1
|
Verma A, Sudan J, Jose RC, Bagri J, Naik ZA, Sofi NR, Bhardwaj PK, Roy JK, Pareek A, Zargar SM. Unveiling molecular mechanisms of iron and zinc dynamics in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 357:112543. [PMID: 40334790 DOI: 10.1016/j.plantsci.2025.112543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/30/2025] [Accepted: 05/02/2025] [Indexed: 05/09/2025]
Abstract
Iron (Fe) and zinc (Zn) are essential micronutrients critical for human health, yet their deficiencies are widespread, particularly in rice-dependent populations. Rice, a staple food for over half the global population, lacks sufficient bioavailable Fe and Zn in its grains, contributing to global malnutrition. This review delves into the molecular mechanisms governing Fe and Zn transport in rice, focusing on gene families such as IRT, YSL, ZIP, and HMA, which regulate uptake, translocation, and storage. These transporters exhibit intricate interactions and crosstalk, influenced by environmental factors and shared pathways, underscoring the complexity of Fe-Zn homeostasis. Biofortification, through genetic engineering and conventional breeding, emerges as a promising solution to address Fe and Zn deficiencies. Genetic strategies include overexpression of ferritin and nicotianamine synthase genes, alongside manipulation of metal transporter genes, to enhance micronutrient accumulation in rice grains. The advanced breeding approaches including marker-assisted selection and quantitative trait loci (QTL) mapping, complement genetic engineering, offering non-transgenic alternatives for micronutrient enhancement. The common challenges such as regulatory barriers, public perception, and trait stability under diverse conditions necessitate interdisciplinary collaboration and technological advancements.
Collapse
Affiliation(s)
- Anjali Verma
- Proteomics Lab., Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir, India
| | - Jebi Sudan
- Proteomics Lab., Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir, India
| | - Robinson C Jose
- BRIC-Institute of Bioresources and Sustainable Development, DBT, Imphal, Manipur, India
| | - Jayram Bagri
- BRIC-National Agri-Food & Biomanufacturing Institute, Mohali, Punjab, India
| | - Zafir Ahmad Naik
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Khudwani, Jammu and Kashmir, India
| | - Najeebul Rehman Sofi
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Khudwani, Jammu and Kashmir, India
| | | | - Joy K Roy
- BRIC-National Agri-Food & Biomanufacturing Institute, Mohali, Punjab, India
| | - Ashwani Pareek
- BRIC-National Agri-Food & Biomanufacturing Institute, Mohali, Punjab, India; Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sajad Majeed Zargar
- Proteomics Lab., Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir, India.
| |
Collapse
|
2
|
Chaudhary S, Sindhu SS. Iron sensing, signalling and acquisition by microbes and plants under environmental stress: Use of iron-solubilizing bacteria in crop biofortification for sustainable agriculture. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112496. [PMID: 40222392 DOI: 10.1016/j.plantsci.2025.112496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/12/2025] [Accepted: 04/02/2025] [Indexed: 04/15/2025]
Abstract
Iron is very crucial micronutrient prerequisite for growth of all cellular organisms including plants, microbes, animals and humans. Though iron (Fe) is present in abundance in earth's crust, but most of its forms present in soil are biologically unavailable, thus putting a constraint to utilize it. Plants and microorganisms maintain iron homeostasis to balance the supply of enough Fe for metabolism from their surrounding environments and to avoid excessive toxic levels. Microorganisms and plants employ different strategies for sensing, signaling, transportation and uptake of Fe under different types of stressed environments. Microbial communities present in soil and vicinity of roots contribute in biogeochemical cycling and uptake of different nutrients including Fe resulting into improved soil fertility and plant health. In this review, the regulation of iron uptake and transport under different kinds of biotic and abiotic stresses is described. In addition, the insights have been provided for enhancing bioavailability of Fe in sustainable agriculture practices. The inoculation of different crop plants with iron solubilizing microbes improved bioavailablilty of Fe in soil and increased plant growth and crop yield. Insights were provided about possible role of recent bioengineering techniques to improve Fe availability and uptake by plants. However, well-planned and large-scale field trials are required before recommending particular iron solubilizing microbes as biofertilizers for increasing Fe availability, improving plant development and crop yields in sustainable agriculture.
Collapse
Affiliation(s)
- Suman Chaudhary
- CSIR-Institute of Microbial Technology, Sector - 39A, Chandigarh, India
| | - Satyavir S Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, Haryana 125004, India.
| |
Collapse
|
3
|
Rathee S, Ojha A, Sagar P, Upadhyay A, Rather IA, Shukla S. Decoration of Fe 3O 4-vitamin C nanoparticles on alginate-chitosan nanocomplex: Characterization, safety, bioacessibility boost and Iron Nanofortification in A2 goat milk gels. Food Chem 2025; 470:142711. [PMID: 39756086 DOI: 10.1016/j.foodchem.2024.142711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/14/2024] [Accepted: 12/28/2024] [Indexed: 01/07/2025]
Abstract
In this study, an alginate-chitosan (AL-CS) nanocomplex decorated with vitamin C coated iron oxide nanoparticles (Fe3O4-vit C NPs) was investigated as a novel nanoiron fortification agent. The Fe3O4-vit C NPs decorated on AL-CS nanocomplex underwent comprehensive characterization, including zeta potential, fourier transform infrared spectroscopy, X-ray diffraction, and UV-vis spectroscopy. The transmission electron microscopy (TEM) analysis confirmed the decoration of Fe3O4-vit C NPs on AL-CS nanocomplex. The dynamic light scattering and thermogravimetric analysis showed enhanced thermal properties of decorated nanocomplex than the undecorated control. Biocompatibility testing on HepG2 cell lines revealed improved compatibility, while intestinal Caco2 cell lines showed approximately 51 % greater bioacessibility than controls. Further, 8 mg of Fe3O4-vit C NPs decorated AL-CS nanocomplex nanofortified 80 g of A2 goat milk gels (GMGs) which provided 0.072 mg/g of nanoiron without showing significant changes in texture and color compared to the control A2 GMGs. The PCA analysis helped to identify the impact of various factors for the preparation of decorated nanocomplex.
Collapse
Affiliation(s)
- Shweta Rathee
- Department of Food Science and Technology, National Institute of Food Science Technology Entrepreneurship and Management, Kundli (NIFTEM-K), Sonipat 131028, Haryana, India.
| | - Ankur Ojha
- Department of Food Science and Technology, National Institute of Food Science Technology Entrepreneurship and Management, Kundli (NIFTEM-K), Sonipat 131028, Haryana, India.
| | - Poonam Sagar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Mohali, Punjab 140208, India
| | - Ashutosh Upadhyay
- Department of Food Science and Technology, National Institute of Food Science Technology Entrepreneurship and Management, Kundli (NIFTEM-K), Sonipat 131028, Haryana, India
| | - Irfan A Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Shruti Shukla
- Department of Nanotechnology, North-Eastern Hill University (NEHU), Shillong 793022, Meghalaya, India.
| |
Collapse
|
4
|
Tran HL, Hoang GT, Phung NTP, Le HH, Grondin A, Gantet P. Quantitative trait loci for grain mineral element accumulation in Vietnamese rice landraces. PLoS One 2024; 19:e0315666. [PMID: 39715243 DOI: 10.1371/journal.pone.0315666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 11/29/2024] [Indexed: 12/25/2024] Open
Abstract
Rice (Oryza sativa L.) is a staple food for half of the world's population, and its biofortification is a key factor in fighting micronutrient malnutrition. However, harmful heavy metals tend to accumulate in rice grains due to soil and water contamination. Therefore, it is important to improve beneficial micronutrient contents and reduce the accumulation of undesirable metals in rice grain. To better characterize the genetic control of mineral accumulation in rice, we conducted association genetics on the ion contents of white and brown grains using a collection of 184 Vietnamese rice landraces. In total, 27 significant associations were identified and delimited into quantitative trait loci associated with macronutrients such as phosphorus, potassium or calcium; micronutrients such as iron or zinc; or toxic heavy metals such as arsenic and cadmium. Several genes related to ion homeostasis or ion transport were identified in the different quantitative trait loci. LOC_Os10g30610, present in qRAs10-1 associated with arsenic content in brown rice, encodes an ABC transporter (OsABCG25), which is involved in the silicon-induced formation of the Casparian strip in the rice exodermis and could act as a barrier restricting As diffusion within the root cortex. LOC_Os05g04330, present in qRP5-1 and associated with phosphorus content in brown rice, encodes a CHH methylation maintenance protein, and its expression is downregulated in roots in the presence of the phosphorus uptake 1 (Pup1), suggesting a role for epigenetics in the regulation of phosphorus uptake and accumulation in grain. These findings reveal novel quantitative trait loci associated with grain ion content and candidate genes that are potentially valuable for breeding programs aimed at rice grain biofortification and reducing toxic metal accumulation.
Collapse
Affiliation(s)
- Hien Linh Tran
- UMR DIADE, IRD, CIRAD, Université de Montpellier, Montpellier, France
- National Key Laboratory for Plant Cell Biotechnology, LMI RICE, Agricultural Genetics Institute, Hanoi, Vietnam
| | - Giang Thi Hoang
- National Key Laboratory for Plant Cell Biotechnology, LMI RICE, Agricultural Genetics Institute, Hanoi, Vietnam
- VNU University of Engineering and Technology, VNU, Hanoi, Vietnam
| | - Nhung Thi Phuong Phung
- National Key Laboratory for Plant Cell Biotechnology, LMI RICE, Agricultural Genetics Institute, Hanoi, Vietnam
| | - Ham Huy Le
- National Key Laboratory for Plant Cell Biotechnology, LMI RICE, Agricultural Genetics Institute, Hanoi, Vietnam
- VNU University of Engineering and Technology, VNU, Hanoi, Vietnam
| | - Alexandre Grondin
- UMR DIADE, IRD, CIRAD, Université de Montpellier, Montpellier, France
| | - Pascal Gantet
- UMR DIADE, IRD, CIRAD, Université de Montpellier, Montpellier, France
| |
Collapse
|
5
|
Bouis H, Foley J, Lividini K, Jumrani J, Reinke R, Van Der Straeten D, Zagado R, Boy E, Brown LR, Mudyahoto B, Alioma R, Hussain M, Pfeiffer WH. Biofortification: Future Challenges for a Newly Emerging Technology to Improve Nutrition Security Sustainably. Curr Dev Nutr 2024; 8:104478. [PMID: 39668944 PMCID: PMC11635736 DOI: 10.1016/j.cdnut.2024.104478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/04/2024] [Accepted: 09/21/2024] [Indexed: 12/14/2024] Open
Abstract
Biofortification was coined as a term to define a plant breeding strategy to increase the micronutrient content of staple food crops to reduce the burden of micronutrient deficiencies in low- and middle-income countries. In 2003, the HarvestPlus program, based in the centers comprising the Consultative Group on International Agricultural Research, was initiated to implement the biofortification strategy. This article discusses what has been achieved, what has been learned, and the key challenges to embed biofortification in food systems and to expand its impact. Cost-effectiveness is key to the biofortification strategy. Biofortification piggybacks on the agronomically superior varieties being developed at agricultural research centers. Central plant breeding research discoveries can be spread globally. Farmers have every motivation to adopt the latest high-yielding, high profit crops. High productivity leads to lower food prices. As a consequence, consumers can increase their mineral and vitamin intakes at no additional cost by substituting biofortified staple foods 1-for-1 for nonbiofortified staple foods. After 20 years of investment, biofortified staple food crops are being produced by farmers in over 40 countries and are eaten by hundreds of millions of people. Published nutrition trials have shown nutrient-rich crops to be efficacious. The biofortification strategy is now recognized by the international nutrition community as one effective approach among several interventions needed to reduce micronutrient deficiencies. This is a promising beginning. However, biofortification is still a newly emerging technology. A limitation of biofortification as implemented to date is that densities of single nutrients have been increased in given staple food crops. To reach a higher trajectory, the impacts of biofortification can be multiplied several-fold using genetic engineering and other advanced crop development techniques to combine multiple-nutrient densities with climate-smart traits.
Collapse
Affiliation(s)
- Howarth Bouis
- International Food Policy Research Institute, Washington, DC
| | - Jennifer Foley
- HarvestPlus, International Food Policy Research Institute, Washington, DC
| | | | - Jaya Jumrani
- ICAR - National Institute of Agricultural Economics and Policy Research (NIAP), New Delhi, India
| | - Russell Reinke
- International Rice Research Institute, Los Baños, Laguna, Philippines
| | | | - Ronan Zagado
- Philippine Rice Research Institute, Muñoz, Nueva Ecija, Philippines
| | - Erick Boy
- HarvestPlus, International Food Policy Research Institute, Washington, DC
| | - Lynn R Brown
- HarvestPlus, International Food Policy Research Institute, Washington, DC
| | - Bho Mudyahoto
- HarvestPlus, International Food Policy Research Institute, Washington, DC
| | - Richard Alioma
- HarvestPlus, International Food Policy Research Institute, Washington, DC
| | - Munawar Hussain
- HarvestPlus, International Food Policy Research Institute, Washington, DC
| | - Wolfgang H Pfeiffer
- HarvestPlus, International Food Policy Research Institute, Washington, DC
- Alliance Bioversity & CIAT, Rome, Italy
| |
Collapse
|
6
|
Khan A, Pudhuvai B, Shrestha A, Mishra AK, Shah MP, Koul B, Dey N. CRISPR-mediated iron and folate biofortification in crops: advances and perspectives. Biotechnol Genet Eng Rev 2024; 40:4138-4168. [PMID: 37092872 DOI: 10.1080/02648725.2023.2205202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023]
Abstract
Micronutrient deficiency conditions, such as anemia, are the most prevalent global health problem due to inadequate iron and folate in dietary sources. Biofortification advancements can propel the rapid amelioration of nutritionally beneficial components in crops that are required to combat the adverse effects of micronutrient deficiencies on human health. To date, several strategies have been proposed to increase micronutrients in plants to improve food quality, but very few approaches have intrigued `clustered regularly interspaced short palindromic repeats' (CRISPR) modules for the enhancement of iron and folate concentration in the edible parts of plants. In this review, we discuss two important approaches to simultaneously enhance the bioavailability of iron and folate concentrations in rice endosperms by utilizing advanced CRISPR-Cas9-based technology. This includes the 'tuning of cis-elements' and 'enhancer re-shuffling' in the regulatory components of genes that play a vital role in iron and folate biosynthesis/transportation pathways. In particular, base-editing and enhancer re-installation in native promoters of selected genes can lead to enhanced accumulation of iron and folate levels in the rice endosperm. The re-distribution of micronutrients in specific plant organs can be made possible using the above-mentioned contemporary approaches. Overall, the present review discusses the possible approaches for synchronized iron and folate biofortification through modification in regulatory gene circuits employing CRISPR-Cas9 technology.
