1
|
Porter EB, Adaryan S, Ardebili H, Biswal SL, Verduzco R. Detection of Crude Oil in Subsea Environments Using Organic Electrochemical Transistors. ACS Sens 2024; 9:3633-3640. [PMID: 38954649 DOI: 10.1021/acssensors.4c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Current methods for detecting pipeline oil leaks depend primarily on optical detection, which can be slow and have deployment limitations. An alternative non-optical approach for earlier and faster detection of oil leaks would enable a rapid response and reduce the environmental impact of oil leaks. Here, we demonstrate that organic electrochemical transistors (OECTs) can be used as non-optical sensors for crude oil detection in subsea environments. OECTs are thin film electronic devices that can be used for sensing in a variety of environments, but they have not yet been tested for crude oil detection in subsea environments. We fabricated OECTs with poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) as the channel and showed that coating the channel with a polystyrene film results in an OECT with a large and measurable response to oil. Oil that comes in contact with the device will adsorb onto the polystyrene film and increases the impedance at the electrolyte interface. We performed electrochemical impedance spectroscopy measurements to quantify the impedance across the device and found an optimal thickness for the polystyrene coating for the detection of oil. Under optimal device characteristics, as little as 10 μg of oil adsorbed on the channel surface produced a statistically significant change in the source-drain current. The OECTs were operable in seawater for the detection of oil, and we demonstrated that the devices can be transferred to flexible substrates which can be easily implemented in vehicles, pipelines, or other surfaces. This work demonstrates a low-cost device for oil detection in subsea environments and provides a new application of OECT sensors for sensing.
Collapse
Affiliation(s)
- Erin B Porter
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Sarah Adaryan
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Haleh Ardebili
- Department of Mechanical Engineering, University of Houston, Houston, Texas 77204, United States
- Materials Science and Engineering Program, University of Houston, Houston, Texas 77204, United States
| | - Sibani Lisa Biswal
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Rafael Verduzco
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
2
|
Wu P, Chen Y, Luo Y, Ji W, Wang Y, Qian Z, Duan Y, Li X, Fu S, Gao W, Liu D. Hierarchical Bilayer Polyelectrolyte Ion Paper Conductor for Moisture-Induced Power Generation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32198-32208. [PMID: 38865083 DOI: 10.1021/acsami.4c03665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Harvesting energy from air water (atmospheric moisture) promises a sustainable self-powered system without any restrictions from specific environmental requirements (e.g., solar cells, hydroelectric, or thermoelectric devices). However, the present moisture-induced power devices traditionally generate intermittent or bursts of energy, especially for much lower current outputs (generally keeping at nA or μA levels) from the ambient environment, typically suffering from inferior ionic conductivity and poor hierarchical structure design for manipulating sustained air water and ion-charge transport. Here, we demonstrate a universal strategy to design a high-performance bilayer polyelectrolyte ion paper conductor for generating continuous electric power from ambient humidity. The generator can produce a continuous voltage of up to 0.74 V and also an exceptional current of 5.63 mA across a single 1.0 mm-thick ion paper conductor. We discover that the sandwiched LiCl-nanocellulose-engineered paper promises an ion-transport junction between the negatively and positively charged bilayer polyelectrolytes for application in MEGs with both high voltage and high current outputs. Moreover, we demonstrated the universality of this bilayer sandwich nanocellulose-salt engineering strategy with other anions and cations, exhibiting similar power generation ability, indicating that it could be the next generation of sustainable MEGs with low cost, easier operation, and high performance.
