1
|
Schmidt A, Coughlin M, Catalina MD, Przetak M, Kalatskaya I, Studham M, Shaw J, Bender AT, Strand F. Toll-like receptor 8 activation induces a neutrophil inflammatory phenotype: therapeutic implications for the utility of toll-like receptor 8 inhibition. J Leukoc Biol 2025; 117:qiaf036. [PMID: 40397760 DOI: 10.1093/jleuko/qiaf036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/11/2025] [Indexed: 05/23/2025] Open
Abstract
Excessive activation of toll-like receptor 7 and 8 (TLR7/8) plays a role in the pathogenesis of autoimmune diseases and is associated with negative outcomes from viral infections. Neutrophil activation is highly inflammatory and mediates tissue damage. We explored the effects of TLR7/8 activation in neutrophils to better understand neutrophil biology and evaluate the therapeutic utility of TLR7/8 inhibitors in indications where neutrophils contribute to disease pathogenesis. We found that TLR8, but not TLR7, is active in human neutrophils. TLR8 activation led to increased interleukin-8 (IL-8) secretion and resulted in significant changes in gene expression, as determined by RNA sequencing, with increased expression of genes encoding cytokines and other inflammatory mediators. Type I interferon (IFN) also induced gene expression changes distinct from those induced by TLR8. Additionally, neutrophil extracellular traps (NET) formation and DNA release, or NETosis, was induced by TLR8 activation in IFN-primed neutrophils. Treatment with a TLR7/8 inhibitor (CMPD2) effectively blocked IL-8 secretion and NETosis. In a Phase II clinical trial in COVID-19 pneumonia, TLR7/8 inhibition with enpatoran affected neutrophil counts. Expression of NFKBIZ was induced by TLR8 in neutrophils in vitro and found to also be reduced by enpatoran in patients with COVID-19, suggesting it may be useful as a marker for TLR8-activated neutrophils and for identifying candidate diseases and patients that may benefit from treatment with a TLR7/8 inhibitor. Overall, our findings provide new insights into TLR8 and neutrophil biology that have therapeutic implications in autoimmune diseases and immune-mediated inflammation.
Collapse
Affiliation(s)
- Angelika Schmidt
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Matthew Coughlin
- EMD Serono Research & Development Institute, Inc., 45 Middlesex Turnpike, Billerica, MA 01821, USA, an affiliate of Merck KGaA
| | - Michelle D Catalina
- EMD Serono Research & Development Institute, Inc., 45 Middlesex Turnpike, Billerica, MA 01821, USA, an affiliate of Merck KGaA
| | - Melinda Przetak
- EMD Serono Research & Development Institute, Inc., 45 Middlesex Turnpike, Billerica, MA 01821, USA, an affiliate of Merck KGaA
| | - Irina Kalatskaya
- EMD Serono Research & Development Institute, Inc., 45 Middlesex Turnpike, Billerica, MA 01821, USA, an affiliate of Merck KGaA
| | - Matthew Studham
- EMD Serono Research & Development Institute, Inc., 45 Middlesex Turnpike, Billerica, MA 01821, USA, an affiliate of Merck KGaA
| | - Jamie Shaw
- EMD Serono Research & Development Institute, Inc., 45 Middlesex Turnpike, Billerica, MA 01821, USA, an affiliate of Merck KGaA
| | - Andrew T Bender
- EMD Serono Research & Development Institute, Inc., 45 Middlesex Turnpike, Billerica, MA 01821, USA, an affiliate of Merck KGaA
| | - Fatima Strand
- EMD Serono Research & Development Institute, Inc., 45 Middlesex Turnpike, Billerica, MA 01821, USA, an affiliate of Merck KGaA
| |
Collapse
|
2
|
Bénard A, Balboa L, Caouaille M, Ravon-Katossky L, Meunier E, Fillatreau S, Sasiain MDC, Neyrolles O, Hudrisier D. Human IL-6-Producing B Cells Promote the Differentiation of Monocytes Toward an Anti-Inflammatory CD16⁺CD163⁺CD206⁺PD-L1⁺ Phenotype in Tuberculosis. Eur J Immunol 2025; 55:e202451509. [PMID: 40252014 DOI: 10.1002/eji.202451509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/21/2025]
Abstract
The polarization of the monocyte/macrophage compartment toward an anti-inflammatory profile is considered detrimental in tuberculosis (TB), but the factors controlling M2 polarization in this context are still poorly understood. Here, we found that B cells promote the differentiation of human monocytes toward an M2-like activation program through a process primarily dependent on IL-6 and the activation of STAT3 signaling in monocytes. This confers monocytes with immunomodulatory properties characterized by a reduced ability to produce proinflammatory cytokines and to stimulate IFNγ secretion by allogeneic T cells. Our findings were validated using B cells from TB patients, which constitutively produce high levels of IL-6, underscoring the clinical relevance of our experimental observations. Collectively, our results indicate that human B-cell-derived IL-6 might impair TB immunity by driving monocyte polarization toward an anti-inflammatory phenotype.
Collapse
MESH Headings
- Humans
- Monocytes/immunology
- Monocytes/cytology
- Cell Differentiation/immunology
- Interleukin-6/immunology
- Interleukin-6/biosynthesis
- Interleukin-6/metabolism
- Receptors, IgG/immunology
- Receptors, IgG/metabolism
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- STAT3 Transcription Factor/metabolism
- STAT3 Transcription Factor/immunology
- Tuberculosis/immunology
- CD163 Antigen
- Antigens, CD/immunology
- Antigens, CD/metabolism
- B7-H1 Antigen/immunology
- B7-H1 Antigen/metabolism
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/metabolism
- Antigens, Differentiation, Myelomonocytic/immunology
- Antigens, Differentiation, Myelomonocytic/metabolism
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Signal Transduction/immunology
- Phenotype
- Cells, Cultured
- GPI-Linked Proteins
Collapse
Affiliation(s)
- Alan Bénard
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Department of Surgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Luciana Balboa
- Instituto de Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina, Buenos Aires, Argentina
- International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167) / International Research Project Toulouse, France, Buenos Aires, Argentina
| | - Maxime Caouaille
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Lea Ravon-Katossky
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Etienne Meunier
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Simon Fillatreau
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMR 8253, Université de Paris, Paris, France
- Université Paris Cité, Faculté de Médecine, Paris, France
- AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| | - Maria Del Carmen Sasiain
- Instituto de Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina, Buenos Aires, Argentina
- International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167) / International Research Project Toulouse, France, Buenos Aires, Argentina
| | - Olivier Neyrolles
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167) / International Research Project Toulouse, France, Buenos Aires, Argentina
| | - Denis Hudrisier
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
3
|
Pesenti L, de Oliveira Formiga R, Tamassia N, Gardiman E, Chable de la Héronnière F, Gasperini S, Chicher J, Kuhn L, Hammann P, Le Gall M, Saraceni-Tasso G, Martin C, Hosmalin A, Breckler M, Hervé R, Decker P, Ladjemi MZ, Pène F, Burgel PR, Cassatella MA, Witko-Sarsat V. Neutrophils Display Novel Partners of Cytosolic Proliferating Cell Nuclear Antigen Involved in Interferon Response in COVID-19 Patients. J Innate Immun 2025; 17:154-175. [PMID: 40015257 PMCID: PMC11867639 DOI: 10.1159/000543633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/13/2025] [Indexed: 03/01/2025] Open
Abstract
INTRODUCTION Neutrophils are key players in the hyperinflammatory response during SARS-CoV-2 infection. The cytosolic proliferating cell nuclear antigen (PCNA) is a scaffolding protein highly dependent on the microenvironment status and known to interact with numerous proteins that regulate neutrophil functions. This study aimed to examine the cytosolic protein content and PCNA interactome in neutrophils from COVID-19 patients. METHODS Proteomic analyses were performed on neutrophil cytosols from healthy donors and patients with severe or critical COVID-19. In vitro approaches were used to explore the biological significance of the COVID-19-specific PCNA interactome. RESULTS Neutrophil cytosol analysis revealed a strong interferon (IFN) protein signature, with variations according to disease severity. Interactome analysis identified associations of PCNA with proteins involved in interferon signaling, cytoskeletal organization, and neutrophil extracellular trap (NET) formation, such as protein arginine deiminase type-4 (PADI4) and histone H3, particularly in critical patients. Functional studies of interferon signaling showed that T2AA, a PCNA scaffold inhibitor, downregulated IFN-related genes, including STAT1, MX1, IFIT1, and IFIT2 in neutrophils. Additionally, T2AA specifically inhibited the secretion of CXCL10, an IFN-dependent cytokine. PCNA was also found to interact with key effector proteins implicated in NET formation, such as histone H3, especially in critical COVID-19 cases. CONCLUSION The analysis of the PCNA interactome has unveiled new protein partners that enhance the interferon pathway, thereby modulating immune responses and contributing to hyperinflammation in COVID-19. These findings provide valuable insights into interferon dysregulation in other immune-related conditions. INTRODUCTION Neutrophils are key players in the hyperinflammatory response during SARS-CoV-2 infection. The cytosolic proliferating cell nuclear antigen (PCNA) is a scaffolding protein highly dependent on the microenvironment status and known to interact with numerous proteins that regulate neutrophil functions. This study aimed to examine the cytosolic protein content and PCNA interactome in neutrophils from COVID-19 patients. METHODS Proteomic analyses were performed on neutrophil cytosols from healthy donors and patients with severe or critical COVID-19. In vitro approaches were used to explore the biological significance of the COVID-19-specific PCNA interactome. RESULTS Neutrophil cytosol analysis revealed a strong interferon (IFN) protein signature, with variations according to disease severity. Interactome analysis identified associations of PCNA with proteins involved in interferon signaling, cytoskeletal organization, and neutrophil extracellular trap (NET) formation, such as protein arginine deiminase type-4 (PADI4) and histone H3, particularly in critical patients. Functional studies of interferon signaling showed that T2AA, a PCNA scaffold inhibitor, downregulated IFN-related genes, including STAT1, MX1, IFIT1, and IFIT2 in neutrophils. Additionally, T2AA specifically inhibited the secretion of CXCL10, an IFN-dependent cytokine. PCNA was also found to interact with key effector proteins implicated in NET formation, such as histone H3, especially in critical COVID-19 cases. CONCLUSION The analysis of the PCNA interactome has unveiled new protein partners that enhance the interferon pathway, thereby modulating immune responses and contributing to hyperinflammation in COVID-19. These findings provide valuable insights into interferon dysregulation in other immune-related conditions.
Collapse
Affiliation(s)
- Lucie Pesenti
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
| | | | - Nicola Tamassia
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Elisa Gardiman
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | | | - Sara Gasperini
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Johana Chicher
- Strasbourg-Esplanade Proteomics Platform, CNRS UAR1589, Molecular and Cellular Biology Institute, University of Strasbourg, Strasbourg, France
| | - Lauriane Kuhn
- Strasbourg-Esplanade Proteomics Platform, CNRS UAR1589, Molecular and Cellular Biology Institute, University of Strasbourg, Strasbourg, France
| | - Philippe Hammann
- Strasbourg-Esplanade Proteomics Platform, CNRS UAR1589, Molecular and Cellular Biology Institute, University of Strasbourg, Strasbourg, France
| | - Morgane Le Gall
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
| | | | - Clémence Martin
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
- Department of Respiratory Medicine, AP-HP, Cochin Hospital, Paris, France
| | - Anne Hosmalin
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
| | - Magali Breckler
- INSERM UMR 1125, Bobigny, France
- UFR SMBH, Li2P, Université Sorbonne Paris Nord, Bobigny, France
| | - Roxane Hervé
- INSERM UMR 1125, Bobigny, France
- UFR SMBH, Li2P, Université Sorbonne Paris Nord, Bobigny, France
| | - Patrice Decker
- INSERM UMR 1125, Bobigny, France
- UFR SMBH, Li2P, Université Sorbonne Paris Nord, Bobigny, France
| | - Maha Zohra Ladjemi
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
| | - Frédéric Pène
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
- Department of Intensive Medicine and Reanimation, AP-HP, Cochin Hospital, Paris, France
| | - Pierre-Régis Burgel
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
- Department of Respiratory Medicine, AP-HP, Cochin Hospital, Paris, France
| | - Marco A. Cassatella
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | | |
Collapse
|
4
|
von Stemann JH, Dubois F, Saint‐André V, Bondet V, Posseme C, Charbit B, Quintana‐Murci L, Hansen MB, Ostrowski SR, Duffy D, Milieu Intérieur Consortium. Cytokine Autoantibodies Alter Gene Expression Profiles of Healthy Donors. Eur J Immunol 2025; 55:e202451211. [PMID: 39551979 PMCID: PMC11739679 DOI: 10.1002/eji.202451211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024]
Abstract
Autoantibodies against cytokines (c-aAb) have been implicated in the pathophysiology of autoimmune diseases, and a variety of infections. In addition, several independent studies have detected elevated titers of c-aAb in the circulation of healthy individuals. To further understand their impact on immune responses, we measured c-aAb against IFN-α, IFN-γ, CSF2, IL-1α, IL-6, and IL-10 in the plasma of 1000 healthy individuals of the Milieu Intérieur (MI) cohort. Focusing on donors above a defined positive cut-off we observed significant age effects for c-aAb against IL-1α, but no major environmental or lifestyle associated factors were identified. Using TruCulture stimulation data from the MI cohort, we observed a strong association between induced IL-1α and c-aAb levels after LPS stimulation. For several other stimuli, c-aAb against IL-1α and IL-10 were associated with decreased or increased proinflammatory gene expression, respectively. Finally, TruCulture assays supplemented with plasma containing high-titer c-aAb showed a strong influence of anti-IFN-α and anti-IL-6 c-aAb on both baseline and induced gene expression. In summary, this study shows a widespread prevalence of anti-cytokine autoantibodies in healthy donors with impacts on diverse immune responses, suggesting a significant contribution of c-aAb to interindividual immune heterogeneity.