Collapse
Affiliation(s)
- Ahamed Khan
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Baveesh Pudhuvai
- Department of Genetics and Biotechnology, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| | - Ankita Shrestha
- Division of Microbial and Plant Biotechnology, Department of Biotechnology, Government of India, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Ajay Kumar Mishra
- Khalifa Centre for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Maulin P Shah
- Division of Applied and Environmental Microbiology, Enviro Technology Ltd, Ankleshwar, Gujarat, India
| | - Bhupendra Koul
- Department of Biotechnology, Lovely Professional University, Phagwara, Punjab, India
| | - Nrisingha Dey
- Division of Microbial and Plant Biotechnology, Department of Biotechnology, Government of India, Institute of Life Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
7
|
Duan S, Ai H, Liu S, Zhou A, Cao Y, Huang X. Functional nutritional rice: current progresses and future prospects. FRONTIERS IN PLANT SCIENCE 2024; 15:1488210. [PMID: 39628528 PMCID: PMC11611556 DOI: 10.3389/fpls.2024.1488210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/04/2024] [Indexed: 12/06/2024]
Abstract
More than half of the world's population relies on rice as their staple food for three meals a day. From a dietary perspective, rice can be considered the most important grain in the world. With the continuous improvement of people's living standards, the demand for food has gradually shifted from being full and eating well to being nutritious and healthy. Developing functional nutritional rice has become an important research direction and strategic initiative for developing a major food concept. In this paper, we review the current progress in the breeding of functional nutritional rice and mineral-biofortified rice. This review focuses on the following aspects: (i) the concept, rice basic structure, nutritional components, and categorization of functional nutritional rice; (ii) genes that have been applied and identified so far, including nutritional functional rice genes, mineral bioenhancement-related genes, and their regulatory mechanisms; (iii) based on the history and technical mainline of rice breeding, research progress in nutritional functional rice using conventional breeding, a combination of conventional breeding and marker-assisted breeding, mutagenesis breeding, genetic engineering technology, and gene editing technology. Based on the current research and industrialization issues, we highlight an outlook of the problems and future developmental directions in nutritional functional rice research.
Collapse
Affiliation(s)
- Sumei Duan
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou, China
| | - Hao Ai
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou, China
| | - Shengqin Liu
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou, China
| | - Aifeng Zhou
- Anhui Xin Fu Xiang Tian Ecological Agriculture Co. Ltd., Ma’anshan, China
| | - Yuhong Cao
- Ma’anshan Agriculture and Rural Bureau, Ma’anshan, China
| | - Xianzhong Huang
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou, China
| |
Collapse
|
8
|
Wang FH, Di AT, Wang JY, Yang NN, Deng WR, Chai TY. A highly potential Zn biofortification tool: MTP1 in Triticum aestivum. Int J Biol Macromol 2024; 282:136746. [PMID: 39454910 DOI: 10.1016/j.ijbiomac.2024.136746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
TaMTPs belong to metal tolerance proteins (MTPs) family in common wheat and have significant potential to address the "hidden hunger" caused by inadequate dietary intake of a key micronutrient (Zn). In this study, a total of 33 MTP members in Triticum aestivum were identified, among which six TaMTP1-likes were closely related to Arabidopsis thaliana MTP1 and were designated as TaMTP1-A/B/D and TaMTP1.1-A/B/D. When heterologously expressed in yeast mutants, TaMTP1-likes complemented their hypersensitivity to Zn and Co, and three of the most metal-resistant members, TaMTP1-A, TaMTP1-D and TaMTP1.1-B, were selected for further subcellular localization and functional experiment in Arabidopsis and rice. The results showed that all three proteins were localized in the vacuole membrane, that TaMTP1-D was more resistant to Zn and less resistant to Co than other TaMTP1-like members, and that TaMTP1-D was expressed at a higher level in the endosperm than other members. All results reveal that the use of TaMTP1-D for biofortification can substantially increase the content of Zn in the edible part of wheat and avoid the overaccumulation of Co, suggesting that TaMTP1-D is a potential Zn biofortifier / bioreinforcement.
Collapse
Affiliation(s)
- Fan-Hong Wang
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China; College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - An-Ting Di
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Jia-Ying Wang
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Ning-Ning Yang
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Wen-Rui Deng
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Tuan-Yao Chai
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; The Innovative Academy of Seed Design, Chinese Academy of Science, Beijing 100049, China.
| |
Collapse
|
9
|
Zheng J, Ma Y, Liang Y, Zhang T, Chen C, Amo A, Wang W, Ma F, Han Y, Li H, Hou S, Yang Y. An integration of genome-wide survey, homologous comparison and gene expression analysis provides a basic framework for the ZRT, IRT-like protein (ZIP) in foxtail millet. FRONTIERS IN PLANT SCIENCE 2024; 15:1467015. [PMID: 39301166 PMCID: PMC11410603 DOI: 10.3389/fpls.2024.1467015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024]
Abstract
Essential mineral elements such as zinc and iron play a crucial role in maintaining crop growth and development, as well as ensuring human health. Foxtail millet is an ancient food crop rich in mineral elements and constitutes an important dietary supplement for nutrient-deficient populations. The ZIP (ZRT, IRT-like protein) transporters are primarily responsible for the absorption, transportation and accumulation of Zn, Fe and other metal ions in plants. Here, we identified 14 ZIP transporters in foxtail millet (SiZIP) and systematically characterized their phylogenetic relationships, expression characteristics, sequence variations, and responses to various abiotic stresses. As a result, SiZIPs display rich spatiotemporal expression characteristics in foxtail millet. Multiple SiZIPs demonstrated significant responses to Fe, Cd, Na, and K metal ions, as well as drought and cold stresses. Based on homologous comparisons, expression characteristics and previous studies, the functions of SiZIPs were predicted as being classified into several categories: absorption/efflux, transport/distribution and accumulation of metal ions. Simultaneously, a schematic diagram of SiZIP was drawn. In general, SiZIPs have diverse functions and extensively involve in the transport of metal ions and osmotic regulation under abiotic stresses. This work provides a fundamental framework for the transport and accumulation of mineral elements and will facilitate the quality improvement of foxtail millet.
Collapse
Affiliation(s)
- Jie Zheng
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Yunxiao Ma
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Yu Liang
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Tianhan Zhang
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Chang Chen
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Aduragbemi Amo
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | - Wenyu Wang
- Xinjiang Research Institute, Join Hope Seed Co., Ltd, Changji, Xinjiang, China
| | - Fangfang Ma
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Yuanhuai Han
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Hongying Li
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Siyu Hou
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Yang Yang
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, China
| |
Collapse
|
10
|
Mukherjee A, Singh BN, Kaur S, Sharma M, Ferreira de Araújo AS, Pereira APDA, Morya R, Puopolo G, Melo VMM, Verma JP. Unearthing the power of microbes as plant microbiome for sustainable agriculture. Microbiol Res 2024; 286:127780. [PMID: 38970905 DOI: 10.1016/j.micres.2024.127780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 07/08/2024]
Abstract
In recent years, research into the complex interactions and crosstalk between plants and their associated microbiota, collectively known as the plant microbiome has revealed the pivotal role of microbial communities for promoting plant growth and health. Plants have evolved intricate relationships with a diverse array of microorganisms inhabiting their roots, leaves, and other plant tissues. This microbiota mainly includes bacteria, archaea, fungi, protozoans, and viruses, forming a dynamic and interconnected network within and around the plant. Through mutualistic or cooperative interactions, these microbes contribute to various aspects of plant health and development. The direct mechanisms of the plant microbiome include the enhancement of plant growth and development through nutrient acquisition. Microbes have the ability to solubilize essential minerals, fix atmospheric nitrogen, and convert organic matter into accessible forms, thereby augmenting the nutrient pool available to the plant. Additionally, the microbiome helps plants to withstand biotic and abiotic stresses, such as pathogen attacks and adverse environmental conditions, by priming the plant's immune responses, antagonizing phytopathogens, and improving stress tolerance. Furthermore, the plant microbiome plays a vital role in phytohormone regulation, facilitating hormonal balance within the plant. This regulation influences various growth processes, including root development, flowering, and fruiting. Microbial communities can also produce secondary metabolites, which directly or indirectly promote plant growth, development, and health. Understanding the functional potential of the plant microbiome has led to innovative agricultural practices, such as microbiome-based biofertilizers and biopesticides, which harness the power of beneficial microorganisms to enhance crop yields while reducing the dependency on chemical inputs. In the present review, we discuss and highlight research gaps regarding the plant microbiome and how the plant microbiome can be used as a source of single and synthetic bioinoculants for plant growth and health.
Collapse
Affiliation(s)
- Arpan Mukherjee
- Plant-Microbe Interaction Lab, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Bansh Narayan Singh
- Plant-Microbe Interaction Lab, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Simranjit Kaur
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, Australia; Crop Research Centre, Oak Park, Carlow, Ireland
| | - Minaxi Sharma
- CARAH ASBL, Rue Pal Pastur 11, Ath 7800, Belgium; China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo 315000, China
| | | | | | - Raj Morya
- Department of Civil and Environmental engineering, Yonsei University, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Gerardo Puopolo
- Center Agriculture Food Environment (C3A), University of Trento, Via Mach 1, San Michele all'Adige 38098, Italy; Research and Innovation center, Fondazione Edmund Mach, Via E. Mach 1, San Michelle all'Adige 38098, Italy
| | - Vânia Maria Maciel Melo
- Department of Biological Sciences, Faculty of Science, Federal University of Ceará, Pici, Fortaleza, Ceará 60020-181, Brazil
| | - Jay Prakash Verma
- Plant-Microbe Interaction Lab, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
11
|
Alam M, Lou G, Abbas W, Osti R, Ahmad A, Bista S, Ahiakpa JK, He Y. Improving Rice Grain Quality Through Ecotype Breeding for Enhancing Food and Nutritional Security in Asia-Pacific Region. RICE (NEW YORK, N.Y.) 2024; 17:47. [PMID: 39102064 DOI: 10.1186/s12284-024-00725-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/28/2024] [Indexed: 08/06/2024]
Abstract
Rice grain is widely consumed as a staple food, providing essential nutrition for households, particularly marginalized families. It plays a crucial role in ensuring food security, promoting human nutrition, supporting good health, and contributing to global food and nutritional security. Addressing the diverse quality demands of emerging diverse and climate-risked population dietary needs requires the development of a single variety of rice grain that can meet the various dietary and nutritional requirements. However, there is a lack of concrete definition for rice grain quality, making it challenging to cater to the different demands. The lack of sufficient genetic study and development in improving rice grain quality has resulted in widespread malnutrition, hidden hunger, and micronutrient deficiencies affecting a significant portion of the global population. Therefore, it is crucial to identify genetically evolved varieties with marked qualities that can help address these issues. Various factors account for the declining quality of rice grain and requires further study to improve their quality for healthier diets. We characterized rice grain quality using Lancastrians descriptor and a multitude of intrinsic and extrinsic quality traits. Next, we examined various components of rice grain quality favored in the Asia-Pacific region. This includes preferences by different communities, rice industry stakeholders, and value chain actors. We also explored the biological aspects of rice grain quality in the region, as well as specific genetic improvements that have been made in these traits. Additionally, we evaluated the factors that can influence rice grain quality and discussed the future directions for ensuring food and nutritional security and meeting consumer demands for grain quality. We explored the diverse consumer bases and their varied preferences in Asian-Pacific countries including India, China, Nepal, Bhutan, Vietnam, Sri Lanka, Pakistan, Thailand, Cambodia, Philippines, Bangladesh, Indonesia, Korea, Myanmar and Japan. The quality preferences encompassed a range of factors, including rice head recovery, grain shape, uniform size before cooking, gelatinization, chalkiness, texture, amylose content, aroma, red-coloration of grain, soft and shine when cooked, unbroken when cooked, gelatinization, less water required for cooking, gelatinization temperature (less cooking time), aged rice, firm and dry when cooked (gel consistency), extreme white, soft when chewed, easy-to-cook rice (parboiled rice), vitamins, and minerals. These preferences were evaluated across high, low, and medium categories. A comprehensive analysis is provided on the enhancement of grain quality traits, including brown rice recovery, recovery rate of milled rice, head rice recovery, as well as morphological traits such as grain length, grain width, grain length-width ratio, and grain chalkiness. We also explored the characteristics of amylose, gel consistency, gelatinization temperature, viscosity, as well as the nutritional qualities of rice grains such as starch, protein, lipids, vitamins, minerals, phytochemicals, and bio-fortification potential. The various factors that impact the quality of rice grains, including pre-harvest, post-harvest, and genotype considerations were explored. Additionally, we discussed the future direction and genetic strategies to effectively tackle these challenges. These qualitative characteristics represent the fundamental focus of regional and national breeding strategies employed by different countries to meet consumer preference. Given the significance of rice as a staple food in Asia-Pacific countries, it is primarily consumed domestically, with only a small portion being exported internationally. All the important attributes must be clearly defined within specific parameters. It is crucial for geneticists and breeders to develop a rice variety that can meet the diverse demands of consumers worldwide by incorporating multiple desirable traits. Thus, the goal of addressing global food and nutritional security, and human healthy can be achieved.