Collapse
Affiliation(s)
- Peilin Wu
- School of Light Industry and Engineering, South China University of Technology, Wushan Road, 381#, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Yonghao Chen
- School of Light Industry and Engineering, South China University of Technology, Wushan Road, 381#, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Yao Luo
- School of Light Industry and Engineering, South China University of Technology, Wushan Road, 381#, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Wenhao Ji
- School of Light Industry and Engineering, South China University of Technology, Wushan Road, 381#, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Yan Wang
- School of Light Industry and Engineering, South China University of Technology, Wushan Road, 381#, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Zhiyun Qian
- School of Light Industry and Engineering, South China University of Technology, Wushan Road, 381#, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Yulong Duan
- School of Light Industry and Engineering, South China University of Technology, Wushan Road, 381#, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Xiaoming Li
- School of Light Industry and Engineering, South China University of Technology, Wushan Road, 381#, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Shiyu Fu
- School of Light Industry and Engineering, South China University of Technology, Wushan Road, 381#, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Wenhua Gao
- School of Light Industry and Engineering, South China University of Technology, Wushan Road, 381#, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Detao Liu
- School of Light Industry and Engineering, South China University of Technology, Wushan Road, 381#, Tianhe District, Guangzhou, Guangdong 510640, China
| |
Collapse
|
3
|
Traberg WC, Uribe J, Druet V, Hama A, Moysidou C, Huerta M, McCoy R, Hayward D, Savva A, Genovese AMR, Pavagada S, Lu Z, Koklu A, Pappa A, Fitzgerald R, Inal S, Daniel S, Owens RM. Organic Electronic Platform for Real-Time Phenotypic Screening of Extracellular-Vesicle-Driven Breast Cancer Metastasis. Adv Healthc Mater 2023; 12:e2301194. [PMID: 37171457 PMCID: PMC11468090 DOI: 10.1002/adhm.202301194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 04/21/2023] [Indexed: 05/13/2023]
Abstract
Tumor-derived extracellular vesicles (TEVs) induce the epithelial-to-mesenchymal transition (EMT) in nonmalignant cells to promote invasion and cancer metastasis, representing a novel therapeutic target in a field severely lacking in efficacious antimetastasis treatments. However, scalable technologies that allow continuous, multiparametric monitoring for identifying metastasis inhibitors are absent. Here, the development of a functional phenotypic screening platform based on organic electrochemical transistors (OECTs) for real-time, noninvasive monitoring of TEV-induced EMT and screening of antimetastatic drugs is reported. TEVs derived from the triple-negative breast cancer cell line MDA-MB-231 induce EMT in nonmalignant breast epithelial cells (MCF10A) over a nine-day period, recapitulating a model of invasive ductal carcinoma metastasis. Immunoblot analysis and immunofluorescence imaging confirm the EMT status of TEV-treated cells, while dual optical and electrical readouts of cell phenotype are obtained using OECTs. Further, heparin, a competitive inhibitor of cell surface receptors, is identified as an effective blocker of TEV-induced EMT. Together, these results demonstrate the utility of the platform for TEV-targeted drug discovery, allowing for facile modeling of the transient drug response using electrical measurements, and provide proof of concept that inhibitors of TEV function have potential as antimetastatic drug candidates.
Collapse
Affiliation(s)
- Walther C. Traberg
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Johana Uribe
- Robert F. Smith School of Chemical and Biomolecular EngineeringCornell UniversityOlin HallIthacaNY14853USA
| | - Victor Druet
- Biological and Environmental Sciences and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal3955Kingdom of Saudi Arabia
| | - Adel Hama
- Biological and Environmental Sciences and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal3955Kingdom of Saudi Arabia
| | | | - Miriam Huerta
- Robert F. Smith School of Chemical and Biomolecular EngineeringCornell UniversityOlin HallIthacaNY14853USA
| | - Reece McCoy
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Daniel Hayward
- Early Cancer InstituteUniversity of CambridgeHutchison Research CentreCambridgeCB2 0XZUK
| | - Achilleas Savva
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Amaury M. R. Genovese
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Suraj Pavagada
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
- Early Cancer InstituteUniversity of CambridgeHutchison Research CentreCambridgeCB2 0XZUK
| | - Zixuan Lu
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Anil Koklu
- Biological and Environmental Sciences and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal3955Kingdom of Saudi Arabia
| | - Anna‐Maria Pappa
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
- Healthcare Innovation Engineering CenterKhalifa UniversityAbu DhabiPO Box 127788United Arab Emirates
- Department of Biomedical EngineeringKhalifa University of Science and TechnologyAbu DhabiPO Box 127788United Arab Emirates
| | - Rebecca Fitzgerald
- Early Cancer InstituteUniversity of CambridgeHutchison Research CentreCambridgeCB2 0XZUK
| | - Sahika Inal
- Biological and Environmental Sciences and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal3955Kingdom of Saudi Arabia
| | - Susan Daniel
- Robert F. Smith School of Chemical and Biomolecular EngineeringCornell UniversityOlin HallIthacaNY14853USA
| | - Róisín M. Owens
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| |
Collapse
|
4
|
Abarkan M, Pirog A, Mafilaza D, Pathak G, N'Kaoua G, Puginier E, O'Connor R, Raoux M, Donahue MJ, Renaud S, Lang J. Vertical Organic Electrochemical Transistors and Electronics for Low Amplitude Micro-Organ Signals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105211. [PMID: 35064774 PMCID: PMC8922095 DOI: 10.1002/advs.202105211] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Indexed: 06/14/2023]
Abstract
Electrical signals are fundamental to key biological events such as brain activity, heartbeat, or vital hormone secretion. Their capture and analysis provide insight into cell or organ physiology and a number of bioelectronic medical devices aim to improve signal acquisition. Organic electrochemical transistors (OECT) have proven their capacity to capture neuronal and cardiac signals with high fidelity and amplification. Vertical PEDOT:PSS-based OECTs (vOECTs) further enhance signal amplification and device density but have not been characterized in biological applications. An electronic board with individually tuneable transistor biases overcomes fabrication induced heterogeneity in device metrics and allows quantitative biological experiments. Careful exploration of vOECT electric parameters defines voltage biases compatible with reliable transistor function in biological experiments and provides useful maximal transconductance values without influencing cellular signal generation or propagation. This permits successful application in monitoring micro-organs of prime importance in diabetes, the endocrine pancreatic islets, which are known for their far smaller signal amplitudes as compared to neurons or heart cells. Moreover, vOECTs capture their single-cell action potentials and multicellular slow potentials reflecting micro-organ organizations as well as their modulation by the physiological stimulator glucose. This opens the possibility to use OECTs in new biomedical fields well beyond their classical applications.
