1
|
Shah Z, Wang C, Ullah H, You H, Philonenko ES, Regan OV, Volchkov P, Dai Y, Yu J, Samokhvalov IM. RUNX1 is a key inducer of human hematopoiesis controlling non-hematopoietic mesodermal development. Stem Cells 2025; 43:sxaf019. [PMID: 40220285 DOI: 10.1093/stmcls/sxaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/21/2025] [Indexed: 04/14/2025]
Abstract
The RUNX1/AML1 transcription factor is one of the key regulators of definitive hematopoietic development in mice. However, its role in early human hematopoiesis remains poorly investigated. In this study, we integrated a tdTomato reporter cassette into the RUNX1 locus of human pluripotent stem cells (hPSCs) to monitor and block the expression of the gene during hPSC differentiation. This approach demonstrated that expression of RUNX1 starts early in mesodermal specification focusing later on hemogenic endothelium (HE) and nascent hematopoietic cells. Lack of RUNX1 halted the development of CD43+ and CD235-CD45+ hematopoietic cells, preventing the production of clonogenic hematopoietic progenitors including the multilineage ones. The abrogation of RUNX1 resulted in the failure of definitive lineages, specifically T and NK cells. Remarkably, we instead observed the accumulation of RUNX1-null HE cells at the stage of blood cell generation. Moreover, the loss of the gene biased the development toward the lineage of CD43-CD146+CD90+CD73+ mesenchymal cells. RNA-seq analysis of RUNX1-null cells revealed the downregulation of top-level hematopoietic transcription factor genes and the reciprocal upregulation of genes associated with non-hematopoietic cells of mesodermal origin. Forced expression of RUNX1c in differentiating RUNX1-null hPSCs effectively rescued the development of CD45+ myeloid cells and megakaryocytes. Our data demonstrate that RUNX1 is a top hematopoietic inducer that simultaneously controls the expansion of non-hematopoietic lineages.
Collapse
Affiliation(s)
- Zahir Shah
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People's Republic of China
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, United States
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, United States
| | - Cuihua Wang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People's Republic of China
| | - Hanif Ullah
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People's Republic of China
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, United States
| | - Hao You
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People's Republic of China
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-Sen University, Guangzhou 510080, People's Republic of China
| | - Elena S Philonenko
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People's Republic of China
| | - Olga V Regan
- Department of Fundamental Medicine, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Pavel Volchkov
- Department of Fundamental Medicine, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Yong Dai
- The first affiliated hospital, School of Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, People's Republic of China
| | - Jianhua Yu
- Division of Hematology and Oncology, Department of Medicine, Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA 92697, United States
| | - Igor M Samokhvalov
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People's Republic of China
| |
Collapse
|
2
|
Stoolman JS, Grant RA, Billingham LK, Poor TA, Weinberg SE, Harding MC, Lu Z, Miska J, Szibor M, Budinger GRS, Chandel NS. Mitochondria complex III-generated superoxide is essential for IL-10 secretion in macrophages. SCIENCE ADVANCES 2025; 11:eadu4369. [PMID: 39841842 PMCID: PMC11753406 DOI: 10.1126/sciadv.adu4369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025]
Abstract
Mitochondrial electron transport chain (ETC) function modulates macrophage biology; however, mechanisms underlying mitochondria ETC control of macrophage immune responses are not fully understood. Here, we report that mutant mice with mitochondria ETC complex III (CIII)-deficient macrophages exhibit increased susceptibility to influenza A virus (IAV) and LPS-induced endotoxic shock. Cultured bone marrow-derived macrophages (BMDMs) isolated from these mitochondria CIII-deficient mice released less IL-10 than controls following TLR3 or TLR4 stimulation. Unexpectedly, restoring mitochondrial respiration without generating superoxide using alternative oxidase (AOX) was not sufficient to reverse LPS-induced endotoxic shock susceptibility or restore IL-10 release. However, activation of protein kinase A (PKA) rescued IL-10 release in mitochondria CIII-deficient BMDMs following LPS stimulation. In addition, mitochondria CIII deficiency did not affect BMDM responses to interleukin-4 (IL-4) stimulation. Thus, our results highlight the essential role of mitochondria CIII-generated superoxide in the release of anti-inflammatory IL-10 in response to TLR stimulation.
Collapse
Affiliation(s)
- Joshua S. Stoolman
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rogan A. Grant
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Leah K. Billingham
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Taylor A. Poor
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Samuel E. Weinberg
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Madeline C. Harding
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ziyan Lu
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jason Miska
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marten Szibor
- Department of Cardiothoracic Surgery, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Friedrich Schiller University of Jena, Am Klinikum 1, 07747 Jena, Germany
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Tampere, Finland
| | - GR Scott Budinger
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Navdeep S. Chandel
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
3
|
Liu S, Li J, Zhang Y, Wang C, Zhang L. IL-10: the master immunomodulatory cytokine in allergen immunotherapy. Expert Rev Clin Immunol 2025; 21:17-28. [PMID: 39323099 DOI: 10.1080/1744666x.2024.2406894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
INTRODUCTION Allergen immunotherapy (AIT) is the only disease-modifying treatment for patients with IgE-mediated allergic diseases. Successful AIT can induce long-term immune tolerance to the common allergen, which provides clinical benefits for years after discontinuation. The cytokine interleukin (IL)-10, as a key anti-inflammatory mediator with strong immunoregulatory functions, has drawn increasing attention over the past decades. AREAS COVERED After an extensive search of PubMed, EMBASE, and Web of Science databases, covering articles published from 1989 to 2024, our review aims to emphasize the key common information from previous reviews on the crucial involvement of IL-10 in allergen immunotherapy (AIT) induced immunological tolerance. In this review, we discuss the regulation of IL-10 expression and the molecular pathways associated with IL-10 function. We also further summarize mechanisms of immune tolerance induced by AIT, especially the indispensable role of IL-10 in AIT. EXPERT OPINION IL-10 plays an indispensable role in immune tolerance induced by AIT. Understanding the importance of the role of IL-10 in AIT would help us comprehend the mechanisms thoroughly and develop targeted therapeutics for allergic diseases.
Collapse
Affiliation(s)
- Shixian Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingyun Li
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan Zhang
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Chengshuo Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Nakayama Y, Masuda Y, Shimizu R, Konishi M. Neudesin, a secretory protein, attenuates activation of lipopolysaccharide-stimulated macrophages by suppressing the Jak/Stat1/iNOS pathway. Life Sci 2024; 358:123185. [PMID: 39490522 DOI: 10.1016/j.lfs.2024.123185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/06/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
AIMS Neudesin, a heme-binding protein previously identified for its neurotrophic activity, has been implicated in various physiological and pathological processes, including immune regulation. However, its role in inflammatory macrophages remains unclear. Herein, we investigated the function of neudesin in the regulation of inflammatory macrophages. MAIN METHODS In vitro experiments were performed in bone marrow-derived macrophages (BMDMs). In vivo experiments were conducted on neudesin knockout mice with a murine endotoxic shock model. KEY FINDINGS We observed that neudesin deficiency led to elevated expression of Nos2/iNOS and increased nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated BMDMs. Further, we found that neudesin, via the ERK/MAPK signaling pathway, promotes the proteasome-mediated degradation of Stat1, resulting in suppression of NO production. Furthermore, neudesin-deficient mice exhibited higher mortality rates following LPS administration, accompanied by increased Nos2/iNOS expression and nitrated proteins in the heart, compared to that in wildtype mice. Treatment with an iNOS inhibitor drastically improved the survival rate of neudesin-deficient mice, highlighting the significance of neudesin-mediated iNOS signaling in modulating immune responses and preventing excessive inflammation. SIGNIFICANCE Our findings suggest that neudesin acts as an anti-inflammatory cytokine, suppressing NO production in inflammatory macrophages, underscoring its potential as a therapeutic target for immune-related disorders.
Collapse
Affiliation(s)
- Yoshiaki Nakayama
- Laboratory of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Japan.
| | - Yuki Masuda
- Laboratory of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Japan.
| | - Ryohei Shimizu
- Laboratory of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Japan; Department of Molecular Pharmaceutics, Hoshi University, Tokyo, Japan.
| | - Morichika Konishi
- Laboratory of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Japan.
| |
Collapse
|
5
|
Chhiba KD, Kuang FL. Advancing toward a unified eosinophil signature from transcriptional profiling. J Leukoc Biol 2024; 116:1324-1333. [PMID: 39213186 PMCID: PMC11602342 DOI: 10.1093/jleuko/qiae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
Eosinophils are granulocytes that can accumulate in increased numbers in tissues and/or peripheral blood in disease. Phenotyping of eosinophils in health and disease has the potential to improve the precision of diagnosis and choice of therapies for eosinophilic-associated diseases. Transcriptional profiling of eosinophils has been plagued by cell fragility and difficulty isolating high-quality RNA. With several technological advances, single-cell RNA sequencing has become possible with eosinophils, at least from mice, while bulk RNA sequencing and microarrays have been performed in both murine and human samples. Anticipating more eosinophil transcriptional profiles in the coming years, we provide a summary of prior studies conducted on mouse and human eosinophils in blood and tissue, with a discussion of the advantages and potential pitfalls of various approaches. Common technical standards in studying eosinophil biology would help advance the field and make cross-study comparisons possible. Knowledge gaps and opportunities include identifying a minimal set of genes that define the eosinophil lineage, comparative studies between active disease and remission vs. homeostasis or development, especially in humans, and a comprehensive comparison between murine and human eosinophils at the transcriptional level. Characterizing such transcriptional patterns will be important to understanding the complex and diverse roles of eosinophils in both health and disease.
Collapse
Affiliation(s)
- Krishan D. Chhiba
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, 240 East Huron Street, Chicago, IL 60611, United States
| | - Fei Li Kuang
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, 240 East Huron Street, Chicago, IL 60611, United States
| |
Collapse
|
6
|
Li M, Cui Y, Qi Q, Liu J, Li J, Huang G, Yang J, Sun J, Ma Z, Liang S, Zhang D, Jiang J, Zhu R, Liu Q, Huang R, Yan J. SPOP downregulation promotes bladder cancer progression based on cancer cell-macrophage crosstalk via STAT3/CCL2/IL-6 axis and is regulated by VEZF1. Theranostics 2024; 14:6543-6559. [PMID: 39479456 PMCID: PMC11519788 DOI: 10.7150/thno.101575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/22/2024] [Indexed: 11/02/2024] Open
Abstract
Background: Cancer cells are intimately intertwined with tumor microenvironment (TME), fostering a symbiotic relationship propelling cancer progression. However, the interaction between cancer cells and tumor-associated macrophages (TAMs) in urothelial bladder cancer (UBC) remains poorly understood. Methods: UBC cell lines (5637, T24 and SW780), along with a monocytic cell line (U937) capable of differentiating into macrophage, were used in a co-culture system for cell proliferation and stemness by MTT, sphere formation assays. VEZF1/SPOP/STAT3/CCL2/ IL-6 axis was determined by luciferase reporter, ChIP, RNA-seq, co-IP, in vitro ubiquitination, RT-qPCR array and ELISA analyses. Results: We observed the frequent downregulation of SPOP, an E3 ubiquitin ligase, was positively associated with tumor progression and TAM infiltration in UBC patients and T24 xenografts. Cancer cell-TAM crosstalk promoting tumor aggressiveness was demonstrated dependent on SPOP deficiency: 1) In UBC cells, STAT3 was identified as a novel substrate of SPOP, and SPOP deficiency increased STAT3 protein stability, elevated chemokine CCL2 secretion, which induced chemotaxis and M2 polarization of macrophage; 2) In co-cultured macrophages, IL-6 secretion enhanced UBC cell proliferation and stemness. Additionally, transcription factor VEZF1 could directly activate SPOP transcription, and its overexpression suppressed the above effects in UBC cells. Conclusions: A pivotal role of SPOP in maintaining UBC stemness and remodeling immunosuppressive TME was revealed. Both the intrinsic signaling (dysregulated VEZF1/SPOP/STAT3 axis) and the extrinsic cues from TME (CCL2-IL-6 axis based on macrophages) promoted UBC progression. Targeting this crosstalk may offer a promising therapeutic strategy for UBC patients with SPOP deficiency.