Collapse
Affiliation(s)
| | - Florian Dubois
- Translational Immunology UnitInstitut PasteurUniversité Paris CitéParisFrance
- Cytometry and Biomarkers UTechSInstitut PasteurUniversité Paris CitéParisFrance
| | - Violaine Saint‐André
- Translational Immunology UnitInstitut PasteurUniversité Paris CitéParisFrance
- Bioinformatics and Biostatistics HUBDepartment of Computational BiologyInstitut PasteurUniversité Paris CitéParisFrance
| | - Vincent Bondet
- Translational Immunology UnitInstitut PasteurUniversité Paris CitéParisFrance
| | - Celine Posseme
- Translational Immunology UnitInstitut PasteurUniversité Paris CitéParisFrance
| | - Bruno Charbit
- Translational Immunology UnitInstitut PasteurUniversité Paris CitéParisFrance
- Cytometry and Biomarkers UTechSInstitut PasteurUniversité Paris CitéParisFrance
| | - Lluis Quintana‐Murci
- Institut Pasteur, CNRS UMR2000, Human Evolutionary Genetics UnitUniversité Paris CitéParisFrance
- Chair of Human Genomics and EvolutionCollège de FranceParisFrance
| | - Morten Bagge Hansen
- Department of Clinical ImmunologyRigshospitaletCopenhagen University HospitalCopenhagenDenmark
- Department of Clinical MedicineFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Sisse Rye Ostrowski
- Department of Clinical ImmunologyRigshospitaletCopenhagen University HospitalCopenhagenDenmark
- Department of Clinical MedicineFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Darragh Duffy
- Translational Immunology UnitInstitut PasteurUniversité Paris CitéParisFrance
- Cytometry and Biomarkers UTechSInstitut PasteurUniversité Paris CitéParisFrance
| | | |
Collapse
|
5
|
Nielly H, Bialé L, Gilardin L, Carmoi T, Éon A, Vanquaethem H, Fougerousse AC. Tocilizumab-induced psoriatic eruption : a case report and a case-based review. Rheumatol Int 2024; 44:2205-2212. [PMID: 39012359 DOI: 10.1007/s00296-024-05663-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/05/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Cases of psoriasis associated with Tocilizumab (TCZ) are scarce. OBJECTIVE To describe a new case of TCZ-associated psoriasis and to perform a case-based review of similar cases. METHODS We searched Medline/Pubmed, Embase, Scopus, Web of Science, and Directory of Open Access Journals databases using the terms « Tocilizumab » and « Psoriasis » in the French and English literature. RESULTS We report a 70-year-old woman with a history of Rheumatoid Arthritis who developed Infliximab-induced plaque psoriatic eruption of the soles and palms, that resolved after Infliximab interruption, then relapsed after TCZ relay, and eventually resolved after TCZ interruption. Including our case, we identified 16 cases of TCZ-induced psoriatic eruption. Three (21%) out of 14 patients had a history of cutaneous psoriasis - data were not available for 2 patients. Eight (50%) patients had previously received TNFα antagonists. TCZ was stopped for 10 patients and continued for 4 patients. For the 2 remaining patients, the interval between two injections of TCZ was shortened. All the patients with available follow-up data had an improvement of the eruption within 4 weeks. CONCLUSION To conclude, in case of TCZ-induced psoriatic eruption and in light of the published cases, we suggest using topical steroids and reassessing the patient 4 weeks later. If no healing is obtained, we suggest stopping TCZ, and treating the underlying disease with another drug. When no other drug is available, while waiting for more data regarding the value of IL-6 levels, it can be discussed to increase TCZ regimen, as it has been successful for 2 authors. Efficacy assessment of the chosen attitude should not take place before 4 weeks.
Collapse
Affiliation(s)
- Hubert Nielly
- Service de Médecine interne, Hôpital d'Instruction des Armées Bégin, 69 avenue de Paris, Saint-Mandé, 94160, France.
| | - L Bialé
- Service de Rhumatologie, HIA Bégin, Saint-Mandé, France
| | - L Gilardin
- Service de Médecine interne, Hôpital d'Instruction des Armées Bégin, 69 avenue de Paris, Saint-Mandé, 94160, France
| | - T Carmoi
- Service de Médecine interne, Hôpital d'Instruction des Armées Bégin, 69 avenue de Paris, Saint-Mandé, 94160, France
| | - A Éon
- Service de Psychiatrie, HIA Bégin, Saint-Mandé, France
| | - H Vanquaethem
- Service de Médecine interne, Hôpital d'Instruction des Armées Bégin, 69 avenue de Paris, Saint-Mandé, 94160, France
| | | |
Collapse
|
6
|
Haq ATA, Yang PP, Jin C, Shih JH, Chen LM, Tseng HY, Chen YA, Weng YS, Wang LH, Snyder MP, Hsu HL. Immunotherapeutic IL-6R and targeting the MCT-1/IL-6/CXCL7/PD-L1 circuit prevent relapse and metastasis of triple-negative breast cancer. Theranostics 2024; 14:2167-2189. [PMID: 38505617 PMCID: PMC10945351 DOI: 10.7150/thno.92922] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/22/2024] [Indexed: 03/21/2024] Open
Abstract
Rationale: Multiple copies in T-cell malignancy 1 (MCT-1) is a prognostic biomarker for aggressive breast cancers. Overexpressed MCT-1 stimulates the IL-6/IL-6R/gp130/STAT3 axis, which promotes epithelial-to-mesenchymal transition and cancer stemness. Because cancer stemness largely contributes to the tumor metastasis and recurrence, we aimed to identify whether the blockade of MCT-1 and IL-6R can render these effects and to understand the underlying mechanisms that govern the process. Methods: We assessed primary tumor invasion, postsurgical local recurrence and distant metastasis in orthotopic syngeneic mice given the indicated immunotherapy and MCT-1 silencing (shMCT-1). Results: We found that shMCT-1 suppresses the transcriptomes of the inflammatory response and metastatic signaling in TNBC cells and inhibits tumor recurrence, metastasis and mortality in xenograft mice. IL-6R immunotherapy and shMCT-1 combined further decreased intratumoral M2 macrophages and T regulatory cells (Tregs) and avoided postsurgical TNBC expansion. shMCT-1 also enhances IL-6R-based immunotherapy effectively in preventing postsurgical TNBC metastasis, recurrence and mortality. Anti-IL-6R improved helper T, cytotoxic T and natural killer (NK) cells in the lymphatic system and decreased Tregs in the recurrent and metastatic tumors. Combined IL-6R and PD-L1 immunotherapies abridged TNBC cell stemness and M2 macrophage activity to a greater extent than monotherapy. Sequential immunotherapy of PD-L1 and IL-6R demonstrated the best survival outcome and lowest postoperative recurrence and metastasis compared with synchronized therapy, particularly in the shMCT-1 context. Multiple positive feedforward loops of the MCT-1/IL-6/IL-6R/CXCL7/PD-L1 axis were identified in TNBC cells, which boosted metastatic niches and immunosuppressive microenvironments. Clinically, MCT-1high/PD-L1high/CXCL7high and CXCL7high/IL-6high/IL-6Rhigh expression patterns predict worse prognosis and poorer survival of breast cancer patients. Conclusion: Systemic targeting the MCT-1/IL-6/IL-6R/CXCL7/PD-L1 interconnections enhances immune surveillance that inhibits the aggressiveness of TNBC.
Collapse
Affiliation(s)
- Aushia Tanzih Al Haq
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Pao-Pao Yang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Christopher Jin
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jou-Ho Shih
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Li-Mei Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Hong-Yu Tseng
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Yen-An Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Yueh-Shan Weng
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Lu-Hai Wang
- Institute of Integrated Medicine and Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Hsin-Ling Hsu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| |
Collapse
|
7
|
Murphy DM, Walsh A, Stein L, Petrasca A, Cox DJ, Brown K, Duffin E, Jameson G, Connolly SA, O'Connell F, O'Sullivan J, Basdeo SA, Keane J, Phelan JJ. Human Macrophages Activate Bystander Neutrophils' Metabolism and Effector Functions When Challenged with Mycobacterium tuberculosis. Int J Mol Sci 2024; 25:2898. [PMID: 38474145 DOI: 10.3390/ijms25052898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Neutrophils are dynamic cells, playing a critical role in pathogen clearance; however, neutrophil infiltration into the tissue can act as a double-edged sword. They are one of the primary sources of excessive inflammation during infection, which has been observed in many infectious diseases including pneumonia and active tuberculosis (TB). Neutrophil function is influenced by interactions with other immune cells within the inflammatory lung milieu; however, how these interactions affect neutrophil function is unclear. Our study examined the macrophage-neutrophil axis by assessing the effects of conditioned medium (MΦ-CM) from primary human monocyte-derived macrophages (hMDMs) stimulated with LPS or a whole bacterium (Mycobacterium tuberculosis) on neutrophil function. Stimulated hMDM-derived MΦ-CM boosts neutrophil activation, heightening oxidative and glycolytic metabolism, but diminishes migratory potential. These neutrophils exhibit increased ROS production, elevated NET formation, and heightened CXCL8, IL-13, and IL-6 compared to untreated or unstimulated hMDM-treated neutrophils. Collectively, these data show that MΦ-CM from stimulated hMDMs activates neutrophils, bolsters their energetic profile, increase effector and inflammatory functions, and sequester them at sites of infection by decreasing their migratory capacity. These data may aid in the design of novel immunotherapies for severe pneumonia, active tuberculosis and other diseases driven by pathological inflammation mediated by the macrophage-neutrophil axis.
Collapse
Affiliation(s)
- Dearbhla M Murphy
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity Centre for Health Sciences, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, D08 W9RT Dublin, Ireland
| | - Anastasija Walsh
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity Centre for Health Sciences, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, D08 W9RT Dublin, Ireland
| | - Laura Stein
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity Centre for Health Sciences, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, D08 W9RT Dublin, Ireland
| | - Andreea Petrasca
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, D02 R590 Dublin, Ireland
| | - Donal J Cox
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity Centre for Health Sciences, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, D08 W9RT Dublin, Ireland
| | - Kevin Brown
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity Centre for Health Sciences, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, D08 W9RT Dublin, Ireland
| | - Emily Duffin
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity Centre for Health Sciences, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, D08 W9RT Dublin, Ireland
| | - Gráinne Jameson
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity Centre for Health Sciences, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, D08 W9RT Dublin, Ireland
| | - Sarah A Connolly
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity Centre for Health Sciences, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, D08 W9RT Dublin, Ireland
| | - Fiona O'Connell
- Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute (TTMI), St. James's Hospital, Dublin 8, D08 W9RT Dublin, Ireland
| | - Jacintha O'Sullivan
- Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute (TTMI), St. James's Hospital, Dublin 8, D08 W9RT Dublin, Ireland
| | - Sharee A Basdeo
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity Centre for Health Sciences, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, D08 W9RT Dublin, Ireland
| | - Joseph Keane
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity Centre for Health Sciences, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, D08 W9RT Dublin, Ireland
| | - James J Phelan
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity Centre for Health Sciences, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, D08 W9RT Dublin, Ireland
| |
Collapse
|
8
|
Er-Lukowiak M, Hänzelmann S, Rothe M, Moamenpour DT, Hausmann F, Khatri R, Hansen C, Boldt J, Bärreiter VA, Honecker B, Bea A, Groneberg M, Fehling H, Marggraff C, Cadar D, Bonn S, Sellau J, Lotter H. Testosterone affects type I/type II interferon response of neutrophils during hepatic amebiasis. Front Immunol 2023; 14:1279245. [PMID: 38179044 PMCID: PMC10764495 DOI: 10.3389/fimmu.2023.1279245] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/01/2023] [Indexed: 01/06/2024] Open
Abstract
Differences in immune response between men and women may influence the outcome of infectious diseases. Intestinal infection with Entamoeba histolytica leads to hepatic amebiasis, which is more common in males. Previously, we reported that innate immune cells contribute to liver damage in males in the murine model for hepatic amebiasis. Here, we focused on the influences of sex and androgens on neutrophils in particular. Infection associated with neutrophil accumulation in the liver was higher in male than in female mice and further increased after testosterone treatment in both sexes. Compared with female neutrophils, male neutrophils exhibit a more immature and less activated status, as evidenced by a lower proinflammatory N1-like phenotype and deconvolution, decreased gene expression of type I and type II interferon stimulated genes (ISGs) as well as downregulation of signaling pathways related to neutrophil activation. Neutrophils from females showed higher protein expression of the type I ISG viperin/RSAD2 during infection, which decreased by testosterone substitution. Moreover, ex vivo stimulation of human neutrophils revealed lower production of RSAD2 in neutrophils from men compared with women. These findings indicate that sex-specific effects on neutrophil physiology associated with maturation and type I IFN responsiveness might be important in the outcome of hepatic amebiasis.
Collapse
Affiliation(s)
- Marco Er-Lukowiak
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Sonja Hänzelmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical Artificial Intelligenc, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Moritz Rothe
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - David T. Moamenpour
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Fabian Hausmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical Artificial Intelligenc, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Robin Khatri
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical Artificial Intelligenc, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Charlotte Hansen
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jennifer Boldt
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Valentin A. Bärreiter
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Barbara Honecker
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Annika Bea
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Marie Groneberg
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Helena Fehling
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Claudia Marggraff
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Dániel Cadar
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Stefan Bonn
- Center for Biomedical Artificial Intelligenc, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julie Sellau
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Hanna Lotter
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
9
|
Auroni TT, Arora K, Natekar JP, Pathak H, Elsharkawy A, Kumar M. The critical role of interleukin-6 in protection against neurotropic flavivirus infection. Front Cell Infect Microbiol 2023; 13:1275823. [PMID: 38053527 PMCID: PMC10694511 DOI: 10.3389/fcimb.2023.1275823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/27/2023] [Indexed: 12/07/2023] Open
Abstract
West Nile virus (WNV) and Japanese encephalitis virus (JEV) are emerging mosquito-borne flaviviruses causing encephalitis globally. No specific drug or therapy exists to treat flavivirus-induced neurological diseases. The lack of specific therapeutics underscores an urgent need to determine the function of important host factors involved in flavivirus replication and disease progression. Interleukin-6 (IL-6) upregulation has been observed during viral infections in both mice and humans, implying that it may influence the disease outcome significantly. Herein, we investigated the function of IL-6 in the pathogenesis of neurotropic flavivirus infections. First, we examined the role of IL-6 in flavivirus-infected human neuroblastoma cells, SK-N-SH, and found that IL-6 neutralization increased the WNV or JEV replication and inhibited the expression of key cytokines. We further evaluated the role of IL-6 by infecting primary mouse cells derived from IL-6 knockout (IL-6-/-) mice and wild-type (WT) mice with WNV or JEV. The results exhibited increased virus yields in the cells lacking the IL-6 gene. Next, our in vivo approach revealed that IL-6-/- mice had significantly higher morbidity and mortality after subcutaneous infection with the pathogenic WNV NY99 or JEV Nakayama strain compared to WT mice. The non-pathogenic WNV Eg101 strain did not cause mortality in WT mice but resulted in 60% mortality in IL-6-/- mice, indicating that IL-6 is required for the survival of mice after the peripheral inoculation of WNV or JEV. We also observed significantly higher viremia and brain viral load in IL-6-/- mice than in WT mice. Subsequently, we explored innate immune responses in WT and IL-6-/- mice after WNV NY99 infection. Our data demonstrated that the IL-6-/- mice had reduced levels of key cytokines in the serum during early infection but elevated levels of proinflammatory cytokines in the brain later, along with suppressed anti-inflammatory cytokines. In addition, mRNA expression of IFN-α and IFN-β was significantly lower in the infected IL-6-/- mice. In conclusion, these data suggest that the lack of IL-6 exacerbates WNV or JEV infection in vitro and in vivo by causing an increase in virus replication and dysregulating host immune response.
