1
|
Yan J, Ye Z, Wang X, Zhong D, Wang Z, Yan T, Li T, Yuan Y, Liu Y, Wang Y, Cai X. Recent research progresses of bioengineered biliary stents. Mater Today Bio 2024; 29:101290. [PMID: 39444940 PMCID: PMC11497374 DOI: 10.1016/j.mtbio.2024.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
Bile duct lesion, including benign (eg. occlusion, cholelithiasis, dilatation, malformation) and malignant (cholangiocarcinoma) diseases, is a frequently encountered challenge in hepatobiliary diseases, which can be repaired by interventional or surgical procedures. A viable cure for bile duct lesions is implantation with biliary stents. Despite the placement achieved by current clinical biliary stents, the creation of functional and readily transplantable biliary stents remains a formidable obstacle. Excellent biocompatibility, stable mechanics, and absorbability are just a few benefits of using bioengineered biliary stents, which can also support and repair damaged bile ducts that drain bile. Additionally, cell sources & organoids derived from the biliary system that are loaded onto scaffolds can encourage bile duct regeneration. Therefore, the implantation of bioengineered biliary stent is considered as an ideal treatment for bile duct lesion, holding a broad potential for clinical applications in future. In this review, we look back on the development of conventional biliary stents, biodegradable biliary stents, and bioengineered biliary stents, highlighting the crucial elements of bioengineered biliary stents in promoting bile duct regeneration. After providing an overview of the various types of cell sources & organoids and fabrication methods utilized for the bioengineering process, we present the in vitro and in vivo applications of bioengineered biliary ducts, along with the latest advances in this exciting field. Finally, we also emphasize the ongoing challenges and future development of bioengineered biliary stents.
Collapse
Affiliation(s)
- Jianing Yan
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Zhichao Ye
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Xiaofeng Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, China
| | - Danyang Zhong
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Ziyuan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Tingting Yan
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Tianyu Li
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
- Department of Translational Medicine & Clinical Research, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Yuyang Yuan
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
- Department of Translational Medicine & Clinical Research, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Yu Liu
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Yifan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
- Department of Translational Medicine & Clinical Research, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| |
Collapse
|
2
|
Wei H, Xue T, Li F, Ju E, Wang H, Li M, Tao Y. Framework nucleic Acid-MicroRNA mediated hepatic differentiation and functional hepatic spheroid development for treating acute liver failure. Bioact Mater 2024; 41:611-626. [PMID: 39280896 PMCID: PMC11393548 DOI: 10.1016/j.bioactmat.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024] Open
Abstract
The specific induction of hepatic differentiation presents a significant challenge in developing alternative liver cell sources and viable strategies for clinical therapy of acute liver failure (ALF). The past decade has witnessed the blossom of microRNAs in regenerative medicine. Herein, microRNA 122-functionalized tetrahedral framework nucleic acid (FNA-miR-122) has emerged as an unprecedented and potential platform for directing the hepatic differentiation of adipose-derived mesenchymal stem cells (ADMSCs), which offers a straightforward and cost-effective method for generating functional hepatocyte-like cells (FNA-miR-122-iHep). Additionally, we have successfully established a liver organoid synthesis strategy by optimizing the co-culture of FNA-miR-122-iHep with endothelial cells (HUVECs), resulting in functional Hep:HUE-liver spheroids. Transcriptome analysis not only uncovered the potential molecular mechanisms through which miR-122 influences hepatic differentiation in ADMSCs, but also clarified that Hep:HUE-liver spheroids could further facilitate hepatocyte maturation and improved tissue-specific functions, which may provide new hints to be used to develop a hepatic organoid platform. Notably, compared to transplanted ADMSCs and Hep-liver spheroid, respectively, both FNA-miR-122-iHep-based single cell therapy and Hep:HUE-liver spheroid-based therapy showed high efficacy in treating ALF in vivo. Collectively, this research establishes a robust system using microRNA to induce ADMSCs into functional hepatocyte-like cells and to generate hepatic organoids in vitro, promising a highly efficient therapeutic approach for ALF.
Collapse
Affiliation(s)
- Hongyan Wei
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No.120 Longshan Road, Yubei District, Chongqing, 401147, China
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children, No.120 Longshan Road, Yubei District, Chongqing, 401147, China
| | - Tiantian Xue
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Fenfang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Enguo Ju
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| |
Collapse
|
3
|
Sun L, Shao Y, Zhuang Z, Liu Z, Liu M, Qu C, Yang H. Targeting TGR5 to mitigate liver fibrosis: Inhibition of hepatic stellate cell activation through modulation of mitochondrial fission. Int Immunopharmacol 2024; 140:112831. [PMID: 39111149 DOI: 10.1016/j.intimp.2024.112831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024]
Abstract
Chronic hepatitis B virus (HBV) infection continues to be a prominent cause of liver fibrosis and end-stage liver disease in China, necessitating the development of effective therapeutic strategies. This study investigated the potential of targeting TGR5 to alleviate liver fibrosis by impeding the activation of hepatic stellate cells (HSCs), which play a pivotal role in fibrotic progression. Using the human hepatic stellate cell line LX-2 overexpressing hepatitis B virus X protein (HBX), this study revealed that TGR5 activation through INT-777 inhibits HBX-induced LX-2 cell activation, thereby ameliorating liver fibrosis, which is associated with the attenuation of mitochondrial fission and introduces a novel regulatory pathway in liver fibrosis. Additional experiments with mitochondrial fission inducers and inhibitors confirm the crucial role of mitochondrial dynamics in TGR5-mediated effects. In vivo studies using TGR5 knockout mice substantiate these findings, demonstrating exacerbated fibrosis in the absence of TGR5 and its alleviation with the mitochondrial fission inhibitor Mdivi-1. Overall, this study provides insights into TGR5-mediated regulation of liver fibrosis through the modulation of mitochondrial fission in HSCs, suggesting potential therapeutic strategies for liver fibrosis intervention.
Collapse
Affiliation(s)
- Li Sun
- Department of General Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province 213100, China
| | - Yuancheng Shao
- Department of General Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province 213100, China
| | - Zehao Zhuang
- Department of General Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province 213100, China; Department of General Surgery, Second People's Hospital, Jintan District, Changzhou City, Jiangsu Province 213100, China
| | - Zhixin Liu
- Department of General Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province 213100, China
| | - Mingjun Liu
- Department of General Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province 213100, China; Department of Graduate School, Dalian Medical University, Dalian City, Liaoning Province 116011, China
| | - Chang Qu
- Department of General Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province 213100, China
| | - Haojun Yang
- Department of General Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province 213100, China.
| |
Collapse
|
4
|
Xiang Y, Gao Y, Cheng Q, Lei Z, Zhang X, Yang Y, Zhang J. Recombinant collagen coating 3D printed PEGDA hydrogel tube loading with differentiable BMSCs to repair bile duct injury. Colloids Surf B Biointerfaces 2024; 241:114064. [PMID: 38954937 DOI: 10.1016/j.colsurfb.2024.114064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
Bile duct injury presents a significant clinical challenge following hepatobiliary surgery, necessitating advancements in the repair of damaged bile ducts is a persistent issue in biliary surgery. 3D printed tubular scaffolds have emerged as a promising approach for the repair of ductal tissues, yet the development of scaffolds that balance exceptional mechanical properties with biocompatibility remains an ongoing challenge. This study introduces a novel, bio-fabricated bilayer bile duct scaffold using a 3D printing technique. The scaffold comprises an inner layer of polyethylene glycol diacrylate (PEGDA) to provide high mechanical strength, and an outer layer of biocompatible, methacryloylated recombinant collagen type III (rColMA) loaded with basic fibroblast growth factor (bFGF)-encapsulated liposomes (bFGF@Lip). This design enables the controlled release of bFGF, creating an optimal environment for the growth and differentiation of bone marrow mesenchymal stem cells (BMSCs) into cholangiocyte-like cells. These cells are instrumental in the regeneration of bile duct tissues, evidenced by the pronounced expression of cholangiocyte differentiation markers CK19 and CFTR. The PEGDA//rColMA/bFGF@Lip bilayer bile duct scaffold can well simulate the bile duct structure, and the outer rColMA/bFGF@Lip hydrogel can well promote the growth and differentiation of BMSCs into bile duct epithelial cells. In vivo experiments showed that the scaffold did not cause cholestasis in the body. This new in vitro pre-differentiated active 3D printed scaffold provides new ideas for the study of bile duct tissue replacement.
Collapse
Affiliation(s)
- Yang Xiang
- Department of Hepatobiliary Surgery, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou 570208, China; Haikou Key Laboratory of Clinical Research and Transformation of Digestive Diseases, Haikou 570208, China
| | - Yuanhui Gao
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou 570208, China
| | - Qiuhua Cheng
- Department of Hepatobiliary Surgery, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou 570208, China
| | - Zhongwen Lei
- Department of Hepatobiliary Surgery, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou 570208, China
| | - Xiaoyu Zhang
- Department of Hepatobiliary Surgery, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou 570208, China
| | - Yijun Yang
- Department of Hepatobiliary Surgery, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou 570208, China; Haikou Key Laboratory of Clinical Research and Transformation of Digestive Diseases, Haikou 570208, China.
| | - Jianquan Zhang
- Department of Hepatobiliary Surgery, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou 570208, China; Haikou Key Laboratory of Clinical Research and Transformation of Digestive Diseases, Haikou 570208, China.
| |
Collapse
|
5
|
Shi Q, Yuan X, Zeng Y, Wang J, Zhang Y, Xue C, Li L. Crosstalk between Gut Microbiota and Bile Acids in Cholestatic Liver Disease. Nutrients 2023; 15:nu15102411. [PMID: 37242293 DOI: 10.3390/nu15102411] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/13/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023] Open
Abstract
Emerging evidence suggests the complex interactions between gut microbiota and bile acids, which are crucial end products of cholesterol metabolism. Cholestatic liver disease is characterized by dysfunction of bile production, secretion, and excretion, as well as excessive accumulation of potentially toxic bile acids. Given the importance of bile acid homeostasis, the complex mechanism of the bile acid-microbial network in cholestatic liver disease requires a thorough understanding. It is urgent to summarize the recent research progress in this field. In this review, we highlight how gut microbiota regulates bile acid metabolism, how bile acid pool shapes the bacterial community, and how their interactions contribute to the pathogenesis of cholestatic liver disease. These advances might provide a novel perspective for the development of potential therapeutic strategies that target the bile acid pathway.
