1
|
Ramachandran T, Mohanraj KG, Mary Martin T, K MS. Enhanced Wound Healing With β-Chitosan-Zinc Oxide Nanoparticles: Insights From Zebrafish Models. Cureus 2024; 16:e69861. [PMID: 39435246 PMCID: PMC11493322 DOI: 10.7759/cureus.69861] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/21/2024] [Indexed: 10/23/2024] Open
Abstract
INTRODUCTION Wound healing is a complex physiological process essential for the restoration of tissue integrity and function. Novel therapeutic approaches are urgently needed to enhance wound-healing outcomes. Nanotechnology, particularly zinc oxide nanoparticles, has shown promise due to its antimicrobial, anti-inflammatory, and regenerative properties. β-chitosan, derived from squid pens, possesses superior solubility and bioactivity compared to α-chitosan, making it a valuable biomaterial for biomedical applications. Through the integration of β-chitosan and zinc oxide nanoparticles, this study seeks to use the complementary properties of both substances to overcome present constraints in wound care treatments. METHODS β-chitosan was extracted from squid pens and characterized for its molecular weight, degree of deacetylation, and solubility properties. Further characterization of the synthesized zinc oxide nanoparticles involved Fourier transform infrared spectroscopy to analyze chemical bonding and functional groups, ultraviolet-visible spectroscopy to determine optional properties such as band gap energy, X-ray diffraction spectroscopy to confirm the crystalline phase and calculate crystallite size, and the size was confirmed with the scanning electron microscope. Each technique provided complementary information, ensuring a comprehensive understanding of the synthesized nanoparticles' properties and their potential applications. Adult zebrafish (six to eight months old) were employed as a model organism due to their genetic similarity to humans and regenerative capabilities. Zebrafish were wounded and divided into treatment and control groups, with β-chitosan and β-chitosan-derived zinc nanoparticles treatments administrated at 50 µg/ml, while control groups received 0.05% phosphate buffer saline. The treatments, conducted in triplicate, enabled a comparative analysis of wound closure activity between β-chitosan-derived zinc nanoparticles' healing effects against standard and baseline treatments. Further, gene expression analysis on Bax, BCl-2, IL-2, IL-6, and tumor necrosis factor-alpha (TNF-a) was done using reverse transcriptase polymerase chain reaction. RESULTS Characterization studies confirmed the successful synthesis of β-chitosan-derived zinc oxide nanoparticles and a crystalline structure corresponding to zinc oxide. Treatment with β-chitosan-derived zinc oxide nanoparticles significantly accelerated wound closure compared to controls and other treatment groups. Microscopic analysis demonstrated enhanced epithelialization, reduced inflammatory cell infiltration, increased collagen deposition, and improved tissue organization in wounds treated with β-chitosan-derived zinc oxide nanoparticles. Gene expression analysis revealed downregulation of inflammation-causing genes such as BCl-2, IL-2, IL-6, and TNF-a, hence it showed wound-healing activity. The results were statistically significant (p < 0.05). CONCLUSION β-chitosan-derived zinc oxide nanoparticles show promising potential as a novel therapeutic strategy for enhancing wound healing. The synergistic effects of β-chitosan and zinc oxide nanoparticles address multiple aspects of wound healing, including antimicrobial activity, inflammation modulation, and tissue regeneration. This study highlights the advantages of nanotechnology in wound care and underscores the need for further research to optimize nanoparticle formulations for clinical applications.
Collapse
Affiliation(s)
- Tharansia Ramachandran
- Department of Anatomy, Zebrafish Facility, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Karthik Ganesh Mohanraj
- Department of Anatomy, Zebrafish Facility, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Taniya Mary Martin
- Department of Anatomy, Zebrafish Facility, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Meenakshi Sundaram K
- Department of Anatomy, Zebrafish Facility, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
2
|
Mao Y, Wickström SA. Mechanical state transitions in the regulation of tissue form and function. Nat Rev Mol Cell Biol 2024; 25:654-670. [PMID: 38600372 DOI: 10.1038/s41580-024-00719-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 04/12/2024]
Abstract
From embryonic development, postnatal growth and adult homeostasis to reparative and disease states, cells and tissues undergo constant changes in genome activity, cell fate, proliferation, movement, metabolism and growth. Importantly, these biological state transitions are coupled to changes in the mechanical and material properties of cells and tissues, termed mechanical state transitions. These mechanical states share features with physical states of matter, liquids and solids. Tissues can switch between mechanical states by changing behavioural dynamics or connectivity between cells. Conversely, these changes in tissue mechanical properties are known to control cell and tissue function, most importantly the ability of cells to move or tissues to deform. Thus, tissue mechanical state transitions are implicated in transmitting information across biological length and time scales, especially during processes of early development, wound healing and diseases such as cancer. This Review will focus on the biological basis of tissue-scale mechanical state transitions, how they emerge from molecular and cellular interactions, and their roles in organismal development, homeostasis, regeneration and disease.
Collapse
Affiliation(s)
- Yanlan Mao
- Laboratory for Molecular Cell Biology, University College London, London, UK.
- Institute for the Physics of Living Systems, University College London, London, UK.
| | - Sara A Wickström
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany.
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
3
|
Allemailem KS, Almatroudi A, Alharbi HOA, AlSuhaymi N, Alsugoor MH, Aldakheel FM, Khan AA, Rahmani AH. Apigenin: A Bioflavonoid with a Promising Role in Disease Prevention and Treatment. Biomedicines 2024; 12:1353. [PMID: 38927560 PMCID: PMC11202028 DOI: 10.3390/biomedicines12061353] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Apigenin is a powerful flavone compound found in numerous fruits and vegetables, and it offers numerous health-promoting benefits. Many studies have evidenced that this compound has a potential role as an anti-inflammatory and antioxidant compound, making it a promising candidate for reducing the risk of pathogenesis. It has also been found to positively affect various systems in the body, such as the respiratory, digestive, immune, and reproductive systems. Apigenin is effective in treating liver, lung, heart, kidney, neurological diseases, diabetes, and maintaining good oral and skin health. Multiple studies have reported that this compound is capable of suppressing various types of cancer through the induction of apoptosis and cell-cycle arrest, suppressing cell migration and invasion, reduction of inflammation, and inhibiting angiogenesis. When used in combination with other drugs, apigenin increases their efficacy, reduces the risk of side effects, and improves the response to chemotherapy. This review broadly analyzes apigenin's potential in disease management by modulating various biological activities. In addition, this review also described apigenin's interaction with other compounds or drugs and the potential role of nanoformulation in different pathogeneses. Further extensive research is needed to explore the mechanism of action, safety, and efficacy of this compound in disease prevention and treatment.
Collapse
Affiliation(s)
- Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (K.S.A.); (A.A.); (H.O.A.A.)
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (K.S.A.); (A.A.); (H.O.A.A.)
| | - Hajed Obaid A. Alharbi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (K.S.A.); (A.A.); (H.O.A.A.)
| | - Naif AlSuhaymi
- Department of Emergency Medical Services, Faculty of Health Sciences, AlQunfudah, Umm Al-Qura University, Makkah 21912, Saudi Arabia (M.H.A.)
| | - Mahdi H. Alsugoor
- Department of Emergency Medical Services, Faculty of Health Sciences, AlQunfudah, Umm Al-Qura University, Makkah 21912, Saudi Arabia (M.H.A.)
| | - Fahad M. Aldakheel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (K.S.A.); (A.A.); (H.O.A.A.)
| |
Collapse
|
4
|
Fichman Y, Rowland L, Nguyen TT, Chen SJ, Mittler R. Propagation of a rapid cell-to-cell H 2O 2 signal over long distances in a monolayer of cardiomyocyte cells. Redox Biol 2024; 70:103069. [PMID: 38364687 PMCID: PMC10878107 DOI: 10.1016/j.redox.2024.103069] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 02/18/2024] Open
Abstract
Cell-to-cell communication plays a cardinal role in the biology of multicellular organisms. H2O2 is an important cell-to-cell signaling molecule involved in the response of mammalian cells to wounding and other stimuli. We previously identified a signaling pathway that transmits wound-induced cell-to-cell H2O2 signals within minutes over long distances, measured in centimeters, in a monolayer of cardiomyocytes. Here we report that this long-distance H2O2 signaling pathway is accompanied by enhanced accumulation of cytosolic H2O2 and altered redox state in cells along its path. We further show that it requires the production of superoxide, as well as the function of gap junctions, and that it is accompanied by changes in the abundance of hundreds of proteins in cells along its path. Our findings highlight the existence of a unique and rapid long-distance H2O2 signaling pathway that could play an important role in different inflammatory responses, wound responses/healing, cardiovascular disease, and/or other conditions.
Collapse
Affiliation(s)
- Yosef Fichman
- School of Plant Sciences and Food Security, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Linda Rowland
- Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65201, USA
| | - Thi Thao Nguyen
- Gehrke Proteomics Center, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Shi-Jie Chen
- Department of Physics and Astronomy, Department of Biochemistry, Institute of Data Sciences and Informatics, University of Missouri, Columbia, MO 65211-7010, USA
| | - Ron Mittler
- Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65201, USA.
| |
Collapse
|
5
|
Fichman Y, Rowland L, Nguyen TT, Chen SJ, Mittler R. Propagation of a rapid cell-to-cell H 2 O 2 signal over long distances in a monolayer of cardiomyocyte cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572374. [PMID: 38187741 PMCID: PMC10769217 DOI: 10.1101/2023.12.19.572374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Cell-to-cell communication plays a cardinal role in the biology of multicellular organisms. H 2 O 2 is an important cell-to-cell signaling molecule involved in the response of mammalian cells to wounding and other stimuli. We previously identified a signaling pathway that transmits wound-induced cell-to-cell H 2 O 2 signals within minutes over long distances, measured in centimeters, in a monolayer of cardiomyocytes. Here we report that this long-distance H 2 O 2 signaling pathway is accompanied by enhanced accumulation of cytosolic H 2 O 2 and altered redox state in cells along its path. We further show that it requires the production of superoxide, as well as the function of gap junctions, and that it is accompanied by changes in the abundance of hundreds of proteins in cells along its path. Our findings highlight the existence of a unique and rapid long-distance H 2 O 2 signaling pathway that could play an important role in different inflammatory responses, wound responses/healing, cardiovascular disease, and/or other conditions. Highlights Wounding induces an H 2 O 2 cell-to-cell signal in a monolayer of cardiomyocytes. The cell-to-cell signal requires H 2 O 2 and O 2 · - accumulation along its path. The signal propagates over several centimeters changing the redox state of cells.Changes in the abundance of hundreds of proteins accompanies the signal.The cell-to-cell signal requires paracrine and juxtacrine signaling.
