1
|
Li A, Zhao L, Liu C, Xu X, Jia J. Gray Frequency-Based Methodology for Assessing Cell Damage. ACS OMEGA 2025; 10:14084-14093. [PMID: 40256511 PMCID: PMC12004167 DOI: 10.1021/acsomega.4c11226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/23/2025] [Accepted: 03/26/2025] [Indexed: 04/22/2025]
Abstract
Cell biology techniques offer a solid foundation for evaluating and forecasting the danger of pollutants in the investigations of environmental toxicology. Studies on ecological toxicity, medication development, and illness diagnosis depend on evaluating cellular damage. The morphology of stimulated cells can alter the light scattering and reflection, and the brightness of microscopic images of the cells. This study demonstrated that stimulation-damaged and normal cells had distinct gray value distributions which led to the proposal of a novel theory to measure cellular damage by image brightness. Second, various cell types were used to confirm the method's applicability. Additionally, an evaluation technique based on gray frequency analysis can be created to determine the extent of cellular damage. This approach provides an effective and helpful tool for cellular damage visualization and quantitative evaluation in environmental toxicity assessment.
Collapse
Affiliation(s)
- Anqi Li
- Jiangmen
Key Laboratory of Synthetic Chemistry and Cleaner Production, School
of Environmental and Chemical Engineering; Carbon Neutrality Innovation
Center, Wuyi University, Jiangmen 529020, China
| | - Linying Zhao
- Jiangmen
Key Laboratory of Synthetic Chemistry and Cleaner Production, School
of Environmental and Chemical Engineering; Carbon Neutrality Innovation
Center, Wuyi University, Jiangmen 529020, China
| | - Changyu Liu
- Jiangmen
Key Laboratory of Synthetic Chemistry and Cleaner Production, School
of Environmental and Chemical Engineering; Carbon Neutrality Innovation
Center, Wuyi University, Jiangmen 529020, China
- Guangdong
Provincial Laboratory of Chemistry and Fine Chemical Industry Jieyang
Center, Jieyang 515200, China
| | - Xiaolong Xu
- Jiangmen
Key Laboratory of Synthetic Chemistry and Cleaner Production, School
of Environmental and Chemical Engineering; Carbon Neutrality Innovation
Center, Wuyi University, Jiangmen 529020, China
- Guangdong
Provincial Laboratory of Chemistry and Fine Chemical Industry Jieyang
Center, Jieyang 515200, China
| | - Jianbo Jia
- Jiangmen
Key Laboratory of Synthetic Chemistry and Cleaner Production, School
of Environmental and Chemical Engineering; Carbon Neutrality Innovation
Center, Wuyi University, Jiangmen 529020, China
- Guangdong
Provincial Laboratory of Chemistry and Fine Chemical Industry Jieyang
Center, Jieyang 515200, China
| |
Collapse
|
2
|
Kiper E, Ben Hur D, Alfandari D, Camacho AC, Wani NA, Efrat GD, Morandi MI, Goldsmith M, Rotkopf R, Kamyshinsky R, Deshmukh A, Binte Zulkifli NE, Asmari N, Penedo M, Fantner G, Porat Z, Azuri I, Rosenhek-Goldian I, Chitnis CE, Shai Y, Regev-Rudzki N. Antimicrobial peptides selectively target malaria parasites by a cholesterol-dependent mechanism. J Biol Chem 2025; 301:108298. [PMID: 39971158 PMCID: PMC11993164 DOI: 10.1016/j.jbc.2025.108298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/02/2025] [Accepted: 02/05/2025] [Indexed: 02/21/2025] Open
Abstract
Hundreds of thousands die annually from malaria caused by Plasmodium falciparum (Pf), with the emergence of drug-resistant parasites hindering eradication efforts. Antimicrobial peptides (AMPs) are known for their ability to disrupt pathogen membranes without targeting specific receptors, thereby reducing the chance of drug resistance. However, their effectiveness and the biophysical mechanisms by which they target the intracellular parasite remain unexplored. Here, by using native and synthetic AMPs, we discovered a selective mechanism that underlies the antimalarial activity. Remarkably, the AMPs exclusively interact with Pf-infected red blood cells, disrupting the cytoskeletal network and reaching the enclosed parasites with correlation to their activity. Moreover, we showed that the unique feature of reduced cholesterol content in the membrane of the infected host makes Pf-infected red blood cells susceptible to AMPs. Overall, this work highlights the Achilles' heel of malaria parasite and demonstrates the power of AMPs as potential antimalarial drugs with reduced risk of resistance.
Collapse
Affiliation(s)
- Edo Kiper
- Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel Ben Hur
- Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel Alfandari
- Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Abel Cruz Camacho
- Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Naiem Ahmad Wani
- Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Gal David Efrat
- Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Mattia I Morandi
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Prague, Czech Republic
| | - Moshe Goldsmith
- Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Rotkopf
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Roman Kamyshinsky
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Arunaditya Deshmukh
- Unité de Biologie de Plasmodium et Vaccins, Institut Pasteur, Université Paris Cité, Paris, France
| | - Nur Elyza Binte Zulkifli
- Unité de Biologie de Plasmodium et Vaccins, Institut Pasteur, Université Paris Cité, Paris, France
| | - Navid Asmari
- École Polytechnique Fédérale de Lausanne, Laboratory for Bio- and Nano-Instrumentation, Lausanne, Switzerland
| | - Marcos Penedo
- École Polytechnique Fédérale de Lausanne, Laboratory for Bio- and Nano-Instrumentation, Lausanne, Switzerland
| | - Georg Fantner
- École Polytechnique Fédérale de Lausanne, Laboratory for Bio- and Nano-Instrumentation, Lausanne, Switzerland
| | - Ziv Porat
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ido Azuri
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Irit Rosenhek-Goldian
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Chetan E Chitnis
- Unité de Biologie de Plasmodium et Vaccins, Institut Pasteur, Université Paris Cité, Paris, France
| | - Yechiel Shai
- Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - Neta Regev-Rudzki
- Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
3
|
Romero-Chávez MM, Macías-Hernández CE, Ramos-Organillo A, Jiménez-Ruiz EI, Robles-Machuca M, Ocaño-Higuera VM, Sumaya-Martínez MT. Synthesis and toxicity of monothiooxalamides against human red blood cells, brine shrimp ( Artemia salina), and fruit fly ( Drosophila melanogaster). Heliyon 2024; 10:e36182. [PMID: 39253194 PMCID: PMC11382093 DOI: 10.1016/j.heliyon.2024.e36182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
A new family of monothiooxalamides derived from 2-aminobenzimidazole was synthesized, and their structures were confirmed by 1H and 13C one-dimensional and 2D NMR experiments (COSY, HSQC, and HMBC). The antioxidant capacity was evaluated by free radical scavenging assays: 1,1-diphenyl-2-picrylhydrazyl (DPPH•), 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS•+), ferric reducing antioxidant power (FRAP), oxygen radical absorbance capacity (ORAC), and the Fe(II) chelating ability. Our work group has previously reported the synthesis and antioxidant activity of monothiooxalamides derived from 2-aminopyridine (I). In this study, the in vitro hemolytic activity of compounds from the 2-aminopyridine (I) and 2-aminobenzimidazole (II) families was evaluated against human red blood cells (RBCs). The concentration at which monothiooxalamides showed no hemolytic activity was chosen to assess their ability to inhibit free radical-induced membrane damage in human RBCs, acute toxicity in brine shrimp, and in vivo toxicity against Drosophila melanogaster. Compounds with morpholine fragments (1g, 1h, 2g, and 2h) showed time- and concentration-dependent protective effects against radical-induced oxidative hemolysis. Moreover, they had the lowest acute toxicity in the brine shrimp lethality assay and a significant increase in chelating activity compared with the other molecules. In particular, monothiooxalamide 2g showed lower toxicity and can be considered for further biological screening and application trials.
Collapse
Affiliation(s)
- María M Romero-Chávez
- Unidad de Tecnología de Alimentos, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n, Tepic, 63000, Mexico
| | - Carlos Eduardo Macías-Hernández
- Facultad de Ciencias Químicas, Universidad de Colima, Km 9 Carretera Colima-Coquimatlán, Coquimatlán, Colima, C.P. 28400, Mexico
| | - Angel Ramos-Organillo
- Facultad de Ciencias Químicas, Universidad de Colima, Km 9 Carretera Colima-Coquimatlán, Coquimatlán, Colima, C.P. 28400, Mexico
| | - Edgar Iván Jiménez-Ruiz
- Unidad de Tecnología de Alimentos, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n, Tepic, 63000, Mexico
| | - Marcela Robles-Machuca
- Unidad de Tecnología de Alimentos, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n, Tepic, 63000, Mexico
| | - Victor Manuel Ocaño-Higuera
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo, 83000, Mexico
| | - María Teresa Sumaya-Martínez
- Unidad de Tecnología de Alimentos, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n, Tepic, 63000, Mexico
| |
Collapse
|
4
|
Zhao R, Liu X, Ekpo MD, He Y, Tan S. Exploring the Cryopreservation Mechanism and Direct Removal Strategy of TAPS in Red Blood Cell Cryopreservation. ACS Biomater Sci Eng 2024; 10:4259-4268. [PMID: 38832439 DOI: 10.1021/acsbiomaterials.3c01701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Cryopreservation of red blood cells (RBCs) plays an indispensable role in modern clinical transfusion therapy. Researchers are dedicated to finding cryoprotectants (CPAs) with high efficiency and low toxicity to prevent RBCs from cryopreservation injury. This study presents, for the first time, the feasibility and underlying mechanisms of a novel CPA called tris(hydroxymethyl)aminomethane-3-propanesulfonic acid (TAPS) in RBCs cryopreservation. The results demonstrated that the addition of TAPS achieved a post-thaw recovery of RBCs at 79.12 ± 0.67%, accompanied by excellent biocompatibility (above 97%). Subsequently, the mechanism for preventing RBCs from cryopreservation injury was elucidated. On one hand, TAPS exhibits a significant amount of bound water and effectively inhibits ice recrystallization, thereby reducing mechanical damage. On the other hand, TAPS demonstrates high capacity to scavenge reactive oxygen species and strong endogenous antioxidant enzyme activity, providing effective protection against oxidative damage. Above all, TAPS can be readily removed through direct washing, and the RBCs after washing showed no significant differences in various physiological parameters (SEM, RBC hemolysis, ESR, ATPase activity, and Hb content) compared to fresh RBCs. Finally, the presented mathematical modeling analysis indicates the good benefits of TAPS. In summary, TAPS holds potential for both research and practical in the field of cryobiology, offering innovative insights for the improvement of RBCs cryopreservation in transfusion medicine.
Collapse
Affiliation(s)
- Rui Zhao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Xiangjian Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Marlene Davis Ekpo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Hunan Pilot Free Trade Zone Global Cell Bank, Changsha, Hunan 410000, China
| | - Yongju He
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410013, China
| | - Songwen Tan
- Monash Suzhou Research Institute, Monash University, Suzhou, SIP 215000, China
| |
Collapse
|
5
|
Blat A, Makowski W, Smenda J, Pięta Ł, Bania M, Zapotoczny S, Malek K. Human erythrocytes under stress. Spectroscopic fingerprints of known oxidative mechanisms and beyond. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124142. [PMID: 38493515 DOI: 10.1016/j.saa.2024.124142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
In this work, we investigated the oxidative stress-related biochemical alterations in red blood cells (RBCs) and their membranes with the use of spectroscopic techniques. We aimed to show their great advantage for the in situ detection of lipid classes and secondary structures of proteins without the need for their extraction in the cellular environment. The exposition of the cells to peroxides, t-butyl hydroperoxide (tBOOH) or hydrogen peroxide (H2O2) led to different degradation processes encompassing the changes in the composition of membranes and structural modifications of hemoglobin (Hb). Our results indicated that tBOOH is generally a stronger oxidizing agent than H2O2 and this observation was congruent with the activity of superoxide and glutathione peroxidase. ATR-FTIR and Raman spectroscopies of membranes revealed that tBOOH caused primarily the partial loss and peroxidation of the lipids resulting in loss of the integrity of membranes. In turn, both peroxides induced several kinds of damage in the protein layer, including the partial decrease of their content and irreversible aggregation of spectrin, ankyrin, and membrane-bound globin. These changes were especially pronounced on the membrane surface where stress conditions induced the formation of β-sheets and intramolecular aggregates, particularly for tBOOH. Interestingly, nano-FTIR spectroscopy revealed the lipid peroxidative damage on the membrane surface in both cases. As far as hemoglobin was concerned, tBOOH and H2O2 caused the increase of the oxyhemoglobin species and conformational alterations of its polypeptide chain into β-sheets. Our findings confirm that applied spectroscopies effectively track the oxidative changes occurring in the structural components of red blood cells and the simplicity of conducting measurements and sample preparation can be readily applied to pharmacological and clinical studies.
Collapse
Affiliation(s)
- Aneta Blat
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland
| | - Wojciech Makowski
- Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, Al. 29 Listopada 54, 31-425 Krakow, Poland
| | - Joanna Smenda
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Kraków, Prof. S. Lojasiewicza 11, 30-348 Krakow, Poland
| | - Łukasz Pięta
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Kraków, Prof. S. Lojasiewicza 11, 30-348 Krakow, Poland
| | - Monika Bania
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland
| | - Szczepan Zapotoczny
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland
| | - Kamilla Malek
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland.
| |
Collapse
|
6
|
Alexandrova-Watanabe A, Abadjieva E, Giosheva I, Langari A, Tiankov T, Gartchev E, Komsa-Penkova R, Todinova S. Assessment of Red Blood Cell Aggregation in Preeclampsia by Microfluidic Image Flow Analysis-Impact of Oxidative Stress on Disease Severity. Int J Mol Sci 2024; 25:3732. [PMID: 38612543 PMCID: PMC11011533 DOI: 10.3390/ijms25073732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Preeclampsia (PE) is a hypertensive disease characterized by proteinuria, endothelial dysfunction, and placental hypoxia. Reduced placental blood flow causes changes in red blood cell (RBC) rheological characteristics. Herein, we used microfluidics techniques and new image flow analysis to evaluate RBC aggregation in preeclamptic and normotensive pregnant women. The results demonstrate that RBC aggregation depends on the disease severity and was higher in patients with preterm birth and low birth weight. The RBC aggregation indices (EAI) at low shear rates were higher for non-severe (0.107 ± 0.01) and severe PE (0.149 ± 0.05) versus controls (0.085 ± 0.01; p < 0.05). The significantly more undispersed RBC aggregates were found at high shear rates for non-severe (18.1 ± 5.5) and severe PE (25.7 ± 5.8) versus controls (14.4 ± 4.1; p < 0.05). The model experiment with in-vitro-induced oxidative stress in RBCs demonstrated that the elevated aggregation in PE RBCs can be partially due to the effect of oxidation. The results revealed that RBCs from PE patients become significantly more adhesive, forming large, branched aggregates at a low shear rate. Significantly more undispersed RBC aggregates at high shear rates indicate the formation of stable RBC clusters, drastically more pronounced in patients with severe PE. Our findings demonstrate that altered RBC aggregation contributes to preeclampsia severity.
