1
|
Esmaeili H, Zhang Y, Ravi K, Neff K, Zhu W, Migrino RQ, Park JG, Nikkhah M. Development of an electroconductive Heart-on-a-chip model to investigate cellular and molecular response of human cardiac tissue to gold nanomaterials. Biomaterials 2025; 320:123275. [PMID: 40138961 DOI: 10.1016/j.biomaterials.2025.123275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/16/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
To date, various strategies have been developed to construct biomimetic and functional in vitro cardiac tissue models utilizing human induced pluripotent stem cells (hiPSCs). Among these approaches, microfluidic-based Heart-on-a-chip (HOC) models are promising, as they enable the engineering of miniaturized, physiologically relevant in vitro cardiac tissues with precise control over cellular constituents and tissue architecture. Despite significant advancements, previously reported HOC models often lack the electroconductivity features of the native human myocardium. In this study, we developed a 3D electroconductive HOC (referred to as eHOC) model through the co-culture of isogenic hiPSC-derived cardiomyocytes (hiCMs) and cardiac fibroblasts (hiCFs), embedded within an electroconductive hydrogel scaffold in a microfluidic-based chip system. Functional and gene expression analyses demonstrated that, compared to non-conductive HOC, the eHOC model exhibited enhanced contractile functionality, improved calcium transients, and increased expression of structural and calcium handling genes. The eHOC model was further leveraged to investigate the underlying electroconduction-induced pathway(s) associated with cardiac tissue development through single-cell RNA sequencing (scRNA-seq). Notably, scRNA-seq analyses revealed a significant downregulation of a set of cardiac genes, associated with the fetal stage of heart development, as well as upregulation of sarcomere- and conduction-related genes within the eHOC model. Additionally, upregulation of the cardiac muscle contraction and motor protein pathways were observed in the eHOC model, consistent with enhanced contractile functionality of the engineered cardiac tissues. Comparison of scRNA-seq data from the 3D eHOC model with published datasets of adult human hearts demonstrated a similar expression pattern of fetal- and adult-like cardiac genes. Overall, this study provides a unique eHOC model with improved biomimcry and organotypic features, which could be potentially used for drug testing and discovery, as well as disease modeling applications.
Collapse
Affiliation(s)
- Hamid Esmaeili
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Yining Zhang
- Center for Personalized Diagnostics (CPD), Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Kalpana Ravi
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Keagan Neff
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Wuqiang Zhu
- Department of Cardiovascular Medicine, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic, Scottsdale, AZ, 85259, USA
| | - Raymond Q Migrino
- Phoenix Veterans Affairs Health Care System, Phoenix, AZ, 85022, USA; University of Arizona College of Medicine, Phoenix, AZ, 85004, USA
| | - Jin G Park
- Center for Personalized Diagnostics (CPD), Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA; Biodesign Virginia G. Piper Center for Personalized Diagnosis, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
2
|
Mendes M, Morais AS, Carlos A, Sousa JJ, Pais AC, Mihăilă SM, Vitorino C. Organ-on-a-chip: Quo vademus? Applications and regulatory status. Colloids Surf B Biointerfaces 2025; 249:114507. [PMID: 39826309 DOI: 10.1016/j.colsurfb.2025.114507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/15/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Organ-on-a-chip systems, also referred to as microphysiological systems (MPS), represent an advance in bioengineering microsystems designed to mimic key aspects of human organ physiology and function. Drawing inspiration from the intricate and hierarchical architecture of the human body, these innovative platforms have emerged as invaluable in vitro tools with wide-ranging applications in drug discovery and development, as well as in enhancing our understanding of disease physiology. The facility to replicate human tissues within physiologically relevant three-dimensional multicellular environments empowers organ-on-a-chip systems with versatility throughout different stages of the drug development process. Moreover, these systems can be tailored to mimic specific disease states, facilitating the investigation of disease progression, drug responses, and potential therapeutic interventions. In particular, they can demonstrate, in early-phase pre-clinical studies, the safety and toxicity profiles of potential therapeutic compounds. Furthermore, they play a pivotal role in the in vitro evaluation of drug efficacy and the modeling of human diseases. One of the most promising prospects of organ-on-a-chip technology is to simulate the pathophysiology of specific subpopulations and even individual patients, thereby being used in personalized medicine. By mimicking the physiological responses of diverse patient groups, these systems hold the promise of revolutionizing therapeutic strategies, guiding them towards tailored intervention to the unique needs of each patient. This review presents the development status and evolution of microfluidic platforms that have facilitated the transition from cells to organs recreated on chips and some of the opportunities and applications offered by organ-on-a-chip technology. Additionally, the current potential and future perspectives of these microphysiological systems and the challenges this technology still faces are discussed.
Collapse
Affiliation(s)
- Maria Mendes
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3000-535, Portugal
| | - Ana Sofia Morais
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Ana Carlos
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - João José Sousa
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3000-535, Portugal
| | - Alberto Canelas Pais
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3000-535, Portugal
| | - Silvia M Mihăilă
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3000-535, Portugal.
| |
Collapse
|
3
|
Brunmaier LAE, Ozdemir T, Walker TW. Angiogenesis: Biological Mechanisms and In Vitro Models. Ann Biomed Eng 2025:10.1007/s10439-025-03721-2. [PMID: 40210793 DOI: 10.1007/s10439-025-03721-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/25/2025] [Indexed: 04/12/2025]
Abstract
The translation of biomedical devices and drug research is an expensive and long process with a low probability of receiving FDA approval. Developing physiologically relevant in vitro models with human cells offers a solution to not only improving the odds of FDA approval but also to expand our ability to study complex in vivo systems in a simpler fashion. Animal models remain the standard for pre-clinical testing; however, the data from animal models is an unreliable extrapolation when anticipating a human response in clinical trials, thus contributing to the low rates of translation. In this review, we focus on in vitro vascular or angiogenic models because of the incremental role that the vascular system plays in the translation of biomedical research. The first section of this review discusses the most common angiogenic cytokines that are used in vitro to initiate angiogenesis, followed by angiogenic inhibitors where both initiators and inhibitors work to maintain vascular homeostasis. Next, we evaluate previously published in vitro models, where we evaluate capturing the physical environment for biomimetic in vitro modeling. These topics provide a foundation of parameters that must be considered to improve and achieve vascular biomimicry. Finally, we summarize these topics to suggest a path forward with the goal of engineering human in vitro models that emulate the in vivo environment and provide a platform for biomedical device and drug screening that produces data to support clinical translation.
Collapse
Affiliation(s)
- Laura A E Brunmaier
- Nanoscience and Biomedical Engineering Department, South Dakota School of Mines & Technology, 501 E St. Joseph St., Rapid City, SD, 57701, USA
| | - Tugba Ozdemir
- Nanoscience and Biomedical Engineering Department, South Dakota School of Mines & Technology, 501 E St. Joseph St., Rapid City, SD, 57701, USA
| | - Travis W Walker
- Karen M. Swindler Department of Chemical and Biological Engineering, South Dakota School of Mines & Technology, 501 E St. Joseph St., Rapid City, SD, 57701, USA.
| |
Collapse
|
4
|
Garcia MI, Dame K, Charwat V, Siemons BA, Finsberg H, Bhardwaj B, Yokosawa R, Goswami I, Bruckner D, Wall ST, Ford KA, Healy KE, Ribeiro AJS. Human induced pluripotent stem cell-derived cardiomyocytes and their use in a cardiac organ-on-a-chip to assay electrophysiology, calcium and contractility. Nat Protoc 2025:10.1038/s41596-025-01166-4. [PMID: 40195549 DOI: 10.1038/s41596-025-01166-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 02/26/2025] [Indexed: 04/09/2025]
Abstract
Cardiac organs-on-a-chip (OoCs) or microphysiological systems have the potential to predict cardiac effects of new drug candidates, including unanticipated cardiac outcomes, which are among the main causes for drug attrition. This protocol describes how to prepare and use a cardiac OoC containing cardiomyocytes differentiated from human induced pluripotent stem cells (hiPS cells). The use of cells derived from hiPS cells as reliable sources of human cells from diverse genetic backgrounds also holds great potential, especially when cultured in OoCs that are physiologically relevant culture platforms. To promote the broad adoption of hiPS cell-derived cardiac OoCs in the drug development field, there is a need to first ensure reproducibility in their preparation and use. This protocol aims to provide key information on how to reduce sources of variability during hiPS cell maintenance, differentiation, loading and maturation in OoCs. Variability in these procedures can lead to inconsistent purity after differentiation and variable function between batches of microtissues formed in OoCs. This protocol also focuses on describing the handling and functional assessment of cardiac microtissues using live-cell microscopy approaches to quantify parameters of cellular electrophysiology, calcium transients and contractility. The protocol consists of five stages: (1) thaw and maintain hiPS cells, (2) differentiate hiPS cell cardiomyocytes, (3) load differentiated cells into OoCs, (4) maintain and characterize loaded cells, and (5) evaluate and utilize cardiac OoCs. Execution of the entire protocol takes ~40 days. The required skills to carry out the protocol are experience with sterile techniques, mammalian cell culture and maintaining hiPS cells in a pluripotent state.
Collapse
Affiliation(s)
- M Iveth Garcia
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA.
| | - Keri Dame
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Verena Charwat
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA, USA
| | - Brian A Siemons
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA, USA
| | - Henrik Finsberg
- Department of Computational Physiology, Simula Research Laboratory, Oslo, Norway
| | - Bhavya Bhardwaj
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Ryosuke Yokosawa
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Ishan Goswami
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA, USA
| | - Dylan Bruckner
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
- Booz Allen Hamilton, McLean, VA, USA
| | - Samuel T Wall
- Department of Computational Physiology, Simula Research Laboratory, Oslo, Norway
| | - Kevin A Ford
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Kevin E Healy
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA, USA
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, CA, USA
| | - Alexandre J S Ribeiro
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
5
|
Zhou X, Belavek KJ, Navarro MX, Martinez KN, Hinojosa A, Miller EW. Ratio-based indicators for cytosolic Ca 2+ with visible light excitation. Proc Natl Acad Sci U S A 2025; 122:e2410436122. [PMID: 39937863 PMCID: PMC11848355 DOI: 10.1073/pnas.2410436122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 12/16/2024] [Indexed: 02/14/2025] Open
Abstract
Calcium ions (Ca2+) play central roles in cellular physiology. Fluorescent indicators for Ca2+ ions revolutionized our ability to make rapid, accurate, and highly parallel measurement of Ca2+ concentrations in living cells. The use of ratio-based imaging with one particular indicator, fura-2, allowed practitioners to correct for a number of experimental confounds, including dye bleaching, variations in sample thickness, and fluctuations in illumination intensity. Ratio-based imaging with fura-2 was the most accurate and reliable method for measuring Ca2+ concentrations. Two drawbacks to fura-2 exist. First, it requires ultraviolet (UV) excitation, which is more toxic to living cells than visible light. Second, our ability to use fura-2 for accurate, stable, ratio-based determinations of Ca2+ concentration in living cells is fast becoming a method of the past. This is due, in part, because modern microscopes are phasing out the use of mercury arc lamps that provide the UV excitation needed for fura-2 imaging. To address this problem, we describe the design, synthesis, and cellular application of benzo[b]phosphole-based fluorescent Ca2+ indicators for ratio-based imaging of Ca2+ in living cells that can be used with modern light emitting diode (LED)-equipped fluorescence microscopes. We report isoCaRed-1Me, a Ca2+ indicator that enables ratio-based imaging in immortalized cell lines, primary mammalian hippocampal neurons, and human-induced pluripotent stem cell-derived cardiomyocytes. These data show that isoCaRed-1Me will be useful for ratio-based Ca2+ imaging using modern microscopes.