Collapse
Affiliation(s)
- Mufid Alam
- National Key Laboratory of Crop Genetic Improvement and National Center of Crop Molecular Breeding, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Guangming Lou
- National Key Laboratory of Crop Genetic Improvement and National Center of Crop Molecular Breeding, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Waseem Abbas
- National Key Laboratory of Crop Genetic Improvement and National Center of Crop Molecular Breeding, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Rajani Osti
- College of Humanities and Social Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Aqeel Ahmad
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Science and Natural Resource Research, Chinese Academy of Science (CAS), Beijing, China
| | - Sunita Bista
- Sichuan Agricultural University, Chengdu, Sichuan, China
| | - John K Ahiakpa
- National Key Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yuqing He
- National Key Laboratory of Crop Genetic Improvement and National Center of Crop Molecular Breeding, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
12
|
Białowąs W, Blicharska E, Drabik K. Biofortification of Plant- and Animal-Based Foods in Limiting the Problem of Microelement Deficiencies-A Narrative Review. Nutrients 2024; 16:1481. [PMID: 38794719 PMCID: PMC11124325 DOI: 10.3390/nu16101481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
With a burgeoning global population, meeting the demand for increased food production presents challenges, particularly concerning mineral deficiencies in diets. Micronutrient shortages like iron, iodine, zinc, selenium, and magnesium carry severe health implications, especially in developing nations. Biofortification of plants and plant products emerges as a promising remedy to enhance micronutrient levels in food. Utilizing agronomic biofortification, conventional plant breeding, and genetic engineering yields raw materials with heightened micronutrient contents and improved bioavailability. A similar strategy extends to animal-derived foods by fortifying eggs, meat, and dairy products with micronutrients. Employing "dual" biofortification, utilizing previously enriched plant materials as a micronutrient source for livestock, proves an innovative solution. Amid biofortification research, conducting in vitro and in vivo experiments is essential to assess the bioactivity of micronutrients from enriched materials, emphasizing digestibility, bioavailability, and safety. Mineral deficiencies in human diets present a significant health challenge. Biofortification of plants and animal products emerges as a promising approach to alleviate micronutrient deficiencies, necessitating further research into the utilization of biofortified raw materials in the human diet, with a focus on bioavailability, digestibility, and safety.
Collapse
Affiliation(s)
- Wojciech Białowąs
- Faculty of Medicine, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Eliza Blicharska
- Department of Pathobiochemistry and Interdyscyplinary Applications of Ion Chromatography, Faculty of Biomedicine, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Kamil Drabik
- Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| |
Collapse
|
13
|
Chakraborty M, Mandal B, Saha S, Ray M. Optimizing zinc fertilization technology in wheat for its sustainable production and improved human nutrition. ENVIRONMENTAL TECHNOLOGY 2024; 45:2089-2098. [PMID: 35260049 DOI: 10.1080/09593330.2022.2050818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Zinc (Zn) deficiency in soil is a serious constraint affecting the yield and nutritional quality of wheat and, in turn, human health. Zn fertilization for enhancing its density in grains is a prominent technological solution for the problem. Accordingly, the present study (pot experiment) was undertaken to (i) assess the impacts of different Zn fertilization technologies on yield, concentrations of Zn, phytic acid (PA), iron (Fe) and also the bioavailability of Zn in grains and (ii) determine the optimised Zn fertilization technology that balances all the above attributes. To achieve this, six Zn fertilization technologies, namely, soil fertilization alone, combined soil and foliar fertilization at maximum tillering, jointing, flowering, dough stages and also foliar fertilization alone were tested and compared with control (no Zn) in forty different soil series representing two distinct soil orders, Inceptisols and Alfisols. Results showed that relative effectiveness of different Zn fertilization technologies varied for the crop attributes studied. Soil + foliar fertilization was superior in increasing grain yield (10-13% over the control). Moreover, for an optimum balance among all the tested attributes including bioavailability of Zn to human, foliar Zn fertilization at later crop growth stage (i.e. dough) combined with soil fertilization was the best. It was found that biofortified wheat grains obtained through Zn fertilization, on an average, could supply about 1.5 times more bioavailable Zn than the normal grains. Therefore, the outcomes of this study can provide a guideline for sustainable and quality wheat production, which will help address the malnutrition challenge.
Collapse
Affiliation(s)
- Mahasweta Chakraborty
- Bidhan Chandra Krishi Viswavidyalaya, Kalyani, India
- Indian Council of Agricultural Research (ICAR) Research Complex for NEH Region, Umiam, India
| | | | - Susmit Saha
- College of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Burdwan Sadar, India
| | - Mrinmoy Ray
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| |
Collapse
|
14
|
Zulfiqar U, Khokhar A, Maqsood MF, Shahbaz M, Naz N, Sara M, Maqsood S, Sahar S, Hussain S, Ahmad M. Genetic biofortification: advancing crop nutrition to tackle hidden hunger. Funct Integr Genomics 2024; 24:34. [PMID: 38365972 DOI: 10.1007/s10142-024-01308-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/18/2024]
Abstract
Malnutrition, often termed "hidden hunger," represents a pervasive global issue carrying significant implications for health, development, and socioeconomic conditions. Addressing the challenge of inadequate essential nutrients, despite sufficient caloric intake, is crucial. Biofortification emerges as a promising solution by enhance the presence of vital nutrients like iron, zinc, iodine, and vitamin A in edible parts of different crop plants. Crop biofortification can be attained through either agronomic methods or genetic breeding techniques. Agronomic strategies for biofortification encompass the application of mineral fertilizers through foliar or soil methods, as well as leveraging microbe-mediated mechanisms to enhance nutrient uptake. On the other hand, genetic biofortification involves the strategic crossing of plants to achieve a desired combination of genes, promoting balanced nutrient uptake and bioavailability. Additionally, genetic biofortification encompasses innovative methods such as speed breeding, transgenic approaches, genome editing techniques, and integrated omics approaches. These diverse strategies collectively contribute to enhancing the nutritional profile of crops. This review highlights the above-said genetic biofortification strategies and it also covers the aspect of reduction in antinutritional components in food through genetic biofortification.
Collapse
Affiliation(s)
- Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Amman Khokhar
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Muhammad Shahbaz
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Nargis Naz
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Maheen Sara
- Department of Nutritional Sciences, Government College Women University, Faisalabad, Pakistan
| | - Sana Maqsood
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Sajila Sahar
- Department of Plant Breeding & Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
15
|
Ludwig Y, Dueñas C, Arcillas E, Macalalad-Cabral RJ, Kohli A, Reinke R, Slamet-Loedin IH. CRISPR-mediated promoter editing of a cis-regulatory element of OsNAS2 increases Zn uptake/translocation and plant yield in rice. Front Genome Ed 2024; 5:1308228. [PMID: 38322756 PMCID: PMC10844396 DOI: 10.3389/fgeed.2023.1308228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/27/2023] [Indexed: 02/08/2024] Open
Abstract
Developing nutritious rice with a higher yield is one approach to alleviating the problem of micronutrient deficiency in developing countries, especially human malnutrition involving zinc and iron (Fe) deficiency, and achieving better adoption. The transport of micronutrients such as Fe and Zn is mainly regulated via the nicotianamine synthase (OsNAS) gene family, whereas yield is a complex trait that involves multiple loci. Genome editing via CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9, focusing on the OsNAS2 promoter, particularly the deletion of the cis-regulatory element ARR1AT at position -933, was conducted for an enhanced accumulation of Zn in the grain and per plant. The results showed that our promoter editing increased Zn concentration per plant. Evidence also showed that an improved spikelet number per main panicle led to increased grain per plant. The traits were inherited in "transgene-free" and homozygous plant progenies. Further investigation needs to be conducted to validate trait performance under field conditions and elucidate the cause of the spikelet increase.
Collapse
Affiliation(s)
- Yvonne Ludwig
- International Rice Research Institute, Rice Genetic Design and Validation Unit, Rice Breeding Innovations, Los Baños, Philippines
| | - Conrado Dueñas
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Erwin Arcillas
- International Rice Research Institute, Rice Genetic Design and Validation Unit, Rice Breeding Innovations, Los Baños, Philippines
| | - Reena Jesusa Macalalad-Cabral
- International Rice Research Institute, Rice Genetic Design and Validation Unit, Rice Breeding Innovations, Los Baños, Philippines
| | - Ajay Kohli
- International Rice Research Institute, Rice Genetic Design and Validation Unit, Rice Breeding Innovations, Los Baños, Philippines
| | - Russell Reinke
- International Rice Research Institute, Rice Genetic Design and Validation Unit, Rice Breeding Innovations, Los Baños, Philippines
| | - Inez H. Slamet-Loedin
- International Rice Research Institute, Rice Genetic Design and Validation Unit, Rice Breeding Innovations, Los Baños, Philippines
| |
Collapse
|
16
|
Zhu H, Lai R, Chen W, Lu C, Chachar Z, Lu S, Lin H, Fan L, Hu Y, An Y, Li X, Zhang X, Qi Y. Genetic dissection of maize (Zea maysL.) trace element traits using genome-wide association studies. BMC PLANT BIOLOGY 2023; 23:631. [PMID: 38062375 PMCID: PMC10704835 DOI: 10.1186/s12870-023-04643-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023]
Abstract
Maize (Zea mays L.) is an important food and feed crop worldwide and serves as a a vital source of biological trace elements, which are important breeding targets. In this study, 170 maize materials were used to detect QTNs related to the content of Mn, Fe and Mo in maize grains through two GWAS models, namely MLM_Q + K and MLM_PCA + K. The results identified 87 (Mn), 205 (Fe), and 310 (Mo) QTNs using both methods in the three environments. Considering comprehensive factors such as co-location across multiple environments, strict significance threshold, and phenotypic value in multiple environments, 8 QTNs related to Mn, 10 QTNs related to Fe, and 26 QTNs related to Mo were used to identify 44 superior alleles. Consequently, three cross combinations with higher Mn element, two combinations with higher Fe element, six combinations with higher Mo element, and two combinations with multiple element (Mn/Fe/Mo) were predicted to yield offspring with higher numbers of superior alleles, thereby increasing the likelihood of enriching the corresponding elements. Additionally, the candidate genes identified 100 kb downstream and upstream the QTNs featured function and pathways related to maize elemental transport and accumulation. These results are expected to facilitate the screening and development of high-quality maize varieties enriched with trace elements, establish an important theoretical foundation for molecular marker assisted breeding and contribute to a better understanding of the regulatory network governing trace elements in maize.
Collapse
Affiliation(s)
- Hang Zhu
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, China
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Ruiqiang Lai
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China
| | - Weiwei Chen
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, China
- Heyuan Provincial Academy of Sciences Research Institute, Guangdong Academy of Sciences, GDAS, Heyuan, 517001, Guangdong, China
| | - Chuanli Lu
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, China
- Heyuan Provincial Academy of Sciences Research Institute, Guangdong Academy of Sciences, GDAS, Heyuan, 517001, Guangdong, China
| | - Zaid Chachar
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Siqi Lu
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, China
| | - Huanzhang Lin
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, China
| | - Lina Fan
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, China
| | - Yuanqiang Hu
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, China
| | - Yuxing An
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, China
- Heyuan Provincial Academy of Sciences Research Institute, Guangdong Academy of Sciences, GDAS, Heyuan, 517001, Guangdong, China
| | - Xuhui Li
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, China.
- Heyuan Provincial Academy of Sciences Research Institute, Guangdong Academy of Sciences, GDAS, Heyuan, 517001, Guangdong, China.
| | - Xiangbo Zhang
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, China.
- Heyuan Provincial Academy of Sciences Research Institute, Guangdong Academy of Sciences, GDAS, Heyuan, 517001, Guangdong, China.
| | - Yongwen Qi
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China.
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, China.
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China.
- Heyuan Provincial Academy of Sciences Research Institute, Guangdong Academy of Sciences, GDAS, Heyuan, 517001, Guangdong, China.
| |
Collapse
|
17
|
Gupta BB, Mishra SK, Banoth SK, Baliyan S, Chauhan H. Iron and zinc biofortification of rice by synergistic expression of OsNAS2 gene with monocot (Pennisetum glaucum) and dicot (Phaseolus vulgaris) ferritins. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108195. [PMID: 37995580 DOI: 10.1016/j.plaphy.2023.108195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 11/25/2023]
Abstract
Iron and zinc deficiencies are the most prevalent cause of global hidden hunger. Rice, being one of the most consumed crops worldwide, is suitable to target for Fe and Zn biofortification. In present study, we generated rice transgenic lines to meet the recommended dietary requirement of iron and zinc through endosperm specific expression of dicot (kidney bean) and monocot (pearl millet) Ferritins along with constitutive expression of rice nicotianamine synthase 2 (OsNAS2) gene. Visualization through perls' prussian staining and quantification by ICP-MS showed significant improvement in grain iron content in all the transgenic lines. The transgenic lines expressing any of the three selected gene combinations (PvFerrtin-OsNAS2, feedPgFerrtin-OsNAS2 and foodPgFerritin-OsNAS2), showed the potential to surpass the 30% of the estimated average requirement (13 μg/g Fe and 28 μg/g Zn) proposed for rice in HarvestPlus breeding program. Though the expression of PvFerritin along with OsNAS2 gene in IET10364 (indica) variety showed the best result, providing up to 4.2- and 3.5-fold increase in iron (30.56 μg/g) and zinc (60.1 μg/g) content, respectively; in polished grains compared to non-transgenic control. Thus, the lines developed in our study can be used for further breeding purpose to enhance the iron and zinc content in commercial rice varieties.