Collapse
|
6
|
Ishii T, Warabi E, Mann GE. Mechanisms underlying Nrf2 nuclear translocation by non-lethal levels of hydrogen peroxide: p38 MAPK-dependent neutral sphingomyelinase2 membrane trafficking and ceramide/PKCζ/CK2 signaling. Free Radic Biol Med 2022; 191:191-202. [PMID: 36064071 DOI: 10.1016/j.freeradbiomed.2022.08.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 12/14/2022]
Abstract
Hydrogen peroxide is an aerobic metabolite playing a central role in redox signaling and oxidative stress. H2O2 could activate redox sensitive transcription factors, such as Nrf2, AP-1 and NF-κB by different manners. In some cells, treatment with non-lethal levels of H2O2 induces rapid activation of Nrf2, which upregulates expression of a set of genes involved in glutathione (GSH) synthesis and defenses against oxidative damage. It depends on two steps, the rapid translational activation of Nrf2 and facilitation of Nrf2 nuclear translocation. We review the molecular mechanisms by which H2O2 induces nuclear translocation of Nrf2 in cultured cells by highlighting the role of neutral sphingomyelinase 2 (nSMase2), a GSH sensor. H2O2 enters cells through aquaporin channels in the plasma membrane and is rapidly reduced to H2O by GSH peroxidases to consume cellular GSH, resulting in nSMase2 activation to generate ceramide. H2O2 also activates p38 MAP kinase, which enhances transfer of nSMase2 from perinuclear regions to plasma membrane lipid rafts to accelerate ceramide generation. Low levels of ceramide activate PKCζ, which then activates casein kinase 2 (CK2). These protein kinases are able to phosphorylate Nrf2 to stabilize and activate it. Notably, Nrf2 also binds to caveolin-1 (Cav1), which protects Nrf2 from Keap1-mediated degradation and limits Nrf2 nuclear translocation. We propose that Cav1serves as a signaling hub for the control of H2O2-mediated phosphorylation of Nrf2 by kinases, which results in release of Nrf2 from Cav1 to facilitate nuclear translocation. In summary, H2O2 induces GSH depletion which is recovered by Nrf2 activation dependent on p38/nSMase2/ceramide signaling.
Collapse
Affiliation(s)
- Tetsuro Ishii
- School of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Eiji Warabi
- School of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
7
|
Lazado CC, Strand DA, Breiland MW, Furtado F, Timmerhaus G, Gjessing MC, Hytterød S, Merkin GV, Pedersen LF, Pittman KA, Krasnov A. Mucosal immune and stress responses of Neoparamoeba perurans-infected Atlantic salmon ( Salmo salar) treated with peracetic acid shed light on the host-parasite-oxidant interactions. Front Immunol 2022; 13:948897. [PMID: 36090977 PMCID: PMC9454302 DOI: 10.3389/fimmu.2022.948897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/18/2022] [Indexed: 12/05/2022] Open
Abstract
Treatment development for parasitic infestation is often limited to disease resolution as an endpoint response, and physiological and immunological consequences are not thoroughly considered. Here, we report the impact of exposing Atlantic salmon affected with amoebic gill disease (AGD) to peracetic acid (PAA), an oxidative chemotherapeutic. AGD-affected fish were treated with PAA either by exposing them to 5 ppm for 30 min or 10 ppm for 15 min. Unexposed fish from both infected and uninfected groups were also included. Samples for molecular, biochemical, and histological evaluations were collected at 24 h, 2 weeks, and 4 weeks post-treatment. Behavioral changes were observed during PAA exposure, and post-treatment mortality was higher in the infected and PAA treated groups, especially in 10 ppm for 15 min. Plasma indicators showed that liver health was affected by AGD, though PAA treatment did not exacerbate the infection-related changes. Transcriptome profiling in the gills showed significant changes, triggered by AGD and PAA treatments, and the effects of PAA were more notable 24 h after treatment. Genes related to immune pathways of B- and T- cells and protein synthesis and metabolism were downregulated, where the magnitude was more remarkable in 10 ppm for 15 min group. Even though treatment did not fully resolve the pathologies associated with AGD, 5 ppm for 30 min group showed lower parasite load at 4 weeks post-treatment. Mucous cell parameters (i.e., size and density) increased within 24 h post-treatment and were significantly higher at termination, especially in AGD-affected fish, with some treatment effects influenced by the dose of PAA. Infection and treatments resulted in oxidative stress-in the early phase in the gill mucosa, while systemic reactive oxygen species (ROS) dysregulation was evident at the later stage. Infected fish responded to elevated circulating ROS by increasing antioxidant production. Exposing the fish to a crowding stress revealed the interference in the post-stress responses. Lower cortisol response was displayed by AGD-affected groups. Collectively, the study established that PAA, within the evaluated treatment protocols, could not provide a convincing treatment resolution and, thus, requires further optimization. Nonetheless, PAA treatment altered the mucosal immune and stress responses of AGD-affected Atlantic salmon, shedding light on the host-parasite-treatment interactions. .
Collapse
Affiliation(s)
- Carlo C. Lazado
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | | | - Mette W. Breiland
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Tromsø, Norway
| | - Francisco Furtado
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Gerrit Timmerhaus
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | | | | | | | - Lars-Flemming Pedersen
- DTU Aqua, Section for Aquaculture, The North Sea Research Centre, Technical University of Denmark, Hirtshals, Denmark
| | - Karin A. Pittman
- Quantidoc AS, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Aleksei Krasnov
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| |
Collapse
|
8
|
Li T, Gao S, Han W, Gao Z, Wei Y, Wu G, Qiqiu W, Chen L, Feng Y, Yue S, Kuang H, Jiang X. Potential effects and mechanisms of Chinese herbal medicine in the treatment of psoriasis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115275. [PMID: 35487447 DOI: 10.1016/j.jep.2022.115275] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/17/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Psoriasis is a chronic inflammatory dermatosis related to high morbidity and mortality. The incidence of psoriasis is increasing in recent decades. Some patients with psoriasis are anxious about the underlying side effects of synthetic drugs they are on. Therefore, they are eager to seek alternative and efficient therapy, such as Chinese herbal medicine (CHM). Researchers have found some CHM provides best source for the development of anti-psoriatic drugs because of their structural diversity and fewer adverse reactions. Some of CHM formulas or active constituents extracted from CHM have been rapidly developed into clinical drugs with good efficacy. At present, along with the CHM formulas, single CHM and its active components have been extensively accepted and utilized in the treatment of psoriasis, whose therapeutic mechanisms hitherto have not been thoroughly illustrated. AIM OF THE STUDY This review aimed to comprehensively summarize about the existing therapeutic mechanisms of CHM in the treatment of psoriasis and to provide a reference to develop future related studies in this field. MATERIALS AND METHODS Relevant literatures about how CHM treated psoriasis were acquired from published scientific studies (including PubMed, CNKI, Web of Science, Baidu Scholar, The Plant List, Elsevier and SciFinder). All plants appearing in the review have been included in The Plant List or Medicinal Plant Names Services (MPNS). RESULTS In this review, we collect numerous literatures about how CHM treats psoriasis via immune cells, signaling pathways and disease-related mediators and systematically elucidates potential mechanisms from the point of the suppression of oxidative stress, the inhibition of abnormal abnormal proliferation and differentiation, the inhibition of immune responses, and the suppression of angiogenesis. CONCLUSIONS Psoriasis is considered as a complicated disease caused by interaction among various mechanisms. The CHM formulas, single CHM and its active components have considerable positive reports about the treatment of psoriasis, which brings hope for a promising future of CHM in the clinical therapy of psoriasis. In the paper, we have concluded that the existing therapeutic mechanisms of CHM in the treatment of psoriasis.
Collapse
Affiliation(s)
- Tingting Li
- School of Medicine, Guangxi University of Science and Technology, No.257 Liu-shi Road, Yufeng District, Liuzhou, 545005, China
| | - Si Gao
- School of Medicine, Guangxi University of Science and Technology, No.257 Liu-shi Road, Yufeng District, Liuzhou, 545005, China
| | - Wei Han
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, No.4 Dong-qing Road, Huaxi District, Guiyang, 550025, China
| | - Zhenqiu Gao
- School of Pharmacy, Yancheng Teachers University, Xiwang Road, Tinghu District, Yancheng, 224007, China
| | - Yundong Wei
- School of Medicine, Guangxi University of Science and Technology, No.257 Liu-shi Road, Yufeng District, Liuzhou, 545005, China
| | - Gang Wu
- School of Medicine, Guangxi University of Science and Technology, No.257 Liu-shi Road, Yufeng District, Liuzhou, 545005, China
| | - Wei Qiqiu
- School of Medicine, Guangxi University of Science and Technology, No.257 Liu-shi Road, Yufeng District, Liuzhou, 545005, China
| | - Li Chen
- School of Medicine, Guangxi University of Science and Technology, No.257 Liu-shi Road, Yufeng District, Liuzhou, 545005, China
| | - Yiping Feng
- School of Medicine, Guangxi University of Science and Technology, No.257 Liu-shi Road, Yufeng District, Liuzhou, 545005, China
| | - Shijiao Yue
- Gangnan Castle Peak Psychiatric Hospital, Jiangnan Industrial Park District, Guigang, 537100, China
| | - Haixue Kuang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Traditional Chinese Medicine, No.24 Heping Road, Xiangfang District, Harbin, 150040, China.
| | - Xudong Jiang
- School of Medicine, Guangxi University of Science and Technology, No.257 Liu-shi Road, Yufeng District, Liuzhou, 545005, China.
| |
Collapse
|
9
|
Al Sadoun H. Macrophage Phenotypes in Normal and Diabetic Wound Healing and Therapeutic Interventions. Cells 2022; 11:2430. [PMID: 35954275 PMCID: PMC9367932 DOI: 10.3390/cells11152430] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 11/29/2022] Open
Abstract
Macrophage differentiation and polarization are essential players in the success of the wound-healing process. Acute simple wounds progress from inflammation to proliferation/regeneration and, finally, to remodeling. In injured skin, macrophages either reside in the epithelium or are recruited from monocytes. Their main role is supported by their plasticity, which allows them to adopt different phenotypic states, such as the M1-inflammatory state, in which they produce TNF and NO, and the M2-reparative state, in which they resolve inflammation and exhibit a reparative function. Reparative macrophages are an essential source of growth factors such as TGF-β and VEGF and are not found in nonhealing wounds. This review discusses the differences between macrophage phenotypes in vitro and in vivo, how macrophages originate, and how they cross-communicate with other cellular components in a wound. This review also highlights the dysregulation of macrophages that occurs in nonhealing versus overhealing wounds and fibrosis. Then, the therapeutic manipulation of macrophages is presented as an attractive strategy for promoting healing through the secretion of growth factors for angiogenesis, keratinocyte migration, and collagen production. Finally, Hoxa3 overexpression is discussed as an example of the therapeutic repolarization of macrophages to the normal maturation state and phenotype with better healing outcomes.