Collapse
Affiliation(s)
- Meiqian Li
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center; Laboratory Animal Center, Fudan University, Shanghai 200032, China
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, China
| | - Yangyan Cui
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, China
| | - Qi Qi
- Laboratory Animal Center, Fudan University, Shanghai 200032, China
| | - Jiakuan Liu
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center; Laboratory Animal Center, Fudan University, Shanghai 200032, China
| | - Jiaxuan Li
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai 200032, China
| | - Guifang Huang
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jiale Yang
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingya Sun
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhihui Ma
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shengjie Liang
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center; Laboratory Animal Center, Fudan University, Shanghai 200032, China
| | - Dianzheng Zhang
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Jun Jiang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Rujian Zhu
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center; Laboratory Animal Center, Fudan University, Shanghai 200032, China
| | - Qiuli Liu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Ruimin Huang
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Yan
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center; Laboratory Animal Center, Fudan University, Shanghai 200032, China
| |
Collapse
|
7
|
Horn KJ, Fulte S, Yang M, Lorenz BP, Clark SE. Neutrophil responsiveness to IL-10 impairs clearance of Streptococcus pneumoniae from the lungs. J Leukoc Biol 2024; 115:4-15. [PMID: 37381945 PMCID: PMC10768920 DOI: 10.1093/jleuko/qiad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/25/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023] Open
Abstract
The early immune response to bacterial pneumonia requires a careful balance between pathogen clearance and tissue damage. The anti-inflammatory cytokine interleukin (IL)-10 is critical for restraining otherwise lethal pulmonary inflammation. However, pathogen-induced IL-10 is associated with bacterial persistence in the lungs. In this study, we used mice with myeloid cell specific deletion of IL-10R to investigate the cellular targets of IL-10 immune suppression during infection with Streptococcus pneumoniae, the most common bacterial cause of pneumonia. Our findings suggest that IL-10 restricts the neutrophil response to S. pneumoniae, as neutrophil recruitment to the lungs was elevated in myeloid IL-10 receptor (IL-10R)-deficient mice and neutrophils in the lungs of these mice were more effective at killing S. pneumoniae. Improved killing of S. pneumoniae was associated with increased production of reactive oxygen species and serine protease activity in IL-10R-deficient neutrophils. Similarly, IL-10 suppressed the ability of human neutrophils to kill S. pneumoniae. Burdens of S. pneumoniae were lower in myeloid IL-10R-deficient mice compared with wild-type mice, and adoptive transfer of IL-10R-deficient neutrophils into wild-type mice significantly improved pathogen clearance. Despite the potential for neutrophils to contribute to tissue damage, lung pathology scores were similar between genotypes. This contrasts with total IL-10 deficiency, which is associated with increased immunopathology during S. pneumoniae infection. Together, these findings identify neutrophils as a critical target of S. pneumoniae-induced immune suppression and highlight myeloid IL-10R abrogation as a mechanism to selectively reduce pathogen burdens without exacerbating pulmonary damage.
Collapse
Affiliation(s)
- Kadi J Horn
- Department of Otolaryngology, University of Colorado School of Medicine, 12700 East 19th Avenue, Aurora, CO 80045, United States
| | - Sam Fulte
- Department of Otolaryngology, University of Colorado School of Medicine, 12700 East 19th Avenue, Aurora, CO 80045, United States
| | - Michael Yang
- Department of Pathology, University of Colorado School of Medicine, 12631 East 17th Avenue, Aurora, CO80045, United States
| | - Brian P Lorenz
- Department of Otolaryngology, University of Colorado School of Medicine, 12700 East 19th Avenue, Aurora, CO 80045, United States
| | - Sarah E Clark
- Department of Otolaryngology, University of Colorado School of Medicine, 12700 East 19th Avenue, Aurora, CO 80045, United States
| |
Collapse
|
8
|
Hackert NS, Radtke FA, Exner T, Lorenz HM, Müller-Tidow C, Nigrovic PA, Wabnitz G, Grieshaber-Bouyer R. Human and mouse neutrophils share core transcriptional programs in both homeostatic and inflamed contexts. Nat Commun 2023; 14:8133. [PMID: 38065997 PMCID: PMC10709367 DOI: 10.1038/s41467-023-43573-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Neutrophils are frequently studied in mouse models, but the extent to which findings translate to humans remains poorly defined. In an integrative analysis of 11 mouse and 13 human datasets, we find a strong correlation of neutrophil gene expression across species. In inflammation, neutrophils display substantial transcriptional diversity but share a core inflammation program. This program includes genes encoding IL-1 family members, CD14, IL-4R, CD69, and PD-L1. Chromatin accessibility of core inflammation genes increases in blood compared to bone marrow and further in tissue. Transcription factor enrichment analysis implicates members of the NF-κB family and AP-1 complex as important drivers, and HoxB8 neutrophils with JunB knockout show a reduced expression of core inflammation genes in resting and activated cells. In independent single-cell validation data, neutrophil activation by type I or type II interferon, G-CSF, and E. coli leads to upregulation in core inflammation genes. In COVID-19 patients, higher expression of core inflammation genes in neutrophils is associated with more severe disease. In vitro treatment with GM-CSF, LPS, and type II interferon induces surface protein upregulation of core inflammation members. Together, we demonstrate transcriptional conservation in neutrophils in homeostasis and identify a core inflammation program shared across heterogeneous inflammatory conditions.
Collapse
Affiliation(s)
- Nicolaj S Hackert
- Division of Rheumatology, Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Institute for Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Felix A Radtke
- Division of Rheumatology, Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Institute for Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Oxford Centre for Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Tarik Exner
- Division of Rheumatology, Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Institute for Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hanns-Martin Lorenz
- Division of Rheumatology, Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), University of Heidelberg, Heidelberg, Germany
| | - Peter A Nigrovic
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Guido Wabnitz
- Institute for Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ricardo Grieshaber-Bouyer
- Division of Rheumatology, Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany.
- Institute for Immunology, Heidelberg University Hospital, Heidelberg, Germany.
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), University of Heidelberg, Heidelberg, Germany.
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich Alexander Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
| |
Collapse
|
9
|
Mahama CN, Louisa M, Octaviana F, Suryandari DA, Budikayanti A, Wibowo H. Investigation of Correlation between Resistance to Diazepam and Expression of Inflammatory Markers in The Peripheral Blood of Patients with Status Epilepticus. Acta Med Acad 2023; 52:169-181. [PMID: 38407083 PMCID: PMC10945326 DOI: 10.5644/ama2006-124.423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/01/2023] [Indexed: 02/27/2024] Open
Abstract
OBJECTIVE This study investigated several inflammatory markers' gene and protein expression in status epilepticus (SE) and their correlation with diazepam resistance. MATERIALS AND METHODS Peripheral blood samples were collected from 18 adult patients with SE in Cipto Mangunkusumo Central Hospital, consisting of 12 diazepam-responsive and six diazepam-resistant samples, within 72 hours of the onset of the seizure. We collected baseline demographic and clinical data from each subject. Peripheral blood mononuclear cells (PBMCs) were isolated, cultured, stimulated with lipopolysaccharide (LPS) 1 mg/ml, and harvested for RNA isolation. The RNA was used to determine the expression of Human Mobility Group Box 1 (HMGB1), Interleukin- 6 (IL-6), IL-10, Toll-like Receptor 4 (TLR4), and Glial fibrillary acidic protein (GFAP). In addition, we performed serum protein assay of HMGB1, IL-6, IL-10, TLR4, and GFAP to compare with gene expression. RESULTS We found a significant difference between the responsive and resistant groups for serum HMGB1 and IL-6 concentration. The mRNA expression of HMGB1 and IL-6 was significantly higher in LPS-stimulated samples in the responsive but not in the resistant groups. The ratio of IL-6 to IL-10 showed a significant difference between LPS and control in the responsive group. Diazepam response was significantly correlated with seizure duration and serum protein concentration of HMGB1. CONCLUSION HMGB1 was highly expressed in the resistant group and strongly correlated with diazepam response, and there was a significant increase in HMGB1 mRNA expression in response to LPS stimulation. These findings suggest that targeting HMGB1 may be a promising therapeutic strategy and that HMGB1 levels could be a valuable biomarker for predicting diazepam resistance in SE.
Collapse
Affiliation(s)
- Corry Novita Mahama
- Doctoral Program in Biomedical Sciences, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia.
| | - Melva Louisa
- Department of Pharmacology and Therapeutics, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Fitri Octaviana
- Department of Neurology, Cipto Mangunkusumo Central Hospital, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Dwi Anita Suryandari
- Department of Medical Biology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Astri Budikayanti
- Department of Neurology, Cipto Mangunkusumo Central Hospital, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Heri Wibowo
- Department of Parasitology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
10
|
Melis M, Marino R, Tian J, Johnson C, Sethi R, Oertel M, Fox IJ, Locker J. Mechanism and Effect of HNF4α Decrease in a Rat Model of Cirrhosis and Liver Failure. Cell Mol Gastroenterol Hepatol 2023; 17:453-479. [PMID: 37993018 PMCID: PMC10837635 DOI: 10.1016/j.jcmgh.2023.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND & AIMS HNF4α, a master regulator of liver development and the mature hepatocyte phenotype, is down-regulated in chronic and inflammatory liver disease. We used contemporary transcriptomics and epigenomics to study the cause and effects of this down-regulation and characterized a multicellular etiology. METHODS Progressive changes in the rat carbon tetrachloride model were studied by deep RNA sequencing and genome-wide chromatin immunoprecipitation sequencing analysis of transcription factor (TF) binding and chromatin modification. Studies compared decompensated cirrhosis with liver failure after 26 weeks of treatment with earlier compensated cirrhosis and with additional rat models of chronic fibrosis. Finally, to resolve cell-specific responses and intercellular signaling, we compared transcriptomes of liver, nonparenchymal, and inflammatory cells. RESULTS HNF4α was significantly lower in 26-week cirrhosis, part of a general reduction of TFs that regulate metabolism. Nevertheless, increased binding of HNF4α contributed to strong activation of major phenotypic genes, whereas reduced binding to other genes had a moderate phenotypic effect. Decreased Hnf4a expression was the combined effect of STAT3 and nuclear factor kappa B (NFκB) activation, which similarly reduced expression of other metabolic TFs. STAT/NFκB also induced de novo expression of Osmr by hepatocytes to complement induced expression of Osm by nonparenchymal cells. CONCLUSIONS Liver decompensation by inflammatory STAT3 and NFκB signaling was not a direct consequence of progressive cirrhosis. Despite significant reduction of Hnf4a expression, residual levels of this abundant TF still stimulated strong new gene expression. Reduction of HNF4α was part of a broad hepatocyte transcriptional response to inflammation.
Collapse
Affiliation(s)
- Marta Melis
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rebecca Marino
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jianmin Tian
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Carla Johnson
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rahil Sethi
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael Oertel
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ira J Fox
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Joseph Locker
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
11
|
Riquelme-Neira R, Walker-Vergara R, Fernández-Blanco JA, Vergara P. IL-10 Modulates the Expression and Activation of Pattern Recognition Receptors in Mast Cells. Int J Mol Sci 2023; 24:9875. [PMID: 37373041 DOI: 10.3390/ijms24129875] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Mast cells (MCs) are involved in several immune-related responses, including those in bacterial infections, autoimmune diseases, inflammatory bowel diseases, and cancer, among others. MCs identify microorganisms by pattern recognition receptors (PRRs), activating a secretory response. Interleukin (IL)-10 has been described as an important modulator of MC responses; however, its role in PRR-mediated activation of MC is not fully understood. We analyzed the activation of TLR2, TLR4, TLR7 and Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) in mucosal-like MCs (MLMCs) and peritoneum-derived cultured MCs (PCMCs) from IL-10-/- and wild-type (WT) mice. IL-10-/- mice showed a reduced expression of TLR4 and NOD2 at week 6 and TLR7 at week 20 in MLMC. In MLMC and PCMC, TLR2 activation induced a reduced secretion of IL-6 and TNFα in IL-10-/- MCs. TLR4- and TLR7-mediated secretion of IL-6 and TNFα was not detected in PCMCs. Finally, no cytokine release was induced by NOD2 ligand, and responses to TLR2 and TLR4 were lower in MCs at 20 weeks. These findings indicate that PRR activation in MCs depends on the phenotype, ligand, age, and IL-10.