Collapse
Affiliation(s)
| | - Emilia Abadjieva
- Institute of Mechanics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (A.A.-W.); (E.A.); (T.T.)
| | - Ina Giosheva
- University Obstetrics and Gynecology Hospital “Maichin Dom”, 1431 Sofia, Bulgaria; (I.G.); (E.G.)
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Ariana Langari
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Tihomir Tiankov
- Institute of Mechanics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (A.A.-W.); (E.A.); (T.T.)
| | - Emil Gartchev
- University Obstetrics and Gynecology Hospital “Maichin Dom”, 1431 Sofia, Bulgaria; (I.G.); (E.G.)
| | | | - Svetla Todinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| |
Collapse
|
7
|
Sherstyukova E, Sergunova V, Kandrashina S, Chernysh A, Inozemtsev V, Lomakina G, Kozlova E. Red Blood Cell Storage with Xenon: Safe or Disruption? Cells 2024; 13:411. [PMID: 38474375 PMCID: PMC10930635 DOI: 10.3390/cells13050411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Xenon, an inert gas commonly used in medicine, has been considered as a potential option for prolonged preservation of donor packed red blood cells (pRBCs) under hypoxic conditions. This study aimed to investigate how xenon affects erythrocyte parameters under prolonged storage. In vitro model experiments were performed using two methods to create hypoxic conditions. In the first method, xenon was introduced into bags of pRBCs which were then stored for 42 days, while in the second method, xenon was added to samples in glass tubes. The results of our experiment showed that the presence of xenon resulted in notable alterations in erythrocyte morphology, similar to those observed under standard storage conditions. For pRBC bags, hemolysis during storage with xenon exceeded the acceptable limit by a factor of six, whereas the closed-glass-tube experiment showed minimal hemolysis in samples exposed to xenon. Notably, the production of deoxyhemoglobin was specific to xenon exposure in both cell suspension and hemolysate. However, this study did not provide evidence for the purported protective properties of xenon.
Collapse
Affiliation(s)
- Ekaterina Sherstyukova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia
| | - Viktoria Sergunova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia
| | - Snezhanna Kandrashina
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia
| | - Aleksandr Chernysh
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia
| | - Vladimir Inozemtsev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia
| | - Galina Lomakina
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | - Elena Kozlova
- Department of Medical and Biological Physics, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
8
|
Orrico F, Laurance S, Lopez AC, Lefevre SD, Thomson L, Möller MN, Ostuni MA. Oxidative Stress in Healthy and Pathological Red Blood Cells. Biomolecules 2023; 13:1262. [PMID: 37627327 PMCID: PMC10452114 DOI: 10.3390/biom13081262] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Red cell diseases encompass a group of inherited or acquired erythrocyte disorders that affect the structure, function, or production of red blood cells (RBCs). These disorders can lead to various clinical manifestations, including anemia, hemolysis, inflammation, and impaired oxygen-carrying capacity. Oxidative stress, characterized by an imbalance between the production of reactive oxygen species (ROS) and the antioxidant defense mechanisms, plays a significant role in the pathophysiology of red cell diseases. In this review, we discuss the most relevant oxidant species involved in RBC damage, the enzymatic and low molecular weight antioxidant systems that protect RBCs against oxidative injury, and finally, the role of oxidative stress in different red cell diseases, including sickle cell disease, glucose 6-phosphate dehydrogenase deficiency, and pyruvate kinase deficiency, highlighting the underlying mechanisms leading to pathological RBC phenotypes.
Collapse
Affiliation(s)
- Florencia Orrico
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (F.O.); (A.C.L.); (M.N.M.)
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay;
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Sandrine Laurance
- Université Paris Cité and Université des Antilles, UMR_S1134, BIGR, Inserm, F-75014 Paris, France; (S.L.); (S.D.L.)
| | - Ana C. Lopez
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (F.O.); (A.C.L.); (M.N.M.)
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay;
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Sophie D. Lefevre
- Université Paris Cité and Université des Antilles, UMR_S1134, BIGR, Inserm, F-75014 Paris, France; (S.L.); (S.D.L.)
| | - Leonor Thomson
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay;
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Matias N. Möller
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (F.O.); (A.C.L.); (M.N.M.)
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Mariano A. Ostuni
- Université Paris Cité and Université des Antilles, UMR_S1134, BIGR, Inserm, F-75014 Paris, France; (S.L.); (S.D.L.)
| |
Collapse
|
9
|
Scanavachi G, Kinoshita K, Tsubone TM, Itri R. Dynamic photodamage of red blood cell induced by CisDiMPyP porphyrin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 245:112754. [PMID: 37451154 DOI: 10.1016/j.jphotobiol.2023.112754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/18/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023]
Abstract
It is well-known that oxidative damage in red blood cell (RBC) usually causes morphological changes and increased membrane rigidity. Although many studies have focused on investigating how RBC responds to a photodynamic stimulus, the intermediate steps between membrane damage and hemolysis are not reported. To give a comprehensive insight into changes of RBC membrane property under different oxidative damage levels, we employed the photoactivation of CisDiMPyP porphyrin that primarily generates singlet oxygen 1O2 as oxidant species. We found that there were distinguishable characteristic damages depending on the 1O2 flux over the membrane, in a way that each impact of photooxidative damage was categorized under three damage levels: mild (maintaining the membrane morphology and elasticity), moderate (membrane elongation and increased membrane elasticity) and severe (wrinkle-like deformation and hemolysis). When sodium azide (NaN3) was used as a singlet oxygen quencher, delayed cell membrane alterations and hemolysis were detected. The delay times showed that 1O2 indeed plays a key role that causes RBC photooxidation by CisDiMPyP. We suggest that the sequence of morphological changes (RBC discoid area expansion, wrinkle-like patterns, and hemolysis) under photooxidative damage occurs due to damage to the lipid membrane and cytoskeletal network proteins.
Collapse
Affiliation(s)
- Gustavo Scanavachi
- Institute of Physics, University of São Paulo, São Paulo, Brazil; Department of Cell Biology, Harvard Medical School, Program in Cellular and Molecular Medicine (PCMM), Boston Children's Hospital, Boston, MA 02115, United States
| | - Koji Kinoshita
- Institute of Physics, University of São Paulo, São Paulo, Brazil; Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Biological Chemistry and Molecular Pharmacology (BCMP), Harvard Medical School, Program in Cellular and Molecular Medicine (PCMM), Boston Children's Hospital, Boston, MA 02115, United States.
| | - Tayana M Tsubone
- Institute of Physics, University of São Paulo, São Paulo, Brazil; Institute of Chemistry, Federal University of Uberlandia, Minas Gerais, Brazil
| | - Rosangela Itri
- Institute of Physics, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
10
|
Sadafi A, Bordukova M, Makhro A, Navab N, Bogdanova A, Marr C. RedTell: an AI tool for interpretable analysis of red blood cell morphology. Front Physiol 2023; 14:1058720. [PMID: 37304818 PMCID: PMC10250619 DOI: 10.3389/fphys.2023.1058720] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/13/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction: Hematologists analyze microscopic images of red blood cells to study their morphology and functionality, detect disorders and search for drugs. However, accurate analysis of a large number of red blood cells needs automated computational approaches that rely on annotated datasets, expensive computational resources, and computer science expertise. We introduce RedTell, an AI tool for the interpretable analysis of red blood cell morphology comprising four single-cell modules: segmentation, feature extraction, assistance in data annotation, and classification. Methods: Cell segmentation is performed by a trained Mask R-CNN working robustly on a wide range of datasets requiring no or minimum fine-tuning. Over 130 features that are regularly used in research are extracted for every detected red blood cell. If required, users can train task-specific, highly accurate decision tree-based classifiers to categorize cells, requiring a minimal number of annotations and providing interpretable feature importance. Results: We demonstrate RedTell's applicability and power in three case studies. In the first case study we analyze the difference of the extracted features between the cells coming from patients suffering from different diseases, in the second study we use RedTell to analyze the control samples and use the extracted features to classify cells into echinocytes, discocytes and stomatocytes and finally in the last use case we distinguish sickle cells in sickle cell disease patients. Discussion: We believe that RedTell can accelerate and standardize red blood cell research and help gain new insights into mechanisms, diagnosis, and treatment of red blood cell associated disorders.
Collapse
Affiliation(s)
- Ario Sadafi
- Institute of AI for Health, Helmholtz Zentrum München—German Research Center for Environmental Health, Neuherberg, Germany
- Chair for Computer Aided Medical Procedures & Augmented Reality, Technical University of Munich, Garching, Germany
| | - Maria Bordukova
- Institute of AI for Health, Helmholtz Zentrum München—German Research Center for Environmental Health, Neuherberg, Germany
| | - Asya Makhro
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty and the Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Nassir Navab
- Chair for Computer Aided Medical Procedures & Augmented Reality, Technical University of Munich, Garching, Germany
- Computer Aided Medical Procedures, Johns Hopkins University, Baltimore, MD, United States
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty and the Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Carsten Marr
- Institute of AI for Health, Helmholtz Zentrum München—German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
11
|
Markus MB. Putative Contribution of 8-Aminoquinolines to Preventing Recrudescence of Malaria. Trop Med Infect Dis 2023; 8:278. [PMID: 37235326 PMCID: PMC10223033 DOI: 10.3390/tropicalmed8050278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/07/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Enhanced therapeutic efficacy achieved in treating Plasmodium vivax malaria with an 8-aminoquinoline (8-AQ) drug such as primaquine (PQ) together with a partner drug such as chloroquine (CQ) is usually explained as CQ inhibiting asexual parasites in the bloodstream and PQ acting against liver stages. However, PQ's contribution, if any, to inactivating non-circulating, extra-hepatic asexual forms, which make up the bulk of the parasite biomass in chronic P. vivax infections, remains unclear. In this opinion article, I suggest that, considering its newly described mode of action, PQ might be doing something of which we are currently unaware.
Collapse
Affiliation(s)
- Miles B. Markus
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg 2193, South Africa;
- School of Animal, Plant and Environmental Sciences, Faculty of Science, University of Witwatersrand, Johannesburg 2001, South Africa
| |
Collapse
|
12
|
Alvarez CL, Chêne A, Semblat JP, Gamain B, Lapouméroulie C, Fader CM, Hattab C, Sévigny J, Denis MFL, Lauri N, Ostuni MA, Schwarzbaum PJ. Homeostasis of extracellular ATP in uninfected RBCs from a Plasmodium falciparum culture and derived microparticles. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183980. [PMID: 35654147 DOI: 10.1016/j.bbamem.2022.183980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/11/2022] [Accepted: 05/26/2022] [Indexed: 12/20/2022]
Abstract
Plasmodium falciparum, a dangerous parasitic agent causing malaria, invades human red blood cells (RBCs), causing hemolysis and microvascular obstruction. These and other pathological processes of malaria patients are due to metabolic and structural changes occurring in uninfected RBCs. In addition, infection activates the production of microparticles (MPs). ATP and byproducts are important extracellular ligands modulating purinergic signaling within the intravascular space. Here, we analyzed the contribution of uninfected RBCs and MPs to the regulation of extracellular ATP (eATP) of RBCs, which depends on the balance between ATP release by specific transporters and eATP hydrolysis by ectonucleotidases. RBCs were cultured with P. falciparum for 24-48 h prior to experiments, from which uninfected RBCs and MPs were purified. On-line luminometry was used to quantify the kinetics of ATP release. Luminometry, colorimetry and radioactive methods were used to assess the rate of eATP hydrolysis by ectonucleotidases. Rates of ATP release and eATP hydrolysis were also evaluated in MPs. Uninfected RBCs challenged by different stimuli displayed a strong and transient activation of ATP release, together with an elevated rate of eATP hydrolysis. MPs contained ATP in their lumen, which was released upon vesicle rupture, and were able to hydrolyze eATP. Results suggest that uninfected RBCs and MPs can act as important determinants of eATP regulation of RBCs during malaria. The comparison of eATP homeostasis in infected RBCs, ui-RBCs, and MPs allowed us to speculate on the impact of P. falciparum infection on intravascular purinergic signaling and the control of the vascular caliber by RBCs.