Collapse
Affiliation(s)
- Bidya Bhushan Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, India
| | - Sumit Kumar Mishra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, India
| | - Sampath Kumar Banoth
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, India
| | - Suchi Baliyan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, India
| | - Harsh Chauhan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, India.
| |
Collapse
|
18
|
Verbeecke V, Custódio L, Strobbe S, Van Der Straeten D. The role of orphan crops in the transition to nutritional quality-oriented crop improvement. Biotechnol Adv 2023; 68:108242. [PMID: 37640278 DOI: 10.1016/j.biotechadv.2023.108242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/09/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Micronutrient malnutrition is a persisting problem threatening global human health. Biofortification via metabolic engineering has been proposed as a cost-effective and short-term means to alleviate this burden. There has been a recent rise in the recognition of potential that underutilized, orphan crops can hold in decreasing malnutrition concerns. Here, we illustrate how orphan crops can serve as a medium to provide micronutrients to populations in need, whilst promoting and maintaining dietary diversity. We provide a roadmap, illustrating which aspects to be taken into consideration when evaluating orphan crops. Recent developments have shown successful biofortification via metabolic engineering in staple crops. This review provides guidance in the implementation of these successes to relevant orphan crop species, with a specific focus on the relevant micronutrients iron, zinc, provitamin A and folates.
Collapse
Affiliation(s)
- Vincent Verbeecke
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Laura Custódio
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Simon Strobbe
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium.
| |
Collapse
|
19
|
Lourenço IM, Freire BM, Pieretti JC, dos Reis RA, Soares NM, Santos MDL, Batista BL, Seabra AB, Lange CN. Implications of ZnO Nanoparticles and S-Nitrosoglutathione on Nitric Oxide, Reactive Oxidative Species, Photosynthetic Pigments, and Ionomic Profile in Rice. Antioxidants (Basel) 2023; 12:1871. [PMID: 37891950 PMCID: PMC10604056 DOI: 10.3390/antiox12101871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Zinc is an important nutrient for several plants and humans. Nitric oxide (NO) is a free radical that is important to biological processes that mediate the growth and mitigation of biotic and abiotic stresses in plants. The present study investigated the enzymatic and photosynthetic profile and the accumulation of macro- and microelements in rice plants (Oryza sativa L.) that received foliar treatments of zinc oxide nanoparticles (ZnO NPs), nitric oxide donor (GSNO), and the association of both (GSNO-ZnO NPs). Zinc concentration in rice husks increased by 66% and 68% in plants treated with ZnO NPs and GSNO-ZnO NPs, respectively. The GSNO treatment caused an increase of 25% in the Fe concentration in the rice grains. Only a small disturbance of the antioxidant system was observed, with increases in H2O2, S-NO, and NO2-, mainly in the group treated with GSNO-ZnO NPs; however, the disturbance did not affect the yield, the growth, or vital processes, such as as photosynthetic pigments production. There was an increase in chlorophyll B of 290% and an increase in chlorophyll A of 187% when ZnO NPs was applied. GSNO-ZnO NPs increased chlorophyll B by 345% and chlorophyll A by 345%, indicating that the treatments GSNO, ZnO NPs, and GSNO-ZnO NPs reduced possible oxidative stress and helped as protective treatments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Camila Neves Lange
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André 09210-580, SP, Brazil; (I.M.L.); (B.M.F.); (J.C.P.); (R.A.d.R.); (N.M.S.); (M.d.L.S.); (B.L.B.); (A.B.S.)
| |
Collapse
|
20
|
Liu S, Zenda T, Tian Z, Huang Z. Metabolic pathways engineering for drought or/and heat tolerance in cereals. FRONTIERS IN PLANT SCIENCE 2023; 14:1111875. [PMID: 37810398 PMCID: PMC10557149 DOI: 10.3389/fpls.2023.1111875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 09/04/2023] [Indexed: 10/10/2023]
Abstract
Drought (D) and heat (H) are the two major abiotic stresses hindering cereal crop growth and productivity, either singly or in combination (D/+H), by imposing various negative impacts on plant physiological and biochemical processes. Consequently, this decreases overall cereal crop production and impacts global food availability and human nutrition. To achieve global food and nutrition security vis-a-vis global climate change, deployment of new strategies for enhancing crop D/+H stress tolerance and higher nutritive value in cereals is imperative. This depends on first gaining a mechanistic understanding of the mechanisms underlying D/+H stress response. Meanwhile, functional genomics has revealed several stress-related genes that have been successfully used in target-gene approach to generate stress-tolerant cultivars and sustain crop productivity over the past decades. However, the fast-changing climate, coupled with the complexity and multigenic nature of D/+H tolerance suggest that single-gene/trait targeting may not suffice in improving such traits. Hence, in this review-cum-perspective, we advance that targeted multiple-gene or metabolic pathway manipulation could represent the most effective approach for improving D/+H stress tolerance. First, we highlight the impact of D/+H stress on cereal crops, and the elaborate plant physiological and molecular responses. We then discuss how key primary metabolism- and secondary metabolism-related metabolic pathways, including carbon metabolism, starch metabolism, phenylpropanoid biosynthesis, γ-aminobutyric acid (GABA) biosynthesis, and phytohormone biosynthesis and signaling can be modified using modern molecular biotechnology approaches such as CRISPR-Cas9 system and synthetic biology (Synbio) to enhance D/+H tolerance in cereal crops. Understandably, several bottlenecks hinder metabolic pathway modification, including those related to feedback regulation, gene functional annotation, complex crosstalk between pathways, and metabolomics data and spatiotemporal gene expressions analyses. Nonetheless, recent advances in molecular biotechnology, genome-editing, single-cell metabolomics, and data annotation and analysis approaches, when integrated, offer unprecedented opportunities for pathway engineering for enhancing crop D/+H stress tolerance and improved yield. Especially, Synbio-based strategies will accelerate the development of climate resilient and nutrient-dense cereals, critical for achieving global food security and combating malnutrition.
Collapse
Affiliation(s)
- Songtao Liu
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Tinashe Zenda
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Zaimin Tian
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Zhihong Huang
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| |
Collapse
|
21
|
Avnee, Sood S, Chaudhary DR, Jhorar P, Rana RS. Biofortification: an approach to eradicate micronutrient deficiency. Front Nutr 2023; 10:1233070. [PMID: 37789898 PMCID: PMC10543656 DOI: 10.3389/fnut.2023.1233070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/21/2023] [Indexed: 10/05/2023] Open
Abstract
Micronutrient deficiency also known as "hidden hunger" refers to a condition that occurs when the body lacks essential vitamins and minerals that are required in small amounts for proper growth, development and overall health. These deficiencies are particularly common in developing countries, where a lack of access to a varied and nutritious diet makes it difficult for people to get the micronutrients they need. Micronutrient supplementation has been a topic of interest, especially during the Covid-19 pandemic, due to its potential role in supporting immune function and overall health. Iron (Fe), zinc (Zn), iodine (I), and selenium (Se) deficiency in humans are significant food-related issues worldwide. Biofortification is a sustainable strategy that has been developed to address micronutrient deficiencies by increasing the levels of essential vitamins and minerals in staple crops that are widely consumed by people in affected communities. There are a number of agricultural techniques for biofortification, including selective breeding of crops to have higher levels of specific nutrients, agronomic approach using fertilizers and other inputs to increase nutrient uptake by crops and transgenic approach. The agronomic approach offers a temporary but speedy solution while the genetic approach (breeding and transgenic) is the long-term solution but requires time to develop a nutrient-rich variety.
Collapse
Affiliation(s)
- Avnee
- Department of Agronomy, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur, India
| | - Sonia Sood
- Department of Vegetable Science and Floriculture, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur, India
| | - Desh Raj Chaudhary
- Department of Vegetable Science and Floriculture, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur, India
| | - Pooja Jhorar
- Department of Agronomy, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur, India
| | - Ranbir Singh Rana
- Department of Agronomy, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur, India
| |
Collapse
|
22
|
Seregin IV, Kozhevnikova AD. Nicotianamine: A Key Player in Metal Homeostasis and Hyperaccumulation in Plants. Int J Mol Sci 2023; 24:10822. [PMID: 37446000 DOI: 10.3390/ijms241310822] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Nicotianamine (NA) is a low-molecular-weight N-containing metal-binding ligand, whose accumulation in plant organs changes under metal deficiency or excess. Although NA biosynthesis can be induced in vivo by various metals, this non-proteinogenic amino acid is mainly involved in the detoxification and transport of iron, zinc, nickel, copper and manganese. This review summarizes the current knowledge on NA biosynthesis and its regulation, considers the mechanisms of NA secretion by plant roots, as well as the mechanisms of intracellular transport of NA and its complexes with metals, and its role in radial and long-distance metal transport. Its role in metal tolerance is also discussed. The NA contents in excluders, storing metals primarily in roots, and in hyperaccumulators, accumulating metals mainly in shoots, are compared. The available data suggest that NA plays an important role in maintaining metal homeostasis and hyperaccumulation mechanisms. The study of metal-binding compounds is of interdisciplinary significance, not only regarding their effects on metal toxicity in plants, but also in connection with the development of biofortification approaches to increase the metal contents, primarily of iron and zinc, in agricultural plants, since the deficiency of these elements in food crops seriously affects human health.
Collapse
Affiliation(s)
- Ilya V Seregin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya St., 35, 127276 Moscow, Russia
| | - Anna D Kozhevnikova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya St., 35, 127276 Moscow, Russia
| |
Collapse
|
23
|
Ning M, Liu SJ, Deng F, Huang L, Li H, Che J, Yamaji N, Hu F, Lei GJ. A vacuolar transporter plays important roles in zinc and cadmium accumulation in rice grain. THE NEW PHYTOLOGIST 2023. [PMID: 37366232 DOI: 10.1111/nph.19070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023]
Abstract
Rice grain is a poor dietary source of zinc (Zn) but the primary source of cadmium (Cd) for humans; however, the molecular mechanisms for their accumulation in rice grain remain incompletely understood. This study functionally characterized a tonoplast-localized transporter, OsMTP1. OsMTP1 was preferentially expressed in the roots, aleurone layer, and embryo of seeds. OsMTP1 knockout decreased Zn concentration in the root cell sap, roots, aleurone layer and embryo, and subsequently increased Zn concentration in shoots and polished rice (endosperm) without yield penalty. OsMTP1 haplotype analysis revealed elite alleles associated with increased Zn level in polished rice, mostly because of the decreased OsMTP1 transcripts. OsMTP1 expression in yeast enhanced Zn tolerance but did not affect that of Cd. While OsMTP1 knockout resulted in decreased uptake, translocation and accumulation of Cd in plant and rice grain, which could be attributed to the indirect effects of altered Zn accumulation. Our results suggest that rice OsMTP1 primarily functions as a tonoplast-localized transporter for sequestrating Zn into vacuole. OsMTP1 knockout elevated Zn concentration but prevented Cd deposition in polished rice without yield penalty. Thus, OsMTP1 is a candidate gene for enhancing Zn level and reducing Cd level in rice grains.
Collapse
Affiliation(s)
- Min Ning
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory of Biology and Germplasm Innovation of Perennial Rice, Key Laboratory of Crop Quality Improvement of Yunnan Higher Education Institutes, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Shi Jia Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory of Biology and Germplasm Innovation of Perennial Rice, Key Laboratory of Crop Quality Improvement of Yunnan Higher Education Institutes, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Fenglin Deng
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Liyu Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory of Biology and Germplasm Innovation of Perennial Rice, Key Laboratory of Crop Quality Improvement of Yunnan Higher Education Institutes, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Hu Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory of Biology and Germplasm Innovation of Perennial Rice, Key Laboratory of Crop Quality Improvement of Yunnan Higher Education Institutes, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Jing Che
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Fengyi Hu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory of Biology and Germplasm Innovation of Perennial Rice, Key Laboratory of Crop Quality Improvement of Yunnan Higher Education Institutes, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Gui Jie Lei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory of Biology and Germplasm Innovation of Perennial Rice, Key Laboratory of Crop Quality Improvement of Yunnan Higher Education Institutes, School of Agriculture, Yunnan University, Kunming, 650500, China
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
- Institute of International Rivers and Eco-security, Yunnan University, Kunming, 650500, China
| |
Collapse
|
24
|
Senguttuvel P, G P, C J, D SR, CN N, V J, P B, R G, J AK, SV SP, LV SR, AS H, K S, D S, RM S, Govindaraj M. Rice biofortification: breeding and genomic approaches for genetic enhancement of grain zinc and iron contents. FRONTIERS IN PLANT SCIENCE 2023; 14:1138408. [PMID: 37332714 PMCID: PMC10272457 DOI: 10.3389/fpls.2023.1138408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/25/2023] [Indexed: 06/20/2023]
Abstract
Rice is a highly consumed staple cereal cultivated predominantly in Asian countries, which share 90% of global rice production. Rice is a primary calorie provider for more than 3.5 billion people across the world. Preference and consumption of polished rice have increased manifold, which resulted in the loss of inherent nutrition. The prevalence of micronutrient deficiencies (Zn and Fe) are major human health challenges in the 21st century. Biofortification of staples is a sustainable approach to alleviating malnutrition. Globally, significant progress has been made in rice for enhancing grain Zn, Fe, and protein. To date, 37 biofortified Fe, Zn, Protein and Provitamin A rich rice varieties are available for commercial cultivation (16 from India and 21 from the rest of the world; Fe > 10 mg/kg, Zn > 24 mg/kg, protein > 10% in polished rice as India target while Zn > 28 mg/kg in polished rice as international target). However, understanding the micronutrient genetics, mechanisms of uptake, translocation, and bioavailability are the prime areas that need to be strengthened. The successful development of these lines through integrated-genomic technologies can accelerate deployment and scaling in future breeding programs to address the key challenges of malnutrition and hidden hunger.