Collapse
Affiliation(s)
- Myriam Abarkan
- UMR CNRS 5248 (CBMN, Chemistry and Biology of Membranes)Univ. BordeauxAv Geoffroy St HilairePessacF‐33600France
| | - Antoine Pirog
- UMR CNRS 5218 (IMS, Integration of Materials into Systems)Univ. BordeauxBordeaux Institut National Polytechnique351 Cours de la LibérationTalenceF‐33405France
| | - Donnie Mafilaza
- UMR CNRS 5218 (IMS, Integration of Materials into Systems)Univ. BordeauxBordeaux Institut National Polytechnique351 Cours de la LibérationTalenceF‐33405France
| | - Gaurav Pathak
- Department of BioelectronicsMines Saint EtienneCMP‐EMSEMOCGardanne13541France
- Linköping UniversityDepartment of Science and Technology (ITN)Laboratory of Organic ElectronicsLinköpingSE‐581 83Sweden
| | - Gilles N'Kaoua
- UMR CNRS 5218 (IMS, Integration of Materials into Systems)Univ. BordeauxBordeaux Institut National Polytechnique351 Cours de la LibérationTalenceF‐33405France
| | - Emilie Puginier
- UMR CNRS 5248 (CBMN, Chemistry and Biology of Membranes)Univ. BordeauxAv Geoffroy St HilairePessacF‐33600France
| | - Rodney O'Connor
- Department of BioelectronicsMines Saint EtienneCMP‐EMSEMOCGardanne13541France
| | - Matthieu Raoux
- UMR CNRS 5248 (CBMN, Chemistry and Biology of Membranes)Univ. BordeauxAv Geoffroy St HilairePessacF‐33600France
| | - Mary J. Donahue
- Department of BioelectronicsMines Saint EtienneCMP‐EMSEMOCGardanne13541France
- Linköping UniversityDepartment of Science and Technology (ITN)Laboratory of Organic ElectronicsLinköpingSE‐581 83Sweden
| | - Sylvie Renaud
- UMR CNRS 5218 (IMS, Integration of Materials into Systems)Univ. BordeauxBordeaux Institut National Polytechnique351 Cours de la LibérationTalenceF‐33405France
| | - Jochen Lang
- UMR CNRS 5248 (CBMN, Chemistry and Biology of Membranes)Univ. BordeauxAv Geoffroy St HilairePessacF‐33600France
| |
Collapse
|
5
|
He Y, Kukhta NA, Marks A, Luscombe CK. The effect of side chain engineering on conjugated polymers in organic electrochemical transistors for bioelectronic applications. JOURNAL OF MATERIALS CHEMISTRY. C 2022; 10:2314-2332. [PMID: 35310858 PMCID: PMC8852261 DOI: 10.1039/d1tc05229b] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/07/2021] [Indexed: 05/08/2023]
Abstract
Bioelectronics focuses on the establishment of the connection between the ion-driven biosystems and readable electronic signals. Organic electrochemical transistors (OECTs) offer a viable solution for this task. Organic mixed ionic/electronic conductors (OMIECs) rest at the heart of OECTs. The balance between the ionic and electronic conductivities of OMIECs is closely connected to the OECT device performance. While modification of the OMIECs' electronic properties is largely related to the development of conjugated scaffolds, properties such as ion permeability, solubility, flexibility, morphology, and sensitivity can be altered by side chain moieties. In this review, we uncover the influence of side chain molecular design on the properties and performance of OECTs. We summarise current understanding of OECT performance and focus specifically on the knowledge of ionic-electronic coupling, shedding light on the significance of side chain development of OMIECs. We show how the versatile synthetic toolbox of side chains can be successfully employed to tune OECT parameters via controlling the material properties. As the field continues to mature, more detailed investigations into the crucial role side chain engineering plays on the resultant OMIEC properties will allow for side chain alternatives to be developed and will ultimately lead to further enhancements within the field of OECT channel materials.
