1
|
Zhang M, Wu X, Gao H, Zhang L, Li Y, Li M, Zhao C, Wei P, Ou L. Chinese Herbal Medicine for Irritable Bowel Syndrome: A Perspective of Local Immune Actions. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:2079-2106. [PMID: 39663262 DOI: 10.1142/s0192415x24500800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Irritable bowel syndrome (IBS) is the functional gastrointestinal disorder, characterized by abdominal pain and altered bowel habits. The interest in intestinal immune activation as a potential disease mechanism for IBS has increased exponentially in recent years. This study was designed to summarize the Chinese herbal medicine (CHM) that potentially exert protective effects against IBS through inhibition of intestinal immune activation. We detailed the current evidence that immune activation contributes to the pathology of IBS and discussed the potential mechanisms involved. Then, therapeutic effects and possible mechanisms related to immune response of herbal medicine prescriptions, extracts, and monomers were analyzed. The reasons leading to the aberrant and persistent immune activation noted in IBS are mainly associated with the increased number of mast cells, CD3[Formula: see text] T cells, and CD4[Formula: see text] T cells. The mechanisms mainly focused on the gut microbiota disorder induced alteration of the PGE2/COX2/SERT/5-HT, TLR4/MyD88/NF-κB, and BDNF/TrkB pathways. Most of the CHM alleviated IBS through interventions of intestinal immune activation via gut microbiota related to the TLR4/MyD88/NF-κB and SCF/c-kit pathways. We hope this review will provide some clues for the further development of novel candidate agents for IBS and other intestinal immune disorders.
Collapse
Affiliation(s)
- Mengmeng Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
| | - Xu Wu
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
- Engineering Technology Research Center of Shaanxi, Administration of Chinese Herbal Pieces, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
| | - Huanqing Gao
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
| | - Lin Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
| | - Yao Li
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
| | - Min Li
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
| | - Chongbo Zhao
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
- Engineering Technology Research Center of Shaanxi, Administration of Chinese Herbal Pieces, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
| | - Peifeng Wei
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
| | - Li Ou
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
| |
Collapse
|
2
|
Zhang Y, Huang S, Zhang S, Hao Z, Shen J. Pomegranate Peel Extract Mitigates Diarrhea-Predominant Irritable Bowel Syndromes via MAPK and NF-κB Pathway Modulation in Rats. Nutrients 2024; 16:3854. [PMID: 39599640 PMCID: PMC11597445 DOI: 10.3390/nu16223854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Diarrhea-predominant irritable bowel syndrome (IBS-D) is a common chronic functional gastrointestinal disorder that causes diarrheal and intestinal barrier disruptions. Although pomegranate peel extract (PPE) has been reported for the treatment of diarrheal and intestinal inflammation, its effectiveness and mechanisms specifically for the treatment of IBS-D remain unknown. OBJECTIVES This study aimed to explore the therapeutic effect of PPE on IBS-D and elucidate its underlying mechanisms. METHODS A high-fat diet, restraint stress, and senna gavage were combined to establish a rat model mimicking IBS-D, to evaluate the therapeutic effects of PPE. Network pharmacology analysis, serum medicinal chemistry, and transcriptomics were employed to investigate potential downstream signaling pathways. Findings were further validated through molecular docking and Western blot analysis. RESULTS The findings revealed that PPE significantly improved the symptoms of IBS-D, ameliorated intestinal inflammation, and promoted intestinal barrier function. The target genes in the MAPK and NF-κB signaling pathways were significantly enriched and down-regulated. Molecular docking and Western blot assays were performed to verify that PPE had a high affinity for the protein candidates in these pathways, and significantly down-regulated the expression of p-IκB, p-p65, p-JNK, p-p38, and p-ERK1/2. CONCLUSIONS The present study is the first to demonstrate that PPE alleviates diarrheal and intestinal damage in IBS-D, potentially by inhibiting MAPK and NF-κB signaling pathways. These findings suggest that PPE may provide a novel therapeutic option for IBS-D.
Collapse
Affiliation(s)
- Yannan Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.Z.); (S.H.); (S.Z.)
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Sijuan Huang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.Z.); (S.H.); (S.Z.)
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Shuai Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.Z.); (S.H.); (S.Z.)
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Zhihui Hao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.Z.); (S.H.); (S.Z.)
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.Z.); (S.H.); (S.Z.)
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
3
|
Sfera A, Thomas KA, Anton J. Cytokines and Madness: A Unifying Hypothesis of Schizophrenia Involving Interleukin-22. Int J Mol Sci 2024; 25:12110. [PMID: 39596179 PMCID: PMC11593724 DOI: 10.3390/ijms252212110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/30/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Schizophrenia is a severe neuropsychiatric illness of uncertain etiopathogenesis in which antipsychotic drugs can attenuate the symptoms, but patients rarely return to the premorbid level of functioning. In fact, with each relapse, people living with schizophrenia progress toward disability and cognitive impairment. Moreover, our patients desire to live normal lives, to manage their daily affairs independently, date, get married, and raise and support a family. Those of us who work daily with schizophrenia patients know that these objectives are rarely met despite the novel and allegedly improved dopamine blockers. We hypothesize that poor outcomes in schizophrenia reflect the gray matter volume reduction, which continues despite antipsychotic treatment. We hypothesize further that increased gut barrier permeability, due to dysfunctional aryl hydrocarbon receptor (AhR), downregulates the gut barrier protectors, brain-derived neurotrophic factor (BDNF), and interleukin-22 (IL-22), facilitating microbial translocation into the systemic circulation, eventually reaching the brain. Recombinant human IL-22 could ameliorate the outcome of schizophrenia by limiting bacterial translocation and by initiating tissue repair. This short review examines the signal transducer and transcription-three (STAT3)/AhR axis and downregulation of IL-22 and BDNF with subsequent increase in gut barrier permeability. Based on the hypothesis presented here, we discuss alternative schizophrenia interventions, including AhR antagonists, mitochondrial transplant, membrane lipid replacement, and recombinant human IL-22.
Collapse
Affiliation(s)
- Adonis Sfera
- Patton State Hospital, 3102 Highland Ave., Patton, CA 92369, USA (J.A.)
| | | | | |
Collapse
|
4
|
Jang K, Garraway SM. A review of dorsal root ganglia and primary sensory neuron plasticity mediating inflammatory and chronic neuropathic pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100151. [PMID: 38314104 PMCID: PMC10837099 DOI: 10.1016/j.ynpai.2024.100151] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/04/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024]
Abstract
Pain is a sensory state resulting from complex integration of peripheral nociceptive inputs and central processing. Pain consists of adaptive pain that is acute and beneficial for healing and maladaptive pain that is often persistent and pathological. Pain is indeed heterogeneous, and can be expressed as nociceptive, inflammatory, or neuropathic in nature. Neuropathic pain is an example of maladaptive pain that occurs after spinal cord injury (SCI), which triggers a wide range of neural plasticity. The nociceptive processing that underlies pain hypersensitivity is well-studied in the spinal cord. However, recent investigations show maladaptive plasticity that leads to pain, including neuropathic pain after SCI, also exists at peripheral sites, such as the dorsal root ganglia (DRG), which contains the cell bodies of sensory neurons. This review discusses the important role DRGs play in nociceptive processing that underlies inflammatory and neuropathic pain. Specifically, it highlights nociceptor hyperexcitability as critical to increased pain states. Furthermore, it reviews prior literature on glutamate and glutamate receptors, voltage-gated sodium channels (VGSC), and brain-derived neurotrophic factor (BDNF) signaling in the DRG as important contributors to inflammatory and neuropathic pain. We previously reviewed BDNF's role as a bidirectional neuromodulator of spinal plasticity. Here, we shift focus to the periphery and discuss BDNF-TrkB expression on nociceptors, non-nociceptor sensory neurons, and non-neuronal cells in the periphery as a potential contributor to induction and persistence of pain after SCI. Overall, this review presents a comprehensive evaluation of large bodies of work that individually focus on pain, DRG, BDNF, and SCI, to understand their interaction in nociceptive processing.
Collapse
Affiliation(s)
- Kyeongran Jang
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| | - Sandra M. Garraway
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
5
|
Hong H, Mocci E, Kamp K, Zhu S, Cain KC, Burr RL, Perry J, Heitkemper MM, Weaver-Toedtman KR, Dorsey SG. Genetic Variations in TrkB.T1 Isoform and Their Association with Somatic and Psychological Symptoms in Individuals with IBS. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.14.23295434. [PMID: 37745409 PMCID: PMC10516087 DOI: 10.1101/2023.09.14.23295434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Irritable bowel syndrome (IBS), a disorder of gut-brain interaction, is often comorbid with somatic pain and psychological disorders. Dysregulated signaling of brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin-related kinase B (TrkB), has been implicated in somatic-psychological symptoms in individuals with IBS. Thus, we investigated the association of 10 single nucleotide polymorphisms (SNPs) in the regulatory 3' untranslated region (UTR) of NTRK2 (TrkB) kinase domain-deficient truncated isoform (TrkB.T1) and the BDNF Val66Met SNP with somatic and psychological symptoms and quality of life in a U.S. cohort (IBS n=464; healthy controls n=156). We found that the homozygous recessive genotype (G/G) of rs2013566 in individuals with IBS is associated with worsened somatic symptoms, including headache, back pain, joint pain, muscle pain, and somatization as well as diminished sleep quality, energy level and overall quality of life. Validation using U.K. BioBank (UKBB) data confirmed the association of rs2013566 with increased likelihood of headache. Several SNPs (rs1627784, rs1624327, rs1147198) showed significant associations with muscle pain in our U.S. cohort. Notably, these SNPs are predominantly located in H3K4Me1-enriched regions, suggesting their enhancer and/or transcription regulation potential. Together, our findings suggest that genetic variation within the 3'UTR region of the TrkB.T1 isoform may contribute to comorbid conditions in individuals with IBS, resulting in a spectrum of somatic and psychological symptoms that may influence their quality of life. These findings advance our understanding of the genetic interaction between BDNF/TrkB pathways and somatic-psychological symptoms in IBS, highlighting the importance of further exploring this interaction for potential clinical applications.
