapse
Affiliation(s)
- Vijay K Singh
- a Division of Radioprotection, Department of Pharmacology and Molecular Therapeutics , F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A
| | - Briana K Hanlon
- a Division of Radioprotection, Department of Pharmacology and Molecular Therapeutics , F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A
| | - Paola T Santiago
- a Division of Radioprotection, Department of Pharmacology and Molecular Therapeutics , F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A
| | | |
Collapse
|
46
|
Mutual reinforcement between telomere capping and canonical Wnt signalling in the intestinal stem cell niche. Nat Commun 2017; 8:14766. [PMID: 28303901 PMCID: PMC5357864 DOI: 10.1038/ncomms14766] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/27/2017] [Indexed: 12/30/2022] Open
Abstract
Critical telomere shortening (for example, secondary to partial telomerase deficiency in the rare disease dyskeratosis congenita) causes tissue pathology, but underlying mechanisms are not fully understood. Mice lacking telomerase (for example, mTR−/− telomerase RNA template mutants) provide a model for investigating pathogenesis. In such mice, after several generations of telomerase deficiency telomeres shorten to the point of uncapping, causing defects most pronounced in high-turnover tissues including intestinal epithelium. Here we show that late-generation mTR−/− mutants experience marked downregulation of Wnt pathway genes in intestinal crypt epithelia, including crypt base columnar stem cells and Paneth cells, and in underlying stroma. The importance of these changes was revealed by rescue of crypt apoptosis and Wnt pathway gene expression upon treatment with Wnt pathway agonists. Rescue was associated with reduced telomere-dysfunction-induced foci and anaphase bridges, indicating improved telomere capping. Thus a mutually reinforcing feedback loop exists between telomere capping and Wnt signalling, and telomere capping can be impacted by extracellular cues in a fashion independent of telomerase. Mice lacking telomerase provide a model to study pathogenesis caused by critical telomere shortening. Here, the authors provide evidence that telomere shortening causes downregulation of Wnt signalling in intestinal crypts and that defects can be partially rescued by treatment with Wnt agonists.
Collapse
|
47
|
Staffas A, Burgos da Silva M, van den Brink MRM. The intestinal microbiota in allogeneic hematopoietic cell transplant and graft-versus-host disease. Blood 2017; 129:927-933. [PMID: 27940475 PMCID: PMC5324712 DOI: 10.1182/blood-2016-09-691394] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/05/2016] [Indexed: 12/14/2022] Open
Abstract
Hematopoietic cell transplantation (HCT) is a critical treatment of patients with high-risk hematopoietic malignancies, hematological deficiencies, and other immune diseases. In allogeneic HCT (allo-HCT), donor-derived T cells recognize host tissues as foreign, causing graft-versus-host disease (GVHD) which is a main contributor to morbidity and mortality. The intestine is one of the organs most severely affected by GVHD and research has recently highlighted the importance of bacteria, particularly the gut microbiota, in HCT outcome and in GVHD development. Loss of intestinal bacterial diversity is common during the course of HCT and is associated with GVHD development and treatment with broad-spectrum antibiotics. Loss of intestinal diversity and outgrowth of opportunistic pathogens belonging to the phylum Proteobacteria and Enterococcus genus have also been linked to increased treatment-related mortality including GVHD, infections, and organ failure after allo-HCT. Experimental studies in allo-HCT animal models have shown some promising results for prebiotic and probiotic strategies as prophylaxis or treatment of GVHD. Continuous research will be important to define the relation of cause and effect for these associations between microbiota features and HCT outcomes. Importantly, studies focused on geographic and cultural differences in intestinal microbiota are necessary to define applicability of new strategies targeting the intestinal microbiota.
Collapse
Affiliation(s)
- Anna Staffas
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Marina Burgos da Silva
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Marcel R M van den Brink
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine and
- Department of Immunology, Weill Medical College of Cornell University, New York, NY; and
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
48
|
Ionizing Radiation Blocks Hair Cell Regeneration in Zebrafish Lateral Line Neuromasts by Preventing Wnt Signaling. Mol Neurobiol 2017; 55:1639-1651. [DOI: 10.1007/s12035-017-0430-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/27/2017] [Indexed: 02/06/2023]
|
49
|
Ley S, Galuba O, Salathe A, Melin N, Aebi A, Pikiolek M, Knehr J, Carbone W, Beibel M, Nigsch F, Roma G, d'Ario G, Kirkland S, Bouchez LC, Gubser Keller C, Bouwmeester T, Parker CN, Ruffner H. Screening of Intestinal Crypt Organoids: A Simple Readout for Complex Biology. SLAS DISCOVERY 2017; 22:571-582. [PMID: 28345372 DOI: 10.1177/2472555216683651] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Oral and intestinal mucositis is a debilitating side effect of radiation treatment. A mouse model of radiation-induced mucositis leads to weight loss and tissue damage, reflecting the human ailment as it responds to keratinocyte growth factor (KGF), the standard-of-care treatment. Cultured intestinal crypt organoids allowed the development of an assay monitoring the effect of treatments of intestinal epithelium to radiation-induced damage. This in vitro assay resembles the mouse model as KGF and roof plate-specific spondin-1 (RSPO1) enhanced crypt organoid recovery following radiation. Screening identified compounds that increased the survival of organoids postradiation. Testing of these compounds revealed that the organoids changed their responses over time. Unbiased transcriptome analysis was performed on crypt organoid cultures at various time points in culture to investigate this adaptive behavior. A number of genes and pathways were found to be modulated over time, providing a rationale for the altered sensitivity of the organoid cultures. This report describes an in vitro assay that reflects aspects of human disease. The assay was used to identify bioactive compounds, which served as probes to interrogate the biology of crypt organoids over prolonged culture. The pathways that are changing over time may offer potential targets for treatment of mucositis.