Collapse
Affiliation(s)
| | | | | | | | | | - Mukesh Kumar
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
10
|
Li Y, Srinath A, Alcazar-Felix RJ, Hage S, Bindal A, Lightle R, Shenkar R, Shi C, Girard R, Awad IA. Inflammatory Mechanisms in a Neurovascular Disease: Cerebral Cavernous Malformation. Brain Sci 2023; 13:1336. [PMID: 37759937 PMCID: PMC10526329 DOI: 10.3390/brainsci13091336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Cerebral cavernous malformation (CCM) is a common cerebrovascular malformation causing intracranial hemorrhage, seizures, and focal neurologic deficits. A unique CCM lesional inflammatory microenvironment has been shown to influence the clinical course of the disease. This review addresses the inflammatory cell infiltrate in the CCM lesion and the role of a defined antigen-driven immune response in pathogenicity. We summarize immune mechanisms associated with the loss of the CCM gene and disease progression, including the potential role of immunothrombosis. We also review evidence of circulating inflammatory biomarkers associated with CCM disease and its clinical activity. We articulate future directions for this research, including the role of individual cell type contributions to the immune response in CCM, single cell transcriptomics of inflammatory cells, biomarker development, and therapeutic implications. The concepts are applicable for developing diagnostic and treatment strategies for CCM and for studying other neurovascular diseases.
Collapse
Affiliation(s)
- Ying Li
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (Y.L.); (C.S.)
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, Chicago, IL 60637, USA; (A.S.); (R.J.A.-F.); (S.H.); (A.B.); (R.L.); (R.S.); (R.G.)
| | - Abhinav Srinath
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, Chicago, IL 60637, USA; (A.S.); (R.J.A.-F.); (S.H.); (A.B.); (R.L.); (R.S.); (R.G.)
| | - Roberto J. Alcazar-Felix
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, Chicago, IL 60637, USA; (A.S.); (R.J.A.-F.); (S.H.); (A.B.); (R.L.); (R.S.); (R.G.)
| | - Stephanie Hage
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, Chicago, IL 60637, USA; (A.S.); (R.J.A.-F.); (S.H.); (A.B.); (R.L.); (R.S.); (R.G.)
| | - Akash Bindal
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, Chicago, IL 60637, USA; (A.S.); (R.J.A.-F.); (S.H.); (A.B.); (R.L.); (R.S.); (R.G.)
| | - Rhonda Lightle
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, Chicago, IL 60637, USA; (A.S.); (R.J.A.-F.); (S.H.); (A.B.); (R.L.); (R.S.); (R.G.)
| | - Robert Shenkar
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, Chicago, IL 60637, USA; (A.S.); (R.J.A.-F.); (S.H.); (A.B.); (R.L.); (R.S.); (R.G.)
| | - Changbin Shi
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (Y.L.); (C.S.)
| | - Romuald Girard
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, Chicago, IL 60637, USA; (A.S.); (R.J.A.-F.); (S.H.); (A.B.); (R.L.); (R.S.); (R.G.)
| | - Issam A. Awad
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, Chicago, IL 60637, USA; (A.S.); (R.J.A.-F.); (S.H.); (A.B.); (R.L.); (R.S.); (R.G.)
- Department of Neurological Surgery, University of Chicago Medicine, 5841 S Maryland, MC3026/Neurosurgery J341, Chicago, IL 60637, USA
| |
Collapse
|
11
|
Hawtin S, André C, Collignon-Zipfel G, Appenzeller S, Bannert B, Baumgartner L, Beck D, Betschart C, Boulay T, Brunner HI, Ceci M, Deane J, Feifel R, Ferrero E, Kyburz D, Lafossas F, Loetscher P, Merz-Stoeckle C, Michellys P, Nuesslein-Hildesheim B, Raulf F, Rush JS, Ruzzante G, Stein T, Zaharevitz S, Wieczorek G, Siegel R, Gergely P, Shisha T, Junt T. Preclinical characterization of the Toll-like receptor 7/8 antagonist MHV370 for lupus therapy. Cell Rep Med 2023; 4:101036. [PMID: 37196635 DOI: 10.1016/j.xcrm.2023.101036] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/17/2022] [Accepted: 04/12/2023] [Indexed: 05/19/2023]
Abstract
Genetic and in vivo evidence suggests that aberrant recognition of RNA-containing autoantigens by Toll-like receptors (TLRs) 7 and 8 drives autoimmune diseases. Here we report on the preclinical characterization of MHV370, a selective oral TLR7/8 inhibitor. In vitro, MHV370 inhibits TLR7/8-dependent production of cytokines in human and mouse cells, notably interferon-α, a clinically validated driver of autoimmune diseases. Moreover, MHV370 abrogates B cell, plasmacytoid dendritic cell, monocyte, and neutrophil responses downstream of TLR7/8. In vivo, prophylactic or therapeutic administration of MHV370 blocks secretion of TLR7 responses, including cytokine secretion, B cell activation, and gene expression of, e.g., interferon-stimulated genes. In the NZB/W F1 mouse model of lupus, MHV370 halts disease. Unlike hydroxychloroquine, MHV370 potently blocks interferon responses triggered by specific immune complexes from systemic lupus erythematosus patient sera, suggesting differentiation from clinical standard of care. These data support advancement of MHV370 to an ongoing phase 2 clinical trial.
Collapse
Affiliation(s)
- Stuart Hawtin
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Cédric André
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | | | - Simone Appenzeller
- Department of Orthopedics, Rheumatology, and Traumatology, School of Medical Science, University of Campinas (UNICAMP), Campinas, 13083-887 São Paulo, Brazil
| | - Bettina Bannert
- Department of Rheumatology, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Lea Baumgartner
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Damian Beck
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Claudia Betschart
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Thomas Boulay
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Hermine I Brunner
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Melanie Ceci
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Jonathan Deane
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, La Jolla, CA 92121, USA
| | - Roland Feifel
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Enrico Ferrero
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Diego Kyburz
- Department of Rheumatology, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Frederique Lafossas
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Pius Loetscher
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | | | - Pierre Michellys
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, La Jolla, CA 92121, USA
| | | | - Friedrich Raulf
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - James S Rush
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Giulia Ruzzante
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Thomas Stein
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Samantha Zaharevitz
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, La Jolla, CA 92121, USA
| | - Grazyna Wieczorek
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Richard Siegel
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Peter Gergely
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Tamas Shisha
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Tobias Junt
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland.
| |
Collapse
|
12
|
Distinct subsets of neutrophils crosstalk with cytokines and metabolites in patients with sepsis. iScience 2023; 26:105948. [PMID: 36756375 PMCID: PMC9900520 DOI: 10.1016/j.isci.2023.105948] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/04/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
Sepsis is a life-threatening condition caused by a dysregulated host response to infection. Despite continued efforts to understand the pathophysiology of sepsis, no effective therapies are currently available. While singular components of the aberrant immune response have been investigated, comprehensive studies linking different data layers are lacking. Using an integrated systems immunology approach, we evaluated neutrophil phenotypes and concomitant changes in cytokines and metabolites in patients with sepsis. Our findings identify differentially expressed mature and immature neutrophil subsets in patients with sepsis. These subsets correlate with various proteins, metabolites, and lipids, including pentraxin-3, angiopoietin-2, and lysophosphatidylcholines, in patients with sepsis. These results enabled the construction of a statistical model based on weighted multi-omics linear regression analysis for sepsis biomarker identification. These findings could help inform early patient stratification and treatment options, and facilitate further mechanistic studies targeting the trifecta of surface marker expression, cytokines, and metabolites.
Collapse
|
13
|
Gardiman E, Bianchetto-Aguilera F, Gasperini S, Tiberio L, Scandola M, Lotti V, Gibellini D, Salvi V, Bosisio D, Cassatella MA, Tamassia N. SARS-CoV-2-Associated ssRNAs Activate Human Neutrophils in a TLR8-Dependent Fashion. Cells 2022; 11:3785. [PMID: 36497044 PMCID: PMC9738506 DOI: 10.3390/cells11233785] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
COVID-19 disease is characterized by a dysregulation of the innate arm of the immune system. However, the mechanisms whereby innate immune cells, including neutrophils, become activated in patients are not completely understood. Recently, we showed that GU-rich RNA sequences from the SARS-CoV-2 genome (i.e., SCV2-RNA1 and SCV2-RNA2) activate dendritic cells. To clarify whether human neutrophils may also represent targets of SCV2-RNAs, neutrophils were treated with either SCV2-RNAs or, as a control, R848 (a TLR7/8 ligand), and were then analyzed for several functional assays and also subjected to RNA-seq experiments. Results highlight a remarkable response of neutrophils to SCV2-RNAs in terms of TNFα, IL-1ra, CXCL8 production, apoptosis delay, modulation of CD11b and CD62L expression, and release of neutrophil extracellular traps. By RNA-seq experiments, we observed that SCV2-RNA2 promotes a transcriptional reprogramming of neutrophils, characterized by the induction of thousands of proinflammatory genes, similar to that promoted by R848. Furthermore, by using CU-CPT9a, a TLR8-specific inhibitor, we found that SCV2-RNA2 stimulates neutrophils exclusively via TLR8-dependent pathways. In sum, our study proves that single-strand RNAs from the SARS-CoV-2 genome potently activate human neutrophils via TLR8, thus uncovering a potential mechanism whereby neutrophils may contribute to the pathogenesis of severe COVID-19 disease.
Collapse
Affiliation(s)
- Elisa Gardiman
- General Pathology Section, Department of Medicine, University of Verona, 37134 Verona, Italy
| | | | - Sara Gasperini
- General Pathology Section, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Laura Tiberio
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Matteo Scandola
- General Pathology Section, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Virginia Lotti
- Microbiology Section, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy
| | - Davide Gibellini
- Microbiology Section, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy
| | - Valentina Salvi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Marco A. Cassatella
- General Pathology Section, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Nicola Tamassia
- General Pathology Section, Department of Medicine, University of Verona, 37134 Verona, Italy
| |
Collapse
|
14
|
Jasim SA, Mahdi RS, Bokov DO, Najm MAA, Sobirova GN, Bafoyeva ZO, Taifi A, Alkadir OKA, Mustafa YF, Mirzaei R, Karampoor S. The deciphering of the immune cells and marker signature in COVID-19 pathogenesis: An update. J Med Virol 2022; 94:5128-5148. [PMID: 35835586 PMCID: PMC9350195 DOI: 10.1002/jmv.28000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/28/2022] [Accepted: 07/13/2022] [Indexed: 12/15/2022]
Abstract
The precise interaction between the immune system and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical in deciphering the pathogenesis of coronavirus disease 2019 (COVID-19) and is also vital for developing novel therapeutic tools, including monoclonal antibodies, antivirals drugs, and vaccines. Viral infections need innate and adaptive immune reactions since the various immune components, such as neutrophils, macrophages, CD4+ T, CD8+ T, and B lymphocytes, play different roles in various infections. Consequently, the characterization of innate and adaptive immune reactions toward SARS-CoV-2 is crucial for defining the pathogenicity of COVID-19. In this study, we explain what is currently understood concerning the conventional immune reactions to SARS-CoV-2 infection to shed light on the protective and pathogenic role of immune response in this case. Also, in particular, we investigate the in-depth roles of other immune mediators, including neutrophil elastase, serum amyloid A, and syndecan, in the immunopathogenesis of COVID-19.
Collapse
Affiliation(s)
| | - Roaa Salih Mahdi
- Department of Pathology, College of MedicineUniversity of BabylonHillaIraq
| | - Dmitry Olegovich Bokov
- Institute of PharmacySechenov First Moscow State Medical UniversityMoscowRussian Federation
- Laboratory of Food ChemistryFederal Research Center of Nutrition, Biotechnology and Food SafetyMoscowRussian Federation
| | - Mazin A. A. Najm
- Pharmaceutical Chemistry Department, College of PharmacyAl‐Ayen UniversityThi‐QarIraq
| | - Guzal N. Sobirova
- Department of Rehabilitation, Folk Medicine and Physical EducationTashkent Medical AcademyTashkentUzbekistan
| | - Zarnigor O. Bafoyeva
- Department of Rehabilitation, Folk Medicine and Physical EducationTashkent Medical AcademyTashkentUzbekistan
| | | | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of PharmacyUniversity of MosulMosulIraq
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research CenterPasteur Institute of IranTehranIran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research CenterIran University of Medical SciencesTehranIran
| |
Collapse
|
15
|
Minott JA, van Vloten JP, Chan L, Mehrani Y, Bridle BW, Karimi K. The Role of Neutrophils in Oncolytic Orf Virus-Mediated Cancer Immunotherapy. Cells 2022; 11:cells11182858. [PMID: 36139433 PMCID: PMC9496759 DOI: 10.3390/cells11182858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/30/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Neutrophils are innate leukocytes with diverse effector functions that allow them to respond to pathogens rapidly. Accumulating evidence has highlighted these cells’ complex roles in the host’s response to viral infections and tumor progression. Oncolytic virotherapy is emerging as a promising treatment modality in the armamentarium of cancer therapeutics. Oncolytic viruses preferentially kill cancer cells and stimulate tumor-associated inflammation, resulting in tumor regression. Assessing the activity of individual effector cell subsets following oncolytic virotherapy is important in identifying their contribution to antitumor immunity. In this study, we investigated the role of neutrophils in oncolytic Orf-virus-mediated immunotherapy in a murine model of pulmonary melanoma metastases. The systemic administration of the Orf virus stimulated a dramatic increase in the number of leukocytes in circulation and within the tumor microenvironment, most of which were neutrophils. Analysis of tumor-burdened lungs shortly after therapy revealed significant numbers of phenotypically immature neutrophils, with the enhanced expression of molecules affiliated with activation, migration, and cytotoxicity. Neutrophils stimulated by Orf virus therapy were directly tumoricidal through tumor necrosis factor-α-mediated effects and were required for optimal antitumor efficacy following Orf virus therapy. Taken together, these data reveal neutrophils as a crucial innate effector to consider when investigating oncolytic virotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Byram W. Bridle
- Correspondence: (B.W.B.); (K.K.); Tel.: +1-(519)-824-4120 (ext. 54657) (B.W.B.); +1-(519)-824-4120 (ext. 54668) (K.K.)
| | - Khalil Karimi
- Correspondence: (B.W.B.); (K.K.); Tel.: +1-(519)-824-4120 (ext. 54657) (B.W.B.); +1-(519)-824-4120 (ext. 54668) (K.K.)
| |
Collapse
|
16
|
Calzetti F, Finotti G, Tamassia N, Bianchetto-Aguilera F, Castellucci M, Canè S, Lonardi S, Cavallini C, Matte A, Gasperini S, Signoretto I, Benedetti F, Bonifacio M, Vermi W, Ugel S, Bronte V, Tecchio C, Scapini P, Cassatella MA. CD66b -CD64 dimCD115 - cells in the human bone marrow represent neutrophil-committed progenitors. Nat Immunol 2022; 23:679-691. [PMID: 35484408 DOI: 10.1038/s41590-022-01189-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 03/15/2022] [Indexed: 12/15/2022]
Abstract
Here we report the identification of human CD66b-CD64dimCD115- neutrophil-committed progenitor cells (NCPs) within the SSCloCD45dimCD34+ and CD34dim/- subsets in the bone marrow. NCPs were either CD45RA+ or CD45RA-, and in vitro experiments showed that CD45RA acquisition was not mandatory for their maturation process. NCPs exclusively generated human CD66b+ neutrophils in both in vitro differentiation and in vivo adoptive transfer experiments. Single-cell RNA-sequencing analysis indicated NCPs fell into four clusters, characterized by different maturation stages and distributed along two differentiation routes. One of the clusters was characterized by an interferon-stimulated gene signature, consistent with the reported expansion of peripheral mature neutrophil subsets that express interferon-stimulated genes in diseased individuals. Finally, comparison of transcriptomic and phenotypic profiles indicated NCPs represented earlier neutrophil precursors than the previously described early neutrophil progenitors (eNePs), proNeus and COVID-19 proNeus. Altogether, our data shed light on the very early phases of neutrophil ontogeny.
