1
|
Niu Z, Sun G, Tan M, Yan S, Jiang D. Cd Exposure Confers Cross-Tolerance of Hyphantria cunea Larvae to β-Cypermethrin through miRNA-Mediated Post-Transcriptional Regulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:12643-12652. [PMID: 40375613 DOI: 10.1021/acs.jafc.5c03132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Heavy metals are prevalent environmental contaminants in pest habitats. This study investigates the tolerance of Hyphantria cunea larvae to β-cypermethrin under cadmium (Cd) stress. Exposure to Cd markedly enhanced larval tolerance to β-cypermethrin. The P450 enzyme was found to be crucial in triggering this cross-tolerance. Notably, Cd exposure significantly upregulated the expression of HcCYP333A29 and HcCYP6AE184 both before and after β-cypermethrin treatment. Silencing these genes reduced the β-cypermethrin tolerance in Cd-exposed larvae. Furthermore, overexpression of HcCYP333A29 and HcCYP6AE184 significantly improved the tolerance of Sf9 cells and Drosophila to β-cypermethrin. Silencing of HcDicer-1, a key gene in the miRNA synthesis pathway, significantly diminished the β-cypermethrin tolerance in Cd-treated larvae. The miR-2739 controlled overexpression of HcCYP333A29, while miR-2854 controlled HcCYP6AE184 overexpression, both of which were essential for β-cypermethrin cross-tolerance in H. cunea larvae under Cd exposure. Collectively, Cd exposure induces cross-tolerance to β-cypermethrin in H. cunea larvae through miRNA-mediated post-transcriptional regulation.
Collapse
Affiliation(s)
- Zengting Niu
- School of Forestry, Northeast Forestry University, Harbin 150040, P. R. China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, P. R. China
| | - Guotong Sun
- School of Forestry, Northeast Forestry University, Harbin 150040, P. R. China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, P. R. China
| | - Mingtao Tan
- School of Forestry, Northeast Forestry University, Harbin 150040, P. R. China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, P. R. China
| | - Shanchun Yan
- School of Forestry, Northeast Forestry University, Harbin 150040, P. R. China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, P. R. China
| | - Dun Jiang
- School of Forestry, Northeast Forestry University, Harbin 150040, P. R. China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, P. R. China
| |
Collapse
|
2
|
Chen D, Zhang QT, Li WJ, Han HL, Smagghe G, Yan Y, Jiang HB, Wang JJ, Wei D. The competing endogenous RNA lnc94641-miR957-3p mediates male fertility in Zeugodacus cucurbitae Coquillett. PEST MANAGEMENT SCIENCE 2025. [PMID: 40371678 DOI: 10.1002/ps.8874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/03/2025] [Accepted: 04/20/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND Insect spermatogenesis is a complex process. Numerous genes are involved in sperm motility, which is crucial for male fertility. Few long non-coding RNAs (lncRNAs) in the testis regulate insect spermatogenesis. We previously identified 364 testis-enriched lncRNAs in the globally invasive pest Zeugodacus cucurbitae Coquillett. One of these lncRNAs, lnc94641, is abundantly expressed in the testis; however, its role in spermatogenesis remains unknown. RESULTS Suppression of lnc94641 expression led to a 60% decrease in spermatozoa count and a 29% decrease in offspring hatchability. A microRNA (miRNA), miR-957-3p, was experimentally demonstrated to bind to lnc94641 competitively. miR-957-3p overexpression recapitulated reproductive defect phenotypes similar to those caused by lnc94641 knockdown. Furthermore, target gene predictions combined with quantitative reverse transcription PCR, RNA pull-down, and dual luciferase reporter assays confirmed that miR-957-3p targets voltage-gated potassium channel 5 (VGKC5) and odorant receptor 85c (OR85c), elucidating a functional lncRNA-miRNA-mRNA competing endogenous RNA (ceRNA) regulatory axis. Fluorescence in situ hybridization (FISH) assays demonstrated the co-localization of lnc94641, miR-957-3p, and VGKC5/OR85c in the mature and transformed regions of the testes. Suppression of VGKC5/OR85c expression resulted in a 68% and 50% decrease in spermatozoa number and an 18% and 21% decrease in offspring hatchability, mirroring the phenotype observed with lnc94641-silencing, thereby reinforcing the mechanistic coherence of this regulatory network. CONCLUSION These results revealed a ceRNA axis mediated by 'lnc94641-miR957-3p-VGKC5/OR85c' involved in spermatogenesis that impairs male fertility in the melon fly. Molecular perturbations (lncRNA knockdown or miRNA overexpression) consistently impair sperm production and offspring viability by dysregulating ion channels and chemosensory genes. This mechanistically resolved pathway, centered on the core components VGKC5 and OR85c, revealed conserved reproductive vulnerabilities that could enable the targeted genetic control of this agricultural pest. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dong Chen
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Qi-Tong Zhang
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Wei-Jun Li
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Hong-Liang Han
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Guy Smagghe
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Ying Yan
- Department of Insect Biotechnology in Plant Protection, Institute for Insect Biotechnology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Hong-Bo Jiang
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Dong Wei
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| |
Collapse
|
3
|
Asad M, Chang Y, Liao J, Yang G. CRISPR/Cas9 Genome Editing in the Diamondback Moth: Current Progress, Challenges, and Prospects. Int J Mol Sci 2025; 26:1515. [PMID: 40003981 PMCID: PMC11855872 DOI: 10.3390/ijms26041515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/04/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
The development of site-specific genome-editing tools like CRISPR (clustered regularly interspaced short palindromic repeat) and its associated protein, Cas9, is revolutionizing genetic engineering with its highly efficient mechanism, offering the potential for effective pest management. Recently, CRISPR/Cas9 gene-editing has been extensively utilized in the management of the diamondback moth, Plutella xylostella (L.), a highly destructive pest of vegetable crops, for different purposes, such as gene function analysis and genetic control. However, the progress related to this gene-editing tool in P. xylostella has not yet been summarized. This review highlights the progress and applications of CRISPR/Cas9 in uncovering the genes critical for development, reproduction, and insecticide resistance in P. xylostella. Moreover, the progress related to the CRISPR/Cas9 gene drive for population suppression and modifications has also been discussed. In addition to the significant progress made, challenges such as low germline editing efficiency and limited homology-directed repair remain obstacles to its widespread application. To address these limitations, we have discussed the different strategies that are anticipated to improve the efficiency of CRISPR/Cas9, paving the way to it becoming a pivotal tool in sustainable pest management. Therefore, the present review will help researchers in the future enhance the efficiency of the CRISPR/Cas9 system and use it to manage the diamondback moth.
Collapse
Affiliation(s)
- Muhammad Asad
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.A.); (Y.C.); (J.L.)
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou 350002, China
| | - Yanpeng Chang
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.A.); (Y.C.); (J.L.)
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou 350002, China
| | - Jianying Liao
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.A.); (Y.C.); (J.L.)
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou 350002, China
| | - Guang Yang
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.A.); (Y.C.); (J.L.)
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou 350002, China
| |
Collapse
|
4
|
Debrah I, Zhong D, Machani MG, Nattoh G, Ochwedo KO, Morang'a CM, Lee MC, Amoah LE, Githeko AK, Afrane YA, Yan G. Metabolic resistance to pyrethroids with possible involvement of non-coding ribonucleic acids in Anopheles funestus, the major malaria vector in western Kenya. BMC Genomics 2025; 26:64. [PMID: 39849377 PMCID: PMC11755866 DOI: 10.1186/s12864-025-11260-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 01/17/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND The resurgence of Anopheles funestus, a dominant vector of human malaria in western Kenya was partly attributed to insecticide resistance. However, evidence on the molecular basis of pyrethroid resistance in western Kenya is limited. Here, we reported metabolic resistance mechanisms and demonstrated that multiple non-coding Ribonucleic Acids (ncRNAs) could play a potential role in An. funestus resistance to pyrethroid in western Kenya. Anopheles funestus mosquitoes were sampled using aspiration methods in Bungoma, Teso, Siaya, Port Victoria and Kombewa in western Kenya. The F1 progenies were exposed to deltamethrin (0.05%), permethrin (0.75%), DDT (4%) and pirimiphos-methyl (0.25%) following WHO test guidelines. A synergist assay using piperonyl butoxide (PBO) (4%) was conducted to determine cytochrome P450s' role in pyrethroid resistance. RNA-seq was conducted on a combined pool of specimens that were resistant and unexposed, and the results were compared with those of the FANG susceptible reference strain. This approach aimed to uncover the molecular mechanisms underlying the observed phenotypic pyrethroid resistance. RESULTS Pyrethroid resistance was observed in all sites with an average mortality rate (MR) of 57.6%. Port Victoria had the highest level of pyrethroid resistance to permethrin (MR = 53%) and deltamethrin (MR = 11%. Teso had the lowest level of resistance to permethrin (MR = 70%) and deltamethrin (MR = 87%). Resistance to DDT was observed only in Kombewa (MR = 89%) and Port Victoria (MR = 85%). A full susceptibility to P-methyl (0.25%) was observed in all sites. PBO synergist assay revealed high susceptibility (> 98%) to pyrethroids in all the sites except for Port Victoria (MR = 96%). Whole transcriptomic analysis showed that most gene families associated with pyrethroid resistance comprised non-coding RNAs (67%), followed by immunity proteins (10%), cytochrome P450s (6%), cuticular proteins (5%), olfactory proteins (4%), glutathione S-transferases (3%), UDP-glycosyltransferases (2%), ATP-binding cassettes (2%) and carboxylesterases (1%). CONCLUSION This study unveils the molecular basis of insecticide resistance in An. funestus in western Kenya, highlighting for the first time the potential role of non-coding RNAs alongside metabolic detoxification in pyrethroid resistance. Targeting non-coding RNAs for intervention development could help in insecticide resistance management.
Collapse
Affiliation(s)
- Isaiah Debrah
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana.
- Sub-Saharan African International Centre of Excellence for Malaria Research, Tom Mboya University, Homabay, Kenya.
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California, Irvine, California, USA.
- Sub-Saharan African International Centre of Excellence for Malaria Research, Tom Mboya University, Homabay, Kenya.
| | - Maxwell G Machani
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Godfrey Nattoh
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Kevin O Ochwedo
- Sub-Saharan African International Centre of Excellence for Malaria Research, Tom Mboya University, Homabay, Kenya
| | - Collins M Morang'a
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Ming-Chieh Lee
- Program in Public Health, College of Health Sciences, University of California, Irvine, California, USA
- Sub-Saharan African International Centre of Excellence for Malaria Research, Tom Mboya University, Homabay, Kenya
| | - Linda E Amoah
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Andrew K Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
- Sub-Saharan African International Centre of Excellence for Malaria Research, Tom Mboya University, Homabay, Kenya
| | - Yaw A Afrane
- Sub-Saharan African International Centre of Excellence for Malaria Research, Tom Mboya University, Homabay, Kenya
- Department of Medical Microbiology, College of Health Sciences, University of Ghana Medical School, University of Ghana, Accra, Ghana
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California, Irvine, California, USA
- Sub-Saharan African International Centre of Excellence for Malaria Research, Tom Mboya University, Homabay, Kenya
| |
Collapse
|
5
|
Zhang B, Zhang C, Zhang J, Lu S, Zhao H, Jiang Y, Ma W. Regulatory roles of long non-coding RNAs in short-term heat stress in adult worker bees. BMC Genomics 2024; 25:506. [PMID: 38778290 PMCID: PMC11110378 DOI: 10.1186/s12864-024-10399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are crucial modulators of post-transcriptional gene expression regulation, cell fate determination, and disease development. However, lncRNA functions during short-term heat stress in adult worker bees are poorly understood. Here, we performed deep sequencing and bioinformatic analyses of honeybee lncRNAs. RNA interference was performed by using siRNA targeting the most highly expressed lncRNA. The silencing effect on lncRNA and the relative expression levels of seven heat shock protein (HSP) genes, were subsequently examined. Overall, 7,842 lncRNAs and 115 differentially expressed lncRNAs (DELs) were identified in adult worker bees following heat stress exposure. Structural analysis revealed that the overall expression abundance, length of transcripts, exon number, and open reading frames of lncRNAs were lower than those of mRNAs. GO analysis revealed that the target genes were mainly involved in "metabolism," "protein folding," "response to stress," and "signal transduction" pathways. KEGG analysis indicated that the "protein processing in endoplasmic reticulum" and "longevity regulating pathway-multiple species" pathways were most enriched. Quantitative real-time polymerase chain reaction (qRT-PCR) detection of the selected DELs confirmed the reliability of the sequencing data. Moreover, the siRNA experiment indicated that feeding siRNA yielded a silencing efficiency of 77.51% for lncRNA MSTRG.9645.5. Upon silencing this lncRNA, the expression levels of three HSP genes were significantly downregulated (p < 0.05), whereas those of three other HSP genes were significantly upregulated (p < 0.05). Our results provide a new perspective for understanding the regulatory mechanisms of lncRNAs in adult worker bees under short-term heat stress.
Collapse
Affiliation(s)
- Bing Zhang
- College of Animal Science, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Chaoying Zhang
- College of Animal Science, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Jiangchao Zhang
- College of Animal Science, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Surong Lu
- College of Animal Science, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Huiting Zhao
- College of Life Sciences, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Yusuo Jiang
- College of Animal Science, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Weihua Ma
- College of Horticulture, Shanxi Agricultural University, Taiyuan, Shanxi, China.
| |
Collapse
|
6
|
Geens B, Goossens S, Li J, Van de Peer Y, Vanden Broeck J. Untangling the gordian knot: The intertwining interactions between developmental hormone signaling and epigenetic mechanisms in insects. Mol Cell Endocrinol 2024; 585:112178. [PMID: 38342134 DOI: 10.1016/j.mce.2024.112178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
Hormones control developmental and physiological processes, often by regulating the expression of multiple genes simultaneously or sequentially. Crosstalk between hormones and epigenetics is pivotal to dynamically coordinate this process. Hormonal signals can guide the addition and removal of epigenetic marks, steering gene expression. Conversely, DNA methylation, histone modifications and non-coding RNAs can modulate regional chromatin structure and accessibility and regulate the expression of numerous (hormone-related) genes. Here, we provide a review of the interplay between the classical insect hormones, ecdysteroids and juvenile hormones, and epigenetics. We summarize the mode-of-action and roles of these hormones in post-embryonic development, and provide a general overview of epigenetic mechanisms. We then highlight recent advances on the interactions between these hormonal pathways and epigenetics, and their involvement in development. Furthermore, we give an overview of several 'omics techniques employed in the field. Finally, we discuss which questions remain unanswered and possible avenues for future research.