Collapse
Affiliation(s)
- Cora L Alvarez
- Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Junín 956, C1113AAD Buenos Aires, Argentina; Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Arnaud Chêne
- Université Paris Cité and Université des Antilles, INSERM, BIGR, F-75015 Paris, France
| | - Jean-Philippe Semblat
- Université Paris Cité and Université des Antilles, INSERM, BIGR, F-75015 Paris, France
| | - Benoît Gamain
- Université Paris Cité and Université des Antilles, INSERM, BIGR, F-75015 Paris, France
| | | | - Claudio M Fader
- Laboratorio de Fisiología y Fisiopatología del Glóbulo Rojo. Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina; Facultad de Odontología, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Claude Hattab
- Université Paris Cité and Université des Antilles, INSERM, BIGR, F-75015 Paris, France
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - María Florencia Leal Denis
- Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Junín 956, C1113AAD Buenos Aires, Argentina; Universidad de Buenos Aires (UBA), Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Cátedra de Química Analítica, Junín 956, C1113AAD Buenos Aires, Argentina
| | - Natalia Lauri
- Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Junín 956, C1113AAD Buenos Aires, Argentina; Universidad de Buenos Aires (UBA), Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Cátedra de Química Analítica, Junín 956, C1113AAD Buenos Aires, Argentina
| | - Mariano A Ostuni
- Université Paris Cité and Université des Antilles, INSERM, BIGR, F-75015 Paris, France
| | - Pablo J Schwarzbaum
- Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Junín 956, C1113AAD Buenos Aires, Argentina; Universidad de Buenos Aires (UBA), Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Cátedra de Química Analítica, Junín 956, C1113AAD Buenos Aires, Argentina.
| |
Collapse
|
13
|
Cyboran-Mikołajczyk S, Męczarska K, Solarska-Ściuk K, Ratajczak-Wielgomas K, Oszmiański J, Jencova V, Bonarska-Kujawa D. Protection of Erythrocytes and Microvascular Endothelial Cells against Oxidative Damage by Fragaria vesca L. and Rubus idaeus L. Leaves Extracts-The Mechanism of Action. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185865. [PMID: 36144602 PMCID: PMC9501125 DOI: 10.3390/molecules27185865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 11/27/2022]
Abstract
The aim of this work is to determine the biological activity of ellagitannins rich extracts from leaves of raspberry (Rubus idaeus L.) and wild strawberry (Fragaria vesca L.) in relation to cells and cell membranes. Detailed qualitative and quantitative analysis of phenolic compounds of the extract was made using chromatographic methods. Cytotoxic and antioxidant activities of tested extracts in relation to erythrocytes and human vascular endothelial cells (HMEC-1) were determined by using fluorimetric and spectrophotometric methods. In order to establish the influence of the extracts on the physical properties of the membrane, such as osmotic resistance and erythrocytes shapes, mobility and/or hydration of polar heads and fluidity of hydrocarbon chains of membrane lipids, microscopic and spectroscopic methods were used. The results showed that the extracts are non-toxic for erythrocytes and HMEC-1 cells (up to concentration of 50 µg/mL), but they effectively protect cells and their membranes against oxidative damage. The increase in osmotic resistance of erythrocytes, formation of echinocytes and changes only in the polar part of the membrane caused by the extracts demonstrate their location mainly in the hydrophilic part of the membrane. The results indicate that tested extracts have high biological activities and may be potentially used in delaying the ageing process of organisms and prevention of many diseases, especially those associated with oxidative stress.
Collapse
Affiliation(s)
- Sylwia Cyboran-Mikołajczyk
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
- Correspondence: ; Tel.: +48-713205275; Fax: +48-713205167
| | - Katarzyna Męczarska
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Katarzyna Solarska-Ściuk
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | | | - Jan Oszmiański
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Vera Jencova
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentska 2, 461 17 Liberec, Czech Republic
| | - Dorota Bonarska-Kujawa
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| |
Collapse
|
14
|
Mariano A, Bigioni I, Misiti F, Fattorini L, d’Abusco AS, Rodio A. The Nutraceuticals as Modern Key to Achieve Erythrocyte Oxidative Stress Fighting in Osteoarthritis. Curr Issues Mol Biol 2022; 44:3481-3495. [PMID: 36005136 PMCID: PMC9406754 DOI: 10.3390/cimb44080240] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoarthritis (OA), the most common joint disease, shows an increasing prevalence in the aging population in industrialized countries. OA is characterized by low-grade chronic inflammation, which causes degeneration of all joint tissues, such as articular cartilage, subchondral bone, and synovial membrane, leading to pain and loss of functionality. Erythrocytes, the most abundant blood cells, have as their primary function oxygen transport, which induces reactive oxygen species (ROS) production. For this reason, the erythrocytes have several mechanisms to counteract ROS injuries, which cause damage to lipids and proteins of the cell membrane. Oxidative stress and inflammation are highly correlated and are both causes of joint disorders. In the synovial fluid and blood of osteoarthritis patients, erythrocyte antioxidant enzyme expression is decreased. To date, OA is a non-curable disease, treated mainly with non-steroidal anti-inflammatory drugs and corticosteroids for a prolonged period of time, which cause several side effects; thus, the search for natural remedies with anti-inflammatory and antioxidant activities is always ongoing. In this review, we analyze several manuscripts describing the effect of traditional remedies, such as Harpagophytum procumbens, Curcumin longa, and Boswellia serrata extracts, in the treatments of OA for their anti-inflammatory, analgesic, and antioxidant activity. The effects of such remedies have been studied both in in vitro and in vivo models, considering both joint cells and erythrocytes.
Collapse
Affiliation(s)
- Alessia Mariano
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Irene Bigioni
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesco Misiti
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, 03043 Cassino, Italy
- Correspondence:
| | - Luigi Fattorini
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| | - Anna Scotto d’Abusco
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Angelo Rodio
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, 03043 Cassino, Italy
| |
Collapse
|
15
|
Introini V, Govendir MA, Rayner JC, Cicuta P, Bernabeu M. Biophysical Tools and Concepts Enable Understanding of Asexual Blood Stage Malaria. Front Cell Infect Microbiol 2022; 12:908241. [PMID: 35711656 PMCID: PMC9192966 DOI: 10.3389/fcimb.2022.908241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/27/2022] [Indexed: 12/02/2022] Open
Abstract
Forces and mechanical properties of cells and tissues set constraints on biological functions, and are key determinants of human physiology. Changes in cell mechanics may arise from disease, or directly contribute to pathogenesis. Malaria gives many striking examples. Plasmodium parasites, the causative agents of malaria, are single-celled organisms that cannot survive outside their hosts; thus, thost-pathogen interactions are fundamental for parasite’s biological success and to the host response to infection. These interactions are often combinations of biochemical and mechanical factors, but most research focuses on the molecular side. However, Plasmodium infection of human red blood cells leads to changes in their mechanical properties, which has a crucial impact on disease pathogenesis because of the interaction of infected red blood cells with other human tissues through various adhesion mechanisms, which can be probed and modelled with biophysical techniques. Recently, natural polymorphisms affecting red blood cell biomechanics have also been shown to protect human populations, highlighting the potential of understanding biomechanical factors to inform future vaccines and drug development. Here we review biophysical techniques that have revealed new aspects of Plasmodium falciparum invasion of red blood cells and cytoadhesion of infected cells to the host vasculature. These mechanisms occur differently across Plasmodium species and are linked to malaria pathogenesis. We highlight promising techniques from the fields of bioengineering, immunomechanics, and soft matter physics that could be beneficial for studying malaria. Some approaches might also be applied to other phases of the malaria lifecycle and to apicomplexan infections with complex host-pathogen interactions.
Collapse
Affiliation(s)
- Viola Introini
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Viola Introini,
| | - Matt A. Govendir
- European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona, Spain
| | - Julian C. Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Pietro Cicuta
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Maria Bernabeu
- European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona, Spain
| |
Collapse
|
16
|
Kuck L, Peart JN, Simmonds MJ. Piezo1 regulates shear-dependent nitric oxide production in human erythrocytes. Am J Physiol Heart Circ Physiol 2022; 323:H24-H37. [PMID: 35559724 DOI: 10.1152/ajpheart.00185.2022] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mature circulating red blood cells (RBC) are classically viewed as passive participants in circulatory function, given erythroblasts eject their organelles during maturation. Endogenous production of nitric oxide (NO) and its effects are of particular significance; however, the integration between RBC sensation of the local environment and subsequent activation of mechano-sensitive signaling networks that generate NO remain poorly understood. The present study investigated endogenous NO-production via the RBC-specific nitric oxide synthase-isoform (RBC-NOS), connecting membrane strain with intracellular enzymatic processes. Isolated RBC were obtained from apparently healthy humans. Intracellular NO was compared at rest and following shear (cellular deformation) using semi-quantitative fluorescent imaging. Concurrently, RBC-NOS phosphorylation at its Serine1177 (ser1177) residue was measured. The contribution of cellular deformation to shear-induced NO-production in RBC was determined by rigidifying RBC with the thiol-oxidizing agent diamide; rigid RBC exhibited significantly impaired (up to 80%) capacity to generate NO via RBC-NOS during shear. Standardizing membrane strain of rigid RBC by applying increased shear did not normalize NO-production, or RBC-NOS activation. Calcium-imaging with Fluo-4 revealed that diamide-treated RBC exhibited a 42%-impairment in Piezo1-mediated calcium-movement when compared with untreated RBC. Pharmacological inhibition of Piezo1 with GsMTx4 during shear inhibited RBC-NOS activation in untreated RBC, while Piezo1-activation with Yoda1 in the absence of shear stimulated RBC-NOS activation. Collectively, a novel, mechanically-activated signaling pathway in mature RBC is described. Opening of Piezo1 and subsequent influx of calcium appears to be required for endogenous production of NO in response to mechanical shear, which is accompanied by phosphorylation of RBC-NOS at ser1177.
Collapse
Affiliation(s)
- Lennart Kuck
- Biorheology Research Laboratory, Menzies Health Institute Queensland, Australia
| | - Jason N Peart
- School of Pharmacy and Medical Sciences, Griffith University Gold Coast, Southport, Australia
| | - Michael J Simmonds
- Biorheology Research Laboratory, Menzies Health Institute Queensland, Australia
| |
Collapse
|
17
|
Reichel F, Kräter M, Peikert K, Glaß H, Rosendahl P, Herbig M, Rivera Prieto A, Kihm A, Bosman G, Kaestner L, Hermann A, Guck J. Changes in Blood Cell Deformability in Chorea-Acanthocytosis and Effects of Treatment With Dasatinib or Lithium. Front Physiol 2022; 13:852946. [PMID: 35444561 PMCID: PMC9013823 DOI: 10.3389/fphys.2022.852946] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/08/2022] [Indexed: 12/29/2022] Open
Abstract
Misshaped red blood cells (RBCs), characterized by thorn-like protrusions known as acanthocytes, are a key diagnostic feature in Chorea-Acanthocytosis (ChAc), a rare neurodegenerative disorder. The altered RBC morphology likely influences their biomechanical properties which are crucial for the cells to pass the microvasculature. Here, we investigated blood cell deformability of five ChAc patients compared to healthy controls during up to 1-year individual off-label treatment with the tyrosine kinase inhibitor dasatinib or several weeks with lithium. Measurements with two microfluidic techniques allowed us to assess RBC deformability under different shear stresses. Furthermore, we characterized leukocyte stiffness at high shear stresses. The results showed that blood cell deformability–including both RBCs and leukocytes - in general was altered in ChAc patients compared to healthy donors. Therefore, this study shows for the first time an impairment of leukocyte properties in ChAc. During treatment with dasatinib or lithium, we observed alterations in RBC deformability and a stiffness increase for leukocytes. The hematological phenotype of ChAc patients hinted at a reorganization of the cytoskeleton in blood cells which partly explains the altered mechanical properties observed here. These findings highlight the need for a systematic assessment of the contribution of impaired blood cell mechanics to the clinical manifestation of ChAc.
Collapse
Affiliation(s)
- Felix Reichel
- Max-Planck-Institut für die Physik des Lichts and Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Martin Kräter
- Max-Planck-Institut für die Physik des Lichts and Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Kevin Peikert
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
- Division for Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Hannes Glaß
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Philipp Rosendahl
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Maik Herbig
- Max-Planck-Institut für die Physik des Lichts and Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Alejandro Rivera Prieto
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Alexander Kihm
- Department of Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Giel Bosman
- Department of Biochemistry, Radboud UMC, Nijmegen, Netherlands
| | - Lars Kaestner
- Department of Experimental Physics, Saarland University, Saarbrücken, Germany
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
- Division for Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Rostock/Greifswald, Rostock, Germany
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Jochen Guck
- Max-Planck-Institut für die Physik des Lichts and Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
- *Correspondence: Jochen Guck,
| |
Collapse
|
18
|
Matthews K, Lamoureux ES, Myrand-Lapierre ME, Duffy SP, Ma H. Technologies for measuring red blood cell deformability. LAB ON A CHIP 2022; 22:1254-1274. [PMID: 35266475 DOI: 10.1039/d1lc01058a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Human red blood cells (RBCs) are approximately 8 μm in diameter, but must repeatedly deform through capillaries as small as 2 μm in order to deliver oxygen to all parts of the body. The loss of this capability is associated with the pathology of many diseases, and is therefore a potential biomarker for disease status and treatment efficacy. Measuring RBC deformability is a difficult problem because of the minute forces (∼pN) that must be exerted on these cells, as well as the requirements for throughput and multiplexing. The development of technologies for measuring RBC deformability date back to the 1960s with the development of micropipette aspiration, ektacytometry, and the cell transit analyzer. In the past 10 years, significant progress has been made using microfluidics by leveraging the ability to precisely control fluid flow through microstructures at the size scale of individual RBCs. These technologies have now surpassed traditional methods in terms of sensitivity, throughput, consistency, and ease of use. As a result, these efforts are beginning to move beyond feasibility studies and into applications to enable biomedical discoveries. In this review, we provide an overview of both traditional and microfluidic techniques for measuring RBC deformability. We discuss the capabilities of each technique and compare their sensitivity, throughput, and robustness in measuring bulk and single-cell RBC deformability. Finally, we discuss how these tools could be used to measure changes in RBC deformability in the context of various applications including pathologies caused by malaria and hemoglobinopathies, as well as degradation during storage in blood bags prior to blood transfusions.
Collapse
Affiliation(s)
- Kerryn Matthews
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada.
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Erik S Lamoureux
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada.
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Marie-Eve Myrand-Lapierre
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada.
| | - Simon P Duffy
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- British Columbia Institute of Technology, Vancouver, BC, Canada
| | - Hongshen Ma
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada.