Collapse
Affiliation(s)
- H Hong
- Department of Biobehavioral Health Sciences, University of Pennsylvania School of Nursing
| | - E Mocci
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing
| | - K Kamp
- Department of Biobehavioral Nursing and Health Informatics, University of Washington School of Nursing
| | - S Zhu
- Department of Organizational Systems and Adult Health, University of Maryland School of Nursing
| | - K C Cain
- Department of Biostatistics, University of Washington School of Nursing
| | - R L Burr
- Department of Biobehavioral Nursing and Health Informatics, University of Washington School of Nursing
| | - J Perry
- Department of Medicine, University of Maryland School of Medicine
| | - M M Heitkemper
- Department of Biobehavioral Nursing and Health Informatics, University of Washington School of Nursing
| | - K R Weaver-Toedtman
- Department of Biobehavioral Health and Nursing Science, University of South Carolina College of Nursing
| | - S G Dorsey
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing
| |
Collapse
|
6
|
Blennerhassett MG, Lourenssen SR. Obligatory Activation of SRC and JNK by GDNF for Survival and Axonal Outgrowth of Postnatal Intestinal Neurons. Cell Mol Neurobiol 2022; 42:1569-1583. [PMID: 33544273 PMCID: PMC11421690 DOI: 10.1007/s10571-021-01048-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/22/2021] [Indexed: 01/20/2023]
Abstract
The neurotrophin GDNF acts through its co-receptor RET to direct embryonic development of the intestinal nervous system. Since this continues in the post-natal intestine, co-cultures of rat enteric neurons and intestinal smooth muscle cells were used to examine how receptor activation mediates neuronal survival or axonal extension. GDNF-mediated activation of SRC was essential for neuronal survival and axon outgrowth and activated the major downstream signaling pathways. Selective inhibition of individual pathways had little effect on survival but JNK activation was required for axonal maintenance, extension or regeneration. This was localized to axonal endings and retrograde transport was needed for central JUN activation and subsequent axon extension. Collectively, GDNF signaling supports neuronal survival via SRC activation with multiple downstream events, with JNK signaling mediating structural plasticity. These pathways may limit neuron death and drive subsequent regeneration during challenges in vivo such as intestinal inflammation, where supportive strategies could preserve intestinal function.
Collapse
Affiliation(s)
- M G Blennerhassett
- Gastrointestinal Diseases Research Unit and Queen's University, Kingston, ON, K7L 2V7, Canada.
- Department of Medicine, GIDRU Wing, Kingston General Hospital, Queen's University, Kingston, ON, K7L2V7, Canada.
| | - S R Lourenssen
- Gastrointestinal Diseases Research Unit and Queen's University, Kingston, ON, K7L 2V7, Canada
| |
Collapse
|
7
|
Ceuleers H, Hanning N, De bruyn M, De Man JG, De Schepper HU, Li Q, Liu L, Abrams S, Smet A, Joossens J, Augustyns K, De Meester I, Pasricha PJ, De Winter BY. The Effect of Serine Protease Inhibitors on Visceral Pain in Different Rodent Models With an Intestinal Insult. Front Pharmacol 2022; 13:765744. [PMID: 35721192 PMCID: PMC9201642 DOI: 10.3389/fphar.2022.765744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Serine proteases are believed to play a key role in the origin of abdominal pain in IBD and IBS. We previously demonstrated a reduction of visceral pain in a post-inflammatory IBS rat model after a single intraperitoneal or intracolonic administration of a serine protease inhibitor. The aim of this study was to investigate the efficacy of serine protease inhibition on visceral pain in two different animal models involving a colonic insult based either on acute inflammation or on neonatal irritation. Moreover, protease profiling was explored in the acute colitis model. Methods: An acute 2,4,6-trinitrobenzenesulphonic acid (TNBS) colitis rat model and a chronic neonatal acetic acid mouse model were used in this study. Visceral sensitivity was quantified by visceromotor responses (VMRs) to colorectal distension, 30 min after intraperitoneal administration of the serine protease inhibitors nafamostat, UAMC-00050 or their vehicles. Colonic samples from acute colitis rats were used to quantify the mRNA expression of a panel of serine proteases and mast cell tryptase by immunohistochemistry. Finally, proteolytic activities in colonic and fecal samples were characterized using fluorogenic substrates. Key Results: We showed a significant and pressure-dependent increase in visceral hypersensitivity in acute colitis and neonatal acetic acid models. UAMC-00050 and nafamostat significantly reduced VMRs in both animal models. In acute colitis rats, the administration of a serine protease inhibitor did not affect the inflammatory parameters. Protease profiling of these acute colitis animals revealed an increased tryptase immunoreactivity and a downregulation of matriptase at the mRNA level after inflammation. The administration of UAMC-00050 resulted in a decreased elastase-like activity in the colon associated with a significantly increased elastase-like activity in fecal samples of acute colitis animals. Conclusion: In conclusion, our results suggest that serine proteases play an important role in visceral hypersensitivity in an acute TNBS colitis model in rats and a neonatal acetic acid model in mice. Moreover, we hypothesize a potential mechanism of action of UAMC-00050 via the alteration of elastase-like proteolytic activity in acute inflammation. Taken together, we provided fundamental evidence for serine protease inhibitors as a promising new therapeutic strategy for abdominal pain in gastrointestinal diseases.
Collapse
Affiliation(s)
- Hannah Ceuleers
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Nikita Hanning
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
- Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Michelle De bruyn
- Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Laboratory of Medical Biochemistry, University of Antwerp, Antwerp, Belgium
| | - Joris G De Man
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
- Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Heiko U De Schepper
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
- Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
| | - Qian Li
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Liansheng Liu
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Steven Abrams
- Global Health Institute, University of Antwerp, Antwerp, Belgium
- Data Science Institute, UHasselt, Hasselt, Belgium
| | - Annemieke Smet
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
- Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Jurgen Joossens
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Koen Augustyns
- Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Ingrid De Meester
- Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Laboratory of Medical Biochemistry, University of Antwerp, Antwerp, Belgium
| | - Pankaj J Pasricha
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Benedicte Y De Winter
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
- Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
8
|
Louwies T, Meerveld BGV. Abdominal Pain. COMPREHENSIVE PHARMACOLOGY 2022:132-163. [DOI: 10.1016/b978-0-12-820472-6.00037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Electroacupuncture and Moxibustion Modulate the BDNF and TrkB Expression in the Colon and Dorsal Root Ganglia of IBS Rats with Visceral Hypersensitivity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8137244. [PMID: 34621325 DOI: 10.1155/2021/8137244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/11/2021] [Indexed: 12/27/2022]
Abstract
Objective To evaluate the effects of electroacupuncture and moxibustion on brain-derived neurotrophic factor (BDNF) and its receptor tyrosine kinase receptor B (TrkB) protein and mRNA expressions in the colon and dorsal root ganglia of IBS rats with visceral hypersensitivity and to explore their underlying therapeutic mechanisms. Method Forty Sprague Dawley rats were randomly divided into normal, model, model + mild moxibustion (MM), model + electroacupuncture (EA), and model + pinaverium bromide (PB) groups, with eight rats in each group. Chronic visceral hypersensitive IBS rat models were established by colorectal distension (CRD) with mustard oil clyster. Rats in the MM and EA groups, respectively, received moxibustion and electroacupuncture treatments on the Tianshu (ST25) and Shangjuxu (ST37) acupoints once daily for 7 days, and rats in the PB group received pinaverium bromide by oral gavage once daily for 7 consecutive days. After treatment, rats underwent abdominal withdrawal reflex (AWR) scoring under CRD and colon histopathological examination. Immunohistochemistry and real-time quantitative PCR (RT-qPCR) were used to study the protein and mRNA expressions of BDNF and TrkB in the rat colon and dorsal root ganglia. Results Compared with the normal group, AWR scores and body weight were clearly increased in the model group rats (both P < 0.01). The body weights were significantly elevated (P < 0.01, P < 0.05), but the AWR scores were reduced (P < 0.05, P < 0.01), after electroacupuncture and mild moxibustion treatment. Compared with levels in normal rats, BDNF and TrkB protein and mRNA expressions were significantly elevated in the IBS model rats (P < 0.01) but were downregulated after mild moxibustion, electroacupuncture, and Western medicine treatment (P < 0.01). Conclusion Electroacupuncture and moxibustion improved visceral hypersensitivity of IBS rats possibly by reducing BDNF and TrkB protein and mRNA expressions in the colon and dorsal root ganglia.