Collapse
Affiliation(s)
- P. Senguttuvel
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
| | - Padmavathi G
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
| | - Jasmine C
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
- Genetics and Plant Breeding, Professor Jayashankar Telangana State Agricultural University (PJTSAU), Hyderabad, India
| | - Sanjeeva Rao D
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
| | - Neeraja CN
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
| | - Jaldhani V
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
| | - Beulah P
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
| | - Gobinath R
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
| | - Aravind Kumar J
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
| | - Sai Prasad SV
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
| | - Subba Rao LV
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
| | - Hariprasad AS
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
| | - Sruthi K
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
| | - Shivani D
- Genetics and Plant Breeding, Professor Jayashankar Telangana State Agricultural University (PJTSAU), Hyderabad, India
| | - Sundaram RM
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
| | - Mahalingam Govindaraj
- HarvestPlus, Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| |
Collapse
|
25
|
Kudapa H, Barmukh R, Vemuri H, Gorthy S, Pinnamaneni R, Vetriventhan M, Srivastava RK, Joshi P, Habyarimana E, Gupta SK, Govindaraj M. Genetic and genomic interventions in crop biofortification: Examples in millets. FRONTIERS IN PLANT SCIENCE 2023; 14:1123655. [PMID: 36950360 PMCID: PMC10025513 DOI: 10.3389/fpls.2023.1123655] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Micronutrient malnutrition is a serious threat to the developing world's human population, which largely relies on a cereal-based diet that lacks diversity and micronutrients. Besides major cereals, millets represent the key sources of energy, protein, vitamins, and minerals for people residing in the dryland tropics and drought-prone areas of South Asia and sub-Saharan Africa. Millets serve as multi-purpose crops with several salient traits including tolerance to abiotic stresses, adaptation to diverse agro-ecologies, higher productivity in nutrient-poor soils, and rich nutritional characteristics. Considering the potential of millets in empowering smallholder farmers, adapting to changing climate, and transforming agrifood systems, the year 2023 has been declared by the United Nations as the International Year of Millets. In this review, we highlight recent genetic and genomic innovations that can be explored to enhance grain micronutrient density in millets. We summarize the advances made in high-throughput phenotyping to accurately measure grain micronutrient content in cereals. We shed light on genetic diversity in millet germplasm collections existing globally that can be exploited for developing nutrient-dense and high-yielding varieties to address food and nutritional security. Furthermore, we describe the progress made in the fields of genomics, proteomics, metabolomics, and phenomics with an emphasis on enhancing the grain nutritional content for designing competitive biofortified varieties for the future. Considering the close genetic-relatedness within cereals, upcoming research should focus on identifying the genetic and genomic basis of nutritional traits in millets and introgressing them into major cereals through integrated omics approaches. Recent breakthroughs in the genome editing toolbox would be crucial for mainstreaming biofortification in millets.
Collapse
Affiliation(s)
- Himabindu Kudapa
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
| | - Rutwik Barmukh
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
| | - Hindu Vemuri
- International Maize and Wheat Improvement Center (CIMMYT), Patancheru, Telangana, India
| | - Sunita Gorthy
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
| | | | - Mani Vetriventhan
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
| | - Rakesh K. Srivastava
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
| | - Priyanka Joshi
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
| | - Ephrem Habyarimana
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
| | - S. K. Gupta
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
| | - Mahalingam Govindaraj
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
- HarvestPlus Program, Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| |
Collapse
|
26
|
Pasion EA, Misra G, Kohli A, Sreenivasulu N. Unraveling the genetics underlying micronutrient signatures of diversity panel present in brown rice through genome-ionome linkages. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:749-771. [PMID: 36573652 PMCID: PMC10952705 DOI: 10.1111/tpj.16080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Rice (Oryza sativa) is an important staple crop to address the Hidden Hunger problem not only in Asia but also in Africa where rice is fast becoming an important source of calories. The brown rice (whole grain with bran) is known to be more nutritious due to elevated mineral composition. The genetics underlying brown rice ionome (sum total of such mineral composition) remains largely unexplored. Hence, we conducted a comprehensive study to dissect the genetic architecture of the brown rice ionome. We used genome-wide association studies, gene set analysis, and targeted association analysis for 12 micronutrients in the brown rice grains. A diverse panel of 300 resequenced indica accessions, with more than 1.02 million single nucleotide polymorphisms, was used. We identified 109 candidate genes with 5-20% phenotypic variation explained for the 12 micronutrients and identified epistatic interactions with multiple micronutrients. Pooling all candidate genes per micronutrient exhibited phenotypic variation explained values ranging from 11% to almost 40%. The key donor lines with larger concentrations for most of the micronutrients possessed superior alleles, which were absent in the breeding lines. Through gene regulatory networks we identified enriched functional pathways for central regulators that were detected as key candidate genes through genome-wide association studies. This study provided important insights on the ionome variations in rice, on the genetic basis of the genome-ionome relationships and on the molecular mechanisms underlying micronutrient signatures.
Collapse
Affiliation(s)
| | - Gopal Misra
- International Rice Research InstituteLos BañosLaguna4030Philippines
| | - Ajay Kohli
- International Rice Research InstituteLos BañosLaguna4030Philippines
| | | |
Collapse
|
27
|
Hou J, Chen H, Zhang K, Liu W, Cao C, Ruan Y, Deng Y, Liu Y, Yuan X, Sun C, Fu Y. The GZnC1 variant from common wild rice influences grain Zn content. PLANT MOLECULAR BIOLOGY 2023; 111:263-273. [PMID: 36414883 DOI: 10.1007/s11103-022-01325-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Zinc (Zn) deficiency, caused by inadequate Zn intake in the human diet, has serious health implications. Rice (Oryza sativa) is the staple food in regions with a high incidence of Zn deficiency, so raising Zn levels in rice grain could help alleviate Zn deficiency. The wild relatives of cultivated rice vary widely in grain Zn content and thus are suitable resources for improving this trait. However, few loci underlying grain Zn content have been identified in wild rice relatives. Here, we identified a major quantitative trait locus for grain Zn content, Grain Zn Content 1 (qGZnC1), from Yuanjiang common wild rice (Oryza rufipogon Griff.) using map-based cloning. Down-regulating GZnC1 expression reduced the grain Zn content, whereas the presence of GZnC1 had the opposite effect, indicating that GZnC1 is involved in grain Zn content in rice. Notably, GZnC1 is identical to a previously reported gene, EMBRYO SAC ABORTION 1 (ESA1), involved in seed setting rate. The mutation in GZnC1/ESA1 at position 1819 (T1819C) causes delayed termination of protein translation. In addition, GZnC1 is specifically expressed in developing panicles. Several genes related to Zn-transporter genes were up-regulated in the presence of GZnC1. Our results suggest that GZnC1 activates Zn transporters to promote Zn distribution in panicles. Our work thus sheds light on the genetic mechanism of Zn accumulation in rice grain and provides a new genetic resource for improving Zn content in rice.
Collapse
Affiliation(s)
- Jingjing Hou
- MOE Key Laboratory of Crop Heterosis and Utilization, National Center for Evaluation of Agricultural Wild Plants (Rice), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Hao Chen
- Institute of Crop Sciences, Fujian Academy of Agricultural Sciences; Fujian Engineering Research Center for Characteristic Upland Crops Breeding; Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, 350013, China
| | - Kun Zhang
- MOE Key Laboratory of Crop Heterosis and Utilization, National Center for Evaluation of Agricultural Wild Plants (Rice), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Wenjing Liu
- Institute of Agricultural Quality Standards and Testing Technology Research, Fujian Academy of Agricultural Sciences; Fujian Key Laboratory of Agro-Products Quality and Safety, Fuzhou, 350003, China
| | - Caihong Cao
- MOE Key Laboratory of Crop Heterosis and Utilization, National Center for Evaluation of Agricultural Wild Plants (Rice), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Yini Ruan
- MOE Key Laboratory of Crop Heterosis and Utilization, National Center for Evaluation of Agricultural Wild Plants (Rice), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Yanyan Deng
- MOE Key Laboratory of Crop Heterosis and Utilization, National Center for Evaluation of Agricultural Wild Plants (Rice), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Yaxin Liu
- MOE Key Laboratory of Crop Heterosis and Utilization, National Center for Evaluation of Agricultural Wild Plants (Rice), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Xuzhao Yuan
- MOE Key Laboratory of Crop Heterosis and Utilization, National Center for Evaluation of Agricultural Wild Plants (Rice), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Chuanqing Sun
- MOE Key Laboratory of Crop Heterosis and Utilization, National Center for Evaluation of Agricultural Wild Plants (Rice), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Yongcai Fu
- MOE Key Laboratory of Crop Heterosis and Utilization, National Center for Evaluation of Agricultural Wild Plants (Rice), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
28
|
Dwivedi SL, Garcia-Oliveira AL, Govindaraj M, Ortiz R. Biofortification to avoid malnutrition in humans in a changing climate: Enhancing micronutrient bioavailability in seed, tuber, and storage roots. FRONTIERS IN PLANT SCIENCE 2023; 14:1119148. [PMID: 36794214 PMCID: PMC9923027 DOI: 10.3389/fpls.2023.1119148] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Malnutrition results in enormous socio-economic costs to the individual, their community, and the nation's economy. The evidence suggests an overall negative impact of climate change on the agricultural productivity and nutritional quality of food crops. Producing more food with better nutritional quality, which is feasible, should be prioritized in crop improvement programs. Biofortification refers to developing micronutrient -dense cultivars through crossbreeding or genetic engineering. This review provides updates on nutrient acquisition, transport, and storage in plant organs; the cross-talk between macro- and micronutrients transport and signaling; nutrient profiling and spatial and temporal distribution; the putative and functionally characterized genes/single-nucleotide polymorphisms associated with Fe, Zn, and β-carotene; and global efforts to breed nutrient-dense crops and map adoption of such crops globally. This article also includes an overview on the bioavailability, bioaccessibility, and bioactivity of nutrients as well as the molecular basis of nutrient transport and absorption in human. Over 400 minerals (Fe, Zn) and provitamin A-rich cultivars have been released in the Global South. Approximately 4.6 million households currently cultivate Zn-rich rice and wheat, while ~3 million households in sub-Saharan Africa and Latin America benefit from Fe-rich beans, and 2.6 million people in sub-Saharan Africa and Brazil eat provitamin A-rich cassava. Furthermore, nutrient profiles can be improved through genetic engineering in an agronomically acceptable genetic background. The development of "Golden Rice" and provitamin A-rich dessert bananas and subsequent transfer of this trait into locally adapted cultivars are evident, with no significant change in nutritional profile, except for the trait incorporated. A greater understanding of nutrient transport and absorption may lead to the development of diet therapy for the betterment of human health.
Collapse
Affiliation(s)
| | - Ana Luísa Garcia-Oliveira
- International Maize and Wheat Research Center, Centro Internacional de Mejoramiento de Maíz. y Trigo (CIMMYT), Nairobi, Kenya
- Department of Molecular Biology, College of Biotechnology, CCS Haryana Agricultural University, Hissar, India
| | - Mahalingam Govindaraj
- HarvestPlus Program, Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Rodomiro Ortiz
- Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
29
|
Banerjee S, Roy P, Nandi S, Roy S. Advanced biotechnological strategies towards the development of crops with enhanced micronutrient content. PLANT GROWTH REGULATION 2023; 100:355-371. [PMID: 36686885 PMCID: PMC9845834 DOI: 10.1007/s10725-023-00968-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/06/2023] [Indexed: 05/17/2023]
Abstract
Micronutrients are essential mineral elements required for both plant and human development.An integrated system involving soil, climatic conditions, and types of crop plants determines the level of micronutrient acquisition and utilization. Most of the staple food crops consumed globally predominantly include the cereal grains, tubers and roots, respectively and in many cases, particularly in the resource-poor countries they are grown in nutrient-deficient soils. These situations frequently lead to micronutrient deficiency in crops. Moreover, crop plants with micronutrient deficiency also show high level of susceptibility to various abiotic and biotic stress factors. Apart from this, climate change and soil pollution severely affect the accumulation of micronutrients, such as zinc (Zn), iron (Fe), selenium (Se), manganese (Mn), and copper (Cu) in food crops. Therefore, overcoming the issue of micronutrient deficiency in staple crops and to achieve the adequate level of food production with enriched nutrient value is one of the major global challenges at present. Conventional breeding approaches are not adequate to feed the increasing global population with nutrient-rich staple food crops. To address these issues, alongside traditional approaches, genetic modification strategies have been adopted during the past couple of years in order to enhance the transport, production, enrichment and bioavailability of micronutrients in staple crops. Recent advances in agricultural biotechnology and genome editing approaches have shown promising response in the development of micronutrient enriched biofortified crops. This review highlights the current advancement of our knowledge on the possible implications of various biotechnological tools for the enrichment and enhancement of bioavailability of micronutrients in crops.