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- Department of Urologic Science, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| |
Collapse
|
19
|
The Toxic Influence of Excess Free Iron on Red Blood Cells in the Biophysical Experiment: An In Vitro Study. J Toxicol 2022; 2022:7113958. [PMID: 35256882 PMCID: PMC8898121 DOI: 10.1155/2022/7113958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/10/2022] [Indexed: 11/18/2022] Open
Abstract
Iron is needed for life-essential processes, but free iron overload causes dangerous clinical consequences. The study of the role of red blood cells (RBCs) in the influence of excess free iron in the blood on the pathological consequences in an organism is relevant. Here, in a direct biophysical experiment in vitro, we studied the action of free iron overload on the packed red blood cell (pRBC) characteristics. In experiments, we incubated pRBCs with the ferrous sulfate solution (Fe2+). Wе used free iron in a wide range of concentrations. High Fe2+ concentrations made us possible to establish the pattern of the toxic effect of excess iron on pRBCs during a reduced incubation time in a biophysical experiment in vitro. It was found that excess free iron causes changes in pRBC morphology, the appearance of bridges between cells, and the formation of clots, increasing the membrane stiffness and methemoglobin concentration. We created a kinetic model of changes in the hemoglobin derivatives. The complex of simultaneous distortions of pRBCs established in our experiments can be taken into account when studying the mechanism of the toxic influence of excess free iron in the blood on pathological changes in an organism.
Collapse
|
20
|
Besedina NA, Skverchinskaya EA, Ivanov AS, Kotlyar KP, Morozov IA, Filatov NA, Mindukshev IV, Bukatin AS. Microfluidic Characterization of Red Blood Cells Microcirculation under Oxidative Stress. Cells 2021; 10:cells10123552. [PMID: 34944060 PMCID: PMC8700079 DOI: 10.3390/cells10123552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 12/28/2022] Open
Abstract
Microcirculation is one of the basic functional processes where the main gas exchange between red blood cells (RBCs) and surrounding tissues occurs. It is greatly influenced by the shape and deformability of RBCs, which can be affected by oxidative stress induced by different drugs and diseases leading to anemia. Here we investigated how in vitro microfluidic characterization of RBCs transit velocity in microcapillaries can indicate cells damage and its correlation with clinical hematological analysis. For this purpose, we compared an SU-8 mold with an Si-etched mold for fabrication of PDMS microfluidic devices and quantitatively figured out that oxidative stress induced by tert-Butyl hydroperoxide splits all RBCs into two subpopulations of normal and slow cells according to their transit velocity. Obtained results agree with the hematological analysis showing that such changes in RBCs velocities are due to violations of shape, volume, and increased heterogeneity of the cells. These data show that characterization of RBCs transport in microfluidic devices can directly reveal violations of microcirculation caused by oxidative stress. Therefore, it can be used for characterization of the ability of RBCs to move in microcapillaries, estimating possible side effects of cancer chemotherapy, and predicting the risk of anemia.
Collapse
Affiliation(s)
- Nadezhda A. Besedina
- Laboratory of Renewable Energy Sources, Alferov Saint Petersburg National Research Academic University of the Russian Academy of Sciences, 194021 Saint-Petersburg, Russia; (N.A.B.); (K.P.K.); (I.A.M.); (N.A.F.)
| | - Elisaveta A. Skverchinskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 Saint-Petersburg, Russia; (E.A.S.); (I.V.M.)
| | - Alexander S. Ivanov
- Institute of Physics and Mechanics, Peter the Great Saint-Petersburg Polytechnic University, 195251 Saint-Petersburg, Russia;
| | - Konstantin P. Kotlyar
- Laboratory of Renewable Energy Sources, Alferov Saint Petersburg National Research Academic University of the Russian Academy of Sciences, 194021 Saint-Petersburg, Russia; (N.A.B.); (K.P.K.); (I.A.M.); (N.A.F.)
- Institute for Analytical Instrumentation of the RAS, 190103 Saint-Petersburg, Russia
| | - Ivan A. Morozov
- Laboratory of Renewable Energy Sources, Alferov Saint Petersburg National Research Academic University of the Russian Academy of Sciences, 194021 Saint-Petersburg, Russia; (N.A.B.); (K.P.K.); (I.A.M.); (N.A.F.)
| | - Nikita A. Filatov
- Laboratory of Renewable Energy Sources, Alferov Saint Petersburg National Research Academic University of the Russian Academy of Sciences, 194021 Saint-Petersburg, Russia; (N.A.B.); (K.P.K.); (I.A.M.); (N.A.F.)
| | - Igor V. Mindukshev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 Saint-Petersburg, Russia; (E.A.S.); (I.V.M.)
| | - Anton S. Bukatin
- Laboratory of Renewable Energy Sources, Alferov Saint Petersburg National Research Academic University of the Russian Academy of Sciences, 194021 Saint-Petersburg, Russia; (N.A.B.); (K.P.K.); (I.A.M.); (N.A.F.)
- Institute for Analytical Instrumentation of the RAS, 190103 Saint-Petersburg, Russia
- Correspondence:
| |
Collapse
|
21
|
Li H, Liu ZL, Lu L, Buffet P, Karniadakis GE. How the spleen reshapes and retains young and old red blood cells: A computational investigation. PLoS Comput Biol 2021; 17:e1009516. [PMID: 34723962 PMCID: PMC8584971 DOI: 10.1371/journal.pcbi.1009516] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/11/2021] [Accepted: 10/01/2021] [Indexed: 11/18/2022] Open
Abstract
The spleen, the largest secondary lymphoid organ in humans, not only fulfils a broad range of immune functions, but also plays an important role in red blood cell’s (RBC) life cycle. Although much progress has been made to elucidate the critical biological processes involved in the maturation of young RBCs (reticulocytes) as well as removal of senescent RBCs in the spleen, the underlying mechanisms driving these processes are still obscure. Herein, we perform a computational study to simulate the passage of RBCs through interendothelial slits (IES) in the spleen at different stages of their lifespan and investigate the role of the spleen in facilitating the maturation of reticulocytes and in clearing the senescent RBCs. Our simulations reveal that at the beginning of the RBC life cycle, intracellular non-deformable particles in reticulocytes can be biomechanically expelled from the cell upon passage through IES, an insightful explanation of why this peculiar “pitting” process is spleen-specific. Our results also show that immature RBCs shed surface area by releasing vesicles after crossing IES and progressively acquire the biconcave shape of mature RBCs. These findings likely explain why RBCs from splenectomized patients are significantly larger than those from nonsplenectomized subjects. Finally, we show that at the end of their life span, senescent RBCs are not only retained by IES due to reduced deformability but also become susceptible to mechanical lysis under shear stress. This finding supports the recent hypothesis that transformation into a hemolyzed ghost is a prerequisite for phagocytosis of senescent RBCs. Altogether, our computational investigation illustrates critical biological processes in the spleen that cannot be observed in vivo or in vitro and offer insights into the role of the spleen in the RBC physiology. The spleen, the largest secondary lymphoid organ in humans, not only fulfils a broad range of immune functions, but also plays an important role in red blood cell (RBC) life cycle. In this study, we perform a computational study to simulate the passage of RBCs through interendothelial slits (IES) in the spleen at different stages of their lifespan, a critical biological process that cannot be observed in humans. Our simulation results illustrate a specific role of spleen in shaping young RBCs, which points to a probable missing step in current in vitro RBC culture protocols that fail to generate a majority of typical biconcave RBCs. Our results also reveal that intra-splenic mechanical constraints likely contribute to the final clearance and elimination of aged RBCs. Altogether, we demonstrate that our computational model can provide mechanistic rationales for experimental studies, offer insights into the role of the spleen in the RBC physiology and help the optimization of in vitro RBC culture techniques.
Collapse
Affiliation(s)
- He Li
- School of Engineering, Brown University, Providence, Rhode Island, United States of America
| | - Zixiang Leonardo Liu
- Division of Applied Mathematics, Brown University, Providence, Rhode Island, United States of America
| | - Lu Lu
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Pierre Buffet
- Université de Paris, Inserm, Biologie Intégrée du Globule Rouge, Paris, France
| | - George Em Karniadakis
- School of Engineering, Brown University, Providence, Rhode Island, United States of America
- Division of Applied Mathematics, Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
22
|
N M, Lukose J, Mohan G, Shastry S, Chidangil S. Single cell spectroscopy of red blood cells in intravenous crystalloid fluids. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 257:119726. [PMID: 33848954 DOI: 10.1016/j.saa.2021.119726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/06/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Crystalloid fluids, a subset of intravenous (IV) fluid solutions are commonly used in clinical settings. The influence of these fluids on the functions of blood components are least explored. Raman spectroscopy combined with optical trapping has been widely used to evaluate the impact of external stress agents on red blood cells. The present study investigates the impact of commonly used crystalloid fluids on red blood cells in comparison with that of blood plasma using Raman Tweezers spectroscopy. The red blood cells suspended in crystalloid fluids undergo deoxygenation readily than that in blood plasma. In addition, cells in blood plasma were able to withstand laser induced deoxygenation comparatively better than that in crystalloid fluids at higher laser powers. Principle component analysis of the Raman spectral data has clearly demonstrated the discrimination of cells in plasma with that of crystalloid fluids demonstrating the effect of external induced stress on RBCs.
Collapse
Affiliation(s)
- Mithun N
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Jijo Lukose
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Ganesh Mohan
- Department of Immunohematology and Blood Transfusion, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Karnataka 576104, India
| | - Shamee Shastry
- Department of Immunohematology and Blood Transfusion, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Karnataka 576104, India
| | - Santhosh Chidangil
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
23
|
Nguyen A, Brandt M, Muenker TM, Betz T. Multi-oscillation microrheology via acoustic force spectroscopy enables frequency-dependent measurements on endothelial cells at high-throughput. LAB ON A CHIP 2021; 21:1929-1947. [PMID: 34008613 PMCID: PMC8130676 DOI: 10.1039/d0lc01135e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/12/2021] [Indexed: 06/03/2023]
Abstract
Active microrheology is one of the main methods to determine the mechanical properties of cells and tissue, and the modelling of these viscoelastic properties is under heavy debate with many competing approaches. Most experimental methods of active microrheology such as optical tweezers or atomic force microscopy based approaches rely on single cell measurements, and thus suffer from a low throughput. Here, we present a novel method for frequency-dependent microrheology on cells using acoustic forces which allows multiplexed measurements of several cells in parallel. Acoustic force spectroscopy (AFS) is used to generate multi-oscillatory forces in the range of pN-nN on particles attached to primary human umbilical vein endothelial cells (HUVEC) cultivated inside a microfluidic chip. While the AFS was introduced as a single-molecule technique to measure mechanochemical properties of biomolecules, we exploit the AFS to measure the dynamic viscoelastic properties of cells exposed to different conditions, such as flow shear stresses or drug injections. By controlling the force and measuring the position of the particle, the complex shear modulus G*(ω) can be measured continuously over several hours. The resulting power-law shear moduli are consistent with fractional viscoelastic models. In our experiments we confirm a decrease in shear modulus after perturbing the actin cytoskeleton via cytochalasin B. This effect was reversible after washing out the drug. Additionally, we include critical information for the usage of the new method AFS as a measurement tool showing its capabilities and limitations and we find that for performing viscoelastic measurements with the AFS, a thorough calibration and careful data analysis is crucial, for which we provide protocols and guidelines.
Collapse
Affiliation(s)
- Alfred Nguyen
- Institute of Cell Biology, University of Münster, Münster, Germany.
| | - Matthias Brandt
- Institute of Cell Biology, University of Münster, Münster, Germany.
| | - Till M Muenker
- Institute of Cell Biology, University of Münster, Münster, Germany. and Third Institute of Physics-Biophysics, University of Göttingen, Göttingen, Germany.
| | - Timo Betz
- Institute of Cell Biology, University of Münster, Münster, Germany. and Third Institute of Physics-Biophysics, University of Göttingen, Göttingen, Germany.
| |
Collapse
|
24
|
Bhat SV, Price JDW, Dahms TES. AFM-Based Correlative Microscopy Illuminates Human Pathogens. Front Cell Infect Microbiol 2021; 11:655501. [PMID: 34026660 PMCID: PMC8138568 DOI: 10.3389/fcimb.2021.655501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/08/2021] [Indexed: 12/25/2022] Open
Abstract
Microbes have an arsenal of virulence factors that contribute to their pathogenicity. A number of challenges remain to fully understand disease transmission, fitness landscape, antimicrobial resistance and host heterogeneity. A variety of tools have been used to address diverse aspects of pathogenicity, from molecular host-pathogen interactions to the mechanisms of disease acquisition and transmission. Current gaps in our knowledge include a more direct understanding of host-pathogen interactions, including signaling at interfaces, and direct phenotypic confirmation of pathogenicity. Correlative microscopy has been gaining traction to address the many challenges currently faced in biomedicine, in particular the combination of optical and atomic force microscopy (AFM). AFM, generates high-resolution surface topographical images, and quantifies mechanical properties at the pN scale under physiologically relevant conditions. When combined with optical microscopy, AFM probes pathogen surfaces and their physical and molecular interaction with host cells, while the various modes of optical microscopy view internal cellular responses of the pathogen and host. Here we review the most recent advances in our understanding of pathogens, recent applications of AFM to the field, how correlative AFM-optical microspectroscopy and microscopy have been used to illuminate pathogenicity and how these methods can reach their full potential for studying host-pathogen interactions.