Collapse
|
10
|
Hanning N, De bruyn M, Ceuleers H, Boogaerts T, Berg M, Smet A, De Schepper HU, Joossens J, van Nuijs ALN, De Man JG, Augustyns K, De Meester I, De Winter BY. Local Colonic Administration of a Serine Protease Inhibitor Improves Post-Inflammatory Visceral Hypersensitivity in Rats. Pharmaceutics 2021; 13:811. [PMID: 34072320 PMCID: PMC8229129 DOI: 10.3390/pharmaceutics13060811] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
Dysregulation of the protease-antiprotease balance in the gastrointestinal tract has been suggested as a mechanism underlying visceral hypersensitivity in conditions such as inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS). We aimed to study the potential therapeutic role of an intracolonically administered serine protease inhibitor for the treatment of abdominal pain in a post-inflammatory rat model for IBS. An enema containing 2,4,6-trinitrobenzene sulfonic acid (TNBS) was used to induce colitis in male Sprague-Dawley rats, whereas controls received a saline solution. Colonoscopies were performed to confirm colitis and follow-up mucosal healing. In the post-inflammatory phase, the serine protease inhibitor UAMC-00050 (0.1-5 mg/kg) or its vehicle alone (5% DMSO in H2O) was administered in the colon. Thirty minutes later, visceral mechanosensitivity to colorectal distensions was quantified by visceromotor responses (VMRs) and local effects on colonic compliance and inflammatory parameters were assessed. Specific proteolytic activities in fecal and colonic samples were measured using fluorogenic substrates. Pharmacokinetic parameters were evaluated using bioanalytical measurements with liquid chromatography-tandem mass spectrometry. Post-inflammatory rats had increased trypsin-like activity in colonic tissue and elevated elastase-like activity in fecal samples compared to controls. Treatment with UAMC-00050 decreased trypsin-like activity in colonic tissue of post-colitis animals. Pharmacokinetic experiments revealed that UAMC-00050 acted locally, being taken up in the bloodstream only minimally after administration. Local administration of UAMC-00050 normalized visceral hypersensitivity. These results support the role of serine proteases in the pathophysiology of visceral pain and the potential of locally administered serine protease inhibitors as clinically relevant therapeutics for the treatment of IBS patients with abdominal pain.
Collapse
Affiliation(s)
- Nikita Hanning
- Laboratory of Experimental Medicine and Pediatrics (LEMP), University of Antwerp, 2610 Wilrijk, Belgium; (N.H.); (H.C.); (A.S.); (H.U.D.S.); (J.G.D.M.)
- Infla-Med, Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium; (M.D.b.); (M.B.); (K.A.); (I.D.M.)
| | - Michelle De bruyn
- Infla-Med, Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium; (M.D.b.); (M.B.); (K.A.); (I.D.M.)
- Laboratory of Medical Biochemistry, University of Antwerp, 2610 Wilrijk, Belgium
| | - Hannah Ceuleers
- Laboratory of Experimental Medicine and Pediatrics (LEMP), University of Antwerp, 2610 Wilrijk, Belgium; (N.H.); (H.C.); (A.S.); (H.U.D.S.); (J.G.D.M.)
- Infla-Med, Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium; (M.D.b.); (M.B.); (K.A.); (I.D.M.)
| | - Tim Boogaerts
- Toxicological Centre, University of Antwerp, 2610 Wilrijk, Belgium; (T.B.); (A.L.N.v.N.)
| | - Maya Berg
- Infla-Med, Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium; (M.D.b.); (M.B.); (K.A.); (I.D.M.)
| | - Annemieke Smet
- Laboratory of Experimental Medicine and Pediatrics (LEMP), University of Antwerp, 2610 Wilrijk, Belgium; (N.H.); (H.C.); (A.S.); (H.U.D.S.); (J.G.D.M.)
- Infla-Med, Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium; (M.D.b.); (M.B.); (K.A.); (I.D.M.)
| | - Heiko U. De Schepper
- Laboratory of Experimental Medicine and Pediatrics (LEMP), University of Antwerp, 2610 Wilrijk, Belgium; (N.H.); (H.C.); (A.S.); (H.U.D.S.); (J.G.D.M.)
- Infla-Med, Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium; (M.D.b.); (M.B.); (K.A.); (I.D.M.)
- Department of Gastroenterology and Hepatology, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Jurgen Joossens
- Laboratory of Medicinal Chemistry, University of Antwerp, 2610 Wilrijk, Belgium;
| | | | - Joris G. De Man
- Laboratory of Experimental Medicine and Pediatrics (LEMP), University of Antwerp, 2610 Wilrijk, Belgium; (N.H.); (H.C.); (A.S.); (H.U.D.S.); (J.G.D.M.)
- Infla-Med, Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium; (M.D.b.); (M.B.); (K.A.); (I.D.M.)
| | - Koen Augustyns
- Infla-Med, Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium; (M.D.b.); (M.B.); (K.A.); (I.D.M.)
- Laboratory of Medicinal Chemistry, University of Antwerp, 2610 Wilrijk, Belgium;
| | - Ingrid De Meester
- Infla-Med, Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium; (M.D.b.); (M.B.); (K.A.); (I.D.M.)
- Laboratory of Medical Biochemistry, University of Antwerp, 2610 Wilrijk, Belgium
| | - Benedicte Y. De Winter
- Laboratory of Experimental Medicine and Pediatrics (LEMP), University of Antwerp, 2610 Wilrijk, Belgium; (N.H.); (H.C.); (A.S.); (H.U.D.S.); (J.G.D.M.)
- Infla-Med, Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium; (M.D.b.); (M.B.); (K.A.); (I.D.M.)
- Department of Gastroenterology and Hepatology, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| |
Collapse
|
11
|
Hou JJ, Wang X, Li Y, Su S, Wang YM, Wang BM. The relationship between gut microbiota and proteolytic activity in irritable bowel syndrome. Microb Pathog 2021; 157:104995. [PMID: 34048892 DOI: 10.1016/j.micpath.2021.104995] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 02/08/2023]
Abstract
Irritable bowel syndrome (IBS) is a common functional gastrointestinal disease that affects 3.8-9.2% of the world population. It affects the physiology and psychology of patients and increases the burden on families, the healthcare system, society, and economic development. Presently, a large number of studies have shown that compared to healthy individuals, the composition and diversity of gut microbiota in IBS patients have changed, and the proteolytic activity (PA) in fecal supernatant and colonic mucosa of IBS patients has also increased. These findings indicate that the imbalance of intestinal microecology and intestinal protein hydrolysis is closely related to IBS. Furthermore, the intestinal flora is a key substance that regulates the PA and is associated with IBS. The current review described the intestinal microecology and intestinal proteolytic activity of patients with IBS and also discussed the effect of intestinal flora on PA. In summary, this study proposed a pivotal role of gut microbiota and PA in IBS, respectively, and provided an in-depth insight into the diagnosis and treatment targets of IBS as well as the formulation of new treatment strategies for other digestive diseases and protease-related diseases.
Collapse
Affiliation(s)
- Jun-Jie Hou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Xin Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Ying Li
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Shuai Su
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Yu-Ming Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Bang-Mao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, PR China.
| |
Collapse
|
12
|
Prospero L, Riezzo G, Linsalata M, Orlando A, D'Attoma B, Di Masi M, Martulli M, Russo F. Somatization in patients with predominant diarrhoea irritable bowel syndrome: the role of the intestinal barrier function and integrity. BMC Gastroenterol 2021; 21:235. [PMID: 34022802 PMCID: PMC8141183 DOI: 10.1186/s12876-021-01820-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023] Open
Abstract
Background Irritable bowel syndrome (IBS) is characterised by gastrointestinal (GI) and psychological symptoms (e.g., depression, anxiety, and somatization). Depression and anxiety, but not somatization, have already been associated with altered intestinal barrier function, increased LPS, and dysbiosis. The study aimed to investigate the possible link between somatization and intestinal barrier in IBS with diarrhoea (IBS-D) patients. Methods Forty-seven IBS-D patients were classified as having low somatization (LS = 19) or high somatization (HS = 28) according to the Symptom Checklist-90-Revised (SCL-90-R), (cut-off score = 63). The IBS Severity Scoring System (IBS-SSS) and the Gastrointestinal Symptom Rating Scale (GSRS) questionnaires were administered to evaluate GI symptoms. The intestinal barrier function was studied by the lactulose/mannitol absorption test, faecal and serum zonulin, serum intestinal fatty-acid binding protein, and diamine oxidase. Inflammation was assessed by assaying serum Interleukins (IL-6, IL-8, IL-10), and tumour necrosis factor-α. Dysbiosis was assessed by the urinary concentrations of indole and skatole and serum lipopolysaccharide (LPS). All data were analysed using a non-parametric test. Results The GI symptoms profiles were significantly more severe, both as a single symptom and as clusters of IBS-SSS and GSRS, in HS than LS patients. This finding was associated with impaired small intestinal permeability and increased faecal zonulin levels. Besides, HS patients showed significantly higher IL-8 and lowered IL-10 concentrations than LS patients. Lastly, circulating LPS levels and the urinary concentrations of indole were higher in HS than LS ones, suggesting a more pronounced imbalance of the small intestine in the former patients. Conclusions IBS is a multifactorial disorder needing complete clinical, psychological, and biochemical evaluations. Trial registration: https://clinicaltrials.gov/ct2/show/NCT03423069.
Collapse
Affiliation(s)
- Laura Prospero
- Laboratory of Nutritional Pathophysiology, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy
| | - Giuseppe Riezzo
- Laboratory of Nutritional Pathophysiology, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy
| | - Michele Linsalata
- Laboratory of Nutritional Pathophysiology, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy
| | - Antonella Orlando
- Laboratory of Nutritional Pathophysiology, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy
| | - Benedetta D'Attoma
- Laboratory of Nutritional Pathophysiology, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy
| | - Marta Di Masi
- Scientific Direction, National Institute of Gastroenterology "S. de Bellis" Research Hospital, 70013, Castellana Grotte, BA, Italy
| | - Manuela Martulli
- Laboratory of Nutritional Pathophysiology, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy
| | - Francesco Russo
- Laboratory of Nutritional Pathophysiology, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy.
| |
Collapse
|
13
|
Choo J, Heo G, Pothoulakis C, Im E. Posttranslational modifications as therapeutic targets for intestinal disorders. Pharmacol Res 2021; 165:105412. [PMID: 33412276 DOI: 10.1016/j.phrs.2020.105412] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 02/08/2023]
Abstract
A variety of biological processes are regulated by posttranslational modifications. Posttranslational modifications including phosphorylation, ubiquitination, glycosylation, and proteolytic cleavage, control diverse physiological functions in the gastrointestinal tract. Therefore, a better understanding of their implications in intestinal diseases, including inflammatory bowel disease, irritable bowel syndrome, celiac disease, and colorectal cancer would provide a basis for the identification of novel biomarkers as well as attractive therapeutic targets. Posttranslational modifications can be common denominators, as well as distinct biomarkers, characterizing pathological differences of various intestinal diseases. This review provides experimental evidence that identifies changes in posttranslational modifications from patient samples, primary cells, or cell lines in intestinal disorders, and a summary of carefully selected information on the use of pharmacological modulators of protein modifications as therapeutic options.