Collapse
Affiliation(s)
- Federica Calzetti
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Giulia Finotti
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Nicola Tamassia
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | | | | | - Stefania Canè
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Silvia Lonardi
- Unit of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Chiara Cavallini
- Interdepartmental Laboratory of Medical Research, Research Center LURM, University of Verona, Verona, Italy
| | - Alessandro Matte
- Section of Internal Medicine B, Department of Medicine, University of Verona and AOUI Verona, Verona, Italy
| | - Sara Gasperini
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Ilaria Signoretto
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Fabio Benedetti
- Section of Hematology and Bone Marrow Transplant Unit, Department of Medicine, University of Verona, Verona, Italy
| | - Massimiliano Bonifacio
- Section of Hematology and Bone Marrow Transplant Unit, Department of Medicine, University of Verona, Verona, Italy
| | - William Vermi
- Unit of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Stefano Ugel
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Vincenzo Bronte
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Cristina Tecchio
- Section of Hematology and Bone Marrow Transplant Unit, Department of Medicine, University of Verona, Verona, Italy
| | - Patrizia Scapini
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Marco A Cassatella
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy.
| |
Collapse
|
17
|
Niessen NM, Fricker M, McDonald VM, Gibson PG. T2-low: what do we know?: Past, present, and future of biologic therapies in noneosinophilic asthma. Ann Allergy Asthma Immunol 2022; 129:150-159. [PMID: 35487388 DOI: 10.1016/j.anai.2022.04.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/30/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023]
Abstract
T2-low asthma is an often severe asthma subtype with limited treatment options and biologic therapeutics are lacking. Several monoclonal antibodies (mAbs) targeting non-T2 cytokines were previously reported to be ineffective in asthma. These trials often investigated heterogeneous asthma populations and negative outcomes could be related to unsuitable study cohorts. More tailored approaches in selecting participants based on specific biomarkers have been beneficial in treating severe T2-high asthma. Similarly, mAbs previously deemed ineffective bear the potential to be useful when administered to the correct target population. Here, we review individual clinical trials conducted between 2005 and 2021 and assess the suitability of the selected cohorts, whether study end points were met, and whether outcome measures were appropriate to investigate the effectiveness of the respective drug. We discuss potential target groups within the T2-low asthma population and suggest biomarkers that may predict a treatment response. Furthermore, we assess whether biomarker-guided approaches or subgroup analyses were associated with more positive study outcomes. The mAbs directed against alarmins intervene early in the inflammatory cascade and are the first mAbs found to have efficacy in T2-low asthma. Several randomized controlled trials performed predefined subgroup analyses that included T2-low asthma. Subgroup analyses were associated with positive outcomes and were able to reveal a stronger response in at least 1 subgroup. A better understanding of T2-low subgroups and specific biomarkers is necessary to identify the most responsive target population for a given mAb.
Collapse
Affiliation(s)
- Natalie M Niessen
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia; School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, Australia; Asthma and Breathing Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia.
| | - Michael Fricker
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia; School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, Australia; Asthma and Breathing Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Vanessa M McDonald
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia; School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, Australia; Asthma and Breathing Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia; School of Nursing and Midwifery, The University of Newcastle, Newcastle, NSW, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| | - Peter G Gibson
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia; School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, Australia; Asthma and Breathing Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| |
Collapse
|
18
|
Griffin AJ, O'Donnell KL, Shifflett K, Lavik JP, Russell PM, Zimmerman MK, Relich RF, Marzi A. Serum from COVID-19 patients early in the pandemic shows limited evidence of cross-neutralization against variants of concern. Sci Rep 2022; 12:3954. [PMID: 35273264 PMCID: PMC8913826 DOI: 10.1038/s41598-022-07960-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) results in a variety of clinical symptoms ranging from no or mild to severe disease. Currently, there are multiple postulated mechanisms that may push a moderate to severe disease into a critical state. Human serum contains abundant evidence of the immune status following infection. Cytokines, chemokines, and antibodies can be assayed to determine the extent to which a patient responded to a pathogen. We examined serum and plasma from a cohort of patients infected with SARS-CoV-2 early in the pandemic and compared them to negative-control sera. Cytokine and chemokine concentrations varied depending on the severity of infection, and antibody responses were significantly increased in severe cases compared to mild to moderate infections. Neutralization data revealed that patients with high titers against an early 2020 SARS-CoV-2 isolate had detectable but limited neutralizing antibodies against the emerging SARS-CoV-2 Alpha, Beta and Delta variants. This study highlights the potential of re-infection for recovered COVID-19 patients.
Collapse
Affiliation(s)
- Amanda J Griffin
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Kyle L O'Donnell
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Kyle Shifflett
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - John-Paul Lavik
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Patrick M Russell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Michelle K Zimmerman
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Ryan F Relich
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA.
| |
Collapse
|
19
|
Xu M, Li N, Fan X, Zhou Y, Bi S, Shen A, Wang B. Differential Effects of Toll-Like Receptor Signaling on the Activation of Immune Responses in the Upper Respiratory Tract. Microbiol Spectr 2022; 10:e0114421. [PMID: 35196817 PMCID: PMC8865572 DOI: 10.1128/spectrum.01144-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/28/2022] [Indexed: 11/20/2022] Open
Abstract
Vaccination through the upper respiratory tract (URT) is highly effective for the prevention of respiratory infectious diseases. Toll-like receptor (TLR)-based adjuvants are immunostimulatory and considered potential adjuvant candidates. However, the patterns of immune response to different TLRs at the URT have not been revealed. In this study, SPF mice were preexposed to TLR agonists intranasally to simulate the status of humans. Inflammatory response to TLR agonists and TLR signal-mediated adaptive immune responses were analyzed. The results revealed that similar to human tonsils, inflammatory response to stimulation with TLR4 or TLR2 agonist was attenuated in agonist-exposed mice but not in mice without this exposure. In contrast, TLR9 or TLR3 agonist preexposure did not affect the inflammatory response to restimulation by matching agonists. For the adaptive immune response, after agonist preexposure the antibody response to antigens adjuvanted with TLR4 or TLR2 agonist was substantially restricted, whereas, both antibody and T cell responses to antigens adjuvanted with TLR9 or TLR3 agonist were activated as robustly as in mice without agonist exposure. Moreover, we demonstrate that the mechanisms underlying the differential activation of TLRs are regulated at the level of TLR expression in innate and adaptive immune cells. These results indicate that TLRs on the cell surface (TLR4 and 2) and in the endolysosomal compartments (TLR9 and 3) display distinct immune response patterns. The findings provide important information for the use of TLR agonists as mucosal adjuvants and enhance our understanding of immune responses to bacterial and viral infections in the respiratory mucosa. IMPORTANCE Agonists of TLRs are potential adjuvant candidates for mucosal vaccination. We demonstrated that the TLR-mediated inflammatory and antibody responses in the URT of SPF mice exposed to extracellular TLR agonists were substantially restricted. In contrast, inflammatory and adaptive immune responses, including B and T cell activation, were not desensitized in mice exposed to intracellular TLR agonists. The distinct responsive patterns of extra and intracellular TLRs regulated at TLR expression in immune cells. The results indicated that TLRs differentially impact the innate and adaptive immune response in the URT, which contributes to the selection of TLR-based mucosal adjuvants and helps understand the difference between the immune response in bacterial and viral infections.
Collapse
Affiliation(s)
- Meiyi Xu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Ning Li
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xin Fan
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ya Zhou
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Shuai Bi
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Adong Shen
- Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Beijing, China
| | - Beinan Wang
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Pauli G, Chao PH, Qin Z, Böttger R, Lee SE, Li SD. Liposomal Resiquimod for Enhanced Immunotherapy of Peritoneal Metastases of Colorectal Cancer. Pharmaceutics 2021; 13:1696. [PMID: 34683992 PMCID: PMC8540734 DOI: 10.3390/pharmaceutics13101696] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/25/2021] [Accepted: 10/12/2021] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer with peritoneal metastases is currently treated by cytoreductive surgery and locoregional chemotherapeutics. This standard treatment is associated with high morbidity, mortality, and recurrence rate. To augment the existing therapy, we developed a liposome-based delivery system containing 1,2-stearoyl-3-trimethylammonium-propane chloride (DSTAP), a cationic lipid, to localize a toll-like receptor agonist, resiquimod (R848), in the peritoneal cavity (PerC) for enhancing the immune response against cancer that had spread to the PerC. The liposomes delivered by intraperitoneal injection increased peritoneal retention of R848 by 14-fold while retarding its systemic absorption, leading to a 5-fold decreased peak plasma concentration compared to free R848 in mice. Within the PerC, the DSTAP-liposomes were found in ~40% of the dendritic cells by flow cytometry. DSTAP-R848 significantly upregulated interferon α (IFN-α) in the peritoneal fluid by 2-fold compared to free R848, without increasing the systemic level. Combined with oxaliplatin, a cytotoxic agent inducing immunogenic cell death, DSTAP-R848 effectively inhibited the progression of CT26 murine colorectal tumor in the PerC, while the combination with free R848 only showed a mild effect. Moreover, the combination of oxaliplatin and DSTAP-R848 significantly increased infiltration of CD8+ T cells in the PerC compared to oxaliplatin combined with free R848, indicating enhanced immune response against the tumor. The results suggest that DSTAP-R848 exhibits potential in augmenting existing therapies for treating colorectal cancer with peritoneal metastases via immune activation.
Collapse
Affiliation(s)
- Griffin Pauli
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (G.P.); (P.-H.C.); (Z.Q.); (R.B.); (S.E.L.)
| | - Po-Han Chao
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (G.P.); (P.-H.C.); (Z.Q.); (R.B.); (S.E.L.)
| | - Zhu Qin
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (G.P.); (P.-H.C.); (Z.Q.); (R.B.); (S.E.L.)
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Roland Böttger
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (G.P.); (P.-H.C.); (Z.Q.); (R.B.); (S.E.L.)
| | - Suen Ern Lee
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (G.P.); (P.-H.C.); (Z.Q.); (R.B.); (S.E.L.)
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (G.P.); (P.-H.C.); (Z.Q.); (R.B.); (S.E.L.)
| |
Collapse
|
21
|
Wang VE, Blaser BW, Patel RK, Behbehani GK, Rao AA, Durbin-Johnson B, Jiang T, Logan AC, Settles M, Mannis GN, Olin R, Damon LE, Martin TG, Sayre PH, Gaensler KM, McMahon E, Flanders M, Weinberg V, Ye CJ, Carbone DP, Munster PN, Fragiadakis GK, McCormick F, Andreadis C. Inhibition of MET Signaling with Ficlatuzumab in Combination with Chemotherapy in Refractory AML: Clinical Outcomes and High-Dimensional Analysis. Blood Cancer Discov 2021; 2:434-449. [PMID: 34514432 DOI: 10.1158/2643-3230.bcd-21-0055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Acute myeloid leukemia patients refractory to induction therapy or relapsed within one year have poor outcomes. Autocrine production of hepatocyte growth factor by myeloid blasts drives leukemogenesis in pre-clinical models. A phase Ib trial evaluated ficlatuzumab, a first-in-class anti-HGF antibody, in combination with cytarabine in this high-risk population. Dose-limiting toxicities were not observed, and 20 mg/kg was established as the recommended phase II dose. The most frequent treatment-related adverse event was febrile neutropenia. Among 17 evaluable patients, the overall response rate was 53%, all complete remissions. Phospho-proteomic mass cytometry showed potent on-target suppression of p-MET after ficlatuzumab treatment and that attenuation of p-S6 was associated with clinical response. Multiplexed single cell RNA sequencing using prospectively acquired patient specimens identified interferon response genes as adverse predictive factors. The ficlatuzumab and cytarabine combination is well-tolerated with favorable efficacy. High-dimensional analyses at single-cell resolution represent promising approaches for identifying biomarkers of response and mechanisms of resistance in prospective clinical studies.