Collapse
Affiliation(s)
- Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yifan Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jinzhi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yaqi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
6
|
Zhang Y, Chen R, Zhang D, Qi S, Liu Y. Metabolite interactions between host and microbiota during health and disease: Which feeds the other? Biomed Pharmacother 2023; 160:114295. [PMID: 36709600 DOI: 10.1016/j.biopha.2023.114295] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 01/30/2023] Open
Abstract
Metabolites produced by the host and microbiota play a crucial role in how human bodies develop and remain healthy. Most of these metabolites are produced by microbiota and hosts in the digestive tract. Metabolites in the gut have important roles in energy metabolism, cellular communication, and host immunity, among other physiological activities. Although numerous host metabolites, such as free fatty acids, amino acids, and vitamins, are found in the intestine, metabolites generated by gut microbiota are equally vital for intestinal homeostasis. Furthermore, microbiota in the gut is the sole source of some metabolites, including short-chain fatty acids (SCFAs). Metabolites produced by microbiota, such as neurotransmitters and hormones, may modulate and significantly affect host metabolism. The gut microbiota is becoming recognized as a second endocrine system. A variety of chronic inflammatory disorders have been linked to aberrant host-microbiota interplays, but the precise mechanisms underpinning these disturbances and how they might lead to diseases remain to be fully elucidated. Microbiome-modulated metabolites are promising targets for new drug discovery due to their endocrine function in various complex disorders. In humans, metabolotherapy for the prevention or treatment of various disorders will be possible if we better understand the metabolic preferences of bacteria and the host in specific tissues and organs. Better disease treatments may be possible with the help of novel complementary therapies that target host or bacterial metabolism. The metabolites, their physiological consequences, and functional mechanisms of the host-microbiota interplays will be highlighted, summarized, and discussed in this overview.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anethesiology, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| | - Rui Chen
- Department of Pediatrics, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| | - DuoDuo Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin Province 130021, People's Republic of China.
| | - Shuang Qi
- Department of Anethesiology, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| | - Yan Liu
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| |
Collapse
|
7
|
Yuan Z, Wang J, Zhang H, Chai Y, Xu Y, Miao Y, Yuan Z, Zhang L, Jiang Z, Yu Q. Glycocholic acid aggravates liver fibrosis by promoting the up-regulation of connective tissue growth factor in hepatocytes. Cell Signal 2023; 101:110508. [PMID: 36341984 DOI: 10.1016/j.cellsig.2022.110508] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 11/25/2022]
Abstract
AIMS The precise role of bile acid in the progression of liver fibrosis has yet to be elucidated. In this study, common bile duct ligation was used as an in vivo mouse model for the evaluation of bile acids that promote liver connective tissue growth factor expression. MAIN METHODS Primary rat and mice hepatocytes, as well as primary rat hepatic stellate and HepaRG cells were evaluated as in vitro models for promoting the expression of connective tissue growth factor by bile acids. KEY FINDINGS Compared with taurochenodeoxycholic acid, glycochenodeoxycholic acid, and taurocholic acid, glycocholic acid (GCA) most strongly promoted the secretion of connective tissue growth factor in mouse primary hepatocytes, rat primary hepatocytes and HepaRGs. GCA did not directly promote the activation of hepatic stellate cells. The administration of GCA in mice with ligated bile ducts promotes the progression of liver fibrosis, which may promote the yes-associated protein of hepatocytes into the nucleus, resulting in the hepatocytes secreting more connective tissue growth factor for hepatic stellate cell activation. In conclusion, our data showed that GCA can induce the expression of connective tissue growth factor in hepatocytes by promoting the nuclear translocation of yes-associated protein, thereby activating hepatic stellate cells. SIGNIFICANCE Our findings help to elucidate the contribution of GCA to the progression of hepatic fibrosis in cholestatic disease and aid the clinical monitoring of cholestatic liver fibrosis development.
Collapse
Affiliation(s)
- Zihang Yuan
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Jie Wang
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Haoran Zhang
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanyuan Chai
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Yunxia Xu
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Yingying Miao
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Ziqiao Yuan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Luyong Zhang
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhenzhou Jiang
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Qinwei Yu
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
8
|
Annunziato S, Sun T, Tchorz JS. The RSPO-LGR4/5-ZNRF3/RNF43 module in liver homeostasis, regeneration, and disease. Hepatology 2022; 76:888-899. [PMID: 35006616 DOI: 10.1002/hep.32328] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 12/02/2021] [Accepted: 01/06/2022] [Indexed: 01/05/2023]
Abstract
WNT/β-catenin signaling plays pivotal roles during liver development, homeostasis, and regeneration. Likewise, its deregulation disturbs metabolic liver zonation and is responsible for the development of a large number of hepatic tumors. Liver fibrosis, which has become a major health burden for society and a hallmark of NASH, can also be promoted by WNT/β-catenin signaling. Upstream regulatory mechanisms controlling hepatic WNT/β-catenin activity may constitute targets for the development of novel therapies addressing these life-threatening conditions. The R-spondin (RSPO)-leucine-rich repeat-containing G protein-coupled receptor (LGR) 4/5-zinc and ring finger (ZNRF) 3/ring finger 43 (RNF43) module is fine-tuning WNT/β-catenin signaling in several tissues and is essential for hepatic WNT/β-catenin activity. In this review article, we recapitulate the role of the RSPO-LGR4/5-ZNRF3/RNF43 module during liver development, homeostasis, metabolic zonation, regeneration, and disease. We further discuss the controversy around LGR5 as a liver stem cell marker.
Collapse
Affiliation(s)
- Stefano Annunziato
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Tianliang Sun
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Jan S Tchorz
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
9
|
Harrell CR, Pavlovic D, Djonov V, Volarevic V. Therapeutic potential of mesenchymal stem cells in the treatment of acute liver failure. World J Gastroenterol 2022; 28:3627-3636. [PMID: 36161038 PMCID: PMC9372816 DOI: 10.3748/wjg.v28.i28.3627] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/08/2022] [Accepted: 06/26/2022] [Indexed: 02/06/2023] Open
Abstract
Acute liver failure (ALF) is a severe and life-threatening condition in which rapid deterioration of liver function develops in a patient who has no preexisting liver disease. Mesenchymal stem cells (MSCs) are immunoregulatory stem cells which are able to modulate phenotype and function of all immune cells that play pathogenic role in the development and progression of ALF. MSCs in juxtacrine and paracrine manner attenuate antigen-presenting properties of dendritic cells and macrophages, reduce production of inflammatory cytokines in T lymphocytes, suppress hepatotoxicity of natural killer T (NKT) cells and promote generation and expansion of immunosuppressive T, B and NKT regulatory cells in acutely inflamed liver. Due to their nano-sized dimension and lipid envelope, intravenously injected MSC-derived exosomes (MSC-Exos) may by-pass all biological barriers to deliver MSC-sourced immunoregulatoy factors directly into the liver-infiltrated immune cells and injured hepatocytes. Results obtained by us and others revealed that intravenous administration of MSCs and MSC-Exos efficiently attenuated detrimental immune response and acute inflammation in the liver, suggesting that MSCs and MSC-Exos could be considered as potentially new remedies in the immunotherapy of ALF. In this review, we emphasize the current knowledge about molecular and cellular mechanisms which are responsible for MSC-based modulation of liver-infiltrated immune cells and we discuss different insights regarding the therapeutic potential of MSCs in liver regeneration.
Collapse
Affiliation(s)
| | - Dragica Pavlovic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Bern 3012, Switzerland
| | - Vladislav Volarevic
- Department of Medical Genetics and Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| |
Collapse
|
10
|
Cheng Z, Yang L, Chu H. The Gut Microbiota: A Novel Player in Autoimmune Hepatitis. Front Cell Infect Microbiol 2022; 12:947382. [PMID: 35899041 PMCID: PMC9310656 DOI: 10.3389/fcimb.2022.947382] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic immune-mediated liver disease distributed globally in all ethnicities with increasing prevalence. If left untreated, the disease will lead to cirrhosis, liver failure, or death. The intestinal microbiota is a complex ecosystem located in the human intestine, which extensively affects the human physiological and pathological processes. With more and more in-depth understandings of intestinal microbiota, a substantial body of studies have verified that the intestinal microbiota plays a crucial role in a variety of digestive system diseases, including alcohol-associated liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD). However, only a few studies have paid attention to evaluate the relationship between AIH and the intestinal microbiota. While AIH pathogenesis is not fully elucidated yet, some studies have indicated that intestinal microbiota putatively made significant contributions to the occurrence and the development of AIH by triggering several specific signaling pathways, altering the metabolism of intestinal microbiota, as well as modulating the immune response in the intestine and liver. By collecting the latest related literatures, this review summarized the increasing trend of the aerobic bacteria abundance in both AIH patients and AIH mice models. Moreover, the combination of specific bacteria species was found distinct to AIH patients, which could be a promising tool for diagnosing AIH. In addition, there were alterations of luminal metabolites and immune responses, including decreased short-chain fatty acids (SCFAs), increased pathogen associated molecular patterns (PAMPs), imbalanced regulatory T (Treg)/Th17 cells, follicular regulatory T (TFR)/follicular helper T (TFH) cells, and activated natural killer T (NKT) cells. These alterations participate in the onset and the progression of AIH via multiple mechanisms. Therefore, some therapeutic methods based on restoration of intestinal microbiota composition, including probiotics and fecal microbiota transplantation (FMT), as well as targeted intestinal microbiota-associated signaling pathways, confer novel insights into the treatment for AIH patients.
Collapse
Affiliation(s)
| | - Ling Yang
- *Correspondence: Huikuan Chu, ; Ling Yang, ;
| | - Huikuan Chu
- *Correspondence: Huikuan Chu, ; Ling Yang, ;
| |
Collapse
|
11
|
Bertolini A, Fiorotto R, Strazzabosco M. Bile acids and their receptors: modulators and therapeutic targets in liver inflammation. Semin Immunopathol 2022; 44:547-564. [PMID: 35415765 PMCID: PMC9256560 DOI: 10.1007/s00281-022-00935-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022]
Abstract
Bile acids participate in the intestinal emulsion, digestion, and absorption of lipids and fat-soluble vitamins. When present in high concentrations, as in cholestatic liver diseases, bile acids can damage cells and cause inflammation. After the discovery of bile acids receptors about two decades ago, bile acids are considered signaling molecules. Besides regulating bile acid, xenobiotic, and nutrient metabolism, bile acids and their receptors have shown immunomodulatory properties and have been proposed as therapeutic targets for inflammatory diseases of the liver. This review focuses on bile acid-related signaling pathways that affect inflammation in the liver and provides an overview of the preclinical and clinical applications of modulators of these pathways for the treatment of cholestatic and autoimmune liver diseases.
Collapse
Affiliation(s)
- Anna Bertolini
- Section of Digestive Diseases, Yale Liver Center, Yale School of Medicine, PO Box 208019, New Haven, CT, 06520-8019, USA
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University Medical Center Groningen, Groningen, The Netherlands
| | - Romina Fiorotto
- Section of Digestive Diseases, Yale Liver Center, Yale School of Medicine, PO Box 208019, New Haven, CT, 06520-8019, USA
| | - Mario Strazzabosco
- Section of Digestive Diseases, Yale Liver Center, Yale School of Medicine, PO Box 208019, New Haven, CT, 06520-8019, USA.
| |
Collapse
|
12
|
Zhang L, Ma XJN, Fei YY, Han HT, Xu J, Cheng L, Li X. Stem cell therapy in liver regeneration: Focus on mesenchymal stem cells and induced pluripotent stem cells. Pharmacol Ther 2022; 232:108004. [PMID: 34597754 DOI: 10.1016/j.pharmthera.2021.108004] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/11/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023]
Abstract
The liver has the ability to repair itself after injury; however, a variety of pathological changes in the liver can affect its ability to regenerate, and this could lead to liver failure. Mesenchymal stem cells (MSCs) are considered a good source of cells for regenerative medicine, as they regulate liver regeneration through different mechanisms, and their efficacy has been demonstrated by many animal experiments and clinical studies. Induced pluripotent stem cells, another good source of MSCs, have also made great progress in the establishment of organoids, such as liver disease models, and in drug screening. Owing to the recent developments in MSCs and induced pluripotent stem cells, combined with emerging technologies including graphene, nano-biomaterials, and gene editing, precision medicine and individualized clinical treatment may be realized in the near future.
Collapse
Affiliation(s)
- Lu Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, PR China; Key Laboratory Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, PR China; The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, PR China
| | - Xiao-Jing-Nan Ma
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, PR China
| | - Yuan-Yuan Fei
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, PR China; Key Laboratory Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, PR China
| | - Heng-Tong Han
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, PR China
| | - Jun Xu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, PR China
| | - Lu Cheng
- Key Laboratory Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, PR China
| | - Xun Li
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, PR China; Key Laboratory Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, PR China; Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou 730000, PR China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Lanzhou 730000, PR China; The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
13
|
Kordes C, Bock HH, Reichert D, May P, Häussinger D. Hepatic stellate cells: current state and open questions. Biol Chem 2021; 402:1021-1032. [PMID: 34008380 DOI: 10.1515/hsz-2021-0180] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/03/2021] [Indexed: 01/14/2023]
Abstract
This review article summarizes 20 years of our research on hepatic stellate cells within the framework of two collaborative research centers CRC575 and CRC974 at the Heinrich Heine University. Over this period, stellate cells were identified for the first time as mesenchymal stem cells of the liver, and important functions of these cells in the context of liver regeneration were discovered. Furthermore, it was determined that the space of Disse - bounded by the sinusoidal endothelium and hepatocytes - functions as a stem cell niche for stellate cells. Essential elements of this niche that control the maintenance of hepatic stellate cells have been identified alongside their impairment with age. This article aims to highlight previous studies on stellate cells and critically examine and identify open questions and future research directions.