Collapse
Affiliation(s)
- Jieun Choo
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Gwangbeom Heo
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Charalabos Pothoulakis
- Section of Inflammatory Bowel Disease & Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Eunok Im
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
14
|
Fan F, Tang Y, Dai H, Cao Y, Sun P, Chen Y, Chen A, Lin C. Blockade of BDNF signalling attenuates chronic visceral hypersensitivity in an IBS-like rat model. Eur J Pain 2020; 24:839-850. [PMID: 31976585 PMCID: PMC7154558 DOI: 10.1002/ejp.1534] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/14/2022]
Abstract
Background Irritable bowel syndrome (IBS) is a common functional disease characterized by chronic abdominal pain and changes in bowel movements. Effective therapy for visceral hypersensitivity in IBS patients remains challenging. This study investigated the roles of brain‐derived neurotrophic factor (BDNF) and tyrosine kinase receptor B (TrkB) and the effect of ANA‐12 (a selective antagonist of TrkB) on chronic visceral hypersensitivity in an IBS‐like rat model. Methods An IBS‐like rat model was established through neonatal maternal separation (NMS), and visceral hypersensitivity was assessed by electromyographic (EMG) responses of the abdominal external oblique muscles to colorectal distention (CRD). Different doses of ANA‐12 were injected intrathecally to investigate the effect of that drug on visceral hypersensitivity, and the open field test was performed to determine whether ANA‐12 had side effects on movement. Thoracolumbar spinal BDNF, TrkB receptor and Protein kinase Mζ (PKMζ) expression were measured to investigate their roles in chronic visceral hypersensitivity. Whole‐cell recordings were made from thoracolumbar superficial dorsal horn (SDH) neurons of lamina II. Results The expression of BDNF and TrkB was enhanced in the thoracolumbar spinal cord of the NMS animals. ANA‐12 attenuated visceral hypersensitivity without side effects on motricity in NMS rats. PKMζ expression significantly decreased after the administration of ANA‐12. The frequency of spontaneous excitatory postsynaptic currents (sEPSCs) increased in the thoracolumbar SDH neurons of lamina II in NMS rats. The amplitude and frequency of sEPSCs were reduced after perfusion with ANA‐12 in NMS rats. Conclusions Neonatal maternal separation caused visceral hypersensitivity and increased synaptic activity by activating BDNF‐TrkB‐PKMζ signalling in the thoracolumbar spinal cord of adult rats. PKMζ was able to potentiate AMPA receptor (AMPAR)‐mediated sEPSCs in NMS rats. ANA‐12 attenuated visceral hypersensitivity and synaptic activity by blocking BDNF/TrkB signalling in NMS rats. Significance ANA‐12 attenuates visceral hypersensitivity via BDNF‐TrkB‐PKMζ signalling and reduces synaptic activity through AMPARs in NMS rats. This knowledge suggests that ANA‐12 could represent an interesting novel therapeutic medicine for chronic visceral hypersensitivity.
Collapse
Affiliation(s)
- Fei Fan
- School of basic Medical Sciences, Laboratory of Pain Research, Fujian Medical University, Fuzhou, China.,Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou, China
| | - Ying Tang
- School of basic Medical Sciences, Laboratory of Pain Research, Fujian Medical University, Fuzhou, China
| | - Hengfen Dai
- School of basic Medical Sciences, Laboratory of Pain Research, Fujian Medical University, Fuzhou, China.,Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, China
| | - Yang Cao
- School of basic Medical Sciences, Laboratory of Pain Research, Fujian Medical University, Fuzhou, China
| | - Pei Sun
- School of basic Medical Sciences, Laboratory of Pain Research, Fujian Medical University, Fuzhou, China
| | - Yu Chen
- School of basic Medical Sciences, Laboratory of Pain Research, Fujian Medical University, Fuzhou, China
| | - Aiqin Chen
- School of basic Medical Sciences, Laboratory of Pain Research, Fujian Medical University, Fuzhou, China
| | - Chun Lin
- School of basic Medical Sciences, Laboratory of Pain Research, Fujian Medical University, Fuzhou, China
| |
Collapse
|
15
|
Konturek TJ, Martinez C, Niesler B, van der Voort I, Mönnikes H, Stengel A, Goebel-Stengel M. The Role of Brain-Derived Neurotrophic Factor in Irritable Bowel Syndrome. Front Psychiatry 2020; 11:531385. [PMID: 33519536 PMCID: PMC7840690 DOI: 10.3389/fpsyt.2020.531385] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Several studies have implied a role of brain-derived neurotrophic factor (BDNF) in abdominal pain modulation in irritable bowel syndrome (IBS). The aim of this study was to establish BDNF protein expression in human colonic biopsies and to show variation in IBS compared to controls. BDNF protein and mRNA levels were correlated with IBS symptom severity based on the IBS-symptom severity score (IBS-SSS). Biopsies from the descending colon and IBS-SSS were obtained from 10 controls and 20 IBS patients. Total protein of biopsies was extracted and assessed by ELISA and Western Blot. Total mRNA was extracted and gene expression measured by nCounter analysis. In IBS patients, symptom severity scores ranged from 124 to 486 (mean ± sem: 314.2 ± 21.2, >300 represents severe IBS) while controls ranged from 0 to 72 (mean ± sem: 27.7 ± 9.0, <75 represents healthy subjects, p < 0.001). IBS patients reported significantly more food malabsorption, former abdominal surgery and psychiatric comorbidities. BDNF protein was present in all samples and did not differ between IBS and controls or sex. Subgroup analysis showed that female IBS patients expressed significantly more BDNF mRNA compared to male patients (p < 0.05) and male IBS-D patients had higher IBS symptom severity scores and lower BDNF mRNA and protein levels compared to male controls (p < 0.05). Scatter plot showed a significant negative correlation between IBS-SSS and BDNF mRNA levels in the cohort of male IBS-D patients and their male controls (p < 0.05). We detected a high proportion of gastrointestinal surgery in IBS patients and confirmed food intolerances and psychiatric diseases as common comorbidities. Although in a small sample, we demonstrated that BDNF is detectable in human descending colon, with higher BDNF mRNA levels in female IBS patients compared to males and lower mRNA and protein levels in male IBS-D patients compared to male controls. Further research should be directed toward subgroups of IBS since their etiologies might be different.
Collapse
Affiliation(s)
- Thomas Jan Konturek
- Division of Gastroenterology, Loyola University Medical Center, Stritch School of Medicine, Maywood, IL, United States.,Department of Internal Medicine, Institute of Neurogastroenterology, Martin Luther Hospital, Johannesstift Diakonie, Berlin, Germany
| | - Cristina Martinez
- Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Lleida, Spain.,Department of Human Molecular Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Beate Niesler
- Department of Human Molecular Genetics, University Hospital Heidelberg, Heidelberg, Germany.,nCounter Core Facility Heidelberg, Institute of Human Genetics, Heidelberg, Germany
| | - Ivo van der Voort
- Department of Internal Medicine, Institute of Neurogastroenterology, Martin Luther Hospital, Johannesstift Diakonie, Berlin, Germany.,Department of Internal Medicine and Gastroenterology, Berlin Jewish Hospital, Berlin, Germany
| | - Hubert Mönnikes
- Department of Internal Medicine, Institute of Neurogastroenterology, Martin Luther Hospital, Johannesstift Diakonie, Berlin, Germany
| | - Andreas Stengel
- Department of Psychosomatic Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Miriam Goebel-Stengel
- Department of Internal Medicine, Institute of Neurogastroenterology, Martin Luther Hospital, Johannesstift Diakonie, Berlin, Germany.,Department of Psychosomatic Medicine, University Hospital Tübingen, Tübingen, Germany.,Department of Internal Medicine and Gastroenterology, Helios Clinic Rottweil, Rottweil, Germany
| |
Collapse
|
16
|
Fukumoto M, Takeuchi T, Koubayashi E, Harada S, Ota K, Kojima Y, Higuchi K. Induction of brain-derived neurotrophic factor in enteric glial cells stimulated by interleukin-1β via a c-Jun N-terminal kinase pathway. J Clin Biochem Nutr 2019; 66:103-109. [PMID: 32231405 DOI: 10.3164/jcbn.19-55] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/29/2019] [Indexed: 12/12/2022] Open
Abstract
Brain-derived neurotrophic factor exhibits neurotropic and neuroprotective functions and is increased in the colonic mucosa of patients with irritable bowel syndrome in correlation with the severity and frequency of abdominal pain. However, there are no reports of brain-derived neurotrophic factor expression in enteric glial cells. We evaluated the mRNA and protein expressions of brain-derived neurotrophic factor in enteric glial cells and culture medium and levels of mitogen-activated protein kinase after stimulation with interleukin-1β. Brain-derived neurotrophic factor mRNA expression was increased by interleukin-1β (3.125-75 ng/ml) and time-dependently increased 3-fold (24 h) and 4-fold (48 h) by interleukin-1β (50 ng/ml). Pro- and mature brain-derived neurotrophic factor proteins were both significantly increased at 48 h by interleukin-1β. However, the mature form was predominant in the cultured medium. Interleukin-1β increased phosphorylated-p38 mitogen-activated protein kinase expressions 2-fold higher at 5 and 15 min, and also phosphorylated-c-Jun N-terminal kinase expression 5-fold at 5 min and 10-fold at 15 min. Prior treatment with phosphorylated-c-Jun N-terminal kinase inhibitors decreased interleukin-1β-induced brain-derived neurotrophic factor by 50%. Thus, brain-derived neurotrophic factor expression was induced by interleukin-1β in enteric glial cells via a phosphorylated-c-Jun N-terminal kinase pathway, which might affect the enteric nervous system during stress.