Collapse
Affiliation(s)
- Victoria E Wang
- Department of Medicine, University of California, San Francisco, CA 94158, USA.,Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA 94158, USA
| | - Bradley W Blaser
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Ravi K Patel
- CoLabs, University of California, San Francisco, CA 94143, USA
| | - Gregory K Behbehani
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Arjun A Rao
- CoLabs, University of California, San Francisco, CA 94143, USA
| | | | - Tommy Jiang
- Department of Medicine, University of California, San Francisco, CA 94158, USA.,Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA 94158, USA
| | - Aaron C Logan
- Department of Medicine, University of California, San Francisco, CA 94158, USA.,Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA 94158, USA
| | - Matthew Settles
- Bioinformatics Core, Genome Center, University of California, Davis, CA 95616, USA
| | - Gabriel N Mannis
- Department of Medicine, University of California, San Francisco, CA 94158, USA
| | - Rebecca Olin
- Department of Medicine, University of California, San Francisco, CA 94158, USA.,Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA 94158, USA
| | - Lloyd E Damon
- Department of Medicine, University of California, San Francisco, CA 94158, USA.,Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA 94158, USA
| | - Thomas G Martin
- Department of Medicine, University of California, San Francisco, CA 94158, USA.,Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA 94158, USA
| | - Peter H Sayre
- Department of Medicine, University of California, San Francisco, CA 94158, USA.,Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA 94158, USA
| | - Karin M Gaensler
- Department of Medicine, University of California, San Francisco, CA 94158, USA.,Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA 94158, USA
| | - Emma McMahon
- Department of Medicine, University of California, San Francisco, CA 94158, USA.,Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA 94158, USA
| | - Michael Flanders
- Department of Medicine, University of California, San Francisco, CA 94158, USA.,Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA 94158, USA
| | - Vivian Weinberg
- Department of Medicine, University of California, San Francisco, CA 94158, USA
| | - Chun J Ye
- Department of Medicine, University of California, San Francisco, CA 94158, USA
| | - David P Carbone
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Pamela N Munster
- Department of Medicine, University of California, San Francisco, CA 94158, USA.,Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA 94158, USA
| | - Gabriela K Fragiadakis
- CoLabs, University of California, San Francisco, CA 94143, USA.,Bakar ImmunoX Initiative, University of California, San Francisco, CA 94143, USA.,Department of Medicine, Division of Rheumatology, University of California, San Francisco, CA 94143, USA
| | - Frank McCormick
- Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA 94158, USA
| | - Charalambos Andreadis
- Department of Medicine, University of California, San Francisco, CA 94158, USA.,Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
22
|
Kerschbaum S, Wegrostek C, Riegel E, Czerny T. Senescence in a cell culture model for burn wounds. Exp Mol Pathol 2021; 122:104674. [PMID: 34437877 DOI: 10.1016/j.yexmp.2021.104674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/25/2021] [Accepted: 08/15/2021] [Indexed: 11/29/2022]
Abstract
Thermal injuries cause severe damage on the cellular and tissue level and are considered especially challenging in the clinical routine. Complex interactions of different cell types and pathways dictate the formation of burn wounds. Thus, complications like burn wound progression, where so far viable tissue becomes necrotic and the size and depth of the wound increases, are difficult to explain, mainly due to the lack of simple model systems. We tested the behavior of human fibroblasts after heat treatment. A prominent response of the cells is to activate the heat shock response (HSR), which is one of the primary emergency mechanisms of the cell to proteotoxic stress factors such as heat. However, after a powerful but not lethal heat shock we observed a delayed activation of the HSR. Extending this model system, we further investigated these static cells and observed the emergence of senescent cells. In particular, the cells became β-galactosidase positive, increased p16 levels and developed a senescence-associated secretory phenotype (SASP). The secretion of cytokines like IL-6 is reminiscent of burn wounds and generates a bystander effect in so far non-senescent cells. In agreement with burn wounds, a wave of cytokine secretion enhanced by invading immune cells could explain complications like burn wound progression. A simple cell culture model can thus be applied for the analysis of highly complex conditions in human tissues.
Collapse
Affiliation(s)
- Sarah Kerschbaum
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria
| | - Christina Wegrostek
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria
| | - Elisabeth Riegel
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria
| | - Thomas Czerny
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria.
| |
Collapse
|
23
|
Enrico P, Delvecchio G, Turtulici N, Pigoni A, Villa FM, Perlini C, Rossetti MG, Bellani M, Lasalvia A, Bonetto C, Scocco P, D’Agostino A, Torresani S, Imbesi M, Bellini F, Veronese A, Bocchio-Chiavetto L, Gennarelli M, Balestrieri M, Colombo GI, Finardi A, Ruggeri M, Furlan R, Brambilla P. Classification of Psychoses Based on Immunological Features: A Machine Learning Study in a Large Cohort of First-Episode and Chronic Patients. Schizophr Bull 2021; 47:1141-1155. [PMID: 33561292 PMCID: PMC8266656 DOI: 10.1093/schbul/sbaa190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
For several years, the role of immune system in the pathophysiology of psychosis has been well-recognized, showing differences from the onset to chronic phases. Our study aims to implement a biomarker-based classification model suitable for the clinical management of psychotic patients. A machine learning algorithm was used to classify a cohort of 362 subjects, including 160 first-episode psychosis patients (FEP), 70 patients affected by chronic psychiatric disorders (schizophrenia, bipolar disorder, and major depressive disorder) with psychosis (CRO) and 132 health controls (HC), based on mRNA transcript levels of 56 immune genes. Models distinguished between FEP, CRO, and HC and between the subgroup of drug-free FEP and HC with a mean accuracy of 80.8% and 90.4%, respectively. Interestingly, by using the feature importance method, we identified some immune gene transcripts that contribute most to the classification accuracy, possibly giving new insights on the immunopathogenesis of psychosis. Therefore, our results suggest that our classification model has a high translational potential, which may pave the way for a personalized management of psychosis.
Collapse
Affiliation(s)
- Paolo Enrico
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giuseppe Delvecchio
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Nunzio Turtulici
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Alessandro Pigoni
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy
| | | | - Cinzia Perlini
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Psychology, University of Verona, Verona, Italy
| | - Maria Gloria Rossetti
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Marcella Bellani
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
- AOUI – Verona Hospital Trust, Verona, Italy
| | - Antonio Lasalvia
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
- AOUI – Verona Hospital Trust, Verona, Italy
| | - Chiara Bonetto
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
| | - Paolo Scocco
- Department of Mental Health, AULSS 6 Euganea, Padua, Italy
| | - Armando D’Agostino
- Department of Health Sciences, San Paolo University Hospital, University of Milan, Milan, Italy
| | - Stefano Torresani
- Department of Psychiatry, ULSS, Bolzano Suedtiroler Sanitaetbetrieb- Azienda Sanitaria dell’Alto Adige, Bolzano, Italy
| | | | | | | | - Luisella Bocchio-Chiavetto
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
- Faculty of Psychology, eCampus University, Novedrate, Como, Italy
| | - Massimo Gennarelli
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Matteo Balestrieri
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Gualtiero I Colombo
- Centro Cardiologico Monzino IRCCS, Immunology and Functional Genomics Unit, Milan, Italy
| | - Annamaria Finardi
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Mirella Ruggeri
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
- AOUI – Verona Hospital Trust, Verona, Italy
| | - Roberto Furlan
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Paolo Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
24
|
Darzianiazizi M, Allison KE, Kulkarni RR, Sharif S, Karimi K, Bridle BW. Disruption of type I interferon signaling causes sexually dimorphic dysregulation of anti-viral cytokines. Cytokine X 2021; 3:100053. [PMID: 34189454 PMCID: PMC8215187 DOI: 10.1016/j.cytox.2021.100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 04/09/2021] [Accepted: 06/01/2021] [Indexed: 12/01/2022] Open
Abstract
Type I interferons (IFNs) play a crucial role in the establishment of an antiviral state via signaling through their cognate type I IFN receptor (IFNAR). In this study, a replication-competent but highly attenuated strain of VSV (rVSVΔm51) carrying a deletion at position 51 of the matrix protein to remove suppression of anti-viral type I IFN responses was used to explore the effect of disrupted IFNAR signaling on inflammatory cytokine responses in mice. The kinetic responses of interleukin-6, tumor necrosis factor-α and interleukin-12 were evaluated in virus-infected male and female mice with or without concomitant antibody-mediated IFNAR-blockade. Unlike controls, both male and female IFNAR-blocked mice showed signs of sickness by 24-hours post-infection. Female IFNAR-blocked mice experienced greater morbidity as demonstrated by a significant decrease in body temperature. This was not the case for males. In addition, females with IFNAR-blockade mounted prolonged and exaggerated systemic inflammatory cytokine responses to rVSVΔm51. This was in stark contrast to controls with intact IFNAR signaling and males with IFNAR-blockade; they were able to down-regulate virus-induced inflammatory cytokine responses by 24-hours post-infection. Exaggerated cytokine responses in females with impaired IFNAR signaling was associated with more effective control of viremia than their male counterparts. However, the trade-off was greater immune-mediated morbidity. The results of this study demonstrated a role for IFNAR signaling in the down-regulation of antiviral cytokine responses, which was strongly influenced by sex. Our findings suggested that the potential to mount toxic cytokine responses to a virus with concomitant disruption of IFNAR signaling was heavily biased towards females.
Collapse
Affiliation(s)
- Maedeh Darzianiazizi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| | - Katrina E Allison
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| | - Raveendra R Kulkarni
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| | - Khalil Karimi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| | - Byram W Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
25
|
Johnson BM, Uchimura T, Gallovic MD, Thamilarasan M, Chou WC, Gibson SA, Deng M, Tam JW, Batty CJ, Williams J, Matsushima GK, Bachelder EM, Ainslie KM, Markovic-Plese S, Ting JPY. STING Agonist Mitigates Experimental Autoimmune Encephalomyelitis by Stimulating Type I IFN-Dependent and -Independent Immune-Regulatory Pathways. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:2015-2028. [PMID: 33820855 PMCID: PMC8406342 DOI: 10.4049/jimmunol.2001317] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/09/2021] [Indexed: 12/11/2022]
Abstract
The cGAS-cyclic GMP-AMP (cGAMP)-stimulator of IFN genes (STING) pathway induces a powerful type I IFN (IFN-I) response and is a prime candidate for augmenting immunity in cancer immunotherapy and vaccines. IFN-I also has immune-regulatory functions manifested in several autoimmune diseases and is a first-line therapy for relapsing-remitting multiple sclerosis. However, it is only moderately effective and can induce adverse effects and neutralizing Abs in recipients. Targeting cGAMP in autoimmunity is unexplored and represents a challenge because of the intracellular location of its receptor, STING. We used microparticle (MP)-encapsulated cGAMP to increase cellular delivery, achieve dose sparing, and reduce potential toxicity. In the C57BL/6 experimental allergic encephalomyelitis (EAE) model, cGAMP encapsulated in MPs (cGAMP MPs) administered therapeutically protected mice from EAE in a STING-dependent fashion, whereas soluble cGAMP was ineffective. Protection was also observed in a relapsing-remitting model. Importantly, cGAMP MPs protected against EAE at the peak of disease and were more effective than rIFN-β. Mechanistically, cGAMP MPs showed both IFN-I-dependent and -independent immunosuppressive effects. Furthermore, it induced the immunosuppressive cytokine IL-27 without requiring IFN-I. This augmented IL-10 expression through activated ERK and CREB. IL-27 and subsequent IL-10 were the most important cytokines to mitigate autoreactivity. Critically, cGAMP MPs promoted IFN-I as well as the immunoregulatory cytokines IL-27 and IL-10 in PBMCs from relapsing-remitting multiple sclerosis patients. Collectively, this study reveals a previously unappreciated immune-regulatory effect of cGAMP that can be harnessed to restrain T cell autoreactivity.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell-Derived Microparticles/immunology
- Cell-Derived Microparticles/metabolism
- Cells, Cultured
- Cytokines/immunology
- Cytokines/metabolism
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Female
- Humans
- Interferon Type I/immunology
- Interferon Type I/metabolism
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Membrane Proteins/agonists
- Membrane Proteins/immunology
- Membrane Proteins/metabolism
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Mice, Knockout
- Nucleotides, Cyclic/administration & dosage
- Nucleotides, Cyclic/immunology
- Nucleotides, Cyclic/metabolism
- Signal Transduction/drug effects
- Signal Transduction/immunology
- Mice
Collapse
Affiliation(s)
- Brandon M Johnson
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Toru Uchimura
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Matthew D Gallovic
- Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Madhan Thamilarasan
- Department of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Wei-Chun Chou
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Sara A Gibson
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Meng Deng
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Oral and Craniofacial Biomedicine Program, School of Dentistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jason W Tam
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Cole J Batty
- Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jonathan Williams
- Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Glenn K Matsushima
- Neuroscience Center, Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Eric M Bachelder
- Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Kristy M Ainslie
- Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Silva Markovic-Plese
- Department of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jenny P-Y Ting
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC;
- Neuroscience Center, Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Center for Translational Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC; and
- Institute for Inflammatory Diseases, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
26
|
Induction of OCT2 contributes to regulate the gene expression program in human neutrophils activated via TLR8. Cell Rep 2021; 35:109143. [PMID: 34010659 DOI: 10.1016/j.celrep.2021.109143] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/27/2021] [Accepted: 04/26/2021] [Indexed: 12/23/2022] Open
Abstract
The transcription factors (TFs) that regulate inducible genes in activated neutrophils are not yet completely characterized. Herein, we show that the genomic distribution of the histone modification H3K27Ac, as well as PU.1 and C/EBPβ, two myeloid-lineage-determining TFs (LDTFs), significantly changes in human neutrophils treated with R848, a ligand of Toll-like receptor 8 (TLR8). Interestingly, differentially acetylated and LDTF-marked regions reveal an over-representation of OCT-binding motifs that are selectively bound by OCT2/POU2F2. Analysis of OCT2 genomic distribution in primary neutrophils and of OCT2-depletion in HL-60-differentiated neutrophils proves the requirement for OCT2 in contributing to promote, along with nuclear factor κB (NF-κB) and activator protein 1 (AP-1), the TLR8-induced gene expression program in neutrophils. Altogether, our data demonstrate that neutrophils, upon activation via TLR8, profoundly reprogram their chromatin status, ultimately displaying cell-specific, prolonged transcriptome changes. Data also show an unexpected role for OCT2 in amplifying the transcriptional response to TLR8-mediated activation.
Collapse
|
27
|
TLR3 activation by Zika virus stimulates inflammatory cytokine production which dampens the antiviral response induced by RIG-I-like receptors. J Virol 2021; 95:JVI.01050-20. [PMID: 33658344 PMCID: PMC8139665 DOI: 10.1128/jvi.01050-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Infection with the Zika virus (ZIKV), a member of the Flaviviridae family, can cause serious neurological disorders, most notably microcephaly in newborns. Here we investigated the innate immune response to ZIKV infection in cells of the nervous system. In human neural progenitor cells (hNPCs), a target for ZIKV infection and likely involved in ZIKV-associated neuropathology, viral infection failed to elicit an antiviral interferon (IFN) response. However, pharmacological inhibition of TLR3 partially restored this deficit. Analogous results were obtained in human iPSC-derived astrocytes, which are capable of mounting a strong antiviral cytokine response. There, ZIKV is sensed by both RIG-I and MDA5 and induces an IFN response as well as expression of pro-inflammatory cytokines such as interleukin-6 (IL-6). Upon inhibition of TLR3, also in astrocytes the antiviral cytokine response was enhanced, whereas amounts of pro-inflammatory cytokines were reduced. To study the underlying mechanism, we used human epithelial cells as an easy to manipulate model system. We found that ZIKV is sensed in these cells by RIG-I to induce a robust IFN response and by TLR3 to trigger the expression of pro-inflammatory cytokines, including IL-6. ZIKV induced upregulation of IL-6 activated the STAT3 pathway, which decreased STAT1 phosphorylation in a SOCS-3 dependent manner, thus reducing the IFN response. In conclusion, we show that TLR3 activation by ZIKV suppresses IFN responses triggered by RIG-I-like receptors.ImportanceZika virus (ZIKV) has a pronounced neurotropism and infections with this virus can cause serious neurological disorders, most notably microcephaly and the Guillain-Barré syndrome. Our studies reveal that during ZIKV infection, recognition of viral RNA by TLR3 enhances the production of inflammatory cytokines and suppresses the interferon response triggered by RIG-I-like receptors (RLR) in a SOCS3-dependent manner, thus facilitating virus replication. The discovery of this crosstalk between antiviral (RLR) and inflammatory (TLR) responses may have important implications for our understanding of ZIKV-induced pathogenesis.