Collapse
Affiliation(s)
- Supriya V Bhat
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK, Canada
| | - Jared D W Price
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK, Canada
| | - Tanya E S Dahms
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK, Canada
| |
Collapse
|
25
|
Bardyn M, Allard J, Crettaz D, Rappaz B, Turcatti G, Tissot JD, Prudent M. Image- and Fluorescence-Based Test Shows Oxidant-Dependent Damages in Red Blood Cells and Enables Screening of Potential Protective Molecules. Int J Mol Sci 2021; 22:ijms22084293. [PMID: 33924276 PMCID: PMC8074894 DOI: 10.3390/ijms22084293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 12/23/2022] Open
Abstract
An increase of oxygen saturation within blood bags and metabolic dysregulation occur during storage of red blood cells (RBCs). It leads to the gradual exhaustion of RBC antioxidant protective system and, consequently, to a deleterious state of oxidative stress that plays a major role in the apparition of the so-called storage lesions. The present study describes the use of a test (called TSOX) based on fluorescence and label-free morphology readouts to simply and quickly evaluate the oxidant and antioxidant properties of various compounds in controlled conditions. Here, TSOX was applied to RBCs treated with four antioxidants (ascorbic acid, uric acid, trolox and resveratrol) and three oxidants (AAPH, diamide and H2O2) at different concentrations. Two complementary readouts were chosen: first, where ROS generation was quantified using DCFH-DA fluorescent probe, and second, based on digital holographic microscopy that measures morphology alterations. All oxidants produced an increase of fluorescence, whereas H2O2 did not visibly impact the RBC morphology. Significant protection was observed in three out of four of the added molecules. Of note, resveratrol induced diamond-shape “Tirocytes”. The assay design was selected to be flexible, as well as compatible with high-throughput screening. In future experiments, the TSOX will serve to screen chemical libraries and probe molecules that could be added to the additive solution for RBCs storage.
Collapse
Affiliation(s)
- Manon Bardyn
- Laboratoire de Recherche sur les Produits Sanguins, Transfusion Interrégionale CRS, CH-1066 Epalinges, Switzerland
| | - Jérôme Allard
- Laboratoire de Recherche sur les Produits Sanguins, Transfusion Interrégionale CRS, CH-1066 Epalinges, Switzerland
- Département de Génie Chimique, École Polytechnique de Montréal, Montréal, QC H3C 3A7, Canada
| | - David Crettaz
- Laboratoire de Recherche sur les Produits Sanguins, Transfusion Interrégionale CRS, CH-1066 Epalinges, Switzerland
| | - Benjamin Rappaz
- Biomolecular Screening Facility (BSF), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Gerardo Turcatti
- Biomolecular Screening Facility (BSF), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jean-Daniel Tissot
- Faculté de Biologie et de Médecine, Université de Lausanne, CH-1011 Lausanne, Switzerland
| | - Michel Prudent
- Laboratoire de Recherche sur les Produits Sanguins, Transfusion Interrégionale CRS, CH-1066 Epalinges, Switzerland
- Faculté de Biologie et de Médecine, Université de Lausanne, CH-1011 Lausanne, Switzerland
- Center for Research and Innovation in Clinical Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Lausanne, CH-1011 Lausanne, Switzerland
| |
Collapse
|
26
|
Waltz X, Beaudin AE, Belaidi E, Raneri J, Pépin JL, Pialoux V, Hanly PJ, Verges S, Poulin MJ. Impact of obstructive sleep apnea and intermittent hypoxia on blood rheology - a translational study. Eur Respir J 2021; 58:13993003.00352-2021. [PMID: 33863746 DOI: 10.1183/13993003.00352-2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/08/2021] [Indexed: 11/05/2022]
Abstract
RATIONALE Hemorheological alterations are reported in obstructive sleep apnea (OSA) and reversed with continuous positive airway pressure (CPAP), observations potentially explained by intermittent hypoxia (IH)-induced oxidative stress. OBJECTIVE To investigate whether IH causes hemorheological alterations viaoxidative stress. METHODS Wistar rats were exposed to normoxia (n=7) or IH (n=8) for 14 days. Twenty-three moderate-to-severe OSA patients were assessed at three time points: baseline, after randomisation to either 2 weeks of nocturnal oxygen (n=13) or no treatment (n=10), and after 1-month of CPAP treatment (n=17). Further, an OSA-free control group (n=13) was assessed at baseline and after time-matched follow-up. MEASUREMENTS We measured hemorheological parameters [hematocrit, blood viscosity, plasma viscosity (rats only), erythrocyte aggregation and deformability (humans only)] and redox balance (SOD, GPX, protein oxidation [AOPP] and lipid peroxidation [MDA]). We also tested erythrocytes hemorheological sensitivity to reactive oxygen species (ROS) in our human participants using the oxidant t-butyl hydroperoxide (TBHP). RESULTS In rats, IH increased blood viscosity by increasing hematocrit without altering erythrocytes hemorheological properties. IH also reduced SOD activity and increased AOPP. In humans, baseline hemorheological properties were similar between patients and controls, and properties were unaltered following oxygen and CPAP, except erythrocyte deformability was reduced following oxygen therapy. Redox balance was comparable between patients and controls. At baseline, TBHP induced a greater reduction of erythrocyte deformability in patients while CPAP reduced TBHP-induced increase in aggregation strength. CONCLUSION IH and OSA per se do not cause hemorheological alterations despite the presence of oxidative stress or higher sensitivity to ROS, respectively.
Collapse
Affiliation(s)
- Xavier Waltz
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Laboratoire HP2, Grenoble Alpes University, INSERM, CHU Grenoble Alpes, Grenoble, France.,Contributed equally to this work
| | - Andrew E Beaudin
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Contributed equally to this work
| | - Elise Belaidi
- Laboratoire HP2, Grenoble Alpes University, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Jill Raneri
- Sleep Centre, Foothills Medical Centre, Calgary, AB, Canada
| | - Jean-Louis Pépin
- Laboratoire HP2, Grenoble Alpes University, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Vincent Pialoux
- Laboratoire Interuniversitaire de Biologie de la Motricité, University of Lyon, Lyon, France
| | - Patrick J Hanly
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Sleep Centre, Foothills Medical Centre, Calgary, AB, Canada
| | - Samuel Verges
- Laboratoire HP2, Grenoble Alpes University, INSERM, CHU Grenoble Alpes, Grenoble, France.,Contributed equally to this work
| | - Marc J Poulin
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada .,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.,Contributed equally to this work
| |
Collapse
|
27
|
Cao H, Antonopoulos A, Henderson S, Wassall H, Brewin J, Masson A, Shepherd J, Konieczny G, Patel B, Williams ML, Davie A, Forrester MA, Hall L, Minter B, Tampakis D, Moss M, Lennon C, Pickford W, Erwig L, Robertson B, Dell A, Brown GD, Wilson HM, Rees DC, Haslam SM, Alexandra Rowe J, Barker RN, Vickers MA. Red blood cell mannoses as phagocytic ligands mediating both sickle cell anaemia and malaria resistance. Nat Commun 2021; 12:1792. [PMID: 33741926 PMCID: PMC7979802 DOI: 10.1038/s41467-021-21814-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
In both sickle cell disease and malaria, red blood cells (RBCs) are phagocytosed in the spleen, but receptor-ligand pairs mediating uptake have not been identified. Here, we report that patches of high mannose N-glycans (Man5-9GlcNAc2), expressed on diseased or oxidized RBC surfaces, bind the mannose receptor (CD206) on phagocytes to mediate clearance. We find that extravascular hemolysis in sickle cell disease correlates with high mannose glycan levels on RBCs. Furthermore, Plasmodium falciparum-infected RBCs expose surface mannose N-glycans, which occur at significantly higher levels on infected RBCs from sickle cell trait subjects compared to those lacking hemoglobin S. The glycans are associated with high molecular weight complexes and protease-resistant, lower molecular weight fragments containing spectrin. Recognition of surface N-linked high mannose glycans as a response to cellular stress is a molecular mechanism common to both the pathogenesis of sickle cell disease and resistance to severe malaria in sickle cell trait.
Collapse
Affiliation(s)
- Huan Cao
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | | | - Sadie Henderson
- grid.476695.f0000 0004 0495 4557Scottish National Blood Transfusion Service, Aberdeen, UK
| | - Heather Wassall
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - John Brewin
- grid.46699.340000 0004 0391 9020Department of Haematology, King’s College Hospital, London, UK
| | - Alanna Masson
- grid.417581.e0000 0000 8678 4766Department of Haematology, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Jenna Shepherd
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Gabriela Konieczny
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Bhinal Patel
- grid.7445.20000 0001 2113 8111Department of Life Sciences, Imperial College London, London, UK
| | - Maria-Louise Williams
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Adam Davie
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Megan A. Forrester
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Lindsay Hall
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Beverley Minter
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Dimitris Tampakis
- grid.13097.3c0000 0001 2322 6764Centre for Biological Engineering, School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University and Division of Cancer Studies, King’s College London, London, UK
| | - Michael Moss
- grid.476695.f0000 0004 0495 4557Scottish National Blood Transfusion Service, Aberdeen, UK
| | - Charlotte Lennon
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Wendy Pickford
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Lars Erwig
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Beverley Robertson
- grid.7445.20000 0001 2113 8111Department of Life Sciences, Imperial College London, London, UK
| | - Anne Dell
- grid.46699.340000 0004 0391 9020Department of Haematology, King’s College Hospital, London, UK
| | - Gordon D. Brown
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK ,grid.8391.30000 0004 1936 8024Medical Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, UK
| | - Heather M. Wilson
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - David C. Rees
- grid.46699.340000 0004 0391 9020Department of Haematology, King’s College Hospital, London, UK
| | - Stuart M. Haslam
- grid.7445.20000 0001 2113 8111Department of Life Sciences, Imperial College London, London, UK
| | - J. Alexandra Rowe
- grid.4305.20000 0004 1936 7988Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Robert N. Barker
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Mark A. Vickers
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK ,grid.476695.f0000 0004 0495 4557Scottish National Blood Transfusion Service, Aberdeen, UK ,grid.417581.e0000 0000 8678 4766Department of Haematology, Aberdeen Royal Infirmary, Aberdeen, UK
| |
Collapse
|
28
|
20S proteasomes secreted by the malaria parasite promote its growth. Nat Commun 2021; 12:1172. [PMID: 33608523 PMCID: PMC7895969 DOI: 10.1038/s41467-021-21344-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/20/2021] [Indexed: 12/16/2022] Open
Abstract
Mature red blood cells (RBCs) lack internal organelles and canonical defense mechanisms, making them both a fascinating host cell, in general, and an intriguing choice for the deadly malaria parasite Plasmodium falciparum (Pf), in particular. Pf, while growing inside its natural host, the human RBC, secretes multipurpose extracellular vesicles (EVs), yet their influence on this essential host cell remains unknown. Here we demonstrate that Pf parasites, cultured in fresh human donor blood, secrete within such EVs assembled and functional 20S proteasome complexes (EV-20S). The EV-20S proteasomes modulate the mechanical properties of naïve human RBCs by remodeling their cytoskeletal network. Furthermore, we identify four degradation targets of the secreted 20S proteasome, the phosphorylated cytoskeletal proteins β-adducin, ankyrin-1, dematin and Epb4.1. Overall, our findings reveal a previously unknown 20S proteasome secretion mechanism employed by the human malaria parasite, which primes RBCs for parasite invasion by altering membrane stiffness, to facilitate malaria parasite growth. Plasmodium falciparum secretes extracellular vesicles (EVs) while growing inside red blood cells (RBCs). Here the authors show that these EVs contain assembled and functional 20S proteasome complexes that remodel the cytoskeleton of naïve human RBCs, priming the RBCs for parasite invasion.
Collapse
|
29
|
Ivanov IT, Paarvanova BK. Differential dielectroscopic data on the relation of erythrocyte membrane skeleton to erythrocyte deformability and flicker. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:69-86. [PMID: 33442752 DOI: 10.1007/s00249-020-01491-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/13/2020] [Accepted: 12/20/2020] [Indexed: 10/22/2022]
Abstract
Two dielectric relaxations, βsp (1.5 MHz) and γ1sp (7 MHz), have been detected on spectrin-based membrane skeleton (MS) of red blood cells (RBCs) using the plot of admittance changes at the spectrin denaturation temperature (Ivanov and Paarvanova in Bioelectrochemistry 110: 59-68, 2016, Electrochim Acta 317: 289-300, 2019a). In this study, we treated RBCs and RBC ghost membranes with agents that make membranes rigid and suppress membrane flicker, and studied the effect on βsp and γ1sp relaxations. Diamide (diazene dicarboxylic acid bis-(N,N-dimethylamide)) (up to 0.85 mM), taurine mustard (tris(2-chloroethyl)amine) (up to 2 mM), known to specifically cross-link and stiffen spectrin, and glutaraldehyde (up to 0.044%) all inhibited the relaxations in RBC ghost membranes. Similar inhibition was obtained resealing RBC ghost membranes with 2,3-diphosphoglicerate (up to 15 mM), binding WGA (wheat germ agglutinin) (up to 0.025 mg/ml) to exofacial aspect of RBCs, incubating RBCs in hypotonic (200 mOsm) and hypertonic (600-900 mOsm) media and depleting RBCs of ATP. By contrast, concanavalin A (1 mg/ml) and DIDS (4,4'-diiso-thiocyanato stilbene-2,2'-disulfonic acid) (75 μM, pH 8.2), both known to bind specifically band 3 integral protein of RBCs without effect on RBC membrane rigidity, did not affect the relaxations. We conclude there might be a relation between the strength of dielectric relaxations on MS spectrin and the deformability and flicker of RBC membrane.
Collapse
Affiliation(s)
- Ivan T Ivanov
- Department of Physics and Biophysics, Roentgenology and Radiology, Medical Faculty of Thracian University, 6000, Stara Zagora, Bulgaria.
| | - Boyana K Paarvanova
- Department of Physics and Biophysics, Roentgenology and Radiology, Medical Faculty of Thracian University, 6000, Stara Zagora, Bulgaria
| |
Collapse
|
30
|
Lenzi E, Dinarelli S, Longo G, Girasole M, Mussi V. Multivariate analysis of mean Raman spectra of erythrocytes for a fast analysis of the biochemical signature of ageing. Talanta 2021; 221:121442. [PMID: 33076067 DOI: 10.1016/j.talanta.2020.121442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 12/12/2022]
Abstract
Ageing of red blood cells (RBC) is a physiological process, fundamental to ensure a proper blood homeostasis that, in vivo, balances the production of new cells and the removal of senescent erythrocytes. A detailed characterization at the cellular level of the progression of the ageing phenomenon can reveal biological, biophysical and biochemical fingerprints for diseases related to misbalances of the cell turnover and for blood pathologies. We applied Principal Components Analysis (PCA) to mean Raman spectra of single cells at different ageing times to rapidly highlight subtle spectral differences associated with conformational and biochemical modifications. Our results demonstrate a two-step ageing process characterized by a first phase in which proteins plays a relevant role, followed by a further cellular evolution driven by alterations in the membrane lipid contribution. Moreover, we used the same approach to directly analyse relevant spectral effects associated to reduction in Haemoglobin oxygenation level and membrane fluidity induced by the ageing. The method is robust and effective, allowing to classify easily the studied cells based on their age and morphology, and consequently to evaluate the biological quality of a blood sample.