Collapse
Affiliation(s)
- Bart Geens
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| | - Stijn Goossens
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| | - Jia Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, VIB, Ghent, Belgium.
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, VIB, Ghent, Belgium.
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| |
Collapse
|
7
|
Debrah I, Zhong D, Machani MG, Nattoh G, Ochwedo KO, Morang'a CM, Lee MC, Amoah LE, Githeko AK, Afrane YA, Yan G. Non-Coding RNAs Potentially Involved in Pyrethroid Resistance of Anopheles funestus Population in Western Kenya. RESEARCH SQUARE 2024:rs.3.rs-3979432. [PMID: 38464038 PMCID: PMC10925441 DOI: 10.21203/rs.3.rs-3979432/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Backgrounds The resurgence of Anopheles funestus, a dominant vector of human malaria in western Kenya was partly attributed to insecticide resistance. However, evidence on the molecular basis of pyrethroid resistance in western Kenya is limited. Noncoding RNAs (ncRNAs) form a vast class of RNAs that do not code for proteins and are ubiquitous in the insect genome. Here, we demonstrated that multiple ncRNAs could play a potential role in An. funestusresistance to pyrethroid in western Kenya. Materials and Methods Anopheles funestus mosquitoes were sampled by aspiration methods in Bungoma, Teso, Siaya, Port Victoria and Kombewa in western Kenya. The F1 progenies were exposed to deltamethrin (0.05%), permethrin (0.75%), DDT (4%) and pirimiphos-methyl (0.25%) following WHO test guidelines. A synergist assay using piperonyl butoxide (PBO) (4%) was conducted to determine cytochrome P450s' role in pyrethroid resistance. RNA-seq was conducted on a combined pool of specimens that were resistant and unexposed, and the results were compared with those of the FANG susceptible strain. This approach aimed to uncover the molecular mechanisms underlying pyrethroid resistance. Results Pyrethroid resistance was observed in all the sites with an average mortality rate of 57.6%. Port Victoria had the highest level of resistance to permethrin (MR=53%) and deltamethrin (MR=11%) pyrethroids. Teso had the lowest level of resistance to permethrin (MR=70%) and deltamethrin (MR=87%). Resistance to DDT was observed only in Kombewa (MR=89%) and Port Victoria (MR=85%). A full susceptibility to P-methyl (0.25%) was observed in all the sites. PBO synergist assay revealed high susceptibility (>98%) to the pyrethroids in all the sites except for Port Victoria (MR=96%, n=100). Whole transcriptomic analysis showed that most of the gene families associated with pyrethroid resistance comprised non-coding RNAs (67%), followed by imipenemase (10%), cytochrome P450s (6%), cuticular proteins (5%), olfactory proteins (4%), glutathione S-transferases (3%), UDP-glycosyltransferases (2%), ATP-binding cassettes (2%) and carboxylesterases(1%). Conclusions This study unveils the molecular basis of insecticide resistance in An. funestus in western Kenya, highlighting for the first time the potential role of non-coding RNAs in pyrethroid resistance. Targeting non-coding RNAs for intervention development could help in insecticide resistance management.
Collapse
Affiliation(s)
| | | | | | | | - Kevin O Ochwedo
- Sub-Saharan African International Centre of Excellence for Malaria Research, Tom Mboya University
| | | | | | | | | | - Yaw A Afrane
- University of Ghana Medical School, University of Ghana
| | | |
Collapse
|
8
|
Rahman MM, Omoto C, Kim J. Genome-Wide Exploration of Long Non-Coding RNAs of Helicoverpa armigera in Response to Pyrethroid Insecticide Resistance. INSECTS 2024; 15:146. [PMID: 38535342 PMCID: PMC10971460 DOI: 10.3390/insects15030146] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 01/04/2025]
Abstract
Genome-wide long non-coding RNAs (lncRNAs) in low, moderate, and high pyrethroid insecticide-resistant and -susceptible strains of Helicoverpa armigera were identified in this study. Using 45 illumina-based RNA-sequencing datasets, 8394 lncRNAs were identified. In addition, a sublethal dose of deltamethrin was administered to a Korean-resistant strain (Kor-T). The average length of lncRNAs was approximately 531 bp, and the expression ratio of lncRNAs was 28% of the total RNA. The identified lncRNAs were divided into six categories-intronic, intergenic, sense, antisense, cis-RNA, and trans-RNA-based on their location and mechanism of action. Intergenic and intronic lncRNA transcripts were the most abundant (38% and 33%, respectively). Further, 828 detoxification-related lncRNAs were selected using the Gene Ontology analysis. The cytochrome P450-related lncRNA expression levels were significantly higher in susceptible strains than in resistant strains. In contrast, cuticle protein-related lncRNA expression levels were significantly higher in all resistant strains than in susceptible strains. Our findings suggest that certain lncRNAs contribute to the downregulation of insecticide resistance-related P450 genes in susceptible strains, whereas other lncRNAs may be involved in the overexpression of cuticle protein genes, potentially affecting the pyrethroid resistance mechanism.
Collapse
Affiliation(s)
- Md-Mafizur Rahman
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea;
- Department Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia 7003, Bangladesh
| | - Celso Omoto
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture (ESALQ), University of Sao Paulo, Piracicaba 13418-900, Brazil;
| | - Juil Kim
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea;
- Department of Plant Medicine, Division of Bio-Resource Sciences, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
9
|
Muthu Lakshmi Bavithra C, Murugan M, Pavithran S, Naveena K. Enthralling genetic regulatory mechanisms meddling insecticide resistance development in insects: role of transcriptional and post-transcriptional events. Front Mol Biosci 2023; 10:1257859. [PMID: 37745689 PMCID: PMC10511911 DOI: 10.3389/fmolb.2023.1257859] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Insecticide resistance in insects severely threatens both human health and agriculture, making insecticides less compelling and valuable, leading to frequent pest management failures, rising input costs, lowering crop yields, and disastrous public health. Insecticide resistance results from multiple factors, mainly indiscriminate insecticide usage and mounted selection pressure on insect populations. Insects respond to insecticide stress at the cellular level by modest yet significant genetic propagations. Transcriptional, co-transcriptional, and post-transcriptional regulatory signals of cells in organisms regulate the intricate processes in gene expressions churning the genetic information in transcriptional units into proteins and non-coding transcripts. Upregulation of detoxification enzymes, notably cytochrome P450s (CYPs), glutathione S-transferases (GSTs), esterases [carboxyl choline esterase (CCE), carboxyl esterase (CarE)] and ATP Binding Cassettes (ABC) at the transcriptional level, modification of target sites, decreased penetration, or higher excretion of insecticides are the noted insect physiological responses. The transcriptional regulatory pathways such as AhR/ARNT, Nuclear receptors, CncC/Keap1, MAPK/CREB, and GPCR/cAMP/PKA were found to regulate the detoxification genes at the transcriptional level. Post-transcriptional changes of non-coding RNAs (ncRNAs) such as microRNAs (miRNA), long non-coding RNAs (lncRNA), and epitranscriptomics, including RNA methylation, are reported in resistant insects. Additionally, genetic modifications such as mutations in the target sites and copy number variations (CNV) are also influencing insecticide resistance. Therefore, these cellular intricacies may decrease insecticide sensitivity, altering the concentrations or activities of proteins involved in insecticide interactions or detoxification. The cellular episodes at the transcriptional and post-transcriptional levels pertinent to insecticide resistance responses in insects are extensively covered in this review. An overview of molecular mechanisms underlying these biological rhythms allows for developing alternative pest control methods to focus on insect vulnerabilities, employing reverse genetics approaches like RNA interference (RNAi) technology to silence particular resistance-related genes for sustained insect management.
Collapse
Affiliation(s)
| | - Marimuthu Murugan
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, India
| | | | - Kathirvel Naveena
- Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, India
| |
Collapse
|
10
|
Shang Y, Feng Y, Ren L, Zhang X, Yang F, Zhang C, Guo Y. Genome-wide analysis of long noncoding RNAs and their association in regulating the metamorphosis of the Sarcophaga peregrina (Diptera: Sarcophagidae). PLoS Negl Trop Dis 2023; 17:e0011411. [PMID: 37363930 DOI: 10.1371/journal.pntd.0011411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND The flesh fly, Sarcophaga peregrina (Diptera: Sarcophagidae), is an important hygiene pest, that causes myiasis in humans and other mammals, typically livestock, and as a vector for various parasitic agents, including bacteria, viruses, and parasites. The role of long non-coding RNAs (lncRNAs) in regulating gene expression during metamorphosis of the flesh fly has not been well established. METHODOLOGY/PRINCIPAL FINDINGS In this study, we performed genome-wide identification and characterization of lncRNAs from the early pupal stage (1-days pupae), mid-term pupal stage (5-days pupae), and late pupal stage (9-days pupae) of S. peregrina by RNA-seq, and a total of 6921 lncRNAs transcripts were identified. RT-qPCR and enrichment analyses revealed the differentially expressed lncRNAs (DE lncRNAs) that might be associated with insect metamorphosis development. Furthermore, functional analysis revealed that the DE lncRNA (SP_lnc5000) could potentially be involved in regulating the metamorphosis of S. peregrina. RNA interference of SP_lnc5000 caused reduced expression of metamorphosis-related genes in 20-hydroxyecdysone (20E) signaling (Br-c, Ftz-F1), cuticle tanning pathway (TH, DOPA), and chitin related pathway (Cht5). Injection of dsSP_lnc5000 in 3rd instar larvae of S. peregrina resulted in deformed pupae, stagnation of pupal-adult metamorphosis, and a decrease in development time of pupal, pupariation rates and eclosion rates. Hematoxylin-eosin staining (H&E), scanning electron microscope (SEM) observation and cuticle hydrocarbons (CHCs) analysis indicated that SP_lnc5000 had crucial roles in the metamorphosis developmental by modulating pupal cuticular development. CONCLUSIONS/SIGNIFICANCE We established that the lncRNA SP_lnc5000 potentially regulates the metamorphosis of S. peregrina by putatively affecting the structure and composition of the pupal cuticle. This study enhances our understanding of lncRNAs as regulators of metamorphosis in S. peregrina, and provide valuable insights into the identification of potential targets for vector control and the development of effective strategies for controlling the spread of myiasis and parasitic diseases.
Collapse
Affiliation(s)
- Yanjie Shang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yakai Feng
- Department of Forensic Science, School of Basic Medical Sciences, Xinjiang Medical University Ürümqi, China
| | - Lipin Ren
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Xiangyan Zhang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Fengqin Yang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Changquan Zhang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yadong Guo
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
11
|
Lin S, Yin HT, Zhao ZM, Chen ZK, Zhou XMI, Zhang ZD, Guo XJ, Zhao WG, Wu P. LincRNA_XR209691.3 could promote Bombyx mori nucleopolyhedrovirus replication by interacting with BmHSP70. INSECT MOLECULAR BIOLOGY 2023; 32:160-172. [PMID: 36482511 DOI: 10.1111/imb.12821] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Long non-coding RNAs (lncRNAs), a class of transcripts exceeding 200 nucleotides and lacking protein coding potential, have been proven to play important roles in viral infection and host immunity. Bombyx mori nucleopolyhedrovirus (BmNPV) is an important pathogen, which causes the silkworm disease and leads to a huge challenge to the sericultural industry. At present, research on the roles of insect lncRNAs in host-virus interaction are relatively few. In this study, we explored the function of lincRNA_XR209691.3 that was significantly up-regulated in the silkworm fat body upon BmNPV infection. Firstly, the subcellular localization experiment confirmed that lincRNA_XR209691.3 was present in both the nucleus and cytoplasm. Enhancing the expression of lincRNA_XR209691.3 in BmN cells could promote the proliferation of BmNPV, while inhibition of lincRNA_XR209691.3 by RNA interference suppresses the proliferation of BmNPV. Combining RNA pull-down and mass spectrometry, we identified the host and BmNPV proteins that could interact with lincRNA_XR209691.3. Next, by using truncation experiment and RNA immunoprecipitation (RIP) assay, it was found that lincRNA_XR209691.3 could bind to the Actin domain of BmHSP70. Subsequently, overexpression of lncRNA_XR209691.3 in BmN cells promoted the expression of BmHSP70, while knockdown of BmHsp70 suppressed the replication of BmNPV. Based on the above results, it is speculated that lincRNA_XR209691.3 could promote the proliferation of BmNPV through interaction with BmHSP70, possibly by improving the stability of BmHSP70 and thereby enhancing the expression of BmHSP70. Our results shed light on the lncRNA function in insect-pathogen interactions and provide a new clue to elucidate the molecular mechanism of BmNPV infection.
