1
|
Byun KA, Lee JH, Lee SY, Oh S, Batsukh S, Cheon GW, Lee D, Hong JH, Son KH, Byun K. Piezo1 Activation Drives Enhanced Collagen Synthesis in Aged Animal Skin Induced by Poly L-Lactic Acid Fillers. Int J Mol Sci 2024; 25:7232. [PMID: 39000341 PMCID: PMC11242599 DOI: 10.3390/ijms25137232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Poly L-lactic acid (PLLA) fillers stimulate collagen synthesis by activating various immune cells and fibroblasts. Piezo1, an ion channel, responds to mechanical stimuli, including changes in extracellular matrix stiffness, by mediating Ca2+ influx. Given that elevated intracellular Ca2+ levels trigger signaling pathways associated with fibroblast proliferation, Piezo1 is a pivotal regulator of collagen synthesis and tissue fibrosis. The aim of the present study was to investigate the impact of PLLA on dermal collagen synthesis by activating Piezo1 in both an H2O2-induced cellular senescence model in vitro and aged animal skin in vivo. PLLA elevated intracellular Ca2+ levels in senescent fibroblasts, which was attenuated by the Piezo1 inhibitor GsMTx4. Furthermore, PLLA treatment increased the expression of phosphorylated ERK1/2 to total ERK1/2 (pERK1/2/ERK1/2) and phosphorylated AKT to total AKT (pAKT/AKT), indicating enhanced pathway activation. This was accompanied by upregulation of cell cycle-regulating proteins (CDK4 and cyclin D1), promoting the proliferation of senescent fibroblasts. Additionally, PLLA promoted the expression of phosphorylated mTOR/S6K1/4EBP1, TGF-β, and Collagen I/III in senescent fibroblasts, with GsMTx4 treatment mitigating these effects. In aged skin, PLLA treatment similarly upregulated the expression of pERK1/2/ERK1/2, pAKT/AKT, CDK4, cyclin D1, mTOR/S6K1/4EBP1, TGF-β, and Collagen I/III. In summary, our findings suggest Piezo1's involvement in PLLA-induced collagen synthesis, mediated by heightened activation of cell proliferation signaling pathways such as pERK1/2/ERK1/2, pAKT/AKT, and phosphorylated mTOR/S6K1/4EBP1, underscoring the therapeutic potential of PLLA in tissue regeneration.
Collapse
Affiliation(s)
- Kyung-A Byun
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- LIBON Inc., Incheon 22006, Republic of Korea
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Je Hyuk Lee
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Doctorbom Clinic, Seoul 06614, Republic of Korea
| | - So Young Lee
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| | - Seyeon Oh
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Sosorburam Batsukh
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Gwahn-woo Cheon
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Maylin Clinic, Pangyo 13529, Republic of Korea
| | - Dongun Lee
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health & Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea (J.H.H.)
| | - Jeong Hee Hong
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health & Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea (J.H.H.)
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| | - Kyunghee Byun
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health & Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea (J.H.H.)
| |
Collapse
|
2
|
Wang J, Zhang Z, Liang R, Chen W, Li Q, Xu J, Zhao H, Xing D. Targeting lymph nodes for enhanced cancer vaccination: From nanotechnology to tissue engineering. Mater Today Bio 2024; 26:101068. [PMID: 38711936 PMCID: PMC11070719 DOI: 10.1016/j.mtbio.2024.101068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/02/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024] Open
Abstract
Lymph nodes (LNs) occupy a critical position in initiating and augmenting immune responses, both spatially and functionally. In cancer immunotherapy, tumor-specific vaccines are blooming as a powerful tool to suppress the growth of existing tumors, as well as provide preventative efficacy against tumorigenesis. Delivering these vaccines more efficiently to LNs, where antigen-presenting cells (APCs) and T cells abundantly reside, is under extensive exploration. Formulating vaccines into nanomedicines, optimizing their physiochemical properties, and surface modification to specifically bind molecules expressed on LNs or APCs, are common routes and have brought encouraging outcomes. Alternatively, porous scaffolds can be engineered to attract APCs and provide an environment for them to mature, proliferate and migrate to LNs. A relatively new research direction is inducing the formation of LN-like organoids, which have shown positive relevance to tumor prognosis. Cutting-edge advances in these directions and discussions from a future perspective are given here, from which the up-to-date pattern of cancer vaccination will be drawn to hopefully provide basic guidance to future studies.
Collapse
Affiliation(s)
- Jie Wang
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Zongying Zhang
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Rongxiang Liang
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, 266033, China
| | - Wujun Chen
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Qian Li
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Jiazhen Xu
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Hongmei Zhao
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Dongming Xing
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
3
|
Li ZZ, Zhong NN, Cao LM, Cai ZM, Xiao Y, Wang GR, Liu B, Xu C, Bu LL. Nanoparticles Targeting Lymph Nodes for Cancer Immunotherapy: Strategies and Influencing Factors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308731. [PMID: 38327169 DOI: 10.1002/smll.202308731] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/07/2024] [Indexed: 02/09/2024]
Abstract
Immunotherapy has emerged as a potent strategy in cancer treatment, with many approved drugs and modalities in the development stages. Despite its promise, immunotherapy is not without its limitations, including side effects and suboptimal efficacy. Using nanoparticles (NPs) as delivery vehicles to target immunotherapy to lymph nodes (LNs) can improve the efficacy of immunotherapy drugs and reduce side effects in patients. In this context, this paper reviews the development of LN-targeted immunotherapeutic NP strategies, the mechanisms of NP transport during LN targeting, and their related biosafety risks. NP targeting of LNs involves either passive targeting, influenced by NP physical properties, or active targeting, facilitated by affinity ligands on NP surfaces, while alternative methods, such as intranodal injection and high endothelial venule (HEV) targeting, have uncertain clinical applicability and require further research and validation. LN targeting of NPs for immunotherapy can reduce side effects and increase biocompatibility, but risks such as toxicity, organ accumulation, and oxidative stress remain, although strategies such as biodegradable biomacromolecules, polyethylene glycol (PEG) coating, and impurity addition can mitigate these risks. Additionally, this work concludes with a future-oriented discussion, offering critical insights into the field.