Collapse
Affiliation(s)
- Samrat Banerjee
- Department of Botany, UGC Centre for Advanced Studies, The University of Burdwan, Golapbag Campus, 713104 Burdwan, West Bengal India
| | - Pinaki Roy
- Department of Botany, UGC Centre for Advanced Studies, The University of Burdwan, Golapbag Campus, 713104 Burdwan, West Bengal India
| | - Shreyashi Nandi
- Department of Botany, UGC Centre for Advanced Studies, The University of Burdwan, Golapbag Campus, 713104 Burdwan, West Bengal India
| | - Sujit Roy
- Department of Botany, UGC Centre for Advanced Studies, The University of Burdwan, Golapbag Campus, 713104 Burdwan, West Bengal India
| |
Collapse
|
30
|
Tsakirpaloglou N, Bueno-Mota GM, Soriano JC, Arcillas E, Arines FM, Yu SM, Stangoulis J, Trijatmiko KR, Reinke R, Tohme J, Bouis H, Slamet-Loedin IH. Proof of concept and early development stage of market-oriented high iron and zinc rice expressing dicot ferritin and rice nicotianamine synthase genes. Sci Rep 2023; 13:676. [PMID: 36635301 PMCID: PMC9837094 DOI: 10.1038/s41598-022-26854-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023] Open
Abstract
Micronutrient deficiencies such as iron (Fe), zinc (Zn), and vitamin A, constitute a severe global public health phenomenon. Over half of preschool children and two-thirds of nonpregnant women of reproductive age worldwide have micronutrient deficiencies. Biofortification is a cost-effective strategy that comprises a meaningful and sustainable means of addressing this issue by delivering micronutrients through staple foods to populations with limited access to diverse diets and other nutritional interventions. Here, we report on the proof-of-concept and early development stage of a collection of biofortified rice events with a high density of Fe and Zn in polished grains that have been pursued further to advance development for product release. In total, eight constructs were developed specifically expressing dicot ferritins and the rice nicotianamine synthase 2 (OsNAS2) gene under different combinations of promoters. A large-scale transformation of these constructs to Bangladesh and Philippines commercial indica cultivars and subsequent molecular screening and confined field evaluations resulted in the identification of a pool of ten events with Fe and Zn concentrations in polished grains of up to 11 μg g-1 and up to 37 μg g-1, respectively. The latter has the potential to reduce the prevalence of inadequate Zn intake for women of childbearing age in Bangladesh and in the Philippines by 30% and 50%, respectively, compared to the current prevalence. To our knowledge, this is the first potential biotechnology public-sector product that adopts the product cycle phase-gated approach, routinely applied in the private sector.
Collapse
Affiliation(s)
- Nikolaos Tsakirpaloglou
- International Rice Research Institute (IRRI), Metro Manila, The Philippines.
- Crop Genome Editing Laboratory (CGEL), Soil and Crop Sciences Department, Texas A&M University and Texas A&M AgriLife Research, College Station, TX, USA.
| | | | | | - Erwin Arcillas
- International Rice Research Institute (IRRI), Metro Manila, The Philippines
| | - Felichi Mae Arines
- International Rice Research Institute (IRRI), Metro Manila, The Philippines
- Board Institute of MIT and Harvard, Cambridge, MA, USA
| | - Su-May Yu
- Institute of Molecular Biology, Academia Sinica, Naknag, Taipei, Taiwan, ROC
| | - James Stangoulis
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | | | - Russell Reinke
- International Rice Research Institute (IRRI), Metro Manila, The Philippines
| | - Joseph Tohme
- Bioversity International and International Center for Tropical Agriculture (CIAT) Alliance, Cali, Colombia
| | - Howarth Bouis
- International Food Policy Research Institute (IFPRI) - Emeritus Fellow, Washington, DC, USA
| | | |
Collapse
|
31
|
Vyas DS. Advances in Nutrigenomics and Applications in Public Health: A Recent Update. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE JOURNAL 2022. [DOI: 10.12944/crnfsj.10.3.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nutrition research is achieving new paradigms through recent advances in the field of Nutrigenomics. The application of genomic principles for the identification of relationships between certain specific nutrients with genetic factors is termed “Nutrigenomics”. This knowledge is essential to understanding the risk factors behind diet-related chronic degenerative diseases, which further helps resolve the underlying mechanism of genetic predisposition. Advances in Sciences associated with the study of genes have assisted in developing a deep insight into genetic variants, and gene expression patterns to work out therapeutic responses toward chronic degenerative diseases associated with Public Health. To appraise recent advances in Nutrigenomics with its application in Public health several databases including Pub Med, Google Scholar, Medline etc were investigated in detail. A total of 72 relevant peer-reviewed journal articles were included in this review paper. Nutrigenomics has an important role in comprehending how homeostatic control is maintained and the way metabolic pathways are influenced by nutrient intake. The knowledge of Nutrigenomics helps in working out personalized nutrition strategies for both prevention and management of the diseased situation. The present review article aims to investigate and present a piece of in-depth information about the latest Advances in Nutrigenomics and its application in public health.
Collapse
Affiliation(s)
- Dr Swati Vyas
- Department of Home Science, IIS deemed to be a University, Jaipur, and Rajasthan, India
| |
Collapse
|
32
|
Roy C, Kumar S, Ranjan RD, Kumhar SR, Govindan V. Genomic approaches for improving grain zinc and iron content in wheat. Front Genet 2022; 13:1045955. [PMID: 36437911 PMCID: PMC9683485 DOI: 10.3389/fgene.2022.1045955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/24/2022] [Indexed: 09/29/2023] Open
Abstract
More than three billion people worldwide suffer from iron deficiency associated anemia and an equal number people suffer from zinc deficiency. These conditions are more prevalent in Sub-Saharan Africa and South Asia. In developing countries, children under the age of five with stunted growth and pregnant or lactating women were found to be at high risk of zinc and iron deficiencies. Biofortification, defined as breeding to develop varieties of staple food crops whose grain contains higher levels of micronutrients such as iron and zinc, are one of the most promising, cost-effective and sustainable ways to improve the health in resource-poor households, particularly in rural areas where families consume some part of what they grow. Biofortification through conventional breeding in wheat, particularly for grain zinc and iron, have made significant contributions, transferring important genes and quantitative trait loci (QTLs) from wild and related species into cultivated wheat. Nonetheless, the quantitative, genetically complex nature of iron and zinc levels in wheat grain limits progress through conventional breeding, making it difficult to attain genetic gain both for yield and grain mineral concentrations. Wheat biofortification can be achieved by enhancing mineral uptake, source-to-sink translocation of minerals and their deposition into grains, and the bioavailability of the minerals. A number of QTLs with major and minor effects for those traits have been detected in wheat; introducing the most effective into breeding lines will increase grain zinc and iron concentrations. New approaches to achieve this include marker assisted selection and genomic selection. Faster breeding approaches need to be combined to simultaneously increase grain mineral content and yield in wheat breeding lines.
Collapse
Affiliation(s)
- Chandan Roy
- Department of Genetics and Plant Breeding, Agriculture University, Jodhpur, Rajasthan, India
| | - Sudhir Kumar
- Department of Plant Breeding and Genetics, Bihar Agricultural University, Bhagalpur, Bihar, India
| | - Rakesh Deo Ranjan
- Department of Plant Breeding and Genetics, Bihar Agricultural University, Bhagalpur, Bihar, India
| | - Sita Ram Kumhar
- Department of Genetics and Plant Breeding, Agriculture University, Jodhpur, Rajasthan, India
| | - Velu Govindan
- International Maize and Wheat Improvement Center (CIMMYT), Mexico City, Mexico
| |
Collapse
|
33
|
Wairich A, Ricachenevsky FK, Lee S. A tale of two metals: Biofortification of rice grains with iron and zinc. FRONTIERS IN PLANT SCIENCE 2022; 13:944624. [PMID: 36420033 PMCID: PMC9677123 DOI: 10.3389/fpls.2022.944624] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Iron (Fe) and zinc (Zn) are essential micronutrients needed by virtually all living organisms, including plants and humans, for proper growth and development. Due to its capacity to easily exchange electrons, Fe is important for electron transport in mitochondria and chloroplasts. Fe is also necessary for chlorophyll synthesis. Zn is a cofactor for several proteins, including Zn-finger transcription factors and redox metabolism enzymes such as copper/Zn superoxide dismutases. In humans, Fe participates in oxygen transport, electron transport, and cell division whereas Zn is involved in nucleic acid metabolism, apoptosis, immunity, and reproduction. Rice (Oryza sativa L.) is one of the major staple food crops, feeding over half of the world's population. However, Fe and Zn concentrations are low in rice grains, especially in the endosperm, which is consumed as white rice. Populations relying heavily on rice and other cereals are prone to Fe and Zn deficiency. One of the most cost-effective solutions to this problem is biofortification, which increases the nutritional value of crops, mainly in their edible organs, without yield reductions. In recent years, several approaches were applied to enhance the accumulation of Fe and Zn in rice seeds, especially in the endosperm. Here, we summarize these attempts involving transgenics and mutant lines, which resulted in Fe and/or Zn biofortification in rice grains. We review rice plant manipulations using ferritin genes, metal transporters, changes in the nicotianamine/phytosiderophore pathway (including biosynthetic genes and transporters), regulators of Fe deficiency responses, and other mutants/overexpressing lines used in gene characterization that resulted in Fe/Zn concentration changes in seeds. This review also discusses research gaps and proposes possible future directions that could be important to increase the concentration and bioavailability of Fe and Zn in rice seeds without the accumulation of deleterious elements. We also emphasize the need for a better understanding of metal homeostasis in rice, the importance of evaluating yield components of plants containing transgenes/mutations under field conditions, and the potential of identifying genes that can be manipulated by gene editing and other nontransgenic approaches.
Collapse
Affiliation(s)
- Andriele Wairich
- Graduate Program in Molecular and Cellular Biology, Biotechnology Center, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Felipe K. Ricachenevsky
- Graduate Program in Molecular and Cellular Biology, Biotechnology Center, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Department of Botany, Institute of Biosciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Sichul Lee
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, South Korea
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Jeonju, South Korea
| |
Collapse
|
34
|
Viana VE, Maltzahn LE, Costa de Oliveira A, Pegoraro C. Genetic Approaches for Iron and Zinc Biofortification and Arsenic Decrease in Oryza sativa L. Grains. Biol Trace Elem Res 2022; 200:4505-4523. [PMID: 34773578 DOI: 10.1007/s12011-021-03018-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/04/2021] [Indexed: 12/29/2022]
Abstract
Rice is the staple diet to half of the world's population, being a major source of carbohydrates, vitamins, and some essential elements. However, rice naturally contains low amounts of essential minerals such as iron (Fe) and zinc (Zn), which are drastically decreased after milling. Thus, populations that consume mostly rice may have micronutrient deficiency, which is associated with different diseases. On the other hand, rice irrigated by flooding has a high ability to accumulate arsenic (As) in the grain. Therefore, when rice is grown in areas with contaminated soil or irrigation water, it represents a risk factor for consumers, since As is associated with cancer and other diseases. Different strategies have been used to mitigate micronutrient deficiencies such as Fe and Zn and to prevent As from entering the food chain. Each strategy has its positive and its negative sides. The development of genetically biofortified rice plants with Fe and Zn and with low As accumulation is one of the most promising strategies, since it does not represent an additional cost for farmers, and gives benefits to consumers as well. Considering the importance of genetic improvement (traditional or molecular) to decrease the impact of micronutrient deficiencies such as Fe and Zn and contamination with As, this review aimed to summarize the major efforts, advances, and challenges for genetic biofortification of Fe and Zn and decrease in As content in rice grains.
Collapse
Affiliation(s)
- Vívian Ebeling Viana
- Centro de Genômica E Fitomelhoramento, Departamento de Fitotecnia, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Capão Do Leão, Brazil
| | - Latóia Eduarda Maltzahn
- Centro de Genômica E Fitomelhoramento, Departamento de Fitotecnia, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Capão Do Leão, Brazil
| | - Antonio Costa de Oliveira
- Centro de Genômica E Fitomelhoramento, Departamento de Fitotecnia, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Capão Do Leão, Brazil
| | - Camila Pegoraro
- Centro de Genômica E Fitomelhoramento, Departamento de Fitotecnia, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Capão Do Leão, Brazil.
| |
Collapse
|
35
|
Zinc Fortification: Current Trends and Strategies. Nutrients 2022; 14:nu14193895. [PMID: 36235548 PMCID: PMC9572300 DOI: 10.3390/nu14193895] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Zinc, through its structural and cofactor roles, affects a broad range of critical physiological functions, including growth, metabolism, immune and neurological functions. Zinc deficiency is widespread among populations around the world, and it may, therefore, underlie much of the global burden of malnutrition. Current zinc fortification strategies include biofortification and fortification with zinc salts with a primary focus on staple foods, such as wheat or rice and their products. However, zinc fortification presents unique challenges. Due to the influences of phytate and protein on zinc absorption, successful zinc fortification strategies should consider the impact on zinc bioavailability in the whole diet. When zinc is absorbed with food, shifts in plasma zinc concentrations are minor. However, co-absorbing zinc with food may preferentially direct zinc to cellular compartments where zinc-dependent metabolic processes primarily occur. Although the current lack of sensitive biomarkers of zinc nutritional status reduces the capacity to assess the impact of fortifying foods with zinc, new approaches for assessing zinc utilization are increasing. In this article, we review the tools available for assessing bioavailable zinc, approaches for evaluating the zinc nutritional status of populations consuming zinc fortified foods, and recent trends in fortification strategies to increase zinc absorption.
Collapse
|
36
|
Daccak D, Lidon FC, Luís IC, Marques AC, Coelho ARF, Pessoa CC, Caleiro J, Ramalho JC, Leitão AE, Silva MJ, Rodrigues AP, Guerra M, Leitão RG, Campos PS, Pais IP, Semedo JN, Alvarenga N, Gonçalves EM, Silva MM, Legoinha P, Galhano C, Kullberg JC, Brito M, Simões M, Pessoa MF, Reboredo FH. Zinc Biofortification in Vitis vinifera: Implications for Quality and Wine Production. PLANTS (BASEL, SWITZERLAND) 2022; 11:2442. [PMID: 36145843 PMCID: PMC9501456 DOI: 10.3390/plants11182442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/02/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Nowadays, there is a growing concern about micronutrient deficits in food products, with agronomic biofortification being considered a mitigation strategy. In this context, as Zn is essential for growth and maintenance of human health, a workflow for the biofortification of grapes from the Vitis vinifera variety Fernão Pires, which contains this nutrient, was carried out considering the soil properties of the vineyard. Additionally, Zn accumulation in the tissues of the grapes and the implications for some quality parameters and on winemaking were assessed. Vines were sprayed three times with ZnO and ZnSO4 at concentrations of 150, 450, and 900 g ha-1 during the production cycle. Physiological data were obtained through chlorophyll a fluorescence data, to access the potential symptoms of toxicity. At harvest, treated grapes revealed significant increases of Zn concentration relative to the control, being more pronounced for ZnO and ZnSO4 in the skin and seeds, respectively. After winemaking, an increase was also found regarding the control (i.e., 1.59-fold with ZnSO4-450 g ha-1). The contents of the sugars and fatty acids, as well as the colorimetric analyses, were also assessed, but significant variations were not found among treatments. In general, Zn biofortification increased with ZnO and ZnSO4, without significantly affecting the physicochemical characteristics of grapes.