Collapse
|
28
|
Wadhawan A, Reynolds MA, Makkar H, Scott AJ, Potocki E, Hoisington AJ, Brenner LA, Dagdag A, Lowry CA, Dwivedi Y, Postolache TT. Periodontal Pathogens and Neuropsychiatric Health. Curr Top Med Chem 2021; 20:1353-1397. [PMID: 31924157 DOI: 10.2174/1568026620666200110161105] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 02/08/2023]
Abstract
Increasing evidence incriminates low-grade inflammation in cardiovascular, metabolic diseases, and neuropsychiatric clinical conditions, all important causes of morbidity and mortality. One of the upstream and modifiable precipitants and perpetrators of inflammation is chronic periodontitis, a polymicrobial infection with Porphyromonas gingivalis (P. gingivalis) playing a central role in the disease pathogenesis. We review the association between P. gingivalis and cardiovascular, metabolic, and neuropsychiatric illness, and the molecular mechanisms potentially implicated in immune upregulation as well as downregulation induced by the pathogen. In addition to inflammation, translocation of the pathogens to the coronary and peripheral arteries, including brain vasculature, and gut and liver vasculature has important pathophysiological consequences. Distant effects via translocation rely on virulence factors of P. gingivalis such as gingipains, on its synergistic interactions with other pathogens, and on its capability to manipulate the immune system via several mechanisms, including its capacity to induce production of immune-downregulating micro-RNAs. Possible targets for intervention and drug development to manage distal consequences of infection with P. gingivalis are also reviewed.
Collapse
Affiliation(s)
- Abhishek Wadhawan
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States.,Department of Psychiatry, Saint Elizabeths Hospital, Washington, D.C. 20032, United States
| | - Mark A Reynolds
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore 21201, United States
| | - Hina Makkar
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States
| | - Alison J Scott
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, United States
| | - Eileen Potocki
- VA Maryland Healthcare System, Baltimore VA Medical Center, Baltimore, United States
| | - Andrew J Hoisington
- Air Force Institute of Technology, Wright-Patterson Air Force Base, United States
| | - Lisa A Brenner
- Departments of Psychiatry, Neurology, and Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, United States.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, United States
| | - Aline Dagdag
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States
| | - Christopher A Lowry
- Departments of Psychiatry, Neurology, and Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, United States.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, United States.,Department of Integrative Physiology, Center for Neuroscience and Center for Microbial Exploration, University of Colorado Boulder, Boulder, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, United States
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Alabama, United States
| | - Teodor T Postolache
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, United States.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, United States.,Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 5, VA Capitol Health Care Network, Baltimore, United States
| |
Collapse
|
29
|
Yeo ECF, Brown MP, Gargett T, Ebert LM. The Role of Cytokines and Chemokines in Shaping the Immune Microenvironment of Glioblastoma: Implications for Immunotherapy. Cells 2021; 10:607. [PMID: 33803414 PMCID: PMC8001644 DOI: 10.3390/cells10030607] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/23/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma is the most common form of primary brain tumour in adults. For more than a decade, conventional treatment has produced a relatively modest improvement in the overall survival of glioblastoma patients. The immunosuppressive mechanisms employed by neoplastic and non-neoplastic cells within the tumour can limit treatment efficacy, and this can include the secretion of immunosuppressive cytokines and chemokines. These factors can play a significant role in immune modulation, thus disabling anti-tumour responses and contributing to tumour progression. Here, we review the complex interplay between populations of immune and tumour cells together with defined contributions by key cytokines and chemokines to these intercellular interactions. Understanding how these tumour-derived factors facilitate the crosstalk between cells may identify molecular candidates for potential immunotherapeutic targeting, which may enable better tumour control and improved patient survival.
Collapse
Affiliation(s)
- Erica C. F. Yeo
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5001, Australia; (E.C.F.Y.); (M.P.B.); (T.G.)
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Michael P. Brown
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5001, Australia; (E.C.F.Y.); (M.P.B.); (T.G.)
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Tessa Gargett
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5001, Australia; (E.C.F.Y.); (M.P.B.); (T.G.)
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Lisa M. Ebert
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5001, Australia; (E.C.F.Y.); (M.P.B.); (T.G.)
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
30
|
Gupta S, Kaplan MJ. Bite of the wolf: innate immune responses propagate autoimmunity in lupus. J Clin Invest 2021; 131:144918. [PMID: 33529160 PMCID: PMC7843222 DOI: 10.1172/jci144918] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The etiopathogenesis of systemic lupus erythematosus (SLE), a clinically heterogeneous multisystemic syndrome that derives its name from the initial characterization of facial lesions that resemble the bite of a wolf, is considered a complex, multifactorial interplay between underlying genetic susceptibility factors and the environment. Prominent pathogenic factors include the induction of aberrant cell death pathways coupled with defective cell death clearance mechanisms that promote excessive externalization of modified cellular and nuclear debris with subsequent loss of tolerance to a wide variety of autoantigens and innate and adaptive immune dysregulation. While abnormalities in adaptive immunity are well recognized and are key to the pathogenesis of SLE, recent findings have emphasized fundamental roles of the innate immune system in the initiation and propagation of autoimmunity and the development of organ damage in this disease. This Review focuses on recent discoveries regarding the role of components of the innate immune system, specifically neutrophils and interferons, in promoting various aspects of lupus pathogenesis, with potential implications for novel therapeutic strategies.
Collapse
|
31
|
Gbotosho OT, Kapetanaki MG, Kato GJ. The Worst Things in Life are Free: The Role of Free Heme in Sickle Cell Disease. Front Immunol 2021; 11:561917. [PMID: 33584641 PMCID: PMC7873693 DOI: 10.3389/fimmu.2020.561917] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
Hemolysis is a pathological feature of several diseases of diverse etiology such as hereditary anemias, malaria, and sepsis. A major complication of hemolysis involves the release of large quantities of hemoglobin into the blood circulation and the subsequent generation of harmful metabolites like labile heme. Protective mechanisms like haptoglobin-hemoglobin and hemopexin-heme binding, and heme oxygenase-1 enzymatic degradation of heme limit the toxicity of the hemolysis-related molecules. The capacity of these protective systems is exceeded in hemolytic diseases, resulting in high residual levels of hemolysis products in the circulation, which pose a great oxidative and proinflammatory risk. Sickle cell disease (SCD) features a prominent hemolytic anemia which impacts the phenotypic variability and disease severity. Not only is circulating heme a potent oxidative molecule, but it can act as an erythrocytic danger-associated molecular pattern (eDAMP) molecule which contributes to a proinflammatory state, promoting sickle complications such as vaso-occlusion and acute lung injury. Exposure to extracellular heme in SCD can also augment the expression of placental growth factor (PlGF) and interleukin-6 (IL-6), with important consequences to enthothelin-1 (ET-1) secretion and pulmonary hypertension, and potentially the development of renal and cardiac dysfunction. This review focuses on heme-induced mechanisms that are implicated in disease pathways, mainly in SCD. A special emphasis is given to heme-induced PlGF and IL-6 related mechanisms and their role in SCD disease progression.
Collapse
Affiliation(s)
- Oluwabukola T. Gbotosho
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Maria G. Kapetanaki
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Gregory J. Kato
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
32
|
Type I Interferon α/β Receptor-Mediated Signaling Negatively Regulates Antiviral Cytokine Responses in Murine Bone-Marrow-Derived Mast Cells and Protects the Cells from Virus-Induced Cell Death. Int J Mol Sci 2020; 21:ijms21239041. [PMID: 33261178 PMCID: PMC7729593 DOI: 10.3390/ijms21239041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/10/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022] Open
Abstract
Mast cells (MCs) are critical for initiating inflammatory responses to pathogens including viruses. Type I interferons (IFNs) that exert their antiviral functions by interacting with the type I IFN receptor (IFNAR) play a central role in host cellular responses to viruses. Given that virus-induced excessive toxic inflammatory responses are associated with aberrant IFNAR signaling and considering MCs are an early source of inflammatory cytokines during viral infections, we sought to determine whether IFNAR signaling plays a role in antiviral cytokine responses of MCs. IFNAR-intact, IFNAR-blocked, and IFNAR-knockout (IFNAR−/−) bone-marrow-derived MCs (BMMCs) were treated in vitro with a recombinant vesicular stomatitis virus (rVSVΔm51) to assess cytokine production by these cells. All groups of MCs produced the cytokines interleukin-6 and tumor necrosis factor-α in response to rVSVΔm51. However, production of the cytokines was lowest in IFNAR-intact cells as compared with IFNAR−/− or IFNAR-blocked cells at 20 h post-stimulation. Surprisingly, rVSVΔm51 was capable of infecting BMMCs, but functional IFNAR signaling was able to protect these cells from virus-induced death. This study showed that BMMCs produced pro-inflammatory cytokines in response to rVSVΔm51 and that IFNAR signaling was required to down-modulate these responses and protect the cells from dying from viral infection.
Collapse
|
33
|
Jafarzadeh A, Nemati M, Saha B, Bansode YD, Jafarzadeh S. Protective Potentials of Type III Interferons in COVID-19 Patients: Lessons from Differential Properties of Type I- and III Interferons. Viral Immunol 2020; 34:307-320. [PMID: 33147113 DOI: 10.1089/vim.2020.0076] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
While an appropriately regulated production of interferons (IFNs) performs a fundamental role in the defense against coronaviruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), dysregulated overproduction of inflammatory mediators can play an important role in the development of SARS-CoV-2 infection-related complications, such as acute respiratory distress syndrome. As the principal constituents of innate immunity, both type I and III IFNs share antiviral features. However, important properties, including preferential expression at mucosal barriers (such as respiratory tract), local influences, lower receptor distribution, smaller target cell types, noninflammatory effects, and immunomodulatory impacts, were attributed only to type III IFNs. Accordingly, type III IFNs can establish an optimal effective antiviral response, without triggering exaggerated systemic inflammation that is generally attributed to the type I IFNs. However, some harmful effects were attributed to the III IFNs and there are also major differences between human and mouse concerning the immunomodulatory effects of III IFNs. Here, we describe the differential properties of type I and type III IFNs and present a model of IFN response during SARS-COV-2 infection, while highlighting the superior potential of type III IFNs in COVID-19.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Maryam Nemati
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Bhaskar Saha
- National Center for Cell Science, Pune, India.,Trident Academy of Creative Technology, Bhubaneswar, India
| | | | - Sara Jafarzadeh
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
34
|
Karasu E, Demmelmaier J, Kellermann S, Holzmann K, Köhl J, Schmidt CQ, Kalbitz M, Gebhard F, Huber-Lang MS, Halbgebauer R. Complement C5a Induces Pro-inflammatory Microvesicle Shedding in Severely Injured Patients. Front Immunol 2020; 11:1789. [PMID: 32983087 PMCID: PMC7492592 DOI: 10.3389/fimmu.2020.01789] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Initially underestimated as platelet dust, extracellular vesicles are continuously gaining interest in the field of inflammation. Various studies addressing inflammatory diseases have shown that microvesicles (MVs) originating from different cell types are systemic transport vehicles carrying distinct cargoes to modulate immune responses. In this study, we focused on the clinical setting of multiple trauma, which is characterized by activation and dysfunction of both, the fluid-phase and the cellular component of innate immunity. Given the sensitivity of neutrophils for the complement anaphylatoxin C5a, we hypothesized that increased C5a production induces alterations in MV shedding of neutrophils resulting in neutrophil dysfunction that fuels posttraumatic inflammation. In a mono-centered prospective clinical study with polytraumatized patients, we found significantly increased granulocyte-derived MVs containing the C5a receptor (C5aR1, CD88) on their surface. This finding was accompanied by a concomitant loss of C5aR1 on granulocytes indicative of an impaired cellular chemotactic and pro-inflammatory neutrophil functions. Furthermore, in vitro exposure of human neutrophils (from healthy volunteers) to C5a significantly increased MV shedding and C5aR1 loss on neutrophils, which could be blocked using the C5aR1 antagonist PMX53. Mechanistic analyses revealed that the interaction between C5aR1 signaling and the small GTPase Arf6 acts as a molecular switch for MV shedding. When neutrophil derived, C5a-induced MV were exposed to a complex ex vivo whole blood model significant pro-inflammatory properties (NADPH activity, ROS and MPO generation) of the MVs became evident. C5a-induced MVs activated resting neutrophils and significantly induced IL-6 secretion. These data suggest a novel role of the C5a-C5aR1 axis: C5a-induced MV shedding from neutrophils results in decreased C5aR1 surface expression on the one hand, on the other hand it leads to profound inflammatory signals which likely are both key drivers of the neutrophil dysfunction which is regularly observed in patients suffering from multiple traumatic injuries.