Collapse
Affiliation(s)
- Hadeel Al Sadoun
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; ; Tel.: +966-(12)-6400000 (ext. 24277)
- Stem Cell Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
10
|
Cadiz Diaz A, Schmidt NA, Yamazaki M, Hsieh CJ, Lisse TS, Rieger S. Coordinated NADPH oxidase/hydrogen peroxide functions regulate cutaneous sensory axon de- and regeneration. Proc Natl Acad Sci U S A 2022; 119:e2115009119. [PMID: 35858442 PMCID: PMC9340058 DOI: 10.1073/pnas.2115009119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/30/2022] [Indexed: 01/21/2023] Open
Abstract
Tissue wounding induces cutaneous sensory axon regeneration via hydrogen peroxide (H2O2) that is produced by the epithelial NADPH oxidase, Duox1. Sciatic nerve injury instead induces axon regeneration through neuronal uptake of the NADPH oxidase, Nox2, from macrophages. We therefore reasoned that the tissue environment in which axons are damaged stimulates distinct regenerative mechanisms. Here, we show that cutaneous axon regeneration induced by tissue wounding depends on both neuronal and keratinocyte-specific mechanisms involving H2O2 signaling. Genetic depletion of H2O2 in sensory neurons abolishes axon regeneration, whereas keratinocyte-specific H2O2 depletion promotes axonal repulsion, a phenotype mirrored in duox1 mutants. Intriguingly, cyba mutants, deficient in the essential Nox subunit, p22Phox, retain limited axon regenerative capacity but display delayed Wallerian degeneration and axonal fusion, observed so far only in invertebrates. We further show that keratinocyte-specific oxidation of the epidermal growth factor receptor (EGFR) at a conserved cysteine thiol (C797) serves as an attractive cue for regenerating axons, leading to EGFR-dependent localized epidermal matrix remodeling via the matrix-metalloproteinase, MMP-13. Therefore, wound-induced cutaneous axon de- and regeneration depend on the coordinated functions of NADPH oxidases mediating distinct processes following injury.
Collapse
Affiliation(s)
| | | | - Mamiko Yamazaki
- Department of Regenerative Biology and Medicine, MDI Biological Laboratory, Bar Harbor, ME 04672
| | - Chia-Jung Hsieh
- Department of Biology, University of Miami, Coral Gables, FL 33146
| | - Thomas S. Lisse
- Department of Biology, University of Miami, Coral Gables, FL 33146
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, Miami, FL 33136
| | - Sandra Rieger
- Department of Biology, University of Miami, Coral Gables, FL 33146
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, Miami, FL 33136
| |
Collapse
|
11
|
Reawakening GDNF's regenerative past in mice and humans. Regen Ther 2022; 20:78-85. [PMID: 35509264 PMCID: PMC9043678 DOI: 10.1016/j.reth.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/31/2022] [Indexed: 11/22/2022] Open
Abstract
The ability of an animal to regenerate lost tissue and body parts has obviously life-saving implications. Understanding how this ability became restricted or active in specific animal lineages will help us understand our own regeneration. According to phylogenic analysis, the glial cell line-derived neurotrophic factor (GDNF) signaling pathway, but not other family members, is conserved in axolotls, a salamander with remarkable regenerative capacity. Furthermore, comparing the pro-regenerative Spiny mouse to its less regenerative descendant, the House mouse, revealed that the GDNF signaling pathway, but not other family members, was induced in regenerating Spiny mice. According to GDNF receptor expression analysis, GDNF may promote hair follicle neogenesis – an important feature of skin regeneration – by determining the fate of dermal fibroblasts as part of new hair follicles. These findings support the idea that GDNF treatment will promote skin regeneration in humans by demonstrating the GDNF signaling pathway's ancestral and cellular nature. In pro-regenerative axolotls, the GDNF-GFR□1 signaling system is conserved. In pro-regenerative Spiny mice, the GDNF-GFR□1 signaling system is activated. In mice, GDNF targets upper-regeneration-competent dermal fibroblasts. GDNF-GFR□1 activation may promote skin regeneration in mice and humans.
Collapse
|
12
|
Heller IS, Guenther CA, Meireles AM, Talbot WS, Kingsley DM. Characterization of mouse Bmp5 regulatory injury element in zebrafish wound models. Bone 2022; 155:116263. [PMID: 34826632 PMCID: PMC9007314 DOI: 10.1016/j.bone.2021.116263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/21/2022]
Abstract
Many key signaling molecules used to build tissues during embryonic development are re-activated at injury sites to stimulate tissue regeneration and repair. Bone morphogenetic proteins provide a classic example, but the mechanisms that lead to reactivation of BMPs following injury are still unknown. Previous studies have mapped a large "injury response element" (IRE) in the mouse Bmp5 gene that drives gene expression following bone fractures and other types of injury. Here we show that the large mouse IRE region is also activated in both zebrafish tail resection and mechanosensory hair cell injury models. Using the ability to test multiple constructs and image temporal and spatial dynamics following injury responses, we have narrowed the original size of the mouse IRE region by over 100 fold and identified a small 142 bp minimal enhancer that is rapidly induced in both mesenchymal and epithelial tissues after injury. These studies identify a small sequence that responds to evolutionarily conserved local signals in wounded tissues and suggest candidate pathways that contribute to BMP reactivation after injury.
Collapse
Affiliation(s)
- Ian S Heller
- Department of Developmental Biology, Stanford University School of Medicine, United States of America
| | - Catherine A Guenther
- Department of Developmental Biology, Stanford University School of Medicine, United States of America; Howard Hughes Medical Institute, Stanford University School of Medicine, United States of America
| | - Ana M Meireles
- Department of Developmental Biology, Stanford University School of Medicine, United States of America
| | - William S Talbot
- Department of Developmental Biology, Stanford University School of Medicine, United States of America
| | - David M Kingsley
- Department of Developmental Biology, Stanford University School of Medicine, United States of America; Howard Hughes Medical Institute, Stanford University School of Medicine, United States of America.
| |
Collapse
|
13
|
Promising Strategies in Plant-Derived Treatments of Psoriasis-Update of In Vitro, In Vivo, and Clinical Trials Studies. Molecules 2022; 27:molecules27030591. [PMID: 35163855 PMCID: PMC8839811 DOI: 10.3390/molecules27030591] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 02/04/2023] Open
Abstract
Psoriasis is a common, chronic systemic inflammatory disease affecting 125 million people worldwide. It is associated with several important conditions, including psoriatic arthritis, cardiometabolic syndrome, and depression, leading to a significant reduction in patients’ quality of life. Current treatments only reduce symptoms, not cure. This review discusses the mechanisms involved in the initiation and development of the disease, the role of oxidative stress in this autoimmune disease, as well as potential therapeutic options with substances of natural origin. The main aim of the study is intended to offer a review of the literature to present plants and phytochemicals that can represent potential remedies in the fight against psoriasis. We identified many in vitro, in vivo, and clinical trials studies that evaluated the relationship between chosen natural substances and immune system response in the course of psoriasis. We sought to find articles about the efficacy of potential natural-derived drugs in controlling symptoms and their ability to maintain long-term disease inactivity without side effects, and the result of our work is a review, which highlights the effectiveness of plant-derived drugs in controlling the inflammatory burden on psoriatic patients by decreasing the oxidative stress conditions.
Collapse
|
14
|
Vishlaghi N, Rieger S, McGaughey V, Lisse TS. GDNF neurotrophic factor signaling determines the fate of dermal fibroblasts in wound-induced hair neogenesis and skin regeneration. Exp Dermatol 2022; 31:577-581. [PMID: 35020233 PMCID: PMC9306530 DOI: 10.1111/exd.14526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/24/2021] [Accepted: 01/08/2022] [Indexed: 11/27/2022]
Abstract
We propose that GDNF, a glial cell line‐derived neurotrophic factor, can promote hair follicle neogenesis and skin regeneration after wounding by directing the fate of dermal fibroblasts. Our hypothesis is largely based on detailed GDNF and receptor analysis during skin regenerative stages, as well as the induction of GDNF receptors after wounding between the pro‐regenerative spiny mouse (genus Acomys) and its less‐regenerative descendant, the house mouse (Mus musculus). To characterize the GDNF‐target cells, we will conduct a series of lineage‐tracing experiments in conjunction with single‐cell RNA and assay for transposase‐accessible chromatin sequencing experiments. The heterogenetic dynamics of skin regeneration have yet to be fully defined, and this research will help to advance the fields of regenerative medicine and biology. Finally, we believe that stimulating the GDNF signalling pathway in fibroblasts from less‐regenerative animals, such as humans, will promote skin regeneration, morphogenesis and scarless wound healing.
Collapse
Affiliation(s)
- Neda Vishlaghi
- University of Miami, Biology Department, 1301 Memorial Drive, Cox Science Center, Coral Gables, FL, USA
| | - Sandra Rieger
- University of Miami, Biology Department, 1301 Memorial Drive, Cox Science Center, Coral Gables, FL, USA.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Vanessa McGaughey
- University of Miami, Biology Department, 1301 Memorial Drive, Cox Science Center, Coral Gables, FL, USA
| | - Thomas S Lisse
- University of Miami, Biology Department, 1301 Memorial Drive, Cox Science Center, Coral Gables, FL, USA.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
15
|
Quigley M, Rieger S, Capobianco E, Wang Z, Zhao H, Hewison M, Lisse TS. Vitamin D Modulation of Mitochondrial Oxidative Metabolism and mTOR Enforces Stress Adaptations and Anticancer Responses. JBMR Plus 2022; 6:e10572. [PMID: 35079680 PMCID: PMC8771003 DOI: 10.1002/jbm4.10572] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 01/13/2023] Open
Abstract
The relationship between the active form of vitamin D3 (1,25-dihydroxyvitamin D, 1,25(OH)2D) and reactive oxygen species (ROS), two integral signaling molecules of the cell, is poorly understood. This is striking, given that both factors are involved in cancer cell regulation and metabolism. Mitochondria (mt) dysfunction is one of the main drivers of cancer, producing more mitochondria, higher cellular energy, and ROS that can enhance oxidative stress and stress tolerance responses. To study the effects of 1,25(OH)2D on metabolic and mt dysfunction, we used the vitamin D receptor (VDR)-sensitive MG-63 osteosarcoma cell model. Using biochemical approaches, 1,25(OH)2D decreased mt ROS levels, membrane potential (ΔΨmt), biogenesis, and translation, while enforcing endoplasmic reticulum/mitohormetic stress adaptive responses. Using a mitochondria-focused transcriptomic approach, gene set enrichment and pathway analyses show that 1,25(OH)2D lowered mt fusion/fission and oxidative phosphorylation (OXPHOS). By contrast, mitophagy, ROS defense, and epigenetic gene regulation were enhanced after 1,25(OH)2D treatment, as well as key metabolic enzymes that regulate fluxes of substrates for cellular architecture and a shift toward non-oxidative energy metabolism. ATACseq revealed putative oxi-sensitive and tumor-suppressing transcription factors that may regulate important mt functional genes such as the mTORC1 inhibitor, DDIT4/REDD1. DDIT4/REDD1 was predominantly localized to the outer mt membrane in untreated MG-63 cells yet sequestered in the cytoplasm after 1,25(OH)2D and rotenone treatments, suggesting a level of control by membrane depolarization to facilitate its cytoplasmic mTORC1 inhibitory function. The results show that 1,25(OH)2D activates distinct adaptive metabolic responses involving mitochondria to regain redox balance and control the growth of osteosarcoma cells. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Mikayla Quigley
- Biology DepartmentUniversity of MiamiCoral GablesFLUSA
- Dana Farber Cancer InstituteBostonMAUSA
| | - Sandra Rieger
- Biology DepartmentUniversity of MiamiCoral GablesFLUSA
- Sylvester Comprehensive Cancer Center, Miller School of MedicineUniversity of MiamiMiamiFLUSA
| | - Enrico Capobianco
- Institute for Data Science and ComputingUniversity of MiamiCoral GablesFLUSA
| | - Zheng Wang
- Department of Computer ScienceUniversity of MiamiCoral GablesFLUSA
| | - Hengguang Zhao
- Department of DermatologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Martin Hewison
- Institute of Metabolism and Systems ResearchUniversity of BirminghamBirminghamUK
| | - Thomas S Lisse
- Biology DepartmentUniversity of MiamiCoral GablesFLUSA
- Sylvester Comprehensive Cancer Center, Miller School of MedicineUniversity of MiamiMiamiFLUSA
| |
Collapse
|
16
|
Naomi R, Bahari H, Yazid MD, Embong H, Othman F. Zebrafish as a Model System to Study the Mechanism of Cutaneous Wound Healing and Drug Discovery: Advantages and Challenges. Pharmaceuticals (Basel) 2021; 14:1058. [PMID: 34681282 PMCID: PMC8539578 DOI: 10.3390/ph14101058] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022] Open
Abstract
In humans, cutaneous wounds may heal without scars during embryogenesis. However, in the adult phase, the similar wound may undergo a few events such as homeostasis, blood clotting, inflammation, vascularization, and the formation of granulation tissue, which may leave a scar at the injury site. In consideration of this, research evolves daily to improve the healing mechanism in which the wound may heal without scarring. In regard to this, zebrafish (Danio rerio) serves as an ideal model to study the underlying signaling mechanism of wound healing. This is an important factor in determining a relevant drug formulation for wound healing. This review scrutinizes the biology of zebrafish and how this favors the cutaneous wound healing relevant to the in vivo evidence. This review aimed to provide the current insights on drug discovery for cutaneous wound healing based on the zebrafish model. The advantages and challenges in utilizing the zebrafish model for cutaneous wound healing are discussed in this review. This review is expected to provide an idea to formulate an appropriate drug for cutaneous wound healing relevant to the underlying signaling mechanism. Therefore, this narrative review recapitulates current evidence from in vivo studies on the cutaneous wound healing mechanism, which favours the discovery of new drugs. This article concludes with the need for zebrafish as an investigation model for biomedical research in the future to ensure that drug repositions are well suited for human skin.