Collapse
Affiliation(s)
- Diana Daccak
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Fernando C. Lidon
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Inês Carmo Luís
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Ana Coelho Marques
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Ana Rita F. Coelho
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Cláudia Campos Pessoa
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - João Caleiro
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - José C. Ramalho
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- PlantStress & Biodiversity Laboratory, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, 2784-505, Oeiras and Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - António E. Leitão
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- PlantStress & Biodiversity Laboratory, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, 2784-505, Oeiras and Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Maria José Silva
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- PlantStress & Biodiversity Laboratory, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, 2784-505, Oeiras and Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Ana Paula Rodrigues
- PlantStress & Biodiversity Laboratory, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, 2784-505, Oeiras and Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Mauro Guerra
- LIBPhys, Physics Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Roberta G. Leitão
- LIBPhys, Physics Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Paula Scotti Campos
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
| | - Isabel P. Pais
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
| | - José N. Semedo
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
| | - Nuno Alvarenga
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
| | - Elsa M. Gonçalves
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
| | - Maria Manuela Silva
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Escola Superior de Educação Almeida Garrett (ESEAG-COFAC), Avenida do Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Paulo Legoinha
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Carlos Galhano
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - José Carlos Kullberg
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Maria Brito
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Manuela Simões
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Maria Fernanda Pessoa
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Fernando H. Reboredo
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
37
|
Kawakami Y, Gruissem W, Bhullar NK. Novel rice iron biofortification approaches using expression of ZmYS1 and OsTOM1 controlled by tissue-specific promoters. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5440-5459. [PMID: 35648686 DOI: 10.1093/jxb/erac214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Intrinsic improvement of iron (Fe) concentration in rice grains, called rice Fe biofortification, is a promising countermeasure against widespread human Fe deficiency. In this study, two novel rice Fe biofortification approaches are reported. The first approach (Y approach) involved the expression of maize YELLOW STRIPE 1 controlled by the HEAVY METAL ATPASE 2 promoter. The Y approach increased the polished grain Fe concentrations up to 4.8-fold compared with the non-transgenic (NT) line. The second approach (T approach) involved the expression of rice TRANSPORTER OF MUGINEIC ACID 1 controlled by the FERRIC REDUCTASE DEFECTIVE LIKE 1 promoter. The T approach increased the polished grain Fe concentrations by up to 3.2-fold. No synergistic increases in the polished grain Fe concentrations were observed when Y and T approaches were combined (YT approach). However, the polished grain Fe concentrations further increased by 5.1- to 9.3-fold compared with the NT line, when YT approach was combined with the endosperm-specific expression of FERRITIN (YTF approach), or when YTF approach was combined with the constitutive expression of NICOTIANAMINE SYNTHASE (YTFN approach). Total grain weight per plant in most Y, T, YT, and YTFN lines was comparable to that in the NT line, while it was significantly decreased in most YTF lines. The novel approaches reported in this study expand the portfolio of genetic engineering strategies that can be used for Fe biofortification in rice.
Collapse
Affiliation(s)
- Yuta Kawakami
- Plant Biotechnology, Department of Biology, ETH Zurich, Universitätstrasse, Zurich, Switzerland
| | - Wilhelm Gruissem
- Plant Biotechnology, Department of Biology, ETH Zurich, Universitätstrasse, Zurich, Switzerland
- Biotechnology Center, National Chung Hsing University, Taichung City, Taiwan
| | - Navreet K Bhullar
- Plant Biotechnology, Department of Biology, ETH Zurich, Universitätstrasse, Zurich, Switzerland
| |
Collapse
|
38
|
Jha R, Yadav HK, Raiya R, Singh RK, Jha UC, Sathee L, Singh P, Thudi M, Singh A, Chaturvedi SK, Tripathi S. Integrated breeding approaches to enhance the nutritional quality of food legumes. FRONTIERS IN PLANT SCIENCE 2022; 13:984700. [PMID: 36161025 PMCID: PMC9490089 DOI: 10.3389/fpls.2022.984700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/26/2022] [Indexed: 05/31/2023]
Abstract
Global food security, both in terms of quantity and quality remains as a challenge with the increasing population. In parallel, micronutrient deficiency in the human diet leads to malnutrition and several health-related problems collectively known as "hidden hunger" more prominent in developing countries around the globe. Biofortification is a potential tool to fortify grain legumes with micronutrients to mitigate the food and nutritional security of the ever-increasing population. Anti-nutritional factors like phytates, raffinose (RFO's), oxalates, tannin, etc. have adverse effects on human health upon consumption. Reduction of the anti-nutritional factors or preventing their accumulation offers opportunity for enhancing the intake of legumes in diet besides increasing the bioavailability of micronutrients. Integrated breeding methods are routinely being used to exploit the available genetic variability for micronutrients through modern "omic" technologies such as genomics, transcriptomics, ionomics, and metabolomics for developing biofortified grain legumes. Molecular mechanism of Fe/Zn uptake, phytate, and raffinose family oligosaccharides (RFOs) biosynthesis pathways have been elucidated. Transgenic, microRNAs and genome editing tools hold great promise for designing nutrient-dense and anti-nutrient-free grain legumes. In this review, we present the recent efforts toward manipulation of genes/QTLs regulating biofortification and Anti-nutrient accumulation in legumes using genetics-, genomics-, microRNA-, and genome editing-based approaches. We also discuss the success stories in legumes enrichment and recent advances in development of low Anti-nutrient lines. We hope that these emerging tools and techniques will expedite the efforts to develop micronutrient dense legume crop varieties devoid of Anti-nutritional factors that will serve to address the challenges like malnutrition and hidden hunger.
Collapse
Affiliation(s)
- Rintu Jha
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Hemant Kumar Yadav
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rahul Raiya
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rajesh Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Uday Chand Jha
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh, India
| | - Lekshmy Sathee
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Prashant Singh
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Mahendar Thudi
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, India
- Shandong Academy of Agricultural Sciences, Jinan, China
- Center for Crop Health, University of Southern Queensland, Toowmba, QLD, Australia
| | - Anshuman Singh
- College of Agriculture, Rani Lakshmi Bai Central Agricultural University, Jhansi, Uttar Pradesh, India
| | - Sushil Kumar Chaturvedi
- College of Agriculture, Rani Lakshmi Bai Central Agricultural University, Jhansi, Uttar Pradesh, India
| | - Shailesh Tripathi
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
39
|
Panthri M, Gupta M. An insight into the act of iron to impede arsenic toxicity in paddy agro-system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115289. [PMID: 35598452 DOI: 10.1016/j.jenvman.2022.115289] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/13/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Surplus research on the widespread arsenic (As) revealed its disturbing role in obstructing the metabolic function of plants. Also, the predilection of As towards rice has been an interesting topic. Contrary to As, iron (Fe) is an essential micronutrient for all life forms. Past findings propound about the enhanced As-resistance in rice plants during Fe supplementation. Thus, considering the severity of As contamination and resulting exposure through rice crops, as well as the studied cross-talks between As and Fe, we found this topic of relevance. Keeping these in view, we bring this review discussing the presence of As-Fe in the paddy environment, the criticality of Fe plaque in As sequestration, and the effectiveness of various Fe forms to overcome As toxicity in rice. This type of interactive analysis for As and Fe is also crucial in the context of the involvement of Fe in cellular redox activities such as oxidative stress. Also, this piece of work highlights Fe biofortification approaches for better rice varieties with optimum intrinsic Fe and limited As. Though elaborated by others, we lastly present the acquisition and transport mechanisms of both As and Fe in rice tissues. Altogether we suggest that Fe supply and Fe plaque might be a prospective agronomical tool against As poisoning and for phytostabilization, respectively.
Collapse
Affiliation(s)
- Medha Panthri
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
| | - Meetu Gupta
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
40
|
Dutta S, Pal S, Panwar P, Sharma RK, Bhutia PL. Biopolymeric Nanocarriers for Nutrient Delivery and Crop Biofortification. ACS OMEGA 2022; 7:25909-25920. [PMID: 35936412 PMCID: PMC9352165 DOI: 10.1021/acsomega.2c02494] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/07/2022] [Indexed: 05/17/2023]
Abstract
Driven by the possibility of precise transformational change in nutrient-enrichment technology to meet global food demand, advanced nutrient delivery strategies have emerged to pave the path toward success for nutrient enrichment in edible parts of crops through bioderived nanocarriers with increased productivity. Slow and controlled release of nutrient carrier materials influences the nutrient delivery rate in soil and in the edible parts of crops with a sluggish nutrient delivery to enhance their availability in roots by minimizing nutrient loss. With a limited understanding of the nutrient delivery mechanism in soil and the edible parts of crops, it is envisaged to introduce nutrient-enrichment technology for nutrient delivery that minimizes environmental impact due to its biodegradable nature. This article attempts to analyze the possible role of the cellulose matrix for nutrient release and the role of cellulose nanocomposites and nanofibers. We have proposed a few cellulose derived biofortificant materials as nutrient carriers, such as (1) nanofibers, (2) polymer-nanocellulose-clay composites, (3) silk-fibroin derived nanocarriers, and (4) carboxymethyl cellulose. An effort is undertaken to describe the research need by linking a biopolymer derived nanocarrier for crop growth regulation and experimental nitrogen release analysis. We have finally provided a perspective on cellulose nanofibers (CNFs) for microcage based nutrient loading ability. This article aims to explain why biopolymer derived nutrient carriers are the alternative candidate for alleviating nutrient deficiency challenges which are involved in focusing the nutrient delivery profile of biopolymers and promising biofortification of crops.
Collapse
Affiliation(s)
- Saikat Dutta
- Electrochemical
Energy & Sensor Research Laboratory, Amity Institute of Click
Chemistry Research & Studies, Amity
University, Noida 201303, India
| | - Sharmistha Pal
- Research
Center, ICAR-Indian Institute of Soil &
Water Conservation, Sector 27 A Madhya Marg, Chandigarh 160019, India
| | - Pankaj Panwar
- Research
Center, ICAR-Indian Institute of Soil &
Water Conservation, Sector 27 A Madhya Marg, Chandigarh 160019, India
| | - Rakesh K. Sharma
- Sustainable
Materials and Catalysis Research Laboratory (SMCRL), Department of
Chemistry, Indian Institute of Technology
Jodhpur, Jodhpur 342037, Rajasthan, India
| | - Pempa Lamu Bhutia
- Division
of Agroforestry, Indian Council of Agriculture
Research (ICAR), Research Complex for NEH Region, Nagaland Centre, Umiam, Nagaland 797106, India
| |
Collapse
|
41
|
Badoni S, Parween S, Henry RJ, Sreenivasulu N. Systems seed biology to understand and manipulate rice grain quality and nutrition. Crit Rev Biotechnol 2022:1-18. [PMID: 35723584 DOI: 10.1080/07388551.2022.2058460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Rice is one of the most essential crops since it meets the calorific needs of 3 billion people around the world. Rice seed development initiates upon fertilization, leading to the establishment of two distinct filial tissues, the endosperm and embryo, which accumulate distinct seed storage products, such as starch, storage proteins, and lipids. A range of systems biology tools deployed in dissecting the spatiotemporal dynamics of transcriptome data, methylation, and small RNA based regulation operative during seed development, influencing the accumulation of storage products was reviewed. Studies of other model systems are also considered due to the limited information on the rice transcriptome. This review highlights key genes identified through a holistic view of systems biology targeted to modify biochemical composition and influence rice grain quality and nutritional value with the target of improving rice as a functional food.
Collapse
Affiliation(s)
- Saurabh Badoni
- Consumer-Driven Grain Quality and Nutrition Unit, International Rice Research Institute (IRRI), Manila, Philippines
| | - Sabiha Parween
- Consumer-Driven Grain Quality and Nutrition Unit, International Rice Research Institute (IRRI), Manila, Philippines
| | - Robert J Henry
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Australia
| | - Nese Sreenivasulu
- Consumer-Driven Grain Quality and Nutrition Unit, International Rice Research Institute (IRRI), Manila, Philippines
| |
Collapse
|
42
|
Kong D, Khan SA, Wu H, Liu Y, Ling HQ. Biofortification of iron and zinc in rice and wheat. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1157-1167. [PMID: 35396901 DOI: 10.1111/jipb.13262] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Iron and zinc are critical micronutrients for human health. Approximately two billion people suffer from iron and zinc deficiencies worldwide, most of whom rely on rice (Oryza sativa) and wheat (Triticum aestivum) as staple foods. Therefore, biofortifying rice and wheat with iron and zinc is an important and economical approach to ameliorate these nutritional deficiencies. In this review, we provide a brief introduction to iron and zinc uptake, translocation, storage, and signaling pathways in rice and wheat. We then discuss current progress in efforts to biofortify rice and wheat with iron and zinc. Finally, we provide future perspectives for the biofortification of rice and wheat with iron and zinc.