Collapse
Affiliation(s)
- Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| | - Nian-Nian Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| | - Lei-Ming Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| | - Ze-Min Cai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| | - Yao Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| | - Guang-Rui Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| | - Chun Xu
- School of Dentistry, The University of Queensland, 288 Herston Road, Brisbane, 4066, Australia
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| |
Collapse
|
4
|
Slezak A, Chang K, Hossainy S, Mansurov A, Rowan SJ, Hubbell JA, Guler MO. Therapeutic synthetic and natural materials for immunoengineering. Chem Soc Rev 2024; 53:1789-1822. [PMID: 38170619 PMCID: PMC11557218 DOI: 10.1039/d3cs00805c] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Immunoengineering is a rapidly evolving field that has been driving innovations in manipulating immune system for new treatment tools and methods. The need for materials for immunoengineering applications has gained significant attention in recent years due to the growing demand for effective therapies that can target and regulate the immune system. Biologics and biomaterials are emerging as promising tools for controlling immune responses, and a wide variety of materials, including proteins, polymers, nanoparticles, and hydrogels, are being developed for this purpose. In this review article, we explore the different types of materials used in immunoengineering applications, their properties and design principles, and highlight the latest therapeutic materials advancements. Recent works in adjuvants, vaccines, immune tolerance, immunotherapy, and tissue models for immunoengineering studies are discussed.
Collapse
Affiliation(s)
- Anna Slezak
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
| | - Kevin Chang
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
| | - Samir Hossainy
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
| | - Aslan Mansurov
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
| | - Stuart J Rowan
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Jeffrey A Hubbell
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
| | - Mustafa O Guler
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
5
|
Gao X, Wang X, Li S, Saif Ur Rahman M, Xu S, Liu Y. Nanovaccines for Advancing Long-Lasting Immunity against Infectious Diseases. ACS NANO 2023; 17:24514-24538. [PMID: 38055649 DOI: 10.1021/acsnano.3c07741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Infectious diseases, particularly life-threatening pathogens such as small pox and influenza, have substantial implications on public health and global economies. Vaccination is a key approach to combat existing and emerging pathogens. Immunological memory is an essential characteristic used to evaluate vaccine efficacy and durability and the basis for the long-term effects of vaccines in protecting against future infections; however, optimizing the potency, improving the quality, and enhancing the durability of immune responses remains challenging and a focus for research involving investigation of nanovaccine technologies. In this review, we describe how nanovaccines can address the challenges for conventional vaccines in stimulating adaptive immune memory responses to protect against reinfection. We discuss protein and nonprotein nanoparticles as useful antigen platforms, including those with highly ordered and repetitive antigen array presentation to enhance immunogenicity through cross-linking with multiple B cell receptors, and with a focus on antigen properties. In addition, we describe how nanoadjuvants can improve immune responses by providing enhanced access to lymph nodes, lymphnode targeting, germinal center retention, and long-lasting immune response generation. Nanotechnology has the advantage to facilitate vaccine induction of long-lasting immunity against infectious diseases, now and in the future.
Collapse
Affiliation(s)
- Xinglong Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xinlian Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Shilin Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | | | - Shanshan Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, P.R. China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P.R. China
| |
Collapse
|
6
|
Mitrovic J, Richey G, Kim S, Guler MO. Peptide Hydrogels and Nanostructures Controlling Biological Machinery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11935-11945. [PMID: 37589176 PMCID: PMC10469456 DOI: 10.1021/acs.langmuir.3c01269] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Indexed: 08/18/2023]
Abstract
Peptides are versatile building blocks for the fabrication of various nanostructures that result in the formation of hydrogels and nanoparticles. Precise chemical functionalization promotes discrete structure formation, causing controlled bioactivity and physical properties for functional materials development. The conjugation of small molecules on amino acid side chains determines their intermolecular interactions in addition to their intrinsic peptide characteristics. Molecular information affects the peptide structure, formation, and activity. In this Perspective, peptide building blocks, nanostructure formation mechanisms, and the properties of these peptide materials are discussed with the results of recent publications. Bioinstructive and stimuli-responsive peptide materials have immense impacts on the nanomedicine field including drug delivery, cellular engineering, regenerative medicine, and biomedicine.
Collapse
Affiliation(s)
- Jovana Mitrovic
- The Pritzker School of Molecular
Engineering, The University of Chicago, Chicago, Illinois 60637 United States
| | - Gabriella Richey
- The Pritzker School of Molecular
Engineering, The University of Chicago, Chicago, Illinois 60637 United States
| | - Sarah Kim
- The Pritzker School of Molecular
Engineering, The University of Chicago, Chicago, Illinois 60637 United States
| | - Mustafa O. Guler
- The Pritzker School of Molecular
Engineering, The University of Chicago, Chicago, Illinois 60637 United States
| |
Collapse
|
7
|
Dong H, Li Q, Zhang Y, Ding M, Teng Z, Mou Y. Biomaterials Facilitating Dendritic Cell-Mediated Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301339. [PMID: 37088780 PMCID: PMC10288267 DOI: 10.1002/advs.202301339] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Dendritic cell (DC)-based cancer immunotherapy has exhibited remarkable clinical prospects because DCs play a central role in initiating and regulating adaptive immune responses. However, the application of traditional DC-mediated immunotherapy is limited due to insufficient antigen delivery, inadequate antigen presentation, and high levels of immunosuppression. To address these challenges, engineered biomaterials have been exploited to enhance DC-mediated immunotherapeutic effects. In this review, vital principal components that can enhance DC-mediated immunotherapeutic effects are first introduced. The parameters considered in the rational design of biomaterials, including targeting modifications, size, shape, surface, and mechanical properties, which can affect biomaterial optimization of DC functions, are further summarized. Moreover, recent applications of various engineered biomaterials in the field of DC-mediated immunotherapy are reviewed, including those serve as immune component delivery platforms, remodel the tumor microenvironment, and synergistically enhance the effects of other antitumor therapies. Overall, the present review comprehensively and systematically summarizes biomaterials related to the promotion of DC functions; and specifically focuses on the recent advances in biomaterial designs for DC activation to eradicate tumors. The challenges and opportunities of treatment strategies designed to amplify DCs via the application of biomaterials are discussed with the aim of inspiring the clinical translation of future DC-mediated cancer immunotherapies.