Collapse
Affiliation(s)
- Masanobu Fukumoto
- Internal Medicine (II), Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan
| | - Toshihisa Takeuchi
- Internal Medicine (II), Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan
| | - Eiko Koubayashi
- Internal Medicine (II), Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan
| | - Satoshi Harada
- Internal Medicine (II), Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan
| | - Kazuhiro Ota
- Internal Medicine (II), Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan
| | - Yuichi Kojima
- Internal Medicine (II), Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan
| | - Kazuhide Higuchi
- Internal Medicine (II), Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan
| |
Collapse
|
17
|
Selection of quality markers of Jasminum amplexicaule based on its anti-diarrheal and anti-inflammatory activities: Effect-target affiliation-traceability-pharmacokinetics strategy. CHINESE HERBAL MEDICINES 2019. [DOI: 10.1016/j.chmed.2019.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
18
|
Yu ZC, Cen YX, Wu BH, Wei C, Xiong F, Li DF, Liu TT, Luo MH, Guo LL, Li YX, Wang LS, Wang JY, Yao J. Berberine prevents stress-induced gut inflammation and visceral hypersensitivity and reduces intestinal motility in rats. World J Gastroenterol 2019; 25:3956-3971. [PMID: 31413530 PMCID: PMC6689801 DOI: 10.3748/wjg.v25.i29.3956] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/26/2019] [Accepted: 07/05/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is a common chronic non-organic disease of the digestive system. Berberine (BBR) has been used to treat patients with IBS, but the underlying therapeutic mechanism is little understood. We believe that BBR achieves its therapeutic effect on IBS by preventing stress intestinal inflammation and visceral hypersensitivity and reducing bowel motility.
AIM To test the hypothesis that BBR achieves its therapeutic effect on IBS by preventing subclinical inflammation of the intestinal mucosa and reducing visceral hypersensitivity and intestinal motility.
METHODS IBS was induced in rats via water avoidance stress (WAS). qRT-PCR and histological analyses were used to evaluate the levels of cytokines and mucosal inflammation, respectively. Modified ELISA and qRT-PCR were used to evaluate the nuclear factor kappa-B (NF-κB) signal transduction pathway. Colorectal distention test, gastrointestinal transit measurement, Western blot, and qRT-PCR were used to analyze visceral sensitivity, intestinal motility, the expression of C-kit (marker of Cajal mesenchymal cells), and the expression of brain derived neurotrophic factor (BDNF) and its receptor TrkB.
RESULTS WAS led to mucosal inflammation, visceral hyperalgesia, and high intestinal motility. Oral administration of BBR inhibited the NF-κB signal transduction pathway, reduced the expression of pro-inflammatory cytokines [interleukin (IL)-1β, IL-6, interferon-γ, and tumor necrosis factor-α], promoted the expression of anti-inflammatory cytokines (IL-10 and transforming growth factor-β), and improved the terminal ileum tissue inflammation. BBR inhibited the expression of BDNF, TrkB, and C-kit in IBS rats, leading to the reduction of intestinal motility and visceral hypersensitivity. The therapeutic effect of BBR at a high dose (100 mg/kg) was superior to than that of the low-dose (25 mg/kg) group.
CONCLUSION BBR reduces intestinal mucosal inflammation by inhibiting the intestinal NF-κB signal pathway in the IBS rats. BBR reduces the expression of BDNF, its receptor TrkB, and C-kit. BBR also reduces intestinal motility and visceral sensitivity to achieve its therapeutic effect on IBS.
Collapse
Affiliation(s)
- Zhi-Chao Yu
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, Shenzhen 518020, Guangdong Province, China
| | - Yong-Xin Cen
- Department of Gastroenterology, Foshan Gaoming Affiliated Hospital of Guangdong Medical University, Foshan 528500, Guangdong Province, China
| | - Ben-Hua Wu
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, Shenzhen 518020, Guangdong Province, China
| | - Cheng Wei
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, Shenzhen 518020, Guangdong Province, China
| | - Feng Xiong
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, Shenzhen 518020, Guangdong Province, China
| | - De-Feng Li
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, Shenzhen 518020, Guangdong Province, China
| | - Ting-Ting Liu
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, Shenzhen 518020, Guangdong Province, China
| | - Ming-Han Luo
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, Shenzhen 518020, Guangdong Province, China
| | - Li-Liangzi Guo
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, Shenzhen 518020, Guangdong Province, China
| | - Ying-Xue Li
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, Shenzhen 518020, Guangdong Province, China
| | - Li-Sheng Wang
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, Shenzhen 518020, Guangdong Province, China
| | - Jian-Yao Wang
- Department of General Surgery, Shenzhen Children’s Hospital, Shenzhen 518026, Guangdong Province, China
| | - Jun Yao
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, Shenzhen 518020, Guangdong Province, China
| |
Collapse
|
19
|
Wang JH, Shin NR, Lim SK, Im U, Song EJ, Nam YD, Kim H. Diet Control More Intensively Disturbs Gut Microbiota Than Genetic Background in Wild Type and ob/ob Mice. Front Microbiol 2019; 10:1292. [PMID: 31231354 PMCID: PMC6568241 DOI: 10.3389/fmicb.2019.01292] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/23/2019] [Indexed: 12/20/2022] Open
Abstract
Changes in environmental and genetic factors are vital to development of obesity and its complications. Induction of obesity and type 2 diabetes by both leptin deficiency (ob/ob) and high fat diet (HFD) has been verified in animal models. In the present experiment, three types of diets (normal diet; ND, HFD and high sucrose diet; HSD) and two types of genetic mice (Wild type: WT and ob/ob) were used to explore the relationship among diet supplements, gut microbiota, host genetics and metabolic status. HFD increased the body, fat and liver weight of both ob/ob and WT mice, but HSD did not. HFD also resulted in dyslipidemia, as well as increased serum transaminases and fasting glucose in ob/ob mice but not in WT mice, while HSD did not. Moreover, HFD led to brain BDNF elevation in WT mice and reduction in ob/ob mice, whereas HSD did not. Both HFD and HSD had a greater influence on gut microbiota than host genotypes. In detail, both of HFD and HSD alteration elucidated the majority (≥63%) of the whole structural variation in gut microbiota, however, host genetic mutation accounted for the minority (≤11%). Overall, diets more intensively disturbed the structure of gut microbiota in excess of genetic change, particularly under leptin deficient conditions. Different responses of host genotypes may contribute to the development of metabolic disorder phenotypes linked with gut microbiota alterations.
Collapse
Affiliation(s)
- Jing-Hua Wang
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Goyang-si, South Korea
- Department of Research and Development, Cure Pharmtech, Goyang-si, South Korea
| | - Na Rae Shin
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Goyang-si, South Korea
| | - Soo-Kyoung Lim
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Goyang-si, South Korea
| | - Ungjin Im
- Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Seoul, South Korea
| | - Eun-Ji Song
- Research Group of Healthcare, Korea Food Research Institute (KFRI), Seongnam-si, South Korea
| | - Young-Do Nam
- Research Group of Healthcare, Korea Food Research Institute (KFRI), Seongnam-si, South Korea
| | - Hojun Kim
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Goyang-si, South Korea
| |
Collapse
|
20
|
Lin M, Chen L, Xiao Y, Yu B. Activation of cannabinoid 2 receptor relieves colonic hypermotility in a rat model of irritable bowel syndrome. Neurogastroenterol Motil 2019; 31:e13555. [PMID: 30793435 DOI: 10.1111/nmo.13555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/30/2018] [Accepted: 12/25/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is a common disease with intestinal dysmotility, whose mechanism remains elusive. The endocannabinoid system is emerging as an important modulator of gastrointestinal (GI) motility in multiple diseases, but its involvement in IBS is unknown. We aimed to determine whether cannabinoid 2 (CB2) receptor modulates intestinal motility associated with stress-induced IBS. METHODS A rat IBS model was established by chronic water avoidance stress (WAS). Colonic pathological alterations were detected histologically and intestinal motility was assessed by intestinal transit time (ITT) and fecal water content (FWC). Visceral sensitivity was determined by visceromotor response (VMR) to colorectal distension (CRD). Real-time PCR, western blot, and immunostaining were performed to identify colonic CB2 receptor expression. Colonic muscle strip contractility was studied by isometric transducers and nitric oxide (NO) was detected by the Griess test. The effects of AM1241, a selective agonist of CB2 receptors, on colonic motility were examined. KEY RESULTS After 10 days of WAS exposure, ITT was decreased and FWC elevated while VMR magnitude in response to CRD was significantly enhanced. Colon CB2 protein and mRNA levels increased and density of CB2-positive macrophages in the mucosa and enteric neurons in the myenteric plexus was higher than in controls. Pharmacological enhancement of CB2 activity by AM1241 relieved colonic hypermotility in WAS rats in a concentration-dependent manner via inhibition of p38 phosphorylation and elevation of NO production. CONCLUSION CB2 receptor may exert an important inhibitory effect in stress-induced colonic hypermotility by modulating NO synthesis through p38 mitogen-activated protein kinase signaling. AM1241 could be used as a potential drug to treat disorders with colonic hypermotility.