Collapse
Affiliation(s)
- Yifei He
- Materials Science and Engineering Department, University of Washington Seattle Washington 98195-2120 USA
| | - Nadzeya A Kukhta
- Materials Science and Engineering Department, University of Washington Seattle Washington 98195-2120 USA
| | - Adam Marks
- Department of Chemistry, University of Oxford Oxford OX1 3TA UK
| | - Christine K Luscombe
- Materials Science and Engineering Department, University of Washington Seattle Washington 98195-2120 USA
- Department of Chemistry, University of Washington, Seattle Washington 98195 USA
| |
Collapse
|
6
|
Pitsalidis C, Pappa AM, Boys AJ, Fu Y, Moysidou CM, van Niekerk D, Saez J, Savva A, Iandolo D, Owens RM. Organic Bioelectronics for In Vitro Systems. Chem Rev 2021; 122:4700-4790. [PMID: 34910876 DOI: 10.1021/acs.chemrev.1c00539] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bioelectronics have made strides in improving clinical diagnostics and precision medicine. The potential of bioelectronics for bidirectional interfacing with biology through continuous, label-free monitoring on one side and precise control of biological activity on the other has extended their application scope to in vitro systems. The advent of microfluidics and the considerable advances in reliability and complexity of in vitro models promise to eventually significantly reduce or replace animal studies, currently the gold standard in drug discovery and toxicology testing. Bioelectronics are anticipated to play a major role in this transition offering a much needed technology to push forward the drug discovery paradigm. Organic electronic materials, notably conjugated polymers, having demonstrated technological maturity in fields such as solar cells and light emitting diodes given their outstanding characteristics and versatility in processing, are the obvious route forward for bioelectronics due to their biomimetic nature, among other merits. This review highlights the advances in conjugated polymers for interfacing with biological tissue in vitro, aiming ultimately to develop next generation in vitro systems. We showcase in vitro interfacing across multiple length scales, involving biological models of varying complexity, from cell components to complex 3D cell cultures. The state of the art, the possibilities, and the challenges of conjugated polymers toward clinical translation of in vitro systems are also discussed throughout.
Collapse
Affiliation(s)
- Charalampos Pitsalidis
- Department of Physics, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, UAE.,Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Anna-Maria Pappa
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, UAE
| | - Alexander J Boys
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Ying Fu
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.,Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, U.K
| | - Chrysanthi-Maria Moysidou
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Douglas van Niekerk
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Janire Saez
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.,Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Avenida Miguel de Unamuno, 3, 01006 Vitoria-Gasteiz, Spain.,Ikerbasque, Basque Foundation for Science, E-48011 Bilbao, Spain
| | - Achilleas Savva
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Donata Iandolo
- INSERM, U1059 Sainbiose, Université Jean Monnet, Mines Saint-Étienne, Université de Lyon, 42023 Saint-Étienne, France
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| |
Collapse
|
7
|
Rashid RB, Ji X, Rivnay J. Organic electrochemical transistors in bioelectronic circuits. Biosens Bioelectron 2021; 190:113461. [PMID: 34197997 DOI: 10.1016/j.bios.2021.113461] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 11/30/2022]
Abstract
The organic electrochemical transistor (OECT) represents a versatile and impactful electronic building block in the areas of printed electronics, bioelectronics, and neuromorphic computing. Significant efforts in OECTs have focused on device physics, new active material design and synthesis, and on preliminary implementation of individual transistors as proof-of-concept components for sensing and computation. However, as most of the current studies are based on single devices, the integration of OECTs into circuits or high-level systems has lagged. In this review, we focus on recent efforts to incorporate individual OECTs into digital, analog, and neuromorphic circuits, and lay out important considerations relevant for (hybrid) systems integration. We summarize the operation principles and the functions of OECT-based circuits and discuss the approaches for wireless power and data transmission for practicality in biological and bio-inspired applications. Finally, we comment on the future directions and challenges facing OECT circuits from both a fundamental and applied perspective.
Collapse
Affiliation(s)
- Reem B Rashid
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA; Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA
| | - Xudong Ji
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA; Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA; Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
8
|
Milos F, Tullii G, Gobbo F, Lodola F, Galeotti F, Verpelli C, Mayer D, Maybeck V, Offenhäusser A, Antognazza MR. High Aspect Ratio and Light-Sensitive Micropillars Based on a Semiconducting Polymer Optically Regulate Neuronal Growth. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23438-23451. [PMID: 33983012 PMCID: PMC8161421 DOI: 10.1021/acsami.1c03537] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Many nano- and microstructured devices capable of promoting neuronal growth and network formation have been previously investigated. In certain cases, topographical cues have been successfully complemented with external bias, by employing electrically conducting scaffolds. However, the use of optical stimulation with topographical cues was rarely addressed in this context, and the development of light-addressable platforms for modulating and guiding cellular growth and proliferation remains almost completely unexplored. Here, we develop high aspect ratio micropillars based on a prototype semiconducting polymer, regioregular poly(3-hexylthiophene-2,5-diyl) (P3HT), as an optically active, three-dimensional platform for embryonic cortical neurons. P3HT micropillars provide a mechanically compliant environment and allow a close contact with neuronal cells. The combined action of nano/microtopography and visible light excitation leads to effective optical modulation of neuronal growth and orientation. Embryonic neurons cultured on polymer pillars show a clear polarization effect and, upon exposure to optical excitation, a significant increase in both neurite and axon length. The biocompatible, microstructured, and light-sensitive platform developed here opens up the opportunity to optically regulate neuronal growth in a wireless, repeatable, and spatio-temporally controlled manner without genetic modification. This approach may be extended to other cell models, thus uncovering interesting applications of photonic devices in regenerative medicine.