Collapse
Affiliation(s)
- E Lenzi
- Physics Department, University of Rome Tor Vergata, Rome, Italy
| | - S Dinarelli
- Institute of Structure of Matter, National Research Council, Rome, Italy
| | - G Longo
- Institute of Structure of Matter, National Research Council, Rome, Italy
| | - M Girasole
- Institute of Structure of Matter, National Research Council, Rome, Italy
| | - V Mussi
- Institute of Microelectronics and Microsystems, National Research Council, Rome, Italy.
| |
Collapse
|
31
|
Piersimoni ME, Teng X, Cass AEG, Ying L. Antioxidant lipoic acid ligand-shell gold nanoconjugates against oxidative stress caused by α-synuclein aggregates. NANOSCALE ADVANCES 2020; 2:5666-5681. [PMID: 36133855 PMCID: PMC9416995 DOI: 10.1039/d0na00688b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/21/2020] [Indexed: 05/13/2023]
Abstract
Gold nanoparticles are becoming a promising platform for the delivery of drugs to treat neurodegenerative diseases. Parkinson's disease, associated with the aggregation of α-synuclein, is a condition that results in dysfunctional neuronal cells leading to their degeneration and death. Oxidative stress has been strongly implicated as a common feature in this process. The limited efficacy of the traditional therapies and the development of associated severe side effects present an unmet need for preventive and adjuvant therapies. The organosulfur compound lipoic acid, naturally located in the mitochondria, plays a powerful antioxidative role against oxidative stress. However, the efficacy is limited by its low physiological concentration, and the administration is affected by its short half-life and bioavailability due to hepatic degradation. Here we exploited the drug delivery potential of gold nanoparticles to assemble lipoic acid, and administered the system into SH-SY5Y cells, a cellular model commonly used to study Parkinson's disease. We tested the nanoconjugates of GNPs-LA, under an oxidative environment induced by gold nanoparticle/α-synuclein conjugates (GNPs-α-Syn). GNPs-LA were found to be biocompatible and capable of restoring the cell damage caused by high-level reactive oxygen species generated by excessive oxidative stress in the cellular environment. We conclude that GNPs-LA may serve as promising drug delivery vehicles conveying antioxidant molecules for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Maria Elena Piersimoni
- National Heart and Lung Institute, Imperial College London, Molecular Sciences Research Hub London W12 0BZ UK
- Bio Nano Consulting London W1T 4TQ UK
| | - Xiangyu Teng
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub London W12 0BZ UK
| | - Anthony E G Cass
- Bio Nano Consulting London W1T 4TQ UK
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub London W12 0BZ UK
| | - Liming Ying
- National Heart and Lung Institute, Imperial College London, Molecular Sciences Research Hub London W12 0BZ UK
| |
Collapse
|
32
|
Barbarino F, Wäschenbach L, Cavalho-Lemos V, Dillenberger M, Becker K, Gohlke H, Cortese-Krott MM. Targeting spectrin redox switches to regulate the mechanoproperties of red blood cells. Biol Chem 2020; 402:317-331. [PMID: 33544503 DOI: 10.1515/hsz-2020-0293] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/17/2020] [Indexed: 12/16/2022]
Abstract
The mechanical properties of red blood cells (RBCs) are fundamental for their physiological role as gas transporters. RBC flexibility and elasticity allow them to survive the hemodynamic changes in the different regions of the vascular tree, to dynamically contribute to the flow thereby decreasing vascular resistance, and to deform during the passage through narrower vessels. RBC mechanoproperties are conferred mainly by the structural characteristics of their cytoskeleton, which consists predominantly of a spectrin scaffold connected to the membrane via nodes of actin, ankyrin and adducin. Changes in redox state and treatment with thiol-targeting molecules decrease the deformability of RBCs and affect the structure and stability of the spectrin cytoskeleton, indicating that the spectrin cytoskeleton may contain redox switches. In this perspective review, we revise current knowledge about the structural and functional characterization of spectrin cysteine redox switches and discuss the current lines of research aiming to understand the role of redox regulation on RBC mechanical properties. These studies may provide novel functional targets to modulate RBC function, blood viscosity and flow, and tissue perfusion in disease conditions.
Collapse
Affiliation(s)
- Frederik Barbarino
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich Heine University, Postfach 128, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
| | - Lucas Wäschenbach
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
| | - Virginia Cavalho-Lemos
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich Heine University, Postfach 128, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
| | - Melissa Dillenberger
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, D-35392, Giessen, Germany
| | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, D-35392, Giessen, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany
| | - Miriam M Cortese-Krott
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich Heine University, Postfach 128, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
| |
Collapse
|
33
|
Sherstyukova E, Chernysh A, Moroz V, Kozlova E, Sergunova V, Gudkova O. The relationship of membrane stiffness, cytoskeleton structure and storage time of pRBCs. Vox Sang 2020; 116:405-415. [PMID: 33103792 DOI: 10.1111/vox.13017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/10/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND OBJECTIVES In clinical practice, it has been shown that transfusion of packed red blood cells (pRBCs) with late shelf life increases the risk of post-transfusion complications. OBJECTIVE To study relationship of membrane stiffness, cytoskeleton structure and storage time of pRBCs. MATERIALS AND METHODS pRBCs were processed and stored according to blood bank procedure, for 42 days, at +4°C; pRBC samples were taken on days 3, 12, 19, 21, 24, 28, 35 and 42. Cytoskeleton images and membrane stiffness were studied using atomic force microscope. RESULTS In the course of the pRBC storage, the cytoskeleton network configuration underwent structural changes. Simultaneously, pRBC membrane stiffness was increasing, with the correlation coefficient 0·88. Until 19 days, the stiffness grew slowly, in 19-24 days there occurred a transition period, after which its growth rate was three times higher than the initial. A chain of pathological processes developed in pRBC during long storage: pH reduction (linked to increased oxidative stress), then cytoskeletal destruction and an associated increase in pRBC membrane stiffness. CONCLUSION During prolonged storage of pRBCs and their acidification, there is a progression of pRBC cytoskeletal changes and associated increase of membrane stiffness, observed to increase in rate after days 19-24. Mutual measurements of cytoskeletal integrity and membrane stiffness may be useful quality assessment tool to study the molecular mechanisms of RBC structural degradation during storage.
Collapse
Affiliation(s)
- Ekaterina Sherstyukova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, Moscow, Russia.,Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Aleksandr Chernysh
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, Moscow, Russia.,Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Viktor Moroz
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, Moscow, Russia
| | - Elena Kozlova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, Moscow, Russia.,Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Viktoria Sergunova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, Moscow, Russia
| | - Olga Gudkova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, Moscow, Russia
| |
Collapse
|
34
|
Paul R, Zhou Y, Nikfar M, Razizadeh M, Liu Y. Quantitative absorption imaging of red blood cells to determine physical and mechanical properties. RSC Adv 2020; 10:38923-38936. [PMID: 33240491 PMCID: PMC7685304 DOI: 10.1039/d0ra05421f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022] Open
Abstract
Red blood cells or erythrocytes, constituting 40 to 45 percent of the total volume of human blood are vesicles filled with hemoglobin with a fluid-like lipid bilayer membrane connected to a 2D spectrin network. The shape, volume, hemoglobin mass, and membrane stiffness of RBCs are important characteristics that influence their ability to circulate through the body and transport oxygen to tissues. In this study, we show that a simple two-LED set up in conjunction with standard microscope imaging can accurately determine the physical and mechanical properties of single RBCs. The Beer-Lambert law and undulatory motion dynamics of the membrane have been used to measure the total volume, hemoglobin mass, membrane tension coefficient, and bending modulus of RBCs. We also show that this method is sensitive enough to distinguish between the mechanical properties of RBCs during morphological changes from a typical discocyte to echinocytes and spherocytes. Measured values of the tension coefficient and bending modulus are 1.27 × 10-6 J m-2 and 7.09 × 10-2 J for discocytes, 4.80 × 10-6 J m-2 and 7.70 × 10-20 J for echinocytes, and 9.85 × 10-6 J m-2 and 9.69 × 10-20 J for spherocytes, respectively. This quantitative light absorption imaging reduces the complexity related to the quantitative imaging of the biophysical and mechanical properties of a single RBC that may lead to enhanced yet simplified point of care devices for analyzing blood cells.
Collapse
Affiliation(s)
- Ratul Paul
- Department of Mechanical Engineering and Mechanics, Lehigh UniversityBethlehemPennsylvania 18015USA
| | - Yuyuan Zhou
- Department of Bioengineering, Lehigh UniversityBethlehemPennsylvania 18015USA
| | - Mehdi Nikfar
- Department of Mechanical Engineering and Mechanics, Lehigh UniversityBethlehemPennsylvania 18015USA
| | - Meghdad Razizadeh
- Department of Mechanical Engineering and Mechanics, Lehigh UniversityBethlehemPennsylvania 18015USA
| | - Yaling Liu
- Department of Mechanical Engineering and Mechanics, Lehigh UniversityBethlehemPennsylvania 18015USA
- Department of Bioengineering, Lehigh UniversityBethlehemPennsylvania 18015USA
| |
Collapse
|
35
|
Richardson KJ, McNamee AP, Simmonds MJ. Hemochromatosis alters the sensitivity of red blood cells to mechanical stress. Transfusion 2020; 60:2982-2990. [PMID: 32945551 DOI: 10.1111/trf.16086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Hemochromatosis (HH) is characterized by chronic iron accumulation, leading to deleterious effects to various organ systems. A common approach to managing iron load involves large-volume venesection. Some countries authorize HH venesections to be used in the development of transfusable blood products, although concerns remain regarding suitability. Due to the high oxidative load associated with hyperferritinemia, it has been proposed that HH blood products may be susceptible to mechanical damage. This is particularly relevant given that typical blood product destinations (eg, transfusion, cardiopulmonary bypass) expose blood to supraphysiologic levels of mechanical stress. We sought to explore the mechanical tolerance of red blood cells (RBC) derived from HH venesections to varied magnitudes and durations of sublethal shear stress. STUDY DESIGN AND METHODS Initially, 110 individuals with HH were recruited; to eliminate the effects of comorbidities, only those who were untreated and uncomplicated were included for comparisons with age-matched healthy controls (Con). RBC were exposed to 25 discrete magnitudes (1-64 Pa) and durations (1-64 seconds) of shear stress. Cellular deformability was assessed before, and immediately after, each shear exposure. RESULTS In the absence of prior shear exposure, RBC deformability of HH was significantly decreased by 11.5%, compared with Con. For both HH and Con, supraphysiologic shear exposure significantly impaired RBC deformability, although the rate and magnitude of deterioration were elevated for HH. CONCLUSION Given that blood products are commonly exposed to high-shear environments (eg, during high-volume transfusion), venesections from asymptomatic and untreated individuals with HH appear suboptimal for the development of therapeutic RBCs.
Collapse
Affiliation(s)
- Kieran J Richardson
- Biorheology Research Laboratory, Menzies Health Institute Queensland, Gold Coast, Queensland, Australia
| | - Antony P McNamee
- Biorheology Research Laboratory, Menzies Health Institute Queensland, Gold Coast, Queensland, Australia
| | - Michael J Simmonds
- Biorheology Research Laboratory, Menzies Health Institute Queensland, Gold Coast, Queensland, Australia
| |
Collapse
|
36
|
Richardson KJ, McNamee AP, Simmonds MJ. Mechanical sensitivity of red blood cells improves in individuals with hemochromatosis following venesection therapy. Transfusion 2020; 60:3001-3009. [PMID: 32939772 DOI: 10.1111/trf.16080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/22/2020] [Accepted: 08/11/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Individuals with hereditary hemochromatosis (HH) receive frequent blood withdrawals (ie, venesections) as part of their primary treatment to assist in normalizing blood iron levels. It remains unclear whether this source of blood is suitable for use in blood product development, as current data indicate that red blood cell (RBC) deformability, both before and after shear stress exposure, is impaired in individuals with HH, relative to healthy controls. Given that venesection therapy is known to significantly reduce circulating iron levels in individuals with HH, the current study examined whether venesection therapy is effective at improving RBC mechanical properties, both before and after shear stress exposure, in individuals with HH. STUDY DESIGN AND METHODS Blood samples were initially collected from untreated HH patients (age, 61 ± 9 years; 14% female) undergoing their first venesection, and then again during their second (approx. 9 weeks later) and third (approx. 16 weeks later) venesections. RBC deformability was measured at each time point with a commercial ektacytometer. Moreover, to determine cell responses to mechanical stimuli, the mechanical sensitivity of blood samples was determined at each time point. RESULTS The salient findings indicate that venesection therapy used for managing plasma ferritin concentration significantly improves the cellular deformability of RBC in individuals with HH. Further, the sensitivity of RBC to supraphysiological mechanical stress is decreased (ie, improved) in a dose-response fashion with routine venesection. CONCLUSION While cellular mechanics of RBC from individuals with HH are impaired when untreated, venesection therapy significantly improves cellular properties of RBC, supporting the use of venesections in blood product development from individuals with well-managed HH.