Collapse
Affiliation(s)
- Roberto Riquelme-Neira
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Sede Concepción, Chacabuco 539, Concepción 4070254, Chile
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Romina Walker-Vergara
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Sede Concepción, Chacabuco 539, Concepción 4070254, Chile
| | - Joan Antoni Fernández-Blanco
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Patrocinio Vergara
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
12
|
Pelayo R, Marina H, Suárez-Vega A, Hervás G, Esteban-Blanco C, Gausseres B, Foucras G, Arranz JJ, Gutiérrez-Gil B. Influence of a temporary restriction of dietary protein in prepubertal ewe lambs on first lactation milk traits and response to a mammary gland inflammatory challenge. Res Vet Sci 2023; 159:57-65. [PMID: 37084523 DOI: 10.1016/j.rvsc.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 04/23/2023]
Abstract
This study evaluated the influence of a temporary nutritional protein restriction (NPR) performed, under commercial conditions, in prepubertal female lambs on first lactation milk production traits and the inflammatory response triggered by an inflammatory challenge of the. From 40 Assaf female lambs, we defined a control group (Cn = 20), which received a standard diet for replacement lambs and the NPR group (n = 20), which received the same diet but without soybean meal between 3 and 5 months of age. About 150 days after lambing, 24 of these ewes (13 NPR, 11C) were subjected to an intramammary infusion of E. coli lipopolysaccharide (LPS). Our dynamic study identified indicator traits of local (SCC) and systemic (rectal Ta, IL-6, CXCL8, IL-10, IL-36RA, VEGF-A) response to the LPS challenge. The NPR did not show significant effects on milk production traits and did not affect the SCC and rectal Ta after the LPS challenge. However, the NPR had a significant influence on 8 of the 14 plasma biomarkers analysed, in all the cases with higher relative values in the C group. The effects observed on VEGF-A (involved in vasculogenesis during mammary gland development and vascular permeability) and IL-10 (a regulatory cytokine classically known by its anti-inflammatory action) are the most remarkable to explain the differences found between groups. Whereas further studies should be undertaken to confirm these results, our findings are of interest considering the current concern about the future world's demand for protein and the need for animal production systems to evolve toward sustainability.
Collapse
Affiliation(s)
- Rocío Pelayo
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Héctor Marina
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Aroa Suárez-Vega
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Gonzalo Hervás
- Instituto de Ganadería de Montaña (CSIC-University of León), Finca Marzanas s/n, 24346 Grulleros, León, Spain
| | - Cristina Esteban-Blanco
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Blandine Gausseres
- Université de Toulouse, École Nationale Vétérinaire de Toulouse (ENVT), INRAE, Interactions Hôtes - Agents Pathogènes (IHAP), F-31076 Toulouse, France
| | - Gilles Foucras
- Université de Toulouse, École Nationale Vétérinaire de Toulouse (ENVT), INRAE, Interactions Hôtes - Agents Pathogènes (IHAP), F-31076 Toulouse, France
| | - Juan J Arranz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Beatriz Gutiérrez-Gil
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain.
| |
Collapse
|
13
|
Glycomimetic Peptides as Therapeutic Tools. Pharmaceutics 2023; 15:pharmaceutics15020688. [PMID: 36840010 PMCID: PMC9966187 DOI: 10.3390/pharmaceutics15020688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The entry of peptides into glycobiology has led to the development of a unique class of therapeutic tools. Although numerous and well-known peptides are active as endocrine regulatory factors that bind to specific receptors, and peptides have been used extensively as epitopes for vaccine production, the use of peptides that mimic sugars as ligands of lectin-type receptors has opened a unique approach to modulate activity of immune cells. Ground-breaking work that initiated the use of peptides as tools for therapy identified sugar mimetics by screening phage display libraries. The peptides that have been discovered show significant potential as high-avidity, therapeutic tools when synthesized as multivalent structures. Advantages of peptides over sugars as drugs for immune modulation will be illustrated in this review.
Collapse
|
14
|
Chen T, Dalton G, Oh SH, Maeso-Diaz R, Du K, Meyers RA, Guy C, Abdelmalek MF, Henao R, Guarnieri P, Pullen SS, Gregory S, Locker J, Brown JM, Diehl AM. Hepatocyte Smoothened Activity Controls Susceptibility to Insulin Resistance and Nonalcoholic Fatty Liver Disease. Cell Mol Gastroenterol Hepatol 2022; 15:949-970. [PMID: 36535507 PMCID: PMC9957752 DOI: 10.1016/j.jcmgh.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND & AIMS Nonalcoholic steatohepatitis (NASH), a leading cause of cirrhosis, strongly associates with the metabolic syndrome, an insulin-resistant proinflammatory state that disrupts energy balance and promotes progressive liver degeneration. We aimed to define the role of Smoothened (Smo), an obligatory component of the Hedgehog signaling pathway, in controlling hepatocyte metabolic homeostasis and, thereby, susceptibility to NASH. METHODS We conditionally deleted Smo in hepatocytes of healthy chow-fed mice and performed metabolic phenotyping, coupled with single-cell RNA sequencing (RNA-seq), to characterize the role of hepatocyte Smo in regulating basal hepatic and systemic metabolic homeostasis. Liver RNA-seq datasets from 2 large human cohorts were also analyzed to define the relationship between Smo and NASH susceptibility in people. RESULTS Hepatocyte Smo deletion inhibited the Hedgehog pathway and promoted fatty liver, hyperinsulinemia, and insulin resistance. We identified a plausible mechanism whereby inactivation of Smo stimulated the mTORC1-SREBP1c signaling axis, which promoted lipogenesis while inhibiting the hepatic insulin cascade. Transcriptomics of bulk and single Smo-deficient hepatocytes supported suppression of insulin signaling and also revealed molecular abnormalities associated with oxidative stress and mitochondrial dysfunction. Analysis of human bulk RNA-seq data revealed that Smo expression was (1) highest in healthy livers, (2) lower in livers with NASH than in those with simple steatosis, (3) negatively correlated with markers of insulin resistance and liver injury, and (4) declined progressively as fibrosis severity worsened. CONCLUSIONS The Hedgehog pathway controls insulin sensitivity and energy homeostasis in adult livers. Loss of hepatocyte Hedgehog activity induces hepatic and systemic metabolic stress and enhances susceptibility to NASH by promoting hepatic lipoxicity and insulin resistance.
Collapse
Affiliation(s)
- Tianyi Chen
- Department of Medicine, Duke University, Durham, North Carolina
| | - George Dalton
- Department of Medicine, Duke University, Durham, North Carolina
| | - Seh-Hoon Oh
- Department of Medicine, Duke University, Durham, North Carolina
| | | | - Kuo Du
- Department of Medicine, Duke University, Durham, North Carolina
| | - Rachel A Meyers
- Department of Medicine, Duke University, Durham, North Carolina
| | - Cynthia Guy
- Department of Medicine, Duke University, Durham, North Carolina
| | | | - Ricardo Henao
- Department of Medicine, Duke University, Durham, North Carolina
| | - Paolo Guarnieri
- Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut
| | - Steven S Pullen
- Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut
| | - Simon Gregory
- Department of Medicine, Duke University, Durham, North Carolina
| | - Joseph Locker
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - J Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Anna Mae Diehl
- Department of Medicine, Duke University, Durham, North Carolina.
| |
Collapse
|
15
|
Chrisikos TT, Zhou Y, Kahn LM, Patel B, Denne NL, Brooks A, Shen L, Wang J, Watowich SS. STAT3 Inhibits Autocrine IFN Signaling in Type I Conventional Dendritic Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1286-1299. [PMID: 36038291 PMCID: PMC9529896 DOI: 10.4049/jimmunol.2101104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 07/25/2022] [Indexed: 11/12/2022]
Abstract
Type I conventional dendritic cells (cDC1s) are an essential Ag-presenting population required for generating adaptive immunity against intracellular pathogens and tumors. While the transcriptional control of cDC1 development is well understood, the mechanisms by which extracellular stimuli regulate cDC1 function remain unclear. We previously demonstrated that the cytokine-responsive transcriptional regulator STAT3 inhibits polyinosinic:polycytidylic acid [poly(I:C)]-induced cDC1 maturation and cDC1-mediated antitumor immunity in murine breast cancer, indicating an intrinsic, suppressive role for STAT3 in cDC1s. To probe transcriptional mechanisms regulating cDC1 function, we generated novel RNA sequencing datasets representing poly(I:C)-, IL-10-, and STAT3-mediated gene expression responses in murine cDC1s. Bioinformatics analyses indicated that poly(I:C) stimulates multiple inflammatory pathways independent of STAT3, while IL-10-activated STAT3 uniquely inhibits the poly(I:C)-induced type I IFN (IFN-I) transcriptional response. We validated this mechanism using purified cDC1s deficient for STAT3 or IFN signaling. Our data reveal IL-10-activated STAT3 suppresses production of IFN-β and IFN-γ, accrual of tyrosine phosphorylated STAT1, and IFN-stimulated gene expression in cDC1s after poly(I:C) exposure. Moreover, we found that maturation of cDC1s in response to poly(I:C) is dependent on the IFN-I receptor, but not the type II IFN receptor, or IFN-λ. Taken together, we elucidate an essential role for STAT3 in restraining autocrine IFN-I signaling in cDC1s elicited by poly(I:C) stimulation, and we provide novel RNA sequencing datasets that will aid in further delineating inflammatory and anti-inflammatory mechanisms in cDC1s.
Collapse
Affiliation(s)
- Taylor T Chrisikos
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX
- University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX; and
| | - Yifan Zhou
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Laura M Kahn
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX
- University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX; and
| | - Bhakti Patel
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nina L Denne
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Athena Brooks
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Li Shen
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Stephanie S Watowich
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX;
- University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX; and
| |
Collapse
|
16
|
Metabolic and epigenetic dysfunctions underlie the arrest of in vitro fertilized human embryos in a senescent-like state. PLoS Biol 2022; 20:e3001682. [PMID: 35771762 PMCID: PMC9246109 DOI: 10.1371/journal.pbio.3001682] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/19/2022] [Indexed: 12/18/2022] Open
Abstract
Around 60% of in vitro fertilized (IVF) human embryos irreversibly arrest before compaction between the 3- to 8-cell stage, posing a significant clinical problem. The mechanisms behind this arrest are unclear. Here, we show that the arrested embryos enter a senescent-like state, marked by cell cycle arrest, the down-regulation of ribosomes and histones and down-regulation of MYC and p53 activity. The arrested embryos can be divided into 3 types. Type I embryos fail to complete the maternal-zygotic transition, and Type II/III embryos have low levels of glycolysis and either high (Type II) or low (Type III) levels of oxidative phosphorylation. Treatment with the SIRT agonist resveratrol or nicotinamide riboside (NR) can partially rescue the arrested phenotype, which is accompanied by changes in metabolic activity. Overall, our data suggests metabolic and epigenetic dysfunctions underlie the arrest of human embryos.
Collapse
|
17
|
Wang Z, Liu Y, Peng L, Till B, Liao Y, Yuan S, Yan X, Chen L, Fu Q, Qin Z. Role of fibrosarcoma-induced CD11b + myeloid cells and tumor necrosis factor-α in B cell responses. Oncogene 2022; 41:1434-1444. [PMID: 35034094 DOI: 10.1038/s41388-022-02187-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 12/20/2021] [Accepted: 01/10/2022] [Indexed: 11/09/2022]
Abstract
The role of B cells in the anti-tumor immune response remains controversial. An increase in the number of B cells in the peripheral blood of some tumor patients has been associated with poor immunotherapy efficacy. However, the mechanism leading to the generation of these cells is not well-described. Using a fibrosarcoma model, we show that intraperitoneal administration of a xenogeneic antigen in tumor-bearing mice evokes large increases in antigen-specific serum immunoglobulin formation compared to tumor-naïve mice. An inability of tumor-bearing mice to induce enhanced antibody production after myeloid cell depletion suggests the antibody responses are CD11b+ myeloid cell-dependent. In vitro, CD11b+ myeloid cells promoted B cell proliferation, activation, and survival. High levels of tumor necrosis factor (TNF)-α were produced by CD11b+ cells, and TNF-α blockade inhibited B cell responses. CD11b+ cells appear to be important promoters of B cell responses and targeting B cells may increase the efficacy of immunotherapy in tumor-bearing hosts.