Collapse
Affiliation(s)
- Frano Milos
- Institute
of Biological Information Processing IBI-3, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- RWTH
University Aachen, 52062 Aachen, Germany
| | - Gabriele Tullii
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, 20133 Milano, Italy
| | - Federico Gobbo
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, 20133 Milano, Italy
- Physics
Department, Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano, Italy
| | - Francesco Lodola
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, 20133 Milano, Italy
| | - Francesco Galeotti
- Istituto
di Scienze e Tecnologie Chimiche G. Natta (SCITEC), Consiglio Nazionale delle Ricerche, 20133 Milano, Italy
| | - Chiara Verpelli
- Istituto
di Neuroscienze, Consiglio Nazionale delle
Ricerche, 20133 Milano, Italy
| | - Dirk Mayer
- Institute
of Biological Information Processing IBI-3, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Vanessa Maybeck
- Institute
of Biological Information Processing IBI-3, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Andreas Offenhäusser
- Institute
of Biological Information Processing IBI-3, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- RWTH
University Aachen, 52062 Aachen, Germany
| | - Maria Rosa Antognazza
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, 20133 Milano, Italy
| |
Collapse
|
9
|
Tang T, Kyaw AKK, Zhu Q, Xu J. Water-dispersible conducting polyazulene and its application in thermoelectrics. Chem Commun (Camb) 2020; 56:9388-9391. [PMID: 32672784 DOI: 10.1039/d0cc03840g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report on the facile synthesis of a water-dispersible conducting polymer, polyazulene-polystyrenesulfonate (PAZ:PSS), using PSS as a template. PAZ:PSS can achieve an overall conductivity up to 0.1 S cm-1, and an ion Seebeck coefficient as high as 4500 μV K-1, demonstrating that PAZ:PSS is another promising water-dispersible polymer for thermoelectrics.
Collapse
Affiliation(s)
- Tao Tang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, 138634, Singapore.
| | | | | | | |
Collapse
|
10
|
Scuratti F, Bonacchini GE, Bossio C, Salazar-Rios JM, Talsma W, Loi MA, Antognazza MR, Caironi M. Real-Time Monitoring of Cellular Cultures with Electrolyte-Gated Carbon Nanotube Transistors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:37966-37972. [PMID: 31532607 DOI: 10.1021/acsami.9b11383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Cell-based biosensors constitute a fundamental tool in biotechnology, and their relevance has greatly increased in recent years as a result of a surging demand for reduced animal testing and for high-throughput and cost-effective in vitro screening platforms dedicated to environmental and biomedical diagnostics, drug development, and toxicology. In this context, electrochemical/electronic cell-based biosensors represent a promising class of devices that enable long-term and real-time monitoring of cell physiology in a noninvasive and label-free fashion, with a remarkable potential for process automation and parallelization. Common limitations of this class of devices at large include the need for substrate surface modification strategies to ensure cell adhesion and immobilization, limited compatibility with complementary optical cell-probing techniques, and the need for frequency-dependent measurements, which rely on elaborated equivalent electrical circuit models for data analysis and interpretation. We hereby demonstrate the monitoring of cell adhesion and detachment through the time-dependent variations in the quasi-static characteristic current curves of a highly stable electrolyte-gated transistor, based on an optically transparent network of printable polymer-wrapped semiconducting carbon-nanotubes.
Collapse
Affiliation(s)
- Francesca Scuratti
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia , Via Giovanni Pascoli, 70/3 , 20133 Milano , Italy
- Department of Electronics, Information and Bioengineering , Politecnico di Milano , Piazza Leonardo da Vinci, 32 , 20133 Milano , Italy
| | - Giorgio E Bonacchini
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia , Via Giovanni Pascoli, 70/3 , 20133 Milano , Italy
| | - Caterina Bossio
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia , Via Giovanni Pascoli, 70/3 , 20133 Milano , Italy
| | - Jorge M Salazar-Rios
- Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4 9747 AG Groningen , The Netherlands
| | - Wytse Talsma
- Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4 9747 AG Groningen , The Netherlands
| | - Maria A Loi
- Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4 9747 AG Groningen , The Netherlands
| | - Maria Rosa Antognazza
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia , Via Giovanni Pascoli, 70/3 , 20133 Milano , Italy
| | - Mario Caironi
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia , Via Giovanni Pascoli, 70/3 , 20133 Milano , Italy
| |
Collapse
|
11
|
Bai L, Elósegui CG, Li W, Yu P, Fei J, Mao L. Biological Applications of Organic Electrochemical Transistors: Electrochemical Biosensors and Electrophysiology Recording. Front Chem 2019; 7:313. [PMID: 31134185 PMCID: PMC6514146 DOI: 10.3389/fchem.2019.00313] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/18/2019] [Indexed: 12/21/2022] Open
Abstract
Organic electrochemical transistors (OECTs) are recently developed high-efficient transducers not only for electrochemical biosensor but also for cell electrophysiological recording due to the separation of gate electrode from the transistor device. The efficient integration of OECTs with electrochemical gate electrode makes the as-prepared sensors with improved performance, such as sensitivity, limit of detection, and selectivity. We herein reviewed the recent progress of OECTs-based biosensors and cell electrophysiology recording, mainly focusing on the principle and chemical design of gate electrode and the channel. First, the configuration, work principle, semiconductor of OECT are briefly introduced. Then different kinds of sensing modes are reviewed, especially for the biosensing and electrophysiological recording. Finally, the challenges and opportunities of this research field are discussed.