Collapse
Affiliation(s)
- Xinqi Zhou
- Department of Chemistry, University of California, Berkeley94720-1460
| | - Kayla J. Belavek
- Department of Chemistry, University of California, Berkeley94720-1460
| | | | - Kayli N. Martinez
- Department of Chemistry, University of California, Berkeley94720-1460
| | - Abigail Hinojosa
- Department of Chemistry, University of California, Berkeley94720-1460
| | - Evan W. Miller
- Department of Chemistry, University of California, Berkeley94720-1460
- Department of Molecular and Cell Biology, University of California, Berkeley94720-1460
- Helen Wills Neuroscience Institute, University of California, Berkeley94720-1460
| |
Collapse
|
6
|
Ohno M, Tani H, Tohyama S. Development and application of 3D cardiac tissues derived from human pluripotent stem cells. Drug Metab Pharmacokinet 2025; 60:101049. [PMID: 39847979 DOI: 10.1016/j.dmpk.2024.101049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/25/2024] [Accepted: 12/25/2024] [Indexed: 01/25/2025]
Abstract
Recently human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have become an attractive platform to evaluate drug responses for cardiotoxicity testing and disease modeling. Moreover, three-dimensional (3D) cardiac models, such as engineered heart tissues (EHTs) developed by bioengineering approaches, and cardiac spheroids (CSs) formed by spherical aggregation of hPSC-CMs, have been established as useful tools for drug discovery and transplantation. These 3D models overcome many of the shortcomings of conventional 2D hPSC-CMs, such as immaturity of the cells. Cardiac organoids (COs), like other organs, have also been studied to reproduce structures that resemble a heart in vivo more closely and optimize various culture conditions. Heart-on-a-chip (HoC) developed by a microfluidic chip-based technology that enables real-time monitoring of contraction and electrical activity, provides multifaceted information that is essential for capturing natural tissue development in vivo. Recently, 3D experimental systems have been developed to study organ interactions in vitro. This review aims to discuss the developments and advancements of hPSC-CMs and 3D cardiac tissues.
Collapse
Affiliation(s)
- Masatoshi Ohno
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center Tokyo, Fujita Health University, Tokyo, Japan; Department of Cardiovascular Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hidenori Tani
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center Tokyo, Fujita Health University, Tokyo, Japan; Department of Cardiology, Keio University School of Medicine, Tokyo, Japan; Department of Prevention Center, Keio University School of Medicine, Tokyo, Japan
| | - Shugo Tohyama
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center Tokyo, Fujita Health University, Tokyo, Japan; Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
7
|
Tirgar P, Vikstrom A, Sepúlveda JMR, Srivastava LK, Amini A, Tabata T, Higo S, Bub G, Ehrlicher A. Heart-on-a-Miniscope: A Miniaturized Solution for Electrophysiological Drug Screening in Cardiac Organoids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409571. [PMID: 39937454 PMCID: PMC11817906 DOI: 10.1002/smll.202409571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/04/2024] [Indexed: 02/13/2025]
Abstract
Cardiovascular toxicity remains a primary concern in drug development, accounting for a significant portion of post-market drug withdrawals due to adverse reactions such as arrhythmias. Traditional preclinical models, predominantly based on animal cells, often fail to replicate human cardiac physiology accurately, complicating the prediction of drug-induced effects. Although human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) provide a more genetically relevant system, their use in 2D, static cultures does not sufficiently mimic the dynamic, 3D environment of the human heart. 3D cardiac organoids made from human iPSC-CMs can potentially bridge this gap. However, most traditional electrophysiology assays, developed for single cells or 2D monolayers, are not readily adaptable to 3D organoids. This study uses optical calcium analysis of human organoids combined with miniaturized fluorescence microscopy (miniscope) and heart-on-a-chip technology. This simple, inexpensive, and efficient platform provides robust on-chip calcium imaging of human cardiac organoids. The versatility of the system is demonstrated through cardiotoxicity assay of drugs known to impact cardiac electrophysiology, including dofetilide, quinidine, and thapsigargin. The platform promises to advance drug testing by providing a more reliable and physiologically relevant assessment of cardiovascular toxicity, potentially reducing drug-related adverse effects in clinical settings.
Collapse
Affiliation(s)
- Pouria Tirgar
- Department of BioengineeringMcGill UniversityMontrealH3A 2B4Canada
- Center for Structural BiologyMcGill UniversityMontrealH3G 0B1Canada
| | - Abigail Vikstrom
- Department of BioengineeringMcGill UniversityMontrealH3A 2B4Canada
| | | | | | - Ali Amini
- Department of BioengineeringMcGill UniversityMontrealH3A 2B4Canada
- Department of Mechanical EngineeringMcGill UniversityMontrealH3A 0C3Canada
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Tomoka Tabata
- Department of Cardiovascular MedicineOsaka UniversityOsaka565‐0871Japan
| | - Shuichiro Higo
- Department of Cardiovascular MedicineOsaka UniversityOsaka565‐0871Japan
| | - Gil Bub
- Department of PhysiologyMcGill UniversityMontrealH3G 1Y6Canada
| | - Allen Ehrlicher
- Department of BioengineeringMcGill UniversityMontrealH3A 2B4Canada
- Center for Structural BiologyMcGill UniversityMontrealH3G 0B1Canada
- Department of Mechanical EngineeringMcGill UniversityMontrealH3A 0C3Canada
| |
Collapse
|
8
|
Schellberg BG, Koppes RA, Koppes AN. Recent Advances in Integrated Organ-Chip Sensing Toward Robust and User-Friendly Systems. J Biomed Mater Res A 2025; 113:e37876. [PMID: 39893559 DOI: 10.1002/jbm.a.37876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/17/2024] [Accepted: 01/07/2025] [Indexed: 02/04/2025]
Abstract
Organs-on-a-chip (OOC) are an emergent technology that bridge the gap between current in vitro and in vivo models used to inform drug discovery and investigate disease pathophysiology. These systems offer improved bio-relevance and controlled complexity through the integration of physical and/or chemical stimuli matched to physiologically relevant conditions. Although significant advancements have been made toward recreating organ-specific physiology on chip, the methods available to study structure and function of the cell microenvironment are still limited. Established analysis approaches, including fluorescence microscopy, rely on laborious offline workflows that yield limited time-point data. As the OOC field continues to evolve, there is a unique opportunity to engineer improved characterization methods into organ-chip devices. This review provides an overview of current integrated sensing approaches that address current limitations and enable real-time readout of relevant physiological parameters in OOC.
Collapse
Affiliation(s)
- Bryan G Schellberg
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Ryan A Koppes
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Abigail N Koppes
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Liu B, Wang S, Ma H, Deng Y, Du J, Zhao Y, Chen Y. Heart-on-a-chip: a revolutionary organ-on-chip platform for cardiovascular disease modeling. J Transl Med 2025; 23:132. [PMID: 39885522 PMCID: PMC11780825 DOI: 10.1186/s12967-024-05986-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/13/2024] [Indexed: 02/01/2025] Open
Abstract
Heart-on-a-chip (HoC) devices have emerged as a powerful tool for studying the human heart's intricate functions and dysfunctions in vitro. Traditional preclinical models, such as 2D cell cultures model and animal model, have limitations in accurately predicting human response to cardiovascular diseases and treatments. The HoC approach addresses these shortcomings by recapitulating the microscale anatomy, physiology, and biomechanics of the heart, thereby providing a more clinically relevant platform for drug testing, disease modeling, and personalized therapy. Recent years have seen significant strides in HoC technology, driven by advancements in biomaterials, bioelectronics, and tissue engineering. Here, we first review the construction and on-chip detection in HoC. Then we introduce the current proceedings of in vitro models for studying cardiovascular diseases (CVD) based on the HoC platform, including ischemia and myocardial infarction, cardiac fibrosis, cardiac scar, myocardial hypertrophy and other CVD models. Finally, we discuss the future directions of HoC and related emerging technologies.
Collapse
Affiliation(s)
- Beiqin Liu
- Aerospace Medical Center, Aerospace Center Hospital, Beijing, China
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Shuyue Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Hong Ma
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Yulin Deng
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Jichen Du
- Aerospace Medical Center, Aerospace Center Hospital, Beijing, China
- Aerospace School of Clinical Medicine, Peking University, Beijing, China
| | - Yimeng Zhao
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
| | - Yu Chen
- Aerospace Medical Center, Aerospace Center Hospital, Beijing, China.
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
10
|
Goswami I, Kim Y, Neiman G, Siemons B, Velazquez JI, Yazgan K, Ng T, Healy KE. Pillar arrays as tunable interfacial barriers for microphysiological systems. RESEARCH SQUARE 2025:rs.3.rs-5776581. [PMID: 39877100 PMCID: PMC11774470 DOI: 10.21203/rs.3.rs-5776581/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
We report on the design and fabrication of a novel circular pillar array as an interfacial barrier for microfluidic microphysiological systems (MPS). Traditional barrier interfaces, such as porous membranes and microchannel arrays, present limitations due to inconsistent pore size, complex fabrication and device assembly, and lack of tunability using a scalable design. Our pillar array overcomes these limitations by providing precise control over pore size, porosity, and hydraulic resistance through simple modifications of pillar dimensions. Serving as an interface between microfluidic compartments, it facilitates cell aggregation for tissue formation and acts as a tunable diffusion barrier that mimics diffusion in vivo. We demonstrate the utility of barrier design to engineer physiologically relevant cardiac microtissues and a heterotypic model with vasculature within the device. Its tunable properties offer significant potential for drug screening/testing and disease modeling, enabling comparisons of drug permeability and cell migration in MPS tissue with or without vasculature.
Collapse
Affiliation(s)
- Ishan Goswami
- Department of Bioengineering, University of California Berkeley
- Department of Materials Science and Engineering, University of California Berkeley
| | - Yongdeok Kim
- Department of Bioengineering, University of California Berkeley
- Department of Materials Science and Engineering, University of California Berkeley
| | - Gabriel Neiman
- Department of Bioengineering, University of California Berkeley
| | - Brian Siemons
- Department of Bioengineering, University of California Berkeley
| | | | - Kerem Yazgan
- Department of Bioengineering, University of California Berkeley
| | - Tammy Ng
- Department of Materials Science and Engineering, University of California Berkeley
| | - Kevin E Healy
- Department of Bioengineering, University of California Berkeley
- Department of Materials Science and Engineering, University of California Berkeley
| |
Collapse
|
11
|
Rahmani K, Yang Y, Foster EP, Tsai CT, Meganathan DP, Alvarez DD, Gupta A, Cui B, Santoro F, Bloodgood BL, Yu R, Forro C, Jahed Z. Intelligent in-cell electrophysiology: Reconstructing intracellular action potentials using a physics-informed deep learning model trained on nanoelectrode array recordings. Nat Commun 2025; 16:657. [PMID: 39809732 PMCID: PMC11733287 DOI: 10.1038/s41467-024-55571-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
Intracellular electrophysiology is essential in neuroscience, cardiology, and pharmacology for studying cells' electrical properties. Traditional methods like patch-clamp are precise but low-throughput and invasive. Nanoelectrode Arrays (NEAs) offer a promising alternative by enabling simultaneous intracellular and extracellular action potential (iAP and eAP) recordings with high throughput. However, accessing intracellular potentials with NEAs remains challenging. This study presents an AI-supported technique that leverages thousands of synchronous eAP and iAP pairs from stem-cell-derived cardiomyocytes on NEAs. Our analysis revealed strong correlations between specific eAP and iAP features, such as amplitude and spiking velocity, indicating that extracellular signals could be reliable indicators of intracellular activity. We developed a physics-informed deep learning model to reconstruct iAP waveforms from extracellular recordings recorded from NEAs and Microelectrode arrays (MEAs), demonstrating its potential for non-invasive, long-term, high-throughput drug cardiotoxicity assessments. This AI-based model paves the way for future electrophysiology research across various cell types and drug interactions.
Collapse
Affiliation(s)
- Keivan Rahmani
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, USA
| | - Yang Yang
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu-Tsai Neuroscience Institute and ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Ethan Paul Foster
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Ching-Ting Tsai
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu-Tsai Neuroscience Institute and ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Dhivya Pushpa Meganathan
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, USA
| | - Diego D Alvarez
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Aayush Gupta
- Department of Computer Science and Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu-Tsai Neuroscience Institute and ChEM-H Institute, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Francesca Santoro
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy
- Neuroelectronic Interfaces, Faculty of Electrical Engineering and IT, RWTH Aachen, Aachen, Germany
- Institute of Biological Information Processing-Bioelectronics, IBI-3, Forschungszentrum, Juelich, Germany
| | - Brenda L Bloodgood
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Rose Yu
- Department of Computer Science and Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Csaba Forro
- Department of Chemistry, Stanford University, Stanford, CA, USA.
- Wu-Tsai Neuroscience Institute and ChEM-H Institute, Stanford University, Stanford, CA, USA.
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy.
- Neuroelectronic Interfaces, Faculty of Electrical Engineering and IT, RWTH Aachen, Aachen, Germany.
- Institute of Biological Information Processing-Bioelectronics, IBI-3, Forschungszentrum, Juelich, Germany.
- Chan Zuckerberg Biohub Chicago, Chicago, IL, USA.
| | - Zeinab Jahed
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, USA.