Collapse
Affiliation(s)
- Ruth Naomi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (R.N.); (H.B.)
| | - Hasnah Bahari
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (R.N.); (H.B.)
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Hashim Embong
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Fezah Othman
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
17
|
Xu H, Fan SQ, Wang G, Miao XM, Li Y. Transcriptome analysis reveals the importance of exogenous nutrition in regulating antioxidant defenses during the mouth-opening stage in oviparous fish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1087-1103. [PMID: 34036482 DOI: 10.1007/s10695-021-00954-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/21/2021] [Indexed: 05/22/2023]
Abstract
Antioxidant system is crucial for protecting against environmental oxidative stress in fish life cycle. Although the effects of starvation on the antioxidant defenses in several adult fish have been defined, no relevant researches have been reported in the larval stage, particularly during the transition from endogenous to exogenous feeding. To clarify the molecular response of antioxidant system that occurs during the mouth-opening stage under starvation stress and explore its association with energy metabolism, we employed RNA-seq to analyze the gene expression profiles in zebrafish larvae that received a delayed first feeding for 3 days. Our data showed that delayed feeding resulted in downregulation of 7078 genes and upregulation of 497 genes. These differentially expressed genes are mainly involved in growth regulation (i.e., DNA replication and cell cycle), energy metabolism (i.e., glycolysis/gluconeogenesis and fatty acid metabolism), and antioxidant defenses. We demonstrated that the starved larvae are in an extremely malnourished state in the absence of exogenous nutrition, and the consequence is that numerous antioxidant genes are downregulated. Meanwhile, the antioxidant defenses also respond negatively to oxidative stress. After nutritional supply, the expression of these inhibited antioxidant genes was restored. These results suggest that the establishment of antioxidant defenses during the mouth-opening stage depends highly on exogenous nutrition. Our findings would contribute to comprehending the nutritional stress and metabolic switches during the mouth-opening stage and are essential for reducing high mortality in commercial fish farming.
Collapse
Affiliation(s)
- Hao Xu
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing, 400715, China
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - Shi-Qi Fan
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing, 400715, China
| | - Guo Wang
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing, 400715, China
| | - Xiao-Min Miao
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing, 400715, China
| | - Yun Li
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing, 400715, China.
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
18
|
Sanapalli BKR, Yele V, Singh MK, Thaggikuppe Krishnamurthy P, Karri VVSR. Preclinical models of diabetic wound healing: A critical review. Biomed Pharmacother 2021; 142:111946. [PMID: 34339915 DOI: 10.1016/j.biopha.2021.111946] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
The treatment of diabetic wounds (DWs) is always challenging for the medical community because of its multifaceted pathophysiology. Due to practical and ethical considerations, direct studies of therapeutic interventions on human subjects are limited. Thus, it is ideal for performing studies on animals having less genetic and biological variability. An ideal DW model should progress toward reproducibility, quantifiable interpretation, therapeutic significance, and effective translation into clinical use. In the last couple of decades, various animal models were developed to examine the complex cellular and biochemical process of skin restoration in DW healing. Also, these models were used to assess the potency of developed active pharmaceutical ingredients and formulations. However, many animal models lack studying mechanisms that can appropriately restate human DW, stay a huge translational challenge. This review discusses the available animal models with their significance in DW experiments and their limitations, focusing on levels of proof of effectiveness in selecting appropriate models to restate the human DW to improve clinical outcomes. Although numerous newer entities and combinatory formulations are very well appreciated preclinically for DW management, they fail in clinical trials, which may be due to improper selection of the appropriate model. The major future challenge could be developing a model that resembles the human DW environment, can potentiate translational research in DW care.
Collapse
Affiliation(s)
- Bharat Kumar Reddy Sanapalli
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu 643001, India.
| | - Vidyasrilekha Yele
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu 643001, India.
| | - Mantosh Kumar Singh
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu 643001, India.
| | - Praveen Thaggikuppe Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu 643001, India.
| | | |
Collapse
|
19
|
Su W, Zhao Y, Wei Y, Zhang X, Ji J, Yang S. Exploring the Pathogenesis of Psoriasis Complicated With Atherosclerosis via Microarray Data Analysis. Front Immunol 2021; 12:667690. [PMID: 34122426 PMCID: PMC8190392 DOI: 10.3389/fimmu.2021.667690] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/12/2021] [Indexed: 12/18/2022] Open
Abstract
Background Although more and more evidence has supported psoriasis is prone to atherosclerosis, the common mechanism of its occurrence is still not fully elucidated. The purpose of this study is to further explore the molecular mechanism of the occurrence of this complication. Methods The gene expression profiles of psoriasis (GSE30999) and atherosclerosis (GSE28829) were downloaded from the Gene Expression Omnibus (GEO) database. After identifying the common differentially expressed genes (DEGs) of psoriasis and atherosclerosis, three kinds of analyses were performed, namely functional annotation, protein‐protein interaction (PPI) network and module construction, and hub gene identification and co-expression analysis. Results A total of 94 common DEGs (24 downregulated genes and 70 upregulated genes) was selected for subsequent analyses. Functional analysis emphasizes the important role of chemokines and cytokines in these two diseases. In addition, lipopolysaccharide-mediated signaling pathway is closely related to both. Finally, 16 important hub genes were identified using cytoHubba, including LYN, CSF2RB, IL1RN, RAC2, CCL5, IRF8, C1QB, MMP9, PLEK, PTPRC, FYB, BCL2A1, LCP2, CD53, NCF2 and TLR2. Conclusions Our study reveals the common pathogenesis of psoriasis and atherosclerosis. These common pathways and hub genes may provide new ideas for further mechanism research.
Collapse
Affiliation(s)
- Wenxing Su
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China.,Department of Dermatology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ying Zhao
- Department of Dermatology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuqian Wei
- Department of Dermatology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoyan Zhang
- Department of Dermatology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiang Ji
- Department of Dermatology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shun Yang
- Department of Dermatology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
20
|
Xu H, Wang G, Chi YY, Kou YX, Li Y. Expression profiling and functional characterization of the duplicated Oxr1b gene in zebrafish. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 39:100857. [PMID: 34111665 DOI: 10.1016/j.cbd.2021.100857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/18/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
Oxidation Resistance Gene 1 (OXR1) is a conserved gene family involved in protecting various species against oxidative stress. The zebrafish expresses a pair of OXR1 paralogs (i.e., oxr1a and oxr1b). Our previous work has revealed the importance of oxr1a in regulating antioxidant defenses during oxidative stress, but the role of oxr1b is remains unknown. Herein we reported the spatial-temporal expression of oxr1b and revealed its function through reverse genetics. The results showed that, as with oxr1a, oxr1b is a typical maternal-zygotic gene. Its mRNA is mainly distributed in the eye, brain and nervous system (e.g., anterior/posterior lateral line ganglion, neuromasts and spinal cord neuron). Although oxr1a and oxr1b genes have similar expression patterns during embryonic development, the latter have higher levels at the corresponding stages. Subsequently, a viable oxr1b-/- mutant was generated by the CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated protein 9) system. Oxr1b knockout caused multiple antioxidant genes (i.e., gpx4a, gpx4b, sod1 and sod3b) to be downregulated, resulting in hypersensitive to oxidative stress. Furthermore, by comparative transcriptome analysis, we found that oxr1b knockout inhibits multiple signal transduction pathways (e.g., MAPK signaling pathway, calcium signaling pathway, cAMP signaling pathway and ErbB signaling pathway) during oxidative stress, thereby suppressing early stress response and ultimately impairing the anti-apoptosis pathway. In conclusion, our findings demonstrate that the duplicated oxr1b gene has an important role in regulating the antioxidant defenses by modulating signaling transduction and early stress response during oxidative stress.
Collapse
Affiliation(s)
- Hao Xu
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing 400715, China
| | - Guo Wang
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Yu-Yu Chi
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Ya-Xin Kou
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Yun Li
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing 400715, China.
| |
Collapse
|
21
|
Gandhirajan RK, Endlich N, Bekeschus S. Zebrafish larvae as a toxicity model in plasma medicine. PLASMA PROCESSES AND POLYMERS 2021; 18. [DOI: 10.1002/ppap.202000188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/27/2020] [Indexed: 01/05/2025]
Abstract
AbstractPlasma technology has emerged as a promising tool in medicine that, however, requires not only efficacy but also toxicological assessments. Traditional cell culture systems are fast and economical, but they lack in vivo relevance; however, rodent models are highly complex and necessitate extended facilities. Zebrafish larvae bridge this gap, and many larvae can be analyzed in well plates in a single run, giving results in 1–2 days. Using the kINPen, we found plasma exposure to reduce hedging rates and viability in a dose‐dependent manner, accompanied with an increase in reactive oxygen species and a decrease of glutathione in plasma‐treated fish. Modest growth alterations were also observed. Altogether, zebrafish larvae constitute a fast, reliable, and relevant model for testing the toxicity of plasma sources.