Collapse
Affiliation(s)
- Zibing Wang
- Department of Immunotherapy, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China.
| | - Yuqing Liu
- Department of Oncology, Third Affiliated Hospital of Xinxiang Medical College, Xinxiang, China
| | - Ling Peng
- Department of Respiratory Disease, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Brian Till
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Yuwei Liao
- Yangjiang Key Laboratory of Respiratory Diseases, Yangjiang People's Hospital, Yangjiang, China
| | - Shumin Yuan
- Department of Immunotherapy, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Xiang Yan
- Medical Oncology Department, Chinese PLA General Hospital, Beijing, China
| | - Lin Chen
- GZMU-GIBH School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Qiang Fu
- Department of General Surgery, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Zhihai Qin
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Zou M, Duren Z, Yuan Q, Li H, Hutchins AP, Wong WH, Wang Y. MIMIC: an optimization method to identify cell type-specific marker panel for cell sorting. Brief Bioinform 2021; 22:6309927. [PMID: 34180954 PMCID: PMC8575015 DOI: 10.1093/bib/bbab235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 05/25/2021] [Accepted: 05/31/2021] [Indexed: 11/14/2022] Open
Abstract
Multi-omics data allow us to select a small set of informative markers for the discrimination of specific cell types and study of cellular heterogeneity. However, it is often challenging to choose an optimal marker panel from the high-dimensional molecular profiles for a large amount of cell types. Here, we propose a method called Mixed Integer programming Model to Identify Cell type-specific marker panel (MIMIC). MIMIC maintains the hierarchical topology among different cell types and simultaneously maximizes the specificity of a fixed number of selected markers. MIMIC was benchmarked on the mouse ENCODE RNA-seq dataset, with 29 diverse tissues, for 43 surface markers (SMs) and 1345 transcription factors (TFs). MIMIC could select biologically meaningful markers and is robust for different accuracy criteria. It shows advantages over the standard single gene-based approaches and widely used dimensional reduction methods, such as multidimensional scaling and t-SNE, both in accuracy and in biological interpretation. Furthermore, the combination of SMs and TFs achieves better specificity than SMs or TFs alone. Applying MIMIC to a large collection of 641 RNA-seq samples covering 231 cell types identifies a panel of TFs and SMs that reveal the modularity of cell type association networks. Finally, the scalability of MIMIC is demonstrated by selecting enhancer markers from mouse ENCODE data. MIMIC is freely available at https://github.com/MengZou1/MIMIC.
Collapse
Affiliation(s)
- Meng Zou
- Department of Mathematics, Huazhong University of Science and Technology, Beijing 100190, China
| | - Zhana Duren
- Department of Genetics and Biochemistry, Clemson University, Beijing 100190, China
| | - Qiuyue Yuan
- Academy of Mathematics and Systems Science, CAS, Beijing 100190, China
| | - Henry Li
- Department of Health Research & Policy, Bio-X Program Stanford University, Beijing 100190, China
| | | | - Wing Hung Wong
- Department of Statistics, Department of Biomedical Data Science, Bio-X Program Stanford University, Beijing 100190, China
| | - Yong Wang
- CEMS, NCMIS, MDIS, Academy of Mathematics and Systems Science, Center for Excellence in Animal Evolution and Genetics, University of Chinese Academy of Sciences, CAS, Beijing 100190, China
| |
Collapse
|
19
|
Liu X, Zhang J, Zeigler AC, Nelson AR, Lindsey ML, Saucerman JJ. Network Analysis Reveals a Distinct Axis of Macrophage Activation in Response to Conflicting Inflammatory Cues. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:883-891. [PMID: 33408259 PMCID: PMC7854506 DOI: 10.4049/jimmunol.1901444] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 12/07/2020] [Indexed: 12/19/2022]
Abstract
Macrophages are subject to a wide range of cytokine and pathogen signals in vivo, which contribute to differential activation and modulation of inflammation. Understanding the response to multiple, often-conflicting cues that macrophages experience requires a network perspective. In this study, we integrate data from literature curation and mRNA expression profiles obtained from wild type C57/BL6J mice macrophages to develop a large-scale computational model of the macrophage signaling network. In response to stimulation across all pairs of nine cytokine inputs, the model predicted activation along the classic M1-M2 polarization axis but also a second axis of macrophage activation that distinguishes unstimulated macrophages from a mixed phenotype induced by conflicting cues. Along this second axis, combinations of conflicting stimuli, IL-4 with LPS, IFN-γ, IFN-β, or TNF-α, produced mutual inhibition of several signaling pathways, e.g., NF-κB and STAT6, but also mutual activation of the PI3K signaling module. In response to combined IFN-γ and IL-4, the model predicted genes whose expression was mutually inhibited, e.g., iNOS or Nos2 and Arg1, or mutually enhanced, e.g., Il4rα and Socs1, validated by independent experimental data. Knockdown simulations further predicted network mechanisms underlying functional cross-talk, such as mutual STAT3/STAT6-mediated enhancement of Il4rα expression. In summary, the computational model predicts that network cross-talk mediates a broadened spectrum of macrophage activation in response to mixed pro- and anti-inflammatory cytokine cues, making it useful for modeling in vivo scenarios.
Collapse
Affiliation(s)
- Xiaji Liu
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908; and
| | - Jingyuan Zhang
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908; and
| | - Angela C Zeigler
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908; and
| | - Anders R Nelson
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908; and
| | - Merry L Lindsey
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center and Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE 68198
| | - Jeffrey J Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908; and
| |
Collapse
|
20
|
Huang C, Zhu J, Wang L, Chu A, Yin Y, Vali K, Garmendia A, Tang Y. Cryptotanshinone protects porcine alveolar macrophages from infection with porcine reproductive and respiratory syndrome virus. Antiviral Res 2020; 183:104937. [PMID: 32961199 DOI: 10.1016/j.antiviral.2020.104937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/31/2020] [Accepted: 09/17/2020] [Indexed: 10/23/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS), caused by PRRS virus (PRRSV) infection, imposes enormous economic impact to the world pork industry. Currently there is no effective treatment to prevent PRRSV infection in swine. We report that the natural compound cryptotanshinone (Cpt) effectively inhibits the infection of various strains of PRRSV to porcine alveolar macrophages (PAMs), the primary cell target of PRRSV in vivo. Mechanistically, Cpt inhibits the activation of signal transducer and activator of transcription 3 (STAT3), and blocks the interleukin 10 (IL-10) stimulated as well as the basal level CD163 expression in PAMs. Cpt-treatment of PAMs is effective when applied either before or after PRRSV infection, with the combined pre- and post-PRRSV infection treatment resulting in the most significant, dose-dependent inhibition of PRRSV infection. Cpt inhibited both type I/II PRRSV infection in PAMs. Our study identified a new approach to prevent/treat PRRSV infection of pigs with natural compounds.
Collapse
Affiliation(s)
- Chang Huang
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, 1390 Storrs Rd, Storrs, CT, 06269, USA
| | - Jiaqi Zhu
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, 1390 Storrs Rd, Storrs, CT, 06269, USA
| | - Ling Wang
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, 1390 Storrs Rd, Storrs, CT, 06269, USA
| | - Alexander Chu
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, 1390 Storrs Rd, Storrs, CT, 06269, USA
| | - Yexuan Yin
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, 1390 Storrs Rd, Storrs, CT, 06269, USA
| | - Kaneha Vali
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, 1390 Storrs Rd, Storrs, CT, 06269, USA
| | - Antonio Garmendia
- Department of Pathobiology and Veterinary Sciences, University of Connecticut, 61 North Eagleville Road, Storrs, CT, 06269, USA.
| | - Young Tang
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, 1390 Storrs Rd, Storrs, CT, 06269, USA.
| |
Collapse
|
21
|
Saraiva M, Vieira P, O'Garra A. Biology and therapeutic potential of interleukin-10. J Exp Med 2020; 217:jem.20190418. [PMID: 31611251 PMCID: PMC7037253 DOI: 10.1084/jem.20190418] [Citation(s) in RCA: 584] [Impact Index Per Article: 116.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/05/2019] [Accepted: 09/11/2019] [Indexed: 12/13/2022] Open
Abstract
The authors review the molecular mechanisms regulating IL-10 production and response and describe classic and novel functions of IL-10 in immune and non-immune cells. They further discuss the therapeutic potential of IL-10 in different diseases and the outstanding questions underlying an effective application of IL-10 in clinical settings. The cytokine IL-10 is a key anti-inflammatory mediator ensuring protection of a host from over-exuberant responses to pathogens and microbiota, while playing important roles in other settings as sterile wound healing, autoimmunity, cancer, and homeostasis. Here we discuss our current understanding of the regulation of IL-10 production and of the molecular pathways associated with IL-10 responses. In addition to IL-10’s classic inhibitory effects on myeloid cells, we also describe the nonclassic roles attributed to this pleiotropic cytokine, including how IL-10 regulates basic processes of neural and adipose cells and how it promotes CD8 T cell activation, as well as epithelial repair. We further discuss its therapeutic potential in the context of different diseases and the outstanding questions that may help develop an effective application of IL-10 in diverse clinical settings.
Collapse
Affiliation(s)
- Margarida Saraiva
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Paulo Vieira
- Department of Immunology, Unité Lymphopoièse, Institut Pasteur, Paris, France.,University Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France.,Institut National de la Santé et de la Recherche Médicale U1223, Paris, France
| | - Anne O'Garra
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, London, UK.,National Heart and Lung Institute, Imperial College London, UK
| |
Collapse
|
22
|
Kim SM, Vetrivel P, Kim HH, Ha SE, Saralamma VVG, Kim GS. Artemisia iwayomogi (Dowijigi) inhibits lipopolysaccharide-induced inflammation in RAW264.7 macrophages by suppressing the NF-κB signaling pathway. Exp Ther Med 2020; 19:2161-2170. [PMID: 32104280 PMCID: PMC7027351 DOI: 10.3892/etm.2020.8472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 12/13/2019] [Indexed: 12/25/2022] Open
Abstract
Inflammatory diseases are an important health concern and have a growing incidence worldwide. Thus, developing novel and safe drugs to treat these disorders remains an important pursuit. Artemisia iwayomogi, locally known as Dowijigi (DJ), is a perennial herb found primarily in Korea and is used to treat various diseases such as hepatitis, inflammation and immune disorders. In the present study, the anti-inflammatory effects of a polyphenolic extract from the DJ flower (PDJ) in lipopolysaccharide (LPS)-stimulated mouse macrophage RAW264.7 cells were investigated. Cell cytotoxicity was assessed using the MTT assay. The production of nitric oxide (NO) and prostaglandin E2 (PGE2) was measured by Griess and ELISA analysis, respectively. The expression levels of inducible nitric oxide (iNOS) and cyclooxygenase-2 (COX2) were examined by western blot analysis. Reverse transcription-quantitative PCR was performed to detect the mRNA expression levels of pro-inflammatory cytokines, including tumor necrosis factor α (TNFα), interleukin (IL)-6 and IL-1β, as well as COX2 and iNOS. The production of NO and PGE2 was significantly decreased following treatment with PDJ. The mRNA expression levels of TNFα, IL-6, IL-1β, COX2 and iNOS were significantly decreased in LPS-induced PDJ co-treated cells compared with the group treated with LPS alone. Western blot analysis indicated that PDJ downregulated the LPS-induced expression of iNOS and COX2, as well as the expression of NF-κB proteins. In conclusion, the present study demonstrated that PDJ exerted anti-inflammatory effects in LPS-induced macrophage cells by suppressing the NF-κB signaling pathway. Therefore, PDJ may be used as a potential therapeutic agent in inflammation.
Collapse
Affiliation(s)
- Seong Min Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsang 52828, Republic of Korea
| | - Preethi Vetrivel
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsang 52828, Republic of Korea
| | - Hun Hwan Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsang 52828, Republic of Korea
| | - Sang Eun Ha
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsang 52828, Republic of Korea
| | - Venu Venkatarame Gowda Saralamma
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsang 52828, Republic of Korea
| | - Gon Sup Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsang 52828, Republic of Korea
| |
Collapse
|
23
|
Zhang T, Huang K, Zhu Y, Wang T, Shan Y, Long B, Li Y, Chen Q, Wang P, Zhao S, Li D, Wu C, Kang B, Gu J, Mai Y, Wang Q, Li J, Zhang Y, Liang Z, Guo L, Wu F, Su S, Wang J, Gao M, Zhong X, Liao B, Chen J, Zhang X, Shu X, Pei D, Nie J, Pan G. Vitamin C-dependent lysine demethylase 6 (KDM6)-mediated demethylation promotes a chromatin state that supports the endothelial-to-hematopoietic transition. J Biol Chem 2019; 294:13657-13670. [PMID: 31341023 DOI: 10.1074/jbc.ra119.009757] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/14/2019] [Indexed: 12/21/2022] Open
Abstract
Hematopoietic stem cells (HSCs)/progenitor cells (HPCs) are generated from hemogenic endothelial cells (HECs) during the endothelial-to-hematopoietic transition (EHT); however, the underlying mechanism remains poorly understood. Here, using an array of approaches, including CRSPR/Cas9 gene knockouts, RNA-Seq, ChIP-Seq, ATAC-Seq etc., we report that vitamin C (Vc) is essential in HPC generation during human pluripotent stem cell (hPSC) differentiation in defined culture conditions. Mechanistically, we found that the endothelial cells generated in the absence of Vc fail to undergo the EHT because of an apparent failure in opening up genomic loci essential for hematopoiesis. Under Vc deficiency, these loci exhibited abnormal accumulation of histone H3 trimethylation at Lys-27 (H3K27me3), a repressive histone modification that arose because of lower activities of demethylases that target H3K27me3. Consistently, deletion of the two H3K27me3 demethylases, Jumonji domain-containing 3 (JMJD3 or KDM6B) and histone demethylase UTX (UTX or KDM6A), impaired HPC generation even in the presence of Vc. Furthermore, we noted that Vc and jmjd3 are also important for HSC generation during zebrafish development. Together, our findings reveal an essential role for Vc in the EHT for hematopoiesis, and identify KDM6-mediated chromatin demethylation as an important regulatory mechanism in hematopoietic cell differentiation.