- Shu Chien-Gene Lay Department of Bioengineering, Jacobs School of Engineering, University of California, San Diego, CA, USA.
| |
Collapse
|
12
|
Goswami I, Kim Y, Neiman G, Siemons B, Velazquez JI, Yazgan K, Ng T, Healy KE. Pillar arrays as tunable interfacial barriers for microphysiological systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.08.632020. [PMID: 39868155 PMCID: PMC11760782 DOI: 10.1101/2025.01.08.632020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
We report on the design and fabrication of a novel circular pillar array as an interfacial barrier for microfluidic microphysiological systems ( MPS ). Traditional barrier interfaces, such as porous membranes and microchannel arrays, present limitations due to inconsistent pore size, complex fabrication and device assembly, and lack of tunability using a scalable design. Our pillar array overcomes these limitations by providing precise control over pore size, porosity, and hydraulic resistance through simple modifications of pillar dimensions. Serving as an interface between microfluidic compartments, it facilitates cell aggregation for tissue formation and acts as a tunable diffusion barrier that mimics diffusion in vivo. We demonstrate the utility of barrier design to engineer physiologically relevant cardiac microtissues and a heterotypic model with vasculature within the device. Its tunable properties offer significant potential for drug screening/testing and disease modeling, enabling comparisons of drug permeability and cell migration in MPS tissue with or without vasculature.
Collapse
|
13
|
Karami M, Keshvari H, Hajari MA, Shiri M, Movahedi F, Rezaeiani S, Pahlavan S, Montazeri L. Functional and Structural Improvement of Engineered Cardiac Microtissue Using Aligned Microfilaments Scaffold. ACS Biomater Sci Eng 2025; 11:531-542. [PMID: 39725564 DOI: 10.1021/acsbiomaterials.4c01714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
To enhance therapeutic strategies for cardiovascular diseases, the development of more reliable in vitro preclinical systems is imperative. These models, crucial for disease modeling and drug testing, must accurately replicate the 3D architecture of native heart tissue. In this study, we engineered a scaffold with aligned poly(lactic-co-glycolic acid) (PLGA) microfilaments to induce cellular alignment in the engineered cardiac microtissue (ECMT). Consequently, the coculture of three cell types, including cardiac progenitor cells (CPC), human umbilical cord endothelial cells (HUVEC), and human foreskin fibroblasts (HFF), within this 3D scaffold significantly improved cellular alignment compared to the control. Additionally, cells in the ECMT exhibited a more uniaxial anisotropic and oriented cytoskeleton, characterized by immunostaining of F-actin. This approach not only enhanced cell structure and microtissue architecture but also improved functionality, evident in synchronized electrophysiological signals. Therefore, our engineered cardiac microtissue using this aligned microfilament scaffold (AMFS) holds great potential for pharmaceutical research and other biomedical applications.
Collapse
Affiliation(s)
- Mohammad Karami
- Biomaterials Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran 159163-4311, Iran
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Hamid Keshvari
- Biomaterials Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran 159163-4311, Iran
| | - Mohammad Amin Hajari
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Mahshad Shiri
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Fatemeh Movahedi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Siamak Rezaeiani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Leila Montazeri
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| |
Collapse
|
14
|
Wang W, Su W, Han J, Song W, Li X, Xu C, Sun Y, Wang L. Microfluidic platforms for monitoring cardiomyocyte electromechanical activity. MICROSYSTEMS & NANOENGINEERING 2025; 11:4. [PMID: 39788940 PMCID: PMC11718118 DOI: 10.1038/s41378-024-00751-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/04/2024] [Accepted: 06/26/2024] [Indexed: 01/12/2025]
Abstract
Cardiovascular diseases account for ~40% of global deaths annually. This situation has revealed the urgent need for the investigation and development of corresponding drugs for pathogenesis due to the complexity of research methods and detection techniques. An in vitro cardiomyocyte model is commonly used for cardiac drug screening and disease modeling since it can respond to microphysiological environmental variations through mechanoelectric feedback. Microfluidic platforms are capable of accurate fluid control and integration with analysis and detection techniques. Therefore, various microfluidic platforms (i.e., heart-on-a-chip) have been applied for the reconstruction of the physiological environment and detection of signals from cardiomyocytes. They have demonstrated advantages in mimicking the cardiovascular structure and function in vitro and in monitoring electromechanical signals. This review presents a summary of the methods and technologies used to monitor the contractility and electrophysiological signals of cardiomyocytes within microfluidic platforms. Then, applications in common cardiac drug screening and cardiovascular disease modeling are presented, followed by design strategies for enhancing physiology studies. Finally, we discuss prospects in the tissue engineering and sensing techniques of microfluidic platforms.
Collapse
Affiliation(s)
- Wei Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), 250353, Jinan, China
- Shandong Institute of Mechanical Design and Research, 250353, Jinan, China
| | - Weiguang Su
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), 250353, Jinan, China
- Shandong Institute of Mechanical Design and Research, 250353, Jinan, China
| | - Junlei Han
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), 250353, Jinan, China
- Shandong Institute of Mechanical Design and Research, 250353, Jinan, China
| | - Wei Song
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, China
| | - Xinyu Li
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, China
| | - Chonghai Xu
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), 250353, Jinan, China
- Shandong Institute of Mechanical Design and Research, 250353, Jinan, China
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S3G8, Canada.
| | - Li Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), 250353, Jinan, China.
- Shandong Institute of Mechanical Design and Research, 250353, Jinan, China.
| |
Collapse
|
15
|
Yin J, Lees JG, Gong S, Nguyen JT, Phang RJ, Shi Q, Huang Y, Kong AM, Dyson JM, Lim SY, Cheng W. Real-time electro-mechanical profiling of dynamically beating human cardiac organoids by coupling resistive skins with microelectrode arrays. Biosens Bioelectron 2025; 267:116752. [PMID: 39276439 DOI: 10.1016/j.bios.2024.116752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024]
Abstract
Cardiac organoids differentiated from induced pluripotent stem cells are emerging as a promising platform for pre-clinical drug screening, assessing cardiotoxicity, and disease modelling. However, it is challenging to simultaneously measure mechanical contractile forces and electrophysiological signals of cardiac organoids in real-time and in-situ with the existing methods. Here, we present a biting-inspired sensory system based on a resistive skin sensor and a microelectrode array. The bite-like contact can be established with a micromanipulator to precisely position the resistive skin sensor on the top of the cardiac organoid while the 3D microneedle electrode array probes from underneath. Such reliable contact is key to achieving simultaneous electro-mechanical measurements. We demonstrate the use of our system for modelling cardiotoxicity with the anti-cancer drug doxorubicin. The electro-mechanical parameters described here elucidate the acute cardiotoxic effects induced by doxorubicin. This integrated electro-mechanical system enables a suite of new diagnostic options for assessing cardiac organoids and tissues.
Collapse
Affiliation(s)
- Jialiang Yin
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Jarmon G Lees
- Department of Medicine and Surgery, University of Melbourne, VIC, Australia; O'Brien Institute Department, St. Vincent's Institute of Medical Research, VIC, Australia
| | - Shu Gong
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - John Tan Nguyen
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Ren Jie Phang
- O'Brien Institute Department, St. Vincent's Institute of Medical Research, VIC, Australia
| | - Qianqian Shi
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Yifeng Huang
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Anne M Kong
- O'Brien Institute Department, St. Vincent's Institute of Medical Research, VIC, Australia
| | - Jennifer M Dyson
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Clayton, Victoria, 3800, Australia; Faculty of Engineering, Monash Institute of Medical Engineering (MIME), Monash University, Clayton, Victoria, 3800, Australia
| | - Shiang Y Lim
- Department of Medicine and Surgery, University of Melbourne, VIC, Australia; O'Brien Institute Department, St. Vincent's Institute of Medical Research, VIC, Australia; Drug Discovery Biology, Faculty of Pharmacy and Pharmaceutical Sciences, Victoria, Monash University, Australia; National Heart Research Institute Singapore, National Heart Centre, Singapore
| | - Wenlong Cheng
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia; The Melbourne Centre for Nanofabrication, Clayton, Victoria, 3800, Australia.
| |
Collapse
|
16
|
Moro LG, Guarnier LP, Azevedo MF, Fracasso JAR, Lucio MA, de Castro MV, Dias ML, Lívero FADR, Ribeiro-Paes JT. A Brief History of Cell Culture: From Harrison to Organs-on-a-Chip. Cells 2024; 13:2068. [PMID: 39768159 PMCID: PMC11674496 DOI: 10.3390/cells13242068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/11/2024] [Accepted: 10/20/2024] [Indexed: 01/11/2025] Open
Abstract
This comprehensive overview of the historical milestones in cell culture underscores key breakthroughs that have shaped the field over time. It begins with Wilhelm Roux's seminal experiments in the 1880s, followed by the pioneering efforts of Ross Granville Harrison, who initiated groundbreaking experiments that fundamentally shaped the landscape of cell culture in the early 20th century. Carrel's influential contributions, notably the immortalization of chicken heart cells, have marked a significant advancement in cell culture techniques. Subsequently, Johannes Holtfreter, Aron Moscona, and Joseph Leighton introduced methodological innovations in three-dimensional (3D) cell culture, initiated by Alexis Carrel, laying the groundwork for future consolidation and expansion of the use of 3D cell culture in different areas of biomedical sciences. The advent of induced pluripotent stem cells by Takahashi and Yamanaka in 2006 was revolutionary, enabling the reprogramming of differentiated cells into a pluripotent state. Since then, recent innovations have included spheroids, organoids, and organ-on-a-chip technologies, aiming to mimic the structure and function of tissues and organs in vitro, pushing the boundaries of biological modeling and disease understanding. In this review, we overview the history of cell culture shedding light on the main discoveries, pitfalls and hurdles that were overcome during the transition from 2D to 3D cell culture techniques. Finally, we discussed the future directions for cell culture research that may accelerate the development of more effective and personalized treatments.
Collapse
Affiliation(s)
- Lincoln Gozzi Moro
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo—USP, São Paulo 01246-904, Brazil; (L.G.M.); (M.V.d.C.)
| | - Lucas Pires Guarnier
- Department of Genetic, Ribeirão Preto Medical School, University of São Paulo—USP, Ribeirão Preto 14040-904, Brazil;
| | | | | | - Marco Aurélio Lucio
- Graduate Program in Environment and Regional Development, University of Western São Paulo, Presidente Prudente 19050-920, Brazil;
| | - Mateus Vidigal de Castro
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo—USP, São Paulo 01246-904, Brazil; (L.G.M.); (M.V.d.C.)
| | - Marlon Lemos Dias
- Precision Medicine Research Center, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro—UFRJ, Rio de Janeiro 21941-630, Brazil;
| | | | - João Tadeu Ribeiro-Paes
- Department of Genetic, Ribeirão Preto Medical School, University of São Paulo—USP, Ribeirão Preto 14040-904, Brazil;
- Laboratory of Genetics and Cell Therapy (GenTe Cel), Department of Biotechnology, São Paulo State University—UNESP, Assis 19806-900, Brazil
| |
Collapse
|
17
|
Cordeiro S, Oliveira BB, Valente R, Ferreira D, Luz A, Baptista PV, Fernandes AR. Breaking the mold: 3D cell cultures reshaping the future of cancer research. Front Cell Dev Biol 2024; 12:1507388. [PMID: 39659521 PMCID: PMC11628512 DOI: 10.3389/fcell.2024.1507388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
Despite extensive efforts to unravel tumor behavior and develop anticancer therapies, most treatments fail when advanced to clinical trials. The main challenge in cancer research has been the absence of predictive cancer models, accurately mimicking the tumoral processes and response to treatments. The tumor microenvironment (TME) shows several human-specific physical and chemical properties, which cannot be fully recapitulated by the conventional 2D cell cultures or the in vivo animal models. These limitations have driven the development of novel in vitro cancer models, that get one step closer to the typical features of in vivo systems while showing better species relevance. This review introduces the main considerations required for developing and exploiting tumor spheroids and organoids as cancer models. We also detailed their applications in drug screening and personalized medicine. Further, we show the transition of these models into novel microfluidic platforms, for improved control over physiological parameters and high-throughput screening. 3D culture models have provided key insights into tumor biology, more closely resembling the in vivo TME and tumor characteristics, while enabling the development of more reliable and precise anticancer therapies.