Collapse
Affiliation(s)
- Claus Kordes
- Clinic of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - Hans H Bock
- Clinic of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - Doreen Reichert
- Clinic of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - Petra May
- Clinic of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University, Moorenstraße 5, D-40225 Düsseldorf, Germany
| |
Collapse
|
14
|
Kaur I, Tiwari R, Naidu VGM, Ramakrishna S, Tripathi DM, Kaur S. Bile Acids as Metabolic Inducers of Hepatocyte Proliferation and Liver Regeneration. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00221-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Visekruna A, Luu M. The Role of Short-Chain Fatty Acids and Bile Acids in Intestinal and Liver Function, Inflammation, and Carcinogenesis. Front Cell Dev Biol 2021; 9:703218. [PMID: 34381785 PMCID: PMC8352571 DOI: 10.3389/fcell.2021.703218] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
During the past decade, researchers have investigated the role of microbiota in health and disease. Recent findings support the hypothesis that commensal bacteria and in particular microbiota-derived metabolites have an impact on development of inflammation and carcinogenesis. Major classes of microbial-derived molecules such as short-chain fatty acids (SCFA) and secondary bile acids (BAs) were shown to have immunomodulatory potential in various autoimmune, inflammatory as well as cancerous disease models and are dependent on diet-derived substrates. The versatile mechanisms underlying both beneficial and detrimental effects of bacterial metabolites comprise diverse regulatory pathways in lymphocytes and non-immune cells including changes in the signaling, metabolic and epigenetic status of these. Consequently, SCFAs as strong modulators of immunometabolism and histone deacetylase (HDAC) inhibitors have been investigated as therapeutic agents attenuating inflammatory and autoimmune disorders. Moreover, BAs were shown to modulate the microbial composition, adaptive and innate immune response. In this review, we will discuss the recent findings in the field of microbiota-derived metabolites, especially with respect to the molecular and cellular mechanisms of SCFA and BA biology in the context of intestinal and liver diseases.
Collapse
Affiliation(s)
- Alexander Visekruna
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Maik Luu
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany.,Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| |
Collapse
|
16
|
Wen J, Mercado GP, Volland A, Doden HL, Lickwar CR, Crooks T, Kakiyama G, Kelly C, Cocchiaro JL, Ridlon JM, Rawls JF. Fxr signaling and microbial metabolism of bile salts in the zebrafish intestine. SCIENCE ADVANCES 2021; 7:eabg1371. [PMID: 34301599 PMCID: PMC8302129 DOI: 10.1126/sciadv.abg1371] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 06/07/2021] [Indexed: 05/02/2023]
Abstract
Bile salt synthesis, secretion into the intestinal lumen, and resorption in the ileum occur in all vertebrate classes. In mammals, bile salt composition is determined by host and microbial enzymes, affecting signaling through the bile salt-binding transcription factor farnesoid X receptor (Fxr). However, these processes in other vertebrate classes remain poorly understood. We show that key components of hepatic bile salt synthesis and ileal transport pathways are conserved and under control of Fxr in zebrafish. Zebrafish bile salts consist primarily of a C27 bile alcohol and a C24 bile acid that undergo multiple microbial modifications including bile acid deconjugation that augments Fxr activity. Using single-cell RNA sequencing, we provide a cellular atlas of the zebrafish intestinal epithelium and uncover roles for Fxr in transcriptional and differentiation programs in ileal and other cell types. These results establish zebrafish as a nonmammalian vertebrate model for studying bile salt metabolism and Fxr signaling.
Collapse
Affiliation(s)
- Jia Wen
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, USA
| | - Gilberto Padilla Mercado
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, USA
| | - Alyssa Volland
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Heidi L Doden
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana Champaign, Urbana, IL, USA
- Department of Animal Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Colin R Lickwar
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, USA
| | - Taylor Crooks
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Genta Kakiyama
- Department of Internal Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Cecelia Kelly
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, USA
| | - Jordan L Cocchiaro
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, USA
| | - Jason M Ridlon
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana Champaign, Urbana, IL, USA.
- Department of Animal Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA
- Cancer Center of Illinois, Urbana, IL, USA
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
17
|
Abstract
TGR5 (G protein-coupled bile acid receptor 1, GPBAR-1) is a G protein-coupled receptor with seven transmembrane domains and is widely distributed in various organs and tissues. As an important bile acid receptor, TGR5 can be activated by primary and secondary bile acids. Increased expression of TGR5 is a risk factor for polycystic liver disease and hepatobiliary cancer. However, there is evidence that the anti-inflammatory effect of the TGR5 receptor and its regulatory effect on hydrophobic bile acid confer protective effects against most liver diseases. Recent studies have shown that TGR5 receptor activation can alleviate the development of diabetic liver fibrosis, regulate the differentiation of natural killer T cells into NKT10 cells, increase the secretion of anti-inflammatory factors, inhibit the invasion of hepatitis B virus, promote white adipose tissue browning, improve arterial vascular dynamics, maintain tight junctions between bile duct cells, and protect against apoptosis. In portal hypertension, TGR5 receptor activation can inhibit the contraction of hepatic stellate cells and improve intrahepatic microcirculation. In addition, the discovery of the regulatory relationship between the TGR5 receptor and miRNA-26a provides a new direction for further studies of the molecular mechanism underlying the effects of TGR5. In this review, we describe recent findings linking TGR5 to various liver diseases, with a focus on the mechanisms underlying its effects and potential therapeutic implications.
Collapse
Affiliation(s)
- Ke Ma
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dan Tang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chang Yu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lijin Zhao
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
18
|
Liu X, Yan J, Liu J, Wang Y, Yin J, Fu J. Fabrication of a dual-layer cell-laden tubular scaffold for nerve regeneration and bile duct reconstruction. Biofabrication 2021; 13. [PMID: 33873178 DOI: 10.1088/1758-5090/abf995] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/19/2021] [Indexed: 01/29/2023]
Abstract
Tubular scaffolds serve as a controllable extracellular environment to guide the repair and regeneration of tissues. But it is still a challenge to achieve both excellent mechanical properties and cell compatibility of artificial scaffolds for long-term structural and biological stability. In this study, a four-step solution casting method was developed to fabricate dual-layer cell-laden tubular scaffolds for nerve and bile duct regeneration. The dual-layer tubular scaffold consisted of a bone marrow mesenchymal stem cells (BMSCs)-laden hydrogel inner layer and an outer layer of gelatin methacrylate (GelMA)/polyethylene glycol diacrylate. While the inner layer had a good biocompatibility, the outer layer had desired mechanical properties. The interfacial toughness, Young's modulus, maximum tensile strain, and compressive modulus of dual-layer tubular scaffolds were 65 J m-2, 122.37 ± 23.21 kPa, 100.87 ± 40.10%, and 39.14 ± 18.56 N m-1, respectively. More importantly, the fabrication procedure was very cell-friendly, since the BMSC viability encapsulated in the inner layer of 10% (w/v) GelMA reached 94.68 ± 0.43% after 5 d of culture. Then, a preliminary evaluation of the potential application of dual-layer tubular scaffolds as nerve conduits and biliary scaffolds was performed, and demonstrated that the cell-laden dual-layer tubular scaffolds proposed in this work are expected to extend the application of tubular scaffolds in tissue engineering.
Collapse
Affiliation(s)
- Xixia Liu
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, People's Republic of China.,Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, People's Republic of China.,School of Mechanical Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Jianing Yan
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou 310016, People's Republic of China.,Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, People's Republic of China.,Zhejiang University Innovation Center of Minimally Invasive Technology and Medical Equipment, Hangzhou 310016, People's Republic of China
| | - Jingyi Liu
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, People's Republic of China.,Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, People's Republic of China
| | - Yifan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou 310016, People's Republic of China.,Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, People's Republic of China.,Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou 310016, People's Republic of China
| | - Jun Yin
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, People's Republic of China.,Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, People's Republic of China
| | - Jianzhong Fu
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, People's Republic of China.,Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, People's Republic of China
| |
Collapse
|
19
|
Xie G, Jiang R, Wang X, Liu P, Zhao A, Wu Y, Huang F, Liu Z, Rajani C, Zheng X, Qiu J, Zhang X, Zhao S, Bian H, Gao X, Sun B, Jia W. Conjugated secondary 12α-hydroxylated bile acids promote liver fibrogenesis. EBioMedicine 2021; 66:103290. [PMID: 33752128 PMCID: PMC8010625 DOI: 10.1016/j.ebiom.2021.103290] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Significantly elevated serum and hepatic bile acid (BA) concentrations have been known to occur in patients with liver fibrosis. However, the roles of different BA species in liver fibrogenesis are not fully understood. METHODS We quantitatively measured blood BA concentrations in nonalcoholic steatohepatitis (NASH) patients with liver fibrosis and healthy controls. We characterized BA composition in three mouse models induced by carbon tetrachloride (CCl4), streptozotocin-high fat diet (STZ-HFD), and long term HFD, respectively. The molecular mechanisms underlying the fibrosis-promoting effects of BAs were investigated in cell line models, a 3D co-culture system, and a Tgr5 (HSC-specific) KO mouse model. FINDINGS We found that a group of conjugated 12α-hydroxylated (12α-OH) BAs, such as taurodeoxycholate (TDCA) and glycodeoxycholate (GDCA), significantly increased in NASH patients and liver fibrosis mouse models. 12α-OH BAs significantly increased HSC proliferation and protein expression of fibrosis-related markers. Administration of TDCA and GDCA directly activated HSCs and promoted liver fibrogenesis in mouse models. Blockade of BA binding to TGR5 or inhibition of ERK1/2 and p38 MAPK signaling both significantly attenuated the BA-induced fibrogenesis. Liver fibrosis was attenuated in mice with Tgr5 depletion. INTERPRETATION Increased hepatic concentrations of conjugated 12α-OH BAs significantly contributed to liver fibrosis via TGR5 mediated p38MAPK and ERK1/2 signaling. Strategies to antagonize TGR5 or inhibit ERK1/2 and p38 MAPK signaling may effectively prevent or reverse liver fibrosis. FUNDINGS This study was supported by the National Institutes of Health/National Cancer Institute Grant 1U01CA188387-01A1, the National Key Research and Development Program of China (2017YFC0906800); the State Key Program of National Natural Science Foundation (81430062); the National Natural Science Foundation of China (81974073, 81774196), China Postdoctoral Science Foundation funded project, China (2016T90381), and E-institutes of Shanghai Municipal Education Commission, China (E03008).