Collapse
Affiliation(s)
- Heng Dong
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Qiang Li
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Yu Zhang
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Meng Ding
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics and Information DisplaysJiangsu Key Laboratory for BiosensorsInstitute of Advanced MaterialsJiangsu National Synergetic Innovation Centre for Advanced MaterialsNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjingJiangsu210023P. R. China
| | - Yongbin Mou
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| |
Collapse
|
8
|
Oh S, Lee JH, Kim HM, Batsukh S, Sung MJ, Lim TH, Lee MH, Son KH, Byun K. Poly-L-Lactic Acid Fillers Improved Dermal Collagen Synthesis by Modulating M2 Macrophage Polarization in Aged Animal Skin. Cells 2023; 12:cells12091320. [PMID: 37174720 PMCID: PMC10177436 DOI: 10.3390/cells12091320] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Poly-L-lactic acid (PLLA) fillers correct cutaneous volume loss by stimulating fibroblasts to synthesize collagen and by augmenting the volume. PLLA triggers the macrophage-induced activation of fibroblasts that secrete transforming growth factor-β (TGF-β). However, whether M2 macrophage polarization is involved in PLLA-induced collagen synthesis via fibroblast activation in aged skin is not known. Therefore, we evaluated the effect of PLLA on dermal collagen synthesis via M2 polarization in an H2O2-induced cellular senescence model and aged animal skin. H2O2-treated macrophages had increased expression levels of the M1 marker CD80 and decreased expression levels of the M2 marker CD163, which were reversed by PLLA. The expression levels of interleukin (IL)-4 and IL-13, which mediate M2 polarization, were decreased in H2O2-treated macrophages and increased upon the PLLA treatment. CD163, IL-4, and IL-13 expression levels were decreased in aged skin, but increased after the PLLA treatment. The expression levels of TGF-β, pSMAD2/SMAD2, connective tissue growth factor (CTGF), alpha-smooth muscle actin (α-SMA), collagen type 1A1 (COL1A1), and COL3A1 were also decreased in aged skin, but increased after the PLLA treatment. Moreover, PLLA upregulated phosphatidylinositol 3-kinase p85α (PI3-kinase p85α)/protein kinase B (AKT) signaling, leading to fibroblast proliferation. PLLA decreased the expression of matrix metalloproteinase (MMP) 2 and MMP3, which destroy collagen and elastin fibers in aged skin. The amount of collagen and elastin fibers in aged skin increased following the PLLA treatment. In conclusion, PLLA causes M2 polarization by increasing IL-4 and IL-13 levels and upregulating TGF-β expression and collagen synthesis in aged skin.
Collapse
Affiliation(s)
- Seyeon Oh
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Je Hyuk Lee
- Doctorbom Clinic, Seoul 06614, Republic of Korea
- Department of Anatomy & Cell Biology, Gachon University College of Medicine, Incheon 21936, Republic of Korea
| | - Hyoung Moon Kim
- Department of Anatomy & Cell Biology, Gachon University College of Medicine, Incheon 21936, Republic of Korea
| | - Sosorburam Batsukh
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- Department of Anatomy & Cell Biology, Gachon University College of Medicine, Incheon 21936, Republic of Korea
| | | | | | | | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| | - Kyunghee Byun
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- Department of Anatomy & Cell Biology, Gachon University College of Medicine, Incheon 21936, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health & Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
9
|
Self-assembled flagella protein nanofibers induce enhanced mucosal immunity. Biomaterials 2022; 288:121733. [PMID: 36038418 DOI: 10.1016/j.biomaterials.2022.121733] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 12/28/2022]
Abstract
Nanofibers are potential vaccines or adjuvants for vaccination at the mucosal interface. However, how their lengths affect the mucosal immunity is not well understood. Using length-tunable flagella (self-assembled from a protein termed flagellin) as model protein nanofibers, we studied the mechanisms of their interaction with mucosal interface to induce immune responses length-dependently. Briefly, through tuning flagellin assembly, length-controlled protein nanofibers were prepared. The shorter nanofibers exhibited more pronounced toll-like receptor 5 (TLR5) and inflammasomes activation accompanied by pyroptosis, as a result of cellular uptake, lysosomal damage, and mitochondrial reactive oxygen species generation. Accordingly, the shorter nanofibers elevated the IgA level in mucosal secretions and enhanced the serum IgG level in ovalbumin-based intranasal vaccinations. These mucosal and systematic antibody responses were correlated with the mucus penetration capacity of the nanofibers. Intranasal administration of vaccines (human papillomavirus type 16 peptides) adjuvanted with shorter nanofibers significantly elicited cytotoxic T lymphocyte responses, strongly inhibiting tumor growth and improving survival rates in a TC-1 cervical cancer model. This work suggests that length-dependent immune responses of nanofibers can be elucidated for designing nanofibrous vaccines and adjuvants for both infectious diseases and cancer.
Collapse
|
10
|
Li Q, Teng Z, Tao J, Shi W, Yang G, Zhang Y, Su X, Chen L, Xiu W, Yuwen L, Dong H, Mou Y. Elastic Nanovaccine Enhances Dendritic Cell-Mediated Tumor Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201108. [PMID: 35734820 DOI: 10.1002/smll.202201108] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Nanovaccine-based immunotherapy (NBI) has the ability to initiate dendritic cell (DC)-mediated tumor-specific immune responses and maintain long-term antitumor immune memory. To date, the mechanism by which the mechanical properties of nanoparticles alter the functions of DCs in NBI remains largely unclear. Here, a soft mesoporous organosilica-based nanovaccine (SMONV) is prepared and the elasticity-dependent effect of the nanovaccine on the underlying DC-mediated immune responses is studied. It is found that the elasticity results in greater internalization of SMONV by DCs, followed by the induction of substantial cytosolic delivery of antigens via endosomal escape, leading to effective DC maturation and antigen cross-presentation. Impressively, elasticity enables SMONV to enhance lymphatic drainage of antigens in vivo, thus stimulating robust humoral and cellular immunity. The results from therapeutic tumor vaccination further reveal that subcutaneously administered SMONV effectively suppresses tumor growth in tumor-bearing mice by evoking antigen-specific CD8+ T-cell immune responses, mitigating regulatory T-cell-mediated immunosuppression, and increasing central memory and effector memory T-cell populations. Furthermore, combinatorial immunization with SMONV and anti-PD-L1 blocking antibodies results in an amplified therapeutic effect on tumor-bearing mice. These findings reveal the elastic effect of the nanovaccine on DC-mediated immune responses, and the prepared SMONV represents a facile and powerful strategy for antitumor immunotherapy.
Collapse
Affiliation(s)
- Qiang Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu, 210008, P. R. China
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu, 210023, P. R. China
| | - Jun Tao
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu, 210023, P. R. China
| | - Wenhui Shi
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu, 210023, P. R. China
| | - Guangwen Yang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu, 210008, P. R. China
| | - Yu Zhang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu, 210008, P. R. China
| | - Xiaodan Su
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu, 210023, P. R. China
| | - Lin Chen
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu, 210008, P. R. China
| | - Weijun Xiu
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu, 210023, P. R. China
| | - Lihui Yuwen
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu, 210023, P. R. China
| | - Heng Dong
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu, 210008, P. R. China
| | - Yongbin Mou
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu, 210008, P. R. China
| |
Collapse
|
11
|
Guan YH, Wang N, Deng ZW, Chen XG, Liu Y. Exploiting autophagy-regulative nanomaterials for activation of dendritic cells enables reinforced cancer immunotherapy. Biomaterials 2022; 282:121434. [DOI: 10.1016/j.biomaterials.2022.121434] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/15/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023]
|
12
|
Zhang H, Zhu J, Li M, Chen G, Chen Q, Fang T. Supramolecular biomaterials for enhanced cancer immunotherapy. J Mater Chem B 2022; 10:7183-7193. [DOI: 10.1039/d2tb00048b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cancer immunotherapy has achieved promising clinical results. However, many limitations associated with current cancer immunotherapy still exist, including low response rates and severe adverse effects in patients. Engineering biomaterials for...