Collapse
Affiliation(s)
- Sandra Cordeiro
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Beatriz B. Oliveira
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Ruben Valente
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Daniela Ferreira
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - André Luz
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Pedro V. Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Alexandra R. Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
18
|
Li J, Hou H, Li Q, Liu J, Zhao Y, Zhao C, Li Z, Wang L, Qiu X. Cardiac organ chip: advances in construction and application. BIOMATERIALS TRANSLATIONAL 2024; 5:411-424. [PMID: 39872929 PMCID: PMC11764191 DOI: 10.12336/biomatertransl.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 01/30/2025]
Abstract
Cardiovascular diseases are a leading cause of death worldwide, and effective treatment for cardiac disease has been a research focal point. Although the development of new drugs and strategies has never ceased, the existing drug development process relies primarily on rodent models such as mice, which have significant shortcomings in predicting human responses. Therefore, human-based in vitro cardiac tissue models are considered to simulate physiological and functional characteristics more effectively, advancing disease treatment and drug development. The microfluidic device simulates the physiological functions and pathological states of the human heart by culture, thereby reducing the need for animal experimentation and enhancing the efficiency and accuracy of the research. The basic framework of cardiac chips typically includes multiple functional units, effectively simulating different parts of the heart and allowing the observation of cardiac cell growth and responses under various drug treatments and disease conditions. To date, cardiac chips have demonstrated significant application value in drug development, toxicology testing, and the construction of cardiac disease models; they not only accelerate drug screening but also provide a new research platform for understanding cardiac diseases. In the future, with advancements in functionality, integration, and personalised medicine, cardiac chips will further simulate multiorgan systems, becoming vital tools for disease modelling and precision medicine. Here, we emphasised the development history of cardiac organ chips, highlighted the material selection and construction strategy of cardiac organ chip electrodes and hydrogels, introduced the current application scenarios of cardiac organ chips, and discussed the development opportunities and prospects for their of biomedical applications.
Collapse
Affiliation(s)
- Jun Li
- Department of Anatomy, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Honghao Hou
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Qian Li
- Department of Anatomy, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Junjie Liu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yunlong Zhao
- Dyson School of Design Engineering, Imperial College London, London, UK
- National Physical Laboratory, Teddington, UK
| | - Chaoran Zhao
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhentao Li
- Department of Anatomy, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Leyu Wang
- Department of Anatomy, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xiaozhong Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
19
|
Li J, Han S, Yu F, Li T, Liao B, Liu F. Mapping the landscape of PSC-CM research through bibliometric analysis. Front Cardiovasc Med 2024; 11:1435874. [PMID: 39450232 PMCID: PMC11499114 DOI: 10.3389/fcvm.2024.1435874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Objectives The discovery of pluripotent stem cell-derived cardiomyocytes (PSC-CMs) has not only deepened our understanding of the pathogenesis and progression of heart disease, but also advanced the development of engineered cardiac tissues, cardiac regenerative therapy, drug discovery and the cardiotoxicity assessment of drugs. This study aims to visualize the developmental trajectory of PSC-CM research over the past 18 years to identify the emerging research frontiers and challenges. Methods The literature on PSC-CMs from 2007 to 2024 was retrieved from the Web of Science and PubMed databases. Bibliometrix, VOSviewer and CiteSpace software were used for statistical analysis and visualization of scientific literature. Previous clinical trials were summarized using data from the ClinicalTrials.gov database. Results A total of 29,660 authors from 81 countries and regions published 6,406 papers on PSC-CMs over the past 18 years. The annual output of PSC-CM research experienced a general upward trend from 2007 to 2021, reaching its peak in 2021, followed by a notable decline in 2022 and 2023. The United States has emerged as the most influential nation in this field, with Stanford University being the most prolific institution and Joseph C. Wu standing out as the most productive and highly cited scholar. Circulation Research, Circulation, and Nature have been identified as the most co-cited journals. Organ-on-a-chip, 3D bio-printing, cardiac microtissue, extracellular vesicle, inflammation, energy metabolism, atrial fibrillation, personalized medicine etc., with a longer burst period, and maturation of PSC-CMs, with the highest burst strength of 27.19, are the major research focuses for rigorous investigation in recent years. Cardiac organoid is emerging as a promising key research frontier. While the clinical trials of stem-cell-mediated treatment for heart diseases shows promise, significant challenges remain. Further research is imperative to optimize protocols, enhance cell delivery methods, and establish standardized practices to improve clinical outcomes. Conclusions In conclusion, several major research hotspots, including engineered cardiac tissue and maturation, exosome-based regenerative therapy, inflammation response, energy metabolism, atrial fibrillation, and personalized medicine etc. will continue to attract substantial interest from investigators worldwide. Cardiac organoids to in vitro recapitulate the intricate human heart is emerging as a promising key research frontier. Significant challenges persist in the clinical trials of stem-cell-mediated therapies for heart diseases.
Collapse
Affiliation(s)
- Jun Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Shangting Han
- Department of Organ Transplantation, Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fengxu Yu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tao Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Bin Liao
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Feng Liu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Cardiovascular Remodeling and Dysfunction Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| |
Collapse
|
20
|
Finsberg H, Charwat V, Healy KE, Wall ST. Automatic motion estimation with applications to hiPSC-CMs. Biomed Phys Eng Express 2024; 10:065004. [PMID: 39173648 DOI: 10.1088/2057-1976/ad7268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/22/2024] [Indexed: 08/24/2024]
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are an effective tool for studying cardiac function and disease, and hold promise for screening drug effects on human tissue. Understanding alterations in motion patterns within these cells is crucial for comprehending how the administration of a drug or the onset of a disease can impact the rhythm of the human heart. However, quantifying motion accurately and efficiently from optical measurements using microscopy is currently time consuming. In this work, we present a unified framework for performing motion analysis on a sequence of microscopically obtained images of tissues consisting of hiPSC-CMs. We provide validation of our developed software using a synthetic test case and show how it can be used to extract displacements and velocities in hiPSC-CM microtissues. Finally, we show how to apply the framework to quantify the effect of an inotropic compound. The described software system is distributed as a python package that is easy to install, well tested and can be integrated into any python workflow.
Collapse
Affiliation(s)
| | | | - Kevin E Healy
- Department of Material Science and Engineering, University of California, Berkeley, CA, United States of America
- Department of Bioengineering, University of California, Berkeley, CA, United States of America
| | - Samuel T Wall
- Simula Research Laboratory, Norway
- Organos, Inc, Berkeley, CA, United States of America
| |
Collapse
|
21
|
Elias-Llumbet A, Sharmin R, Berg-Sorensen K, Schirhagl R, Mzyk A. The Interplay between Mechanoregulation and ROS in Heart Physiology, Disease, and Regeneration. Adv Healthc Mater 2024; 13:e2400952. [PMID: 38962858 DOI: 10.1002/adhm.202400952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/16/2024] [Indexed: 07/05/2024]
Abstract
Cardiovascular diseases are currently the most common cause of death in developed countries. Due to lifestyle and environmental factors, this problem is only expected to increase in the future. Reactive oxygen species (ROS) are a key player in the onset of cardiovascular diseases but also have important functions in healthy cardiac tissue. Here, the interplay between ROS generation and cardiac mechanical forces is shown, and the state of the art and a perspective on future directions are discussed. To this end, an overview of what is currently known regarding ROS and mechanosignaling at a subcellular level is first given. There the role of ROS in mechanosignaling as well as the interplay between both factors in specific organelles is emphasized. The consequences at a larger scale across the population of heart cells are then discussed. Subsequently, the roles of ROS in embryogenesis, pathogenesis, and aging are further discussed, exemplifying some aspects of mechanoregulation. Finally, different models that are currently in use are discussed to study the topics above.
Collapse
Affiliation(s)
- Arturo Elias-Llumbet
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713AW, The Netherlands
- Laboratory of Genomic of Germ Cells, Biomedical Sciences Institute, Faculty of Medicine, University of Chile, Independencia, Santiago, 1027, Chile
| | - Rokshana Sharmin
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713AW, The Netherlands
| | | | - Romana Schirhagl
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713AW, The Netherlands
| | - Aldona Mzyk
- DTU Health Tech, Ørsteds Plads Bldg 345C, Kongens Lyngby, 2800, Denmark
| |
Collapse
|
22
|
Kistamás K, Lamberto F, Vaiciuleviciute R, Leal F, Muenthaisong S, Marte L, Subías-Beltrán P, Alaburda A, Arvanitis DN, Zana M, Costa PF, Bernotiene E, Bergaud C, Dinnyés A. The Current State of Realistic Heart Models for Disease Modelling and Cardiotoxicity. Int J Mol Sci 2024; 25:9186. [PMID: 39273136 PMCID: PMC11394806 DOI: 10.3390/ijms25179186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
One of the many unresolved obstacles in the field of cardiovascular research is an uncompromising in vitro cardiac model. While primary cell sources from animal models offer both advantages and disadvantages, efforts over the past half-century have aimed to reduce their use. Additionally, obtaining a sufficient quantity of human primary cardiomyocytes faces ethical and legal challenges. As the practically unlimited source of human cardiomyocytes from induced pluripotent stem cells (hiPSC-CM) is now mostly resolved, there are great efforts to improve their quality and applicability by overcoming their intrinsic limitations. The greatest bottleneck in the field is the in vitro ageing of hiPSC-CMs to reach a maturity status that closely resembles that of the adult heart, thereby allowing for more appropriate drug developmental procedures as there is a clear correlation between ageing and developing cardiovascular diseases. Here, we review the current state-of-the-art techniques in the most realistic heart models used in disease modelling and toxicity evaluations from hiPSC-CM maturation through heart-on-a-chip platforms and in silico models to the in vitro models of certain cardiovascular diseases.
Collapse
Affiliation(s)
- Kornél Kistamás
- BioTalentum Ltd., Aulich Lajos Str 26, H-2100 Gödöllő, Hungary
| | - Federica Lamberto
- BioTalentum Ltd., Aulich Lajos Str 26, H-2100 Gödöllő, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Páter Károly Str 1, H-2100 Gödöllő, Hungary
| | - Raminta Vaiciuleviciute
- Department of Regenerative Medicine, State Research Institute Innovative Medicine Centre, Santariskiu g. 5, LT-08406 Vilnius, Lithuania
| | - Filipa Leal
- Biofabics Lda, Rua Alfredo Allen 455, 4200-135 Porto, Portugal
| | | | - Luis Marte
- Digital Health Unit, Eurecat-Centre Tecnològic de Catalunya, 08005 Barcelona, Spain
| | - Paula Subías-Beltrán
- Digital Health Unit, Eurecat-Centre Tecnològic de Catalunya, 08005 Barcelona, Spain
| | - Aidas Alaburda
- Department of Regenerative Medicine, State Research Institute Innovative Medicine Centre, Santariskiu g. 5, LT-08406 Vilnius, Lithuania
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Dina N Arvanitis
- Laboratory for Analysis and Architecture of Systems-French National Centre for Scientific Research (LAAS-CNRS), 7 Avenue du Colonel Roche, F-31400 Toulouse, France
| | - Melinda Zana
- BioTalentum Ltd., Aulich Lajos Str 26, H-2100 Gödöllő, Hungary
| | - Pedro F Costa
- Biofabics Lda, Rua Alfredo Allen 455, 4200-135 Porto, Portugal
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Innovative Medicine Centre, Santariskiu g. 5, LT-08406 Vilnius, Lithuania
- Faculty of Fundamental Sciences, Vilnius Tech, Sauletekio al. 11, LT-10223 Vilnius, Lithuania
| | - Christian Bergaud
- Laboratory for Analysis and Architecture of Systems-French National Centre for Scientific Research (LAAS-CNRS), 7 Avenue du Colonel Roche, F-31400 Toulouse, France
| | - András Dinnyés
- BioTalentum Ltd., Aulich Lajos Str 26, H-2100 Gödöllő, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Páter Károly Str 1, H-2100 Gödöllő, Hungary
| |
Collapse
|
23
|
Florido MHC, Ziats NP. Endothelial dysfunction and cardiovascular diseases: The role of human induced pluripotent stem cells and tissue engineering. J Biomed Mater Res A 2024; 112:1286-1304. [PMID: 38230548 DOI: 10.1002/jbm.a.37669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/07/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024]
Abstract
Cardiovascular disease (CVD) remains to be the leading cause of death globally today and therefore the need for the development of novel therapies has become increasingly important in the cardiovascular field. The mechanism(s) behind the pathophysiology of CVD have been laboriously investigated in both stem cell and bioengineering laboratories. Scientific breakthroughs have paved the way to better mimic cell types of interest in recent years, with the ability to generate any cell type from reprogrammed human pluripotent stem cells. Mimicking the native extracellular matrix using both organic and inorganic biomaterials has allowed full organs to be recapitulated in vitro. In this paper, we will review techniques from both stem cell biology and bioengineering which have been fruitfully combined and have fueled advances in the cardiovascular disease field. We will provide a brief introduction to CVD, reviewing some of the recent studies as related to the role of endothelial cells and endothelial cell dysfunction. Recent advances and the techniques widely used in both bioengineering and stem cell biology will be discussed, providing a broad overview of the collaboration between these two fields and their overall impact on tissue engineering in the cardiovascular devices and implications for treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Mary H C Florido
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Nicholas P Ziats
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- Departments of Biomedical Engineering and Anatomy, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
24
|
Clancy CE, Santana LF. Advances in induced pluripotent stem cell-derived cardiac myocytes: technological breakthroughs, key discoveries and new applications. J Physiol 2024; 602:3871-3892. [PMID: 39032073 PMCID: PMC11326976 DOI: 10.1113/jp282562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/02/2024] [Indexed: 07/22/2024] Open
Abstract
A transformation is underway in precision and patient-specific medicine. Rapid progress has been enabled by multiple new technologies including induced pluripotent stem cell-derived cardiac myocytes (iPSC-CMs). Here, we delve into these advancements and their future promise, focusing on the efficiency of reprogramming techniques, the fidelity of differentiation into the cardiac lineage, the functional characterization of the resulting cardiac myocytes, and the many applications of in silico models to understand general and patient-specific mechanisms controlling excitation-contraction coupling in health and disease. Furthermore, we explore the current and potential applications of iPSC-CMs in both research and clinical settings, underscoring the far-reaching implications of this rapidly evolving field.