Collapse
Affiliation(s)
- Guoxiang Xie
- Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; Human Metabolomics Institute, Inc., Shenzhen, Guangdong 518109, China
| | - Runqiu Jiang
- Department of Hepatobiliary Surgery, The Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, Jiangsu 210009, China
| | - Xiaoning Wang
- E-institute of Shanghai Municipal Education Committee, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ping Liu
- E-institute of Shanghai Municipal Education Committee, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Aihua Zhao
- Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yiran Wu
- The iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Fengjie Huang
- Human Metabolomics Institute, Inc., Shenzhen, Guangdong 518109, China
| | - Zhipeng Liu
- Medical School of Southeast University, Nanjing, Jiangsu 210096, China
| | - Cynthia Rajani
- University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Xiaojiao Zheng
- Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jiannan Qiu
- E-institute of Shanghai Municipal Education Committee, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaoling Zhang
- Department of Hygienic Analysis and Detection, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Suwen Zhao
- The iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Hua Bian
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, Jiangsu 210009, China
| | - Wei Jia
- Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; University of Hawaii Cancer Center, Honolulu, HI 96813, USA; Hong Kong Traditional Chinese Medicine Phenome Research Centre, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China; Lead contact.
| |
Collapse
|
20
|
Fiorucci S, Distrutti E, Carino A, Zampella A, Biagioli M. Bile acids and their receptors in metabolic disorders. Prog Lipid Res 2021; 82:101094. [PMID: 33636214 DOI: 10.1016/j.plipres.2021.101094] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/03/2021] [Accepted: 02/12/2021] [Indexed: 02/08/2023]
Abstract
Bile acids are a large family of atypical steroids which exert their functions by binding to a family of ubiquitous cell membrane and nuclear receptors. There are two main bile acid activated receptors, FXR and GPBAR1, that are exclusively activated by bile acids, while other receptors CAR, LXRs, PXR, RORγT, S1PR2and VDR are activated by bile acids in addition to other more selective endogenous ligands. In the intestine, activation of FXR and GPBAR1 promotes the release of FGF15/19 and GLP1 which integrate their signaling with direct effects exerted by theother receptors in target tissues. This network is tuned in a time ordered manner by circadian rhythm and is critical for the regulation of metabolic process including autophagy, fast-to-feed transition, lipid and glucose metabolism, energy balance and immune responses. In the last decade FXR ligands have entered clinical trials but development of systemic FXR agonists has been proven challenging because their side effects including increased levels of cholesterol and Low Density Lipoproteins cholesterol (LDL-c) and reduced High-Density Lipoprotein cholesterol (HDL-c). In addition, pruritus has emerged as a common, dose related, side effect of FXR ligands. Intestinal-restricted FXR and GPBAR1 agonists and dual FXR/GPBAR1 agonists have been developed. Here we review the last decade in bile acids physiology and pharmacology.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy.
| | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Adriana Carino
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Napoli, Federico II, Napoli, Italy
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| |
Collapse
|
21
|
Davidson MD, Pickrell J, Khetani SR. Physiologically inspired culture medium prolongs the lifetime and insulin sensitivity of human hepatocytes in micropatterned co-cultures. Toxicology 2020; 449:152662. [PMID: 33359713 DOI: 10.1016/j.tox.2020.152662] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 01/16/2023]
Abstract
Given significant species-specific differences in liver functions, cultures of primary human hepatocytes (PHHs) are useful for assessing drug metabolism and to mitigate the risk of drug-induced hepatotoxicity in humans. While significant advances have been made to keep PHHs highly functional for 2-4 weeks in vitro, especially upon co-culture with both liver- and non-liver-derived non-parenchymal cells (NPCs), the functional lifespan of PHHs is 200-400 days in vivo. Therefore, it is desirable to determine culture conditions that can further prolong PHHs functions in vitro for modeling chronic drug exposure, disease pathogenesis, and to provide flexibility to the end-user for staggering drug incubations across multiple culture batches. Most PHH culture platforms utilize supraphysiologic levels of glucose and insulin and bovine-derived serum when including NPCs, which can alter PHH functions. Therefore, here we developed a culture medium containing physiologic levels of glucose (5 mM), insulin (500 pM), and human serum (10 % v/v) and tested its effects on micropatterned co-cultures (MPCCs) in which PHHs are organized onto collagen domains of empirically optimized dimensions and surrounded by 3T3-J2 murine fibroblasts that express liver-like molecules and induce higher PHH functions than liver-derived NPCs. Our physiologically-inspired culture medium allowed better retention of PHH morphology, polarity, and functions (albumin and urea, cytochrome-P450 activities, and sensitivity to insulin-mediated inhibition of gluconeogenesis) for up to 10 weeks relative to the traditional medium. Finally, PHHs in the physiologic medium displayed clinically-relevant responses to prototypical drugs for hepatoxicity and cytochrome-P450 induction. Ultimately, our physiologic culture medium could find broader utility for the continued development of PHH-NPC co-cultures for drug development, investigating the effects of patient-derived sera on PHH functions and disease phenotypes, and for use in cell-based therapies.
Collapse
Affiliation(s)
- Matthew D Davidson
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States; Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Joshua Pickrell
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States; Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, United States
| | - Salman R Khetani
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States; Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, United States; Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
22
|
Velazquez JJ, LeGraw R, Moghadam F, Tan Y, Kilbourne J, Maggiore JC, Hislop J, Liu S, Cats D, Chuva de Sousa Lopes SM, Plaisier C, Cahan P, Kiani S, Ebrahimkhani MR. Gene Regulatory Network Analysis and Engineering Directs Development and Vascularization of Multilineage Human Liver Organoids. Cell Syst 2020; 12:41-55.e11. [PMID: 33290741 PMCID: PMC8164844 DOI: 10.1016/j.cels.2020.11.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/13/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022]
Abstract
Pluripotent stem cell (PSC)-derived organoids have emerged as novel multicellular models of human tissue development but display immature phenotypes, aberrant tissue fates, and a limited subset of cells. Here, we demonstrate that integrated analysis and engineering of gene regulatory networks (GRNs) in PSC-derived multilineage human liver organoids direct maturation and vascular morphogenesis in vitro. Overexpression of PROX1 and ATF5, combined with targeted CRISPR-based transcriptional activation of endogenous CYP3A4, reprograms tissue GRNs and improves native liver functions, such as FXR signaling, CYP3A4 enzymatic activity, and stromal cell reactivity. The engineered tissues possess superior liver identity when compared with other PSC-derived liver organoids and show the presence of hepatocyte, biliary, endothelial, and stellate-like cell populations in single-cell RNA-seq analysis. Finally, they show hepatic functions when studied in vivo. Collectively, our approach provides an experimental framework to direct organogenesis in vitro by systematically probing molecular pathways and transcriptional networks that promote tissue development.
Collapse
Affiliation(s)
- Jeremy J Velazquez
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA; School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Ryan LeGraw
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA; School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Farzaneh Moghadam
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA; School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Yuqi Tan
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute for Cell Engineering Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Joseph C Maggiore
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Joshua Hislop
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Silvia Liu
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Davy Cats
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Einthovenweg, 2333 ZC Leiden, the Netherlands
| | - Susana M Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg, 2333 ZC Leiden, the Netherlands
| | - Christopher Plaisier
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Patrick Cahan
- Institute for Cell Engineering Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Samira Kiani
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA; School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Mo R Ebrahimkhani
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA; School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA; Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Phoenix, AZ 85054, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
23
|
An P, Wei G, Huang P, Li W, Qi X, Lin Y, Vaid KA, Wang J, Zhang S, Li Y, Or YS, Jiang L, Popov YV. A novel non-bile acid FXR agonist EDP-305 potently suppresses liver injury and fibrosis without worsening of ductular reaction. Liver Int 2020; 40:1655-1669. [PMID: 32329946 PMCID: PMC7384094 DOI: 10.1111/liv.14490] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 04/06/2020] [Accepted: 04/20/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND EDP-305 is a novel and potent farnesoid X receptor (FXR) agonist, with no/minimal cross-reactivity to TGR5 or other nuclear receptors. Herein we report therapeutic efficacy of EDP-305, in direct comparison with the first-in-class FXR agonist obeticholic acid (OCA), in mouse models of liver disease. METHODS EDP-305 (10 and 30 mg/kg/day) or OCA (30mg/kg/day) was tested in mouse models of pre-established biliary fibrosis (BALBc.Mdr2-/-, n = 9-12/group) and steatohepatitis induced by methionine/choline-deficient diet (MCD, n = 7-12/group). Effects on biliary epithelium were evaluated in vivo and in primary EpCAM + hepatic progenitor cell (HPC) cultures. RESULTS In a BALBc.Mdr2-/- model, EDP-305 reduced serum transaminases by up to 53% and decreased portal pressure, compared to untreated controls. Periportal bridging fibrosis was suppressed by EDP-305 at both doses, with up to a 39% decrease in collagen deposition in high-dose EDP-305. In MCD-fed mice, EDP-305 treatment reduced serum ALT by 62% compared to controls, and profoundly inhibited perisinusoidal 'chicken wire' fibrosis, with over 80% reduction in collagen deposition. In both models, treatment with 30mg/kg OCA reduced serum transaminases up to 30%, but did not improve fibrosis. The limited impact on fibrosis was mediated by cholestasis-independent worsening of ductular reaction by OCA in both disease models; OCA but not EDP-305 at therapeutic doses promoted ductular proliferation in healthy mice and favoured differentiation of primary HPC towards cholangiocyte lineage in vitro. CONCLUSIONS EDP-305 potently improved pre-established liver injury and hepatic fibrosis in murine biliary and metabolic models of liver disease, supporting the clinical evaluation of EDP-305 in fibrotic liver diseases including cholangiopathies and non-alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Ping An
- Divison of Gastroenterology and HepatologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA,Division of Gastroenterology and HepatologyRenmin HospitalWuhan UniversityWuhanChina
| | - Guangyan Wei
- Divison of Gastroenterology and HepatologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA,Department of Radiation OncologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Pinzhu Huang
- Divison of Gastroenterology and HepatologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA,Department of Colon and Rectum SurgeryThe Sixth Affiliated HospitalSun Yat-sen UniversityGuangzhouChina
| | - Wenda Li
- Divison of Gastroenterology and HepatologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA,Department of Hepatobiliary SurgerSun Yat-sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Xiaolong Qi
- Divison of Gastroenterology and HepatologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA,Institute of Portal HypertensionThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Yi Lin
- Divison of Gastroenterology and HepatologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - Kahini A. Vaid
- Divison of Gastroenterology and HepatologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - Jun Wang
- Division of NeurosurgeryRenmin HospitalWuhan UniversityWuhanChina
| | | | - Yang Li
- Enanta Pharmaceuticals, Inc.WatertownMAUSA
| | - Yat Sun Or
- Enanta Pharmaceuticals, Inc.WatertownMAUSA
| | | | - Yury V. Popov
- Divison of Gastroenterology and HepatologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
24
|
Paluschinski M, Castoldi M, Schöler D, Bardeck N, Oenarto J, Görg B, Häussinger D. Tauroursodeoxycholate protects from glycochenodeoxycholate-induced gene expression changes in perfused rat liver. Biol Chem 2020; 400:1551-1565. [PMID: 31152635 DOI: 10.1515/hsz-2019-0204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/16/2019] [Indexed: 02/07/2023]
Abstract
Tauroursodeoxycholate (TUDC) is well known to protect against glycochenodeoxycholate (GCDC)-induced apoptosis in rat hepatocytes. In the present study, we analyzed whether TUDC also exerts protective effects by modulating GCDC-induced gene expression changes. For this, gene array-based transcriptome analysis and quantitative polymerase chain reaction (qPCR) were performed on RNA isolated from rat livers perfused with GCDC, TUDC or a combination of both (each 20 μm for 2 h). GCDC led to a significant increase of lactate dehydrogenase (LDH) into the effluent perfusate, which was prevented by TUDC. GCDC, TUDC and co-perfusion induced distinct gene expression changes. While GCDC upregulated the expression of several pro-inflammatory genes, co-perfusion with TUDC increased the expression of pro-proliferative and anti-apoptotic p53 target genes. In line with this, levels of serine20-phosphorylated p53 and of its target gene p21 were elevated by GCDC in a TUDC-sensitive way. GCDC upregulated the oxidative stress surrogate marker 8OH(d)G and the pro-apoptotic microRNAs miR-15b/16 and these effects were prevented by TUDC. The upregulation of miR-15b and miR-16 in GCDC-perfused livers was accompanied by a downregulation of several potential miR-15b and miR-16 target genes. The present study identified changes in the transcriptome of the rat liver which suggest, that TUDC is hepatoprotective by counteracting GCDC-induced gene expression changes.