Collapse
Affiliation(s)
- Tian Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005 China
| | - Ke Huang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005 China
| | - Yanling Zhu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Tianyu Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yongli Shan
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Bing Long
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yuhang Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Qianyu Chen
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Pengtao Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Shaoyang Zhao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Dongwei Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Chuman Wu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Baoqiang Kang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jiaming Gu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yuchan Mai
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Qing Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jinbing Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yanqi Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Zechuan Liang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Lin Guo
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Fang Wu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Shuquan Su
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Junwei Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Minghui Gao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiaofen Zhong
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Baojian Liao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jiekai Chen
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiao Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiaodong Shu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Duanqing Pei
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jinfu Nie
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Guangjin Pan
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005 China.,Shandong Medicinal Biotechnology Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250012, China
| |
Collapse
|
24
|
Cevey ÁC, Penas FN, Alba Soto CD, Mirkin GA, Goren NB. IL-10/STAT3/SOCS3 Axis Is Involved in the Anti-inflammatory Effect of Benznidazole. Front Immunol 2019; 10:1267. [PMID: 31214200 PMCID: PMC6558013 DOI: 10.3389/fimmu.2019.01267] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/17/2019] [Indexed: 12/11/2022] Open
Abstract
Anti-parasitic treatment for Chagas disease mainly relies on benznidazole, which is virtually the only drug available in the market. Besides its anti-parasitic effects, benznidazole has anti-inflammatory properties. In this work we studied the mechanisms involved in the latter, demonstrating the participation of the IL-10/STAT3/SOCS3 pathway. To achieve this goal, the anti-inflammatory properties of benznidazole were studied using an in vitro model of cardiomyocyte primary culture stimulated with LPS. LPS increased both SOCS3 expression and STAT3 phosphorylation. The addition of benznidazole increased their expression even further. Specific inhibition of STAT3 precluded this effect, suggesting a role for STAT3 in the increase of SOCS3 expression induced by benznidazole. To assess the participation of SOCS3 in the anti-inflammatory effect of benznidazole, we accomplished specific knockdown of SOCS3 with siRNA. Silencing of SOCS3 in cardiomyocytes precluded the inhibitory effects of benznidazole on TNF-α, IL-6, iNOS expression and NO release. Moreover, in the absence of SOCS3, benznidazole could neither prevent IKK phosphorylation nor IκBα degradation, supporting the notion that SOCS3 is required for the benznidazole-mediated inhibition of the NF-κB pathway. Previously, we demonstrated that IL-10 increases the expression of SOCS3 in cultured cardiomyocytes. Here, we found that benznidazole shows a trend to increased IL-10 expression. To evaluate whether benznidazole increased SOCS3 in an IL-10-dependent manner, cardiomyocytes from IL-10 knockout mice were pre-treated with benznidazole and stimulated with LPS. Benznidazole neither inhibited NO release nor avoid IKK phosphorylation or IκBα degradation, showing that IL-10 is required for benznidazole-mediated inhibition of NF-κB. Moreover, exogenous addition of IL-10 to IL-10 knockout cardiomyocytes restored the inhibitory effect of benznidazole on NO release. The results reported herein show, for the first time, that the IL-10/STAT3/SOCS3 axis is involved in the anti-inflammatory effects of benznidazole. These findings may add up to new therapeutic strategies for chronic Chagas disease given its inflammatory nature.
Collapse
Affiliation(s)
- Ágata C Cevey
- Facultad de Medicina, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Federico N Penas
- Facultad de Medicina, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Catalina D Alba Soto
- Facultad de Medicina, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gerardo A Mirkin
- Facultad de Medicina, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nora B Goren
- Facultad de Medicina, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
25
|
Yan Z, Yang W, Parkitny L, Gibson SA, Lee KS, Collins F, Deshane JS, Cheng W, Weinmann AS, Wei H, Qin H, Benveniste EN. Deficiency of Socs3 leads to brain-targeted EAE via enhanced neutrophil activation and ROS production. JCI Insight 2019; 5:126520. [PMID: 30939124 DOI: 10.1172/jci.insight.126520] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Dysregulation of the JAK/STAT signaling pathway is associated with Multiple Sclerosis (MS) and its mouse model, Experimental Autoimmune Encephalomyelitis (EAE). Suppressors Of Cytokine Signaling (SOCS) negatively regulate the JAK/STAT pathway. We previously reported a severe, brain-targeted, atypical form of EAE in mice lacking Socs3 in myeloid cells (Socs3ΔLysM), which is associated with cerebellar neutrophil infiltration. There is emerging evidence that neutrophils are detrimental in the pathology of MS/EAE, however, their exact function is unclear. Here we demonstrate that neutrophils from the cerebellum of Socs3ΔLysM mice show a hyper-activated phenotype with excessive production of reactive oxygen species (ROS) at the peak of EAE. Neutralization of ROS in vivo delayed the onset and reduced severity of atypical EAE. Mechanistically, Socs3-deficient neutrophils exhibit enhanced STAT3 activation, a hyper-activated phenotype in response to G-CSF, and upon G-CSF priming, increased ROS production. Neutralization of G-CSF in vivo significantly reduced the incidence and severity of the atypical EAE phenotype. Overall, our work elucidates that hypersensitivity of G-CSF/STAT3 signaling in Socs3ΔLysM mice leads to atypical EAE by enhanced neutrophil activation and increased oxidative stress, which may explain the detrimental role of G-CSF in MS patients.
Collapse
Affiliation(s)
- Zhaoqi Yan
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Wei Yang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Luke Parkitny
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sara A Gibson
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kevin S Lee
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Forrest Collins
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Wayne Cheng
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Amy S Weinmann
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hairong Wei
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hongwei Qin
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Etty N Benveniste
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
26
|
Chali F, Milior G, Marty S, Morin-Brureau M, Le Duigou C, Savary E, Blugeon C, Jourdren L, Miles R. Lipid markers and related transcripts during excitotoxic neurodegeneration in kainate-treated mice. Eur J Neurosci 2019; 50:1759-1778. [PMID: 30767299 DOI: 10.1111/ejn.14375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/16/2022]
Abstract
Lipid homeostasis is dysregulated in some neurodegenerative diseases and after brain injuries due to excess glutamate or lack of oxygen. However the kinetics and cell specificity of dysregulation in different groups of lipids during excitotoxic neuronal death are not clear. Here we examined the changes during excitotoxic neuronal death induced by injecting kainic acid (KA) into the CA1 region of mouse hippocampus. We compared neuronal loss and glial cell proliferation with changes in lipid-related transcripts and markers for different lipid groups, over 12 days after KA-treatment. As neurons showed initial signs of damage, transcripts and proteins linked to fatty acid oxidation were up-regulated. Cholesterol biosynthesis induced by transcripts controlled by the transcription factor Srebp2 seems to be responsible for a transient increase in neuronal free cholesterol at 1 to 2 days. In microglia, but not in neurons, Perilipin-2 associated lipid droplets were induced and properties of Nile red emissions suggest lipid contents change over time. After microglial expression of phagocytotic markers at 2 days, some neutral lipid deposits co-localized with lysosome markers of microglia and were detected within putative phagocytotic cups. These data delineate distinct lipid signals in neurons and glial cells during excitotoxic processes from initial neuronal damage to engagement of the lysosome-phagosome system.
Collapse
Affiliation(s)
- Farah Chali
- Inserm U1127, CNRS UMR7225, Sorbonne Université, UPMC Université Paris 6 UMR S1127, Institut du Cerveau et de la Moelle Epinière, CHU Pitié-Salpêtrière, Paris, France
| | - Giampaolo Milior
- Inserm U1127, CNRS UMR7225, Sorbonne Université, UPMC Université Paris 6 UMR S1127, Institut du Cerveau et de la Moelle Epinière, CHU Pitié-Salpêtrière, Paris, France
| | - Serge Marty
- Inserm U1127, CNRS UMR7225, Sorbonne Université, UPMC Université Paris 6 UMR S1127, Institut du Cerveau et de la Moelle Epinière, CHU Pitié-Salpêtrière, Paris, France
| | - Mélanie Morin-Brureau
- Inserm U1127, CNRS UMR7225, Sorbonne Université, UPMC Université Paris 6 UMR S1127, Institut du Cerveau et de la Moelle Epinière, CHU Pitié-Salpêtrière, Paris, France
| | - Caroline Le Duigou
- Inserm U1127, CNRS UMR7225, Sorbonne Université, UPMC Université Paris 6 UMR S1127, Institut du Cerveau et de la Moelle Epinière, CHU Pitié-Salpêtrière, Paris, France
| | - Etienne Savary
- Inserm U1127, CNRS UMR7225, Sorbonne Université, UPMC Université Paris 6 UMR S1127, Institut du Cerveau et de la Moelle Epinière, CHU Pitié-Salpêtrière, Paris, France
| | - Corinne Blugeon
- Institut de Biologie de l'École normale supérieure (IBENS), École Normale Supérieure, CNRS, INSERM PSL Université Paris, Paris, France
| | - Laurent Jourdren
- Institut de Biologie de l'École normale supérieure (IBENS), École Normale Supérieure, CNRS, INSERM PSL Université Paris, Paris, France
| | - Richard Miles
- Inserm U1127, CNRS UMR7225, Sorbonne Université, UPMC Université Paris 6 UMR S1127, Institut du Cerveau et de la Moelle Epinière, CHU Pitié-Salpêtrière, Paris, France
| |
Collapse
|
27
|
Transposable elements are regulated by context-specific patterns of chromatin marks in mouse embryonic stem cells. Nat Commun 2019; 10:34. [PMID: 30604769 PMCID: PMC6318327 DOI: 10.1038/s41467-018-08006-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 12/11/2018] [Indexed: 01/18/2023] Open
Abstract
The majority of mammalian genomes are devoted to transposable elements (TEs). Whilst TEs are increasingly recognized for their important biological functions, they are a potential danger to genomic stability and are carefully regulated by the epigenetic system. However, the full complexity of this regulatory system is not understood. Here, using mouse embryonic stem cells, we show that TEs are suppressed by heterochromatic marks like H3K9me3, and are also labelled by all major types of chromatin modification in complex patterns, including bivalent activatory and repressive marks. We identified 29 epigenetic modifiers that significantly deregulated at least one type of TE. The loss of Setdb1, Ncor2, Rnf2, Kat5, Prmt5, Uhrf1, and Rrp8 caused widespread changes in TE expression and chromatin accessibility. These effects were context-specific, with different chromatin modifiers regulating the expression and chromatin accessibility of specific subsets of TEs. Our work reveals the complex patterns of epigenetic regulation of TEs. Transposable elements (TEs) fulfill essential but poorly understood roles in genome organization and gene expression control. Here the authors show that the regulation of TEs occurs through overlapping epigenetic mechanisms that control the expression and chromatin signatures at TEs.
Collapse
|
28
|
Mooney JP, Galloway LJ, Riley EM. Malaria, anemia, and invasive bacterial disease: A neutrophil problem? J Leukoc Biol 2018; 105:645-655. [PMID: 30570786 PMCID: PMC6487965 DOI: 10.1002/jlb.3ri1018-400r] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/29/2018] [Accepted: 12/01/2018] [Indexed: 12/16/2022] Open
Abstract
Invasive bacterial disease is well described in immunocompromised hosts, including those with malaria infection. One bacterial infection frequently observed in children with Plasmodium falciparum infection is nontyphoidal salmonella (NTS) infection, in which a typically intestinal infection becomes systemic with serious, often fatal, consequences. In this review, we consider the role of malaria‐induced immunoregulatory responses in tipping the balance from tissue homeostasis during malaria infection to risk of invasive NTS. Also, neutrophils are crucial in the clearance of NTS but their ability to mount an oxidative burst and kill intracellular Salmonella is severely compromised during, and for some time after, an acute malaria infection. Here, we summarize the evidence linking malaria and invasive NTS infections; describe the role of neutrophils in clearing NTS infections; review evidence for neutrophil dysfunction in malaria infections; and explore roles of heme oxygenase‐1, IL‐10, and complement in mediating this dysfunction. Finally, given the epidemiological evidence that low density, subclinical malaria infections pose a risk for invasive NTS infections, we consider whether the high prevalence of such infections might underlie the very high incidence of invasive bacterial disease across much of sub‐Saharan Africa.