Collapse
Affiliation(s)
- Ebru Karasu
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Julia Demmelmaier
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Stephanie Kellermann
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Karlheinz Holzmann
- Center for Biomedical Research, Genomics-Core Facility, Ulm University, Ulm, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany.,Division of Immunobiology, Cincinnati Children's Hospital, Cincinnati, OH, United States
| | - Christoph Q Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Miriam Kalbitz
- Department of Traumatology, Hand-, Plastic- and Reconstructive Surgery, Center of Surgery, University of Ulm Medical School, Ulm, Germany
| | - Florian Gebhard
- Department of Traumatology, Hand-, Plastic- and Reconstructive Surgery, Center of Surgery, University of Ulm Medical School, Ulm, Germany
| | - Markus S Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Rebecca Halbgebauer
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
35
|
Khatun MR, Arifuzzaman S. RETRACTED ARTICLE: Selected TLR7/8 agonist and type I interferon (IFN-α) cooperatively redefine the microglia transcriptome. Inflammopharmacology 2020; 31:547. [PMID: 31190206 PMCID: PMC7087773 DOI: 10.1007/s10787-019-00610-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/04/2019] [Indexed: 12/12/2022]
Abstract
Background Microglia, the primary immune cells of the central nervous system, exerts multiple functions to mediate many neurological diseases. Upon any detection of invading pathogen products (e.g., TLR agonists) or host-released signaling factors (e.g., interferon/IFN), these cells undergo an activation process to release large numbers of inflammatory substances that participate in inflammation and homeostasis. The profound effects of inflammation associated with TLR7/8 agonist Resiquimod (R848) and type 1 interferon (e.g., IFN-α)-induced macrophage and dendritic cell activation on biological outcomes have long been recognized. However, the underlying mechanisms are not well defined in microglial cells. Methods The present study investigated the molecular signatures of microglia and identified genes that are uniquely or synergistically expressed in R848-, IFN-α- or R848 with IFN-α-treated primary microglial (PM) cells. We used RNA-sequencing, quantitative real-time PCR, and bioinformatics approaches to derive regulatory networks that control the transcriptional response of PM to R848, IFN-α and R848 with IFN-α. Results Our approach revealed that the inflammatory response in R848 with IFN-α-treated PM is faster and more intense than that in R848 or IFN-α-treated PM in terms of the number of differentially expressed genes and the magnitude of induction/repression. In particular, our integrative analysis enabled us to suggest the regulatory functions of TFs, which allowed the construction of a network model that explains how TLR7/8 and IFN-α-sensing pathways achieve specificity. Conclusion In conclusion, the systematic approach presented herein could be important to the understanding microglial activation-mediated molecular signatures induced by inflammatory stimuli related to TLR7/8, IFN-α or co-signaling, and associated transcriptional machinery of microglial functions and neuroinflammatory mechanisms. Electronic supplementary material The online version of this article (10.1007/s10787-019-00610-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mst Reshma Khatun
- Department of Biomedical Science, Ajou University, Suwon, Gyeonggi-do 16499 Republic of Korea
| | - Sarder Arifuzzaman
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 17546 Republic of Korea
| |
Collapse
|
36
|
Sex differences in neutrophil biology modulate response to type I interferons and immunometabolism. Proc Natl Acad Sci U S A 2020; 117:16481-16491. [PMID: 32601182 DOI: 10.1073/pnas.2003603117] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Differences between female and male immunity may contribute to variations in response to infections and predisposition to autoimmunity. We previously reported that neutrophils from reproductive-age males are more immature and less activated than their female counterparts. To further characterize the mechanisms that drive differential neutrophil phenotypes, we performed RNA sequencing on circulating neutrophils from healthy adult females and males. Female neutrophils displayed significant up-regulation of type I IFN (IFN)-stimulated genes (ISGs). Single-cell RNA-sequencing analysis indicated that these differences are neutrophil specific, driven by a distinct neutrophil subset and related to maturation status. Neutrophil hyperresponsiveness to type I IFNs promoted enhanced responses to Toll-like receptor agonists. Neutrophils from young adult males had significantly increased mitochondrial metabolism compared to those from females and this was modulated by estradiol. Assessment of ISGs and neutrophil maturation genes in Klinefelter syndrome (47, XXY) males and in prepubescent children supported that differences in neutrophil phenotype between adult male and female neutrophils are hormonally driven and not explained by X chromosome gene dosage. Our results indicate that there are distinct sex differences in neutrophil biology related to responses to type I IFNs, immunometabolism, and maturation status that may have prominent functional and pathogenic implications.
Collapse
|
37
|
Zampino M, Brennan NA, Kuo PL, Spencer RG, Fishbein KW, Simonsick EM, Ferrucci L. Poor mitochondrial health and systemic inflammation? Test of a classic hypothesis in the Baltimore Longitudinal Study of Aging. GeroScience 2020; 42:1175-1182. [PMID: 32572752 DOI: 10.1007/s11357-020-00208-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
Although a persistent inflammatory state has long been associated with aging and negative health outcomes, the underlying mechanisms remain unclear. Mitochondrial dysfunction has been proposed as a cause of inflammaging, but evidence of an association in humans is lacking. In this study, we analyzed the cross-sectional association between inflammatory biomarkers and mitochondrial oxidative capacity in skeletal muscle, assessed as post-exercise phosphocreatine recovery time constant by phosphorus magnetic resonance spectroscopy, in a population of 669 adults (mean age 67 years) from the Baltimore Longitudinal Study of Aging. We observed that participants with lower mitochondrial oxidative capacity exhibited hallmarks of inflammation, specifically markedly higher levels of interleukin-6 and C-reactive protein, as well as increased erythrocyte sedimentation rate when compared with participants with better oxidative capacity, independent of age and sex. We speculate that this association reflects the observation that products of damaged mitochondria, such as mitochondrial DNA, activate multiple pathways that lead to inflammation. Furthermore, excess production of oxidative species (ROS) by dysfunctional mitochondria could trigger inflammation either directly via NF-κB or through oxidative damage to proteins, lipids, and nucleic acids. Longitudinal studies are necessary to ascertain whether and through which mechanisms mitochondrial dysfunction activate inflammation or whether both these phenomena derive from a common root.
Collapse
Affiliation(s)
- Marta Zampino
- National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD, 21224, USA
| | | | - Pei-Lun Kuo
- National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD, 21224, USA
| | - Richard G Spencer
- National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD, 21224, USA
| | - Kenneth W Fishbein
- National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD, 21224, USA
| | - Eleanor M Simonsick
- National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD, 21224, USA
| | - Luigi Ferrucci
- National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD, 21224, USA.
| |
Collapse
|
38
|
Mohamed MMA, El-Shimy IA, Hadi MA. Neutrophil Elastase Inhibitors: A potential prophylactic treatment option for SARS-CoV-2-induced respiratory complications? Crit Care 2020; 24:311. [PMID: 32513225 PMCID: PMC7276973 DOI: 10.1186/s13054-020-03023-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 05/25/2020] [Indexed: 12/16/2022] Open
Affiliation(s)
- Mahmoud M A Mohamed
- Department of Radiology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Ismail Amr El-Shimy
- Integrative Research Institute (IRI) for Life Sciences, Humboldt University Berlin, Philippstrasse 13, 10115, Berlin, Germany
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Muhammad Abdul Hadi
- School of Pharmacy, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
39
|
Cassatella MA, Gardiman E, Arruda-Silva F, Bianchetto-Aguilera F, Gasperini S, Bugatti M, Vermi W, Larousserie F, Devergne O, Tamassia N. Human neutrophils activated by TLR8 agonists, with or without IFNγ, synthesize and release EBI3, but not IL-12, IL-27, IL-35, or IL-39. J Leukoc Biol 2020; 108:1515-1526. [PMID: 32480433 DOI: 10.1002/jlb.3ma0520-054r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/08/2020] [Indexed: 12/14/2022] Open
Abstract
The IL-12 family of cytokines plays crucial functions in innate and adaptive immunity. These cytokines include heterodimers sharing distinct α (IL-12A, IL-23A, and IL-27A) with two β (IL-12B and Epstein-Barr virus induced gene 3 [EBI3]) chains, respectively, IL-12 (IL-12B plus IL-12A) and IL-23 (IL-12B plus IL-23A) sharing IL-12B, IL-27 (EBI3 plus IL-27A), IL-35 (EBI3 plus IL-12A), and IL-39 (EBI3 plus IL-23A) sharing EBI3. In this context, we have recently reported that highly pure neutrophils incubated with TLR8 agonists produce functional IL-23. Previously, we showed that neutrophils incubated with LPS plus IFNγ for 20 h produce IL-12. Herein, we investigated whether highly pure, TLR8-activated, neutrophils produce EBI3, and in turn IL-27, IL-35, and IL-39, the IL-12 members containing it. We report that neutrophils incubated with TLR8 ligands, TNFα and, to a lesser extent, LPS, produce and release remarkable amounts of EBI3, but not IL-27A, consequently excluding the possibility for an IL-27 production. We also report a series of unsuccessful experiments performed to investigate whether neutrophil-derived EBI3 associates with IL-23A to form IL-39. Furthermore, we show that neutrophils incubated with IFNγ in combination with either TLR8 or TLR4 ligands express/produce neither IL-12, nor IL-35, due to the inability of IFNγ, contrary to previous findings, to activate IL12A transcription. Even IL-27 was undetectable in supernatants harvested from IFNγ plus R848-treated neutrophils, although they were found to accumulate IL27A transcripts. Finally, by immunohistochemistry experiments, EBI3-positive neutrophils were found in discrete pathologies only, including diverticulitis, cholecystitis, Gorham disease, and Bartonella Henselae infection, implying a specific role of neutrophil-derived EBI3 in vivo.
Collapse
Affiliation(s)
- Marco A Cassatella
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Elisa Gardiman
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Fabio Arruda-Silva
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | | | - Sara Gasperini
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, Brescia, Italy
| | - William Vermi
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, Brescia, Italy
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Frederique Larousserie
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
- Département de Pathologie, Hôpital Cochin, AP-HP, Université de Paris, Paris, France
| | - Odile Devergne
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
| | - Nicola Tamassia
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| |
Collapse
|
40
|
Differential CpG DNA methylation in peripheral naïve CD4 + T-cells in early rheumatoid arthritis patients. Clin Epigenetics 2020; 12:54. [PMID: 32264938 PMCID: PMC7137446 DOI: 10.1186/s13148-020-00837-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/08/2020] [Indexed: 12/15/2022] Open
Abstract
Background The genetic risk associated with rheumatoid arthritis (RA) includes genes regulating DNA methylation, one of the hallmarks of epigenetic re-programing, as well as many T-cell genes, with a strong MHC association, pointing to immunogenetic mechanisms as disease triggers leading to chronicity. The aim of our study was to explore DNA methylation in early, drug-naïve RA patients, towards a better understanding of early events in pathogenesis. Result Monocytes, naïve and memory CD4+ T-cells were sorted from 6 healthy controls and 10 RA patients. DNA methylation was assessed using a genome-wide Illumina 450K CpG promoter array. Differential methylation was confirmed using bisulfite sequencing for a specific gene promoter, ELISA for several cytokines and flow cytometry for cell surface markers. Differentially methylated (DM) CpGs were observed in 1047 genes in naïve CD4+ T-cells, 913 in memory cells and was minimal in monocytes with only 177 genes. Naive CD4+ T-cells were further investigated as presenting differential methylation in the promoter of > 500 genes associated with several disease-relevant pathways, including many cytokines and their receptors. We confirmed hypomethylation of a region of the TNF-alpha gene in early RA and differential expression of 3 cytokines (IL21, IL34 and RANKL). Using a bioinformatics package (DMRcate) and an in-house analysis based on differences in β values, we established lists of DM genes between health and RA. Publicly available gene expression data were interrogated to confirm differential expression of over 70 DM genes. The lists of DM genes were further investigated based on a functional relationship database analysis, which pointed to an IL6/JAK1/STAT3 node, related to TNF-signalling and engagement in Th17 cell differentiation amongst many pathways. Five DM genes for cell surface markers (CD4, IL6R, IL2RA/CD25, CD62L, CXCR4) were investigated towards identifying subpopulations of CD4+ T-cells undergoing these modifications and pointed to a subset of naïve T-cells, with high levels of CD4, IL2R, and CXCR4, but reduction and loss of IL6R and CD62L, respectively. Conclusion Our data provided novel conceptual advances in the understanding of early RA pathogenesis, with implications for early treatment and prevention.
Collapse
|
41
|
C/EBPβ is a critical mediator of IFN-α-induced exhaustion of chronic myeloid leukemia stem cells. Blood Adv 2020; 3:476-488. [PMID: 30755436 DOI: 10.1182/bloodadvances.2018020503] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 01/12/2019] [Indexed: 11/20/2022] Open
Abstract
Even in the era of ABL tyrosine kinase inhibitors, eradication of chronic myeloid leukemia (CML) stem cells is necessary for complete cure of the disease. Interferon-α (IFN-α) has long been used for the treatment of chronic-phase CML, but its mechanisms of action against CML stem cells remain unclear. We found that IFN-α upregulated CCAAT/enhancer binding protein β (C/EBPβ) in BCR-ABL-expressing mouse cells by activating STAT1 and STAT5, which were recruited to a newly identified 3' distal enhancer of Cebpb that contains tandemly aligned IFN-γ-activated site elements. Suppression or deletion of the IFN-γ-activated site elements abrogated IFN-α-dependent upregulation of C/EBPβ. IFN-α induced differentiation and exhaustion of CML stem cells, both in vitro and in vivo, in a C/EBPβ-dependent manner. In addition, IFN-α upregulated C/EBPβ and induced exhaustion of lineage- CD34+ cells from CML patients. Collectively, these results clearly indicate that C/EBPβ is a critical mediator of IFN-α-induced differentiation and exhaustion of CML stem cells.
Collapse
|
42
|
Abstract
Venous blood provides a ready source of large numbers of unstimulated granulocytes and mononuclear cells. Exploiting the differences in the relative densities of the leukocytes circulating in venous blood, one can separate leukocytes from erythrocytes as well as isolate the individual leukocyte populations in high purity for use in ex vivo studies. For selected functional studies, such as transcriptional analysis or cytokine quantitation, addition of an immunomagnetic negative selection step to the standard isolation protocol can yield highly purified human neutrophils.
Collapse
Affiliation(s)
- Silvie Kremserova
- Inflammation Program and Department of Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - William M Nauseef
- Inflammation Program and Department of Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
43
|
Catapano M, Vergnano M, Romano M, Mahil SK, Choon SE, Burden AD, Young HS, Carr IM, Lachmann HJ, Lombardi G, Smith CH, Ciccarelli FD, Barker JN, Capon F. IL-36 Promotes Systemic IFN-I Responses in Severe Forms of Psoriasis. J Invest Dermatol 2019; 140:816-826.e3. [PMID: 31539532 PMCID: PMC7097848 DOI: 10.1016/j.jid.2019.08.444] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/24/2019] [Accepted: 08/06/2019] [Indexed: 12/16/2022]
Abstract
Psoriasis is an immune-mediated skin disorder associated with severe systemic comorbidities. Whereas IL-36 is a key disease driver, the pathogenic role of this cytokine has mainly been investigated in skin. Thus, its effects on systemic immunity and extracutaneous disease manifestations remain poorly understood. To address this issue, we investigated the consequences of excessive IL-36 activity in circulating immune cells. We initially focused our attention on generalized pustular psoriasis (GPP), a clinical variant associated with pervasive upregulation of IL-36 signaling. By undertaking blood and neutrophil RNA sequencing, we demonstrated that affected individuals display a prominent IFN-I signature, which correlates with abnormal IL-36 activity. We then validated the association between IL-36 deregulation and IFN-I over-expression in patients with severe psoriasis vulgaris (PV). We also found that the activation of IFN-I genes was associated with extracutaneous morbidity, in both GPP and PV. Finally, we undertook mechanistic experiments, demonstrating that IL-36 acts directly on plasmacytoid dendritic cells, where it potentiates toll-like receptor (TLR)-9 activation and IFN-α production. This effect was mediated by the upregulation of PLSCR1, a phospholipid scramblase mediating endosomal TLR-9 translocation. These findings identify an IL-36/ IFN-I axis contributing to extracutaneous inflammation in psoriasis.