Collapse
Affiliation(s)
- Martha Paluschinski
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Mirco Castoldi
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - David Schöler
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Nils Bardeck
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Jessica Oenarto
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Boris Görg
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| |
Collapse
|
25
|
Schumacher JD, Kong B, Wu J, Rizzolo D, Armstrong LE, Chow MD, Goedken M, Lee YH, Guo GL. Direct and Indirect Effects of Fibroblast Growth Factor (FGF) 15 and FGF19 on Liver Fibrosis Development. Hepatology 2020; 71:670-685. [PMID: 31206730 PMCID: PMC6918008 DOI: 10.1002/hep.30810] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 05/28/2019] [Indexed: 12/18/2022]
Abstract
Farnesoid X receptor (FXR) induces fibroblast growth factor 15 (FGF15; human ortholog FGF19) in the gut to potently inhibit bile acid (BA) synthesis in the liver. FXR activation in hepatic stellate cells (HSCs) reduces liver fibrosis (LF). Fgf15-/- mice develop attenuated LF, but the underlying mechanisms for this protection are unclear. We hypothesized that FGF15/19 functions as a profibrotic mediator or mitogen to HSCs and increased BAs in Fgf15-/- mice leads to enhanced FXR activation in HSCs, subsequently reducing fibrogenesis. In this study, complimentary in vivo and in vitro approaches were used: (1) CCl4 -induced LF model in wild type (WT), Fgf15-/- , and Fgf15 transgenic (TG) mice with BA levels modulated by feeding cholestyramine- or cholic acid-containing diets; (2) analysis of primary HSCs isolated from WT and Fgf15-/- mice; and (3) treatment of a human HSC line, LX-2, with FXR activators and/or recombinant FGF19 protein. The results showed that Fgf15-/- mice had lower basal collagen expression, which was increased by BA sequestration. CCl4 induced fibrosis with similar severity in all genotypes; however, cholestyramine increased fibrosis severity only in Fgf15-/- mice. HSCs from Fgf15-/- mice showed increased FXR activity and reduced expression of profibrotic mediators. In LX-2 cells, FXR activation increased peroxisome proliferator-activated receptor gamma activity and reduced proliferation. FGF19 activated both signal transducer and activator of transcription 3 and c-Jun N-terminal kinase pathways and reduced nuclear factor kappa-light-chain-enhancer of activated B cells signaling without increasing fibrogenic gene expression or cell proliferation. Conclusion: FGF15/19 does not act as a direct profibrotic mediator or mitogen to HSCs in our models, and the protection against fibrosis by FGF15 deficiency may be mediated through increased BA activation of FXR in HSCs.
Collapse
Affiliation(s)
- JD Schumacher
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ
| | - B Kong
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ
| | - J Wu
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ
| | - D Rizzolo
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ
| | - LE Armstrong
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ
| | - MD Chow
- Department of Surgery, Robert Wood Johnson University Hospital, New Brunswick, NJ
| | - M Goedken
- Research pathology services, Rutgers University, Piscataway, NJ
| | - YH Lee
- Department of Surgery, Robert Wood Johnson University Hospital, New Brunswick, NJ
| | - GL Guo
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ.,Environmental and Occupational Health Institute, Rutgers University, Piscataway, NJ.,VA New Jersey Health Care System, East Orange, NJ,Corresponding author: Grace L. Guo, MBBS, PhD, 170 Frelinghuysen Road, Piscataway, NJ, 08854; ; phone - 848-445-8186
| |
Collapse
|
26
|
Chu X, Karasinski K, Donellan S, Kaniper S, Wood GC, Shi W, Edwards MA, Soans R, Still CD, Gerhard GS. A retrospective case control study identifies peripheral blood mononuclear cell albumin RNA expression as a biomarker for non-alcoholic fatty liver disease. Langenbecks Arch Surg 2019; 405:165-172. [PMID: 31828503 DOI: 10.1007/s00423-019-01848-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/28/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE Non-alcoholic fatty liver disease (NAFLD) improves after bariatric surgery. The aim of this study was to determine whether peripheral blood mononuclear cell albumin gene expression was related to NAFLD and whether albumin (ALB) and alpha fetoprotein (AFP) expression could be detected in whole blood and visceral adipose tissue. METHODS Using a retrospective case control study design, RNA isolated from peripheral blood mononuclear cells from patients prior to undergoing bariatric surgery was used for pooled microarray analysis. Quantitative polymerase chain reaction (QPCR) was used to analyze whole blood and visceral adipose tissue. Liver histology was obtained via intra-operative biopsy and clinical data extracted from the electronic health record. RESULTS The albumin (ALB) gene was the second most up-regulated found in microarray analysis of peripheral blood mononuclear cell RNA from patients with hepatic lobular inflammation versus normal liver histology. Transcript levels of ALB were significantly different across those with normal (n = 50), steatosis (n = 50), lobular inflammation (n = 50), and peri-sinusoidal fibrosis (n = 50) liver histologies, with lobular inflammation 3.9 times higher than those with normal histology (p < 0.017). Albumin expression levels decreased in 11/13 patients in paired samples obtained prior to and at 1 year after Roux-en-Y gastric bypass surgery. ALB expression could be detected in 23 visceral adipose tissue samples obtained intra-operatively and in 18/19 available paired whole blood samples. No significant correlation was found between ALB expression in visceral adipose tissue and whole blood RNA samples. Alpha fetoprotein expression as a marker of early hepatocytic differentiation was detected in 17/17 available VAT RNA samples, but in only 2/17 whole blood RNA samples. CONCLUSION Albumin RNA expression from blood cells may serve as a biomarker of NAFLD. Albumin and alpha fetoprotein appear to be ubiquitously expressed in visceral adipose tissue in patients with extreme obesity.
Collapse
Affiliation(s)
- Xin Chu
- Obesity Research Institute, Geisinger Clinic, Danville, PA, USA
| | - Kelsey Karasinski
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Sean Donellan
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Scott Kaniper
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - G Craig Wood
- Obesity Research Institute, Geisinger Clinic, Danville, PA, USA
| | - Weixing Shi
- Obesity Research Institute, Geisinger Clinic, Danville, PA, USA
| | - Michael A Edwards
- Department of Surgery, Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Rohit Soans
- Department of Surgery, Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | | | - Glenn S Gerhard
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
27
|
Klindt C, Reich M, Hellwig B, Stindt J, Rahnenführer J, Hengstler JG, Köhrer K, Schoonjans K, Häussinger D, Keitel V. The G Protein-Coupled Bile Acid Receptor TGR5 (Gpbar1) Modulates Endothelin-1 Signaling in Liver. Cells 2019; 8:cells8111467. [PMID: 31752395 PMCID: PMC6912679 DOI: 10.3390/cells8111467] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/05/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022] Open
Abstract
TGR5 (Gpbar1) is a G protein-coupled receptor responsive to bile acids (BAs), which is expressed in different non-parenchymal cells of the liver, including biliary epithelial cells, liver-resident macrophages, sinusoidal endothelial cells (LSECs), and activated hepatic stellate cells (HSCs). Mice with targeted deletion of TGR5 are more susceptible towards cholestatic liver injury induced by cholic acid-feeding and bile duct ligation, resulting in a reduced proliferative response and increased liver injury. Conjugated lithocholic acid (LCA) represents the most potent TGR5 BA ligand and LCA-feeding has been used as a model to rapidly induce severe cholestatic liver injury in mice. Thus, TGR5 knockout (KO) mice and wildtype (WT) littermates were fed a diet supplemented with 1% LCA for 84 h. Liver injury and gene expression changes induced by the LCA diet revealed an enrichment of pathways associated with inflammation, proliferation, and matrix remodeling. Knockout of TGR5 in mice caused upregulation of endothelin-1 (ET-1) expression in the livers. Analysis of TGR5-dependent ET-1 signaling in isolated LSECs and HSCs demonstrated that TGR5 activation reduces ET-1 expression and secretion from LSECs and triggers internalization of the ET-1 receptor in HSCs, dampening ET-1 responsiveness. Thus, we identified two independent mechanisms by which TGR5 inhibits ET-1 signaling and modulates portal pressure.
Collapse
Affiliation(s)
- Caroline Klindt
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Medical Faculty of Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.K.); (M.R.); (J.S.); (D.H.)
| | - Maria Reich
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Medical Faculty of Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.K.); (M.R.); (J.S.); (D.H.)
| | - Birte Hellwig
- Department of Statistics, TU Dortmund University, 44221 Dortmund, Germany; (B.H.); (J.R.)
| | - Jan Stindt
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Medical Faculty of Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.K.); (M.R.); (J.S.); (D.H.)
| | - Jörg Rahnenführer
- Department of Statistics, TU Dortmund University, 44221 Dortmund, Germany; (B.H.); (J.R.)
| | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund, 44139 Dortmund, Germany;
| | - Karl Köhrer
- Genomics and Transcriptomics Laboratory, Biologisch-Medizinisches-Forschungszentrum (BMFZ), Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Kristina Schoonjans
- Laboratory of Metabolic Signaling, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland;
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Medical Faculty of Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.K.); (M.R.); (J.S.); (D.H.)
| | - Verena Keitel
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Medical Faculty of Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.K.); (M.R.); (J.S.); (D.H.)
- Correspondence:
| |
Collapse
|
28
|
Gupta P, Sata TN, Ahamad N, Islam R, Yadav AK, Mishra A, Nithyananthan S, Thirunavukkarasu C, Sanal MG, Venugopal SK. Augmenter of liver regeneration enhances cell proliferation through the microRNA-26a/Akt/cyclin D1 pathway in hepatic cells. Hepatol Res 2019; 49:1341-1352. [PMID: 31267617 DOI: 10.1111/hepr.13404] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/23/2019] [Accepted: 06/28/2019] [Indexed: 12/12/2022]
Abstract
AIM Hepatocytes can proliferate and regenerate when injured by toxins, viral infections, and so on. Augmenter of liver regeneration (ALR) is a key regulator of liver regeneration, but the mechanism is unknown. The role of ALR in other cell types is not known. In the present study, we investigated the relationship between microRNA (miRNA)-26a and ALR in the Huh7 cell line and adipose tissue-derived mesenchymal cells from chronic liver disease patients and healthy individuals. METHODS Huh7 cells were transfected independently with ALR and miRNA-26a expression vectors, and their effects on cell proliferation, the expression of miRNA-26a, and activation of the phosphatase and tensin homolog and Akt signaling pathways were determined. The experiments were repeated on mesenchymal stem cells derived from healthy individuals and chronic liver disease patients to see whether the observations can be replicated in primary cells. RESULTS Overexpression of ALR or miRNA-26a resulted in an increase of the phosphorylation of Akt and cyclin D1 expression, whereas it resulted in decreased levels of p-GSK-3β and phosphatase and tensin homolog in Huh7 cells. The inhibition of ALR expression by ALR siRNA or anti-miR-26a decreased the Akt/cyclin D1 signaling pathway, leading to decreased proliferation. Mesenchymal stem cells isolated from the chronic liver disease patients had a higher ALR expression, while the mesenchymal stem cells isolated from healthy volunteers responded to the growth factor treatments for increased ALR expression. It was found that there was a significant increase in miRNA-26a expression and proliferation. CONCLUSIONS These data clearly showed that ALR induced the expression of miRNA-26a, which downregulated phosphatase and tensin homolog, resulting in an increased p-Akt/cyclin D1 pathway and enhanced proliferation in hepatic cells.