Collapse
|
13
|
Zhu G, Yang YG, Sun T. Engineering Optimal Vaccination Strategies: Effects of Physical Properties of the Delivery System on Functions. Biomater Sci 2022; 10:1408-1422. [PMID: 35137771 DOI: 10.1039/d2bm00011c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With rapid developments in medical science and technology, vaccinations have become the key to solving public health problems. Various diseases can be prevented by vaccinations, which mimic a disease by...
Collapse
Affiliation(s)
- Ge Zhu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
- International Center of Future Science, Jilin University, Changchun, Jilin, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
- International Center of Future Science, Jilin University, Changchun, Jilin, China
| |
Collapse
|
14
|
Safwat S, Hathout RM, Ishak RA, Mortada ND. Elaborated survey in the scope of nanocarriers engineering for boosting chemotherapy cytotoxicity: A meta-analysis study. Int J Pharm 2021; 610:121268. [PMID: 34748812 DOI: 10.1016/j.ijpharm.2021.121268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/24/2021] [Accepted: 11/01/2021] [Indexed: 02/02/2023]
Abstract
Cancer is the prime cause of mortality throughout the world. Although the conventional chemotherapeutic agents damage the cancerous cells, they exert prominent injury to the normal cells owing to their lack of specificity. With advances in science, many research studies have been established to boost the cytotoxic effect of the chemotherapeutic agents via innovating novel nano-formulations having different variables. In the current meta-analysis study, combined data from different research articles were gathered for the evidence-based proof of the superiority of drug loaded nanocarriers over their corresponding conventional solutions in boosting the cytotoxic effect of chemotherapy in terms of IC50 values. The meta-analysis was subdivided into three subgroups; nanoparticles versus nanofibers, surface functionalized nanocarriers versus naked ones, and protein versus non-protein-based platforms. The different subgroups interestingly showed distinct scoring outcome data paving the road for cytotoxicity enhancement of the anti-cancer drugs in an evidence-based manner.
Collapse
Affiliation(s)
- Sally Safwat
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo, Egypt
| | - Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo, Egypt.
| | - Rania A Ishak
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo, Egypt
| | - Nahed D Mortada
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo, Egypt
| |
Collapse
|
15
|
Wu S, Xia Y, Hu Y, Ma G. Bio-mimic particles for the enhanced vaccinations: Lessons learnt from the natural traits and pathogenic invasion. Adv Drug Deliv Rev 2021; 176:113871. [PMID: 34311014 DOI: 10.1016/j.addr.2021.113871] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/30/2021] [Accepted: 07/11/2021] [Indexed: 12/21/2022]
Abstract
In the combat against pathogens, the immune systems were evolved with the immune recognitions against the various danger signals, which responded vigorously upon the pathogen invasions and elicited potent antibodies or T cell engagement against the re-infections. Envisage with the prevailing pandemics and increasing demands for cancer vaccines, bio-mimic particles were developed to imitate the natural traits of the pathogens, which conferred the optimal strategies to stimulate the immune engagement and let to the increased vaccine efficacy. Here, the recent development in bio-mimic particles, as well as the natural cues from the pathogens were discussed. As such, the designing principles that adapted from the physiochemical properties of the pathogens were unfolded as the surface characteristics (hydrophobic, nano-pattern, antigen display, charge), properties (size, shape, softness) and the delivered components (peptide, protein, nuclear acids, toll-like receptor (TLR) agonist, antibody). Additionally, the strategies for the efficient delivery, regarding the biodistribution, internalization and presentation of the antigens were also illustrated. Through reviewing the state-of-art in biomimetic particles, the lesson learnt from the natural traits and pathogenic invasion may shed light on the rational design for the enhanced vaccinations.
Collapse
|
16
|
Hu J, Gu Y, Liu M, Zhang W, Chen H, Chen G. Bacteria mimics bearing carbohydrates, oligodeoxynucleotides and designed shapes. Chem Commun (Camb) 2021; 56:10887-10889. [PMID: 32804182 DOI: 10.1039/d0cc02239j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We utilize a facile and gentle strategy to fabricate bacteria mimics ("bacillus" and "coccus") endowed with carbohydrates, oligodeoxynucleotides and designed shapes via dopamine-polymer based nanoparticle fabrication and DNA-based multivalent interactions. These bacteria mimics with TLR- and CLR-targeted capabilities are demonstrated to exhibit enhanced immune stimulating efficiency.
Collapse
Affiliation(s)
- Jun Hu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research and School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China.
| | - Yan Gu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Mengjie Liu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research and School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China.
| | - Weidong Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research and School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China.
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Gaojian Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research and School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China. and State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
17
|
Baranov MV, Kumar M, Sacanna S, Thutupalli S, van den Bogaart G. Modulation of Immune Responses by Particle Size and Shape. Front Immunol 2021; 11:607945. [PMID: 33679696 PMCID: PMC7927956 DOI: 10.3389/fimmu.2020.607945] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
The immune system has to cope with a wide range of irregularly shaped pathogens that can actively move (e.g., by flagella) and also dynamically remodel their shape (e.g., transition from yeast-shaped to hyphal fungi). The goal of this review is to draw general conclusions of how the size and geometry of a pathogen affect its uptake and processing by phagocytes of the immune system. We compared both theoretical and experimental studies with different cells, model particles, and pathogenic microbes (particularly fungi) showing that particle size, shape, rigidity, and surface roughness are important parameters for cellular uptake and subsequent immune responses, particularly inflammasome activation and T cell activation. Understanding how the physical properties of particles affect immune responses can aid the design of better vaccines.