Collapse
Affiliation(s)
- Mengjuan Lin
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, China
| | - Lei Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, China
| | - Yong Xiao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, China
| | - Baoping Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, China
| |
Collapse
|
21
|
Du L, Long Y, Kim JJ, Chen B, Zhu Y, Dai N. Protease Activated Receptor-2 Induces Immune Activation and Visceral Hypersensitivity in Post-infectious Irritable Bowel Syndrome Mice. Dig Dis Sci 2019; 64:729-739. [PMID: 30446929 DOI: 10.1007/s10620-018-5367-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 11/07/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND The role of protease activated receptor-2 (PAR-2) in the pathogenesis of abdominal pain in irritable bowel syndrome (IBS) is not well defined. AIMS To investigate the role of PAR-2-mediated visceral hypersensitivity in a post-infectious IBS (PI-IBS) mouse model. METHODS T. spiralis-infected PI-IBS mouse model was used. Fecal serine protease activity and intestinal mast cells were evaluated. Intestinal permeability was assessed by urine lactulose/mannitol ratio, and colonic expressions of PAR-2 and tight junction (TJ) proteins were examined by Western blot. Intestinal immune profile was assessed by measuring Th (T helper) 1/Th2 cytokine expression. Visceral sensitivity was evaluated by abdominal withdrawal reflex in response to colorectal distention. RESULTS Colonic PAR-2 expression as well as fecal serine protease activity and intestinal mast cell counts were elevated in PI-IBS compared to the control mice. Decreased colonic TJ proteins expression, increased lactulose/mannitol ratio, elevated colonic Th1/Th2 cytokine ratio, and visceral hypersensitivity were observed in PI-IBS compared to the control mice. Administration of PAR-2 agonist in control mice demonstrated similar changes observed in PI-IBS mice, while PAR-2 antagonist normalized the increased intestinal permeability and reduced visceral hypersensitivity observed in PI-IBS mice. CONCLUSIONS PAR-2 activation increases intestinal permeability leading to immune activation and visceral hypersensitivity in PI-IBS mouse model.
Collapse
Affiliation(s)
- Lijun Du
- Department of Gastroenterology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Yanqin Long
- Department of Gastroenterology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.
| | - John J Kim
- Department of Gastroenterology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Division of Gastroenterology & Hepatology, Loma Linda University Health, Loma Linda, CA, 92354, USA
| | - Binrui Chen
- Department of Gastroenterology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Yubin Zhu
- Department of Gastroenterology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Ning Dai
- Department of Gastroenterology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| |
Collapse
|
22
|
Coelho A, Oliveira R, Antunes-Lopes T, Cruz CD. Partners in Crime: NGF and BDNF in Visceral Dysfunction. Curr Neuropharmacol 2019; 17:1021-1038. [PMID: 31204623 PMCID: PMC7052822 DOI: 10.2174/1570159x17666190617095844] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/23/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022] Open
Abstract
Neurotrophins (NTs), particularly Nerve Growth Factor (NGF) and Brain-Derived Neurotrophic Factor (BDNF), have attracted increasing attention in the context of visceral function for some years. Here, we examined the current literature and presented a thorough review of the subject. After initial studies linking of NGF to cystitis, it is now well-established that this neurotrophin (NT) is a key modulator of bladder pathologies, including Bladder Pain Syndrome/Interstitial Cystitis (BPS/IC) and Chronic Prostatitis/Chronic Pelvic Pain Syndrome (CP/CPPS. NGF is upregulated in bladder tissue and its blockade results in major improvements on urodynamic parameters and pain. Further studies expanded showed that NGF is also an intervenient in other visceral dysfunctions such as endometriosis and Irritable Bowel Syndrome (IBS). More recently, BDNF was also shown to play an important role in the same visceral dysfunctions, suggesting that both NTs are determinant factors in visceral pathophysiological mechanisms. Manipulation of NGF and BDNF improves visceral function and reduce pain, suggesting that clinical modulation of these NTs may be important; however, much is still to be investigated before this step is taken. Another active area of research is centered on urinary NGF and BDNF. Several studies show that both NTs can be found in the urine of patients with visceral dysfunction in much higher concentration than in healthy individuals, suggesting that they could be used as potential biomarkers. However, there are still technical difficulties to be overcome, including the lack of a large multicentre placebo-controlled studies to prove the relevance of urinary NTs as clinical biomarkers.
Collapse
Affiliation(s)
| | | | | | - Célia Duarte Cruz
- Address correspondence to this author at the Department of Experimental Biology, Experimental Biology Unit, Faculty of Medicine of the University of Porto, Alameda Hernâni Monteiro; Tel: 351 220426740; Fax: +351 225513655; E-mail:
| |
Collapse
|
23
|
Riezzo G, Chimienti G, Orlando A, D'Attoma B, Clemente C, Russo F. Effects of long-term administration of Lactobacillus reuteri DSM-17938 on circulating levels of 5-HT and BDNF in adults with functional constipation. Benef Microbes 2018; 10:137-147. [PMID: 30574801 DOI: 10.3920/bm2018.0050] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Accumulated evidence shows that some probiotic strains ameliorate functional constipation (FC) via the modulation of specific gastrointestinal peptide pathways. The aims of this study were to investigate: (1) the effects of long-term administration of Lactobacillus reuteri (LR) DSM 17938 on the serum levels of serotonin (5-HT) and brain-derived neurotrophic factor (BDNF); (2) the possible link between 5-HT, BDNF, and specific constipation-related symptoms; (3) whether genetic variability at the 5-HTT gene-linked polymorphic region (5-HTTLPR) and BDNF Val66Met loci could be associated with serum 5-HT and BDNF variations. LR DSM 17938 was administered to 56 FC patients for 105 days in a randomised, double-blind manner. The fasting blood samples were collected during the randomisation visit (V1), at day 15 (induction period, V2), day 60 (intermediate evaluation, V3), and day 105 (V4) and the Constipaq questionnaire (the sum of Constipation Scoring System (CSS) and patient assessment constipation quality of life (PAC-QoL)) was administered. A group of healthy subjects was enrolled as controls (HC). At V1, the mean serum 5-HT level in the whole patient group was significantly higher (P=0.027) than in HC subjects, while serum BDNF did not. At the end of probiotic administration (V4), 5-HT and BDNF levels were significantly lower than the initial values (V1) (P=0.008 and P=0.015, respectively). 5-HT and BDNF serum concentration were significantly associated (r=0.355; P=0.007). Neither 5-HT nor BDNF serum levels correlated with the CSS item scores and with the PAC-QoL. Lastly, the regression analysis demonstrated that the presence of the S allele of the 5-HTTLPR accounted for the reduction in the 5-HT concentration at V4. In conclusion, the long-term administration of LR DSM 17938 demonstrated that such a probiotic strain could improve FC by affecting 5-HT and BDNF serum concentrations.
Collapse
Affiliation(s)
- G Riezzo
- 1 Laboratory of Nutritional Pathophysiology, National Institute of Digestive Diseases I.R.C.C.S. 'Saverio de Bellis', Via Turi 27, 70013 Castellana Grotte, Bari, Italy
| | - G Chimienti
- 2 Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via Orabona 4, 70100 Bari, Italy
| | - A Orlando
- 1 Laboratory of Nutritional Pathophysiology, National Institute of Digestive Diseases I.R.C.C.S. 'Saverio de Bellis', Via Turi 27, 70013 Castellana Grotte, Bari, Italy
| | - B D'Attoma
- 1 Laboratory of Nutritional Pathophysiology, National Institute of Digestive Diseases I.R.C.C.S. 'Saverio de Bellis', Via Turi 27, 70013 Castellana Grotte, Bari, Italy
| | - C Clemente
- 1 Laboratory of Nutritional Pathophysiology, National Institute of Digestive Diseases I.R.C.C.S. 'Saverio de Bellis', Via Turi 27, 70013 Castellana Grotte, Bari, Italy
| | - F Russo
- 1 Laboratory of Nutritional Pathophysiology, National Institute of Digestive Diseases I.R.C.C.S. 'Saverio de Bellis', Via Turi 27, 70013 Castellana Grotte, Bari, Italy
| |
Collapse
|
24
|
Liu S. Neurotrophic factors in enteric physiology and pathophysiology. Neurogastroenterol Motil 2018; 30:e13446. [PMID: 30259610 PMCID: PMC6166659 DOI: 10.1111/nmo.13446] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/15/2018] [Accepted: 07/16/2018] [Indexed: 12/12/2022]
Abstract
Neurotrophic factors are traditionally recognized for their roles in differentiation, growth, and survival of specific neurons in the central and peripheral nervous system. Some neurotrophic factors are essential for the development and migration of the enteric nervous system along the fetal and post-natal gut. Over the last two decades, several non-developmental functions of neurotrophic factors have been characterized. In the adult gastrointestinal tract, neurotrophic factors regulate gut sensation, motility, epithelial barrier function, and protect enteric neurons and glial cells from damaging insults in the microenvironment of the gut. In this issue of Neurogastroenterology and Motility, Fu et al demonstrate that brain-derived neurotrophic factor plays a role in the pathogenesis of distention-induced abdominal pain in bowel obstruction. In light of this interesting finding, this mini-review highlights some of the recent advances in understanding of the physiological and pathophysiological roles of neurotrophic factors in the adult gut.