Collapse
Affiliation(s)
- Parul Gupta
- Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, India
| | - Teja Naveen Sata
- Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, India
| | - Naushad Ahamad
- Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, India
| | - Rakibul Islam
- Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, India
| | - Ajay K Yadav
- Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, India
| | - Amit Mishra
- Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, India
| | - Subramaniyam Nithyananthan
- Department of Biochemistry and Molecular Biology, Pondicherry University, Pondicherry, Tamil Nadu, India
| | | | - M G Sanal
- Department of Research, Institute of Liver and Biliary Sciences, D1 Vasant Kunj, New Delhi, India
| | - Senthil K Venugopal
- Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, India
| |
Collapse
|
29
|
Yovchev MI, Lee EJ, Rodriguez‐Silva W, Locker J, Oertel M. Biliary Obstruction Promotes Multilineage Differentiation of Hepatic Stem Cells. Hepatol Commun 2019; 3:1137-1150. [PMID: 31388633 PMCID: PMC6672331 DOI: 10.1002/hep4.1367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/23/2019] [Indexed: 12/17/2022] Open
Abstract
Because of their high regenerative potential, stem cells are an ideal resource for development of therapies that replace injured tissue mass and restore function in patients with end-stage liver diseases. Using a rat model of bile duct ligation (BDL) and biliary fibrosis, we investigated cell engraftment, liver repopulation, and ectopic tissue formation after intrasplenic transplantation of epithelial stem/progenitor cells. Fetal liver cells were infused into the spleens of Fisher 344 rats with progressing biliary fibrosis induced by common BDL or rats without BDL. Cell delivery was well tolerated. After migration to the liver, donor-derived stem/progenitor cells engrafted, differentiated into hepatocytes and cholangiocytes, and formed large cell clusters at 2 months in BDL rats but not controls. Substantial numbers of donor cells were also detected at the splenic injection site where they generated hepatic and nonhepatic tissue. Transplanted cells differentiated into phenotypes other than hepato/cholangiocytic cells only in rats that underwent BDL. Quantitative reverse-transcription polymerase chain reaction analyses demonstrated marked up-regulation of tissue-specific genes of nonhepatic endodermal lineages (e.g., caudal type homeobox 2 [Cdx2], pancreatic and duodenal homeobox 1 [Pdx1], keratin 13 [CK-13]), confirmed by immunohistochemistry. Conclusion: BDL and its induced fibrosis promote liver repopulation by ectopically transplanted fetal liver-derived cells. These cell fractions contain multipotent stem cells that colonize the spleen of BDL rats and differentiate into multiple gastrointestinal tissues, including liver, pancreas, intestine, and esophagus. The splenic microenvironment, therefore, represents an ideal niche to assess the differentiation of these stem cells, while BDL provides a stimulus that induces their differentiation.
Collapse
Affiliation(s)
- Mladen I. Yovchev
- Department of Pathology, Division of Experimental PathologyUniversity of PittsburghPittsburghPA
| | - Edward J. Lee
- Department of Pathology, Division of Experimental PathologyUniversity of PittsburghPittsburghPA
| | | | - Joseph Locker
- Department of Pathology, Division of Experimental PathologyUniversity of PittsburghPittsburghPA
- Pittsburgh Liver Research CenterUniversity of PittsburghPittsburghPA
| | - Michael Oertel
- Department of Pathology, Division of Experimental PathologyUniversity of PittsburghPittsburghPA
- Pittsburgh Liver Research CenterUniversity of PittsburghPittsburghPA
- McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPA
| |
Collapse
|
30
|
Mahmoud HM, Osman M, Elshabrawy O, Abdallah HMI, Khairallah A. AM-1241 CB2 Receptor Agonist Attenuates Inflammation, Apoptosis and Stimulate Progenitor Cells in Bile Duct Ligated Rats. Open Access Maced J Med Sci 2019; 7:925-936. [PMID: 30976335 PMCID: PMC6454175 DOI: 10.3889/oamjms.2019.194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND: The cannabinoid receptor 2 (CB2) plays a pleiotropic role in the innate immunity and is considered a crucial mediator of liver disease. Cannabinoid CB2 receptor activation has been reported to attenuate liver fibrosis in CCl4 exposed mice and also plays a potential role in liver regeneration in a mouse model of I/R and protection against alcohol-induced liver injury. AIM: In this study, we investigated the impact of CB2 receptors on the antifibrotic and regenerative process associated with cholestatic liver injury. METHODS: Twenty-six rats had bile duct ligation co-treated with silymarin and AM1241 for 3 consecutive weeks. Serum hepatotoxicity markers were determined, and histopathological evaluation was performed. RESULTS: Following bile duct ligation (BDL) for 3 weeks, there was increased aminotransferase levels, marked inflammatory infiltration and hepatocyte apoptosis with induced oxidative stress, as reflected by increased lipid peroxidation. Conversely, following treatment with the CB2 agonist, AM-1241, BDL rats displayed a reduction in liver injury and attenuation of fibrosis as reflected by expression of hydroxyproline and α-smooth muscle actin. AM1241 treatment also significantly attenuated lipid peroxidation end-products, p53-dependent apoptosis and also attenuated inflammatory process by stimulating IL-10 production. Moreover, AM1241 treated rats were associated with significant expression of hepatic progenitor/oval cell markers. CONCLUSION: In conclusion, this study points out that CB2 receptors reduce liver injury and promote liver regeneration via distinct mechanisms including IL-10 dependent inhibition of inflammation, reduction of p53-reliant apoptosis and through stimulation of oval/progenitor cells. These results suggest that CB2 agonists display potent hepatoregenrative properties, in addition to their antifibrogenic effects.
Collapse
Affiliation(s)
- Hesham M Mahmoud
- Cairo University Kasr Alainy, Faculty of Medicine, Pharmacology, Cairo, Egypt
| | - Mona Osman
- Cairo University Kasr Alainy, Faculty of Medicine, Pharmacology, Cairo, Egypt
| | | | | | - Ahmed Khairallah
- Pharmacology Department, National Research Centre, Dokki, Cairo 11211, Egypt
| |
Collapse
|
31
|
Bile Acid-Activated Receptors: GPBAR1 (TGR5) and Other G Protein-Coupled Receptors. Handb Exp Pharmacol 2019; 256:19-49. [PMID: 31302759 DOI: 10.1007/164_2019_230] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The BA-responsive GPCRs S1PR2 and TGR5 are almost ubiquitously expressed in human and rodent tissues. In the liver, S1PR2 is expressed in all cell types, while TGR5 is predominately found in non-parenchymal cells. In contrast to S1PR2, which is mainly activated by conjugated bile acids (BAs), all BAs serve as ligands for TGR5 irrespective of their conjugation state and substitution pattern.Mice with targeted deletion of either S1PR2 or TGR5 are viable and develop no overt phenotype. In liver injury models, S1PR2 exerts pro-inflammatory and pro-fibrotic effects and thus aggravates liver damage, while TGR5 mediates anti-inflammatory, anti-cholestatic, and anti-fibrotic effects. Thus, inhibitors of S1PR2 signaling and agonists for TGR5 have been employed to attenuate liver injury in rodent models for cholestasis, nonalcoholic steatohepatitis, and fibrosis/cirrhosis.In biliary epithelial cells, both receptors activate a similar signaling cascade resulting in ERK1/2 phosphorylation and cell proliferation. Overexpression of both S1PR2 and TGR5 was found in human cholangiocarcinoma tissue as well as in CCA cell lines, where stimulation of both GPCRs resulted in transactivation of the epidermal growth factor receptor and triggered cell proliferation as well as increased cell migration and invasiveness.This chapter will focus on the function of S1PR2 and TGR5 in different liver cell types and summarizes current knowledge on the role of these receptors in liver disease models.
Collapse
|
32
|
Therapeutic effect of hepatocyte growth factor-overexpressing bone marrow-derived mesenchymal stem cells on CCl 4-induced hepatocirrhosis. Cell Death Dis 2018; 9:1186. [PMID: 30538216 PMCID: PMC6290007 DOI: 10.1038/s41419-018-1239-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 11/13/2018] [Accepted: 11/23/2018] [Indexed: 12/24/2022]
Abstract
Hepatocirrhosis is one of the most severe complications of chronic hepatic disease in terms of medical intervention, and the available therapies are limited and not very successful. In this study, bone marrow-derived mesenchymal stem cells (BM-MSCs) from host rats were transduced with an adenoviral vector labelled with green fluorescent protein (EGFP) to overexpress hepatocyte growth factor (HGF). The therapeutic effect of these modified stem cells (HGF-BM-MSC group) transplanted intravenously into hepatocirrhosis model rats treated with CCl4 was evaluated using serological, biochemical and histological approaches. We compared the rats in the HGF-BM-MSC group with those in the other groups (rats treated with BM-MSCs, rats treated with HGF and untreated rats (Controls)) in detail. The localisation of EGFP-tagged BM-MSCs in the injured liver was evaluated using a microscope, and the cells co-expressed hepatocyte nuclear factor 4α, albumin and cytokeratin 18. After treatment for 4 weeks, the HGF-BM-MSC, BM-MSC and HGF groups exhibited increased protein and mRNA levels of hepatocyte nuclear factor 4α, albumin and cytokeratin 18, but decreased levels of aspartate aminotransferase, alanine aminotransferase and total bilirubin. These findings indicate that BM-MSC transplantation and HGF application have great potential for the treatment of hepatocirrhosis.
Collapse
|
33
|
Saga K, Iwashita Y, Hidano S, Aso Y, Isaka K, Kido Y, Tada K, Takayama H, Masuda T, Hirashita T, Endo Y, Ohta M, Kobayashi T, Inomata M. Secondary Unconjugated Bile Acids Induce Hepatic Stellate Cell Activation. Int J Mol Sci 2018; 19:ijms19103043. [PMID: 30301191 PMCID: PMC6213941 DOI: 10.3390/ijms19103043] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/23/2018] [Accepted: 10/02/2018] [Indexed: 02/08/2023] Open
Abstract
Hepatic stellate cells (HSCs) are key players in liver fibrosis, cellular senescence, and hepatic carcinogenesis. Bile acids (BAs) are involved in the activation of HSCs, but the detailed mechanism of this process remains unclear. We conducted a comprehensive DNA microarray study of the human HSC line LX-2 treated with deoxycholic acid (DCA), a secondary unconjugated BA. Additionally, LX-2 cells were exposed to nine BAs and studied using immunofluorescence staining, enzyme-linked immunosorbent assay, and flow cytometry to examine the mechanisms of HSC activation. We focused on the tumor necrosis factor (TNF) pathway and revealed upregulation of genes related to nuclear factor kappa B (NF-κB) signaling and senescence-associated secretory phenotype factors. α-Smooth muscle actin (α-SMA) was highly expressed in cells treated with secondary unconjugated BAs, including DCA, and a morphological change associated with radial extension of subendothelial protrusion was observed. Interleukin-6 level in culture supernatant was significantly higher in cells treated with secondary unconjugated BAs. Flow cytometry showed that the proportion of cells highly expressing α-SMA was significantly increased in HSCs cultured with secondary unconjugated BAs. We demonstrated that secondary unconjugated BAs induced the activation of human HSCs.
Collapse
Affiliation(s)
- Kunihiro Saga
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Yukio Iwashita
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Shinya Hidano
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Yuiko Aso
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Kenji Isaka
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Yasutoshi Kido
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Kazuhiro Tada
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Hiroomi Takayama
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Takashi Masuda
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Teijiro Hirashita
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Yuichi Endo
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Masayuki Ohta
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Takashi Kobayashi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Masafumi Inomata
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| |
Collapse
|
34
|
van Niekerk G, Davis T, de Villiers W, Engelbrecht AM. The role of bile acids in nutritional support. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:231. [PMID: 30268137 PMCID: PMC6164178 DOI: 10.1186/s13054-018-2160-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022]
Abstract
Nutritional support continues to receive much attention as a possible intervention to prevent loss of lean tissue mass, promote recovery and re-establish proper immune function in critical care patients. Yet there remains much controversy regarding the clinical efficacy of such interventions. In addition to the direct effect of nutrition in terms of micro- and macronutrient content, nutritional formulations may exert an effect via the physiological response to feeding. Here, we highlight the key role of postprandial reabsorbed bile acids in attenuating both the inflammatory response and autophagy. These observations suggest that not all patients would benefit from aggressive nutritional support.