Collapse
Affiliation(s)
- Kieran J Richardson
- Biorheology Research Laboratory, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Antony P McNamee
- Biorheology Research Laboratory, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Michael J Simmonds
- Biorheology Research Laboratory, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
37
|
Dybas J, Bulat K, Blat A, Mohaissen T, Wajda A, Mardyla M, Kaczmarska M, Franczyk-Zarow M, Malek K, Chlopicki S, Marzec KM. Age-related and atherosclerosis-related erythropathy in ApoE/LDLR -/- mice. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165972. [PMID: 32949768 DOI: 10.1016/j.bbadis.2020.165972] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/30/2020] [Accepted: 09/14/2020] [Indexed: 10/24/2022]
Abstract
In this work we applied a multimodal approach to define the age- and atherosclerosis-related biochemical and functional alterations in red blood cells (RBCs) in ApoE/LDLR-/- mice. Our results revealed that age-related changes in RBCs, such as decreases in RBC deformability and mean height, were more pronounced in ApoE/LDLR-/- mice than in age-matched control mice (C57BL/6J). The decreases in phospholipid content and level of lipid unsaturation were accompanied by an increase in cholesterol esters and esterified lipids in RBC membranes in aged C57BL/6J mice. The age-related decrease in the phospholipid content was more pronounced in ApoE/LDLR-/- mice. In contrast, the increase in the total lipid content in RBC membranes occurred only in ApoE/LDLR-/- mice with advanced atherosclerosis. The age-related alterations also included a decrease in the ratio of turns to α-helices in the secondary structure of hemoglobin (Hb) inside intact RBCs. On the other hand, an increase in the ratio of unordered conformations to α-helices of Hb was observed only in ApoE/LDLR-/- mice and occurred already at the age of 5-weeks. This was related to hypercholesterolemia and resulted in an increased oxygen-carrying capacity. In conclusion, progressive mechanical and functional alterations of RBCs in aged ApoE/LDLR-/- mice were more pronounced than in age-matched C57BL/6J mice. Although, several biochemical changes in RBCs in aged ApoE/LDLR-/- mice recapitulated age-dependent changes observed in control mice, some biochemical features of RBC membranes attributed to hypercholesterolemia were distinct and could contribute to the accelerated deterioration of RBC function in ApoE/LDLR-/- mice.
Collapse
Affiliation(s)
- Jakub Dybas
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzyńskiego St., 30-348 Krakow, Poland
| | - Katarzyna Bulat
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzyńskiego St., 30-348 Krakow, Poland
| | - Aneta Blat
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzyńskiego St., 30-348 Krakow, Poland; Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland
| | - Tasnim Mohaissen
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzyńskiego St., 30-348 Krakow, Poland; Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Krakow, Poland
| | - Aleksandra Wajda
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzyńskiego St., 30-348 Krakow, Poland; Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland
| | - Mateusz Mardyla
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzyńskiego St., 30-348 Krakow, Poland; Jagiellonian University, University School of Physical Education in Krakow, 78 Jana Pawła II St., 31-571 Krakow, Poland
| | - Magdalena Kaczmarska
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzyńskiego St., 30-348 Krakow, Poland
| | - Magdalena Franczyk-Zarow
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture, 122 Balicka St., 30-149 Krakow, Poland
| | - Kamilla Malek
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzyńskiego St., 30-348 Krakow, Poland; Department of Experimental Pharmacology, Jagiellonian University Medical College, 16 Grzegorzecka St., 31-531 Krakow, Poland
| | - Katarzyna M Marzec
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzyńskiego St., 30-348 Krakow, Poland.
| |
Collapse
|
38
|
Kariuki SN, Marin-Menendez A, Introini V, Ravenhill BJ, Lin YC, Macharia A, Makale J, Tendwa M, Nyamu W, Kotar J, Carrasquilla M, Rowe JA, Rockett K, Kwiatkowski D, Weekes MP, Cicuta P, Williams TN, Rayner JC. Red blood cell tension protects against severe malaria in the Dantu blood group. Nature 2020; 585:579-583. [PMID: 32939086 PMCID: PMC7116803 DOI: 10.1038/s41586-020-2726-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 06/19/2020] [Indexed: 01/06/2023]
Abstract
Malaria has had a major effect on the human genome, with many protective polymorphisms-such as the sickle-cell trait-having been selected to high frequencies in malaria-endemic regions1,2. The blood group variant Dantu provides 74% protection against all forms of severe malaria in homozygous individuals3-5, a similar degree of protection to that afforded by the sickle-cell trait and considerably greater than that offered by the best malaria vaccine. Until now, however, the protective mechanism has been unknown. Here we demonstrate the effect of Dantu on the ability of the merozoite form of the malaria parasite Plasmodium falciparum to invade red blood cells (RBCs). We find that Dantu is associated with extensive changes to the repertoire of proteins found on the RBC surface, but, unexpectedly, inhibition of invasion does not correlate with specific RBC-parasite receptor-ligand interactions. By following invasion using video microscopy, we find a strong link between RBC tension and merozoite invasion, and identify a tension threshold above which invasion rarely occurs, even in non-Dantu RBCs. Dantu RBCs have higher average tension than non-Dantu RBCs, meaning that a greater proportion resist invasion. These findings provide both an explanation for the protective effect of Dantu, and fresh insight into why the efficiency of P. falciparum invasion might vary across the heterogenous populations of RBCs found both within and between individuals.
Collapse
Affiliation(s)
- Silvia N Kariuki
- Department of Epidemiology and Demography, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Viola Introini
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Benjamin J Ravenhill
- Cambridge Institute for Medical Research, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Yen-Chun Lin
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Alex Macharia
- Department of Epidemiology and Demography, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Johnstone Makale
- Department of Epidemiology and Demography, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Metrine Tendwa
- Department of Epidemiology and Demography, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Wilfred Nyamu
- Department of Epidemiology and Demography, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Jurij Kotar
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | | | - J Alexandra Rowe
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Kirk Rockett
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Dominic Kwiatkowski
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Big Data Institute, University of Oxford, Oxford, UK
| | - Michael P Weekes
- Cambridge Institute for Medical Research, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Pietro Cicuta
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| | - Thomas N Williams
- Department of Epidemiology and Demography, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.
- Institute of Global Health Innovation, Imperial College London, London, UK.
- Department of Infectious Disease, Imperial College London, London, UK.
| | - Julian C Rayner
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- Cambridge Institute for Medical Research, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
39
|
Qazi A, Nazir M, Shahid M, Butt S, Basit MA. Facile Development of Hybrid Bulk-Nanostructured SnSe/SnS for Antibacterial Activity with Negligible Cytotoxicity. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01824-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
40
|
Kumar A, Schmidt BR, Sanchez ZAC, Yazar F, Davis RW, Ramasubramanian AK, Saha AK. Automated Motion Tracking and Data Extraction for Red Blood Cell Biomechanics. ACTA ACUST UNITED AC 2020; 93:e75. [PMID: 32391975 DOI: 10.1002/cpcy.75] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Red blood cell biomechanics can provide us with a deeper understanding of macroscopic physiology and have the potential of being used for diagnostic purposes. In diseases like sickle cell anemia and malaria, reduced red blood cell deformability can be used as a biomarker, leading to further assays and diagnoses. A microfluidic system is useful for studying these biomechanical properties. We can observe detailed red blood cell mechanical behavior as they flow through microcapillaries using high-speed imaging and microscopy. Microfluidic devices are advantageous over traditional methods because they can serve as high-throughput tests. However, to rapidly analyze thousands of cells, there is a need for powerful image processing tools and software automation. We describe a workflow process using Image-Pro to identify and track red blood cells in a video, take measurements, and export the data for use in statistical analysis tools. The information in this protocol can be applied to large-scale blood studies where entire cell populations need to be analyzed from many cohorts of donors. © 2020 The Authors. Basic Protocol 1: Enhancing raw video for motion tracking Basic Protocol 2: Extracting motion tracking data from enhanced video.
Collapse
Affiliation(s)
- Arun Kumar
- Department of Biomedical Engineering, San José State University, San José, California
| | - Brendan R Schmidt
- Department of Chemical and Materials Engineering, San José State University, San José, California
| | | | - Feyza Yazar
- Department of Biomedical Engineering, San José State University, San José, California
| | - Ronald W Davis
- Department of Biochemistry, Stanford University, Stanford, California
| | - Anand K Ramasubramanian
- Department of Chemical and Materials Engineering, San José State University, San José, California
| | - Amit K Saha
- Department of Biochemistry, Stanford University, Stanford, California
| |
Collapse
|
41
|
Bogdanova A, Kaestner L, Simionato G, Wickrema A, Makhro A. Heterogeneity of Red Blood Cells: Causes and Consequences. Front Physiol 2020; 11:392. [PMID: 32457644 PMCID: PMC7221019 DOI: 10.3389/fphys.2020.00392] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/02/2020] [Indexed: 12/21/2022] Open
Abstract
Mean values of hematological parameters are currently used in the clinical laboratory settings to characterize red blood cell properties. Those include red blood cell indices, osmotic fragility test, eosin 5-maleimide (EMA) test, and deformability assessment using ektacytometry to name a few. Diagnosis of hereditary red blood cell disorders is complemented by identification of mutations in distinct genes that are recognized "molecular causes of disease." The power of these measurements is clinically well-established. However, the evidence is growing that the available information is not enough to understand the determinants of severity of diseases and heterogeneity in manifestation of pathologies such as hereditary hemolytic anemias. This review focuses on an alternative approach to assess red blood cell properties based on heterogeneity of red blood cells and characterization of fractions of cells with similar properties such as density, hydration, membrane loss, redox state, Ca2+ levels, and morphology. Methodological approaches to detect variance of red blood cell properties will be presented. Causes of red blood cell heterogeneity include cell age, environmental stress as well as shear and metabolic stress, and multiple other factors. Heterogeneity of red blood cell properties is also promoted by pathological conditions that are not limited to the red blood cells disorders, but inflammatory state, metabolic diseases and cancer. Therapeutic interventions such as splenectomy and transfusion as well as drug administration also impact the variance in red blood cell properties. Based on the overview of the studies in this area, the possible applications of heterogeneity in red blood cell properties as prognostic and diagnostic marker commenting on the power and selectivity of such markers are discussed.
Collapse
Affiliation(s)
- Anna Bogdanova
- Red Blood Cell Research Group, Vetsuisse Faculty, The Zurich Center for Integrative Human Physiology (ZHIP), Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Lars Kaestner
- Experimental Physics, Dynamics of Fluids, Faculty of Natural Sciences and Technology, Saarland University, Saarbrücken, Germany
- Theoretical Medicine and Biosciences, Medical Faculty, Saarland University, Homburg, Germany
| | - Greta Simionato
- Experimental Physics, Dynamics of Fluids, Faculty of Natural Sciences and Technology, Saarland University, Saarbrücken, Germany
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Amittha Wickrema
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Asya Makhro
- Red Blood Cell Research Group, Vetsuisse Faculty, The Zurich Center for Integrative Human Physiology (ZHIP), Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
42
|
Nader E, Romana M, Connes P. The Red Blood Cell-Inflammation Vicious Circle in Sickle Cell Disease. Front Immunol 2020; 11:454. [PMID: 32231672 PMCID: PMC7082402 DOI: 10.3389/fimmu.2020.00454] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/27/2020] [Indexed: 12/31/2022] Open
Abstract
Sickle cell disease (SCD) is a genetic disease caused by a single mutation in the β-globin gene, leading to the production of an abnormal hemoglobin called hemoglobin S (HbS), which polymerizes under deoxygenation, and induces the sickling of red blood cells (RBCs). Sickled RBCs are very fragile and rigid, and patients consequently become anemic and develop frequent and recurrent vaso-occlusive crises. However, it is now evident that SCD is not only a RBC rheological disease. Accumulating evidence shows that SCD is also characterized by the presence of chronic inflammation and oxidative stress, participating in the development of chronic vasculopathy and several chronic complications. The accumulation of hemoglobin and heme in the plasma, as a consequence of enhanced intravascular hemolysis, decreases nitric oxide bioavailability and enhances the production of reactive oxygen species (ROS). Heme and hemoglobin also represent erythrocytic danger-associated molecular pattern molecules (eDAMPs), which may activate endothelial inflammation through TLR-4 signaling and promote the development of complications, such as acute chest syndrome. It is also suspected that heme may activate the innate immune complement system and stimulate neutrophils to release neutrophil extracellular traps. A large amount of microparticles (MPs) from various cellular origins (platelets, RBCs, white blood cells, endothelial cells) is also released into the plasma of SCD patients and participate in the inflammation and oxidative stress in SCD. In turn, this pro-inflammatory and oxidative stress environment further alters the RBC properties. Increased pro-inflammatory cytokine concentrations promote the activation of RBC NADPH oxidase and, thus, raise the production of intra-erythrocyte ROS. Such enhanced oxidative stress causes deleterious damage to the RBC membrane and further alters the deformability of the cells, modifying their aggregation properties. These RBC rheological alterations have been shown to be associated to specific SCD complications, such as leg ulcers, priapism, and glomerulopathy. Moreover, RBCs positive for the Duffy antigen receptor for chemokines may be very sensitive to various inflammatory molecules that promote RBC dehydration and increase RBC adhesiveness to the vascular wall. In summary, SCD is characterized by a vicious circle between abnormal RBC rheology and inflammation, which modulates the clinical severity of patients.
Collapse
Affiliation(s)
- Elie Nader
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team Vascular Biology and Red Blood Cell, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Marc Romana
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France.,Université des Antilles, UMR_S1134, BIGR, Pointe-à-Pitre, France.,Université de Paris, UMR_S1134, BIGR, INSERM, Paris, France
| | - Philippe Connes
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team Vascular Biology and Red Blood Cell, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| |
Collapse
|
43
|
Yao Z, Kwan CC, Poon AW. An optofluidic "tweeze-and-drag" cell stretcher in a microfluidic channel. LAB ON A CHIP 2020; 20:601-613. [PMID: 31909404 DOI: 10.1039/c9lc01026b] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The mechanical properties of biological cells are utilized as an inherent, label-free biomarker to indicate physiological and pathological changes of cells. Although various optical and microfluidic techniques have been developed for cell mechanical characterization, there is still a strong demand for non-contact and continuous methods. Here, by combining optical and microfluidic techniques in a single desktop platform, we demonstrate an optofluidic cell stretcher based on a "tweeze-and-drag" mechanism using a periodically chopped, tightly focused laser beam as an optical tweezer to trap a cell temporarily and a flow-induced drag force to stretch the cell in a microfluidic channel transverse to the tweezer. Our method leverages the advantages of non-contact optical forces and a microfluidic flow for both cell stretching and continuous cell delivery. We demonstrate the stretcher for mechanical characterization of rabbit red blood cells (RBCs), with a throughput of ∼1 cell per s at a flow rate of 2.5 μl h-1 at a continuous-wave laser power of ∼25 mW at a wavelength of 1064 nm (chopped at 2 Hz). We estimate the spring constant of RBCs to be ∼14.9 μN m-1. Using the stretcher, we distinguish healthy RBCs and RBCs treated with glutaraldehyde at concentrations of 5 × 10-4% to 2.5 × 10-3%, with a strain-to-concentration sensitivity of ∼-1529. By increasing the optical power to ∼45 mW, we demonstrate cell-stretching under a higher flow rate of 4 μl h-1, with a higher throughput of ∼1.5 cells per s and a higher sensitivity of ∼-2457. Our technique shows promise for applications in the fields of healthcare monitoring and biomechanical studies.