Collapse
Affiliation(s)
- Jason P Mooney
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Lauren J Galloway
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Eleanor M Riley
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
29
|
Marcou Q, Carmi-Levy I, Trichot C, Soumelis V, Mora T, Walczak AM. A model for the integration of conflicting exogenous and endogenous signals by dendritic cells. Phys Biol 2018; 15:056001. [PMID: 29360100 DOI: 10.1088/1478-3975/aaaa0a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cells of the immune system are confronted with opposing pro- and anti-inflammatory signals. Dendritic cells (DC) integrate these cues to make informed decisions whether to initiate an immune response. Confronted with exogenous microbial stimuli, DC endogenously produce both anti- (IL-10) and pro-inflammatory (TNFα) cues whose joint integration controls the cell's final decision. Backed by experimental measurements we present a theoretical model to quantitatively describe the integration mode of these opposing signals. We propose a two step integration model that modulates the effect of the two types of signals: an initial bottleneck integrates both signals (IL-10 and TNFα), the output of which is later modulated by the anti-inflammatory signal. We show that the anti-inflammatory IL-10 signaling is long ranged, as opposed to the short-ranged pro-inflammatory TNFα signaling. The model suggests that the population averaging and modulation of the pro-inflammatory response by the anti-inflammatory signal is a safety guard against excessive immune responses.
Collapse
Affiliation(s)
- Quentin Marcou
- Laboratoire de physique théorique, CNRS, UPMC and École normale supérieure, 75005 Paris, France. Equal contribution
| | | | | | | | | | | |
Collapse
|
30
|
Grace JO, Malik A, Reichman H, Munitz A, Barski A, Fulkerson PC. Reuse of public, genome-wide, murine eosinophil expression data for hypotheses development. J Leukoc Biol 2018; 104:185-193. [PMID: 29758095 DOI: 10.1002/jlb.1ma1117-444r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/12/2018] [Accepted: 03/18/2018] [Indexed: 12/12/2022] Open
Abstract
The eosinophil (Eos) surface phenotype and activation state is altered after recruitment into tissues and after exposure to pro-inflammatory cytokines. In addition, distinct Eos functional subsets have been described, suggesting that tissue-specific responses for Eos contribute to organ homeostasis. Understanding the mechanisms by which Eos subsets achieve their tissue-specific identity is currently an unmet goal for the eosinophil research community. Publicly archived expression data can be used to answer original questions, test and generate new hypotheses, and serve as a launching point for experimental design. With these goals in mind, we investigated the effect of genetic background, culture methods, and tissue residency on murine Eos gene expression using publicly available, genome-wide expression data. Eos differentiated from cultures have a gene expression profile that is distinct from that of native homeostatic Eos; thus, researchers can repurpose published expression data to aid in selecting the appropriate culture method to study their gene of interest. In addition, we identified Eos lung- and gastrointestinal-specific transcriptomes, highlighting the profound effect of local tissue environment on gene expression in a terminally differentiated granulocyte even at homeostasis. Expanding the "toolbox" of Eos researchers to include public-data reuse can reduce redundancy, increase research efficiency, and lead to new biological insights.
Collapse
Affiliation(s)
- Jillian O Grace
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Astha Malik
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Hadar Reichman
- Department of Clinical Microbiology and Immunology, The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ariel Munitz
- Department of Clinical Microbiology and Immunology, The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Artem Barski
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Patricia C Fulkerson
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
31
|
Wang F, Liu Z, Park SH, Gwag T, Lu W, Ma M, Sui Y, Zhou C. Myeloid β-Catenin Deficiency Exacerbates Atherosclerosis in Low-Density Lipoprotein Receptor-Deficient Mice. Arterioscler Thromb Vasc Biol 2018; 38:1468-1478. [PMID: 29724817 PMCID: PMC6023740 DOI: 10.1161/atvbaha.118.311059] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 04/18/2018] [Indexed: 11/16/2022]
Abstract
Supplemental Digital Content is available in the text. Objective— The Wnt/β-catenin signaling is an ancient and evolutionarily conserved pathway that regulates essential aspects of cell differentiation, proliferation, migration and polarity. Canonical Wnt/β-catenin signaling has also been implicated in the pathogenesis of atherosclerosis. Macrophage is one of the major cell types involved in the initiation and progression of atherosclerosis, but the role of macrophage β-catenin in atherosclerosis remains elusive. This study aims to investigate the impact of β-catenin expression on macrophage functions and atherosclerosis development. Approach and Results— To investigate the role of macrophage canonical Wnt/β-catenin signaling in atherogenesis, we generated β-cateninΔmyeLDLR−/− mice (low-density lipoprotein receptor–deficient mice with myeloid-specific β-catenin deficiency). As expected, deletion of β-catenin decreased macrophage adhesion and migration properties in vitro. However, deficiency of β-catenin significantly increased atherosclerotic lesion areas in the aortic root of LDLR−/− (low-density lipoprotein receptor–deficient) mice without affecting the plasma lipid levels and atherosclerotic plaque composition. Mechanistic studies revealed that β-catenin can regulate activation of STAT (signal transducer and activator of transcription) pathway in macrophages, and ablation of β-catenin resulted in STAT3 downregulation and STAT1 activation, leading to elevated macrophage inflammatory responses and increased atherosclerosis. Conclusions— This study demonstrates a critical role of myeloid β-catenin expression in atherosclerosis by modulating macrophage inflammatory responses.
Collapse
Affiliation(s)
- Fang Wang
- From the Department of Pharmacology and Nutritional Sciences (F.W., Z.L., S.-H.P., T.G., W.L., M.M., Y.S., C.Z.)
| | - Zun Liu
- From the Department of Pharmacology and Nutritional Sciences (F.W., Z.L., S.-H.P., T.G., W.L., M.M., Y.S., C.Z.)
| | - Se-Hyung Park
- From the Department of Pharmacology and Nutritional Sciences (F.W., Z.L., S.-H.P., T.G., W.L., M.M., Y.S., C.Z.)
| | - Taesik Gwag
- From the Department of Pharmacology and Nutritional Sciences (F.W., Z.L., S.-H.P., T.G., W.L., M.M., Y.S., C.Z.)
| | - Weiwei Lu
- From the Department of Pharmacology and Nutritional Sciences (F.W., Z.L., S.-H.P., T.G., W.L., M.M., Y.S., C.Z.)
| | - Murong Ma
- From the Department of Pharmacology and Nutritional Sciences (F.W., Z.L., S.-H.P., T.G., W.L., M.M., Y.S., C.Z.)
| | - Yipeng Sui
- From the Department of Pharmacology and Nutritional Sciences (F.W., Z.L., S.-H.P., T.G., W.L., M.M., Y.S., C.Z.)
| | - Changcheng Zhou
- From the Department of Pharmacology and Nutritional Sciences (F.W., Z.L., S.-H.P., T.G., W.L., M.M., Y.S., C.Z.)
- Saha Cardiovascular Research Center (C.Z.), University of Kentucky, Lexington
| |
Collapse
|
32
|
Zhang H, Li HS, Hillmer EJ, Zhao Y, Chrisikos TT, Hu H, Wu X, Thompson EJ, Clise-Dwyer K, Millerchip KA, Wei Y, Puebla-Osorio N, Kaushik S, Santos MA, Wang B, Garcia-Manero G, Wang J, Sun SC, Watowich SS. Genetic rescue of lineage-balanced blood cell production reveals a crucial role for STAT3 antiinflammatory activity in hematopoiesis. Proc Natl Acad Sci U S A 2018; 115:E2311-E2319. [PMID: 29463696 PMCID: PMC5878002 DOI: 10.1073/pnas.1713889115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Blood cell formation must be appropriately maintained throughout life to provide robust immune function, hemostasis, and oxygen delivery to tissues, and to prevent disorders that result from over- or underproduction of critical lineages. Persistent inflammation deregulates hematopoiesis by damaging hematopoietic stem and progenitor cells (HSPCs), leading to elevated myeloid cell output and eventual bone marrow failure. Nonetheless, antiinflammatory mechanisms that protect the hematopoietic system are understudied. The transcriptional regulator STAT3 has myriad roles in HSPC-derived populations and nonhematopoietic tissues, including a potent antiinflammatory function in differentiated myeloid cells. STAT3 antiinflammatory activity is facilitated by STAT3-mediated transcriptional repression of Ube2n, which encodes the E2 ubiquitin-conjugating enzyme Ubc13 involved in proinflammatory signaling. Here we demonstrate a crucial role for STAT3 antiinflammatory activity in preservation of HSPCs and lineage-balanced hematopoiesis. Conditional Stat3 removal from the hematopoietic system led to depletion of the bone marrow lineage- Sca-1+ c-Kit+ CD150+ CD48- HSPC subset (LSK CD150+ CD48- cells), myeloid-skewed hematopoiesis, and accrual of DNA damage in HSPCs. These responses were accompanied by intrinsic transcriptional alterations in HSPCs, including deregulation of inflammatory, survival and developmental pathways. Concomitant Ube2n/Ubc13 deletion from Stat3-deficient hematopoietic cells enabled lineage-balanced hematopoiesis, mitigated depletion of bone marrow LSK CD150+ CD48- cells, alleviated HSPC DNA damage, and corrected a majority of aberrant transcriptional responses. These results indicate an intrinsic protective role for STAT3 in the hematopoietic system, and suggest that this is mediated by STAT3-dependent restraint of excessive proinflammatory signaling via Ubc13 modulation.
Collapse
Affiliation(s)
- Huiyuan Zhang
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Haiyan S Li
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Emily J Hillmer
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Yang Zhao
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Taylor T Chrisikos
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030
| | - Hongbo Hu
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Xiao Wu
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Erika J Thompson
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Karen Clise-Dwyer
- Department of Stem Cell Transplantation Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Karen A Millerchip
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Yue Wei
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Nahum Puebla-Osorio
- Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Saakshi Kaushik
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Margarida A Santos
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Bin Wang
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | | | - Jing Wang
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Shao-Cong Sun
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030
| | - Stephanie S Watowich
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX 77030;
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030
| |
Collapse
|
33
|
Fu X, He F, Li Y, Shahveranov A, Hutchins AP. Genomic and molecular control of cell type and cell type conversions. CELL REGENERATION 2017; 6:1-7. [PMID: 29348912 PMCID: PMC5769489 DOI: 10.1016/j.cr.2017.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/06/2017] [Accepted: 09/18/2017] [Indexed: 12/17/2022]
Abstract
Organisms are made of a limited number of cell types that combine to form higher order tissues and organs. Cell types have traditionally been defined by their morphologies or biological activity, yet the underlying molecular controls of cell type remain unclear. The onset of single cell technologies, and more recently genomics (particularly single cell genomics), has substantially increased the understanding of the concept of cell type, but has also increased the complexity of this understanding. These new technologies have added a new genome wide molecular dimension to the description of cell type, with genome-wide expression and epigenetic data acting as a cell type ‘fingerprint’ to describe the cell state. Using these genomic fingerprints cell types are being increasingly defined based on specific genomic and molecular criteria, without necessarily a distinct biological function. In this review, we will discuss the molecular definitions of cell types and cell type control, and particularly how endogenous and exogenous transcription factors can control cell types and cell type conversions.
Collapse
|
34
|
Roux BT, Heward JA, Donnelly LE, Jones SW, Lindsay MA. Catalog of Differentially Expressed Long Non-Coding RNA following Activation of Human and Mouse Innate Immune Response. Front Immunol 2017; 8:1038. [PMID: 28900427 PMCID: PMC5581803 DOI: 10.3389/fimmu.2017.01038] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/11/2017] [Indexed: 12/12/2022] Open
Abstract
Despite increasing evidence to indicate that long non-coding RNAs (lncRNAs) are novel regulators of immunity, there has been no systematic attempt to identify and characterize the lncRNAs whose expression is changed following the induction of the innate immune response. To address this issue, we have employed next-generation sequencing data to determine the changes in the lncRNA profile in four human (monocytes, macrophages, epithelium, and chondrocytes) and four mouse cell types (RAW 264.7 macrophages, bone marrow-derived macrophages, peritoneal macrophages, and splenic dendritic cells) following exposure to the pro-inflammatory mediators, lipopolysaccharides (LPS), or interleukin-1β. We show differential expression of 204 human and 210 mouse lncRNAs, with positional analysis demonstrating correlation with immune-related genes. These lncRNAs are predominantly cell-type specific, composed of large regions of repeat sequences, and show poor evolutionary conservation. Comparison within the human and mouse sequences showed less than 1% sequence conservation, although we identified multiple conserved motifs. Of the 204 human lncRNAs, 21 overlapped with syntenic mouse lncRNAs, of which five were differentially expressed in both species. Among these syntenic lncRNA was IL7-AS (antisense), which was induced in multiple cell types and shown to regulate the production of the pro-inflammatory mediator interleukin-6 in both human and mouse cells. In summary, we have identified and characterized those lncRNAs that are differentially expressed following activation of the human and mouse innate immune responses and believe that these catalogs will provide the foundation for the future analysis of the role of lncRNAs in immune and inflammatory responses.