Collapse
Affiliation(s)
- Marika Catapano
- Department of Medical and Molecular Genetics, School of Basic & Medical Biosciences, King's College London, London, United Kingdom
| | - Marta Vergnano
- Department of Medical and Molecular Genetics, School of Basic & Medical Biosciences, King's College London, London, United Kingdom
| | - Marco Romano
- Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Satveer K Mahil
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, United Kingdom
| | - Siew-Eng Choon
- Department of Dermatology, Sultanah Aminah Hospital, Johor Bahru, Malaysia
| | - A David Burden
- Department of Dermatology, University of Glasgow, Glasgow, United Kingdom
| | - Helen S Young
- Division of Musculoskeletal and Dermatological Sciences, University of Manchester, Manchester, United Kingdom
| | - Ian M Carr
- School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Helen J Lachmann
- National Amyloidosis Centre and Centre for Acute Phase Proteins, Division of Medicine, University College London, London, United Kingdom
| | - Giovanna Lombardi
- Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Catherine H Smith
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, United Kingdom
| | - Francesca D Ciccarelli
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London, United Kingdom; School of Cancer & Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Jonathan N Barker
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, United Kingdom
| | - Francesca Capon
- Department of Medical and Molecular Genetics, School of Basic & Medical Biosciences, King's College London, London, United Kingdom.
| |
Collapse
|
44
|
Wang Y, Jönsson F. Expression, Role, and Regulation of Neutrophil Fcγ Receptors. Front Immunol 2019; 10:1958. [PMID: 31507592 PMCID: PMC6718464 DOI: 10.3389/fimmu.2019.01958] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/02/2019] [Indexed: 12/31/2022] Open
Abstract
Neutrophils are best known for their critical role in host defense, for which they utilize multiple innate immune mechanisms, including microbe-associated pattern recognition, phagocytosis, production of reactive oxygen species, and the release of potent proteases, mediators, antimicrobials, and neutrophil extracellular traps. Beyond their well-established contribution to innate immunity, neutrophils were more recently reported to interact with various other cell types, including cells from the adaptive immune system, thereby enabling neutrophils to tune the overall immune response of the host. Neutrophils express different receptors for IgG antibodies (Fcγ receptors), which facilitate the engulfment of IgG-opsonized microbes and trigger cell activation upon cross-linking of several receptors. Indeed, FcγRs (via IgG antibodies) confer neutrophils with a key feature of the adaptive immunity: an antigen-specific cell response. This review summarizes the expression and function of FcγRs on human neutrophils in health and disease and how they are affected by polymorphisms in the FCGR loci. Additionally, we will discuss the role of neutrophils in providing help to marginal zone B cells for the production of antibodies, which in turn may trigger neutrophil effector functions when engaging FcγRs.
Collapse
Affiliation(s)
- Yu Wang
- Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR 1222 INSERM, Paris, France
- Université Diderot Paris VII, PSL University, Paris, France
| | - Friederike Jönsson
- Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR 1222 INSERM, Paris, France
| |
Collapse
|
45
|
Keaton SA, Madaj ZB, Heilman P, Smart L, Grit J, Gibbons R, Postolache T, Roaten K, Achtyes E, Brundin L. An inflammatory profile linked to increased suicide risk. J Affect Disord 2019; 247:57-65. [PMID: 30654266 PMCID: PMC6860980 DOI: 10.1016/j.jad.2018.12.100] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/25/2018] [Accepted: 12/24/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Suicide risk assessments are often challenging for clinicians, and therefore, biological markers are warranted as guiding tools in these assessments. Suicidal patients display increased cytokine levels in peripheral blood, although the composite inflammatory profile in the subjects is still unknown. It is also not yet established whether certain inflammatory changes are specific to suicidal subjects. To address this, we measured 45 immunobiological factors in peripheral blood and identified the biological profiles associated with cross-diagnostic suicide risk and depression, respectively. METHODS Sixty-six women with mood and anxiety disorders underwent computerized adaptive testing for mental health, assessing depression and suicide risk. Weighted correlation network analysis was used to uncover system level associations between suicide risk, depression, and the immunobiological factors in plasma. Secondary regression models were used to establish the sensitivity of the results to potential confounders, including age, body mass index (BMI), treatment and symptoms of depression and anxiety. RESULTS The biological profile of patients assessed to be at increased suicide risk differed from that associated with depression. At the system level, a biological cluster containing increased levels of interleukin-6, lymphocytes, monocytes, white blood cell count and polymorphonuclear leukocyte count significantly impacted suicide risk, with the latter two inferring the strongest influence. The cytokine interleukin-8 was independently and negatively associated with increased suicide risk. The results remained after adjusting for confounders. LIMITATIONS This study is cross-sectional and not designed to prove causality. DISCUSSION A unique immunobiological profile was linked to increased suicide risk. The profile was different from that observed in patients with depressive symptoms, and indicates that granulocyte mediated biological mechanisms could be activated in patients at risk for suicide.
Collapse
Affiliation(s)
- Sarah A Keaton
- Department of Physiology, Michigan State University, East Lansing, MI, USA,Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Zachary B Madaj
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Patrick Heilman
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - LeAnn Smart
- Pine Rest Christian Mental Health Services, Grand Rapids, MI, USA
| | - Jamie Grit
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Robert Gibbons
- Center for Health Statistics, Departments of Medicine and Public Health Sciences, University of Chicago, Illinois, USA
| | - Teodor Postolache
- Department of Psychiatry, University of Maryland-Baltimore School of Medicine, Baltimore, MD, USA,Rocky Mountain Mirecc, Denver, CO, USA
| | - Kimberly Roaten
- Department of Psychiatry, University of Texas Southwestern, Dallas, TX, USA
| | - Eric Achtyes
- Pine Rest Christian Mental Health Services, Grand Rapids, MI, USA,Division of Psychiatry & Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, Michigan, USA
| | - Lena Brundin
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA.
| |
Collapse
|
46
|
Tamassia N, Arruda‐Silva F, Wright HL, Moots RJ, Gardiman E, Bianchetto‐Aguilera F, Gasperini S, Capone M, Maggi L, Annunziato F, Edwards SW, Cassatella MA. Human neutrophils activated via TLR8 promote Th17 polarization through IL‐23. J Leukoc Biol 2019; 105:1155-1165. [DOI: 10.1002/jlb.ma0818-308r] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 02/16/2019] [Accepted: 02/17/2019] [Indexed: 12/14/2022] Open
Affiliation(s)
- Nicola Tamassia
- Department of MedicineSection of General PathologyUniversity of Verona Verona Italy
| | - Fabio Arruda‐Silva
- Department of MedicineSection of General PathologyUniversity of Verona Verona Italy
- CAPES FoundationMinistry of Education of Brazil Brasilia DF Brazil
| | - Helen L. Wright
- Institute of Integrative BiologyUniversity of Liverpool Liverpool United Kindom
| | - Robert J. Moots
- Institute of Ageing and Chronic DiseaseUniversity of Liverpool Liverpool United Kindom
| | - Elisa Gardiman
- Department of MedicineSection of General PathologyUniversity of Verona Verona Italy
| | | | - Sara Gasperini
- Department of MedicineSection of General PathologyUniversity of Verona Verona Italy
| | - Manuela Capone
- Department of Experimental and Clinical Medicine and DENOTHE CenterUniversity of Florence Firenze Italy
| | - Laura Maggi
- Department of Experimental and Clinical Medicine and DENOTHE CenterUniversity of Florence Firenze Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine and DENOTHE CenterUniversity of Florence Firenze Italy
| | - Steven W. Edwards
- Institute of Integrative BiologyUniversity of Liverpool Liverpool United Kindom
| | - Marco A. Cassatella
- Department of MedicineSection of General PathologyUniversity of Verona Verona Italy
| |
Collapse
|
47
|
Yang K, Guan S, Zhang H, Chen Z. Induction of interleukin 6 impairs the anti-HBV efficiency of IFN-α in human hepatocytes through upregulation of SOCS3. J Med Virol 2019; 91:803-812. [PMID: 30570770 DOI: 10.1002/jmv.25382] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Kai Yang
- Department of Pharmacology; Anhui Medical University; Hefei China
- Department of Clinical Laboratory; The Second Hospital of Anhui Medical University; Hefei China
| | - Shihe Guan
- Department of Clinical Laboratory; The Second Hospital of Anhui Medical University; Hefei China
| | - Hao Zhang
- Department of Clinical Laboratory; The Second Hospital of Anhui Medical University; Hefei China
| | - Zhiwu Chen
- Department of Pharmacology; Anhui Medical University; Hefei China
| |
Collapse
|
48
|
Anti-TNF- α Therapy Suppresses Proinflammatory Activities of Mucosal Neutrophils in Inflammatory Bowel Disease. Mediators Inflamm 2018; 2018:3021863. [PMID: 30595666 PMCID: PMC6282128 DOI: 10.1155/2018/3021863] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/05/2018] [Accepted: 09/13/2018] [Indexed: 12/28/2022] Open
Abstract
Neutrophils have been found to play an important role in the pathogenesis of inflammatory bowel disease (IBD), and anti-TNF-α mAb (i.e., infliximab) therapy is demonstrated to be effective in the induction of clinical remission and mucosal healing in these patients. However, how anti-TNF-α mAb regulates the functions of neutrophils is still unknown. Herein, we found that anti-TNF-α therapy significantly downregulated infiltration of neutrophils in inflamed mucosa of IBD patients. Importantly, anti-TNF-α mAb could inhibit neutrophils to produce proinflammatory mediators, such as ROS, calprotectin, IL-8, IL-6, and TNF-α. These data indicate that TNF-α plays a critical role in the induction of mucosal inflammatory response, and that blockade of TNF-α modulates intestinal homeostasis through balancing immune responses of neutrophils.
Collapse
|
49
|
Tamassia N, Bianchetto-Aguilera F, Arruda-Silva F, Gardiman E, Gasperini S, Calzetti F, Cassatella MA. Cytokine production by human neutrophils: Revisiting the "dark side of the moon". Eur J Clin Invest 2018; 48 Suppl 2:e12952. [PMID: 29772063 DOI: 10.1111/eci.12952] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/10/2018] [Indexed: 12/17/2022]
Abstract
Polymorphonuclear neutrophils are the most numerous leucocytes present in human blood, and function as crucial players in innate immune responses. Neutrophils are indispensable for the defence towards microbes, as they effectively counter them by releasing toxic enzymes, by synthetizing reactive oxygen species and by producing inflammatory mediators. Interestingly, recent findings have highlighted an important role of neutrophils also as promoters of the resolution of inflammation process, indicating that their biological functions go well beyond simple pathogen killing. Consistently, data from the last decades have highlighted that neutrophils may even contribute to the development of adaptive immunity by performing previously unanticipated functions, including the capacity to extend their survival, directly interact with other leucocytes or cell types, and produce and release a variety of cytokines. In this article, we will summarize the main features of, as well as emphasize some important concepts on, the production of cytokines by human neutrophils.
Collapse
Affiliation(s)
- Nicola Tamassia
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | | | - Fabio Arruda-Silva
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy.,CAPES Foundation, Ministry of Education of Brazil, Brasilia, Brazil
| | - Elisa Gardiman
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Sara Gasperini
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Federica Calzetti
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Marco A Cassatella
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| |
Collapse
|
50
|
Rivadeneyra L, Charó N, Kviatcovsky D, de la Barrera S, Gómez RM, Schattner M. Role of neutrophils in CVB3 infection and viral myocarditis. J Mol Cell Cardiol 2018; 125:149-161. [PMID: 30393107 DOI: 10.1016/j.yjmcc.2018.08.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 08/05/2018] [Indexed: 12/11/2022]
Abstract
Coxsackievirus B3 (CVB3) is a globally prevalent enterovirus of the Picornaviridae family that is frequently associated with viral myocarditis (VM). Neutrophils, as first responders, may be key cells in determining viral disease outcomes; however, neutrophils have been poorly studied with respect to viral infection. Although neutrophils have been ascribed a relevant role in early cardiac inflammation, their precise role in CVB3 infection has not yet been evaluated. In this study, we aimed to determine if the interaction between human neutrophils and CVB3 could lead to viral replication and/or modulation of neutrophil survival and biological functions, and whether neutrophil depletion in a murine model has a beneficial or harmful effect on CVB3 infection. Our results show that CVB3 interacted with but did not replicate in human neutrophils. Neutrophils recognized CVB3 mainly through endosomal TLR-8, and infection triggered NFκB activation. Virus internalization resulted in increased cell survival, up-regulation of CD11b, enhanced adhesion to fibrinogen and fibronectin, and the secretion of IL-6, IL-1β, TNF-α, and IL-8. Supernatants from infected neutrophils exerted chemotactic activity partly mediated by IL-8. The infected neutrophils released myeloperoxidase and triggered neutrophil extracellular trap formation in the presence of TNF-α. In mice infected with CVB3, viral RNA was detected in neutrophils as well as in mononuclear cells. After neutrophil depletion, mice showed reduced VM reflected by a reduction in viral titers, cell exudates, and CCL-2 mRNA levels, as well as the abrogation of reactive cardiomyocyte hypertrophy. Our results indicate that neutrophils have relevant direct and indirect roles in the pathogenesis of CVB3-induced VM.
Collapse
Affiliation(s)
- Leonardo Rivadeneyra
- Laboratory of Experimental Thrombosis, Institute of Experimental Medicine-CONICET-ANM, Buenos Aires, Argentina.
| | - Nancy Charó
- Laboratory of Experimental Thrombosis, Institute of Experimental Medicine-CONICET-ANM, Buenos Aires, Argentina
| | - Denise Kviatcovsky
- Laboratory of Immunology of Respiratory Diseases, Institute of Experimental Medicine-CONICET-ANM, Buenos Aires, Argentina
| | - Silvia de la Barrera
- Laboratory of Immunology of Respiratory Diseases, Institute of Experimental Medicine-CONICET-ANM, Buenos Aires, Argentina.
| | - Ricardo Martín Gómez
- Biotechnology and Molecular Biology Institute, CONICET-UNLP, La Plata, Argentina.
| | - Mirta Schattner
- Laboratory of Experimental Thrombosis, Institute of Experimental Medicine-CONICET-ANM, Buenos Aires, Argentina.
| |
Collapse
|