Collapse
Affiliation(s)
- Svenja Ley
- 1 Novartis Institutes for BioMedical Research (NIBR), Developmental and Molecular Pathways (DMP), Basel, Switzerland
| | - Olaf Galuba
- 1 Novartis Institutes for BioMedical Research (NIBR), Developmental and Molecular Pathways (DMP), Basel, Switzerland
| | - Adrian Salathe
- 1 Novartis Institutes for BioMedical Research (NIBR), Developmental and Molecular Pathways (DMP), Basel, Switzerland
| | - Nicolas Melin
- 1 Novartis Institutes for BioMedical Research (NIBR), Developmental and Molecular Pathways (DMP), Basel, Switzerland
| | - Alexandra Aebi
- 1 Novartis Institutes for BioMedical Research (NIBR), Developmental and Molecular Pathways (DMP), Basel, Switzerland
| | - Monika Pikiolek
- 1 Novartis Institutes for BioMedical Research (NIBR), Developmental and Molecular Pathways (DMP), Basel, Switzerland
| | - Judith Knehr
- 1 Novartis Institutes for BioMedical Research (NIBR), Developmental and Molecular Pathways (DMP), Basel, Switzerland
| | - Walter Carbone
- 1 Novartis Institutes for BioMedical Research (NIBR), Developmental and Molecular Pathways (DMP), Basel, Switzerland
| | - Martin Beibel
- 1 Novartis Institutes for BioMedical Research (NIBR), Developmental and Molecular Pathways (DMP), Basel, Switzerland
| | - Florian Nigsch
- 1 Novartis Institutes for BioMedical Research (NIBR), Developmental and Molecular Pathways (DMP), Basel, Switzerland
| | - Guglielmo Roma
- 1 Novartis Institutes for BioMedical Research (NIBR), Developmental and Molecular Pathways (DMP), Basel, Switzerland
| | - Giovanni d'Ario
- 1 Novartis Institutes for BioMedical Research (NIBR), Developmental and Molecular Pathways (DMP), Basel, Switzerland
| | - Susan Kirkland
- 1 Novartis Institutes for BioMedical Research (NIBR), Developmental and Molecular Pathways (DMP), Basel, Switzerland
| | - Laure C Bouchez
- 1 Novartis Institutes for BioMedical Research (NIBR), Developmental and Molecular Pathways (DMP), Basel, Switzerland
| | - Caroline Gubser Keller
- 1 Novartis Institutes for BioMedical Research (NIBR), Developmental and Molecular Pathways (DMP), Basel, Switzerland
| | - Tewis Bouwmeester
- 1 Novartis Institutes for BioMedical Research (NIBR), Developmental and Molecular Pathways (DMP), Basel, Switzerland
| | - Christian N Parker
- 1 Novartis Institutes for BioMedical Research (NIBR), Developmental and Molecular Pathways (DMP), Basel, Switzerland
| | - Heinz Ruffner
- 1 Novartis Institutes for BioMedical Research (NIBR), Developmental and Molecular Pathways (DMP), Basel, Switzerland
| |
Collapse
|
50
|
Wei L, Leibowitz BJ, Wang X, Epperly M, Greenberger J, Zhang L, Yu J. Inhibition of CDK4/6 protects against radiation-induced intestinal injury in mice. J Clin Invest 2016; 126:4076-4087. [PMID: 27701148 DOI: 10.1172/jci88410] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/25/2016] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy causes dose-limiting toxicity and long-term complications in rapidly renewing tissues, including the gastrointestinal tract. Currently, there is no FDA-approved agent for the prevention or treatment of radiation-induced intestinal injury. In this study, we have shown that PD 0332991 (PD), an FDA-approved selective inhibitor of cyclin-dependent kinase 4/6 (CDK4/6), prevents radiation-induced lethal intestinal injury in mice. Treating mice with PD or a structurally distinct CDK4/6 inhibitor prior to radiation blocked proliferation and crypt apoptosis and improved crypt regeneration. PD treatment also enhanced LGR5+ stem cell survival and regeneration after radiation. PD was an on-target inhibitor of RB phosphorylation and blocked G1/S transition in the intestinal crypts. PD treatment strongly but reversibly inhibited radiation-induced p53 activation, which blocked p53-upregulated modulator of apoptosis-dependent (PUMA-dependent) apoptosis without affecting p21-dependent suppression of DNA damage accumulation, with a repair bias toward nonhomologous end joining. Further, deletion of PUMA synergized with PD treatment for even greater intestinal radioprotection. Our results demonstrate that the cell cycle critically regulates the DNA damage response and survival of intestinal stem cells and support the concept that pharmacological quiescence is a potentially highly effective and selective strategy for intestinal radioprotection.
Collapse
|