Collapse
Affiliation(s)
- Su Lin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Hao Tong Yin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhi Meng Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zi Kang Chen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xue MIng Zhou
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zheng Dong Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xi Jie Guo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Wei Guo Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Ping Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| |
Collapse
|
12
|
Wimalasiri-Yapa BMCR, Huang B, Ross PA, Hoffmann AA, Ritchie SA, Frentiu FD, Warrilow D, van den Hurk AF. Differences in gene expression in field populations of Wolbachia-infected Aedes aegypti mosquitoes with varying release histories in northern Australia. PLoS Negl Trop Dis 2023; 17:e0011222. [PMID: 36989319 PMCID: PMC10085034 DOI: 10.1371/journal.pntd.0011222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/10/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Aedes aegypti is the principal mosquito vector of dengue, yellow fever, Zika and chikungunya viruses. The wMel strain of the endosymbiotic bacteria Wolbachia pipientis was introduced into the vector as a novel biocontrol strategy to stop transmission of these viruses. Mosquitoes with Wolbachia have been released in the field in Northern Queensland, Australia since 2011, at various locations and over several years, with populations remaining stably infected. Wolbachia infection is known to alter gene expression in its mosquito host, but whether (and how) this changes over the long-term in the context of field releases remains unknown. We sampled mosquitoes from Wolbachia-infected populations with three different release histories along a time gradient and performed RNA-seq to investigate gene expression changes in the insect host. We observed a significant impact on gene expression in Wolbachia-infected mosquitoes versus uninfected controls. Fewer genes had significantly upregulated expression in mosquitoes from the older releases (512 and 486 from the 2011 and 2013/14 release years, respectively) versus the more recent releases (1154 from the 2017 release year). Nonetheless, a fundamental signature of Wolbachia infection on host gene expression was observed across all releases, comprising upregulation of immunity (e.g. leucine-rich repeats, CLIPs) and metabolism (e.g. lipid metabolism, iron transport) genes. There was limited downregulation of gene expression in mosquitoes from the older releases (84 and 71 genes from the 2011 and 2013/14 release years, respectively), but significantly more in the most recent release (509 from the 2017 release year). Our findings indicate that at > 8 years post-introgression into field populations, Wolbachia continues to profoundly impact expression of host genes, such as those involved in insect immune response and metabolism. If Wolbachia-mediated virus blocking is underpinned by these differential gene expression changes, our results suggest it may remain stable long-term.
Collapse
Affiliation(s)
- B M C Randika Wimalasiri-Yapa
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Open University of Sri Lanka, Nugegoda, Colombo, Sri Lanka
- School of Biomedical Sciences and Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Bixing Huang
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Coopers Plains, Queensland, Australia
| | - Perran A Ross
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Scott A Ritchie
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Francesca D Frentiu
- School of Biomedical Sciences and Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, Queensland, Australia
| | - David Warrilow
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Coopers Plains, Queensland, Australia
| | - Andrew F van den Hurk
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Coopers Plains, Queensland, Australia
| |
Collapse
|
13
|
Robin S, Legeai F, Jouan V, Ogliastro M, Darboux I. Genome-wide identification of lncRNAs associated with viral infection in Spodoptera frugiperda. J Gen Virol 2023; 104. [PMID: 36757871 DOI: 10.1099/jgv.0.001827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
The role of lncRNAs in immune defence has been demonstrated in many multicellular and unicellular organisms. However, investigation of the identification and characterization of long non-coding RNAs (lncRNAs) involved in the insect immune response is still limited. In this study, we used RNA sequencing (RNA-seq) to investigate the expression profiles of lncRNAs and mRNAs in the fall armyworm Spodoptera frugiperda in response to virus infection. To assess the tissue- and virus-specificity of lncRNAs, we analysed and compared their expression profiles in haemocytes and fat body of larvae infected with two entomopathogenic viruses with different lifestyles, i.e. the polydnavirus HdIV (Hyposoter didymator IchnoVirus) and the densovirus JcDV (Junonia coenia densovirus). We identified 1883 candidate lncRNAs, of which 529 showed differential expression following viral infection. Expression profiles differed considerably between samples, indicating that many differentially expressed (DE) lncRNAs showed virus- and tissue-specific expression patterns. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and target prediction analyses indicated that DE-LncRNAs were mainly enriched in metabolic process, DNA replication and repair, immune response, metabolism of insect hormone and cell adhesion. In addition, we identified three DE-lncRNAs potentially acting as microRNA host genes, suggesting that they participate in gene regulation by producing miRNAs in response to virus infection. This study provides a catalogue of lncRNAs expressed in two important immune tissues and potential insight into their roles in the antiviral defence in S. frugiperda. The results may help future in-depth functional studies to better understand the biological function of lncRNAs in interaction between viruses and the fall armyworm.
Collapse
Affiliation(s)
- Stéphanie Robin
- BIPAA, IGEPP, INRAE, Institut Agro, University of Rennes, Rennes, France.,University of Rennes, INRIA, CNRS, IRISA, Rennes, France
| | - Fabrice Legeai
- BIPAA, IGEPP, INRAE, Institut Agro, University of Rennes, Rennes, France.,University of Rennes, INRIA, CNRS, IRISA, Rennes, France
| | - Véronique Jouan
- INRAE, University of Montpellier, UMR Diversité, Génomes & Interactions Microorganismes-Insectes (DGIMI), Montpellier, France
| | - Mylène Ogliastro
- INRAE, University of Montpellier, UMR Diversité, Génomes & Interactions Microorganismes-Insectes (DGIMI), Montpellier, France
| | - Isabelle Darboux
- INRAE, University of Montpellier, UMR Diversité, Génomes & Interactions Microorganismes-Insectes (DGIMI), Montpellier, France
| |
Collapse
|
14
|
Recent Advances and Future Potential of Long Non-Coding RNAs in Insects. Int J Mol Sci 2023; 24:ijms24032605. [PMID: 36768922 PMCID: PMC9917219 DOI: 10.3390/ijms24032605] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/31/2023] Open
Abstract
Over the last decade, long non-coding RNAs (lncRNAs) have witnessed a steep rise in interest amongst the scientific community. Because of their functional significance in several biological processes, i.e., alternative splicing, epigenetics, cell cycle, dosage compensation, and gene expression regulation, lncRNAs have transformed our understanding of RNA's regulatory potential. However, most knowledge concerning lncRNAs comes from mammals, and our understanding of the potential role of lncRNAs amongst insects remains unclear. Technological advances such as RNA-seq have enabled entomologists to profile several hundred lncRNAs in insect species, although few are functionally studied. This article will review experimentally validated lncRNAs from different insects and the lncRNAs identified via bioinformatic tools. Lastly, we will discuss the existing research challenges and the future of lncRNAs in insects.
Collapse
|
15
|
Huang S, Jing D, Xu L, Luo G, Hu Y, Wu T, Hu Y, Li F, He K, Qin W, Sun Y, Liu H. Genome-wide identification and functional analysis of long non-coding RNAs in Chilo suppressalis reveal their potential roles in chlorantraniliprole resistance. Front Physiol 2023; 13:1091232. [PMID: 36699669 PMCID: PMC9868556 DOI: 10.3389/fphys.2022.1091232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Long non-coding RNAs, referred to as lncRNAs, perform essential functions in some biological processes, including reproduction, metamorphosis, and other critical life functions. Yet, lncRNAs are poorly understood in pesticide resistance, and no reports to date have characterized which lncRNAs are associated with chlorantraniliprole resistance in Chilo suppressalis. Here, RNA-seq was performed on two strains of C. suppressalis exposed to chlorantraniliprole: one is a susceptible strain (S), and the other is a resistant strain (R). In total, 3,470 lncRNAs were identified from 40,573 merged transcripts in six libraries, including 1,879 lincRNAs, 245 intronic lncRNAs, 853 sense lncRNAs, and 493 antisense lncRNAs. Moreover, differential expression analysis revealed 297 and 335 lncRNAs upregulated in S and R strains, respectively. Differentially expressed (DE) lncRNAs are usually assumed to be involved in the chlorantraniliprole resistance in C. suppressalis. As potential targets, adjacent protein-coding genes (within <1000 kb range upstream or downstream of DE lncRNAs), especially detoxification enzyme genes (cytochrome P450s, carboxyl/cholinesterases/esterases, and ATP-binding cassette transporter), were analyzed. Furthermore, the strand-specific RT-PCR was conducted to confirm the transcript orientation of randomly selected 20 DE lincRNAs, and qRT-PCR was carried out to verify the expression status of 8 out of them. MSTRG.25315.3, MSTRG.25315.6, and MSTRG.7482.1 were upregulated in the R strain. Lastly, RNA interference and bioassay analyses indicated overexpressed lincRNA MSTRG.7482.1 was involved in chlorantraniliprole resistance. In conclusion, we represent, for the first time, the genome-wide identification of chlorantraniliprole-resistance-related lncRNAs in C. suppressalis. It elaborates the views underlying the mechanism conferring chlorantraniliprole resistance in lncRNAs.
Collapse
Affiliation(s)
- Shuijin Huang
- Institute of Plant Protection, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Dong Jing
- Institute of Insect Sciences/Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Lu Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Guanghua Luo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Yanyue Hu
- Institute of Plant Protection, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Ting Wu
- Institute of Plant Protection, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Yao Hu
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang City, China
| | - Fei Li
- Institute of Insect Sciences/Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Kang He
- Institute of Insect Sciences/Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Wenjing Qin
- Institute of Soil Fertilizer and Environmental Resource, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Yang Sun
- Institute of Plant Protection, Jiangxi Academy of Agricultural Sciences, Nanchang, China,*Correspondence: Yang Sun, ; Hui Liu,
| | - Hui Liu
- Institute of Red Soil and Germplasm Resources in Jiangxi, Nanchang, China,*Correspondence: Yang Sun, ; Hui Liu,
| |
Collapse
|
16
|
Shi L, Li WL, Zeng HX, Shi Y, Liao XL. Systematic identification and functional analysis of long noncoding RNAs involved in indoxacarb resistance in Spodoptera litura. INSECT SCIENCE 2022; 29:1721-1736. [PMID: 35150054 DOI: 10.1111/1744-7917.13015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/12/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Long noncoding RNAs (lncRNAs) are noncoding transcripts that are more than 200 nucleotides long. They play essential roles in regulating a variety of biological processes in many species, including insects, and some lncRNAs have been found to be associated with insecticide resistance. However, the characteristics and biological functions of lncRNAs involved in indoxacarb resistance are unknown in Spodoptera litura. We performed RNA sequencing in the SS, InRS, and FInRS of S. litura and identified 11 978 lncRNAs, including 3 136 intergenic lncRNAs, 7 393 intronic lncRNAs, and 1 449 anti-sense lncRNAs. Compared with the SS, 51 lncRNAs were upregulated and 134 lncRNAs were downregulated in the two resistant strains, and 908 differentially expressed mRNAs were predicted as the target genes of the 185 differentially expressed lncRNAs. Further analysis showed that 112 of differentially expressed lncRNAs may be associated with indoxacarb resistance by regulating the expression of 14 P450s, seven CCEs, one GST, six UGTs, five ABC transporters, and 24 cuticle protein genes, and 79 of differentially expressed lncRNAs may regulate the expression of 14 detoxification genes and 19 cuticle protein genes to participate in indoxacarb resistance by sponging 10 microRNAs. Interestingly, 47 of differentially expressed lncRNAs may mediate indoxacarb resistance through both lncRNA-mRNA and lncRNA-miRNA-mRNA regulatory pathways. Furthermore, quantitative PCR, RNA interference, and indoxacarb bioassay analyses indicated that overexpressed LNC_004867 and LNC_006576 were involved in indoxacarb resistance. This study provides comprehensive information for lncRNAs of S. litura, and presents evidence that lncRNAs have key roles in conferring insecticide resistance in S. litura.
Collapse
Affiliation(s)
- Li Shi
- Hunan Provincial Engineering and Technology Research Center for Bio-pesticide and Formulation Processing, College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Changsha, China
| | - Wen-Lin Li
- Hunan Provincial Engineering and Technology Research Center for Bio-pesticide and Formulation Processing, College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Changsha, China
| | - Hai-Xin Zeng
- Hunan Provincial Engineering and Technology Research Center for Bio-pesticide and Formulation Processing, College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Changsha, China
| | - Yao Shi
- Hunan Provincial Engineering and Technology Research Center for Bio-pesticide and Formulation Processing, College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Changsha, China
| | - Xiao-Lan Liao
- Hunan Provincial Engineering and Technology Research Center for Bio-pesticide and Formulation Processing, College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Changsha, China
| |
Collapse
|
17
|
Zafar J, Huang J, Xu X, Jin F. Analysis of Long Non-Coding RNA-Mediated Regulatory Networks of Plutella xylostella in Response to Metarhizium anisopliae Infection. INSECTS 2022; 13:916. [PMID: 36292864 PMCID: PMC9604237 DOI: 10.3390/insects13100916] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Long non-coding RNAs (lncRNAs) represent a diverse class of RNAs that are structurally similar to messenger RNAs (mRNAs) but do not encode proteins. Growing evidence suggests that in response to biotic and abiotic stresses, the lncRNAs play crucial regulatory roles in plants and animals. However, the potential role of lncRNAs during fungal infection has yet to be characterized in Plutella xylostella, a devastating pest of cruciferous crops. In the current study, we performed a strand-specific RNA sequencing of Metarhizium anisopliae-infected (Px36hT, Px72hT) and uninfected (Px36hCK, Px72hCK) P. xylostella fat body tissues. Comprehensive bioinformatic analysis revealed a total of 5665 and 4941 lncRNAs at 36 and 72-h post-infection (hpi), including 563 (Px36hT), 532 (Px72hT) known and 5102 (Px36hT), 4409 (Px72hT) novel lncRNA transcripts. These lncRNAs shared structural similarities with their counterparts in other species, including shorter exon and intron length, fewer exon numbers, and a lower expression profile than mRNAs. LncRNAs regulate the expression of neighboring protein-coding genes by acting in a cis and trans manner. Functional annotation and pathway analysis of cis-acting lncRNAs revealed their role in several immune-related genes, including Toll, serpin, transferrin, βGRP etc. Furthermore, we identified multiple lncRNAs acting as microRNA (miRNA) precursors. These miRNAs can potentially regulate the expression of mRNAs involved in immunity and development, suggesting a crucial lncRNA-miRNA-mRNA complex. Our findings will provide a genetic resource for future functional studies of lncRNAs involved in P. xylostella immune responses to M. anisopliae infection and shed light on understanding insect host-pathogen interactions.