Collapse
Affiliation(s)
- Maksim V. Baranov
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Manoj Kumar
- Simons Center for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, India
| | - Stefano Sacanna
- Molecular Design Institute, Department of Chemistry, New York University, New York, NY, United States
| | - Shashi Thutupalli
- Simons Center for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, India
- International Centre for Theoretical Sciences, Tata Institute for Fundamental Research, Bangalore, India
| | - Geert van den Bogaart
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|
18
|
Biotin Functionalized Self‐Assembled Peptide Nanofiber as an Adjuvant for Immunomodulatory Response. Biotechnol J 2020; 15:e2000100. [DOI: 10.1002/biot.202000100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/15/2020] [Indexed: 12/20/2022]
|
19
|
Ke X, Howard GP, Tang H, Cheng B, Saung MT, Santos JL, Mao HQ. Physical and chemical profiles of nanoparticles for lymphatic targeting. Adv Drug Deliv Rev 2019; 151-152:72-93. [PMID: 31626825 DOI: 10.1016/j.addr.2019.09.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/03/2019] [Accepted: 09/24/2019] [Indexed: 12/14/2022]
Abstract
Nanoparticles (NPs) have been gaining prominence as delivery vehicles for modulating immune responses to improve treatments against cancer and autoimmune diseases, enhancing tissue regeneration capacity, and potentiating vaccination efficacy. Various engineering approaches have been extensively explored to control the NP physical and chemical properties including particle size, shape, surface charge, hydrophobicity, rigidity and surface targeting ligands to modulate immune responses. This review examines a specific set of physical and chemical characteristics of NPs that enable efficient delivery targeted to secondary lymphoid tissues, specifically the lymph nodes and immune cells. A critical analysis of the structure-property-function relationship will facilitate further efforts to engineer new NPs with unique functionalities, identify novel utilities, and improve the clinical translation of NP formulations for immunotherapy.
Collapse
|
20
|
Liu M, Wen M, Shen S, Zhang Z, Chen G, Zhang W. One‐Pot, Multicomponent Strategy for Designing Lymphoseek‐Inspired Hetero‐Glycoadjuvant@AuNPs. Macromol Rapid Commun 2019; 40:e1900215. [DOI: 10.1002/marc.201900215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/31/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Mengjie Liu
- M. Liu, M. Wen, S. Shen, Prof. G. Chen, Prof. W. ZhangCenter for Soft Condensed Matter Physicsand Interdisciplinary Research & School of Physical Scienceand TechnologyJiangsu Key Laboratory of Thin FilmsSoochow University Suzhou 215006 P. R. China
| | - Ming Wen
- M. Liu, M. Wen, S. Shen, Prof. G. Chen, Prof. W. ZhangCenter for Soft Condensed Matter Physicsand Interdisciplinary Research & School of Physical Scienceand TechnologyJiangsu Key Laboratory of Thin FilmsSoochow University Suzhou 215006 P. R. China
| | - Shuyi Shen
- M. Liu, M. Wen, S. Shen, Prof. G. Chen, Prof. W. ZhangCenter for Soft Condensed Matter Physicsand Interdisciplinary Research & School of Physical Scienceand TechnologyJiangsu Key Laboratory of Thin FilmsSoochow University Suzhou 215006 P. R. China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratoryfor Novel Functional Polymeric MaterialsSoochow University Suzhou 215123 China
| | - Gaojian Chen
- M. Liu, M. Wen, S. Shen, Prof. G. Chen, Prof. W. ZhangCenter for Soft Condensed Matter Physicsand Interdisciplinary Research & School of Physical Scienceand TechnologyJiangsu Key Laboratory of Thin FilmsSoochow University Suzhou 215006 P. R. China
| | - Weidong Zhang
- M. Liu, M. Wen, S. Shen, Prof. G. Chen, Prof. W. ZhangCenter for Soft Condensed Matter Physicsand Interdisciplinary Research & School of Physical Scienceand TechnologyJiangsu Key Laboratory of Thin FilmsSoochow University Suzhou 215006 P. R. China
- State and Local Joint Engineering Laboratoryfor Novel Functional Polymeric MaterialsSoochow University Suzhou 215123 China
| |
Collapse
|
21
|
Watkins-Schulz R, Tiet P, Gallovic MD, Junkins RD, Batty C, Bachelder EM, Ainslie KM, Ting JPY. A microparticle platform for STING-targeted immunotherapy enhances natural killer cell- and CD8 + T cell-mediated anti-tumor immunity. Biomaterials 2019; 205:94-105. [PMID: 30909112 DOI: 10.1016/j.biomaterials.2019.03.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/03/2019] [Accepted: 03/11/2019] [Indexed: 01/22/2023]
Abstract
Immunotherapies have significantly improved cancer patient survival, but response rates are still limited. Thus, novel formulations are needed to expand the breadth of immunotherapies. Pathogen associated molecular patterns (PAMPs) can be used to stimulate an immune response, but several pathogen recognition receptors are located within the cell, making delivery challenging. We have employed the biodegradable polymer acetalated dextran (Ace-DEX) to formulate PAMP microparticles (MPs) in order to enhance intracellular delivery. While treatment with four different PAMP MPs resulted in tumor growth inhibition, cyclic GMP-AMP (cGAMP) MPs were most effective. cGAMP MPs showed anti-tumor efficacy at doses 100-1000 fold lower than published doses of soluble cGAMP in two murine tumor models. Treatment with cGAMP MPs resulted in increased natural killer cell numbers in the tumor environment. Immune cell depletion studies confirmed that NK cells were responsible for the anti-tumor efficacy in an aggressive mouse melanoma model. NK cells and CD8+ T cells were both required for early anti-tumor function in a triple negative breast cancer model. In summary, cGAMP MP treatment results in NK and T cell-dependent anti-tumor immune response.
Collapse
Affiliation(s)
- Rebekah Watkins-Schulz
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Pamela Tiet
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Matthew D Gallovic
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Robert D Junkins
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Cole Batty
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Eric M Bachelder
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Kristy M Ainslie
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC, 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jenny P Y Ting
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Institute for Inflammatory Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Center for Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
22
|
Jia J, Zhang Y, Xin Y, Jiang C, Yan B, Zhai S. Interactions Between Nanoparticles and Dendritic Cells: From the Perspective of Cancer Immunotherapy. Front Oncol 2018; 8:404. [PMID: 30319969 PMCID: PMC6167641 DOI: 10.3389/fonc.2018.00404] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/04/2018] [Indexed: 02/02/2023] Open
Abstract
Dendritic cells (DCs) are the primary antigen-presenting cells and play key roles in the orchestration of the innate and adaptive immune system. Targeting DCs by nanotechnology stands as a promising strategy for cancer immunotherapy. The physicochemical properties of nanoparticles (NPs) influence their interactions with DCs, thus altering the immune outcome of DCs by changing their functions in the processes of maturation, homing, antigen processing and antigen presentation. In this review, we summarize the recent progress in targeting DCs using NPs as a drug delivery carrier in cancer immunotherapy, the recognition of NPs by DCs, and the ways the physicochemical properties of NPs affect DCs' functions. Finally, the molecular pathways in DCs that are affected by NPs are also discussed.