Collapse
Affiliation(s)
- Rajesh K. Gandhirajan
- Division of ZIK plasmatis Leibniz Institute for Plasma Science and Technology (INP) Greifswald Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology Greifswald University Medicine Greifswald Germany
| | - Sander Bekeschus
- Division of ZIK plasmatis Leibniz Institute for Plasma Science and Technology (INP) Greifswald Germany
| |
Collapse
|
22
|
Kitani Y, Nagashima Y. l-Amino acid oxidase as a fish host-defense molecule. FISH & SHELLFISH IMMUNOLOGY 2020; 106:685-690. [PMID: 32822860 DOI: 10.1016/j.fsi.2020.08.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
An l-amino acid oxidase (LAO) is an amino acid metabolism enzyme that also performs a variety of biological activities. Recently, LAOs have been discovered to be deeply involved in innate immunity in fish because of their antibacterial and antiparasitic activity. The determinant of potent antibacterial/antiparasitic activity is the H2O2 byproduct of LAO enzymatic activity that utilizes the l-amino acid as a substrate. In addition, fish LAOs are upregulated by pathogenic bacteria or parasite infection. Furthermore, some fish LAOs show that the target specificity depends on the virulence of the bacteria. All results reflect that LAOs are new innate immune molecules. This review also describes the potential of the immunomodulatory functions of fish LAOs, not only the innate immune function by a direct oxidation attack of H2O2.
Collapse
Affiliation(s)
- Yoichiro Kitani
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi Mu 4-1 Noto-Cho, Ishikawa, 927-0553, Japan.
| | - Yuji Nagashima
- Department of Agro-Food Science, Niigata Agro-Food University, Hirakidai 2416, Tainai, Niigata, 995-2702, Japan
| |
Collapse
|
23
|
Xu H, Jiang Y, Li S, Xie L, Tao YX, Li Y. Zebrafish Oxr1a Knockout Reveals Its Role in Regulating Antioxidant Defenses and Aging. Genes (Basel) 2020; 11:genes11101118. [PMID: 32987694 PMCID: PMC7598701 DOI: 10.3390/genes11101118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 01/16/2023] Open
Abstract
Oxidation resistance gene 1 (OXR1) is essential for protection against oxidative stress in mammals, but its functions in non-mammalian vertebrates, especially in fish, remain uncertain. Here, we created a homozygous oxr1a-knockout zebrafish via the CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated protein 9) system. Compared with wild-type (WT) zebrafish, oxr1a−/− mutants exhibited higher mortality and more apoptotic cells under oxidative stress, and multiple antioxidant genes (i.e., gpx1b, gpx4a, gpx7 and sod3a) involved in detoxifying cellular reactive oxygen species were downregulated significantly. Based on these observations, we conducted a comparative transcriptome analysis of early oxidative stress response. The results show that oxr1a mutation caused more extensive changes in transcriptional networks compared to WT zebrafish, and several stress response and pro-inflammatory pathways in oxr1a−/− mutant zebrafish were strongly induced. More importantly, we only observed the activation of the p53 signaling and apoptosis pathway in oxr1a−/− mutant zebrafish, revealing an important role of oxr1a in regulating apoptosis via the p53 signaling pathway. Additionally, we found that oxr1a mutation displayed a shortened lifespan and premature ovarian failure in prolonged observation, which may be caused by the loss of oxr1a impaired antioxidant defenses, thereby increasing pro-apoptotic events. Altogether, our findings demonstrate that oxr1a is vital for antioxidant defenses and anti-aging in zebrafish.
Collapse
Affiliation(s)
- Hao Xu
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing 400715, China; (H.X.); (L.X.); (Y.-X.T.)
| | - Yu Jiang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing 400715, China; (Y.J.); (S.L.)
| | - Sheng Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing 400715, China; (Y.J.); (S.L.)
| | - Lang Xie
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing 400715, China; (H.X.); (L.X.); (Y.-X.T.)
| | - Yi-Xi Tao
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing 400715, China; (H.X.); (L.X.); (Y.-X.T.)
| | - Yun Li
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing 400715, China; (H.X.); (L.X.); (Y.-X.T.)
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing 400715, China; (Y.J.); (S.L.)
- Correspondence: ; Tel.: +86-2368-2519-62
| |
Collapse
|
24
|
Pleńkowska J, Gabig-Cimińska M, Mozolewski P. Oxidative Stress as an Important Contributor to the Pathogenesis of Psoriasis. Int J Mol Sci 2020; 21:E6206. [PMID: 32867343 PMCID: PMC7503883 DOI: 10.3390/ijms21176206] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 01/23/2023] Open
Abstract
This review discusses how oxidative stress (OS), an imbalance between oxidants and antioxidants in favor of the oxidants, increased production of reactive oxygen species (ROS)/reactive nitrogen species (RNS), and decreased concentration/activity of antioxidants affect the pathogenesis or cause the enhancement of psoriasis (Ps). Here, we also consider how ROS/RNS-induced stress modulates the activity of transcriptional factors and regulates numerous protein kinase cascades that participate in the regulation of crosstalk between autophagy, apoptosis, and regeneration. Answers to these questions will likely uncover novel strategies for the treatment of Ps. Action in the field will avoid destructive effects of ROS/RNS-mediated OS resulting in cellular dysfunction and cell death. The combination of the fragmentary information on the role of OS can provide evidence to extend the full picture of Ps.
Collapse
Affiliation(s)
- Joanna Pleńkowska
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland;
| | - Magdalena Gabig-Cimińska
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland;
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Molecular Biology, Kładki 24, 80-822 Gdańsk, Poland
| | - Paweł Mozolewski
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland;
| |
Collapse
|
25
|
Zhao Y, James NA, Beshay AR, Chang EE, Lin A, Bashar F, Wassily A, Nguyen B, Nguyen TP. Adult zebrafish ventricular electrical gradients as tissue mechanisms of ECG patterns under baseline vs. oxidative stress. Cardiovasc Res 2020; 117:1891-1907. [PMID: 32735330 DOI: 10.1093/cvr/cvaa238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/29/2020] [Accepted: 07/24/2020] [Indexed: 12/27/2022] Open
Abstract
AIMS In mammalian ventricles, electrical gradients establish electrical heterogeneities as essential tissue mechanisms to optimize mechanical efficiency and safeguard electrical stability. Electrical gradients shape mammalian electrocardiographic patterns; disturbance of electrical gradients is proarrhythmic. The zebrafish heart is a popular surrogate model for human cardiac electrophysiology thanks to its remarkable recapitulation of human electrocardiogram and ventricular action potential features. Yet, zebrafish ventricular electrical gradients are largely unexplored. The goal of this study is to define the zebrafish ventricular electrical gradients that shape the QRS complex and T wave patterns at baseline and under oxidative stress. METHODS AND RESULTS We performed in vivo electrocardiography and ex vivo voltage-sensitive fluorescent epicardial and transmural optical mapping of adult zebrafish hearts at baseline and during acute H2O2 exposure. At baseline, apicobasal activation and basoapical repolarization gradients accounted for the polarity concordance between the QRS complex and T wave. During H2O2 exposure, differential regional impairment of activation and repolarization at the apex and base disrupted prior to baseline electrical gradients, resulting in either reversal or loss of polarity concordance between the QRS complex and T wave. KN-93, a specific calcium/calmodulin-dependent protein kinase II inhibitor (CaMKII), protected zebrafish hearts from H2O2 disruption of electrical gradients. The protection was complete if administered prior to oxidative stress exposure. CONCLUSIONS Despite remarkable apparent similarities, zebrafish and human ventricular electrocardiographic patterns are mirror images supported by opposite electrical gradients. Like mammalian ventricles, zebrafish ventricles are also susceptible to H2O2 proarrhythmic perturbation via CaMKII activation. Our findings suggest that the adult zebrafish heart may constitute a clinically relevant model to investigate ventricular arrhythmias induced by oxidative stress. However, the fundamental ventricular activation and repolarization differences between the two species that we demonstrated in this study highlight the potential limitations when extrapolating results from zebrafish experiments to human cardiac electrophysiology, arrhythmias, and drug toxicities.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Thao P Nguyen
- The Cardiovascular Research Laboratory, Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
26
|
Arenas Gómez CM, Sabin KZ, Echeverri K. Wound healing across the animal kingdom: Crosstalk between the immune system and the extracellular matrix. Dev Dyn 2020; 249:834-846. [PMID: 32314465 PMCID: PMC7383677 DOI: 10.1002/dvdy.178] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 12/11/2022] Open
Abstract
Tissue regeneration is widespread in the animal kingdom. To date, key roles for different molecular and cellular programs in regeneration have been described, but the ultimate blueprint for this talent remains elusive. In animals capable of tissue regeneration, one of the most crucial stages is wound healing, whose main goal is to close the wound and prevent infection. In this stage, it is necessary to avoid scar formation to facilitate the activation of the immune system and remodeling of the extracellular matrix, key factors in promoting tissue regeneration. In this review, we will discuss the current state of knowledge regarding the role of the immune system and the interplay with the extracellular matrix to trigger a regenerative response.
Collapse
Affiliation(s)
- Claudia M. Arenas Gómez
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological LaboratoryWoods HoleMassachusettsUSA
| | - Keith Z. Sabin
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological LaboratoryWoods HoleMassachusettsUSA
| | - Karen Echeverri
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological LaboratoryWoods HoleMassachusettsUSA
| |
Collapse
|
27
|
Paredes AD, Benavidez D, Cheng J, Mangos S, Patil R, Donoghue M, Benedetti E, Bartholomew A. The Effect of Fluence on Macrophage Kinetics, Oxidative Stress, and Wound Closure Using Real-Time In Vivo Imaging. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2020; 37:45-52. [PMID: 31050943 DOI: 10.1089/photob.2018.4494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objective: The aim of our study was to quantify the effect of doses delivered by a He:Ne laser on individual macrophage kinetics, tissue oxidative stress, and wound closure using real-time in vivo imaging. Background: Photobiomodulation has been reported to reduce tissue inflammation and accelerate wound closure; however, precise parameters of laser settings to optimize macrophage behavior have not been established. We hypothesized that quantitative and real-time in vivo imaging could identify optimal fluence for macrophage migration, reduction of reactive oxygen species, and acceleration of wound closure. Methods: Larval zebrafish Tg(mpeg-dendra2) were loaded with dihydroethidium for oxidative stress detection. Fish were caudal fin injured, treated with 635 nm continuous 5 mW He:Ne laser irradiation at 3, 9, or 18 J/cm2 and time-lapsed imaged within the first 120 min postinjury. Images taken 1 and 24-h postinjury were compared for percentage wound closure. Results: A fluence of 3 J/cm2 demonstrated significant increases in macrophage migration speed, fewer stops along the way, and greatest directed migration toward the wound. These findings were associated with a significant reduction in wound content reactive oxygen species when compared with control wounded fins. Both 3 and 9 J/cm2 significantly accelerated wound closure when compared with nonirradiated control fish. Conclusions: Wound macrophage activity could be manipulated by applied fluence, leading to reduced levels of wound reactive oxygen species and accelerated wound closure. The zebrafish model provides a means to quantitatively compare wound macrophage behavior in response to a variety of laser treatment parameters in real time.