Collapse
Affiliation(s)
| | | | - Xiaoxia Xu
- Correspondence: (X.X.); (F.J.); Tel.: +86-135-6047-8369 (F.J.)
| | - Fengliang Jin
- Correspondence: (X.X.); (F.J.); Tel.: +86-135-6047-8369 (F.J.)
| |
Collapse
|
18
|
Genome-Wide Identification of the Long Noncoding RNAs of Tribolium castaneum in Response to Terpinen-4-ol Fumigation. INSECTS 2022; 13:insects13030283. [PMID: 35323581 PMCID: PMC8951367 DOI: 10.3390/insects13030283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 12/10/2022]
Abstract
Simple Summary Long noncoding RNAs (lncRNAs) are important regulatory factors in multiple biological processes, including genomic imprinting, cancer, RNA interference, and protein translation. Several lncRNAs can respond to insecticides. However, lncRNA functions associated with terpinen-4-ol resistance in the red flour beetle (Tribolium castaneum) have not yet been identified. In previous work, we found terpinen-4-ol to have strong fumigation activity against store-product pests. As a pesticide from plants, terpinen-4-ol shows nearly no residual danger to the environment; however, resistance is inevitable if people use terpinen-4-ol immoderately. To avoid resistance to terpinen-4-ol occurring in the red flour beetle, we deeply sequenced and tried to find some lncRNAs that can regulate target mRNA expression to reduce terpinen-4-ol. Abstract Long noncoding RNAs (lncRNAs) are important regulatory factors in multiple biological processes, and several lncRNAs are known to respond to insecticides. However, the lncRNA functions that are associated with terpinen-4-ol resistance in the red flour beetle (Tribolium castaneum) have not yet been identified. In this study, we determined the differentially transcribed lncRNAs between fumigated and control experimental groups. In the six libraries that underwent RNA sequencing, 34,546 transcripts were identified, including 8267 novel lncRNAs, 4155 novel mRNAs, 1151 known lncRNAs, and 20,973 known mRNAs. Among these, we found that the expression of 1858 mRNAs and 1663 lncRNAs was significantly different in the fumigated group compared with the control group. Among the differentially transcribed lncRNAs, 453 were up-regulated and 1210 were down-regulated lncRNAs. In addition, we identified the regulatory function targets of the lncRNAs. Functionally, all lncRNAs and target genes associated with terpinen-4-ol metabolism were enriched in several metabolic pathways, like the ATP-binding cassette transporter, pentose interconversion, and glucuronate interconversion. To the best of our knowledge, this study represents the first global identification of lncRNAs and their potential association with terpinen-4-ol metabolism in the red flour beetle. These results will provide reference information for studies on the resistance to terpinen-4-ol and other essential oil compounds and chemical pesticides, as well as an understanding of other biological processes in T. castaneum.
Collapse
|
19
|
Muniz MMM, Simielli Fonseca LF, Scalez DCB, Vega AS, dos Santos Silva DB, Ferro JA, Chardulo AL, Baldi F, Cánovas A, de Albuquerque LG. Characterization of novel
lncRNA
muscle expression profiles associated with meat quality in beef cattle. Evol Appl 2022; 15:706-718. [PMID: 35505883 PMCID: PMC9046762 DOI: 10.1111/eva.13365] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/29/2022] Open
Abstract
The aim of this study was to identify novel lncRNA differentially expressed (DE) between divergent animals for beef tenderness and marbling traits in Nellore cattle. Longissimus thoracis muscle samples from the 20 most extreme bulls (of 80 bulls set) for tenderness, tender (n = 10) and tough (n = 10) groups, and marbling trait, high (n = 10) and low (n = 10) groups were used to perform transcriptomic analysis using RNA‐Sequencing. For tenderness, 29 lncRNA were DE (p‐value ≤ 0.01) in tough beef animals in relation to tender beef animals. We observed that genic lncRNAs, for example, lncRNA_595.1, were overlapping exonic part of the PICK gene, while lncRNA_3097.2 and lncRNA_3129.5 overlapped intronic part of the genes GADL1 and PSMD6. The lncRNA associated with PICK1, GADL1, and PMD6 genes were enriched in the pathways associated with the ionotropic glutamate receptor, gamma‐aminobutyric acid synthesis, and the ubiquitin–proteasome pathway. For marbling, 50 lncRNA were DE (p‐value ≤ 0.01) in high marbling group compared with low marbling animals. The genic lncRNAs, such as lncRNA_3191.1, were overlapped exonic part of the ITGAL gene, and the lncRNA_512.1, lncRNA_3721.1, and lncRNA_41.4 overlapped intronic parts of the KRAS and MASP1 genes. The KRAS and ITGAL genes were enriched in pathways associated with integrin signaling, which is involved in intracellular signals in response to the extracellular matrix, including cell form, mobility, and mediates progression through the cell cycle. In addition, the lincRNAs identified to marbling trait were associated with several genes related to calcium binding, muscle hypertrophy, skeletal muscle, lipase, and oxidative stress response pathways that seem to play a role important in the physiological processes related to meat quality. These findings bring new insights to better understand the biology mechanisms involved in the gene regulation of these traits, which will be valuable for a further investigation of the interactions between lncRNA and mRNAs, and of how these interactions may affect meat quality traits.
Collapse
Affiliation(s)
- Maria Malane Magalhães Muniz
- São Paulo State University (Unesp) School of Agricultural and Veterinarian Sciences Jaboticabal SP Brazil
- Centre for Genetic Improvement of Livestock Department of Animal Biosciences University of Guelph Guelph Canada
| | | | | | - Aroa Suarez Vega
- Centre for Genetic Improvement of Livestock Department of Animal Biosciences University of Guelph Guelph Canada
| | | | - Jesus Aparecido Ferro
- São Paulo State University (Unesp) School of Agricultural and Veterinarian Sciences Jaboticabal SP Brazil
- National Council for Scientific and Technological Development (CNPq) Brazil
| | - Artur Loyola Chardulo
- São Paulo State University (Unesp) College of Veterinary and Animal Science Botucatu SP Brazil
- National Council for Scientific and Technological Development (CNPq) Brazil
| | - Fernando Baldi
- São Paulo State University (Unesp) School of Agricultural and Veterinarian Sciences Jaboticabal SP Brazil
- National Council for Scientific and Technological Development (CNPq) Brazil
| | - Angela Cánovas
- Centre for Genetic Improvement of Livestock Department of Animal Biosciences University of Guelph Guelph Canada
| | - Lucia Galvão de Albuquerque
- São Paulo State University (Unesp) School of Agricultural and Veterinarian Sciences Jaboticabal SP Brazil
- National Council for Scientific and Technological Development (CNPq) Brazil
| |
Collapse
|
20
|
Mukherjee K, Dobrindt U. The emerging role of epigenetic mechanisms in insect defense against pathogens. CURRENT OPINION IN INSECT SCIENCE 2022; 49:8-14. [PMID: 34710642 DOI: 10.1016/j.cois.2021.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/11/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Insects resist infection by natural selection that favors the survival and reproduction of the fittest phenotypes. Although the genetic mechanisms mediating the evolution of insect resistance have been investigated, little is known about the contribution of epigenetic mechanisms. Gene expression in response to a pathogen selection pressure is regulated by different mechanisms affecting chromatin plasticity. Whether transgenerational inheritance of genome-wide epigenetic marks contributes to the heritable manifestation of insect resistance is presently debated. Here, we review the latest works on the contributions of chromatin remodeling to insect immunity and adaptation to pathogens. We highlight DNA methylation, histone acetylation, and microRNAs in mediating the transgenerational inherited transcriptional reprogramming of defense-related gene expression and the evolution of insect resistance.
Collapse
Affiliation(s)
- Krishnendu Mukherjee
- Institute of Hygiene, University of Muenster, Mendelstrasse 7, Muenster 48149, Germany.
| | - Ulrich Dobrindt
- Institute of Hygiene, University of Muenster, Mendelstrasse 7, Muenster 48149, Germany.
| |
Collapse
|
21
|
Abd El Halim HM, Ali A. Long noncoding RNAs: Emerging players regulating innate immune memory in the red flour beetle. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 127:104304. [PMID: 34756931 DOI: 10.1016/j.dci.2021.104304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/03/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
A variety of strategies have been evolved to eradicate invading microbes. Phagocytes have developed in vertebrates and invertebrates to confer a non-specific immune response to pathogens. Besides, vertebrates have evolved lymphocytes to develop memory cells that can quickly respond upon the next exposure to the same pathogen. Although lymphocytes are absent in invertebrates, historical evidence, dating back to the 1920s, indicated the presence of immune memory in invertebrates. However, the concept of long-lasting non-specific defense predominated until recent evidence has been introduced in the first decade of the 21st century. Although more evidence has been introduced later, the molecular mechanism underlying the innate immune memory is largely undefined in invertebrates. Long noncoding RNAs (lncRNAs) have demonstrated a role in regulating various biological processes, including immune response. In this review, we will explore the potential role of lncRNAs in developing innate immune memory in the red flour beetle (Tribolium castaneum).
Collapse
Affiliation(s)
| | - Ali Ali
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742-231, USA; Department of Zoology, Faculty of Science, Benha University, Benha, 13518, Egypt.
| |
Collapse
|
22
|
Morgan J, Salcedo-Sora JE, Triana-Chavez O, Strode C. Expansive and Diverse Phenotypic Landscape of Field Aedes aegypti (Diptera: Culicidae) Larvae with Differential Susceptibility to Temephos: Beyond Metabolic Detoxification. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:192-212. [PMID: 34718656 PMCID: PMC8755997 DOI: 10.1093/jme/tjab179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Indexed: 05/08/2023]
Abstract
Arboviruses including dengue, Zika, and chikungunya are amongst the most significant public health concerns worldwide. Arbovirus control relies on the use of insecticides to control the vector mosquito Aedes aegypti (Linnaeus), the success of which is threatened by widespread insecticide resistance. The work presented here profiled the gene expression of Ae. aegypti larvae from field populations of Ae. aegypti with differential susceptibility to temephos originating from two Colombian urban locations, Bello and Cúcuta, previously reported to have distinctive disease incidence, socioeconomics, and climate. We demonstrated that an exclusive field-to-lab (Ae. aegypti strain New Orleans) comparison generates an over estimation of differential gene expression (DGE) and that the inclusion of a geographically relevant field control yields a more discrete, and likely, more specific set of genes. The composition of the obtained DGE profiles is varied, with commonly reported resistance associated genes including detoxifying enzymes having only a small representation. We identify cuticle biosynthesis, ion exchange homeostasis, an extensive number of long noncoding RNAs, and chromatin modelling among the differentially expressed genes in field resistant Ae. aegypti larvae. It was also shown that temephos resistant larvae undertake further gene expression responses when temporarily exposed to temephos. The results from the sampling triangulation approach here contribute a discrete DGE profiling with reduced noise that permitted the observation of a greater gene diversity, increasing the number of potential targets for the control of insecticide resistant mosquitoes and widening our knowledge base on the complex phenotypic network of the Ae. aegypti response to insecticides.
Collapse
Affiliation(s)
- Jasmine Morgan
- Department of Biology, Edge Hill University, Ormskirk, UK
| | - J Enrique Salcedo-Sora
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Omar Triana-Chavez
- Instituto de Biología, Facultad de Ciencias Exactas y Naturales (FCEN), University of Antioquia, Medellín, Colombia
| | - Clare Strode
- Department of Biology, Edge Hill University, Ormskirk, UK
| |
Collapse
|
23
|
Lawrie RD, Mitchell RD, Deguenon JM, Ponnusamy L, Reisig D, Pozo-Valdivia AD, Kurtz RW, Roe RM. Characterization of Long Non-Coding RNAs in the Bollworm, Helicoverpa zea, and Their Possible Role in Cry1Ac-Resistance. INSECTS 2021; 13:12. [PMID: 35055855 PMCID: PMC8779162 DOI: 10.3390/insects13010012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022]
Abstract
Multiple insect pest species have developed field resistance to Bt-transgenic crops. There has been a significant amount of research on protein-coding genes that contribute to resistance, such as the up-regulation of protease activity or altered receptors. However, our understanding of the role of non-protein-coding mechanisms in Bt-resistance is minimal, as is also the case for resistance to chemical pesticides. To address this problem relative to Bt, RNA-seq was used to examine statistically significant, differential gene expression between a Cry1Ac-resistant (~100-fold resistant) and Cry1Ac-susceptible strain of Helicoverpa zea, a prevalent caterpillar pest in the USA. Significant differential expression of putative long non-coding RNAs (lncRNAs) was found in the Cry1Ac-resistant strain (58 up- and 24 down-regulated gene transcripts with an additional 10 found only in resistant and four only in susceptible caterpillars). These lncRNAs were examined as potential pseudogenes and for their genomic proximity to coding genes, both of which can be indicative of regulatory relationships between a lncRNA and coding gene expression. A possible pseudogenic lncRNA was found with similarities to a cadherin. In addition, putative lncRNAs were found significantly proximal to a serine protease, ABC transporter, and CYP coding genes, potentially involved in the mechanism of Bt and/or chemical insecticide resistance. Characterization of non-coding genetic mechanisms in Helicoverpa zea will improve the understanding of the genomic evolution of insect resistance, improve the identification of specific regulators of coding genes in general (some of which could be important in resistance), and is the first step for potentially targeting these regulators for pest control and resistance management (using molecular approaches, such as RNAi and others).
Collapse
Affiliation(s)
- Roger D. Lawrie
- Department of Entomology and Plant Pathology, North Carolina State University, Campus Box 7647, 3230 Ligon Street, Raleigh, NC 27695, USA; (R.D.L.); (R.D.M.III); (J.M.D.); (L.P.)
- Environmental and Molecular Toxicology Program, Department of Biology, College of Sciences, North Carolina State University, 2601 Stinson Drive, Raleigh, NC 27606, USA
| | - Robert D. Mitchell
- Department of Entomology and Plant Pathology, North Carolina State University, Campus Box 7647, 3230 Ligon Street, Raleigh, NC 27695, USA; (R.D.L.); (R.D.M.III); (J.M.D.); (L.P.)