Collapse
Affiliation(s)
- Benoit T Roux
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | - James A Heward
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Louise E Donnelly
- Airway Disease, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Simon W Jones
- Institute of Inflammation and Ageing, MRC-ARUK Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, United Kingdom
| | - Mark A Lindsay
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom.,Airway Disease, National Heart and Lung Institute, Imperial College, London, United Kingdom
| |
Collapse
|
35
|
Affiliation(s)
- Franziska Denk
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London, London SE1 1UL, United Kingdom
| | - David L. Bennett
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Stephen B. McMahon
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London, London SE1 1UL, United Kingdom
| |
Collapse
|
36
|
Hutchins AP, Yang Z, Li Y, He F, Fu X, Wang X, Li D, Liu K, He J, Wang Y, Chen J, Esteban MA, Pei D. Models of global gene expression define major domains of cell type and tissue identity. Nucleic Acids Res 2017; 45:2354-2367. [PMID: 28426095 PMCID: PMC5389706 DOI: 10.1093/nar/gkx054] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/22/2017] [Indexed: 01/22/2023] Open
Abstract
The current classification of cells in an organism is largely based on their anatomic and developmental origin. Cells types and tissues are traditionally classified into those that arise from the three embryonic germ layers, the ectoderm, mesoderm and endoderm, but this model does not take into account the organization of cell type-specific patterns of gene expression. Here, we present computational models for cell type and tissue specification derived from a collection of 921 RNA-sequencing samples from 272 distinct mouse cell types or tissues. In an unbiased fashion, this analysis accurately predicts the three known germ layers. Unexpectedly, this analysis also suggests that in total there are eight major domains of cell type-specification, corresponding to the neurectoderm, neural crest, surface ectoderm, endoderm, mesoderm, blood mesoderm, germ cells and the embryonic domain. Further, we identify putative genes responsible for specifying the domain and the cell type. This model has implications for understanding trans-lineage differentiation for stem cells, developmental cell biology and regenerative medicine.
Collapse
Affiliation(s)
- Andrew P Hutchins
- Department of Biology, Southern University of Science and Technology of China, Shenzhen, Guangdong 518055, China.,Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Zhongzhou Yang
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Yuhao Li
- Department of Biology, Southern University of Science and Technology of China, Shenzhen, Guangdong 518055, China
| | - Fangfang He
- Department of Biology, Southern University of Science and Technology of China, Shenzhen, Guangdong 518055, China
| | - Xiuling Fu
- Department of Biology, Southern University of Science and Technology of China, Shenzhen, Guangdong 518055, China
| | - Xiaoshan Wang
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Dongwei Li
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Kairong Liu
- Academy of Mathematics and Systems Science, National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences, Beijing 100080, China.,Beihang University, Beijing 100191, China
| | - Jiangping He
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Yong Wang
- Academy of Mathematics and Systems Science, National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences, Beijing 100080, China
| | - Jiekai Chen
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Miguel A Esteban
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China.,Laboratory of RNA, Chromatin and Human disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Duanqing Pei
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| |
Collapse
|
37
|
Zaal A, Dieker M, Oudenampsen M, Turksma AW, Lissenberg-Thunnissen SN, Wouters D, van Ham SM, Ten Brinke A. Anaphylatoxin C5a Regulates 6-Sulfo-LacNAc Dendritic Cell Function in Human through Crosstalk with Toll-Like Receptor-Induced CREB Signaling. Front Immunol 2017; 8:818. [PMID: 28769928 PMCID: PMC5509794 DOI: 10.3389/fimmu.2017.00818] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 06/27/2017] [Indexed: 01/05/2023] Open
Abstract
Activation of antigen-presenting dendritic cells (DCs) and the complement system are essential early events in the immune defense against invading pathogens. Recently, we and others demonstrated immunological crosstalk between signaling from receptors recognizing complement activation products and PAMPs on DCs. This affects DC effector function, as demonstrated by the finding that C5a prevents induction of pro-inflammatory cytokines by toll-like receptor (TLR) ligands in human monocyte-derived DCs (moDCs). Here, we demonstrate that this regulatory crosstalk is specifically important in 6-sulfo LacNAc dendritic cells (slanDCs), the most pro-inflammatory DC subset found in human. C5aR and TLR signaling show profound interference in the ERK/p38/CREB1 signaling pathways. C5aR signaling accelerates TLR-induced CREB1 phosphorylation both in moDC and slanDC. This is key in the regulatory effect of C5a on pro-inflammatory DC maturation by mediating induction of IL-10, which subsequently inhibits pro-inflammatory cytokine production via negative feedback signaling. Importantly, the regulatory effect of C5a affects T-cell immunity by decreasing Th1 and cytotoxic CD8 T-cell responses. The finding that the pro-inflammatory effector function of slanDC can be down modulated by activation products of the complement system highlights the existence of intricate regulatory interactions between various arms of the immune system. Intensive immune monitoring of patients suffering from complement-mediated diseases or patients receiving complement modulating compounds can give more inside in the contribution of complement receptor and TLR crosstalk in APCs in disease.
Collapse
Affiliation(s)
- Anouk Zaal
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Miranda Dieker
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Manon Oudenampsen
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Annelies W Turksma
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Suzanne N Lissenberg-Thunnissen
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Diana Wouters
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Anja Ten Brinke
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
38
|
Brück J, Holstein J, Glocova I, Seidel U, Geisel J, Kanno T, Kumagai J, Mato N, Sudowe S, Widmaier K, Sinnberg T, Yazdi AS, Eberle FC, Hirahara K, Nakayama T, Röcken M, Ghoreschi K. Nutritional control of IL-23/Th17-mediated autoimmune disease through HO-1/STAT3 activation. Sci Rep 2017; 7:44482. [PMID: 28290522 PMCID: PMC5349589 DOI: 10.1038/srep44482] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 02/09/2017] [Indexed: 02/07/2023] Open
Abstract
The nutritional curcumin (CUR) is beneficial in cell-mediated autoimmune diseases. The molecular mechanisms underlying this food-mediated silencing of inflammatory immune responses are poorly understood. By investigating antigen-specific immune responses we found that dietary CUR impairs the differentiation of Th1/Th17 cells in vivo during encephalomyelitis and instead promoted Th2 cells. In contrast, feeding CUR had no inhibitory effect on ovalbumin-induced airway inflammation. Mechanistically, we found that CUR induces an anti-inflammatory phenotype in dendritic cells (DC) with enhanced STAT3 phosphorylation and suppressed expression of Il12b and Il23a. On the molecular level CUR readily induced NRF2-sensitive heme oxygenase 1 (HO-1) mRNA and protein in LPS-activated DC. HO-1 enhanced STAT3 phosphorylation, which enriched to Il12b and Il23a loci and negatively regulated their transcription. These findings demonstrate the underlying mechanism through which a nutritional can interfere with the immune response. CUR silences IL-23/Th17-mediated pathology by enhancing HO-1/STAT3 interaction in DC.
Collapse
Affiliation(s)
- Jürgen Brück
- Department of Dermatology, University Medical Center of the Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Julia Holstein
- Department of Dermatology, University Medical Center of the Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Ivana Glocova
- Department of Dermatology, University Medical Center of the Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Ursula Seidel
- Department of Dermatology, University Medical Center of the Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Julia Geisel
- Department of Dermatology, University Medical Center of the Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Toshio Kanno
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Jin Kumagai
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Naoko Mato
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Stephan Sudowe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, 55101 Mainz, Germany
| | - Katja Widmaier
- Department of Dermatology, University Medical Center of the Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Tobias Sinnberg
- Department of Dermatology, University Medical Center of the Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Amir S. Yazdi
- Department of Dermatology, University Medical Center of the Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Franziska C. Eberle
- Department of Dermatology, University Medical Center of the Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Kiyoshi Hirahara
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Martin Röcken
- Department of Dermatology, University Medical Center of the Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Kamran Ghoreschi
- Department of Dermatology, University Medical Center of the Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
39
|
Efficacy of compound Qingre Granules on inflammatory markers in patients with fever of unknown origin: A randomized clinical trial. Eur J Integr Med 2017. [DOI: 10.1016/j.eujim.2017.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Li H, Lai P, Jia J, Song Y, Xia Q, Huang K, He N, Ping W, Chen J, Yang Z, Li J, Yao M, Dong X, Zhao J, Hou C, Esteban MA, Gao S, Pei D, Hutchins AP, Yao H. RNA Helicase DDX5 Inhibits Reprogramming to Pluripotency by miRNA-Based Repression of RYBP and its PRC1-Dependent and -Independent Functions. Cell Stem Cell 2017; 20:462-477.e6. [PMID: 28111200 DOI: 10.1016/j.stem.2016.12.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 08/08/2016] [Accepted: 12/02/2016] [Indexed: 12/24/2022]
Abstract
RNA-binding proteins (RBPs), in addition to their functions in cellular homeostasis, play important roles in lineage specification and maintaining cellular identity. Despite their diverse and essential functions, which touch on nearly all aspects of RNA metabolism, the roles of RBPs in somatic cell reprogramming are poorly understood. Here we show that the DEAD-box RBP DDX5 inhibits reprogramming by repressing the expression and function of the non-canonical polycomb complex 1 (PRC1) subunit RYBP. Disrupting Ddx5 expression improves the efficiency of iPSC generation and impedes processing of miR-125b, leading to Rybp upregulation and suppression of lineage-specific genes via RYBP-dependent ubiquitination of H2AK119. Furthermore, RYBP is required for PRC1-independent recruitment of OCT4 to the promoter of Kdm2b, a histone demethylase gene that promotes reprogramming by reactivating endogenous pluripotency genes. Together, these results reveal important functions of DDX5 in regulating reprogramming and highlight the importance of a Ddx5-miR125b-Rybp axis in controlling cell fate.