Collapse
Affiliation(s)
- Sumei Liu
- Department of Biology, College of Science and Health University of Wisconsin‐La Crosse La Crosse Wisconsin
| |
Collapse
|
25
|
Ceuleers H, Hanning N, Heirbaut J, Van Remoortel S, Joossens J, Van Der Veken P, Francque SM, De bruyn M, Lambeir A, De Man JG, Timmermans J, Augustyns K, De Meester I, De Winter BY. Newly developed serine protease inhibitors decrease visceral hypersensitivity in a post-inflammatory rat model for irritable bowel syndrome. Br J Pharmacol 2018; 175:3516-3533. [PMID: 29911328 PMCID: PMC6086981 DOI: 10.1111/bph.14396] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Serine proteases have been re suggested as important mediators of visceral pain. We investigated their effect by using newly developed serine protease inhibitors with a well-characterized inhibitory profile in a rat model of post-inflammatory irritable bowel syndrome (IBS). EXPERIMENTAL APPROACH Colitis was induced in rats receiving intrarectal trinitrobenzenesulphonic acid; controls received 0.9% NaCl. Colonoscopies were performed on day 3, to confirm colitis, and later until mucosal healing. Visceral hypersensitivity was quantified by visceromotor responses (VMRs) to colorectal distension, 30 min after i.p. injection of the serine protease inhibitors nafamostat, UAMC-00050 or UAMC-01162. Serine proteases, protease-activated receptors (PARs) and TRP channels were quantified by qPCR and immunohistochemistry. Proteolytic activity was characterized using fluorogenic substrates. KEY RESULTS VMR was significantly elevated in post-colitis rats. Nafamostat normalized VMRs at the lowest dose tested. UAMC-00050 and UAMC-01162 significantly decreased VMR dose-dependently. Expression of mRNA for tryptase-αβ-1and PAR4, and tryptase immunoreactivity was significantly increased in the colon of post-colitis animals. Trypsin-like activity was also significantly increased in the colon but not in the faeces. PAR2 and TRPA1 immunoreactivity co-localized with CGRP-positive nerve fibres in control and post-colitis animals. CONCLUSIONS AND IMPLICATIONS Increased expression of serine proteases and activity together with increased expression of downstream molecules at the colonic and DRG level and in CGRP-positive sensory nerve fibres imply a role for serine proteases in post-inflammatory visceral hypersensitivity. Our results support further investigation of serine protease inhibitors as an interesting treatment strategy for IBS-related visceral pain.
Collapse
Affiliation(s)
- Hannah Ceuleers
- Laboratory of Experimental Medicine and Pediatrics, Division of GastroenterologyUniversity of AntwerpAntwerpBelgium
| | - Nikita Hanning
- Laboratory of Experimental Medicine and Pediatrics, Division of GastroenterologyUniversity of AntwerpAntwerpBelgium
| | - Jelena Heirbaut
- Laboratory of Experimental Medicine and Pediatrics, Division of GastroenterologyUniversity of AntwerpAntwerpBelgium
| | | | - Jurgen Joossens
- Laboratory of Medicinal ChemistryUniversity of AntwerpAntwerpBelgium
| | | | | | - Michelle De bruyn
- Laboratory of Medical BiochemistryUniversity of AntwerpAntwerpBelgium
| | | | - Joris G De Man
- Laboratory of Experimental Medicine and Pediatrics, Division of GastroenterologyUniversity of AntwerpAntwerpBelgium
| | | | - Koen Augustyns
- Laboratory of Medicinal ChemistryUniversity of AntwerpAntwerpBelgium
| | - Ingrid De Meester
- Laboratory of Medical BiochemistryUniversity of AntwerpAntwerpBelgium
| | - Benedicte Y De Winter
- Laboratory of Experimental Medicine and Pediatrics, Division of GastroenterologyUniversity of AntwerpAntwerpBelgium
| |
Collapse
|
26
|
Cheung CKY, Lan LL, Kyaw M, Mak ADP, Chan A, Chan Y, Wu JCY. Up-regulation of transient receptor potential vanilloid (TRPV) and down-regulation of brain-derived neurotrophic factor (BDNF) expression in patients with functional dyspepsia (FD). Neurogastroenterol Motil 2018; 30. [PMID: 28782273 DOI: 10.1111/nmo.13176] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/06/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND The role of immune activation in Functional Dyspepsia (FD) patients without previous infection is unclear. We compare the gastric and circulating brain-derived neurotropic factor (BDNF), receptor potential vanilloid type (TRPV) families and various cytokines in FD patients. METHODS Consecutive adult FD patients (Rome III) with no recent history of gastroenteritis and asymptomatic healthy controls were recruited for upper endoscopy. Subjects with GERD and IBS as predominant symptoms, diabetes mellitus, current or previous Helicobacter pylori infection, psychiatric illness and recent use of NSAID or PPI were excluded. Corpus biopsies and serum samples were collected. KEY RESULTS Forty three [M:F=8:35, mean age: 35.0 (9.3)] FD patients were compared with 23 healthy controls [M:F=8:15, mean age: 36.6 (10.2)]. FD patients had postprandial distress syndrome (PDS) as predominant sub-type (PDS: 36, EPS: 2). There was no significant difference in the median inflammation score (FD:0 (0-1) vs Control:0 (0-1), P=.79). However, FD patients had significantly higher mRNA expression of TRPV1 (FD:0.014±0.007, Control:0.003±0.001, 4.6 fold, P=.02) and TRPV2 (FD:0.012±0.006, Control:0.003±0.001, 4 fold, P=.02) compared to controls. The serum (FD:258.0±12.3 ng ml-1 , Control:319.7±18.1 ng ml-1 , P<.01) and gastric BDNF mRNA (FD:0.06±0.008, Control:0.092±0.01, 0.65 fold, P=.02)levels significantly lower in FD patients. Secretion of cytokines (IL-4, IL-5, IL-6, IL-8, IL-10, G-CSF, TGF-β2, MCP-1)was also highly correlated with dyspeptic symptoms in patients with FD. CONCLUSIONS & INFERENCES Despite lacking gastric mucosal inflammation, up-regulation of TRPV1 and TRPV2, down-regulation of BDNF were observed in FD patients. These suggest that immune alteration may contribute to the pathogenesis of FD without any previous infection.
Collapse
Affiliation(s)
- C K Y Cheung
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - L L Lan
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - M Kyaw
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - A D P Mak
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong, China
| | - A Chan
- Department of Anatomical, Cellular and Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Y Chan
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - J C Y Wu
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
27
|
段 园, 唐 旭, 王 凤, 马 祥. PAR-2信号通路与功能性胃肠病. Shijie Huaren Xiaohua Zazhi 2017; 25:1159-1165. [DOI: 10.11569/wcjd.v25.i13.1159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
功能性胃肠病(functional gastrointestinal disorders, FGIDs)是一组排除器质性病变的胃肠道疾病, 其症状复杂且无特异性. 该类疾病在人群中患病率不断升高, 虽不致死, 但伴随精神症状大大降低了患者生活质量, 病情反复且周期长, 给患者家庭和社会造成了一定经济压力. 探索其发病机制以制定更佳治疗策略成为当前重任. 近年研究证实蛋白酶激活受体2(protease-activated receptor 2, PAR-2)在FGIDs发病机制中的作用确切, 相关研究亦越来越深入. 但众多研究各持一角, 不免混杂, 故本文就近几年PAR-2的相关研究作了梳理, 以便后续研究能有所借鉴, 看到不足, 并能做进一步的深入研究.
Collapse
|
28
|
Camilleri M, Halawi H, Oduyebo I. Biomarkers as a diagnostic tool for irritable bowel syndrome: where are we? Expert Rev Gastroenterol Hepatol 2017; 11:303-316. [PMID: 28128666 DOI: 10.1080/17474124.2017.1288096] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Irritable bowel syndrome (IBS) is a common condition in clinical practice. There are currently no objective tests to rule in the disease, but rather tests to rule out other diseases. Biomarkers in IBS may provide the tools needed for diagnosis, prognosis and therapy. These include identification of differences in microbial composition, immune activation, bile acid composition, colonic transit, and alteration in sensation in subgroups of IBS patients. Areas covered: Studies included in our review were chosen based on a PubMed search for 'biomarkers' and 'IBS'. We have reviewed the literature on biomarkers to appraise their accuracy, validity and whether they are actionable. We have not covered genetic associations as biomarkers in this review. Expert commentary: There is significant promise in the usefulness of biomarkers for IBS. The most promising actionable biomarkers are markers of changes in bile acid balance, such as elevated bile acid in the stool, and altered colonic transit. However, there is also potential for microbial studies and mucosal proteases as future actionable biomarkers.
Collapse
Affiliation(s)
- Michael Camilleri
- a Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.) , Mayo Clinic , Rochester , MN, USA
| | - Houssam Halawi
- a Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.) , Mayo Clinic , Rochester , MN, USA
| | - Ibironke Oduyebo
- a Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.) , Mayo Clinic , Rochester , MN, USA
| |
Collapse
|
29
|
Ceuleers H, Van Spaendonk H, Hanning N, Heirbaut J, Lambeir AM, Joossens J, Augustyns K, De Man JG, De Meester I, De Winter BY. Visceral hypersensitivity in inflammatory bowel diseases and irritable bowel syndrome: The role of proteases. World J Gastroenterol 2016; 22:10275-10286. [PMID: 28058009 PMCID: PMC5175241 DOI: 10.3748/wjg.v22.i47.10275] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/10/2016] [Accepted: 12/02/2016] [Indexed: 02/06/2023] Open
Abstract
Proteases, enzymes catalyzing the hydrolysis of peptide bonds, are present at high concentrations in the gastrointestinal tract. Besides their well-known role in the digestive process, they also function as signaling molecules through the activation of protease-activated receptors (PARs). Based on their chemical mechanism for catalysis, proteases can be classified into several classes: serine, cysteine, aspartic, metallo- and threonine proteases represent the mammalian protease families. In particular, the class of serine proteases will play a significant role in this review. In the last decades, proteases have been suggested to play a key role in the pathogenesis of visceral hypersensitivity, which is a major factor contributing to abdominal pain in patients with inflammatory bowel diseases and/or irritable bowel syndrome. So far, only a few preclinical animal studies have investigated the effect of protease inhibitors specifically on visceral sensitivity while their effect on inflammation is described in more detail. In our accompanying review we describe their effect on gastrointestinal permeability. On account of their promising results in the field of visceral hypersensitivity, further research is warranted. The aim of this review is to give an overview on the concept of visceral hypersensitivity as well as on the physiological and pathophysiological functions of proteases herein.