Collapse
Affiliation(s)
- Andre D Paredes
- 1 Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - David Benavidez
- 2 Department of Surgery, University of Illinois, Chicago, Illinois
| | - Jun Cheng
- 1 Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Steve Mangos
- 3 Department of Internal Medicine, Rush University, Chicago, Illinois
| | - Rachana Patil
- 2 Department of Surgery, University of Illinois, Chicago, Illinois
| | | | - Enrico Benedetti
- 2 Department of Surgery, University of Illinois, Chicago, Illinois
| | - Amelia Bartholomew
- 1 Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois.,2 Department of Surgery, University of Illinois, Chicago, Illinois
| |
Collapse
|
28
|
Quercetin Promotes Diabetic Wound Healing via Switching Macrophages From M1 to M2 Polarization. J Surg Res 2020; 246:213-223. [DOI: 10.1016/j.jss.2019.09.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 08/06/2019] [Accepted: 09/12/2019] [Indexed: 12/11/2022]
|
29
|
Fibroblasts to Keratinocytes Redox Signaling: The Possible Role of ROS in Psoriatic Plaque Formation. Antioxidants (Basel) 2019; 8:antiox8110566. [PMID: 31752190 PMCID: PMC6912201 DOI: 10.3390/antiox8110566] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/27/2022] Open
Abstract
Although the role of reactive oxygen species-mediated (ROS-mediated) signalling in physiologic and pathologic skin conditions has been proven, no data exist on the skin cells ROS-mediated communication. Primary fibroblasts were obtained from lesional and non-lesional skin of psoriatic patients. ROS, superoxide anion, calcium and nitric oxide levels and lipoperoxidation markers and total antioxidant content were measured in fibroblasts. NADPH oxidase activity and NOX1, 2 and 4 expressions were assayed and NOX4 silencing was performed. Fibroblasts and healthy keratinocytes co-culture was performed. MAPK pathways activation was studied in fibroblasts and in co-cultured healthy keratinocytes. Increased intracellular calcium, •NO and ROS levels as well as an enhanced NADPH oxidase 4 (NOX4)-mediated extracellular ROS release was shown in lesional psoriatic vs. control fibroblasts. Upon co-culture with lesional fibroblasts, keratinocytes showed p38 and ERK MAPKs pathways activation, ROS, Ca2+ and •NO increase and cell cycle acceleration. Notably, NOX4 knockdown significantly reduced the observed effects of lesional fibroblasts on keratinocyte cell cycle progression. Co-culture with non-lesional psoriatic and control fibroblasts induced slight cell cycle acceleration, but notable intracellular ROS accumulation and ERK MAPK activation in keratinocytes. Collectively, our data demonstrate that NOX4 expressed in dermal fibroblasts is essential for the redox paracrine regulation of epidermal keratinocytes proliferation.
Collapse
|
30
|
Cancela M, Paes JA, Moura H, Barr JR, Zaha A, Ferreira HB. Unraveling oxidative stress response in the cestode parasite Echinococcus granulosus. Sci Rep 2019; 9:15876. [PMID: 31685918 PMCID: PMC6828748 DOI: 10.1038/s41598-019-52456-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/18/2019] [Indexed: 01/19/2023] Open
Abstract
Cystic hydatid disease (CHD) is a worldwide neglected zoonotic disease caused by Echinococcus granulosus. The parasite is well adapted to its host by producing protective molecules that modulate host immune response. An unexplored issue associated with the parasite's persistence in its host is how the organism can survive the oxidative stress resulting from parasite endogenous metabolism and host defenses. Here, we used hydrogen peroxide (H2O2) to induce oxidative stress in E. granulosus protoescoleces (PSCs) to identify molecular pathways and antioxidant responses during H2O2 exposure. Using proteomics, we identified 550 unique proteins; including 474 in H2O2-exposed PSCs (H-PSCs) samples and 515 in non-exposed PSCs (C-PSCs) samples. Larger amounts of antioxidant proteins, including GSTs and novel carbonyl detoxifying enzymes, such as aldo-keto reductase and carbonyl reductase, were detected after H2O2 exposure. Increased concentrations of caspase-3 and cathepsin-D proteases and components of the 26S proteasome were also detected in H-PSCs. Reduction of lamin-B and other caspase-substrate, such as filamin, in H-PSCs suggested that molecular events related to early apoptosis were also induced. We present data that describe proteins expressed in response to oxidative stress in a metazoan parasite, including novel antioxidant enzymes and targets with potential application to treatment and prevention of CHD.
Collapse
Affiliation(s)
- Martín Cancela
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil. .,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil. .,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil.
| | - Jéssica A Paes
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
| | - Hercules Moura
- Biological Mass Spectrometry Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - John R Barr
- Biological Mass Spectrometry Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Arnaldo Zaha
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre, Brazil
| | - Henrique B Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil. .,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil. .,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil. .,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre, Brazil.
| |
Collapse
|
31
|
Cokus SJ, De La Torre M, Medina EF, Rasmussen JP, Ramirez-Gutierrez J, Sagasti A, Wang F. Tissue-Specific Transcriptomes Reveal Gene Expression Trajectories in Two Maturing Skin Epithelial Layers in Zebrafish Embryos. G3 (BETHESDA, MD.) 2019; 9:3439-3452. [PMID: 31431477 PMCID: PMC6778804 DOI: 10.1534/g3.119.400402] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/18/2019] [Indexed: 12/19/2022]
Abstract
Epithelial cells are the building blocks of many organs, including skin. The vertebrate skin initially consists of two epithelial layers, the outer periderm and inner basal cell layers, which have distinct properties, functions, and fates. The embryonic periderm ultimately disappears during development, whereas basal cells proliferate to form the mature, stratified epidermis. Although much is known about mechanisms of homeostasis in mature skin, relatively little is known about the two cell types in pre-stratification skin. To define the similarities and distinctions between periderm and basal skin epithelial cells, we purified them from zebrafish at early development stages and deeply profiled their gene expression. These analyses identified groups of genes whose tissue enrichment changed at each stage, defining gene flow dynamics of maturing vertebrate epithelia. At each of 52 and 72 hr post-fertilization (hpf), more than 60% of genes enriched in skin cells were similarly expressed in both layers, indicating that they were common epithelial genes, but many others were enriched in one layer or the other. Both expected and novel genes were enriched in periderm and basal cell layers. Genes encoding extracellular matrix, junctional, cytoskeletal, and signaling proteins were prominent among those distinguishing the two epithelial cell types. In situ hybridization and BAC transgenes confirmed our expression data and provided new tools to study zebrafish skin. Collectively, these data provide a resource for studying common and distinguishing features of maturing epithelia.
Collapse
Affiliation(s)
- Shawn J Cokus
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles and
| | | | - Eric F Medina
- Department of Biology, California State University, Dominguez Hills
| | - Jeffrey P Rasmussen
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles and
| | | | - Alvaro Sagasti
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles and
| | - Fang Wang
- Department of Biology, California State University, Dominguez Hills
| |
Collapse
|
32
|
Chen J, Yu T, He X, Fu Y, Dai L, Wang B, Wu Y, He J, Li Y, Zhang F, Zhao J, Liu C. Dual roles of hydrogen peroxide in promoting zebrafish renal repair and regeneration. Biochem Biophys Res Commun 2019; 516:680-685. [PMID: 31248596 DOI: 10.1016/j.bbrc.2019.06.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 12/13/2022]
Abstract
Acute renal injury (AKI) is a serious disorder of renal failure or renal damage that occurs within hours or days. At present, there is no approved pharmaceutical treatment for AKI. Zebrafish is an excellent model for studying the repair of AKI because of its remarkable ability to repair kidney injury. Using zebrafish AKI model inducing by gentamicin, we found that hydrogen peroxide (H2O2) plays dual roles during the period of AKI recovery including renal repair and kidney regeneration. In the repair stage of AKI, H2O2 was produced in proximal and distal segments of renal tubules. By inhibiting H2O2 generation using Duox Vivo-Morpholino or chemical inhibitor, it was observed of severe damage of renal tubules, and extensive cell apoptosis. In the stage of regeneration, we found that H2O2 was highly generated in renal interstitium. Inhibiting production of H2O2 could significantly down-regulate the ability of kidney regeneration, which was associated with the failure of proliferation of renal progenitor cells. Therefore, H2O2 acts as a protective factor in renal repair and an initial signal of kidney regeneration, indicating the key roles of H2O2 in promoting recovery of AKI in zebrafish.
Collapse
Affiliation(s)
- Jianli Chen
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Ting Yu
- Department of Respiratory Medicine, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Xian He
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Yao Fu
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Lu Dai
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Bin Wang
- Department of Respiratory Medicine, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Yan Wu
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Jianbo He
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Yang Li
- Department of Respiratory Medicine, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Fang Zhang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Jinghong Zhao
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China.
| | - Chi Liu
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China.
| |
Collapse
|
33
|
Hormozi M, Baharvand P. Achillea biebersteinni Afan may inhibit scar formation: In vitro study. Mol Genet Genomic Med 2019; 7:e640. [PMID: 30968605 PMCID: PMC6503027 DOI: 10.1002/mgg3.640] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/28/2018] [Accepted: 02/11/2019] [Indexed: 12/27/2022] Open
Abstract
Background One of the major problems in wound healing is scar formation; however, there are few ways to prevent or treat it. Different species of Achillea are used to treat wounds in folk medicine from the past but there are few studies on the effect of it on wound healing and inhibition of scar formation. The aim of this study was to investigate the effect of Achillea biebersteinii Afan hydroethanolic extract on the expression of TGFβ1 and bFGF as effective growth factors of wound healing in mouse embryonic fibroblast cells. Methods Mouse embryonic fibroblast cells were exposed to different concentrations of Achillea extract at two different time (12 and 24 hr); the expression of TGFβ1 and bFGF was performed by real‐time‐PCR and ELISA at the level of gene and protein. Results It was observed that the plant extract at 5 and 10 µg/ml downregulated the expression of TGFβ1 and upregulated the expression of bFGF at the level of gene and protein. Conclusion The results showed that the pattern of changes in the expression of TGFβ1 and bFGF by Achillea biebersteinni Afan extract may inhibit scar formation.