Collapse
Affiliation(s)
- Colleen E Clancy
- Department of Physiology & Membrane Biology, School of Medicine, University of California Davis, Davis, CA, USA
- Center for Precision Medicine and Data Sciences, University of California Davis, School of Medicine, Sacramento, CA, USA
| | - L Fernando Santana
- Department of Physiology & Membrane Biology, School of Medicine, University of California Davis, Davis, CA, USA
- Center for Precision Medicine and Data Sciences, University of California Davis, School of Medicine, Sacramento, CA, USA
| |
Collapse
|
25
|
Nahon DM, Moerkens R, Aydogmus H, Lendemeijer B, Martínez-Silgado A, Stein JM, Dostanić M, Frimat JP, Gontan C, de Graaf MNS, Hu M, Kasi DG, Koch LS, Le KTT, Lim S, Middelkamp HHT, Mooiweer J, Motreuil-Ragot P, Niggl E, Pleguezuelos-Manzano C, Puschhof J, Revyn N, Rivera-Arbelaez JM, Slager J, Windt LM, Zakharova M, van Meer BJ, Orlova VV, de Vrij FMS, Withoff S, Mastrangeli M, van der Meer AD, Mummery CL. Standardizing designed and emergent quantitative features in microphysiological systems. Nat Biomed Eng 2024; 8:941-962. [PMID: 39187664 DOI: 10.1038/s41551-024-01236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 04/06/2024] [Indexed: 08/28/2024]
Abstract
Microphysiological systems (MPSs) are cellular models that replicate aspects of organ and tissue functions in vitro. In contrast with conventional cell cultures, MPSs often provide physiological mechanical cues to cells, include fluid flow and can be interlinked (hence, they are often referred to as microfluidic tissue chips or organs-on-chips). Here, by means of examples of MPSs of the vascular system, intestine, brain and heart, we advocate for the development of standards that allow for comparisons of quantitative physiological features in MPSs and humans. Such standards should ensure that the in vivo relevance and predictive value of MPSs can be properly assessed as fit-for-purpose in specific applications, such as the assessment of drug toxicity, the identification of therapeutics or the understanding of human physiology or disease. Specifically, we distinguish designed features, which can be controlled via the design of the MPS, from emergent features, which describe cellular function, and propose methods for improving MPSs with readouts and sensors for the quantitative monitoring of complex physiology towards enabling wider end-user adoption and regulatory acceptance.
Collapse
Affiliation(s)
- Dennis M Nahon
- Leiden University Medical Center, Leiden, the Netherlands
| | - Renée Moerkens
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | - Bas Lendemeijer
- Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Adriana Martínez-Silgado
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, the Netherlands
| | - Jeroen M Stein
- Leiden University Medical Center, Leiden, the Netherlands
| | | | | | - Cristina Gontan
- Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Michel Hu
- Leiden University Medical Center, Leiden, the Netherlands
| | - Dhanesh G Kasi
- Leiden University Medical Center, Leiden, the Netherlands
| | - Lena S Koch
- University of Twente, Enschede, the Netherlands
| | - Kieu T T Le
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sangho Lim
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, the Netherlands
| | | | - Joram Mooiweer
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | - Eva Niggl
- Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Jens Puschhof
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, the Netherlands
| | - Nele Revyn
- Delft University of Technology, Delft, the Netherlands
| | | | - Jelle Slager
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Laura M Windt
- Leiden University Medical Center, Leiden, the Netherlands
| | | | | | | | | | - Sebo Withoff
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | | | | |
Collapse
|
26
|
Huang Y, Liu T, Huang Q, Wang Y. From Organ-on-a-Chip to Human-on-a-Chip: A Review of Research Progress and Latest Applications. ACS Sens 2024; 9:3466-3488. [PMID: 38991227 DOI: 10.1021/acssensors.4c00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Organ-on-a-Chip (OOC) technology, which emulates the physiological environment and functionality of human organs on a microfluidic chip, is undergoing significant technological advancements. Despite its rapid evolution, this technology is also facing notable challenges, such as the lack of vascularization, the development of multiorgan-on-a-chip systems, and the replication of the human body on a single chip. The progress of microfluidic technology has played a crucial role in steering OOC toward mimicking the human microenvironment, including vascularization, microenvironment replication, and the development of multiorgan microphysiological systems. Additionally, advancements in detection, analysis, and organoid imaging technologies have enhanced the functionality and efficiency of Organs-on-Chips (OOCs). In particular, the integration of artificial intelligence has revolutionized organoid imaging, significantly enhancing high-throughput drug screening. Consequently, this review covers the research progress of OOC toward Human-on-a-chip, the integration of sensors in OOCs, and the latest applications of organoid imaging technologies in the biomedical field.
Collapse
Affiliation(s)
- Yisha Huang
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan 610212, China
| | - Tong Liu
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qi Huang
- School of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Yuxi Wang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
27
|
Shin YC, Than N, Park SJ, Kim HJ. Bioengineered human gut-on-a-chip for advancing non-clinical pharmaco-toxicology. Expert Opin Drug Metab Toxicol 2024; 20:593-606. [PMID: 38849312 DOI: 10.1080/17425255.2024.2365254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
INTRODUCTION There is a growing need for alternative models to advance current non-clinical experimental models because they often fail to accurately predict drug responses in human clinical trials. Human organ-on-a-chip models have emerged as promising approaches for advancing the predictability of drug behaviors and responses. AREAS COVERED We summarize up-to-date human gut-on-a-chip models designed to demonstrate intricate interactions involving the host, microbiome, and pharmaceutical compounds since these models have been reported a decade ago. This overview covers recent advances in gut-on-a-chip models as a bridge technology between non-clinical and clinical assessments of drug toxicity and metabolism. We highlight the promising potential of gut-on-a-chip platforms, offering a reliable and valid framework for investigating reciprocal crosstalk between the host, gut microbiome, and drug compounds. EXPERT OPINION Gut-on-a-chip platforms can attract multiple end users as predictive, human-relevant, and non-clinical model. Notably, gut-on-a-chip platforms provide a unique opportunity to recreate a human intestinal microenvironment, including dynamic bowel movement, luminal flow, oxygen gradient, host-microbiome interactions, and disease-specific manipulations restricted in animal and in vitro cell culture models. Additionally, given the profound impact of the gut microbiome on pharmacological bioprocess, it is critical to leverage breakthroughs of gut-on-a-chip technology to address knowledge gaps and drive innovations in predictive drug toxicology and metabolism.
Collapse
Affiliation(s)
- Yong Cheol Shin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nam Than
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Soo Jin Park
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Hyun Jung Kim
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Inflammation and Immunity, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
28
|
Li X, Wang M, Davis TP, Zhang L, Qiao R. Advancing Tissue Culture with Light-Driven 3D-Printed Microfluidic Devices. BIOSENSORS 2024; 14:301. [PMID: 38920605 PMCID: PMC11201418 DOI: 10.3390/bios14060301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024]
Abstract
Three-dimensional (3D) printing presents a compelling alternative for fabricating microfluidic devices, circumventing certain limitations associated with traditional soft lithography methods. Microfluidics play a crucial role in the biomedical sciences, particularly in the creation of tissue spheroids and pharmaceutical research. Among the various 3D printing techniques, light-driven methods such as stereolithography (SLA), digital light processing (DLP), and photopolymer inkjet printing have gained prominence in microfluidics due to their rapid prototyping capabilities, high-resolution printing, and low processing temperatures. This review offers a comprehensive overview of light-driven 3D printing techniques used in the fabrication of advanced microfluidic devices. It explores biomedical applications for 3D-printed microfluidics and provides insights into their potential impact and functionality within the biomedical field. We further summarize three light-driven 3D printing strategies for producing biomedical microfluidic systems: direct construction of microfluidic devices for cell culture, PDMS-based microfluidic devices for tissue engineering, and a modular SLA-printed microfluidic chip to co-culture and monitor cells.
Collapse
Affiliation(s)
| | | | | | - Liwen Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ruirui Qiao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
29
|
Gokhan I, Blum TS, Campbell SG. Engineered heart tissue: Design considerations and the state of the art. BIOPHYSICS REVIEWS 2024; 5:021308. [PMID: 38912258 PMCID: PMC11192576 DOI: 10.1063/5.0202724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/29/2024] [Indexed: 06/25/2024]
Abstract
Originally developed more than 20 years ago, engineered heart tissue (EHT) has become an important tool in cardiovascular research for applications such as disease modeling and drug screening. Innovations in biomaterials, stem cell biology, and bioengineering, among other fields, have enabled EHT technologies to recapitulate many aspects of cardiac physiology and pathophysiology. While initial EHT designs were inspired by the isolated-trabecula culture system, current designs encompass a variety of formats, each of which have unique strengths and limitations. In this review, we describe the most common EHT formats, and then systematically evaluate each aspect of their design, emphasizing the rational selection of components for each application.
Collapse
Affiliation(s)
| | - Thomas S. Blum
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA
| | | |
Collapse
|
30
|
Bliley JM, Stang MA, Behre A, Feinberg AW. Advances in 3D Bioprinted Cardiac Tissue Using Stem Cell-Derived Cardiomyocytes. Stem Cells Transl Med 2024; 13:425-435. [PMID: 38502194 PMCID: PMC11092277 DOI: 10.1093/stcltm/szae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/11/2024] [Indexed: 03/21/2024] Open
Abstract
The ultimate goal of cardiac tissue engineering is to generate new muscle to repair or replace the damaged heart. This requires advances in stem cell technologies to differentiate billions of cardiomyocytes, together with advanced biofabrication approaches such as 3D bioprinting to achieve the requisite structure and contractile function. In this concise review, we cover recent progress in 3D bioprinting of cardiac tissue using pluripotent stem cell-derived cardiomyocytes, key design criteria for engineering aligned cardiac tissues, and ongoing challenges in the field that must be addressed to realize this goal.