Collapse
Affiliation(s)
- Liming Bai
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, China
| | - Cristina García Elósegui
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Weiqi Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Junjie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Han S, Alvi NUH, Granlöf L, Granberg H, Berggren M, Fabiano S, Crispin X. A Multiparameter Pressure-Temperature-Humidity Sensor Based on Mixed Ionic-Electronic Cellulose Aerogels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1802128. [PMID: 31016118 PMCID: PMC6468975 DOI: 10.1002/advs.201802128] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/17/2019] [Indexed: 05/23/2023]
Abstract
Pressure (P), temperature (T), and humidity (H) are physical key parameters of great relevance for various applications such as in distributed diagnostics, robotics, electronic skins, functional clothing, and many other Internet-of-Things (IoT) solutions. Previous studies on monitoring and recording these three parameters have focused on the integration of three individual single-parameter sensors into an electronic circuit, also comprising dedicated sense amplifiers, signal processing, and communication interfaces. To limit complexity in, e.g., multifunctional IoT systems, and thus reducing the manufacturing costs of such sensing/communication outposts, it is desirable to achieve one single-sensor device that simultaneously or consecutively measures P-T-H without cross-talks in the sensing functionality. Herein, a novel organic mixed ion-electron conducting aerogel is reported, which can sense P-T-H with minimal cross-talk between the measured parameters. The exclusive read-out of the three individual parameters is performed electronically in one single device configuration and is enabled by the use of a novel strategy that combines electronic and ionic Seebeck effect along with mixed ion-electron conduction in an elastic aerogel. The findings promise for multipurpose IoT technology with reduced complexity and production costs, features that are highly anticipated in distributed diagnostics, monitoring, safety, and security applications.
Collapse
Affiliation(s)
- Shaobo Han
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityS‐60174Sweden
| | - Naveed Ul Hassan Alvi
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityS‐60174Sweden
| | - Lars Granlöf
- Papermaking & PackagingRISE BioeconomyBox 5604S‐11486Sweden
| | | | - Magnus Berggren
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityS‐60174Sweden
| | - Simone Fabiano
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityS‐60174Sweden
| | - Xavier Crispin
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityS‐60174Sweden
| |
Collapse
|
13
|
Pitsalidis C, Ferro MP, Iandolo D, Tzounis L, Inal S, Owens RM. Transistor in a tube: A route to three-dimensional bioelectronics. SCIENCE ADVANCES 2018; 4:eaat4253. [PMID: 30397642 PMCID: PMC6203411 DOI: 10.1126/sciadv.aat4253] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 09/19/2018] [Indexed: 05/06/2023]
Abstract
Advances in three-dimensional (3D) cell culture materials and techniques, which more accurately mimic in vivo systems to study biological phenomena, have fostered the development of organ and tissue models. While sophisticated 3D tissues can be generated, technology that can accurately assess the functionality of these complex models in a high-throughput and dynamic manner is not well adapted. Here, we present an organic bioelectronic device based on a conducting polymer scaffold integrated into an electrochemical transistor configuration. This platform supports the dual purpose of enabling 3D cell culture growth and real-time monitoring of the adhesion and growth of cells. We have adapted our system to a 3D tubular geometry facilitating free flow of nutrients, given its relevance in a variety of biological tissues (e.g., vascular, gastrointestinal, and kidney) and processes (e.g., blood flow). This biomimetic transistor in a tube does not require photolithography methods for preparation, allowing facile adaptation to the purpose. We demonstrate that epithelial and fibroblast cells grow readily and form tissue-like architectures within the conducting polymer scaffold that constitutes the channel of the transistor. The process of tissue formation inside the conducting polymer channel gradually modulates the transistor characteristics. Correlating the real-time changes in the steady-state characteristics of the transistor with the growth of the cultured tissue, we extract valuable insights regarding the transients of tissue formation. Our biomimetic platform enabling label-free, dynamic, and in situ measurements illustrates the potential for real-time monitoring of 3D cell culture and compatibility for use in long-term organ-on-chip platforms.