Collapse
Affiliation(s)
- Maryam Hormozi
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.,Department of Biochemistry, Lorestan University of Medical Science, Khorramabad, Iran
| | - Parastoo Baharvand
- Department of Community Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
34
|
Kalaiselvi Sivalingam NN, Seepoo AM, Gani T, Selvam S, Azeez Sait SH. Zebrafish fin-derived fibroblast cell line: A model for in vitro wound healing. JOURNAL OF FISH DISEASES 2019; 42:573-584. [PMID: 30762877 DOI: 10.1111/jfd.12965] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
The goal of this study was to develop and characterize a cell line from the caudal fin tissue of zebrafish and also its application as an in vitro model to study the effect of H2 O2 in wound healing. Fibroblastic cell line was developed using explant culture method from caudal fin tissue of zebrafish and characterized. This cell line was named as DrF cell line. The DrF cells treated with 0-10 µM/ml H2 O2 were tested for viability, proliferation and motility by MTT assay, trypan blue assay and chemotaxis assay, respectively. Among the different concentrations of H2 O2 , 4 µM was found to be nontoxic to study cell migration in in vitro scratch wound assay. Furthermore, the expression of proliferating cell nuclear antigen (PCNA) and chemokine receptor (CXCR4) genes was carried by qPCR. The cell survival, proliferation and migration were extremely enriched at 4 µM level of H2 O2 . We observed accelerated wound closure in DrF cells treated with H2 O2. The qPCR results indicated that H2 O2 markedly up-regulated mRNA expression of PCNA and CXCR4. The findings from our study suggest that H2 O2 at low levels promotes cell survival, proliferation, migration and wound healing in DrF cells.
Collapse
Affiliation(s)
- Nathiga Nambi Kalaiselvi Sivalingam
- Aquatic Animal Health Laboratory (OIE Reference for WTD), PG & Research Department of Zoology, C. Abdul Hakeem College, Melvisharam, Vellore District, India
| | - Abdul Majeed Seepoo
- Aquatic Animal Health Laboratory (OIE Reference for WTD), PG & Research Department of Zoology, C. Abdul Hakeem College, Melvisharam, Vellore District, India
| | - Taju Gani
- Aquatic Animal Health Laboratory (OIE Reference for WTD), PG & Research Department of Zoology, C. Abdul Hakeem College, Melvisharam, Vellore District, India
| | - Sivakumar Selvam
- Aquatic Animal Health Laboratory (OIE Reference for WTD), PG & Research Department of Zoology, C. Abdul Hakeem College, Melvisharam, Vellore District, India
| | - Sahul Hameed Azeez Sait
- Aquatic Animal Health Laboratory (OIE Reference for WTD), PG & Research Department of Zoology, C. Abdul Hakeem College, Melvisharam, Vellore District, India
| |
Collapse
|
35
|
Shehwana H, Konu O. Comparative Transcriptomics Between Zebrafish and Mammals: A Roadmap for Discovery of Conserved and Unique Signaling Pathways in Physiology and Disease. Front Cell Dev Biol 2019; 7:5. [PMID: 30775367 PMCID: PMC6367222 DOI: 10.3389/fcell.2019.00005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 01/10/2019] [Indexed: 01/04/2023] Open
Affiliation(s)
- Huma Shehwana
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.,Department of Multidisciplinary Studies, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Ozlen Konu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| |
Collapse
|
36
|
Al Haj Baddar NW, Chithrala A, Voss SR. Amputation-induced reactive oxygen species signaling is required for axolotl tail regeneration. Dev Dyn 2018; 248:189-196. [PMID: 30569660 DOI: 10.1002/dvdy.5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/27/2018] [Accepted: 11/15/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Among vertebrates, salamanders are unparalleled in their ability to regenerate appendages throughput life. However, little is known about early signals that initiate regeneration in salamanders. RESULTS Ambystoma mexicanum embryos were administered tail amputations to investigate the timing of reactive oxygen species (ROS) production and the requirement of ROS for regeneration. ROS detected by dihydroethidium increased within minutes of axolotl tail amputation and levels remained high for 24 hr. Pharmacological inhibition of ROS producing enzymes with diphenyleneiodonium chloride (DPI) and VAS2870 reduced ROS levels. Furthermore, DPI treatment reduced cellular proliferation and inhibited tail outgrowth. CONCLUSIONS The results show that ROS levels increase in response to injury and are required for tail regeneration. These findings suggest that ROS provide instructive, if not initiating cues, for salamander tail regeneration. Developmental Dynamics 248:189-196, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nour W Al Haj Baddar
- Department of Biology, University of Kentucky, Lexington, Kentucky.,Department of Neuroscience and Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, Kentucky
| | | | - S Randal Voss
- Department of Neuroscience and Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, Kentucky.,Ambystoma Genetic Stock Center, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
37
|
Waldron AL, Schroder PA, Bourgon KL, Bolduc JK, Miller JL, Pellegrini AD, Dubois AL, Blaszkiewicz M, Townsend KL, Rieger S. Oxidative stress-dependent MMP-13 activity underlies glucose neurotoxicity. J Diabetes Complications 2018; 32:249-257. [PMID: 29306589 PMCID: PMC5820202 DOI: 10.1016/j.jdiacomp.2017.11.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND A complication of diabetes is neuropathy, a condition of sensory axon degeneration that originates in the epidermis. The mechanisms remain unknown but reactive oxygen species (ROS) have been implicated in this condition. In this study, we assessed the role of ROS and a candidate downstream target, MMP-13 in glucose-induced sensory axon degeneration in zebrafish and mice. METHODS The effects of glucose on metabolism and sensory axon degeneration were assessed using qPCR and live imaging. ROS were analyzed using pentafluorobenzene-sulfonyl fluorescein and activation of the NF-κB stress response was determined using Tg(NF-κB:GFP) zebrafish. The role of MMP-13 and ROS in glucose-dependent axon degeneration was determined in zebrafish following treatment with the antioxidant, N-acetylcysteine and the MMP-13 inhibitor, DB04760. Neuropathic mice fed on a high-fat/high-sugar diet were treated with the MMP-13 inhibitor, CL-82198 to assess sensory recovery. RESULTS Glucose treatment of zebrafish induced metabolic changes that resemble diabetes. Sensory axon degeneration was mediated by ROS-induced MMP-13 and prevented upon antioxidant treatment or MMP-13 inhibition. MMP-13 inhibition also reversed neuropathy in diabetic mice. CONCLUSION We demonstrate that zebrafish are suitable to study glucose-induced neurotoxicity. Given the effects in zebrafish and mice, MMP-13 inhibition may be beneficial in the treatment of human diabetic neuropathy.
Collapse
Affiliation(s)
- Ashley L Waldron
- Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, Kathryn W. Davis Building 227, Old Bar Harbor Road, Salisbury Cove, ME 04672, USA
| | - Patricia A Schroder
- Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, Kathryn W. Davis Building 227, Old Bar Harbor Road, Salisbury Cove, ME 04672, USA
| | - Kelly L Bourgon
- Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, Kathryn W. Davis Building 227, Old Bar Harbor Road, Salisbury Cove, ME 04672, USA
| | - Jessie K Bolduc
- Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, Kathryn W. Davis Building 227, Old Bar Harbor Road, Salisbury Cove, ME 04672, USA
| | - James L Miller
- Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, Kathryn W. Davis Building 227, Old Bar Harbor Road, Salisbury Cove, ME 04672, USA
| | - Adriana D Pellegrini
- Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, Kathryn W. Davis Building 227, Old Bar Harbor Road, Salisbury Cove, ME 04672, USA
| | - Amanda L Dubois
- School of Biology and Ecology, Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Magdalena Blaszkiewicz
- School of Biology and Ecology, Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Kristy L Townsend
- School of Biology and Ecology, Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Sandra Rieger
- Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, Kathryn W. Davis Building 227, Old Bar Harbor Road, Salisbury Cove, ME 04672, USA.
| |
Collapse
|
38
|
Erickson JR, Echeverri K. Learning from regeneration research organisms: The circuitous road to scar free wound healing. Dev Biol 2018; 433:144-154. [PMID: 29179946 PMCID: PMC5914521 DOI: 10.1016/j.ydbio.2017.09.025] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/15/2017] [Accepted: 09/18/2017] [Indexed: 11/29/2022]
Abstract
The skin is the largest organ in the body and plays multiple essential roles ranging from regulating temperature, preventing infection and ultimately defining who we are physically. It is a highly dynamic organ that constantly replaces the outermost cells throughout life. However, when faced with a major injury, human skin cannot restore a significant lesion to its original functionality, instead a reparative scar is formed. In contrast to this, many other species have the unique ability to regenerate full thickness skin without formation of scar tissue. Here we review recent advances in the field that shed light on how the skin cells in regenerative species react to injury to prevent scar formation versus scar forming humans.
Collapse
Affiliation(s)
- Jami R Erickson
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, USA
| | - Karen Echeverri
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, USA.
| |
Collapse
|
39
|
Ahi EP, Sefc KM. Anterior-posterior gene expression differences in three Lake Malawi cichlid fishes with variation in body stripe orientation. PeerJ 2017; 5:e4080. [PMID: 29158996 PMCID: PMC5695249 DOI: 10.7717/peerj.4080] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/01/2017] [Indexed: 01/04/2023] Open
Abstract
Morphological differentiation among closely related species provides opportunities to study mechanisms shaping natural phenotypic variation. Here, we address variation in the orientation of melanin-colored body stripes in three cichlid species of the tribe Haplochromini. Melanochromis auratus displays a common pattern of dark, straight horizontal body stripes, whereas in Aristochromis christyi and Buccochromis rhoadesii, oblique stripes extend from the anterior dorsal to the posterior mid-lateral trunk. We first validated a stably reference gene, and then, investigated the chromatophore distribution in the skin by assessing the expression levels of the iridophore and melanophore marker genes, ltk and slc24a5, respectively, as well as pmel, a melanophore pigmentation marker gene. We found anterior-posterior differences in the expression levels of the three genes in the oblique-striped species. The higher anterior expression of ltk, indicates increased iridophore density in the anterior region, i.e., uneven horizontal distribution of iridophores, which coincides with the anterior dorsalization of melanophore stripe in these species. The obliqueness of the horizontal body stripes might be a result of distinct migratory or patterning abilities of melanophores in anterior and posterior stripe regions which could be reflected by variation in the expression of genes involved in melanophore patterning. To address this, we investigated anterior-posterior expression levels of a primary set of candidate target genes with known functions in melanophore migration and stripe patterning in the adult zebrafish, and their related gene regulatory network. Among these genes, those with differences in anterior-posterior expression showed only species-specific differential expression, e.g., sdf1a, col14a1a, ifitm5, and agpat3, with the exception of fbxw4/hagoromo (differentially expressed in an oblique-and the straight-striped species). In summary, distinct anterior-posterior gradients in iridophore density found to be more similar characteristic between the two oblique-striped species. Furthermore, the species-specific differential expression of genes involved in stripe patterning might also implicate distinct molecular processes underlying the obliqueness of body stripe in two closely related cichlid species.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Institute of Zoology, Universitätsplatz 2, Universität Graz, Graz, Austria
| | - Kristina M Sefc
- Institute of Zoology, Universitätsplatz 2, Universität Graz, Graz, Austria
| |
Collapse
|
40
|
Berwin Singh SV, Park H, Khang G, Lee D. Hydrogen peroxide-responsive engineered polyoxalate nanoparticles for enhanced wound healing. Macromol Res 2017. [DOI: 10.1007/s13233-018-6003-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Ahmed Alfar E, Kirova D, Konantz J, Birke S, Mansfeld J, Ninov N. Distinct Levels of Reactive Oxygen Species Coordinate Metabolic Activity with Beta-cell Mass Plasticity. Sci Rep 2017; 7:3994. [PMID: 28652605 PMCID: PMC5484671 DOI: 10.1038/s41598-017-03873-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/08/2017] [Indexed: 11/13/2022] Open
Abstract
The pancreatic beta-cells control glucose homeostasis by secreting insulin in response to nutrient intake. The number of beta-cells is under tight metabolic control, as this number increases with higher nutrient intake. However, the signaling pathways matching nutrition with beta-cell mass plasticity remain poorly defined. By applying pharmacological and genetic manipulations, we show that reactive oxygen species (ROS) regulate dose-dependently beta-cell proliferation in vivo and in vitro. In particular, reducing ROS levels in beta-cells blocks their proliferation in response to nutrients. Using a non-invasive genetic sensor of intracellular hydrogen peroxide (H2O2), we reveal that glucose can directly increase the levels of H2O2. Furthermore, a moderate increase in H2O2 levels can stimulate beta-cell proliferation. Interestingly, while high H2O2 levels are inhibitory to beta-cell proliferation, they expand beta-cell mass in vivo by inducing rapid beta-cell neogenesis. Our study thus reveals a ROS-level-dependent mechanism linking nutrients with beta-cell mass plasticity. Hence, given the requirement of ROS for beta-cell mass expansion, antioxidant therapies should be applied with caution in diabetes.