Collapse
Affiliation(s)
- Gustav van Niekerk
- Stellenbosch University, Stellenbosch Central, Stellenbosch, 7599, South Africa.
| | - Tanja Davis
- Stellenbosch University, Stellenbosch Central, Stellenbosch, 7599, South Africa
| | - Willem de Villiers
- Stellenbosch University, Stellenbosch Central, Stellenbosch, 7599, South Africa
| | | |
Collapse
|
35
|
Eltoukhy HS, Sinha G, Moore CA, Gergues M, Rameshwar P. Secretome within the bone marrow microenvironment: A basis for mesenchymal stem cell treatment and role in cancer dormancy. Biochimie 2018; 155:92-103. [PMID: 29859990 DOI: 10.1016/j.biochi.2018.05.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/29/2018] [Indexed: 02/07/2023]
Abstract
The secretome produced by cells within the bone marrow is significant to homeostasis. The bone marrow, a well-studied organ, has multiple niches with distinct roles for supporting stem cell functions. Thus, an understanding of mediators involved in the regulation of stem cells could serve as a model for clinical problems and solutions such as tissue repair and regeneration. The exosome secretome of bone marrow stem cells is a developing area of research with respect to the regenerative potential by bone marrow cell, particularly the mesenchymal stem cells. The bone marrow niche regulates endogenous processes such as hematopoiesis but could also support the survival of tumors such as facilitating the cancer stem cells to exist in dormancy for decades. The bone marrow-derived secretome will be critical to future development of therapeutic strategies for oncologic diseases, in addition to regenerative medicine. This article discusses the importance for parallel studies to determine how the same secretome may compromise safety during the use of stem cells in regenerative medicine.
Collapse
Affiliation(s)
- Hussam S Eltoukhy
- Department of Medicine - Division of Hematology/Oncology, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Garima Sinha
- Department of Medicine - Division of Hematology/Oncology, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Caitlyn A Moore
- Department of Medicine - Division of Hematology/Oncology, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Marina Gergues
- Department of Medicine - Division of Hematology/Oncology, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Pranela Rameshwar
- Department of Medicine - Division of Hematology/Oncology, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA.
| |
Collapse
|
36
|
Chemical compound-based direct reprogramming for future clinical applications. Biosci Rep 2018; 38:BSR20171650. [PMID: 29739872 PMCID: PMC5938430 DOI: 10.1042/bsr20171650] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/29/2018] [Accepted: 04/11/2018] [Indexed: 12/14/2022] Open
Abstract
Recent studies have revealed that a combination of chemical compounds enables direct reprogramming from one somatic cell type into another without the use of transgenes by regulating cellular signaling pathways and epigenetic modifications. The generation of induced pluripotent stem (iPS) cells generally requires virus vector-mediated expression of multiple transcription factors, which might disrupt genomic integrity and proper cell functions. The direct reprogramming is a promising alternative to rapidly prepare different cell types by bypassing the pluripotent state. Because the strategy also depends on forced expression of exogenous lineage-specific transcription factors, the direct reprogramming in a chemical compound-based manner is an ideal approach to further reduce the risk for tumorigenesis. So far, a number of reported research efforts have revealed that combinations of chemical compounds and cell-type specific medium transdifferentiate somatic cells into desired cell types including neuronal cells, glial cells, neural stem cells, brown adipocytes, cardiomyocytes, somatic progenitor cells, and pluripotent stem cells. These desired cells rapidly converted from patient-derived autologous fibroblasts can be applied for their own transplantation therapy to avoid immune rejection. However, complete chemical compound-induced conversions remain challenging particularly in adult human-derived fibroblasts compared with mouse embryonic fibroblasts (MEFs). This review summarizes up-to-date progress in each specific cell type and discusses prospects for future clinical application toward cell transplantation therapy.
Collapse
|
37
|
Ito N, Katoh K, Kushige H, Saito Y, Umemoto T, Matsuzaki Y, Kiyonari H, Kobayashi D, Soga M, Era T, Araki N, Furuta Y, Suda T, Kida Y, Ohta K. Ribosome Incorporation into Somatic Cells Promotes Lineage Transdifferentiation towards Multipotency. Sci Rep 2018; 8:1634. [PMID: 29374279 PMCID: PMC5786109 DOI: 10.1038/s41598-018-20057-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 01/12/2018] [Indexed: 01/10/2023] Open
Abstract
Recently, we reported that bacterial incorporation induces cellular transdifferentiation of human fibroblasts. However, the bacterium-intrinsic cellular- transdifferentiation factor remained unknown. Here, we found that cellular transdifferentiation is caused by ribosomes. Ribosomes, isolated from both prokaryotic and eukaryotic cells, induce the formation of embryoid body-like cell clusters. Numerous ribosomes are incorporated into both the cytoplasm and nucleus through trypsin-activated endocytosis, which leads to cell-cluster formation. Although ribosome-induced cell clusters (RICs) express several stemness markers and differentiate into derivatives of all three germ layers in heterogeneous cell populations, RICs fail to proliferate, alter the methylation states of pluripotent genes, or contribute to teratoma or chimera formation. However, RICs express markers of epithelial-mesenchymal transition without altering the cell cycle, despite their proliferation obstruction. These findings demonstrate that incorporation of ribosomes into host cells induces cell transdifferentiation and alters cellular plasticity.
Collapse
Affiliation(s)
- Naofumi Ito
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.,Program for Leading Graduate Schools "HIGO Program", Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Kaoru Katoh
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Hiroko Kushige
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Yutaka Saito
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Terumasa Umemoto
- International Research Center for Medical Science, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto City, 860-0811, Japan
| | - Yu Matsuzaki
- International Research Center for Medical Science, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto City, 860-0811, Japan
| | - Hiroshi Kiyonari
- Animal Resource Development Unit and Genetic Engineering Team, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Daiki Kobayashi
- Department of Tumor Genetics and Biology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Minami Soga
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Takumi Era
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Norie Araki
- Department of Tumor Genetics and Biology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yasuhide Furuta
- Animal Resource Development Unit and Genetic Engineering Team, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Toshio Suda
- International Research Center for Medical Science, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto City, 860-0811, Japan.,Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, 117599, Singapore, Singapore
| | - Yasuyuki Kida
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Kunimasa Ohta
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan. .,Program for Leading Graduate Schools "HIGO Program", Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan. .,International Research Core for Stem Cell-based Developmental Medicine, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan. .,Japan Agency for Medical Research and Development (AMED), Tokyo, 100-0004, Japan.
| |
Collapse
|
38
|
Tauroursodeoxycholic Acid Protects against the Effects of P-Cresol-Induced Reactive Oxygen Species via the Expression of Cellular Prion Protein. Int J Mol Sci 2018; 19:ijms19020352. [PMID: 29370069 PMCID: PMC5855574 DOI: 10.3390/ijms19020352] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/16/2018] [Accepted: 01/22/2018] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs) could be a promising solution in the treatment of various diseases including chronic kidney disease (CKD). However, endoplasmic reticulum (ER) stress induced by ischemia in the area of application limits the integration and survival of MSCs in patients. In our study, we generated ER stress-induced conditions in MSCs using P-cresol. As P-cresol is a toxic compound accumulated in the body of CKD patients and induces apoptosis and inflammation through reactive oxygen species (ROS), we observed ER stress-induced MSC apoptosis activated by oxidative stress, which in turn resulted from ROS generation. To overcome stress-induced apoptosis, we investigated the protective effects of tauroursodeoxycholic acid (TUDCA), a bile acid, on ER stress in MSCs. In ER stress, TUDCA treatment of MSCs reduced ER stress-associated protein activation, including GRP78, PERK, eIF2α, ATF4, IRE1α, and CHOP. Next, to explore the protective mechanism adopted by TUDCA, TUDCA-mediated cellular prion protein (PrPC) activation was assessed. We confirmed that PrPC expression significantly increased ROS, which was eliminated by superoxide dismutase and catalase in MSCs. These findings suggest that TUDCA protects from inflammation and apoptosis in ER stress via PrPC expression. Our study demonstrates that TUDCA protects MSCs against inflammation and apoptosis in ER stress by PrPC expression in response to P-cresol exposure.
Collapse
|
39
|
Kennedy L, Hargrove L, Demieville J, Francis N, Seils R, Villamaria S, Francis H. Recent Advances in Understanding Cholangiocarcinoma. F1000Res 2017; 6:1818. [PMID: 29067165 PMCID: PMC5635438 DOI: 10.12688/f1000research.12118.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/10/2017] [Indexed: 12/13/2022] Open
Abstract
Cholangiocarcinoma (CCA) is an aggressive malignancy that arises from damaged epithelial cells, cholangiocytes, and possibly de-differentiated hepatocytes. CCA has a poor overall survival rate and limited therapeutic options. Based on this data, it is imperative that new diagnostic and therapeutic interventions be developed. Recent work has attempted to understand the pathological mechanisms driving CCA progression. Specifically, recent publications have delved into the role of cancer stem cells (CSCs), mesenchymal stem cells (MSCs), and microRNAs (miRNAs) during CCA pathology. CSCs are a specific subset of cells within the tumor environment that are derived from a cell with stem-like properties and have been shown to influence recurrence and chemoresistance during CCA. MSCs are known for their anti-inflammatory activity and have been postulated to influence malignancy during CCA, but little is known about their exact functions. miRNAs exert various functions via gene regulation at both the transcriptional and the translational levels, giving miRNAs diverse roles in CCA progression. Additionally, current miRNA-based therapeutic approaches are in clinical trials for various liver diseases, giving hope for similar approaches for CCA. However, the interactions among these three factors in the context of CCA are unknown. In this review, we focus on recently published data (within the last 3 years) that discuss the role of CSCs, MSCs, and miRNAs and their possible interactions during CCA pathogenesis.
Collapse
Affiliation(s)
- Lindsey Kennedy
- Department of Internal Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, TX, USA.,Research, Central Texas Veterans Health Care System, Temple, TX, USA
| | - Laura Hargrove
- Department of Internal Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, TX, USA
| | | | - Nicole Francis
- Baylor Scott & White Health Digestive Disease Research Center, Temple, TX, USA
| | - Rowan Seils
- Department of Internal Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, TX, USA
| | - Sara Villamaria
- Department of Internal Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, TX, USA
| | - Heather Francis
- Department of Internal Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, TX, USA.,Research, Central Texas Veterans Health Care System, Temple, TX, USA.,Baylor Scott & White Health Digestive Disease Research Center, Temple, TX, USA
| |
Collapse
|
40
|
Castelli G, Pelosi E, Testa U. Liver Cancer: Molecular Characterization, Clonal Evolution and Cancer Stem Cells. Cancers (Basel) 2017; 9:cancers9090127. [PMID: 28930164 PMCID: PMC5615342 DOI: 10.3390/cancers9090127] [Citation(s) in RCA: 242] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 12/15/2022] Open
Abstract
Liver cancer is the second most common cause of cancer-related death. The major forms of primary liver cancer are hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA). Both these tumors develop against a background of cirrhotic liver, non-alcoholic fatty liver disease, chronic liver damage and fibrosis. HCC is a heterogeneous disease which usually develops within liver cirrhosis related to various etiologies: hepatitis B virus (HBV) infection (frequent in Asia and Africa), hepatitis C virus (HCV), chronic alcohol abuse, or metabolic syndrome (frequent in Western countries). In cirrhosis, hepatocarcinogenesis is a multi-step process where pre-cancerous dysplastic macronodules transform progressively into HCC. The patterns of genomic alterations observed in these tumors were recently identified and were instrumental for the identification of potential targeted therapies that could improve patient care. Liver cancer stem cells are a small subset of undifferentiated liver tumor cells, responsible for cancer initiation, metastasis, relapse and chemoresistance, enriched and isolated according to immunophenotypic and functional properties: cell surface proteins (CD133, CD90, CD44, EpCAM, OV-6, CD13, CD24, DLK1, α2δ1, ICAM-1 and CD47); the functional markers corresponding to side population, high aldehyde dehydrogenase (ALDH) activity and autofluorescence. The identification and definition of liver cancer stem cells requires both immunophenotypic and functional properties.