Collapse
Affiliation(s)
- C. Pitsalidis
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - M. P. Ferro
- Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, Gardanne 13541, France
| | - D. Iandolo
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - L. Tzounis
- Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina, Greece
| | - S. Inal
- Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - R. M. Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| |
Collapse
|
14
|
Pitsalidis C, Pappa AM, Porel M, Artim CM, Faria GC, Duong DD, Alabi CA, Daniel S, Salleo A, Owens RM. Biomimetic Electronic Devices for Measuring Bacterial Membrane Disruption. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1803130. [PMID: 30117203 DOI: 10.1002/adma.201803130] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/28/2018] [Indexed: 06/08/2023]
Abstract
Antibiotic discovery has experienced a severe slowdown in terms of discovery of new candidates. In vitro screening methods using phospholipids to model the bacterial membrane provide a route to identify molecules that specifically disrupt bacterial membranes causing cell death. Thanks to the electrically insulating properties of the major component of the cell membrane, phospholipids, electronic devices are highly suitable transducers of membrane disruption. The organic electrochemical transistor (OECT) is a highly sensitive ion-to-electron converter. Here, the OECT is used as a transducer of the permeability of a lipid monolayer (ML) at a liquid:liquid interface, designed to read out changes in ion flux caused by compounds that interact with, and disrupt, lipid assembly. This concept is illustrated using the well-documented antibiotic Polymixin B and the highly sensitive quantitation of permeability of the lipid ML induced by two novel recently described antibacterial amine-based oligothioetheramides is shown, highlighting molecular scale differences in their disruption capabilities. It is anticipated that this platform has the potential to play a role in front-line antimicrobial compound design and characterization thanks to the compatibility of semiconductor microfabrication technology with high-throughput readouts.
Collapse
Affiliation(s)
- Charalampos Pitsalidis
- Department of Chemical Engineering and Biotechnology, Philippa Fawcett Drive, CB30AS, Cambridge, UK
| | - Anna-Maria Pappa
- Department of Chemical Engineering and Biotechnology, Philippa Fawcett Drive, CB30AS, Cambridge, UK
| | - Mintu Porel
- Department of Chemical and Biomolecular Engineering, Olin hall, Ithaca, NY, 14850, USA
| | - Christine M Artim
- Department of Chemical and Biomolecular Engineering, Olin hall, Ithaca, NY, 14850, USA
| | - Gregorio C Faria
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA, 94305, USA
| | - Duc D Duong
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA, 94305, USA
| | - Christopher A Alabi
- Department of Chemical and Biomolecular Engineering, Olin hall, Ithaca, NY, 14850, USA
| | - Susan Daniel
- Department of Chemical and Biomolecular Engineering, Olin hall, Ithaca, NY, 14850, USA
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA, 94305, USA
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, Philippa Fawcett Drive, CB30AS, Cambridge, UK
| |
Collapse
|
15
|
Stupin DD, Koniakhin SV, Verlov NA. An inexpensive MP3-Player based 45-kHz band noise generator for engineering and scientific applications. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1742-6596/1038/1/012038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Zhang Y, Li J, Li R, Sbircea DT, Giovannitti A, Xu J, Xu H, Zhou G, Bian L, McCulloch I, Zhao N. Liquid-Solid Dual-Gate Organic Transistors with Tunable Threshold Voltage for Cell Sensing. ACS APPLIED MATERIALS & INTERFACES 2017; 9:38687-38694. [PMID: 29039186 DOI: 10.1021/acsami.7b09384] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Liquid electrolyte-gated organic field effect transistors and organic electrochemical transistors have recently emerged as powerful technology platforms for sensing and simulation of living cells and organisms. For such applications, the transistors are operated at a gate voltage around or below 0.3 V because prolonged application of a higher voltage bias can lead to membrane rupturing and cell death. This constraint often prevents the operation of the transistors at their maximum transconductance or most sensitive regime. Here, we exploit a solid-liquid dual-gate organic transistor structure, where the threshold voltage of the liquid-gated conduction channel is controlled by an additional gate that is separated from the channel by a metal-oxide gate dielectric. With this design, the threshold voltage of the "sensing channel" can be linearly tuned in a voltage window exceeding 0.4 V. We have demonstrated that the dual-gate structure enables a much better sensor response to the detachment of human mesenchymal stem cells. In general, the capability of tuning the optimal sensing bias will not only improve the device performance but also broaden the material selection for cell-based organic bioelectronics.