Collapse
Affiliation(s)
- Ezzaldin Ahmed Alfar
- DFG Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany.,Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Hospital and Faculty of Medicine Carl Gustav Carus of Technische Universität Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Neuherberg, Germany.,Department of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Dilyana Kirova
- Cell Cycle, Biotechnology Center, Technische Universität Dresden, 01307, Dresden, Germany
| | - Judith Konantz
- DFG Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Sarah Birke
- DFG Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Jörg Mansfeld
- Cell Cycle, Biotechnology Center, Technische Universität Dresden, 01307, Dresden, Germany.
| | - Nikolay Ninov
- DFG Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany. .,Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Hospital and Faculty of Medicine Carl Gustav Carus of Technische Universität Dresden, Dresden, Germany. .,German Center for Diabetes Research (DZD e.V.), Neuherberg, Neuherberg, Germany.
| |
Collapse
|
42
|
Lisse TS, Rieger S. IKKα regulates human keratinocyte migration through surveillance of the redox environment. J Cell Sci 2017; 130:975-988. [PMID: 28122935 PMCID: PMC5358334 DOI: 10.1242/jcs.197343] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/16/2017] [Indexed: 02/06/2023] Open
Abstract
Although the functions of H2O2 in epidermal wound repair are conserved throughout evolution, the underlying signaling mechanisms are largely unknown. In this study we used human keratinocytes (HEK001) to investigate H2O2-dependent wound repair mechanisms. Scratch wounding led to H2O2 production in two or three cell layers at the wound margin within ∼30 min and subsequent cysteine modification of proteins via sulfenylation. Intriguingly, exogenous H2O2 treatment resulted in preferential sulfenylation of keratinocytes that adopted a migratory phenotype and detached from neighboring cells, suggesting that one of the primary functions of H2O2 is to stimulate signaling factors involved in cell migration. Based on previous findings that revealed epidermal growth factor receptor (EGFR) involvement in H2O2-dependent cell migration, we analyzed oxidation of a candidate upstream target, the inhibitor of κB kinase α (IKKα; encoded by CHUK), as a mechanism of action. We show that IKKα is sulfenylated at a conserved cysteine residue in the kinase domain, which correlates with de-repression of EGF promoter activity and increased EGF expression. Thus, this indicates that IKKα promotes migration through dynamic interactions with the EGF promoter depending on the redox state within cells. Summary: This study provides a newly identified mechanism by which H2O2-dependent oxidation of the inhibitor of κB kinase α and de-repression of epidermal growth factor promoter activity stimulates keratinocyte migration.
Collapse
Affiliation(s)
- Thomas S Lisse
- Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, 159 Old Bar Harbor Road, Salisbury Cove, ME 04672, USA .,The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Sandra Rieger
- Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, 159 Old Bar Harbor Road, Salisbury Cove, ME 04672, USA
| |
Collapse
|
43
|
Zhu G, Wang Q, Lu S, Niu Y. Hydrogen Peroxide: A Potential Wound Therapeutic Target? Med Princ Pract 2017; 26:301-308. [PMID: 28384636 PMCID: PMC5768111 DOI: 10.1159/000475501] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 04/05/2017] [Indexed: 12/21/2022] Open
Abstract
Hydrogen peroxide (H2O2) is a topical antiseptic used in wound cleaning which kills pathogens through oxidation burst and local oxygen production. H2O2 has been reported to be a reactive biochemical molecule synthesized by various cells that influences biological behavior through multiple mechanisms: alterations of membrane potential, generation of new molecules, and changing intracellular redox balance, which results in activation or inactivation of different signaling transduction pathways. Contrary to the traditional viewpoint that H2O2 probably impairs tissue through its high oxidative property, a proper level of H2O2 is considered an important requirement for normal wound healing. Although the present clinical use of H2O2 is still limited to the elimination of microbial contamination and sometimes hemostasis, better understanding towards the sterilization ability and cell behavior regulatory function of H2O2 within wounds will enhance the potential to exogenously augment and manipulate healing.
Collapse
Affiliation(s)
| | | | | | - Yiwen Niu
- *Yiwen Niu, Department of Burns and Plastic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China), E-Mail
| |
Collapse
|
44
|
Isolating subpopulations of human epidermal basal cells based on polyclonal serum against trypsin-resistant CSPG4 epitopes. Exp Cell Res 2016; 350:368-379. [PMID: 28011196 DOI: 10.1016/j.yexcr.2016.12.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/13/2016] [Accepted: 12/20/2016] [Indexed: 12/17/2022]
Abstract
Chondroitin sulfate proteoglycan 4 (CSPG4) is highly expressed by human epidermal keratinocytes located at the tip of the dermal papilla where keratinocytes show characteristics of stem cells. However, since available antibodies to CSPG4 are directed against trypsin-sensitive epitopes we have been unable to study these keratinocytes isolated directly from skin samples by flow cytometry. By choosing epitopes of CSPG4 relatively close to the cell membrane we were able to generate a polyclonal antibody that successfully detects CSPG4 on keratinocytes after trypsinization. Although CSPG4-positive basal cells express higher levels of Itgβ1 the colony-forming efficiency is slightly lower than CSPG4-negative basal cells. Sorting the directly isolated keratinocytes based on Itgβ1 did not reveal differences in colony-forming efficiency between keratinocytes expressing high or low levels of Itgβ1. However, after the first passage Itgβ1 could be used to predict colony-forming efficiency whether the culture was established from CSPG4-positive or CSPG4-negative basal cell keratinocytes. Although we were unable to detect differences in the colony-forming assay, global gene expression profiling showed that CSPG4-positive basal cell keratinocytes are distinct from CSPG4-negative basal cell keratinocytes. Our study demonstrates that it is possible to generate antibodies against trypsin-resistant epitopes of CSPG4. Our study also documents a marked change in behaviour upon cell culturing and challenges the way we assess for stemness within the human epidermal basal layer.
Collapse
|
45
|
Galko MJ. Wound Signaling: Monkeywrenching Macrophage Migration with Microscopes, Movies, and Math. Curr Biol 2016; 26:R715-R717. [PMID: 27505244 DOI: 10.1016/j.cub.2016.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Drosophila hemocytes (blood cells) have emerged as a powerful system to image wound-induced inflammatory responses in vivo. New work reveals that layering mathematical modeling on top of imaging may be the most powerful tool yet for determining the properties of wound-induced signals.
Collapse
Affiliation(s)
- Michael J Galko
- Department of Genetics at MD Anderson Cancer Center, Houston, TX 77030, USA; Genes and Development Program, Graduate School of Biomedical Sciences, Houston, TX77030, USA.
| |
Collapse
|
46
|
Wound repair: a showcase for cell plasticity and migration. Curr Opin Cell Biol 2016; 42:29-37. [PMID: 27085790 DOI: 10.1016/j.ceb.2016.04.001] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 03/29/2016] [Accepted: 04/01/2016] [Indexed: 12/22/2022]
Abstract
A skin wound requires several cell lineages to exhibit considerable plasticity as they migrate towards and over the site of damage to contribute to repair. The keratinocytes that re-epithelialize the tissue, the dermal fibroblasts and potentially other mesenchymal stem cell populations that repopulate damaged connective tissue, the immune cells that counter infections, and endothelial cells that re-establish blood supply and facilitate the immune response - all of these cells are 'dynamic' in that they are activated by immediate wound cues, they reprogram to adopt cell behaviours essential for repair including migration, and finally they must resolve. In adult tissues, repair is unique in its requirement for dramatic cell changes and movements otherwise associated only with development and disease.
Collapse
|
47
|
Paclitaxel-induced epithelial damage and ectopic MMP-13 expression promotes neurotoxicity in zebrafish. Proc Natl Acad Sci U S A 2016; 113:E2189-98. [PMID: 27035978 PMCID: PMC4839466 DOI: 10.1073/pnas.1525096113] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Paclitaxel is a microtubule-stabilizing chemotherapeutic agent that is widely used in cancer treatment and in a number of curative and palliative regimens. Despite its beneficial effects on cancer, paclitaxel also damages healthy tissues, most prominently the peripheral sensory nervous system. The mechanisms leading to paclitaxel-induced peripheral neuropathy remain elusive, and therapies that prevent or alleviate this condition are not available. We established a zebrafish in vivo model to study the underlying mechanisms and to identify pharmacological agents that may be developed into therapeutics. Both adult and larval zebrafish displayed signs of paclitaxel neurotoxicity, including sensory axon degeneration and the loss of touch response in the distal caudal fin. Intriguingly, studies in zebrafish larvae showed that paclitaxel rapidly promotes epithelial damage and decreased mechanical stress resistance of the skin before induction of axon degeneration. Moreover, injured paclitaxel-treated zebrafish skin and scratch-wounded human keratinocytes (HEK001) display reduced healing capacity. Epithelial damage correlated with rapid accumulation of fluorescein-conjugated paclitaxel in epidermal basal keratinocytes, but not axons, and up-regulation of matrix-metalloproteinase 13 (MMP-13, collagenase 3) in the skin. Pharmacological inhibition of MMP-13, in contrast, largely rescued paclitaxel-induced epithelial damage and neurotoxicity, whereas MMP-13 overexpression in zebrafish embryos rendered the skin vulnerable to injury under mechanical stress conditions. Thus, our studies provide evidence that the epidermis plays a critical role in this condition, and we provide a previously unidentified candidate for therapeutic interventions.
Collapse
|