Collapse
Affiliation(s)
- Huanhuan Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Center for Excellence in Molecular Cell Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; GZMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Ping Lai
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Center for Excellence in Molecular Cell Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jinping Jia
- Laboratory of Translational Genomics, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yawei Song
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Center for Excellence in Molecular Cell Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Qing Xia
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Center for Excellence in Molecular Cell Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Kaimeng Huang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Center for Excellence in Molecular Cell Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Na He
- Department of Biology, Southern University of Science and Technology of China, Shenzhen 518055, China
| | - Wangfang Ping
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Center for Excellence in Molecular Cell Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jiayu Chen
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhongzhou Yang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Center for Excellence in Molecular Cell Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jiao Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Center for Excellence in Molecular Cell Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Mingze Yao
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Center for Excellence in Molecular Cell Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiaotao Dong
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Center for Excellence in Molecular Cell Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jicheng Zhao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunhui Hou
- Department of Biology, Southern University of Science and Technology of China, Shenzhen 518055, China
| | - Miguel A Esteban
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Center for Excellence in Molecular Cell Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Shaorong Gao
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Duanqing Pei
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Center for Excellence in Molecular Cell Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Andrew P Hutchins
- Department of Biology, Southern University of Science and Technology of China, Shenzhen 518055, China
| | - Hongjie Yao
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Center for Excellence in Molecular Cell Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| |
Collapse
|
41
|
Huang K, Gao J, Du J, Ma N, Zhu Y, Wu P, Zhang T, Wang W, Li Y, Chen Q, Hutchins AP, Yang Z, Zheng Y, Zhang J, Shan Y, Li X, Liao B, Liu J, Wang J, Liu B, Pan G. Generation and Analysis of GATA2 w/eGFP Human ESCs Reveal ITGB3/CD61 as a Reliable Marker for Defining Hemogenic Endothelial Cells during Hematopoiesis. Stem Cell Reports 2016; 7:854-868. [PMID: 27746115 PMCID: PMC5106517 DOI: 10.1016/j.stemcr.2016.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 09/16/2016] [Accepted: 09/16/2016] [Indexed: 11/29/2022] Open
Abstract
The transition from hemogenic endothelial cells (HECs) to hematopoietic stem/progenitor cells (HS/PCs), or endothelial to hematopoietic transition (EHT), is a critical step during hematopoiesis. However, little is known about the molecular determinants of HECs due to the challenge in defining HECs. We report here the generation of GATA2w/eGFP reporter in human embryonic stem cells (hESCs) to mark cells expressing GATA2, a critical gene for EHT. We show that during differentiation, functional HECs are almost exclusively GATA2/eGFP+. We then constructed a regulatory network for HEC determination and also identified a panel of positive or negative surface markers for discriminating HECs from non-hemogenic ECs. Among them, ITGB3 (CD61) precisely labeled HECs both in hESC differentiation and embryonic day 10 mouse embryos. These results not only identify a reliable marker for defining HECs, but also establish a robust platform for dissecting hematopoiesis in vitro, which might lead to the generation of HSCs in vitro. Generation of GATA2w/eGFP reporter in human ESCs GATA2/eGFP expression defines HECs and HPCs in hESC differentiation CD61 marks HECs and HPCs in hPSC differentiation CD61 defines HECs in YS and AGM E10 mouse embryo
Collapse
Affiliation(s)
- Ke Huang
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jiao Gao
- Translational Medicine Center for Stem Cells, 307-Ivy Translational Medicine Center, Laboratory of Oncology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing 100071, China
| | - Juan Du
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Ning Ma
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yanling Zhu
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Pengfei Wu
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Tian Zhang
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Wenqian Wang
- Department of Hematology, Sun-yat Sen University, Guangzhou 510630, China
| | - Yuhang Li
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Qianyu Chen
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Andrew Paul Hutchins
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Zhongzhou Yang
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yi Zheng
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jian Zhang
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yongli Shan
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xuejia Li
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Baojian Liao
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jiajun Liu
- Department of Hematology, Sun-yat Sen University, Guangzhou 510630, China
| | - Jinyong Wang
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Bing Liu
- Translational Medicine Center for Stem Cells, 307-Ivy Translational Medicine Center, Laboratory of Oncology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing 100071, China
| | - Guangjin Pan
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| |
Collapse
|
42
|
Expansion of myeloid-derived suppressor cells promotes differentiation of regulatory T cells in HIV-1+ individuals. AIDS 2016; 30:1521-1531. [PMID: 26959508 DOI: 10.1097/qad.0000000000001083] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Regulatory T cells (Tregs) contribute to HIV-1 disease progression by impairing antiviral immunity; however, the precise mechanisms responsible for the development of Tregs in the setting of HIV-1 infection are incompletely understood. DESIGN In this study, we provide evidence that HIV-induced expansion of monocytic myeloid-derived suppressor cells (M-MDSCs) promote the differentiation of Foxp3 Tregs. METHODS We measured MDSC induction and cytokine expression by flow cytometry and analyzed their functions by coculturing experiments. RESULTS We observed a dramatic increase in M-MDSC frequencies in the peripheral blood of HIV-1 seropositive (HIV-1) individuals, even in those on antiretroviral therapy with undetectable viremia, when compared with healthy participants. We also observed increases in M-MDSCs after incubating healthy peripheral mononuclear cells (PBMCs) with HIV-1 proteins (gp120 or Tat) or Toll-like receptor 4 ligand lipopolysaccharides in vitro, an effect that could be abrogated in the presence of the phosphorylated signal transducer and activator of transcription 3 inhibitor, STA-21. Functional analyses indicated that M-MDSCs from HIV-1 individuals express higher levels of IL-10, tumor growth factor-β, IL-4 receptor α, p47, programmed death-ligand 1, and phosphorylated signal transducer and activator of transcription 3 - all of which are known mediators of myelopoiesis and immunosuppression. Importantly, incubation of healthy CD4 T cells with MDSCs derived from HIV-1 individuals significantly increased differentiation of Foxp3 Tregs. In addition, depletion of MDSCs from PBMCs of HIV-1 individuals led to a significant reduction of Foxp3 Tregs and increase of IFNγ production by CD4 T effector cells. CONCLUSIONS These results suggest that HIV-induced MDSCs promote Treg cell development and inhibit T cell function - a hallmark of many chronic infectious diseases.
Collapse
|
43
|
Kawakami E, Nakaoka S, Ohta T, Kitano H. Weighted enrichment method for prediction of transcription regulators from transcriptome and global chromatin immunoprecipitation data. Nucleic Acids Res 2016; 44:5010-21. [PMID: 27131787 PMCID: PMC4914117 DOI: 10.1093/nar/gkw355] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/20/2016] [Indexed: 11/12/2022] Open
Abstract
Predicting responsible transcription regulators on the basis of transcriptome data is one of the most promising computational approaches to understanding cellular processes and characteristics. Here, we present a novel method employing vast amounts of chromatin immunoprecipitation (ChIP) experimental data to address this issue. Global high-throughput ChIP data was collected to construct a comprehensive database, containing 8 578 738 binding interactions of 454 transcription regulators. To incorporate information about heterogeneous frequencies of transcription factor (TF)-binding events, we developed a flexible framework for gene set analysis employing the weighted t-test procedure, namely weighted parametric gene set analysis (wPGSA). Using transcriptome data as an input, wPGSA predicts the activities of transcription regulators responsible for observed gene expression. Validation of wPGSA with published transcriptome data, including that from over-expressed TFs, showed that the method can predict activities of various TFs, regardless of cell type and conditions, with results totally consistent with biological observations. We also applied wPGSA to other published transcriptome data and identified potential key regulators of cell reprogramming and influenza virus pathogenesis, generating compelling hypotheses regarding underlying regulatory mechanisms. This flexible framework will contribute to uncovering the dynamic and robust architectures of biological regulation, by incorporating high-throughput experimental data in the form of weights.
Collapse
Affiliation(s)
- Eiryo Kawakami
- Laboratory for disease systems modeling, RIKEN Center for Integrated Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan
| | - Shinji Nakaoka
- Laboratory for disease systems modeling, RIKEN Center for Integrated Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan Department of Global Health Policy, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tazro Ohta
- Database Center for Life Science (DBCLS), Research Organization of Information and Systems (ROIS), Mishima, Shizuoka 411-8540, Japan
| | - Hiroaki Kitano
- Laboratory for disease systems modeling, RIKEN Center for Integrated Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan The Systems Biology Institute, Minato-ku, Tokyo 108-0071, Japan Sony Computer Science Laboratories, Inc, Shinagawa-ku, Tokyo 141-0022, Japan Okinawa Institute of Science and Technology, Graduate University, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
44
|
Zheng Y, Jia L, Liu P, Yang D, Hu W, Chen S, Zhao Y, Cai J, Pei D, Ge L, Wei S. Insight into the maintenance of odontogenic potential in mouse dental mesenchymal cells based on transcriptomic analysis. PeerJ 2016; 4:e1684. [PMID: 26925321 PMCID: PMC4768683 DOI: 10.7717/peerj.1684] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/21/2016] [Indexed: 12/17/2022] Open
Abstract
Background. Mouse dental mesenchymal cells (mDMCs) from tooth germs of cap or later stages are frequently used in the context of developmental biology or whole-tooth regeneration due to their odontogenic potential. In vitro-expanded mDMCs serve as an alternative cell source considering the difficulty in obtaining primary mDMCs; however, cultured mDMCs fail to support tooth development as a result of functional failures of specific genes or pathways. The goal of this study was to identify the genes that maintain the odontogenic potential of mDMCs in culture. Methods. We examined the odontogenic potential of freshly isolated versus cultured mDMCs from the lower first molars of embryonic day 14.5 mice. The transcriptome of mDMCs was detected using RNA sequencing and the data were validated by qRT-PCR. Differential expression analysis and pathway analysis were conducted to identify the genes that contribute to the loss of odontogenic potential. Results. Cultured mDMCs failed to develop into well-structured tooth when they were recombined with dental epithelium. Compared with freshly isolated mDMCs, we found that 1,004 genes were upregulated and 948 were downregulated in cultured mDMCs. The differentially expressed genes were clustered in the biological processes and signaling pathways associated with tooth development. Following in vitro culture, genes encoding a wide array of components of MAPK, TGF-β/BMP, and Wnt pathways were significantly downregulated. Moreover, the activities of Bdnf, Vegfα, Bmp2, and Bmp7 were significantly inhibited in cultured mDMCs. Supplementation of VEGFα, BMP2, and BMP7 restored the expression of a subset of downregulated genes and induced mDMCs to form dentin-like structures in vivo. Conclusions.Vegfα, Bmp2, and Bmp7 play a role in the maintenance of odontogenic potential in mDMCs.
Collapse
Affiliation(s)
- Yunfei Zheng
- Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, Peking University School and Hospital of Stomatology, Beijing, China.,Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Lingfei Jia
- Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, Peking University School and Hospital of Stomatology, Beijing, China.,Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Pengfei Liu
- Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Dandan Yang
- Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Experimental Center of Pathogenobiology Immunology, Cytobiology and Genetic, College of Basic Medical Sciences of Jilin University, Jilin, China
| | - Waner Hu
- Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, Peking University School and Hospital of Stomatology, Beijing, China
| | - Shubin Chen
- Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yuming Zhao
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Jinglei Cai
- Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Duanqing Pei
- Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Lihong Ge
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Shicheng Wei
- Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, Peking University School and Hospital of Stomatology, Beijing, China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
45
|
Arjunan P, El-Awady A, Dannebaum RO, Kunde-Ramamoorthy G, Cutler CW. High-throughput sequencing reveals key genes and immune homeostatic pathways activated in myeloid dendritic cells by Porphyromonas gingivalis 381 and its fimbrial mutants. Mol Oral Microbiol 2015; 31:78-93. [PMID: 26466817 DOI: 10.1111/omi.12131] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2015] [Indexed: 12/14/2022]
Abstract
The human microbiome consists of highly diverse microbial communities that colonize our skin and mucosal surfaces, aiding in maintenance of immune homeostasis. The keystone pathogen Porphyromonas gingivalis induces a dysbiosis and disrupts immune homeostasis through as yet unclear mechanisms. The fimbrial adhesins of P. gingivalis facilitate biofilm formation, invasion of and dissemination by blood dendritic cells; hence, fimbriae may be key factors in disruption of immune homeostasis. In this study we employed RNA-sequencing transcriptome profiling to identify differentially expressed genes (DEGs) in human monocyte-derived dendritic cells (MoDCs) in response to in vitro infection/exposure by Pg381 or its isogenic mutant strains that solely express minor-Mfa1 fimbriae (DPG3), major-FimA fimbriae (MFI) or are deficient in both fimbriae (MFB) relative to uninfected control. Our results yielded a total of 479 DEGs that were at least two-fold upregulated and downregulated in MoDCs significantly (P ≤ 0.05) by all four strains and certain DEGs that were strain-specific. Interestingly, the gene ontology biological and functional analysis shows that the upregulated genes in DPG3-induced MoDCs were more significant than other strains and associated with inflammation, immune response, anti-apoptosis, cell proliferation, and other homeostatic functions. Both transcriptome and quantitative polymerase chain reaction results show that DPG3, which solely expresses Mfa1, increased ZNF366, CD209, LOX1, IDO1, IL-10, CCL2, SOCS3, STAT3 and FOXO1 gene expression. In conclusion, we have identified key DC-mediated immune homeostatic pathways that could contribute to dysbiosis in periodontal infection with P. gingivalis.
Collapse
Affiliation(s)
- P Arjunan
- Department of Periodontics, Georgia Regents University, Augusta, GA, USA
| | - A El-Awady
- Department of Periodontics, Georgia Regents University, Augusta, GA, USA
| | - R O Dannebaum
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - G Kunde-Ramamoorthy
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA.,Department of Biochemistry, National University of Singapore, Singapore
| | - C W Cutler
- Department of Periodontics, Georgia Regents University, Augusta, GA, USA
| |
Collapse
|
46
|
Zhou TZ, He K, Gong JP. Kupffer cells and hepatic lipid metabolism disorder. Shijie Huaren Xiaohua Zazhi 2015; 23:2071-2076. [DOI: 10.11569/wcjd.v23.i13.2071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most common liver disorder of our times in both developed and developing countries, which is associated with insulin resistance and genetic susceptibility. Simple steatosis, a seemingly innocent manifestation of early stage NAFLD, may progress into steatohepatitis and cirrhosis, which may even progress into hepatocellular carcinoma. Kupffer cells (KCs) constitute the first firewall of the liver, representing 80%-90% of all tissue macrophages in the body and taking part in various acute and chronic inflammatory reactions. It is deemed that the genesis and development of NAFLD are closely related to the chronic metabolic inflammation induced by KCs. KCs could be activated by lipids accumulated in the liver, and activated KCs participate in metabolic inflammation through releasing pro-inflammatory factors. In this review, we focus on recently uncovered aspects of the biochemical, immunological and molecular events that are responsible for the development and progression of this highly prevalent and potentially serious disease, and summarize the role of KCs in the pathogenesis of NAFLD.
Collapse
|