Collapse
Affiliation(s)
- Jianbo Jia
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, China
| | - Yi Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Yan Xin
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Cuijuan Jiang
- School of Environmental Science and Engineering, Shandong University, Jinan, China
| | - Bing Yan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, China.,School of Environmental Science and Engineering, Shandong University, Jinan, China
| | - Shumei Zhai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| |
Collapse
|
23
|
Dikecoglu FB, Topal AE, Ozkan AD, Tekin ED, Tekinay AB, Guler MO, Dana A. Force and time-dependent self-assembly, disruption and recovery of supramolecular peptide amphiphile nanofibers. NANOTECHNOLOGY 2018; 29:285701. [PMID: 29664418 DOI: 10.1088/1361-6528/aabeb4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Biological feedback mechanisms exert precise control over the initiation and termination of molecular self-assembly in response to environmental stimuli, while minimizing the formation and propagation of defects through self-repair processes. Peptide amphiphile (PA) molecules can self-assemble at physiological conditions to form supramolecular nanostructures that structurally and functionally resemble the nanofibrous proteins of the extracellular matrix, and their ability to reconfigure themselves in response to external stimuli is crucial for the design of intelligent biomaterials systems. Here, we investigated real-time self-assembly, deformation, and recovery of PA nanofibers in aqueous solution by using a force-stabilizing double-pass scanning atomic force microscopy imaging method to disrupt the self-assembled peptide nanofibers in a force-dependent manner. We demonstrate that nanofiber damage occurs at tip-sample interaction forces exceeding 1 nN, and the damaged fibers subsequently recover when the tip pressure is reduced. Nanofiber ends occasionally fail to reconnect following breakage and continue to grow as two individual nanofibers. Energy minimization calculations of nanofibers with increasing cross-sectional ellipticity (corresponding to varying levels of tip-induced fiber deformation) support our observations, with high-ellipticity nanofibers exhibiting lower stability compared to their non-deformed counterparts. Consequently, tip-mediated mechanical forces can provide an effective means of altering nanofiber integrity and visualizing the self-recovery of PA assemblies.
Collapse
Affiliation(s)
- F Begum Dikecoglu
- Institute of Materials Science and Nanotechnology and National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, 06800, Turkey. Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, A-4020 Linz, Austria
| | | | | | | | | | | | | |
Collapse
|
24
|
Cinar G, Ozdemir A, Hamsici S, Gunay G, Dana A, Tekinay AB, Guler MO. Local delivery of doxorubicin through supramolecular peptide amphiphile nanofiber gels. Biomater Sci 2018; 5:67-76. [PMID: 27819087 DOI: 10.1039/c6bm00656f] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Peptide amphiphiles (PAs) self-assemble into supramolecular nanofiber gels that provide a suitable environment for encapsulation of both hydrophobic and hydrophilic molecules. The PA gels have significant advantages for controlled delivery applications due to their high capacity to retain water, biocompatibility, and biodegradability. In this study, we demonstrate injectable supramolecular PA nanofiber gels for drug delivery applications. Doxorubicin (Dox), as a widely used chemotherapeutic drug for breast cancer treatment, was encapsulated within the PA gels prepared at different concentrations. Physical and chemical properties of the gels were characterized, and slow release of the Dox molecules through the supramolecular PA nanofiber gels was studied. In addition, the diffusion constants of the drug molecules within the PA nanofiber gels were estimated using fluorescence recovery after the photobleaching (FRAP) method. The PA nanofiber gels did not show any cytotoxicity and the encapsulation strategy enhanced the activity of drug molecules on cellular viability through prolonged release compared to direct administration under in vitro conditions. Moreover, the local in vivo injection of the Dox encapsulated PA nanofiber gels (Dox/PA) to the tumor site demonstrated the lowest tumor growth rate compared to the direct Dox injection and increased the apoptotic cells within the tumor tissue for local drug release through the PA nanofiber gels under in vivo conditions.
Collapse
Affiliation(s)
- Goksu Cinar
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, 06800, Turkey.
| | - Ayse Ozdemir
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, 06800, Turkey.
| | - Seren Hamsici
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, 06800, Turkey.
| | - Gokhan Gunay
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, 06800, Turkey.
| | - Aykutlu Dana
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, 06800, Turkey.
| | - Ayse B Tekinay
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, 06800, Turkey.
| | - Mustafa O Guler
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, 06800, Turkey.
| |
Collapse
|
25
|
Ai X, Hu M, Wang Z, Zhang W, Li J, Yang H, Lin J, Xing B. Recent Advances of Membrane-Cloaked Nanoplatforms for Biomedical Applications. Bioconjug Chem 2018; 29:838-851. [PMID: 29509403 DOI: 10.1021/acs.bioconjchem.8b00103] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In terms of the extremely small size and large specific surface area, nanomaterials often exhibit unusual physical and chemical properties, which have recently attracted considerable attention in bionanotechnology and nanomedicine. Currently, the extensive usage of nanotechnology in medicine holds great potential for precise diagnosis and effective therapeutics of various human diseases in clinical practice. However, a detailed understanding regarding how nanomedicine interacts with the intricate environment in complex living systems remains a pressing and challenging goal. Inspired by the diversified membrane structures and functions of natural prototypes, research activities on biomimetic and bioinspired membranes, especially for those cloaking nanosized platforms, have increased exponentially. By taking advantage of the flexible synthesis and multiple functionality of nanomaterials, a variety of unique nanostructures including inorganic nanocrystals and organic polymers have been widely devised to substantially integrate with intrinsic biomoieties such as lipids, glycans, and even cell and bacteria membrane components, which endow these abiotic nanomaterials with specific biological functionalities for the purpose of detailed investigation of the complicated interactions and activities of nanomedicine in living bodies, including their immune response activation, phagocytosis escape, and subsequent clearance from vascular system. In this review, we summarize the strategies established recently for the development of biomimetic membrane-cloaked nanoplatforms derived from inherent host cells (e.g., erythrocytes, leukocytes, platelets, and exosomes) and invasive pathogens (e.g., bacteria and viruses), mainly attributed to their versatile membrane properties in biological fluids. Meanwhile, the promising biomedical applications based on nanoplatforms inspired by diverse moieties, such as selective drug delivery in targeted sites and effective vaccine development for disease prevention, have also been outlined. Finally, the potential challenges and future prospects of the biomimetic membrane-cloaked nanoplatforms are also discussed.