Collapse
Affiliation(s)
- Jacqueline M Bliley
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Maria A Stang
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Anne Behre
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Adam W Feinberg
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
31
|
Kim Y, Wang K, Lock RI, Nash TR, Fleischer S, Wang BZ, Fine BM, Vunjak-Novakovic G. BeatProfiler: Multimodal In Vitro Analysis of Cardiac Function Enables Machine Learning Classification of Diseases and Drugs. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2024; 5:238-249. [PMID: 38606403 PMCID: PMC11008807 DOI: 10.1109/ojemb.2024.3377461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/13/2024] [Accepted: 03/10/2024] [Indexed: 04/13/2024] Open
Abstract
Goal: Contractile response and calcium handling are central to understanding cardiac function and physiology, yet existing methods of analysis to quantify these metrics are often time-consuming, prone to mistakes, or require specialized equipment/license. We developed BeatProfiler, a suite of cardiac analysis tools designed to quantify contractile function, calcium handling, and force generation for multiple in vitro cardiac models and apply downstream machine learning methods for deep phenotyping and classification. Methods: We first validate BeatProfiler's accuracy, robustness, and speed by benchmarking against existing tools with a fixed dataset. We further confirm its ability to robustly characterize disease and dose-dependent drug response. We then demonstrate that the data acquired by our automatic acquisition pipeline can be further harnessed for machine learning (ML) analysis to phenotype a disease model of restrictive cardiomyopathy and profile cardioactive drug functional response. To accurately classify between these biological signals, we apply feature-based ML and deep learning models (temporal convolutional-bidirectional long short-term memory model or TCN-BiLSTM). Results: Benchmarking against existing tools revealed that BeatProfiler detected and analyzed contraction and calcium signals better than existing tools through improved sensitivity in low signal data, reduction in false positives, and analysis speed increase by 7 to 50-fold. Of signals accurately detected by published methods (PMs), BeatProfiler's extracted features showed high correlations to PMs, confirming that it is reliable and consistent with PMs. The features extracted by BeatProfiler classified restrictive cardiomyopathy cardiomyocytes from isogenic healthy controls with 98% accuracy and identified relax90 as a top distinguishing feature in congruence with previous findings. We also show that our TCN-BiLSTM model was able to classify drug-free control and 4 cardiac drugs with different mechanisms of action at 96% accuracy. We further apply Grad-CAM on our convolution-based models to identify signature regions of perturbations by these drugs in calcium signals. Conclusions: We anticipate that the capabilities of BeatProfiler will help advance in vitro studies in cardiac biology through rapid phenotyping, revealing mechanisms underlying cardiac health and disease, and enabling objective classification of cardiac disease and responses to drugs.
Collapse
Affiliation(s)
- Youngbin Kim
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10032USA
| | - Kunlun Wang
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10032USA
| | - Roberta I. Lock
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10032USA
| | - Trevor R. Nash
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10032USA
| | - Sharon Fleischer
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10032USA
| | - Bryan Z. Wang
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10032USA
| | - Barry M. Fine
- Department of MedicineDivision of CardiologyColumbia University Medical CenterNew YorkNY10032USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10032USA
- Department of MedicineDivision of CardiologyColumbia University Medical CenterNew YorkNY10032USA
| |
Collapse
|
32
|
Vo Q, Benam KH. Advancements in preclinical human-relevant modeling of pulmonary vasculature on-chip. Eur J Pharm Sci 2024; 195:106709. [PMID: 38246431 PMCID: PMC10939731 DOI: 10.1016/j.ejps.2024.106709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/05/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Preclinical human-relevant modeling of organ-specific vasculature offers a unique opportunity to recreate pathophysiological intercellular, tissue-tissue, and cell-matrix interactions for a broad range of applications. Lung vasculature is particularly important due to its involvement in genesis and progression of rare, debilitating disorders as well as common chronic pathologies. Here, we provide an overview of the latest advances in the development of pulmonary vascular (PV) models using emerging microfluidic tissue engineering technology Organs-on-Chips (so-called PV-Chips). We first review the currently reported PV-Chip systems and their key features, and then critically discuss their major limitations in reproducing in vivo-seen and disease-relevant cellularity, localization, and microstructure. We conclude by presenting latest efforts to overcome such technical and biological limitations and future directions.
Collapse
Affiliation(s)
- Quoc Vo
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kambez H Benam
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
33
|
Li Z, Niu K, Zhou C, Wang F, Lu K, Liu Y, Xuan L, Wang X. Multifunctional cardiac microphysiological system based on transparent ITO electrodes for simultaneous optical measurement and electrical signal monitoring. LAB ON A CHIP 2024; 24:1903-1917. [PMID: 38385159 DOI: 10.1039/d3lc00908d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Drug-induced cardiotoxicity is a significant contributor to drug recalls, primarily attributed to limitations in existing drug screening platforms. Traditional heart-on-a-chip platforms often employ metallic electrodes to record cardiomyocyte electrical signals. However, this approach hinders direct cardiomyocyte morphology observation and typically yields limited functionality. Consequently, this limitation may lead to an incomplete understanding of cardiomyocyte characteristics. To address these challenges, we introduce a multifunctional cardiac microphysiological system featuring transparent indium tin oxide electrodes. This innovative design aims to overcome the limitations of conventional heart-on-a-chip systems where metal electrodes interfere with the observation of cells and increase the difficulty of subsequent image processing of cell images. In addition to facilitating optical measurement combined with image processing capabilities, this system integrates a range of electrodes with diverse functionalities. These electrodes can realize cellular electrical stimulation, field potential monitoring, and impedance change tracking, enabling a comprehensive investigation of various cardiomyocyte traits. To demonstrate its versatility, we investigate the effects of four cardiac drugs with distinct pharmacological profiles on cardiomyocytes using this system. This platform provides a means for quantitatively and predictively assessing cardiac toxicity, which could be applied to conduct a comprehensive evaluation during the drug discovery process.
Collapse
Affiliation(s)
- Zhangjie Li
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Kai Niu
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Chenyang Zhou
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Feifan Wang
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Kangyi Lu
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yijun Liu
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Lian Xuan
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaolin Wang
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
34
|
Min S, Kim S, Sim WS, Choi YS, Joo H, Park JH, Lee SJ, Kim H, Lee MJ, Jeong I, Cui B, Jo SH, Kim JJ, Hong SB, Choi YJ, Ban K, Kim YG, Park JU, Lee HA, Park HJ, Cho SW. Versatile human cardiac tissues engineered with perfusable heart extracellular microenvironment for biomedical applications. Nat Commun 2024; 15:2564. [PMID: 38519491 PMCID: PMC10960018 DOI: 10.1038/s41467-024-46928-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 03/13/2024] [Indexed: 03/25/2024] Open
Abstract
Engineered human cardiac tissues have been utilized for various biomedical applications, including drug testing, disease modeling, and regenerative medicine. However, the applications of cardiac tissues derived from human pluripotent stem cells are often limited due to their immaturity and lack of functionality. Therefore, in this study, we establish a perfusable culture system based on in vivo-like heart microenvironments to improve human cardiac tissue fabrication. The integrated culture platform of a microfluidic chip and a three-dimensional heart extracellular matrix enhances human cardiac tissue development and their structural and functional maturation. These tissues are comprised of cardiovascular lineage cells, including cardiomyocytes and cardiac fibroblasts derived from human induced pluripotent stem cells, as well as vascular endothelial cells. The resultant macroscale human cardiac tissues exhibit improved efficacy in drug testing (small molecules with various levels of arrhythmia risk), disease modeling (Long QT Syndrome and cardiac fibrosis), and regenerative therapy (myocardial infarction treatment). Therefore, our culture system can serve as a highly effective tissue-engineering platform to provide human cardiac tissues for versatile biomedical applications.
Collapse
Affiliation(s)
- Sungjin Min
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Suran Kim
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- Cellartgen, Seoul, 03722, Republic of Korea
| | - Woo-Sup Sim
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Yi Sun Choi
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyebin Joo
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jae-Hyun Park
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Su-Jin Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Hyeok Kim
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Mi Jeong Lee
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Inhea Jeong
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Baofang Cui
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sung-Hyun Jo
- Department of Chemical Engineering, Soongsil University, Seoul, 06978, Republic of Korea
| | - Jin-Ju Kim
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Seok Beom Hong
- Department of Thoracic and Cardiovascular Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Yeon-Jik Choi
- Division of Cardiology, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 03312, Republic of Korea
| | - Kiwon Ban
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul, 06978, Republic of Korea
| | - Jang-Ung Park
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyang-Ae Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Hun-Jun Park
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
- Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
- Cellartgen, Seoul, 03722, Republic of Korea.
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea.
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
35
|
Simmons DW, Malayath G, Schuftan DR, Guo J, Oguntuyo K, Ramahdita G, Sun Y, Jordan SD, Munsell MK, Kandalaft B, Pear M, Rentschler SL, Huebsch N. Engineered tissue geometry and Plakophilin-2 regulate electrophysiology of human iPSC-derived cardiomyocytes. APL Bioeng 2024; 8:016118. [PMID: 38476404 PMCID: PMC10932571 DOI: 10.1063/5.0160677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 02/06/2024] [Indexed: 03/14/2024] Open
Abstract
Engineered heart tissues have been created to study cardiac biology and disease in a setting that more closely mimics in vivo heart muscle than 2D monolayer culture. Previously published studies suggest that geometrically anisotropic micro-environments are crucial for inducing "in vivo like" physiology from immature cardiomyocytes. We hypothesized that the degree of cardiomyocyte alignment and prestress within engineered tissues is regulated by tissue geometry and, subsequently, drives electrophysiological development. Thus, we studied the effects of tissue geometry on electrophysiology of micro-heart muscle arrays (μHM) engineered from human induced pluripotent stem cells (iPSCs). Elongated tissue geometries elicited cardiomyocyte shape and electrophysiology changes led to adaptations that yielded increased calcium intake during each contraction cycle. Strikingly, pharmacologic studies revealed that a threshold of prestress and/or cellular alignment is required for sodium channel function, whereas L-type calcium and rapidly rectifying potassium channels were largely insensitive to these changes. Concurrently, tissue elongation upregulated sodium channel (NaV1.5) and gap junction (Connexin 43, Cx43) protein expression. Based on these observations, we leveraged elongated μHM to study the impact of loss-of-function mutation in Plakophilin 2 (PKP2), a desmosome protein implicated in arrhythmogenic disease. Within μHM, PKP2 knockout cardiomyocytes had cellular morphology similar to what was observed in isogenic controls. However, PKP2-/- tissues exhibited lower conduction velocity and no functional sodium current. PKP2 knockout μHM exhibited geometrically linked upregulation of sodium channel but not Cx43, suggesting that post-translational mechanisms, including a lack of ion channel-gap junction communication, may underlie the lower conduction velocity observed in tissues harboring this genetic defect. Altogether, these observations demonstrate that simple, scalable micro-tissue systems can provide the physiologic stresses necessary to induce electrical remodeling of iPS-CM to enable studies on the electrophysiologic consequences of disease-associated genomic variants.
Collapse
Affiliation(s)
- Daniel W. Simmons
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Ganesh Malayath
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - David R. Schuftan
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Jingxuan Guo
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Kasoorelope Oguntuyo
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Ghiska Ramahdita
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Yuwen Sun
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Samuel D. Jordan
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Mary K. Munsell
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Brennan Kandalaft
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Missy Pear
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Stacey L. Rentschler
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Nathaniel Huebsch
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| |
Collapse
|
36
|
Wu Q, Xue R, Zhao Y, Ramsay K, Wang EY, Savoji H, Veres T, Cartmell SH, Radisic M. Automated fabrication of a scalable heart-on-a-chip device by 3D printing of thermoplastic elastomer nanocomposite and hot embossing. Bioact Mater 2024; 33:46-60. [PMID: 38024233 PMCID: PMC10654006 DOI: 10.1016/j.bioactmat.2023.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
The successful translation of organ-on-a-chip devices requires the development of an automated workflow for device fabrication, which is challenged by the need for precise deposition of multiple classes of materials in micro-meter scaled configurations. Many current heart-on-a-chip devices are produced manually, requiring the expertise and dexterity of skilled operators. Here, we devised an automated and scalable fabrication method to engineer a Biowire II multiwell platform to generate human iPSC-derived cardiac tissues. This high-throughput heart-on-a-chip platform incorporated fluorescent nanocomposite microwires as force sensors, produced from quantum dots and thermoplastic elastomer, and 3D printed on top of a polystyrene tissue culture base patterned by hot embossing. An array of built-in carbon electrodes was embedded in a single step into the base, flanking the microwells on both sides. The facile and rapid 3D printing approach efficiently and seamlessly scaled up the Biowire II system from an 8-well chip to a 24-well and a 96-well format, resulting in an increase of platform fabrication efficiency by 17,5000-69,000% per well. The device's compatibility with long-term electrical stimulation in each well facilitated the targeted generation of mature human iPSC-derived cardiac tissues, evident through a positive force-frequency relationship, post-rest potentiation, and well-aligned sarcomeric apparatus. This system's ease of use and its capacity to gauge drug responses in matured cardiac tissue make it a powerful and reliable platform for rapid preclinical drug screening and development.