- Office of Pesticide Programs, Invertebrate and Vertebrate Branch 1, Registration Division, U.S. Environmental Protection Agency, 1200 Pennsylvania Avenue, Washington, DC 20460, USA
| | - Jean Marcel Deguenon
- Department of Entomology and Plant Pathology, North Carolina State University, Campus Box 7647, 3230 Ligon Street, Raleigh, NC 27695, USA; (R.D.L.); (R.D.M.III); (J.M.D.); (L.P.)
| | - Loganathan Ponnusamy
- Department of Entomology and Plant Pathology, North Carolina State University, Campus Box 7647, 3230 Ligon Street, Raleigh, NC 27695, USA; (R.D.L.); (R.D.M.III); (J.M.D.); (L.P.)
| | - Dominic Reisig
- Vernon G. James Research & Extension Center, Department of Entomology and Plant Pathology, 207 Research Station Road, Plymouth, NC 27962, USA; (D.R.); (A.D.P.-V.)
| | - Alejandro Del Pozo-Valdivia
- Vernon G. James Research & Extension Center, Department of Entomology and Plant Pathology, 207 Research Station Road, Plymouth, NC 27962, USA; (D.R.); (A.D.P.-V.)
| | - Ryan W. Kurtz
- Cotton Incorporated, 6399 Weston Parkway, Cary, NC 27513, USA;
| | - Richard Michael Roe
- Department of Entomology and Plant Pathology, North Carolina State University, Campus Box 7647, 3230 Ligon Street, Raleigh, NC 27695, USA; (R.D.L.); (R.D.M.III); (J.M.D.); (L.P.)
- Environmental and Molecular Toxicology Program, Department of Biology, College of Sciences, North Carolina State University, 2601 Stinson Drive, Raleigh, NC 27606, USA
| |
Collapse
|
24
|
Peng T, Pan Y, Tian F, Xu H, Yang F, Chen X, Gao X, Li J, Wang H, Shang Q. Identification and the potential roles of long non-coding RNAs in regulating acetyl-CoA carboxylase ACC transcription in spirotetramat-resistant Aphis gossypii. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 179:104972. [PMID: 34802522 DOI: 10.1016/j.pestbp.2021.104972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/09/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Long non-coding RNAs (lncRNAs) represent the largest class of non-coding transcripts. They act a pivotal part in various insect developmental processes and stress responses. However, the investigation of lncRNA functions in insecticide resistant remains at an early phase. Herein, we conducted whole-transcriptome RNA sequencing for two cotton aphid (Aphis gossypii Glover) strains, i.e., insecticide-susceptible (SS) and spirotetramat-resistant (SR). We discovered 6059 lncRNAs in the RNA-Seq data, and 874 lncRNAs showed differential expression. In addition, 5 lncRNAs among 874 lncRNAs were predicted as targets of acetyl-CoA carboxylase (ACC). Reverse transcription real-time quantitative PCR (RT-qPCR) combined with RNA interference (RNAi) confirmed that selected ACC lncRNA was related to the expression of ACC. Moreover, we also identified two transcription factors, i.e., C/EBP and C/EBPzeta, that regulate the transcription level of ACC lncRNA. These results provide a good basis for the study of cotton aphid lncRNA functions in insecticide resistance development.
Collapse
Affiliation(s)
- Tianfei Peng
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Fayi Tian
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Hongfei Xu
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Fengting Yang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Xuewei Chen
- School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, PR China
| | - Jianyi Li
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Haibao Wang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, PR China; School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
25
|
Yang L, Wang YW, Lu YY, Li B, Chen KP, Li CJ. Genome-wide identification and characterization of long non-coding RNAs in Tribolium castaneum. INSECT SCIENCE 2021; 28:1262-1276. [PMID: 32978885 DOI: 10.1111/1744-7917.12867] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/19/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
Long non-coding RNAs (lncRNAs) are poorly understood in insects. In this study, we performed genome-wide analysis of lncRNAs in Tribolium castaneum by RNA-seq. In total, 4516 lncRNA transcripts corresponding to 3917 genes were identified from late embryos, early larvae, late larvae, early pupae, late pupae and early adults of T. castaneum, including 3152 novel lncRNAs and 1364 known lncRNAs. These lncRNAs have few exons and transcripts, and are short in length. During development, they exhibited nine different expression patterns. Functionally, they can act either by targeting messenger RNAs (1813 lncRNAs) and lncRNAs (45 lncRNAs) or as micro RNA (miRNA) precursors (46 lncRNAs). LncRNAs were observed to target the metabolic enzymes of glycolysis, TCA cycle and amino acids, demonstrating that lncRNAs control metabolism by regulating metabolic enzymes. Moreover, lncRNAs were shown to participate in cell differentiation and development via their targets. As miRNA precursors, lncRNAs could participate in the ecdysone signaling pathway. This study provides comprehensive information for lncRNAs of T. castaneum, and will promote functional analysis and target identification of lncRNAs in the insect.
Collapse
Affiliation(s)
- Liu Yang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - You-Wei Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Yao-Yao Lu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Ke-Ping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Cheng-Jun Li
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| |
Collapse
|
26
|
Núñez-Acuña G, Valenzuela-Muñoz V, Valenzuela-Miranda D, Gallardo-Escárate C. Comprehensive Transcriptome Analyses in Sea Louse Reveal Novel Delousing Drug Responses Through MicroRNA regulation. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:710-723. [PMID: 34564738 DOI: 10.1007/s10126-021-10058-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
The role of miRNAs in pharmacological responses through gene regulation related to drug metabolism and the detoxification system has recently been determined for terrestrial species. However, studies on marine ectoparasites have scarcely been conducted to investigate the molecular mechanisms of pesticide resistance. Herein, we explored the sea louse Caligus rogercresseyi miRNome responses exposed to delousing drugs and the interplaying with coding/non-coding RNAs. Drug sensitivity in sea lice was tested by in vitro bioassays for the pesticides azamethiphos, deltamethrin, and cypermethrin. Ectoparasites strains with contrasting susceptibility to these compounds were used. Small-RNA sequencing was conducted, identifying 2776 novel annotated miRNAs, where 163 mature miRNAs were differentially expressed in response to the drug testing. Notably, putative binding sites for miRNAs were found in the ADME genes associated with the drugs' absorption, distribution, metabolism, and excretion. Interactions between the miRNAs and long non-coding RNAs (lncRNAs) were also found, suggesting putative molecular gene regulation mechanisms. This study reports putative miRNAs correlated to the coding/non-coding RNAs modulation, revealing novel pharmacological mechanisms associated with drug resistance in sea lice species.
Collapse
Affiliation(s)
- Gustavo Núñez-Acuña
- Interdisciplinary Center for Aquaculture Research, University of Concepción, O'Higgins 1695, Concepción, Chile
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Center of Biotechnology, Barrio Universitario S/N, Concepción, Chile
| | - Valentina Valenzuela-Muñoz
- Interdisciplinary Center for Aquaculture Research, University of Concepción, O'Higgins 1695, Concepción, Chile
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Center of Biotechnology, Barrio Universitario S/N, Concepción, Chile
| | - Diego Valenzuela-Miranda
- Interdisciplinary Center for Aquaculture Research, University of Concepción, O'Higgins 1695, Concepción, Chile
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Center of Biotechnology, Barrio Universitario S/N, Concepción, Chile
| | - Cristian Gallardo-Escárate
- Interdisciplinary Center for Aquaculture Research, University of Concepción, O'Higgins 1695, Concepción, Chile.
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Center of Biotechnology, Barrio Universitario S/N, Concepción, Chile.
| |
Collapse
|
27
|
Li G, Liu X, Smagghe G, Niu J, Wang J. Genome-Wide Characterization and Identification of Long Non-Coding RNAs during the Molting Process of a Spider Mite, Panonychus citri. Int J Mol Sci 2021; 22:6909. [PMID: 34199120 PMCID: PMC8269015 DOI: 10.3390/ijms22136909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 01/26/2023] Open
Abstract
Molting is essential for arthropods to grow. As one of the important arthropod pests in agriculture, key spider mite species (Tetranychus and Panonychus) can normally molt three times from the larva to adult stage within a week. This physiological strategy results in the short lifecycle of spider mites and difficulties in their control in the field. Long non-coding RNAs (lncRNAs) regulate transcriptional editing, cellular function, and biological processes. Thus, analysis of the lncRNAs in the spider mite molting process may provide new insights into their roles in the molting mechanism. For this purpose, we used high-throughput RNA-seq to examine the expression dynamics of lncRNAs and mRNAs in the molting process of different development stages in Panonychus citri. We identified 9199 lncRNAs from 18 transcriptomes. Analysis of the lncRNAs suggested that they were shorter and had fewer exons and transcripts than mRNAs. Among these, 356 lncRNAs were differentially expressed during three molting processes: late larva to early protonymph, late protonymph to early deutonymph, and late deutonymph to early adult. A time series profile analysis of differentially expressed lncRNAs showed that 77 lncRNAs were clustered into two dynamic expression profiles (Pattern a and Pattern c), implying that lncRNAs were involved in the molting process of spider mites. Furthermore, the lncRNA-mRNA co-expression networks showed that several differentially expressed hub lncRNAs were predicted to be functionally associated with typical molting-related proteins, such as cuticle protein and chitin biosynthesis. These data reveal the potential regulatory function of lncRNAs in the molting process and provide datasets for further analysis of lncRNAs and mRNAs in spider mites.
Collapse
Affiliation(s)
- Gang Li
- Provincial Key Laboratory of Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China;
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China; (X.L.); (G.S.); (J.N.)
| | - Xunyan Liu
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China; (X.L.); (G.S.); (J.N.)
| | - Guy Smagghe
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China; (X.L.); (G.S.); (J.N.)
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Jinzhi Niu
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China; (X.L.); (G.S.); (J.N.)
| | - Jinjun Wang
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China; (X.L.); (G.S.); (J.N.)
| |
Collapse
|
28
|
A de novo transcriptional atlas in Danaus plexippus reveals variability in dosage compensation across tissues. Commun Biol 2021; 4:791. [PMID: 34172835 PMCID: PMC8233437 DOI: 10.1038/s42003-021-02335-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 06/09/2021] [Indexed: 02/06/2023] Open
Abstract
A detailed knowledge of gene function in the monarch butterfly is still lacking. Here we generate a genome assembly from a Mexican nonmigratory population and used RNA-seq data from 14 biological samples for gene annotation and to construct an atlas portraying the breadth of gene expression during most of the monarch life cycle. Two thirds of the genes show expression changes, with long noncoding RNAs being particularly finely regulated during adulthood, and male-biased expression being four times more common than female-biased. The two portions of the monarch heterochromosome Z, one ancestral to the Lepidoptera and the other resulting from a chromosomal fusion, display distinct association with sex-biased expression, reflecting sample-dependent incompleteness or absence of dosage compensation in the ancestral but not the novel portion of the Z. This study presents extended genomic and transcriptomic resources that will facilitate a better understanding of the monarch's adaptation to a changing environment.
Collapse
|
29
|
Meng LW, Yuan GR, Chen ML, Dou W, Jing TX, Zheng LS, Peng ML, Bai WJ, Wang JJ. Genome-wide identification of long non-coding RNAs (lncRNAs) associated with malathion resistance in Bactrocera dorsalis. PEST MANAGEMENT SCIENCE 2021; 77:2292-2301. [PMID: 33423365 DOI: 10.1002/ps.6256] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/09/2020] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) play important roles in the regulation of biological processes and have been identified in many species including insects. However, the association between lncRNAs and pesticide resistance in insect species such as Bactrocera dorsalis is unknown. RESULTS RNA-seq was performed on malathion resistant (MR1) and susceptible (MS) strains of B. dorsalis and a total of 6171 lncRNAs transcripts were identified. These included 3728 lincRNAs, 653 antisense lncRNAs, 1402 intronic lncRNAs, and 388 sense lncRNAs. A total of 40 and 52 upregulated lncRNAs were found in females and males of the MR1 strain compared to 54 and 49 in the same sexes of the MS strain, respectively. Twenty-seven of these lncRNAs showed the same trend of expression in both females and males in the MR1 strain, in which 15 lncRNAs were upregulated and 12 were downregulated. RT-qPCR results indicated that the differentially expressed lncRNAs were associated with malathion resistance. The lnc15010.10 and lnc3774.2 were highly expressed in the cuticle of the MR1 strain, indicating that these two lncRNAs may be related to malathion resistance. RNAi of lnc3774.2 and a bioassay showed that malathion resistance was possibly influenced by changes in the B. dorsalis cuticle. CONCLUSION LncRNAs of B. dorsalis potentially related to the malathion resistance were identified. Two lncRNAs appear to influence malathion resistance via modulating the structure, or components, of the cuticle. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Li-Wei Meng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Guo-Rui Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Meng-Ling Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Tian-Xing Jing
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Li-Sha Zheng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Meng-Lan Peng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wen-Jie Bai
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
30
|
Choudhary C, Sharma S, Meghwanshi KK, Patel S, Mehta P, Shukla N, Do DN, Rajpurohit S, Suravajhala P, Shukla JN. Long Non-Coding RNAs in Insects. Animals (Basel) 2021; 11:1118. [PMID: 33919662 PMCID: PMC8069800 DOI: 10.3390/ani11041118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 12/27/2022] Open
Abstract
Only a small subset of all the transcribed RNAs are used as a template for protein translation, whereas RNA molecules that are not translated play a very important role as regulatory non-coding RNAs (ncRNAs). Besides traditionally known RNAs (ribosomal and transfer RNAs), ncRNAs also include small non-coding RNAs (sncRNAs) and long non-coding RNAs (lncRNAs). The lncRNAs, which were initially thought to be junk, have gained a great deal attention because of their regulatory roles in diverse biological processes in animals and plants. Insects are the most abundant and diverse group of animals on this planet. Recent studies have demonstrated the role of lncRNAs in almost all aspects of insect development, reproduction, and genetic plasticity. In this review, we describe the function and molecular mechanisms of the mode of action of different insect lncRNAs discovered up to date.