Collapse
Affiliation(s)
- Xiangzhao Ai
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences , Nanyang Technological University , Singapore , 637371
| | - Ming Hu
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences , Nanyang Technological University , Singapore , 637371
| | - Zhimin Wang
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences , Nanyang Technological University , Singapore , 637371
| | - Wenmin Zhang
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences , Nanyang Technological University , Singapore , 637371.,College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Juan Li
- College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Huanghao Yang
- College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , 130022 , China
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences , Nanyang Technological University , Singapore , 637371.,College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| |
Collapse
|
26
|
Hatip Koc M, Cinar Ciftci G, Baday S, Castelletto V, Hamley IW, Guler MO. Hierarchical Self-Assembly of Histidine-Functionalized Peptide Amphiphiles into Supramolecular Chiral Nanostructures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:7947-7956. [PMID: 28753315 DOI: 10.1021/acs.langmuir.7b01266] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Controlling the hierarchical organization of self-assembling peptide amphiphiles into supramolecular nanostructures opens up the possibility of developing biocompatible functional supramolecular materials for various applications. In this study, we show that the hierarchical self-assembly of histidine- (His-) functionalized PAs containing d- or l-amino acids can be controlled by both solution pH and molecular chirality of the building blocks. An increase in solution pH resulted in the structural transition of the His-functionalized chiral PA assemblies from nanosheets to completely closed nanotubes through an enhanced hydrogen-bonding capacity and π-π stacking of imidazole ring. The effects of the stereochemistry and amino acid sequence of the PA backbone on the supramolecular organization were also analyzed by CD, TEM, SAXS, and molecular dynamics simulations. In addition, an investigation of chiral mixtures revealed the differences between the hydrogen-bonding capacities and noncovalent interactions of PAs with d- and l-amino acids.
Collapse
Affiliation(s)
- Meryem Hatip Koc
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University , Ankara, 06800 Turkey
| | - Goksu Cinar Ciftci
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University , Ankara, 06800 Turkey
| | - Sefer Baday
- Applied Informatics Department, Informatics Institute, Istanbul Technical University , Istanbul, 34469 Turkey
| | - Valeria Castelletto
- Department of Chemistry, University of Reading , Whiteknights, Reading RG6 6AD, U.K
| | - Ian W Hamley
- Department of Chemistry, University of Reading , Whiteknights, Reading RG6 6AD, U.K
| | - Mustafa O Guler
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University , Ankara, 06800 Turkey
- Institute for Molecular Engineering, University of Chicago , Chicago, Illinois 60637 United States
| |
Collapse
|
27
|
Yamagata N, Chen X, Zhou J, Li J, Du X, Xu B. Enzymatic self-assembly of an immunoreceptor tyrosine-based inhibitory motif (ITIM). Org Biomol Chem 2017; 15:5689-5692. [PMID: 28675212 DOI: 10.1039/c7ob01074e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Here we show the first example of an immunoreceptor tyrosine-based inhibitory motif (ITIM), LYYYYL, as well as its enantiomeric or retro-inverso peptide, to self-assemble in water via enzyme-instructed self-assembly. Upon enzymatic dephosphorylation, the phosphohexapeptides become hexapeptides, which self-assemble in water to result in supramolecular hydrogels. This work illustrates a new approach to design bioinspired soft materials from a less explored, but important pool of immunomodulatory peptides.
Collapse
Affiliation(s)
- Natsuko Yamagata
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, USA.
| | - Xiaoyi Chen
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, USA.
| | - Jie Zhou
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, USA.
| | - Jie Li
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, USA.
| | - Xuewen Du
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, USA.
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, USA.
| |
Collapse
|
28
|
Tostanoski LH, Jewell CM. Engineering self-assembled materials to study and direct immune function. Adv Drug Deliv Rev 2017; 114:60-78. [PMID: 28392305 PMCID: PMC6262758 DOI: 10.1016/j.addr.2017.03.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 12/19/2022]
Abstract
The immune system is an awe-inspiring control structure that maintains a delicate and constantly changing balance between pro-immune functions that fight infection and cancer, regulatory or suppressive functions involved in immune tolerance, and homeostatic resting states. These activities are determined by integrating signals in space and time; thus, improving control over the densities, combinations, and durations with which immune signals are delivered is a central goal to better combat infectious disease, cancer, and autoimmunity. Self-assembly presents a unique opportunity to synthesize materials with well-defined compositions and controlled physical arrangement of molecular building blocks. This review highlights strategies exploiting these capabilities to improve the understanding of how precisely-displayed cues interact with immune cells and tissues. We present work centered on fundamental properties that regulate the nature and magnitude of immune response, highlight pre-clinical and clinical applications of self-assembled technologies in vaccines, cancer, and autoimmunity, and describe some of the key manufacturing and regulatory hurdles facing these areas.
Collapse
Key Words
- Autoimmunity and tolerance
- Biomaterial
- Cancer
- Immunomodulation
- Manufacturing, regulatory approval and FDA
- Nanoparticle, microparticle, micelle, liposome, polyplex, lipoplex, polyelectrolyte multilayer
- Nanotechnology
- Non-covalent, hydrophobic, hydrogen bonding, and electrostatic interaction
- Self-assembly
- Sensor, diagnostic, and theranostic
- Vaccine and immunotherapy
Collapse
Affiliation(s)
- Lisa H Tostanoski
- Fischell Department of Bioengineering, University of Maryland, 8228 Paint Branch Drive, College Park, MD 20742, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, 8228 Paint Branch Drive, College Park, MD 20742, USA; Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, 22 S. Greene St., Baltimore, MD 21201, USA; United States Department of Veterans Affairs, 10 North Greene Street, Baltimore, MD 21201, USA.