Collapse
Affiliation(s)
- Zhanshi Yao
- Photonic Device Laboratory, Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China.
| | - Ching Chi Kwan
- Photonic Device Laboratory, Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China.
| | - Andrew W Poon
- Photonic Device Laboratory, Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China.
| |
Collapse
|
44
|
Maternal Smoking Highly Affects the Function, Membrane Integrity, and Rheological Properties in Fetal Red Blood Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1509798. [PMID: 31871538 PMCID: PMC6906794 DOI: 10.1155/2019/1509798] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/25/2019] [Accepted: 10/15/2019] [Indexed: 01/13/2023]
Abstract
An understanding of the basic pathophysiological mechanisms of neonatal diseases necessitates detailed knowledge about the wide range of complications in the circulating fetal RBCs. Recent publications on adult red blood cells (RBCs) provide evidence that RBCs carry an active nitric oxide synthase (NOS3) enzyme and contribute to vascular functioning and integrity via their active nitric oxide synthesis. The aim of this study was to determine the effect of maternal smoking on the phenotypical appearance and functionality of fetal RBCs, based on morphological and molecular studies. We looked for possible links between vascular dysfunction and NOS3 expression and activation and its regulation by arginase (ARG1). Significant morphological and functional differences were found between fetal RBCs isolated from the arterial cord blood of neonates born to nonsmoking (RBC-NS, n = 62) and heavy-smoking (RBC-S, n = 51) mothers. Morphological variations were quantified by Advanced Cell Classifier, microscopy-based intelligent analysis software. To investigate the relevance of the newly suggested “erythrocrine” function in fetal RBCs, we measured the levels of NOS3 and its phosphorylation in parallel with the level of ARG1, as one of the major influencers of NOS3 dimerization, by fluorescence-activated cell sorting. Fetal RBCs, even the “healthy-looking” biconcave-shaped type, exhibited impaired NOS3 activation in the RBC-S population, which was paralleled with elevated ARG1 level, thus suggesting an increased redox burden. Our molecular data indicate that maternal smoking can exert marked effects on the circulating fetal RBCs, which could have a consequence on the outcome of in utero development. We hypothesize that any endothelial dysfunction altering NO production/bioavailability can be sensed by circulating fetal RBCs. Hence, we are putting forward the idea that neonatal RBC could serve as a real-time sensor for not only monitoring RBC-linked anomalies but also predicting the overall status of the vascular microenvironment.
Collapse
|
45
|
Zapotoczny B, Braet F, Kus E, Ginda-Mäkelä K, Klejevskaja B, Campagna R, Chlopicki S, Szymonski M. Actin-spectrin scaffold supports open fenestrae in liver sinusoidal endothelial cells. Traffic 2019; 20:932-942. [PMID: 31569283 PMCID: PMC6899910 DOI: 10.1111/tra.12700] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 01/11/2023]
Abstract
Fenestrae are open transmembrane pores that are a structural hallmark of healthy liver sinusoidal endothelial cells (LSECs). Their key role is the transport of solutes and macromolecular complexes between the sinusoidal lumen and the space of Disse. To date, the biochemical nature of the cytoskeleton elements that surround the fenestrae and sieve plates in LSECs remain largely elusive. Herein, we took advantage of the latest developments in atomic force imaging and super‐resolution fluorescence nanoscopy to define the organization of the supramolecular complex(es) that surround the fenestrae. Our data revealed that spectrin, together with actin, lines the inner cell membrane and provided direct structural support to the membrane‐bound pores. We conclusively demonstrated that diamide and iodoacetic acid (IAA) affect fenestrae number by destabilizing the LSEC actin‐spectrin scaffold. Furthermore, IAA induces rapid and repeatable switching between the open vs closed state of the fenestrae, indicating that the spectrin‐actin complex could play an important role in controlling the pore number. Our results suggest that spectrin functions as a key regulator in the structural preservation of the fenestrae, and as such, it might serve as a molecular target for altering transendothelial permeability.
Collapse
Affiliation(s)
- Bartlomiej Zapotoczny
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Krakow, Poland
| | - Filip Braet
- School of Medical Sciences (Discipline of Anatomy and Histology) - Cellular Imaging Facility, Charles Perkins Centre - Australian Centre for Microscopy & Microanalysis, The University of Sydney, New South Wales, Australia
| | - Edyta Kus
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | | | | | - Roberto Campagna
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland.,Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Marek Szymonski
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Krakow, Poland
| |
Collapse
|
46
|
Yang Q, Noviana M, Zhao Y, Chen D, Wang X. Effect of curcumin extract against oxidative stress on both structure and deformation capability of red blood cell. J Biomech 2019; 95:109301. [PMID: 31443943 DOI: 10.1016/j.jbiomech.2019.07.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 01/31/2023]
Abstract
The normal deformability of erythrocytes plays an important role in ensuring blood mobility, erythrocyte longevity, and microcirculation, which is the ability of erythrocytes to change shapes in response to external forces. However, the effects of curcumin extracts on the deformability of erythrocytes have not yet been evaluated. Accordingly, in this study, we explored the effects of pre-treatment with curcumin extract on erythrocyte deformation and erythrocyte band 3 (SLC4A1; EB3) expression. We also evaluated the associations between EB3 expression and erythrocyte deformability induced by hydrogen peroxide. Blood samples were divided into the control group, pre-treatment group (treated with curcumin extract or vitamin C), and negative control group, and oxidant stress parameters, antioxidant status, erythrocyte deformability and elasticity, and EB3 modifications were evaluated using immunoblotting and immunofluorescence staining. Hydrogen peroxide significantly increased oxidative stress parameters, modulus elasticity values and clustered EB3 levels and induced conjugation of membrane proteins to form high-molecular-weight complexes (p < 0.05). Erythrocyte deformability and elasticity were significantly decreased in the treated groups compared with those in the control group. Overall, our findings suggested that pre-treatment with curcumin extracts increased antioxidant status, reduced EB3 cross-linking, and improved erythrocyte deformability, to an even better extent than vitamin C. These results provide important insights into the effects of treatment with curcumin extracts on erythrocyte damage and suggest that curcumin may have applications in antioxidant therapy.
Collapse
Affiliation(s)
- Qinqin Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Milody Noviana
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Yajin Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Dong Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Xiang Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China.
| |
Collapse
|
47
|
Puttaswamy SV, Fishlock SJ, Steele D, Shi Q, Lee C, McLaughlin J. Versatile microfluidic platform embedded with sidewall three-dimensional electrodes for cell manipulation. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab268e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
48
|
Patra G, Saha B, Mukhopadhyay S. High titres of IgM-bound circulating immune complexes and erythrocytic oxidative damage are indicators of dengue severity. Clin Exp Immunol 2019; 198:251-260. [PMID: 31260079 DOI: 10.1111/cei.13346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2019] [Indexed: 01/12/2023] Open
Abstract
Global incidence of dengue has drastically increased in the last few years. Despite the global morbidity and mortality associated with dengue infection, mechanisms of immune control and viral pathogenesis are poorly explored. Pancytopenias, along with increased oxidative stress, are salient clinical findings in severe dengue patients. Previously, we demonstrated significant differences of circulating immune complexes (CICs) among severe and non-severe dengue patients. Accordingly, here we sought to determine the contributory role of affinity-purified antibody-bound CICs in dengue severity. To characterize intracellular oxidative stress induced by antibody-bound CICs, 5-(and-6)-chloromethyl-2'-7'-dichlorodihydrofluorescein diacetate (DCFDA) was measured by flow cytometry. At the same time, CICs sensitized healthy red blood cells (RBC) and patients' RBC morphology was determined by scanning electron microscopy and flow cytometry analysis. Erythrophagocytosis and ferritin levels were further determined in severe and non-severe dengue patients. Our results showed that the severe patients had high titres of immunoglobulin (Ig)M-bound CICs (P < 0·0001) in their sera, increased intracellular oxidative stress (P < 0·0001), high ferritin levels (P < 0·0001), altered morphology of RBC and finally enhanced erythrophagocytosis. This study shows for the first time that RBC morphology is altered in severe dengue patients. Taken together, this study suggests that the enhanced IgM-bound CICs could contribute to the increased oxidative stress and act directly on RBC destruction of severe dengue patients, and is an important pathophysiological determinant. Hence, IgM-bound CICs can serve as an important laboratory parameter to monitor dengue infection progression.
Collapse
Affiliation(s)
- G Patra
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, India
| | - B Saha
- Department of Tropical Medicine, Calcutta School of Tropical Medicine, Kolkata, India
| | - S Mukhopadhyay
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, India
| |
Collapse
|
49
|
Li H, Yang J, Chu TT, Naidu R, Lu L, Chandramohanadas R, Dao M, Karniadakis GE. Cytoskeleton Remodeling Induces Membrane Stiffness and Stability Changes of Maturing Reticulocytes. Biophys J 2019; 114:2014-2023. [PMID: 29694877 DOI: 10.1016/j.bpj.2018.03.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/31/2018] [Accepted: 03/06/2018] [Indexed: 12/19/2022] Open
Abstract
Reticulocytes, the precursors of erythrocytes, undergo drastic alterations in cell size, shape, and deformability during maturation. Experimental evidence suggests that young reticulocytes are stiffer and less stable than their mature counterparts; however, the underlying mechanism is yet to be fully understood. Here, we develop a coarse-grained molecular-dynamics reticulocyte membrane model to elucidate how the membrane structure of reticulocytes contributes to their particular biomechanical properties and pathogenesis in blood diseases. First, we show that the extended cytoskeleton in the reticulocyte membrane is responsible for its increased shear modulus. Subsequently, we quantify the effect of weakened cytoskeleton on the stiffness and stability of reticulocytes, via which we demonstrate that the extended cytoskeleton along with reduced cytoskeleton connectivity leads to the seeming paradox that reticulocytes are stiffer and less stable than the mature erythrocytes. Our simulation results also suggest that membrane budding and the consequent vesiculation of reticulocytes can occur independently of the endocytosis-exocytosis pathway, and thus, it may serve as an additional means of removing unwanted membrane proteins from reticulocytes. Finally, we find that membrane budding is exacerbated when the cohesion between the lipid bilayer and the cytoskeleton is compromised, which is in accord with the clinical observations that erythrocytes start shedding membrane surface at the reticulocyte stage in hereditary spherocytosis. Taken together, our results quantify the stiffness and stability change of reticulocytes during their maturation and provide, to our knowledge, new insights into the pathogenesis of hereditary spherocytosis and malaria.
Collapse
Affiliation(s)
- He Li
- Division of Applied Mathematics, Brown University, Providence, Rhode Island.
| | - Jun Yang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Trang T Chu
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore, Singapore; Interdisciplinary Research Group of Infectious Diseases, Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore
| | - Renugah Naidu
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore, Singapore
| | - Lu Lu
- Division of Applied Mathematics, Brown University, Providence, Rhode Island
| | - Rajesh Chandramohanadas
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore, Singapore
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts; Interdisciplinary Research Group of Infectious Diseases, Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore
| | | |
Collapse
|
50
|
Martínez-Vieyra V, Rodríguez-Varela M, García-Rubio D, De la Mora-Mojica B, Méndez-Méndez J, Durán-Álvarez C, Cerecedo D. Alterations to plasma membrane lipid contents affect the biophysical properties of erythrocytes from individuals with hypertension. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:182996. [PMID: 31150634 DOI: 10.1016/j.bbamem.2019.05.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/15/2019] [Accepted: 05/23/2019] [Indexed: 12/17/2022]
Abstract
Genetic and environmental factors may contribute to high blood pressure, which is termed essential hypertension. Hypertension is a major independent risk factor for cardiovascular disease, stroke and renal failure; thus, elucidation of the etiopathology of hypertension merits further research. We recently reported that the platelets and neutrophils of patients with hypertension exhibit altered biophysical characteristics. In the present study, we assessed whether the major structural elements of erythrocyte plasma membranes are altered in individuals with hypertension. We compared the phospholipid (phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, sphingosine) and cholesterol contents of erythrocytes from individuals with hypertension (HTN) and healthy individuals (HI) using LC/MS-MS. HTN erythrocytes contained higher phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine contents and a lower cholesterol content than HI erythrocytes. Furthermore, atomic force microscopy revealed important morphological changes in HTN erythrocytes, which reflected the increased membrane fragility and fluidity and higher levels of oxidative stress observed in HTN erythrocytes using spectrophotofluorometry, flow cytometry and spectrometry. This study reveals that alterations to the lipid contents of erythrocyte plasma membranes occur in hypertension, and these alterations in lipid composition result in morphological and physiological abnormalities that modify the dynamic properties of erythrocytes and contribute to the pathophysiology of hypertension.
Collapse
Affiliation(s)
- Vette Martínez-Vieyra
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, CDMX, Mexico
| | - Mario Rodríguez-Varela
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Diana García-Rubio
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, CDMX, Mexico
| | | | | | - Carlos Durán-Álvarez
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Doris Cerecedo
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, CDMX, Mexico.
| |
Collapse
|