Collapse
Affiliation(s)
- Chhavi Choudhary
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandarsindari, Ajmer 305801, India; (C.C.); (K.K.M.)
| | - Shivasmi Sharma
- Department of Biotechnology, Amity University Jaipur, Jaipur 303002, India; (S.S.); (S.P.)
| | - Keshav Kumar Meghwanshi
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandarsindari, Ajmer 305801, India; (C.C.); (K.K.M.)
| | - Smit Patel
- Department of Biotechnology, Amity University Jaipur, Jaipur 303002, India; (S.S.); (S.P.)
| | - Prachi Mehta
- Division of Biological & Life Sciences, School of Arts and Sciences, Ahmedabad University, Gujarat 380009, India; (P.M.); (S.R.)
| | - Nidhi Shukla
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur 302001, India;
| | - Duy Ngoc Do
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam;
| | - Subhash Rajpurohit
- Division of Biological & Life Sciences, School of Arts and Sciences, Ahmedabad University, Gujarat 380009, India; (P.M.); (S.R.)
| | - Prashanth Suravajhala
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur 302001, India;
- Bioclues.org, Vivekananda Nagar, Kukatpally, Hyderabad, Telangana 500072, India
| | - Jayendra Nath Shukla
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandarsindari, Ajmer 305801, India; (C.C.); (K.K.M.)
| |
Collapse
|
31
|
Farley EJ, Eggleston H, Riehle MM. Filtering the Junk: Assigning Function to the Mosquito Non-Coding Genome. INSECTS 2021; 12:186. [PMID: 33671692 PMCID: PMC7926655 DOI: 10.3390/insects12020186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/07/2021] [Accepted: 02/11/2021] [Indexed: 01/21/2023]
Abstract
The portion of the mosquito genome that does not code for proteins contains regulatory elements that likely underlie variation for important phenotypes including resistance and susceptibility to infection with arboviruses and Apicomplexan parasites. Filtering the non-coding genome to uncover these functional elements is an expanding area of research, though identification of non-coding regulatory elements is challenging due to the lack of an amino acid-like code for the non-coding genome and a lack of sequence conservation across species. This review focuses on three types of non-coding regulatory elements: (1) microRNAs (miRNAs), (2) long non-coding RNAs (lncRNAs), and (3) enhancers, and summarizes current advances in technical and analytical approaches for measurement of each of these elements on a genome-wide scale. The review also summarizes and highlights novel findings following application of these techniques in mosquito-borne disease research. Looking beyond the protein-coding genome is essential for understanding the complexities that underlie differential gene expression in response to arboviral or parasite infection in mosquito disease vectors. A comprehensive understanding of the regulation of gene and protein expression will inform transgenic and other vector control methods rooted in naturally segregating genetic variation.
Collapse
Affiliation(s)
| | | | - Michelle M. Riehle
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (E.J.F.); (H.E.)
| |
Collapse
|
32
|
Azlan A, Obeidat SM, Theva Das K, Yunus MA, Azzam G. Genome-wide identification of Aedes albopictus long noncoding RNAs and their association with dengue and Zika virus infection. PLoS Negl Trop Dis 2021; 15:e0008351. [PMID: 33481791 PMCID: PMC7872224 DOI: 10.1371/journal.pntd.0008351] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 02/09/2021] [Accepted: 11/20/2020] [Indexed: 12/14/2022] Open
Abstract
The Asian tiger mosquito, Aedes albopictus (Ae. albopictus), is an important vector that transmits arboviruses such as dengue (DENV), Zika (ZIKV) and Chikungunya virus (CHIKV). Long noncoding RNAs (lncRNAs) are known to regulate various biological processes. Knowledge on Ae. albopictus lncRNAs and their functional role in virus-host interactions are still limited. Here, we identified and characterized the lncRNAs in the genome of an arbovirus vector, Ae. albopictus, and evaluated their potential involvement in DENV and ZIKV infection. We used 148 public datasets, and identified a total of 10, 867 novel lncRNA transcripts, of which 5,809, 4,139, and 919 were intergenic, intronic and antisense respectively. The Ae. albopictus lncRNAs shared many characteristics with other species such as short length, low GC content, and low sequence conservation. RNA-sequencing of Ae. albopictus cells infected with DENV and ZIKV showed that the expression of lncRNAs was altered upon virus infection. Target prediction analysis revealed that Ae. albopictus lncRNAs may regulate the expression of genes involved in immunity and other metabolic and cellular processes. To verify the role of lncRNAs in virus infection, we generated mutations in lncRNA loci using CRISPR-Cas9, and discovered that two lncRNA loci mutations, namely XLOC_029733 (novel lncRNA transcript id: lncRNA_27639.2) and LOC115270134 (known lncRNA transcript id: XR_003899061.1) resulted in enhancement of DENV and ZIKV replication. The results presented here provide an important foundation for future studies of lncRNAs and their relationship with virus infection in Ae. albopictus. Ae. albopictus is an important vector of arboviruses such as dengue and Zika viruses. Studies on virus-host interaction at gene expression and molecular level are crucial especially in devising methods to inhibit virus replication in Aedes mosquitoes. Previous reports have shown that, besides protein-coding genes, noncoding RNAs such as lncRNAs are also involved in virus-host interaction. In this study, we report a comprehensive catalog of novel lncRNA transcripts in the genome of Ae. albopictus. We also show that the expression of lncRNAs was altered upon infection with dengue and Zika. Additionally, depletion of certain lncRNAs resulted in increased replication of dengue and Zika; hence, suggesting potential association of lncRNAs in virus infection. Results of this study provide a new avenue to the investigation of mosquito-virus interactions, especially in the aspect of noncoding genes.
Collapse
Affiliation(s)
- Azali Azlan
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Sattam M. Obeidat
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Kumitaa Theva Das
- Infectomics Cluster, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Pulau Pinang, Malaysia
| | - Muhammad Amir Yunus
- Infectomics Cluster, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Pulau Pinang, Malaysia
| | - Ghows Azzam
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
- * E-mail:
| |
Collapse
|
33
|
Yuan H, Zhang X, Zhao L, Chang H, Yang C, Qiu Z, Huang Y. Characterization and analysis of full-length transcriptomes from two grasshoppers, Gomphocerus licenti and Mongolotettix japonicus. Sci Rep 2020; 10:14228. [PMID: 32848169 PMCID: PMC7450073 DOI: 10.1038/s41598-020-71178-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 08/06/2020] [Indexed: 11/09/2022] Open
Abstract
Acrididae are diverse in size, body shape, behavior, ecology and life history; widely distributed; easy to collect; and important to agriculture. They represent promising model candidates for functional genomics, but their extremely large genomes have hindered this research; establishing a reference transcriptome for a species is the primary means of obtaining genetic information. Here, two Acrididae species, Gomphocerus licenti and Mongolotettix japonicus, were selected for full-length (FL) PacBio transcriptome sequencing. For G. licenti and M. japonicus, respectively, 590,112 and 566,165 circular consensus sequences (CCS) were generated, which identified 458,131 and 428,979 full-length nonchimeric (FLNC) reads. After isoform-level clustering, next-generation sequencing (NGS) short sequences were used for error correction, and remove redundant sequences with CD-HIT, 17,970 and 16,766 unigenes were generated for G. licenti and M. japonicus. In addition, we obtained 17,495 and 16,373 coding sequences, 1,082 and 813 transcription factors, 11,840 and 10,814 simple sequence repeats, and 905 and 706 long noncoding RNAs by analyzing the transcriptomes of G. licenti and M. japonicus, respectively, and 15,803 and 14,846 unigenes were annotated in eight functional databases. This is the first study to sequence FL transcriptomes of G. licenti and M. japonicus, providing valuable genetic resources for further functional genomics research.
Collapse
Affiliation(s)
- Hao Yuan
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Xue Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Lina Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Huihui Chang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Chao Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China.,Shaanxi Institute of Zoology, Xi'an, China
| | - Zhongying Qiu
- School of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Yuan Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China.
| |
Collapse
|
34
|
Tackling the Molecular Drug Sensitivity in the Sea Louse Caligus rogercresseyi Based on mRNA and lncRNA Interactions. Genes (Basel) 2020; 11:genes11080857. [PMID: 32726954 PMCID: PMC7464394 DOI: 10.3390/genes11080857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 01/05/2023] Open
Abstract
Caligus rogercresseyi, commonly known as sea louse, is an ectoparasite copepod that impacts the salmon aquaculture in Chile, causing losses of hundreds of million dollars per year. This pathogen is mainly controlled by immersion baths with delousing drugs, which can lead to resistant traits selection in lice populations. Bioassays are commonly used to assess louse drug sensitivity, but the current procedures may mask relevant molecular responses. This study aimed to discover novel coding genes and non-coding RNAs that could evidence drug sensitivity at the genomic level. Sea lice samples from populations with contrasting sensitivity to delousing drugs were collected. Bioassays using azamethiphos, cypermethrin, and deltamethrin drugs were conducted to evaluate the sensitivity and to collect samples for RNA-sequencing. Transcriptome sequencing was conducted on samples exposed to each drug to evaluate the presence of coding and non-coding RNAs associated with the response of these compounds. The results revealed specific transcriptome patterns in lice exposed to azamethiphos, deltamethrin, and cypermethrin drugs. Enrichment analyses of Gene Ontology terms showed specific biological processes and molecular functions associated with each delousing drug analyzed. Furthermore, novel long non-coding RNAs (lncRNAs) were identified in C. rogercresseyi and tightly linked to differentially expressed coding genes. A significant correlation between gene transcription patterns and phenotypic effects was found in lice collected from different salmon farms with contrasting drug treatment efficacies. The significant correlation among gene transcription patterns with the historical background of drug sensitivity suggests novel molecular mechanisms of pharmacological resistance in lice populations.
Collapse
|
35
|
Yang H, Xu D, Zhuo Z, Hu J, Lu B. SMRT sequencing of the full-length transcriptome of the Rhynchophorus ferrugineus (Coleoptera: Curculionidae). PeerJ 2020; 8:e9133. [PMID: 32509454 PMCID: PMC7246026 DOI: 10.7717/peerj.9133] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/14/2020] [Indexed: 12/23/2022] Open
Abstract
Background Red palm weevil Rhynchophorus ferrugineus (Coleoptera: Curculionidae) is one of the most destructive insects for palm trees in the world. However, its genome resources are still in the blank stage, which limits the study of molecular and growth development analysis. Methods In this study, we used PacBio Iso-Seq and Illumina RNA-seq to first generate transcriptome from three developmental stages of R. ferrugineus (pupa, 7th larva, female and male) to increase our understanding of the life cycle and molecular characteristics of R. ferrugineus. Results A total of 63,801 nonredundant full-length transcripts were generated with an average length of 2,964 bp from three developmental stages, including the 7th instar larva, pupa, female adult and male adult. These transcripts showed a high annotation rate in seven public databases, with 54,999 (86.20%) successfully annotated. Meanwhile, 2,184 alternative splicing (AS) events, 2,084 transcription factors (TFs), 66,230 simple sequence repeats (SSR) and 9,618 Long noncoding RNAs (lncRNAs) were identified. In summary, our results provide a new source of full-length transcriptional data and information for the further study of gene expression and genetics in R. ferrugineus.
Collapse
Affiliation(s)
- Hongjun Yang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Danping Xu
- Sichuan Provincial Key Laboratory of Agricultural Products Processing and Preservative, College of Food Science, Sichuan Agricultural University, Yaan, Sichuan, China
| | - Zhihang Zhuo
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, Hainan, China.,Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jiameng Hu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Baoqian Lu
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture China, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| |
Collapse
|
36
|
Zhou Y, Wu M, Zhu H, Shao J, Liu C, Cui Y. Identification of LincRNA from Dermatophagoides farinae (Acari: Pyroglyphidae) for Potential Allergen-Related Targets. Genet Mol Biol 2020; 43:e20190243. [PMID: 32162651 PMCID: PMC7198022 DOI: 10.1590/1678-4685-gmb-2019-0243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/01/2019] [Indexed: 11/22/2022] Open
Abstract
Long noncoding RNAs (lncRNAs), especially their important subclass of long intergenic noncoding RNAs (lincRNAs), have been identified in some insects. They play important roles in the regulation of biological processes, such as immune response or cell differentiation and as possible evolutionary precursors for protein coding genes. House dust mites (HDMs) are recognized as allergenic mites because allergens are found in their feces and bodies. Dermatophagoides farinae is one of the most important pyroglyphid mites because of its abundance in the household. To determine if lincRNAs can regulate allergen presentation in HDMs, we analyzed RNA-seq data for HDMs. We identified 11 lincRNAs that are related to mRNAs coding for allergens in HDMs. Using qRT-PCR, we amplified 10 lincRNAs and their putative target allergen-encoding mRNAs, confirming expression of these lincRNAs and allergen genes. The results suggest that lincRNAs might be involved in the regulation of allergen production in HDMs and might represent potential acaricidal candidates to inhibit mite allergen production.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Pediatrics Laboratory, Wuxi Children's Hospital, Wuxi, China
| | - Meili Wu
- Department of Pediatrics Laboratory, Wuxi Children's Hospital, Wuxi, China
| | - Hanting Zhu
- Department of Clinical Laboratory, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Junjie Shao
- Chinese Academy of Medical Science, Institute of Medicinal Plant Development, Beijing, China
| | - Chang Liu
- Chinese Academy of Medical Science, Institute of Medicinal Plant Development, Beijing, China
| | - Yubao Cui
- Department of Clinical Laboratory, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| |
Collapse
|
37
|
Dettleff P, Hormazabal E, Aedo J, Fuentes M, Meneses C, Molina A, Valdes JA. Identification and Evaluation of Long Noncoding RNAs in Response to Handling Stress in Red Cusk-Eel (Genypterus chilensis) via RNA-seq. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:94-108. [PMID: 31748906 DOI: 10.1007/s10126-019-09934-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
The red cusk-eel (Genypterus chilensis) is a native species with strong potential to support Chilean aquaculture diversification. Under commercial conditions, fish are exposed to several stressors. To date, little is known about the mechanism involved in the stress response of red cusk-eel, and there is no information related to the regulation mediated by long noncoding RNAs (lncRNAs). The objective of this work was to identify for the first time the lncRNAs in the transcriptome of G. chilensis and to evaluate the differential expression levels of lncRNAs in the liver, head kidney, and skeletal muscle in response to handling stress. We used previously published transcriptome data to identify the lncRNAs by applying a series of filters based on annotation information in several databases to discard coding sequences. We identified a total of 14,614 putative lncRNAs in the transcriptome of red cusk-eel, providing a useful lncRNA reference resource to be used in future studies. We evaluated their differential expression in response to handling stress in the liver, head kidney, and skeletal muscle, identifying 112, 323, and 108 differentially expressed lncRNAs, respectively. The results suggest that handling stress in red cusk-eel generate an altered metabolic status in liver, altered immune response in head kidney, and skeletal muscle atrophy through an important coding and noncoding gene network. This is the first study that identifies lncRNAs in Genypterus genus and that evaluates the relation between handling stress and lncRNAs in teleost fish, thereby providing valuable information regarding noncoding responses to stress in Genypterus species.