| |
Collapse
|
29
|
Tohumeken S, Gunduz N, Demircan MB, Gunay G, Topal AE, Khalily MA, Tekinay T, Dana A, Guler MO, Tekinay AB. A Modular Antigen Presenting Peptide/Oligonucleotide Nanostructure Platform for Inducing Potent Immune Response. ACTA ACUST UNITED AC 2017; 1:e1700015. [DOI: 10.1002/adbi.201700015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/20/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Sehmus Tohumeken
- Institute of Materials Science and Nanotechnology; National Nanotechnology Research Center (UNAM); Bilkent University; Ankara 06800 Turkey
| | - Nuray Gunduz
- Institute of Materials Science and Nanotechnology; National Nanotechnology Research Center (UNAM); Bilkent University; Ankara 06800 Turkey
| | - M. Burak Demircan
- Neuroscience Graduate Program; Bilkent University; Ankara 06800 Turkey
| | - Gokhan Gunay
- Neuroscience Graduate Program; Bilkent University; Ankara 06800 Turkey
| | - Ahmet E. Topal
- Institute of Materials Science and Nanotechnology; National Nanotechnology Research Center (UNAM); Bilkent University; Ankara 06800 Turkey
| | - M. Aref Khalily
- Institute of Materials Science and Nanotechnology; National Nanotechnology Research Center (UNAM); Bilkent University; Ankara 06800 Turkey
| | - Turgay Tekinay
- Life Sciences Application and Research Center; Gazi University; Ankara 06830 Turkey
| | - Aykutlu Dana
- Institute of Materials Science and Nanotechnology; National Nanotechnology Research Center (UNAM); Bilkent University; Ankara 06800 Turkey
| | - Mustafa O. Guler
- Institute of Materials Science and Nanotechnology; National Nanotechnology Research Center (UNAM); Bilkent University; Ankara 06800 Turkey
- Institute for Molecular Engineering; University of Chicago; Chicago IL 60637 USA
| | - Ayse B. Tekinay
- Institute of Materials Science and Nanotechnology; National Nanotechnology Research Center (UNAM); Bilkent University; Ankara 06800 Turkey
- Neuroscience Graduate Program; Bilkent University; Ankara 06800 Turkey
| |
Collapse
|
30
|
Costa V, Righelli D, Russo F, De Berardinis P, Angelini C, D'Apice L. Distinct Antigen Delivery Systems Induce Dendritic Cells' Divergent Transcriptional Response: New Insights from a Comparative and Reproducible Computational Analysis. Int J Mol Sci 2017; 18:ijms18030494. [PMID: 28245601 PMCID: PMC5372510 DOI: 10.3390/ijms18030494] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/11/2017] [Accepted: 02/21/2017] [Indexed: 12/17/2022] Open
Abstract
Vaccination is the most successful and cost-effective method to prevent infectious diseases. However, many vaccine antigens have poor in vivo immunogenic potential and need adjuvants to enhance immune response. The application of systems biology to immunity and vaccinology has yielded crucial insights about how vaccines and adjuvants work. We have previously characterized two safe and powerful delivery systems derived from non-pathogenic prokaryotic organisms: E2 and fd filamentous bacteriophage systems. They elicit an in vivo immune response inducing CD8+ T-cell responses, even in absence of adjuvants or stimuli for dendritic cells’ maturation. Nonetheless, a systematic and comparative analysis of the complex gene expression network underlying such activation is missing. Therefore, we compared the transcriptomes of ex vivo isolated bone marrow-derived dendritic cells exposed to these antigen delivery systems. Significant differences emerged, especially for genes involved in innate immunity, co-stimulation, and cytokine production. Results indicate that E2 drives polarization toward the Th2 phenotype, mainly mediated by Irf4, Ccl17, and Ccr4 over-expression. Conversely, fd-scαDEC-205 triggers Th1 T cells’ polarization through the induction of Il12b, Il12rb, Il6, and other molecules involved in its signal transduction. The data analysis was performed using RNASeqGUI, hence, addressing the increasing need of transparency and reproducibility of computational analysis.
Collapse
Affiliation(s)
- Valerio Costa
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", CNR, Via P. Castellino 111, 80131 Naples, Italy.
| | - Dario Righelli
- Dipartimento di Scienze Aziendali-Management & Innovation Systems/DISA-MIS, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy.
- Istituto per le Applicazioni del Calcolo, CNR, Via P. Castellino 111, 80131 Naples, Italy.
| | - Francesco Russo
- Istituto per le Applicazioni del Calcolo, CNR, Via P. Castellino 111, 80131 Naples, Italy.
- Institute of Protein Biochemistry, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy.
| | - Piergiuseppe De Berardinis
- Institute of Protein Biochemistry, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy.
| | - Claudia Angelini
- Istituto per le Applicazioni del Calcolo, CNR, Via P. Castellino 111, 80131 Naples, Italy.
| | - Luciana D'Apice
- Institute of Protein Biochemistry, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy.
| |
Collapse
|
31
|
Ekiz MS, Cinar G, Khalily MA, Guler MO. Self-assembled peptide nanostructures for functional materials. NANOTECHNOLOGY 2016; 27:402002. [PMID: 27578525 DOI: 10.1088/0957-4484/27/40/402002] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Nature is an important inspirational source for scientists, and presents complex and elegant examples of adaptive and intelligent systems created by self-assembly. Significant effort has been devoted to understanding these sophisticated systems. The self-assembly process enables us to create supramolecular nanostructures with high order and complexity, and peptide-based self-assembling building blocks can serve as suitable platforms to construct nanostructures showing diverse features and applications. In this review, peptide-based supramolecular assemblies will be discussed in terms of their synthesis, design, characterization and application. Peptide nanostructures are categorized based on their chemical and physical properties and will be examined by rationalizing the influence of peptide design on the resulting morphology and the methods employed to characterize these high order complex systems. Moreover, the application of self-assembled peptide nanomaterials as functional materials in information technologies and environmental sciences will be reviewed by providing examples from recently published high-impact studies.
Collapse
Affiliation(s)
- Melis Sardan Ekiz
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, 06800 Turkey
| | | | | | | |
Collapse
|
32
|
Hamley IW, Castelletto V. Self-Assembly of Peptide Bioconjugates: Selected Recent Research Highlights. Bioconjug Chem 2016; 28:731-739. [DOI: 10.1021/acs.bioconjchem.6b00284] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ian W. Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, United Kingdom
| | - Valeria Castelletto
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, United Kingdom
| |
Collapse
|
33
|
Mumcuoglu D, Sardan Ekiz M, Gunay G, Tekinay T, Tekinay AB, Guler MO. Cellular Internalization of Therapeutic Oligonucleotides by Peptide Amphiphile Nanofibers and Nanospheres. ACS APPLIED MATERIALS & INTERFACES 2016; 8:11280-11287. [PMID: 27097153 DOI: 10.1021/acsami.6b01526] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Oligonucleotides are promising drug candidates due to the exceptionally high specificity they exhibit toward their target DNA and RNA sequences. However, their poor pharmacokinetic and pharmacodynamic properties, in conjunction with problems associated with their internalization by cells, necessitates their delivery through specialized carrier systems for efficient therapy. Here, we investigate the effects of carrier morphology on the cellular internalization mechanisms of oligonucleotides by using self-assembled fibrous or spherical peptide nanostructures. Size and geometry were both found to be important parameters for the oligonucleotide internalization process; direct penetration was determined to be the major mechanism for the internalization of nanosphere carriers, whereas nanofibers were internalized by clathrin- and dynamin-dependent endocytosis pathways. We further showed that glucose conjugation to carrier nanosystems improved cellular internalization in cancer cells due to the enhanced glucose metabolism associated with oncogenesis, and the internalization of the glucose-conjugated peptide/oligonucleotide complexes was found to be dependent on glucose transporters present on the surface of the cell membrane.
Collapse
Affiliation(s)
- Didem Mumcuoglu
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University , Ankara 06800, Turkey
| | - Melis Sardan Ekiz
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University , Ankara 06800, Turkey
| | - Gokhan Gunay
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University , Ankara 06800, Turkey
| | | | - Ayse B Tekinay
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University , Ankara 06800, Turkey
| | - Mustafa O Guler
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University , Ankara 06800, Turkey
| |
Collapse
|