Collapse
Affiliation(s)
- Germana Castelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00141, Italy.
| | - Elvira Pelosi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00141, Italy.
| | - Ugo Testa
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00141, Italy.
| |
Collapse
|
41
|
Hong JH, Lee HJ, Jeong B. Injectable Polypeptide Thermogel as a Tissue Engineering System for Hepatogenic Differentiation of Tonsil-Derived Mesenchymal Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:11568-11576. [PMID: 28290667 DOI: 10.1021/acsami.7b02488] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A poly(ethylene glycol)-b-poly(l-alanine) (PEG-l-PA) hydrogel incorporating tonsil-derived mesenchymal stem cells (TMSCs), tauroursodeoxycholic acid (TUDCA), hepatocyte growth factor (HGF), and fibroblast growth factor 4 (FGF4) was prepared through thermal gelation of an aqueous polymer solution for an injectable tissue engineering application. The thermal gelation accompanied conformational changes of both PA and PEG blocks. The gel modulus at 37 °C was controlled to be 1000 Pa by using a 14.0 wt % aqueous polymer solution. The gel preserved its physical integrity during the 3D culture of the cells. TUDCA, HGF, and FGF4 were released from the PEG-l-PA hydrogel over 21 days of the 3D cell culture period. TMSCs initially exhibited a spherical shape, whereas some fibers protruded from the cells on days 14-21 of 3D culture. The injectable system exhibited pronounced expressions of the hepatic biomarkers at both mRNA and protein levels, which are significantly better than the commercially available hyaluronic acid gel. In particular, the hepatogenically differentiated cells from the TMSCs in the injectable system demonstrated hepatic biofunctions comparable to HepG2 cells for the uptakes of low density lipoproteins (52%) and indocyanine green (76%), and the production of albumin (40%) and urea (52%), which are also significantly better than the 3D-cultured cells in the commercially available hyaluronic acid gel. Our studies suggest that the PEG-l-PA thermogel incorporating TMSCs, TUDCA, and growth factors is highly promising as an in situ forming tissue engineering system.
Collapse
Affiliation(s)
- Ja Hye Hong
- Department of Chemistry and Nanoscience, Ewha Womans University , 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Hyun Jung Lee
- Department of Chemistry and Nanoscience, Ewha Womans University , 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Byeongmoon Jeong
- Department of Chemistry and Nanoscience, Ewha Womans University , 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| |
Collapse
|
42
|
Bile acids and their receptors during liver regeneration: "Dangerous protectors". Mol Aspects Med 2017; 56:25-33. [PMID: 28302491 DOI: 10.1016/j.mam.2017.03.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/07/2017] [Accepted: 03/10/2017] [Indexed: 02/07/2023]
Abstract
Tissue repair is orchestrated by a finely tuned interplay between processes of regeneration, inflammation and cell protection, allowing organisms to restore their integrity after partial loss of cells or organs. An important, although largely unexplored feature is that after injury and during liver repair, liver functions have to be maintained to fulfill the peripheral demand. This is particularly critical for bile secretion, which has to be finely modulated in order to preserve liver parenchyma from bile-induced injury. However, mechanisms allowing the liver to maintain biliary homeostasis during repair after injury are not completely understood. Besides cytokines and growth factors, bile acids (BA) and their receptors constitute an insufficiently explored signaling network during liver regeneration and repair. BA signal through both nuclear (mainly Farnesoid X Receptor, FXR) and membrane (mainly G Protein-coupled BA Receptor 1, GPBAR-1 or TGR5) receptors which distributions are large in the organism, and which activation elicits a wide array of biological responses. While a number of studies have been dedicated to FXR signaling in liver repair processes, TGR5 remains poorly explored in this context. Because of the massive and potentially harmful BA overload that faces the remnant liver after partial ablation or destruction, both BA-induced adaptive and proliferative responses may stand in a central position to contribute to the regenerative response. Based on the available literature, both BA receptors may act in synergy during the regeneration process, in order to protect the remnant liver and maintain biliary homeostasis, otherwise potentially toxic BA overload would result in parenchymal insult and compromise optimal restoration of a functional liver mass.
Collapse
|
43
|
Hepatitis B virus surface proteins accelerate cholestatic injury and tumor progression in Abcb4-knockout mice. Oncotarget 2017; 8:52560-52570. [PMID: 28881751 PMCID: PMC5581050 DOI: 10.18632/oncotarget.15003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 01/03/2017] [Indexed: 12/20/2022] Open
Abstract
Understanding of the pathophysiology of cholestasis associated carcinogenesis could challenge the development of new personalized therapeutic approaches and thus improve prognosis. Simultaneous damage might aggravate hepatic injury, induce chronic liver disease and even promote carcinogenesis. We aimed to study the effect of Hepatitis B virus surface protein (HBsAg) on cholestatic liver disease and associated carcinogenesis in a mouse model combining both impairments. Hybrids of Abcb4−/− and HBsAg transgenic mice were bred on fibrosis susceptible background BALB/c. Liver injury, serum bile acid concentration, hepatic fibrosis, and carcinogenesis were enhanced by the combination of simultaneous damage in line with activation of c-Jun N-terminal kinase (JNK), proto-oncogene c-Jun, and Signal transducer and activator of transcription 3 (STAT3). Activation of Protein Kinase RNA-like Endoplasmic Reticulum Kinase (PERK) and Eukaryotic translation initiation factor 2A (eIF2α) indicated unfolded protein response (UPR) in HBsAg-expressing mice and even in Abcb4−/− without HBsAg-expression. CONCLUSION: Cholestasis-induced STAT3- and JNK-pathways may predispose HBsAg-associated tumorigenesis. Since STAT3- and JNK-activation are well characterized critical regulators for tumor promotion, the potentiation of their activation in hybrids suggests an additive mechanism enhancing tumor incidence.
Collapse
|
44
|
Godoy P, Widera A, Schmidt-Heck W, Campos G, Meyer C, Cadenas C, Reif R, Stöber R, Hammad S, Pütter L, Gianmoena K, Marchan R, Ghallab A, Edlund K, Nüssler A, Thasler WE, Damm G, Seehofer D, Weiss TS, Dirsch O, Dahmen U, Gebhardt R, Chaudhari U, Meganathan K, Sachinidis A, Kelm J, Hofmann U, Zahedi RP, Guthke R, Blüthgen N, Dooley S, Hengstler JG. Gene network activity in cultivated primary hepatocytes is highly similar to diseased mammalian liver tissue. Arch Toxicol 2016; 90:2513-2529. [PMID: 27339419 PMCID: PMC5043005 DOI: 10.1007/s00204-016-1761-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/13/2016] [Indexed: 01/01/2023]
Abstract
It is well known that isolation and cultivation of primary hepatocytes cause major gene expression alterations. In the present genome-wide, time-resolved study of cultivated human and mouse hepatocytes, we made the observation that expression changes in culture strongly resemble alterations in liver diseases. Hepatocytes of both species were cultivated in collagen sandwich and in monolayer conditions. Genome-wide data were also obtained from human NAFLD, cirrhosis, HCC and hepatitis B virus-infected tissue as well as mouse livers after partial hepatectomy, CCl4 intoxication, obesity, HCC and LPS. A strong similarity between cultivation and disease-induced expression alterations was observed. For example, expression changes in hepatocytes induced by 1-day cultivation and 1-day CCl4 exposure in vivo correlated with R = 0.615 (p < 0.001). Interspecies comparison identified predominantly similar responses in human and mouse hepatocytes but also a set of genes that responded differently. Unsupervised clustering of altered genes identified three main clusters: (1) downregulated genes corresponding to mature liver functions, (2) upregulation of an inflammation/RNA processing cluster and (3) upregulated migration/cell cycle-associated genes. Gene regulatory network analysis highlights overrepresented and deregulated HNF4 and CAR (Cluster 1), Krüppel-like factors MafF and ELK1 (Cluster 2) as well as ETF (Cluster 3) among the interspecies conserved key regulators of expression changes. Interventions ameliorating but not abrogating cultivation-induced responses include removal of non-parenchymal cells, generation of the hepatocytes' own matrix in spheroids, supplementation with bile salts and siRNA-mediated suppression of key transcription factors. In conclusion, this study shows that gene regulatory network alterations of cultivated hepatocytes resemble those of inflammatory liver diseases and should therefore be considered and exploited as disease models.
Collapse
Affiliation(s)
- Patricio Godoy
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund, Ardeystrasse 67, 44139, Dortmund, Germany.
- Facultad de Ciencias Biológicas, Departamento de Fisiología, Universidad de Concepción, Concepción, Chile.
| | - Agata Widera
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund, Ardeystrasse 67, 44139, Dortmund, Germany
| | - Wolfgang Schmidt-Heck
- Leibniz Institute for Natural Product Research and Infection Biology eV-Hans-Knöll Institute, Jena, Germany
| | - Gisela Campos
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund, Ardeystrasse 67, 44139, Dortmund, Germany
| | - Christoph Meyer
- Molecular Alcohol Research in Gastroenterology, Department of Medicine II, Faculty of Medicine at Mannheim, University of Heidelberg, Mannheim, Germany
| | - Cristina Cadenas
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund, Ardeystrasse 67, 44139, Dortmund, Germany
| | - Raymond Reif
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund, Ardeystrasse 67, 44139, Dortmund, Germany
| | - Regina Stöber
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund, Ardeystrasse 67, 44139, Dortmund, Germany
| | - Seddik Hammad
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund, Ardeystrasse 67, 44139, Dortmund, Germany
- Molecular Alcohol Research in Gastroenterology, Department of Medicine II, Faculty of Medicine at Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Forensic and Veterinary Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Larissa Pütter
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund, Ardeystrasse 67, 44139, Dortmund, Germany
| | - Kathrin Gianmoena
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund, Ardeystrasse 67, 44139, Dortmund, Germany
| | - Rosemarie Marchan
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund, Ardeystrasse 67, 44139, Dortmund, Germany
| | - Ahmed Ghallab
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund, Ardeystrasse 67, 44139, Dortmund, Germany
- Department of Forensic and Veterinary Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Karolina Edlund
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund, Ardeystrasse 67, 44139, Dortmund, Germany
| | - Andreas Nüssler
- BG Trauma Center, Siegfrid Weller Insitut, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Wolfgang E Thasler
- Center for Liver Cell Research, Department of General, Visceral, Transplantation, Vascular and Thorax Surgery, Grosshadern Hospital, Ludwig Maximilians University, Munich, Germany
| | - Georg Damm
- Department of General, Visceral and Transplantation Surgery, Charité University Medicine Berlin, Berlin, Germany
| | - Daniel Seehofer
- Department of General, Visceral and Transplantation Surgery, Charité University Medicine Berlin, Berlin, Germany
| | - Thomas S Weiss
- Center for Liver Cell Research, University Children Hospital (KUNO), Regensburg University Hospital, Regensburg, Germany
| | - Olaf Dirsch
- Institute of Pathology, Friedrich-Schiller-University of Jena, Jena, Germany
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, University Hospital Jena, Friedrich-Schiller-University of Jena, Jena, Germany
| | - Rolf Gebhardt
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Umesh Chaudhari
- Institute of Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Kesavan Meganathan
- Institute of Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Agapios Sachinidis
- Institute of Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Jens Kelm
- InSphero AG, Wagistrasse 27, 8952, Schlieren, Switzerland
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, University of Tuebingen, Auerbachstrasse 112, 70376, Stuttgart, Germany
| | - René P Zahedi
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Reinhard Guthke
- Leibniz Institute for Natural Product Research and Infection Biology eV-Hans-Knöll Institute, Jena, Germany
| | - Nils Blüthgen
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Steven Dooley
- Molecular Alcohol Research in Gastroenterology, Department of Medicine II, Faculty of Medicine at Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jan G Hengstler
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund, Ardeystrasse 67, 44139, Dortmund, Germany.
| |
Collapse
|
45
|
|