Collapse
Affiliation(s)
- Danyu Kong
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, 332900, Jiangxi, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Sabaz Ali Khan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, the Chinese Academy of Sciences, Beijing, 100101, China
- Department of Biotechnology, COMSATS University Islamabad-Abbottabad Campus, University Road, Abbottabad, 22060, Pakistan
| | - Huilan Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Liu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, 332900, Jiangxi, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Hong-Qing Ling
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, the Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
43
|
Duan Y, Li Q, Zhang L, Huang Z, Zhao Z, Zhao H, Du J, Zhou J. Toxic Metals in a Paddy Field System: A Review. TOXICS 2022; 10:toxics10050249. [PMID: 35622662 PMCID: PMC9148070 DOI: 10.3390/toxics10050249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/30/2022] [Accepted: 05/13/2022] [Indexed: 02/06/2023]
Abstract
The threat of toxic metals to food security and human health has become a high-priority issue in recent decades. As the world’s main food crop source, the safe cultivation of rice has been the focus of much research, particularly the restoration of toxic metals in paddy fields. Therefore, in this paper, we focus on the effects of toxic metals on rice, as well as the removal or repair methods of toxic metals in paddy fields. We also provide a detailed discussion of the sources and monitoring methods of toxic metals pollution, the current toxic metal removal, and remediation methods in paddy fields. Finally, several important research issues related to toxic metals in paddy field systems are proposed for future work. The review has an important guiding role for the future of heavy metal remediation in paddy fields, safe production of rice, green ecological fish culture, and human food security and health.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jian Zhou
- Correspondence: ; Tel./Fax: +86-028-87955015
| |
Collapse
|
44
|
Zhu Q, Tan J, Liu YG. Molecular farming using transgenic rice endosperm. Trends Biotechnol 2022; 40:1248-1260. [PMID: 35562237 DOI: 10.1016/j.tibtech.2022.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 01/05/2023]
Abstract
Plant expression platforms are low-cost, scalable, safe, and environmentally friendly systems for the production of recombinant proteins and bioactive metabolites. Rice (Oryza sativa L.) endosperm is an ideal bioreactor for the production and storage of high-value active substances, including pharmaceutical proteins, oral vaccines, vitamins, and nutraceuticals such as flavonoids and carotenoids. Here, we explore the use of molecular farming from producing medicines to developing functional food crops (biofortification). We review recent progress in producing pharmaceutical proteins and bioactive substances in rice endosperm and compare this platform with other plant expression systems. We describe how rice endosperm could be modified to design metabolic pathways and express and store stable products and discuss the factors restricting the commercialization of transgenic rice products and future prospects.
Collapse
Affiliation(s)
- Qinlong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Jiantao Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
45
|
Kapoor P, Dhaka RK, Sihag P, Mehla S, Sagwal V, Singh Y, Langaya S, Balyan P, Singh KP, Xing B, White JC, Dhankher OP, Kumar U. Nanotechnology-enabled biofortification strategies for micronutrients enrichment of food crops: Current understanding and future scope. NANOIMPACT 2022; 26:100407. [PMID: 35594741 DOI: 10.1016/j.impact.2022.100407] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 05/16/2023]
Abstract
Nutrient deficiency in food crops severely compromises human health, particularly in under privileged communities. Globally, billions of people, particularly in developing nations, have limited access to nutritional supplements and fortified foods, subsequently suffering from micronutrient deficiency leading to a range of health issues. The green revolution enhanced crop production and provided food to billions of people but often falls short with respect to the nutritional quality of that food. Plants may assimilate nutrients from synthetic chemical fertilizers, but this approach generally has low nutrient delivery and use efficiency. Further, the overexposure of chemical fertilizers may increase the risk of neoplastic diseases, render food crops unfit for consumption and cause environmental degradation. Therefore, to address these challenges, more research is needed for sustainable crop yield and quality enhancement with minimum use of chemical fertilizers. Complex nutritional disorders and 'hidden hunger' can be addressed through biofortification of food crops. Nanotechnology may help to improve food quality via biofortification as plants may readily acquire nanoparticle-based nutrients. Nanofertilizers are target specific, possess controlled release, and can be retained for relatively long time periods, thus prevent leaching or run-off from soil. This review evaluates the recent literature on the development and use of nanofertilizers, their effects on the environment, and benefits to food quality. Further, the review highlights the potential of nanomaterials on plant genetics in biofortification, as well as issues of affordability, sustainability, and toxicity.
Collapse
Affiliation(s)
- Prexha Kapoor
- Department of Molecular Biology, Biotechnology & Bioinformatics, College of Biotechnology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Rahul Kumar Dhaka
- Department of Chemistry & Centre for Bio-Nanotechnology, College of Basic Sciences & Humanities, CCS Haryana Agricultural University, Hisar 125004, India
| | - Pooja Sihag
- Department of Molecular Biology, Biotechnology & Bioinformatics, College of Biotechnology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Sheetal Mehla
- Department of Molecular Biology, Biotechnology & Bioinformatics, College of Biotechnology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Vijeta Sagwal
- Department of Molecular Biology, Biotechnology & Bioinformatics, College of Biotechnology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Yogita Singh
- Department of Molecular Biology, Biotechnology & Bioinformatics, College of Biotechnology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Sonu Langaya
- Department of Genetics and Plant Breeding, College of Agriculture, CCS Haryana Agricultural University, Hisar 125004, India
| | - Priyanka Balyan
- Department of Botany, Deva Nagri P.G. College, CCS University Meerut, 245206, India
| | - Krishna Pal Singh
- Biophysics Unit, College of Basic Sciences & Humanities, GB Pant University of Agriculture & Technology, Pantnagar 263145, India; Vice-Chancellor's Secretariat, Mahatma Jyotiba Phule Rohilkhand University, Bareilly 243001, India
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA 01003, USA
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT 06504, USA
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA 01003, USA.
| | - Upendra Kumar
- Department of Molecular Biology, Biotechnology & Bioinformatics, College of Biotechnology, CCS Haryana Agricultural University, Hisar 125004, India.
| |
Collapse
|
46
|
Huang S, Yamaji N, Feng Ma J. Zinc transport in rice: how to balance optimal plant requirements and human nutrition. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1800-1808. [PMID: 34727182 DOI: 10.1093/jxb/erab478] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/27/2021] [Indexed: 05/15/2023]
Abstract
Zinc (Zn) is an essential micronutrient for both plants and animals, while its deficiency in crops and humans is a global problem that affects both crop productivity and human health. Since plants and humans differ in their Zn requirements, it is crucial to balance plant nutrition and human nutrition for Zn. In this review, we focus on the transport system of Zn from soil to grain in rice (Oryza sativa), which is a major dietary source of Zn for people subsiding on rice-based diets. We describe transporters belonging to the different families that are involved in the uptake, vacuolar sequestration, root-to-shoot translocation, and distribution of Zn, and discuss their mechanisms of regulation. We give examples for enhancing Zn accumulation and bioavailability in rice grains through the manipulation of genes that are highly expressed in the nodes, where Zn is deposited at high concentrations. Finally, we provide our perspectives on breeding rice cultivars with both increased tolerance to Zn-deficiency stress and high Zn density in the grains.
Collapse
Affiliation(s)
- Sheng Huang
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Japan
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Japan
| |
Collapse
|
47
|
Suh JH, Zyba SJ, Shigenaga M, McDonald CM, King JC. Marginal Zinc Deficiency Alters Essential Fatty Acid Metabolism in Healthy Men. J Nutr 2022; 152:671-679. [PMID: 34919682 PMCID: PMC9076996 DOI: 10.1093/jn/nxab425] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/29/2021] [Accepted: 12/09/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Rice biofortification with Zinc (Zn) can improve the Zn status of rice-consuming populations. However, the metabolic impact in humans consuming Zn-biofortified rice is unknown. OBJECTIVES To determine the effects of Zn-biofortified rice on lipid metabolism in normolipidemic men. METHODS The men consumed a rice-based diet containing 6 mg Zn/d and 1.5 g phytate (phytate/Zn ratio = 44) for 2 wk followed by a 10-mg Zn/d diet without phytate for 4 wk. An ad libitum diet supplemented with 25 mg Zn/d was then fed for 3 wk. Fasting blood samples were taken at baseline and at the end of each metabolic period for measuring plasma zinc, glucose, insulin, triglyceride (TG), LDL and HDL cholesterol, fatty acids, oxylipins, and fatty acid desaturase activities. Statistical differences were assessed by linear mixed model. RESULTS Fatty acid desaturase (FADS) 1 activity decreased by 29.1% (P = 0.007) when the 6-mg Zn/d diet was consumed for 2 wk. This change was associated with significant decreases in HDL and LDL cholesterol. The alterations in FADS1, HDL cholesterol, and TG remained unchanged when Zn intakes were increased to 10 mg/d for 4 wk. Supplementation with 25 mg Zn/d for 3 wk normalized these metabolic changes and significantly increased LDL cholesterol at the end of this metabolic period compared with baseline. FADS1 activity was inversely correlated with FADS2 (rmcorr = -0.52; P = 0.001) and TG (rmcorr = -0.55; P = 0.001) at all time points. CONCLUSIONS A low-zinc, high-phytate rice-based diet reduced plasma HDL cholesterol concentrations and altered fatty acid profiles in healthy men within 2 wk. Consuming 10 mg Zn/d without phytate for 4 wk did not improve the lipid profiles, but a 25-mg Zn/d supplement corrects these alterations in lipid metabolism within 3 wk.
Collapse
Affiliation(s)
- Jung H Suh
- UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | - Sarah J Zyba
- UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, CA, USA
- Institute for Global Nutrition Department of Nutrition University of California, Davis, CA, USA
| | - Mark Shigenaga
- UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | | | - Janet C King
- UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, CA, USA
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
| |
Collapse
|
48
|
|
49
|
Gaigher B, do Nascimento da Silva E, Lacerda Sanches V, Fernanda Milani R, Galland F, Cadore S, Grancieri M, Bertoldo Pacheco MT. Formulations with microencapsulated Fe–peptides improve in vitro bioaccessibility and bioavailability. Curr Res Food Sci 2022; 5:687-697. [PMID: 35465643 PMCID: PMC9019146 DOI: 10.1016/j.crfs.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/04/2022] [Accepted: 03/17/2022] [Indexed: 11/25/2022] Open
Abstract
The bioaccessibility and the bioavailability of iron complexed to peptides (active) in microparticles forms contained in dry beverages formulations were evaluated. The peptide-iron complexes microparticles were obtained by spray drying and added in three dry formulations (tangerine, strawberry, and chocolate flavors). The peptides isolated by iron ion affinity (IMAC-Fe III) had their biological activity predicted by BIOPEP® database and were evaluated by molecular coupling. The bioaccessibility was evaluated by solubility and dialysability and the bioavalability was assessed by Caco-2 cellular model. The proportion 10:1 of peptide-iron complexes presented higher rates of bioaccessibility (49%) and bioavailability (56%). The microparticle with peptide-iron complex showed greater solubility after digestion (39.1%), bioaccessibility (19.8%), and bioavailability (34.8%) than the ferrous sulfate salt (control) for the three assays (10.2%; 12.9%; 9.7%, respectively). Tangerine and strawberry formulations contributed to the iron absorption according to the results of bioaccessibility (36.2%, 30.0% respectively) and bioavailability (80.5%, 84.1%, respectively). The results showed that iron peptide complexation and microencapsulation process improve the bioaccessibility and bioavailability when incorporated into formulations. Iron solubility is increased in iron peptide complexes. In silico interaction between peptides > 5 KDa and ferric iron (Fe2+). Microparticle with Fe-peptides increase iron bioavailability after digestion. Microparticle formulations improve iron bioaccessibility and bioavailability.
Collapse
|
50
|
Beasley JT, Bonneau JP, Moreno-Moyano LT, Callahan DL, Howell KS, Tako E, Taylor J, Glahn RP, Appels R, Johnson AAT. Multi-year field evaluation of nicotianamine biofortified bread wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1168-1182. [PMID: 34902177 DOI: 10.1111/tpj.15623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/27/2021] [Indexed: 06/14/2023]
Abstract
Conventional breeding efforts for iron (Fe) and zinc (Zn) biofortification of bread wheat (Triticum aestivum L.) have been hindered by a lack of genetic variation for these traits and a negative correlation between grain Fe and Zn concentrations and yield. We have employed genetic engineering to constitutively express (CE) the rice (Oryza sativa) nicotianamine synthase 2 (OsNAS2) gene and upregulate biosynthesis of two metal chelators - nicotianamine (NA) and 2'-deoxymugineic acid (DMA) - in bread wheat, resulting in increased Fe and Zn concentrations in wholemeal and white flour. Here we describe multi-location confined field trial (CFT) evaluation of a low-copy transgenic CE-OsNAS2 wheat event (CE-1) over 3 years and demonstrate higher concentrations of NA, DMA, Fe, and Zn in CE-1 wholemeal flour, white flour, and white bread and higher Fe bioavailability in CE-1 white flour relative to a null segregant (NS) control. Multi-environment models of agronomic and grain nutrition traits revealed a negative correlation between grain yield and grain Fe, Zn, and total protein concentrations, yet no correlation between grain yield and grain NA and DMA concentrations. White flour Fe bioavailability was positively correlated with white flour NA concentration, suggesting that NA-chelated Fe should be targeted in wheat Fe biofortification efforts.
Collapse
Affiliation(s)
- Jesse T Beasley
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Julien P Bonneau
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Laura T Moreno-Moyano
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Damien L Callahan
- School of Life and Environmental Sciences, Deakin University, Melbourne, Victoria, 3125, Australia
| | - Kate S Howell
- School of Agriculture and Food, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Elad Tako
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY, 14853-7201, USA
| | - Julian Taylor
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia, 5064, Australia
| | - Raymond P Glahn
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, NY, 14853, USA
| | - Rudi Appels
- School of Agriculture and Food, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Alexander A T Johnson
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| |
Collapse
|