Collapse
Affiliation(s)
- Phillip Dettleff
- Laboratory of Molecular Biotechnology, Faculty of Life Sciences, Andres Bello University, Republica 440, 8370186, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), 4070386, Concepción, Chile
| | - Elizabeth Hormazabal
- Laboratory of Molecular Biotechnology, Faculty of Life Sciences, Andres Bello University, Republica 440, 8370186, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), 4070386, Concepción, Chile
| | - Jorge Aedo
- Laboratory of Molecular Biotechnology, Faculty of Life Sciences, Andres Bello University, Republica 440, 8370186, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), 4070386, Concepción, Chile
| | - Marcia Fuentes
- Laboratory of Molecular Biotechnology, Faculty of Life Sciences, Andres Bello University, Republica 440, 8370186, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), 4070386, Concepción, Chile
| | - Claudio Meneses
- Plant Biotechnology Center, Andres Bello University, 8370186, Santiago, Chile
- FONDAP Center for Genome Regulation, Andres Bello University, 8370186, Santiago, Chile
| | - Alfredo Molina
- Laboratory of Molecular Biotechnology, Faculty of Life Sciences, Andres Bello University, Republica 440, 8370186, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), 4070386, Concepción, Chile
- CIMARQ, Andres Bello University, Quintay, Chile
| | - Juan Antonio Valdes
- Laboratory of Molecular Biotechnology, Faculty of Life Sciences, Andres Bello University, Republica 440, 8370186, Santiago, Chile.
- Interdisciplinary Center for Aquaculture Research (INCAR), 4070386, Concepción, Chile.
- CIMARQ, Andres Bello University, Quintay, Chile.
| |
Collapse
|
38
|
Fabrick JA, Mathew LG, LeRoy DM, Hull JJ, Unnithan GC, Yelich AJ, Carrière Y, Li X, Tabashnik BE. Reduced cadherin expression associated with resistance to Bt toxin Cry1Ac in pink bollworm. PEST MANAGEMENT SCIENCE 2020; 76:67-74. [PMID: 31140680 DOI: 10.1002/ps.5496] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 05/29/2023]
Abstract
BACKGROUND Better understanding of the molecular basis of resistance is needed to improve management of pest resistance to transgenic crops that produce insecticidal proteins from Bacillus thuringiensis (Bt). Here we analyzed resistance of the pink bollworm (Pectinophora gossypiella) to Bt toxin Cry1Ac, which is used widely in transgenic Bt cotton. Field-evolved practical resistance of pink bollworm to Cry1Ac is widespread in India, but not in China or the United States. Previous work with laboratory- and field-selected pink bollworm indicated that resistance to Cry1Ac is caused by changes in the amino acid sequence of a midgut cadherin protein (PgCad1) that binds Cry1Ac in susceptible larvae. RESULTS Relative to a susceptible strain, the laboratory-selected APHIS-R strain had 530-fold resistance to Cry1Ac with autosomal recessive inheritance. Unlike previous results, resistance in this strain was not consistently associated with insertions or deletions in the expected amino acid sequence of PgCad1. However, this resistance was associated with 79- to 190-fold reduced transcription of the PgCad1 gene and markedly lower abundance of PgCad1 protein. CONCLUSION The ability of pink bollworm and other major pests to evolve resistance to Bt toxins via both qualitative and quantitative changes in receptor proteins demonstrates their remarkable adaptability and presents challenges for monitoring and managing resistance to Bt crops. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jeffrey A Fabrick
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Arid Land Agricultural Research Center, Maricopa, AZ, USA
| | - Lolita G Mathew
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Arid Land Agricultural Research Center, Maricopa, AZ, USA
- Pairwise Plants, Research Triangle Park, NC, USA
| | - Dannialle M LeRoy
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Arid Land Agricultural Research Center, Maricopa, AZ, USA
| | - J Joe Hull
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Arid Land Agricultural Research Center, Maricopa, AZ, USA
| | | | - Alex J Yelich
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Yves Carrière
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Xianchun Li
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | | |
Collapse
|
39
|
Guan R, Li H, Zhang H, An S. Comparative analysis of dsRNA-induced lncRNAs in three kinds of insect species. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21640. [PMID: 31667893 DOI: 10.1002/arch.21640] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/24/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Long noncoding RNAs (lncRNAs) that have immune responses to various stimuli have been identified in some insects. One type of pathogen-associated molecular pattern, double-stranded RNA (dsRNA), can trigger the RNA interference (RNAi) pathway and immune response. Interestingly, there has been no research into characterizing the relationship between lncRNA and dsRNA-induced RNAi pathways. In this study, dsRNA-induced lncRNAs were investigated in two species of lepidopteran insects, Helicoverpa armigera and Plutella xylostella, and one species of coleopteran insects, Tribolium castaneum. Between untreated group and dsRNA-induced group; 3,463 H. armigera, 6,245 P. xylostella, and 3,067 T. castaneum differentially expressed lncRNAs were identified while 156 H. armigera, 247 P. xylostella, 415 T. castaneum lncRNAs and their putative target genes showed consistent changes in gene expression. In T. castaneum, most target genes of the differentially expressed lncRNAs are enriched in the cyclic adenosine monophosphate signaling pathway, ABC transporters, and Janus kinase-signal transducers and activators of the transcription signaling pathway. Conversely, in H. armigera and P. xylostella, the differentially expressed lncRNAs were mainly enriched in the metabolic, digestive, and synthetic signaling pathways. This result indicates that dsRNA-induced lncRNA is species-dependent. We also found that both Dicer-2 and the lncRNA that targets Dicer-2 were significantly upregulated after dsRNA treatment in P. xylostella, indicating that some lncRNAs may be involved in the regulation of the core RNAi pathway in insects. Our results are the first to identify a relationship between lncRNAs and dsRNA in various insect species with different RNAi efficiencies. These results provide a reference for future study of the dsRNA-induced RNAi pathway and different RNAi efficiencies among insect species.
Collapse
Affiliation(s)
- Ruobing Guan
- State Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Haichao Li
- State Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Hao Zhang
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Shiheng An
- State Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
40
|
Qiao J, Du Y, Yu J, Guo J. MicroRNAs as Potential Biomarkers of Insecticide Exposure: A Review. Chem Res Toxicol 2019; 32:2169-2181. [PMID: 31625722 DOI: 10.1021/acs.chemrestox.9b00236] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Insecticides are key weapons for the control of pests. Large scale use of insecticides is harmful to the ecosystem, which is made up of a wide range of species and environments. MicroRNAs (miRNAs) are a class of endogenous single-stranded noncoding small RNAs in length of 20-24 nucleotides (nt), which extensively regulate expression of genes at transcriptional and post-transcriptional levels. The current research on miRNA-induced insecticide resistance reveals that dysregulated miRNAs cause significant changes in detoxification genes, particularly cytochrome P450s. Meanwhile, insecticide-induced changes in miRNAs are related to the decline of honeybees and threatened the development of zebrafish and other animals. Additionally, miRNAs are involved in insecticide-induced cytotoxicity, and dysregulated miRNAs are associated with human occupational and environmental exposure to insecticides. Therefore, miRNAs are valuable novel biomarkers of insecticide exposure, and they are potential factors to explain the toxicological effects of insecticides.
Collapse
Affiliation(s)
- Jiakai Qiao
- College of Life Sciences and Medicine , Zhejiang Sci-Tech University , Hangzhou , Zhejiang 310018 , China
| | - Yuting Du
- College of Life Sciences and Medicine , Zhejiang Sci-Tech University , Hangzhou , Zhejiang 310018 , China
| | - Junjie Yu
- College of Life Sciences and Medicine , Zhejiang Sci-Tech University , Hangzhou , Zhejiang 310018 , China
| | - Jiangfeng Guo
- College of Life Sciences and Medicine , Zhejiang Sci-Tech University , Hangzhou , Zhejiang 310018 , China
| |
Collapse
|
41
|
Huang X, Lv M, Xu H. Semisynthesis of novel N-acyl/sulfonyl derivatives of 5(3,5)-(di)halogenocytisines/cytisine and their pesticidal activities against Mythimna separata Walker, Tetranychus cinnabarinus Boisduval, and Sitobion avenae Fabricius. PEST MANAGEMENT SCIENCE 2019; 75:2598-2609. [PMID: 30740869 DOI: 10.1002/ps.5375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/24/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND To discover novel natural product-based pesticidal agents for crop protection, a series of N-acyl/sulfonyl derivatives of 5(3,5)-(di)halogenocytisines/cytisine were prepared by structural modifications of cytisine. Their pesticidal activities were evaluated against three typically crop-threatening agricultural pests, Mythimna separata Walker, Tetranychus cinnabarinus Boisduval, and Sitobion avenae Fabricius. RESULTS Compound 5f exhibited the promising pesticidal activities against three tested pests. All N-phenylsulfonylcytisine derivatives showed potent acaricidal activity. Compound 5j exhibited 2.5-fold more potent acaricidal activity than cytisine, and showed good control effects. Intermediates 2, and 3/3' displayed pronounced aphicidal activity. Some interesting results of structure-activity relationships were also obtained. CONCLUSION These results demonstrate that compounds 5f and 5j could be further modified as pesticidal agents. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaobo Huang
- Research Institute of Pesticidal Design & Synthesis, College of Plant Protection, Northwest A & F University, Yangling, People's Republic of China
| | - Min Lv
- Research Institute of Pesticidal Design & Synthesis, College of Plant Protection, Northwest A & F University, Yangling, People's Republic of China
| | - Hui Xu
- Research Institute of Pesticidal Design & Synthesis, College of Plant Protection, Northwest A & F University, Yangling, People's Republic of China
- College of Chemistry and Pharmacy, Northwest A & F University, Yangling, People's Republic of China
| |
Collapse
|
42
|
Ali A, Abd El Halim HM. Re-thinking adaptive immunity in the beetles: Evolutionary and functional trajectories of lncRNAs. Genomics 2019; 112:1425-1436. [PMID: 31442561 DOI: 10.1016/j.ygeno.2019.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/04/2019] [Accepted: 08/16/2019] [Indexed: 12/24/2022]
Abstract
Unlike vertebrate animals, invertebrates lack lymphocytes and therefore have historically been believed not to develop immune memory. A few studies have reported evidence of immune priming in insects; however, these studies lack the molecular mechanism and proposed it might be different among taxa. Since lncRNAs are known to regulate the immune response, we identified 10,120 lncRNAs in Tribolium castaneum genome-wide followed by transcriptome analysis of primed and unprimed larvae of different infectious status. A shift in lncRNA expression between Btt primed larvae and other treatment groups provides evidence of immune memory response. A few "priming" lncRNAs (n = 9) were uniquely regulated in Btt primed larvae. Evidence suggests these lncRNAs are likely controlling immune priming in Tribolium by regulating expression of genes involved in proteasomal machinery, Notch system, zinc metabolism, and methyltransferase activity, which are necessary to modulate phagocytosis. Our results support a conserved immune priming mechanism in a macrophage-dependent manner.
Collapse
Affiliation(s)
- Ali Ali
- Department of Biology and Molecular Biosciences Program, Middle Tennessee State University, Murfreesboro, TN 37132, United States of America; Department of Zoology, Faculty of Science, Benha University, Benha, Egypt.
| | | |
Collapse
|
43
|
Chen D, Chen H, Du Y, Zhou D, Geng S, Wang H, Wan J, Xiong C, Zheng Y, Guo R. Genome-Wide Identification of Long Non-Coding RNAs and Their Regulatory Networks Involved in Apis mellifera ligustica Response to Nosema ceranae Infection. INSECTS 2019; 10:insects10080245. [PMID: 31405016 PMCID: PMC6723323 DOI: 10.3390/insects10080245] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 12/23/2022]
Abstract
Long non-coding RNAs (lncRNAs) are a diverse class of transcripts that structurally resemble mRNAs but do not encode proteins, and lncRNAs have been proven to play pivotal roles in a wide range of biological processes in animals and plants. However, knowledge of expression patterns and potential roles of honeybee lncRNA response to Nosema ceranae infection is completely unknown. Here, we performed whole transcriptome strand-specific RNA sequencing of normal midguts of Apis mellifera ligustica workers (Am7CK, Am10CK) and N. ceranae-inoculated midguts (Am7T, Am10T), followed by comprehensive analyses using bioinformatic and molecular approaches. A total of 6353 A. m. ligustica lncRNAs were identified, including 4749 conserved lncRNAs and 1604 novel lncRNAs. These lncRNAs had minimal sequence similarities with other known lncRNAs in other species; however, their structural features were similar to counterparts in mammals and plants, including shorter exon and intron length, lower exon number, and lower expression level, compared with protein-coding transcripts. Further, 111 and 146 N. ceranae-responsive lncRNAs were identified from midguts at 7-days post-inoculation (dpi) and 10 dpi compared with control midguts. Twelve differentially expressed lncRNAs (DElncRNAs) were shared by Am7CK vs. Am7T and Am10CK vs. Am10T comparison groups, while the numbers of unique DElncRNAs were 99 and 134, respectively. Functional annotation and pathway analysis showed that the DElncRNAs may regulate the expression of neighboring genes by acting in cis and trans fashion. Moreover, we discovered 27 lncRNAs harboring eight known miRNA precursors and 513 lncRNAs harboring 2257 novel miRNA precursors. Additionally, hundreds of DElncRNAs and their target miRNAs were found to form complex competitive endogenous RNA (ceRNA) networks, suggesting that these DElncRNAs may act as miRNA sponges. Furthermore, DElncRNA-miRNA-mRNA networks were constructed and investigated, the results demonstrated that a portion of the DElncRNAs were likely to participate in regulating the host material and energy metabolism as well as cellular and humoral immune host responses to N. ceranae invasion. Our findings revealed here offer not only a rich genetic resource for further investigation of the functional roles of lncRNAs involved in the A. m. ligustica response to N. ceranae infection, but also a novel insight into understanding the host-pathogen interaction during honeybee microsporidiosis.