Collapse
Affiliation(s)
| | - Jun Li
- Department of Chemistry and Centre for Plastic Electronics, Imperial College , London SW7 2AZ, U.K
| | | | - Dan-Tiberiu Sbircea
- Department of Chemistry and Centre for Plastic Electronics, Imperial College , London SW7 2AZ, U.K
| | - Alexander Giovannitti
- Department of Chemistry and Centre for Plastic Electronics, Imperial College , London SW7 2AZ, U.K
| | | | | | | | | | - Iain McCulloch
- King Abdullah University of Science and Technology (KAUST), KSC , Thuwal 23955-6900, Saudi Arabia
| | | |
Collapse
|
17
|
Huerta M, Rivnay J, Ramuz M, Hama A, Owens RM. Early Detection of NephrotoxicityIn VitroUsing a Transparent Conducting Polymer Device. ACTA ACUST UNITED AC 2016. [DOI: 10.1089/aivt.2015.0028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Miriam Huerta
- Department of Bioelectronics, École Nationale Supérieure des Mines, Gardanne, France
| | - Jonathan Rivnay
- Department of Bioelectronics, École Nationale Supérieure des Mines, Gardanne, France
| | - Marc Ramuz
- Department of Bioelectronics, École Nationale Supérieure des Mines, Gardanne, France
| | - Adel Hama
- Department of Bioelectronics, École Nationale Supérieure des Mines, Gardanne, France
| | - Roisin M. Owens
- Department of Bioelectronics, École Nationale Supérieure des Mines, Gardanne, France
| |
Collapse
|
18
|
Malti A, Edberg J, Granberg H, Khan ZU, Andreasen JW, Liu X, Zhao D, Zhang H, Yao Y, Brill JW, Engquist I, Fahlman M, Wågberg L, Crispin X, Berggren M. An Organic Mixed Ion-Electron Conductor for Power Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2016; 3:1500305. [PMID: 27774392 PMCID: PMC5063141 DOI: 10.1002/advs.201500305] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/28/2015] [Indexed: 05/19/2023]
Abstract
A mixed ionic-electronic conductor based on nanofibrillated cellulose composited with poly(3,4-ethylene-dioxythio-phene):-poly(styrene-sulfonate) along with high boiling point solvents is demonstrated in bulky electrochemical devices. The high electronic and ionic conductivities of the resulting nanopaper are exploited in devices which exhibit record values for the charge storage capacitance (1F) in supercapacitors and transconductance (1S) in electrochemical transistors.
Collapse
Affiliation(s)
- Abdellah Malti
- Laboratory of Organic Electronics Department of Science and Technology Linköping University SE-601 74 Norrköping Sweden
| | - Jesper Edberg
- Laboratory of Organic Electronics Department of Science and Technology Linköping University SE-601 74 Norrköping Sweden
| | | | - Zia Ullah Khan
- Laboratory of Organic Electronics Department of Science and Technology Linköping University SE-601 74 Norrköping Sweden
| | - Jens W Andreasen
- Department of Energy Conversion and Storage Technical University of Denmark DK-4000 Roskilde Denmark
| | - Xianjie Liu
- Department of Physics Chemistry and Biology Linköping University SE-581 83 Linköping Sweden
| | - Dan Zhao
- Laboratory of Organic Electronics Department of Science and Technology Linköping University SE-601 74 Norrköping Sweden
| | - Hao Zhang
- Department of Physics and Astronomy University of Kentucky Lexington KY 40506-0055 USA
| | - Yulong Yao
- Department of Physics and Astronomy University of Kentucky Lexington KY 40506-0055 USA
| | - Joseph W Brill
- Department of Physics and Astronomy University of Kentucky Lexington KY 40506-0055 USA
| | - Isak Engquist
- Laboratory of Organic Electronics Department of Science and Technology Linköping University SE-601 74 Norrköping Sweden
| | - Mats Fahlman
- Department of Physics Chemistry and Biology Linköping University SE-581 83 Linköping Sweden
| | - Lars Wågberg
- KTH Royal Institute of Technology School of Chemical Science and Engineering (CHE) Fibre and Polymer Technology and Wallenberg Wood Science Center SE-100 44 Stockholm Sweden
| | - Xavier Crispin
- Laboratory of Organic Electronics Department of Science and Technology Linköping University SE-601 74 Norrköping Sweden
| | - Magnus Berggren
- Laboratory of Organic Electronics Department of Science and Technology Linköping University SE-601 74 Norrköping Sweden
| |
Collapse
|
19
|
Ramuz M, Hama A, Rivnay J, Leleux P, Owens RM. Monitoring of cell layer coverage and differentiation with the organic electrochemical transistor. J Mater Chem B 2015; 3:5971-5977. [DOI: 10.1039/c5tb00922g] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
High resolution monitoring of cell layer integrity with the OECT was up until now, limited to high resistance, barrier tissue type cells. In this work, the sensitivity and versatility of the device is expanded to monitor all adherent cell types.
Collapse
Affiliation(s)
- M. Ramuz
- Department of Bioelectronics
- Ecole des Mines de St. Etienne
- CMP-EMSE
- MOC
- France
| | - A. Hama
- Department of Bioelectronics
- Ecole des Mines de St. Etienne
- CMP-EMSE
- MOC
- France
| | - J. Rivnay
- Department of Bioelectronics
- Ecole des Mines de St. Etienne
- CMP-EMSE
- MOC
- France
| | - P. Leleux
- Department of Bioelectronics
- Ecole des Mines de St. Etienne
- CMP-EMSE
- MOC
- France
| | - R. M. Owens
- Department of Bioelectronics
- Ecole des Mines de St. Etienne
- CMP-EMSE
- MOC
- France
| |
Collapse
|