Collapse
|
30
|
Camilleri M, Oduyebo I, Halawi H. Chemical and molecular factors in irritable bowel syndrome: current knowledge, challenges, and unanswered questions. Am J Physiol Gastrointest Liver Physiol 2016; 311:G777-G784. [PMID: 27609770 PMCID: PMC5130552 DOI: 10.1152/ajpgi.00242.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/31/2016] [Indexed: 02/08/2023]
Abstract
Several chemical and molecular factors in the intestine are reported to be altered and to have a potentially significant role in irritable bowel syndrome (IBS), particularly in IBS with diarrhea. These include bile acids; short-chain fatty acids; mucosal barrier proteins; mast cell products such as histamine, proteases, and tryptase; enteroendocrine cell products; and mucosal mRNAs, proteins, and microRNAs. This article reviews the current knowledge and unanswered questions in the pathobiology of the chemical and molecular factors in IBS. Evidence continues to point to significant roles in pathogenesis of these chemical and molecular mechanisms, which may therefore constitute potential targets for future research and therapy. However, it is still necessary to address the interaction between these factors in the gut and to appraise how they may influence hypervigilance in the central nervous system in patients with IBS.
Collapse
Affiliation(s)
- Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Mayo Clinic, Rochester, Minnesota
| | | | | |
Collapse
|
31
|
Probiotic modulation of the microbiota-gut-brain axis and behaviour in zebrafish. Sci Rep 2016; 6:30046. [PMID: 27416816 PMCID: PMC4945902 DOI: 10.1038/srep30046] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/29/2016] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota plays a crucial role in the bi-directional gut–brain axis, a communication that integrates the gut and central nervous system (CNS) activities. Animal studies reveal that gut bacteria influence behaviour, Brain-Derived Neurotrophic Factor (BDNF) levels and serotonin metabolism. In the present study, we report for the first time an analysis of the microbiota–gut–brain axis in zebrafish (Danio rerio). After 28 days of dietary administration with the probiotic Lactobacillus rhamnosus IMC 501, we found differences in shoaling behaviour, brain expression levels of bdnf and of genes involved in serotonin signalling/metabolism between control and treated zebrafish group. In addition, in microbiota we found a significant increase of Firmicutes and a trending reduction of Proteobacteria. This study demonstrates that selected microbes can be used to modulate endogenous neuroactive molecules in zebrafish.
Collapse
|
32
|
Qi QQ, Chen FX, Zhao DY, Li LX, Wang P, Li YQ, Zuo XL. Colonic mucosal N-methyl-D-aspartate receptor mediated visceral hypersensitivity in a mouse model of irritable bowel syndrome. J Dig Dis 2016; 17:448-57. [PMID: 27356126 DOI: 10.1111/1751-2980.12374] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/11/2016] [Accepted: 06/19/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The aim of this study was to investigate whether colonic mucosal N-methyl-D-aspartate receptor (NMDAR) participates in visceral hypersensitivity in irritable bowel syndrome (IBS). METHODS C57BL/6 mice were administered intrarectally with trinitrobenzenesulfonic acid (TNBS) for the establishment of an IBS-like visceral hypersensitivity model. Those received an equivalent volume of 50% ethanol were regarded as the controls. Abdominal withdrawal reflex (AWR) scores in response to colorectal distention (CRD) were used to assess visceral sensitivity. NMDAR levels in the colonic mucosa were detected by both immunohistochemistry and Western blot. The concentrations of glutamate and ammonia in the feces of the mice were measured. Changes in visceral sensitivity after the intracolonic administration of ammonia or NMDAR antagonist were recorded. RESULTS The established IBS-like mouse model of visceral hypersensitivity showed no evident inflammation in the colon. NMDAR levels in the colonic mucosa of the IBS-like mice were significantly higher compared with the controls, and were positively associated with AWR scores. The glutamate level in the feces of the TNBS-treated mice was similar to that of the controls, although the ammonia level was significantly higher. Intracolonic administration of ammonia induced visceral hypersensitivity in mice, which was repressed by pretreatment with NMDAR antagonist MK801. CONCLUSIONS Overexpressed NMDAR in the colonic mucosa may participate in the pathogenesis of visceral hypersensitivity in IBS. Our study identifies the effect of ammonia in the colonic lumen on NMDAR in the colonic mucosa as a potential novel targeted mechanism for IBS treatment.
Collapse
Affiliation(s)
- Qing Qing Qi
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Fei Xue Chen
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Dong Yan Zhao
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Li Xiang Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Peng Wang
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Yan Qing Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Xiu Li Zuo
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
33
|
Wang P, Du C, Chen FX, Li CQ, Yu YB, Han T, Akhtar S, Zuo XL, Tan XD, Li YQ. BDNF contributes to IBS-like colonic hypersensitivity via activating the enteroglia-nerve unit. Sci Rep 2016; 6:20320. [PMID: 26837784 PMCID: PMC4738267 DOI: 10.1038/srep20320] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/30/2015] [Indexed: 02/08/2023] Open
Abstract
The over-expressed colonic brain-derived neurotrophic factor (BDNF) has been reported to be associated with abdominal pain in patients with irritable bowel syndrome (IBS). However, the neuropathological mechanism is unclear. We here investigated the involvement of enteroglial cells (EGCs) and enteric nerves in IBS-like visceral hypersensitivity. We showed that glial fibrillary acidic protein (GFAP), tyrosine receptor kinase B (TrkB) and substance P (SP) were significantly increased in the colonic mucosa of IBS patients. The upregulation of those proteins was also observed in the colon of mice with visceral hypersensitivity, but not in the colon of BDNF(+/-) mice. Functionally, TrkB or EGC inhibitors, or BDNF knockdown significantly suppressed visceral hypersensitivity in mice. Using the EGC cell line, we found that recombinant human BDNF (r-HuBDNF) could directly activate EGCs via the TrkB-phospholipase Cγ1 pathway, thereby inducing a significant upregulation of SP. Moreover, supernatants from r-HuBDNF-activated EGC culture medium, rather than r-HuBDNF alone, triggered markedly augmented discharges in isolated intestinal mesenteric afferent nerves. r-HuBDNF alone could cause mesenteric afferent mechanical hypersensitivity independently, and this effect was synergistically enhanced by activated EGCs. We conclude that EGC-enteric nerve unit may be involved in IBS-like visceral hypersensitivity, and this process is likely initiated by BDNF-TrkB pathway activation.
Collapse
Affiliation(s)
- Peng Wang
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan 250012, P. R. China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan 250012, P. R. China
| | - Chao Du
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan 250012, P. R. China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan 250012, P. R. China
| | - Fei-Xue Chen
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan 250012, P. R. China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan 250012, P. R. China
| | - Chang-Qing Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan 250012, P. R. China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan 250012, P. R. China
| | - Yan-Bo Yu
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan 250012, P. R. China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan 250012, P. R. China
| | - Ting Han
- Department of Physiology, Shandong University School of Medicine, Jinan 250012, P. R. China
| | - Suhail Akhtar
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Xiu-Li Zuo
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan 250012, P. R. China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan 250012, P. R. China
| | - Xiao-Di Tan
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Yan-Qing Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan 250012, P. R. China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan 250012, P. R. China
| |
Collapse
|
34
|
Johnson AC, Greenwood-Van Meerveld B. The Pharmacology of Visceral Pain. ADVANCES IN PHARMACOLOGY 2016; 75:273-301. [PMID: 26920016 DOI: 10.1016/bs.apha.2015.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Visceral pain describes pain emanating from the internal thoracic, pelvic, or abdominal organs. Unlike somatic pain, visceral pain is generally vague, poorly localized, and characterized by hypersensitivity to a stimulus such as organ distension. While current therapeutics provides some relief from somatic pain, drugs used for treatment of chronic visceral pain are typically less efficacious and limited by multiple adverse side effects. Thus, the treatment of visceral pain represents a major unmet medical need. Further, more basic research into the physiology and pathophysiology of visceral pain is needed to provide novel targets for future drug development. In concert with chronic visceral pain, there is a high comorbidity with stress-related psychiatric disorders including anxiety and depression. The mechanisms linking visceral pain with these overlapping comorbidities remain to be elucidated. However, persistent stress facilitates pain perception and sensitizes pain pathways, leading to a feed-forward cycle promoting chronic visceral pain disorders. We will focus on stress-induced exacerbation of chronic visceral pain and provide supporting evidence that centrally acting drugs targeting the pain and stress-responsive brain regions may represent a valid target for the development of novel and effective therapeutics.
Collapse
Affiliation(s)
- Anthony C Johnson
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Beverley Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; Veterans Affairs Medical Center, Oklahoma City, Oklahoma, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.
| |
Collapse
|
35
|
Liang C, Xu B. Advances in understanding role of brain-derived neurotrophic factor in physiological and pathological processes in the intestinal tract. Shijie Huaren Xiaohua Zazhi 2015; 23:5649-5654. [DOI: 10.11569/wcjd.v23.i35.5649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Brain-derived neurotrophic factor is a kind of neurotrophic substance. In recent years, besides the central nervous system, brain-derived neurotrophic factor was also found to be expressed abundantly in the gastrointestinal tract, and it plays an important role in the development of the enteric nervous system and in regulating intestinal motility and visceral sensitivity. In this article, we review the role of brain-derived neurotrophic factor in the intestinal tract, and discuss its possible role in the pathogenesis of irritable bowel syndrome, with an aim to provide new ideas for clinical treatment of gastrointestinal diseases.
Collapse
|