Collapse
Affiliation(s)
- Dafu Chen
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huazhi Chen
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yu Du
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dingding Zhou
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sihai Geng
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haipeng Wang
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jieqi Wan
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cuiling Xiong
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanzhen Zheng
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rui Guo
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
44
|
Li S, Hussain F, Unnithan GC, Dong S, UlAbdin Z, Gu S, Mathew LG, Fabrick JA, Ni X, Carrière Y, Tabashnik BE, Li X. A long non-coding RNA regulates cadherin transcription and susceptibility to Bt toxin Cry1Ac in pink bollworm, Pectinophora gossypiella. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 158:54-60. [PMID: 31378361 DOI: 10.1016/j.pestbp.2019.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/05/2019] [Accepted: 04/17/2019] [Indexed: 05/29/2023]
Abstract
Extensive planting of transgenic crops producing insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) has spurred increasingly rapid evolution of resistance in pests. In the pink bollworm, Pectinophora gossypiella, a devastating global pest, resistance to Bt toxin Cry1Ac produced by transgenic cotton is linked with mutations in a gene (PgCad1) encoding a cadherin protein that binds Cry1Ac in the larval midgut. We previously reported a long non-coding RNA (lncRNA) in intron 20 of cadherin alleles associated with both resistance and susceptibility to Cry1Ac. Here we tested the hypothesis that reducing expression of this lncRNA decreases transcription of PgCad1 and susceptibility to Cry1Ac. Quantitative RT-PCR showed that feeding susceptible neonates small interfering RNAs (siRNAs) targeting this lncRNA but not PgCad1 decreased the abundance of transcripts of both the lncRNA and PgCad1. Moreover, neonates fed the siRNAs had lower susceptibility to Cry1Ac. The results imply that the lncRNA increases transcription of PgCad1 and susceptibility of pink bollworm to Cry1Ac. The results suggest that disruption of lncRNA expression could be a novel mechanism of pest resistance to Bt toxins.
Collapse
Affiliation(s)
- Shengyun Li
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Fiaz Hussain
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA; Insect Molecular Biology Lab, Department of Entomology, University of Agriculture, Faisalabad 38040, Pakistan
| | | | - Shuanglin Dong
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zain UlAbdin
- Insect Molecular Biology Lab, Department of Entomology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Shaohua Gu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lolita G Mathew
- USDA, ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ 85138, USA
| | - Jeffrey A Fabrick
- USDA, ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ 85138, USA
| | - Xinzhi Ni
- USDA, ARS Crop Genetics and Breeding Research Unit, Tifton, GA 31793, USA
| | - Yves Carrière
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Bruce E Tabashnik
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Xianchun Li
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
45
|
Vaschetto LM, Beccacece HM. The emerging importance of noncoding RNAs in the insecticide tolerance, with special emphasis on Plutella xylostella (Lepidoptera: Plutellidae). WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1539. [PMID: 31045325 DOI: 10.1002/wrna.1539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/20/2019] [Accepted: 04/02/2019] [Indexed: 01/11/2023]
Abstract
Recently generated high-throughput sequencing data sets have shed light on the important regulatory roles of noncoding RNA (ncRNA) molecules in the development of higher organisms. Nowadays it is well-known that regulatory ncRNAs can bind complementary RNA or DNA sequences and recruit chromatin remodelers to selectively modulate gene expression. Consequently, genome sequencing and transcriptomics technologies are now being used to reveal hidden associations among ncRNAs and distinct biological mechanisms. This is the case for the diamondback moth Plutella xylostella, a worldwide pest known to infest cruciferous crops and to display resistance to most insecticides, including Bacillus thuringiensis (Bt) based biopesticides. In P. xylostella, it is thought that ncRNAs could play important roles in both development and insecticide resistance. This review will highlight recent insights into the roles of ncRNAs in P. xylostella and related lepidopterans, and will outline genetic engineering technologies which might be used to design efficient ncRNA-based pest control strategies. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- Luis María Vaschetto
- Instituto de Diversidad y Ecología Animal, Consejo Nacional de Investigaciones Científicas y Técnicas (IDEA, CONICET), Córdoba, Argentina.,Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba (FCEFyN, UNC), Córdoba, Argentina
| | - Hernán Mario Beccacece
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba (FCEFyN, UNC), Córdoba, Argentina.,Instituto de Investigaciones Biológicas y Tecnológicas Consejo Nacional de Investigaciones Científicas y Técnicas (IIByT, CONICET), Córdoba, Argentina
| |
Collapse
|
46
|
Xu M, Xu J, Hao M, Zhang K, Lv M, Xu H. Evaluation of andrographolide-based analogs derived from Andrographis paniculata against Mythimna separata Walker and Tetranychus cinnabarinus Boisduval. Bioorg Chem 2019; 86:28-33. [DOI: 10.1016/j.bioorg.2019.01.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/27/2018] [Accepted: 01/09/2019] [Indexed: 12/13/2022]
|
47
|
Pegueroles C, Iraola-Guzmán S, Chorostecki U, Ksiezopolska E, Saus E, Gabaldón T. Transcriptomic analyses reveal groups of co-expressed, syntenic lncRNAs in four species of the genus Caenorhabditis. RNA Biol 2019; 16:320-329. [PMID: 30691342 PMCID: PMC6380332 DOI: 10.1080/15476286.2019.1572438] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/18/2018] [Accepted: 01/13/2019] [Indexed: 01/24/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are a heterogeneous class of genes that do not code for proteins. Since lncRNAs (or a fraction thereof) are expected to be functional, many efforts have been dedicated to catalog lncRNAs in numerous organisms, but our knowledge of lncRNAs in non vertebrate species remains very limited. Here, we annotated lncRNAs using transcriptomic data from the same larval stage of four Caenorhabditis species. The number of annotated lncRNAs in self-fertile nematodes was lower than in out-crossing species. We used a combination of approaches to identify putatively homologous lncRNAs: synteny, sequence conservation, and structural conservation. We classified a total of 1,532 out of 7,635 genes from the four species into families of lncRNAs with conserved synteny and expression at the larval stage, suggesting that a large fraction of the predicted lncRNAs may be species specific. Despite both sequence and local secondary structure seem to be poorly conserved, sequences within families frequently shared BLASTn hits and short sequence motifs, which were more likely to be unpaired in the predicted structures. We provide the first multi-species catalog of lncRNAs in nematodes and identify groups of lncRNAs with conserved synteny and expression, that share exposed motifs.
Collapse
Affiliation(s)
- Cinta Pegueroles
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Susana Iraola-Guzmán
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Uciel Chorostecki
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Ewa Ksiezopolska
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Ester Saus
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Toni Gabaldón
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
48
|
Yang R, Lv M, Xu H. Synthesis of Piperine Analogs Containing Isoxazoline/Pyrazoline Scaffold and Their Pesticidal Bioactivities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11254-11264. [PMID: 30295024 DOI: 10.1021/acs.jafc.8b03690] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In continuation of our program to discover new potential pesticidal agents, thirty-one piperine analogs containing isoxazoline/pyrazoline scaffold were prepared, and confirmed by infrared spectra, proton/carbon-13 nuclear magnetic resonance spectra, and high-resolution mass spectra. The structures of compounds VIIb and VIIIc were further determined by 1H-1H COSY spectra. Especially the configuration of compound VIIIc was unambiguously confirmed by single-crystal X-ray diffraction. Their pesticidal activities were evaluated against three serious and typically crop-threatening agricultural pests, Tetranychus cinnabarinus Boisduval (spider mite), Mythimna separata Walker (Oriental armyworm), and Plutella xylostella Linnaeus (diamondback moth). Compounds VIIIb and VIIIc exhibited greater than 40-fold more potent acaricidal activity than the lead compound piperine against T. cinnabarinus. Notably, compounds VIa-c exhibited more pronounced oral toxicity against P. xylostella than toosendanin; compounds VIb and VIc displayed more promising growth inhibitory activity against M. separata than toosendanin. It demonstrated that the methylenedioxy and isoxazoline scaffolds were important for the oral toxicity and growth inhibitory activity against P. xylostella and M. separata, respectively; the ethylenedioxy and isoxazoline scaffolds were vital for the acaricidal activity against T. cinnabarinus. Moreover, compounds VIb, VIIf, and VIIIc showed very low toxicity against NRK-52E cells.
Collapse
Affiliation(s)
- Ruige Yang
- Research Institute of Pesticidal Design & Synthesis, College of Chemistry and Pharmacy/Plant Protection , Northwest A&F University , Yangling 712100 , Shaanxi Province , China
| | - Min Lv
- Research Institute of Pesticidal Design & Synthesis, College of Chemistry and Pharmacy/Plant Protection , Northwest A&F University , Yangling 712100 , Shaanxi Province , China
| | - Hui Xu
- Research Institute of Pesticidal Design & Synthesis, College of Chemistry and Pharmacy/Plant Protection , Northwest A&F University , Yangling 712100 , Shaanxi Province , China
| |
Collapse
|
49
|
Sun W, Feng J. Differential lncRNA expression profiles reveal the potential roles of lncRNAs in antiviral immune response of Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2018; 81:233-241. [PMID: 30010017 DOI: 10.1016/j.fsi.2018.07.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
Long noncoding RNAs (lncRNAs) may play widespread roles in various biological processes. However, systematic profiles of lncRNAs in the biological responses of Pacific Oyster (Crassostrea gigas) to pathogen infection have not yet been demonstrated. Here, we have conducted an exhaustive comparative transcriptome analysis using a bioinformatics approach to exam the functions of lncRNAs response to Ostreid herpesvirus 1μVar (OsHV-1μVar) challenge. In total, 101 differentially expressed lncRNAs (DE-lncRNA) during OsHV-1μVar infections were identified. Compared with differentially expressed mRNAs (DE-mRNA), DE-lncRNAs are shorter in terms of overall length but longer in terms of exon length. These lncRNAs shared similar characteristics with previously reported invertebrate lncRNAs, such as relatively low GC content, low exon number and low sequence conservation, but low expression level were not observed. 20 DE-lncRNAs are typically co-expressed with their neighboring genes annotated as GO terms (GO: 0044237), indicating that these lncRNAs are involved in binding and cellular process functions in cis mode. The weighted gene co-expression network (WGCNA) analysis resulted in 15 modules. The highlighted blue module was specifically demonstrated a co-expression relationship between 14 DE-lncRNAs and 17 immune-related DE-mRNAs (IR-DE-mRNA). Three hub lncRNAs within this module were co-expressed with one hub IR-DE-mRNA involved in fibrinogen-related protein. It was speculated that lncRNAs is extensively involved in oyster antiviral innate immune system. The present study will facilitate subsequently experimental studies to unravel the function of lncRNAs in marine invertebrate response to pathogen infection.
Collapse
Affiliation(s)
- Weiming Sun
- Ocean School, Yantai University, Yantai 264005, China.
| | - Jixing Feng
- Ocean School, Yantai University, Yantai 264005, China
| |
Collapse
|
50
|
Zhou QZ, Fang SM, Zhang Q, Yu QY, Zhang Z. Identification and comparison of long non-coding RNAs in the silk gland between domestic and wild silkworms. INSECT SCIENCE 2018; 25:604-616. [PMID: 28111905 DOI: 10.1111/1744-7917.12443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/03/2016] [Accepted: 12/29/2016] [Indexed: 06/06/2023]
Abstract
Under long-term artificial selection, the domestic silkworm (Bombyx mori) has increased its silk yield tremendously in comparison with its wild progenitor, Bombyx mandarina. However, the molecular mechanism of silk yield increase is still unknown. Comparative analysis of long non-coding RNAs (lncRNAs) may provide some insights into understanding this phenotypic variation. In this study, using RNA sequencing technology data of silk gland in domestic and wild silkworms, we identified 599 lncRNAs in the silk gland of the silkworm. Compared with protein-coding genes, the silk gland lncRNA genes tend to have fewer exon numbers, shorter transcript length and lower GC-content. Moreover, we found that three lncRNA genes are significantly and differentially expressed between domestic and wild silkworms. The potential targets of two differentially expressed lncRNAs (DELs) (dw4sg_0040 and dw4sg_0483) and the expression-correlated genes with the two DELs are mainly enriched in the related processes of silk protein translation. This implies that these DELs may affect the phenotypic variation in silk yield between the domestic and wild silkworms through the post-transcriptional regulation of silk protein.
Collapse
Affiliation(s)
- Qiu-Zhong Zhou
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing, China
| | - Shou-Min Fang
- College of Life Science, China West Normal University, Nanchong, Sichuan, China
| | - Qiang Zhang
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing, China
| | - Quan-You Yu
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing, China
| | - Ze Zhang
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|