Collapse
Affiliation(s)
- Qinghua Wu
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
- Toronto General Research Institute, University Health Network, Toronto, Ontario, M5G 2C4, Canada
| | - Ruikang Xue
- Department of Materials, School of Natural Sciences, Faculty of Science and Engineering and The Henry Royce Institute, Royce Hub Building, The University of Manchester, Manchester, UK
| | - Yimu Zhao
- Toronto General Research Institute, University Health Network, Toronto, Ontario, M5G 2C4, Canada
| | - Kaitlyn Ramsay
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
| | - Erika Yan Wang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Houman Savoji
- Institute of Biomedical Engineering and Department of Pharmacology and Physiology, University of Montreal, Montreal, Quebec, H3T 1J4, Canada
- Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, H3T 1C5, Canada
- Montreal TransMedTech Institute, Montreal, Quebec, H3T 1J4, Canada
| | - Teodor Veres
- National Research Council of Canada, Boucherville, QC, J4B 6Y4, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, M5S 3G8, Canada
| | - Sarah H. Cartmell
- Department of Materials, School of Natural Sciences, Faculty of Science and Engineering and The Henry Royce Institute, Royce Hub Building, The University of Manchester, Manchester, UK
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
- Toronto General Research Institute, University Health Network, Toronto, Ontario, M5G 2C4, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| |
Collapse
|
37
|
Slepičková Kasálková N, Juřicová V, Fajstavr D, Frýdlová B, Rimpelová S, Švorčík V, Slepička P. Plasma-Activated Polydimethylsiloxane Microstructured Pattern with Collagen for Improved Myoblast Cell Guidance. Int J Mol Sci 2024; 25:2779. [PMID: 38474025 DOI: 10.3390/ijms25052779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
We focused on polydimethylsiloxane (PDMS) as a substrate for replication, micropatterning, and construction of biologically active surfaces. The novelty of this study is based on the combination of the argon plasma exposure of a micropatterned PDMS scaffold, where the plasma served as a strong tool for subsequent grafting of collagen coatings and their application as cell growth scaffolds, where the standard was significantly exceeded. As part of the scaffold design, templates with a patterned microstructure of different dimensions (50 × 50, 50 × 20, and 30 × 30 μm2) were created by photolithography followed by pattern replication on a PDMS polymer substrate. Subsequently, the prepared microstructured PDMS replicas were coated with a type I collagen layer. The sample preparation was followed by the characterization of material surface properties using various analytical techniques, including scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). To evaluate the biocompatibility of the produced samples, we conducted studies on the interactions between selected polymer replicas and micro- and nanostructures and mammalian cells. Specifically, we utilized mouse myoblasts (C2C12), and our results demonstrate that we achieved excellent cell alignment in conjunction with the development of a cytocompatible surface. Consequently, the outcomes of this research contribute to an enhanced comprehension of surface properties and interactions between structured polymers and mammalian cells. The use of periodic microstructures has the potential to advance the creation of novel materials and scaffolds in tissue engineering. These materials exhibit exceptional biocompatibility and possess the capacity to promote cell adhesion and growth.
Collapse
Affiliation(s)
- Nikola Slepičková Kasálková
- Department of Solid State Engineering, The University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic
| | - Veronika Juřicová
- Department of Solid State Engineering, The University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic
| | - Dominik Fajstavr
- Department of Solid State Engineering, The University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic
| | - Bára Frýdlová
- Department of Solid State Engineering, The University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, The University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic
| | - Václav Švorčík
- Department of Solid State Engineering, The University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic
| | - Petr Slepička
- Department of Solid State Engineering, The University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic
| |
Collapse
|
38
|
Butler D, Reyes DR. Heart-on-a-chip systems: disease modeling and drug screening applications. LAB ON A CHIP 2024; 24:1494-1528. [PMID: 38318723 DOI: 10.1039/d3lc00829k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, casting a substantial economic footprint and burdening the global healthcare system. Historically, pre-clinical CVD modeling and therapeutic screening have been performed using animal models. Unfortunately, animal models oftentimes fail to adequately mimic human physiology, leading to a poor translation of therapeutics from pre-clinical trials to consumers. Even those that make it to market can be removed due to unforeseen side effects. As such, there exists a clinical, technological, and economical need for systems that faithfully capture human (patho)physiology for modeling CVD, assessing cardiotoxicity, and evaluating drug efficacy. Heart-on-a-chip (HoC) systems are a part of the broader organ-on-a-chip paradigm that leverages microfluidics, tissue engineering, microfabrication, electronics, and gene editing to create human-relevant models for studying disease, drug-induced side effects, and therapeutic efficacy. These compact systems can be capable of real-time measurements and on-demand characterization of tissue behavior and could revolutionize the drug development process. In this review, we highlight the key components that comprise a HoC system followed by a review of contemporary reports of their use in disease modeling, drug toxicity and efficacy assessment, and as part of multi-organ-on-a-chip platforms. We also discuss future perspectives and challenges facing the field, including a discussion on the role that standardization is expected to play in accelerating the widespread adoption of these platforms.
Collapse
Affiliation(s)
- Derrick Butler
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | - Darwin R Reyes
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| |
Collapse
|
39
|
Li J, Hua Y, Liu Y, Qu X, Zhang J, Ishida M, Yoshida N, Tabata A, Miyoshi H, Shiba M, Higo S, Sougawa N, Takeda M, Kawamura T, Matsuura R, Okuzaki D, Toyofuku T, Sawa Y, Liu L, Miyagawa S. Human induced pluripotent stem cell-derived closed-loop cardiac tissue for drug assessment. iScience 2024; 27:108992. [PMID: 38333703 PMCID: PMC10850789 DOI: 10.1016/j.isci.2024.108992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/16/2023] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
Human iPSC-derived cardiomyocytes (hiPSC-CMs) exhibit functional immaturity, potentially impacting their suitability for assessing drug proarrhythmic potential. We previously devised a traveling wave (TW) system to promote maturation in 3D cardiac tissue. To align with current drug assessment paradigms (CiPA and JiCSA), necessitating a 2D monolayer cardiac tissue, we integrated the TW system with a multi-electrode array. This gave rise to a hiPSC-derived closed-loop cardiac tissue (iCT), enabling spontaneous TW initiation and swift pacing of cardiomyocytes from various cell lines. The TW-paced cardiomyocytes demonstrated heightened sarcomeric and functional maturation, exhibiting enhanced response to isoproterenol. Moreover, these cells showcased diminished sensitivity to verapamil and maintained low arrhythmia rates with ranolazine-two drugs associated with a low risk of torsades de pointes (TdP). Notably, the TW group displayed increased arrhythmia rates with high and intermediate risk TdP drugs (quinidine and pimozide), underscoring the potential utility of this system in drug assessment applications.
Collapse
Affiliation(s)
- Junjun Li
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Ying Hua
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yuting Liu
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Xiang Qu
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Jingbo Zhang
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Masako Ishida
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Noriko Yoshida
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Akiko Tabata
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hayato Miyoshi
- Fujifilm Corporation, Ashigarakami 258-8577, Kanagawa, Japan
| | - Mikio Shiba
- Cardiovascular Division, Osaka Police Hospital, Tennoji 543-0035, Osaka, Japan
| | - Shuichiro Higo
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka, Japan
- Department of Medical Therapeutics for Heart Failure, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka, Japan
| | - Nagako Sougawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
- Department of Physiology, Osaka Dental University, 8-1 Kuzuha Hanazono-cho, Hirakata 573-1121, Osaka, Japan
| | - Maki Takeda
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Takuji Kawamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Ryohei Matsuura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Daisuke Okuzaki
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Research Center, Osaka University, Osaka, Japan
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Toshihiko Toyofuku
- Department of Immunology and Molecular Medicine, Graduate School of Medicine, Osaka University, Suita 565-0871, Osaka, Japan
| | - Yoshiki Sawa
- Department of Future Medicine, Division of Health Science, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Li Liu
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| |
Collapse
|
40
|
Lee S, Lee WS, Enomoto T, Akimoto AM, Yoshida R. Anisotropically self-oscillating gels by spatially patterned interpenetrating polymer network. SOFT MATTER 2024; 20:796-803. [PMID: 38168689 DOI: 10.1039/d3sm01237a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Here we introduce sub-millimeter self-oscillating gels that undergo the Belousov-Zhabotinsky (BZ) reaction and can anisotropically oscillate like cardiomyocytes. The anisotropically self-oscillating gels in this study were realized by spatially patterning an acrylic acid-based interpenetrating network (AA-IPN). We found that the patterned AA-IPN regions, locally introduced at both ends of the gels through UV photolithography, can constrain the horizontal gel shape deformation during the BZ reaction. In other words, the two AA-IPN regions could act as a physical barrier to prevent isotropic deformation. Furthermore, we controlled the anisotropic deformation behavior during the BZ reaction by varying the concentration of acrylic acid used in the patterning process of the AA-IPN. As a result, a specific directional deformation behavior (66% horizontal/vertical amplitude ratio) was fulfilled, similar to that of cardiomyocytes. Our study can provide a promising insight to fabricating robust gel systems for cardiomyocyte modeling or designing novel autonomous microscale soft actuators.
Collapse
Affiliation(s)
- Suwen Lee
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Won Seok Lee
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Takafumi Enomoto
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Aya Mizutani Akimoto
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Ryo Yoshida
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
41
|
Darban YM, Askari H, Ghasemi-Kasman M, Yavarpour-Bali H, Dehpanah A, Gholizade P, Nosratiyan N. The Role of Induced Pluripotent Stem Cells in the Treatment of Stroke. Curr Neuropharmacol 2024; 22:2368-2383. [PMID: 39403058 PMCID: PMC11451314 DOI: 10.2174/1570159x22666240603084558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 10/19/2024] Open
Abstract
Stroke is a neurological disorder with high disability and mortality rates. Almost 80% of stroke cases are ischemic stroke, and the remaining are hemorrhagic stroke. The only approved treatment for ischemic stroke is thrombolysis and/or thrombectomy. However, these treatments cannot sufficiently relieve the disease outcome, and many patients remain disabled even after effective thrombolysis. Therefore, rehabilitative therapies are necessary to induce remodeling in the brain. Currently, stem cell transplantation, especially via the use of induced pluripotent stem cells (iPSCs), is considered a promising alternative therapy for stimulating neurogenesis and brain remodeling. iPSCs are generated from somatic cells by specific transcription factors. The biological functions of iPSCs are similar to those of embryonic stem cells (ESCs), including immunomodulation, reduced cerebral blood flow, cerebral edema, and autophagy. Although iPSC therapy plays a promising role in both hemorrhagic and ischemic stroke, its application is associated with certain limitations. Tumor formation, immune rejection, stem cell survival, and migration are some concerns associated with stem cell therapy. Therefore, cell-free therapy as an alternative method can overcome these limitations. This study reviews the therapeutic application of iPSCs in stroke models and the underlying mechanisms and constraints of these cells. Moreover, cell-free therapy using exosomes, apoptotic bodies, and microvesicles as alternative treatments is discussed.
Collapse
Affiliation(s)
| | - Hamid Askari
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | | | - Amirabbas Dehpanah
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Parnia Gholizade
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Nasrin Nosratiyan
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
42
|
Deir S, Mozhdehbakhsh Mofrad Y, Mashayekhan S, Shamloo A, Mansoori-Kermani A. Step-by-step fabrication of heart-on-chip systems as models for cardiac disease modeling and drug screening. Talanta 2024; 266:124901. [PMID: 37459786 DOI: 10.1016/j.talanta.2023.124901] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/23/2023] [Accepted: 07/01/2023] [Indexed: 09/20/2023]
Abstract
Cardiovascular diseases are caused by hereditary factors, environmental conditions, and medication-related issues. On the other hand, the cardiotoxicity of drugs should be thoroughly examined before entering the market. In this regard, heart-on-chip (HOC) systems have been developed as a more efficient and cost-effective solution than traditional methods, such as 2D cell culture and animal models. HOCs must replicate the biology, physiology, and pathology of human heart tissue to be considered a reliable platform for heart disease modeling and drug testing. Therefore, many efforts have been made to find the best methods to fabricate different parts of HOCs and to improve the bio-mimicry of the systems in the last decade. Beating HOCs with different platforms have been developed and techniques, such as fabricating pumpless HOCs, have been used to make HOCs more user-friendly systems. Recent HOC platforms have the ability to simultaneously induce and record electrophysiological stimuli. Additionally, systems including both heart and cancer tissue have been developed to investigate tissue-tissue interactions' effect on cardiac tissue response to cancer drugs. In this review, all steps needed to be considered to fabricate a HOC were introduced, including the choice of cellular resources, biomaterials, fabrication techniques, biomarkers, and corresponding biosensors. Moreover, the current HOCs used for modeling cardiac diseases and testing the drugs are discussed. We finally introduced some suggestions for fabricating relatively more user-friendly HOCs and facilitating the commercialization process.
Collapse
Affiliation(s)
- Sara Deir
- School of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Yasaman Mozhdehbakhsh Mofrad
- Nano-Bioengineering Lab, School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Center, Sharif University of Technology, Tehran, Iran
| | - Shohreh Mashayekhan
- School of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Amir Shamloo
- Nano-Bioengineering Lab, School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Center, Sharif University of Technology, Tehran, Iran.
| | | |
Collapse
|
43
|
Zhang S, Xu G, Wu J, Liu X, Fan Y, Chen J, Wallace G, Gu Q. Microphysiological Constructs and Systems: Biofabrication Tactics, Biomimetic Evaluation Approaches, and Biomedical Applications. SMALL METHODS 2024; 8:e2300685. [PMID: 37798902 DOI: 10.1002/smtd.202300685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/23/2023] [Indexed: 10/07/2023]
Abstract
In recent decades, microphysiological constructs and systems (MPCs and MPSs) have undergone significant development, ranging from self-organized organoids to high-throughput organ-on-a-chip platforms. Advances in biomaterials, bioinks, 3D bioprinting, micro/nanofabrication, and sensor technologies have contributed to diverse and innovative biofabrication tactics. MPCs and MPSs, particularly tissue chips relevant to absorption, distribution, metabolism, excretion, and toxicity, have demonstrated potential as precise, efficient, and economical alternatives to animal models for drug discovery and personalized medicine. However, current approaches mainly focus on the in vitro recapitulation of the human anatomical structure and physiological-biochemical indices at a single or a few simple levels. This review highlights the recent remarkable progress in MPC and MPS models and their applications. The challenges that must be addressed to assess the reliability, quantify the techniques, and utilize the fidelity of the models are also discussed.
Collapse
Affiliation(s)
- Shuyu Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine/Department of Fetal Medicine and Prenatal Diagnosis/BioResource Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Guoshi Xu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Huairou District, Beijing, 100049, China
| | - Juan Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Huairou District, Beijing, 100049, China
| | - Xiao Liu
- Department of Gastroenterology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yong Fan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine/Department of Fetal Medicine and Prenatal Diagnosis/BioResource Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Jun Chen
- Intelligent Polymer Research Institute, Australian Institute for Innovative Materials, Innovation Campus, University of Wollongong, North Wollongong, NSW, 2500, Australia
| | - Gordon Wallace
- Intelligent Polymer Research Institute, Australian Institute for Innovative Materials, Innovation Campus, University of Wollongong, North Wollongong, NSW, 2500, Australia
| | - Qi Gu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Huairou District, Beijing, 100049, China
| |
Collapse
|
44
|
DeAngelis MA, Ruder WC, LeDuc PR. An embedded microfluidic valve for dynamic control of cellular communication. APPLIED PHYSICS LETTERS 2023; 123:244103. [PMID: 38094664 PMCID: PMC10715818 DOI: 10.1063/5.0172538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/22/2023] [Indexed: 02/01/2024]
Abstract
The communication between different cell populations is an important aspect of many natural phenomena that can be studied with microfluidics. Using microfluidic valves, these complex interactions can be studied with a higher level of control by placing a valve between physically separated populations. However, most current valve designs do not display the properties necessary for this type of system, such as providing variable flow rate when embedded inside a microfluidic device. While some valves have been shown to have such tunable behavior, they have not been used for dynamic, real-time outputs. We present an electric solenoid valve that can be fabricated completely outside of a cleanroom and placed into any microfluidic device to offer control of dynamic fluid flow rates and profiles. After characterizing the behavior of this valve under controlled test conditions, we developed a regression model to determine the required input electrical signal to provide the solenoid the ability to create a desired flow profile. With this model, we demonstrated that the valve could be controlled to replicate a desired, time-varying pattern for the interface position of a co-laminar fluid stream. Our approach can be performed by other investigators with their microfluidic devices to produce predictable, dynamic fluidic behavior. In addition to modulating fluid flows, this work will be impactful for controlling cellular communication between distinct populations or even chemical reactions occurring in microfluidic channels.
Collapse
Affiliation(s)
- Mark A. DeAngelis
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
45
|
Wang Y, Li L, Shen Y, Zhang Y, Zhang Y, Shang X. Deep Learning Integration with Phenotypic Similarities and Heterogeneous Networks for Drug-Target Interaction Prediction. 2023 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM) 2023:2945-2951. [DOI: 10.1109/bibm58861.2023.10385907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Yongtian Wang
- Northwestern Polytechnical University,School of Computer Science,Xi’an,PR China
| | - Li Li
- Northwestern Polytechnical University,School of Computer Science,Xi’an,PR China
| | - Yewei Shen
- Northwestern Polytechnical University,School of Computer Science,Xi’an,PR China
| | - Yizhuo Zhang
- Northwestern Polytechnical University,School of Computer Science,Xi’an,PR China
| | - Yuhe Zhang
- Northwestern Polytechnical University,School of Computer Science,Xi’an,PR China
| | - Xuequn Shang
- Northwestern Polytechnical University,School of Computer Science,Xi’an,PR China
| |
Collapse
|
46
|
Abstract
Major advances in scientific discovery and insights that stem from the development and use of new techniques and models can bring remarkable progress to conventional toxicology. Although animal testing is still considered as the "gold standard" in traditional toxicity testing, there is a necessity for shift from animal testing to alternative methods regarding the drug safety testing owing to the emerging state-of-art techniques and the proposal of 3Rs (replace, reduce, and refine) towards animal welfare. This review describes some recent research methods in drug discovery toxicology, including in vitro cell and organ-on-a-chip, imaging systems, model organisms (C. elegans, Danio rerio, and Drosophila melanogaster), and toxicogenomics in modern toxicology testing.
Collapse
Affiliation(s)
- Bowen Tang
- PTC Therapeutics Inc, South Plainfield, NJ, USA
| | - Vijay More
- PTC Therapeutics Inc, South Plainfield, NJ, USA
| |
Collapse
|
47
|
Chattaraj S, Torre M, Kalcher C, Stukowski A, Morganti S, Reali A, Pasqualini FS. SEM 2: Introducing mechanics in cell and tissue modeling using coarse-grained homogeneous particle dynamics. APL Bioeng 2023; 7:046118. [PMID: 38075209 PMCID: PMC10699888 DOI: 10.1063/5.0166829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/14/2023] [Indexed: 09/03/2024] Open
Abstract
Modeling multiscale mechanics in shape-shifting engineered tissues, such as organoids and organs-on-chip, is both important and challenging. In fact, it is difficult to model relevant tissue-level large non-linear deformations mediated by discrete cell-level behaviors, such as migration and proliferation. One approach to solve this problem is subcellular element modeling (SEM), where ensembles of coarse-grained particles interacting via empirically defined potentials are used to model individual cells while preserving cell rheology. However, an explicit treatment of multiscale mechanics in SEM was missing. Here, we incorporated analyses and visualizations of particle level stress and strain in the open-source software SEM++ to create a new framework that we call subcellular element modeling and mechanics or SEM2. To demonstrate SEM2, we provide a detailed mechanics treatment of classical SEM simulations including single-cell creep, migration, and proliferation. We also introduce an additional force to control nuclear positioning during migration and proliferation. Finally, we show how SEM2 can be used to model proliferation in engineered cell culture platforms such as organoids and organs-on-chip. For every scenario, we present the analysis of cell emergent behaviors as offered by SEM++ and examples of stress or strain distributions that are possible with SEM2. Throughout the study, we only used first-principles literature values or parametric studies, so we left to the Discussion a qualitative comparison of our insights with recently published results. The code for SEM2 is available on GitHub at https://github.com/Synthetic-Physiology-Lab/sem2.
Collapse
Affiliation(s)
- Sandipan Chattaraj
- Synthetic Physiology Lab, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
| | - Michele Torre
- Computational Mechanics and Advanced Materials Group, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
| | | | | | - Simone Morganti
- Computational Mechanics and Advanced Materials Group, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
| | - Alessandro Reali
- Computational Mechanics and Advanced Materials Group, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
| | - Francesco Silvio Pasqualini
- Synthetic Physiology Lab, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
| |
Collapse
|
48
|
Borenstein JT, Cummins G, Dutta A, Hamad E, Hughes MP, Jiang X, Lee HH, Lei KF, Tang XS, Zheng Y, Chen J. Bionanotechnology and bioMEMS (BNM): state-of-the-art applications, opportunities, and challenges. LAB ON A CHIP 2023; 23:4928-4949. [PMID: 37916434 DOI: 10.1039/d3lc00296a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The development of micro- and nanotechnology for biomedical applications has defined the cutting edge of medical technology for over three decades, as advancements in fabrication technology developed originally in the semiconductor industry have been applied to solving ever-more complex problems in medicine and biology. These technologies are ideally suited to interfacing with life sciences, since they are on the scale lengths as cells (microns) and biomacromolecules (nanometers). In this paper, we review the state of the art in bionanotechnology and bioMEMS (collectively BNM), including developments and challenges in the areas of BNM, such as microfluidic organ-on-chip devices, oral drug delivery, emerging technologies for managing infectious diseases, 3D printed microfluidic devices, AC electrokinetics, flexible MEMS devices, implantable microdevices, paper-based microfluidic platforms for cellular analysis, and wearable sensors for point-of-care testing.
Collapse
Affiliation(s)
| | - Gerard Cummins
- School of Engineering, University of Birmingham, Edgbaston, B15 2TT, UK.
| | - Abhishek Dutta
- Department of Electrical & Computer Engineering, University of Connecticut, USA.
| | - Eyad Hamad
- Biomedical Engineering Department, School of Applied Medical Sciences, German Jordanian University, Amman, Jordan.
| | - Michael Pycraft Hughes
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates.
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, China.
| | - Hyowon Hugh Lee
- Weldon School of Biomedical Engineering, Center for Implantable Devices, Purdue University, West Lafayette, IN, USA.
| | | | | | | | - Jie Chen
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| |
Collapse
|
49
|
Jæger KH, Tveito A. The simplified Kirchhoff network model (SKNM): a cell-based reaction-diffusion model of excitable tissue. Sci Rep 2023; 13:16434. [PMID: 37777588 PMCID: PMC10542379 DOI: 10.1038/s41598-023-43444-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023] Open
Abstract
Cell-based models of excitable tissues offer the advantage of cell-level precision, which cannot be achieved using traditional homogenized electrophysiological models. However, this enhanced accuracy comes at the cost of increased computational demands, necessitating the development of efficient cell-based models. The widely-accepted bidomain model serves as the standard in computational cardiac electrophysiology, and under certain anisotropy ratio conditions, it is well known that it can be reduced to the simpler monodomain model. Recently, the Kirchhoff Network Model (KNM) was developed as a cell-based counterpart to the bidomain model. In this paper, we aim to demonstrate that KNM can be simplified using the same steps employed to derive the monodomain model from the bidomain model. We present the cell-based Simplified Kirchhoff Network Model (SKNM), which produces results closely aligned with those of KNM while requiring significantly less computational resources.
Collapse
|
50
|
Djemai M, Cupelli M, Boutjdir M, Chahine M. Optical Mapping of Cardiomyocytes in Monolayer Derived from Induced Pluripotent Stem Cells. Cells 2023; 12:2168. [PMID: 37681899 PMCID: PMC10487143 DOI: 10.3390/cells12172168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Optical mapping is a powerful imaging technique widely adopted to measure membrane potential changes and intracellular Ca2+ variations in excitable tissues using voltage-sensitive dyes and Ca2+ indicators, respectively. This powerful tool has rapidly become indispensable in the field of cardiac electrophysiology for studying depolarization wave propagation, estimating the conduction velocity of electrical impulses, and measuring Ca2+ dynamics in cardiac cells and tissues. In addition, mapping these electrophysiological parameters is important for understanding cardiac arrhythmia mechanisms. In this review, we delve into the fundamentals of cardiac optical mapping technology and its applications when applied to hiPSC-derived cardiomyocytes and discuss related advantages and challenges. We also provide a detailed description of the processing and analysis of optical mapping data, which is a crucial step in the study of cardiac diseases and arrhythmia mechanisms for extracting and comparing relevant electrophysiological parameters.
Collapse
Affiliation(s)
- Mohammed Djemai
- CERVO Brain Research Center, Institut Universitaire en Santé Mentale de Québec, Quebec City, QC G1J 2G3, Canada
| | - Michael Cupelli
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY 11209, USA
- Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Health Sciences University, New York, NY 11203, USA
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY 11209, USA
- Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Health Sciences University, New York, NY 11203, USA
- Department of Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Mohamed Chahine
- CERVO Brain Research Center, Institut Universitaire en Santé Mentale de Québec, Quebec City, QC G1J 2G3, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|