1
|
Khadka S, Kinney EL, Ryan BE, Mike LA. Mechanisms governing bacterial capsular polysaccharide attachment and chain length. Ann N Y Acad Sci 2025. [PMID: 40369709 DOI: 10.1111/nyas.15364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Capsular polysaccharides (CPSs) are high-molecular weight glycopolymers that form a capsule layer on the surface of many bacterial species. This layer serves as a crucial barrier between bacteria and their environment, protecting them from host immune responses and environmental stressors while facilitating adaptation to host niches. The capsule also affects other critical virulence factors of plant and human pathogens such as biofilm production and exchange of antimicrobial-resistance genes. Bacterial pathogens modulate several CPS properties including abundance, chain length, and cell surface retainment to optimize niche-specific fitness. CPS composition varies greatly among bacterial species due to differences in sugar units comprising the polymer. Despite the diversity in composition, three conserved CPS biosynthetic systems are common across bacterial species. Although less explored than CPS polymerization and export, the processes of chain length control and attachment are also broadly conserved among bacterial species. Here, we discuss the common strategies that bacteria use to retain CPS to their cell surface and the mechanisms by which bacteria define and control CPS chain length. Additionally, we highlight the outstanding questions related to these processes, identifying areas where future research is needed to gain better insights into these crucial CPS systems.
Collapse
Affiliation(s)
- Saroj Khadka
- Department of Medicine/Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Emily L Kinney
- Department of Medicine/Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Brooke E Ryan
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Laura A Mike
- Department of Medicine/Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Fan S, Tan Y, Li Z, Zhang Y, Li J, Feng Y, He Y, Chen X, Dong X. Mechanisms Underlying the Effects of Secretory Protein G22 on Biological Characteristics and Virulence of Streptococcus suis. Microorganisms 2025; 13:774. [PMID: 40284611 PMCID: PMC12029192 DOI: 10.3390/microorganisms13040774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Streptococcus suis serotype 2 (SS2) is an important zoonotic pathogen that seriously harms the swine industry and human health. However, its pathogenic mechanisms are largely unknown, and the few virulence factors reported so far are insufficient to systematically explain its infectious and pathogenic mechanisms. In preliminary research, we identified a gene named G22 encoding a hypothetical secreted protein that may be closely associated with the high-level pathogenicity of S. suis. In this study, we constructed deletion and complementation strains of the G22 gene through homologous recombination and explored its roles in the pathogenicity and susceptibility of S. suis to environmental stresses through in vitro and in vivo experiments. The deletion of G22 clearly influenced the typical capsular structure of SS2 and impaired the bacterium's growth in a medium containing hydrogen peroxide (showing a growth reduction of 32.98% ± 5.23% compared to the wild-type strain SC19, p < 0.001) or with a low pH (with a growth inhibition of 17.44% ± 1.9% relative to the wild-type strain SC19, p < 0.01). ΔG22 also showed reduced survival in whole blood and in RAW 264.7 macrophages (with a survival reduction of 16.44% ± 2.29% compared to the wild-type, p < 0.001). The deletion of G22 also sharply attenuated the virulence of SS2 in a mouse infection model (reducing the mortality rate by 50% ± 0.04%, p < 0.05). We also demonstrated that G22 is required for the adhesion and invasion of SS2 in host cells. An RNA sequencing analysis revealed that 50 genes were differentially expressed in the ΔG22 and wild-type strains: 23 upregulated and 37 downregulated. Many of the genes are involved in carbohydrate metabolism and the synthesis of virulence-associated factors. Several genes associated with the phosphotransferase system were significantly upregulated in strain ΔG22. In summary, G22 plays a role in the morphological development and pathogenesis of the highly virulent SS2 strain SC19.
Collapse
Affiliation(s)
- Shiyue Fan
- National R&D Center for Serich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (S.F.); (Y.T.); (Y.H.)
| | - Yanping Tan
- National R&D Center for Serich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (S.F.); (Y.T.); (Y.H.)
| | - Zhiwei Li
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China;
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Yanyan Zhang
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China;
| | - Jinquan Li
- State Key Laboratory of Agricultural Microbiology, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China;
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ye Feng
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China;
| | - Yi He
- National R&D Center for Serich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (S.F.); (Y.T.); (Y.H.)
| | - Xiaoling Chen
- National R&D Center for Serich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (S.F.); (Y.T.); (Y.H.)
| | - Xingxing Dong
- National R&D Center for Serich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (S.F.); (Y.T.); (Y.H.)
| |
Collapse
|
3
|
Vollmuth N, Bridgers BE, Armstrong ML, Wood JF, Gildea AR, Espinal ER, Hooven TA, Barbieri G, Westermann AJ, Sauerwein T, Foerstner KU, Schubert-Unkmeir A, Kim BJ. Group B Streptococcus transcriptome when interacting with brain endothelial cells. J Bacteriol 2024; 206:e0008724. [PMID: 38771039 PMCID: PMC11332166 DOI: 10.1128/jb.00087-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024] Open
Abstract
Bacterial meningitis is a life-threatening infection of the central nervous system (CNS) that occurs when bacteria are able to cross the blood-brain barrier (BBB) or the meningeal-cerebrospinal fluid barrier (mBCSFB). The BBB and mBCSFB comprise highly specialized brain endothelial cells (BECs) that typically restrict pathogen entry. Group B Streptococcus (GBS or Streptococcus agalactiae) is the leading cause of neonatal meningitis. Until recently, identification of GBS virulence factors has relied on genetic screening approaches. Instead, we here conducted RNA-seq analysis on GBS when interacting with induced pluripotent stem cell-derived BECs (iBECs) to pinpoint virulence-associated genes. Of the 2,068 annotated protein-coding genes of GBS, 430 transcripts displayed significant changes in expression after interacting with BECs. Notably, we found that the majority of differentially expressed GBS transcripts were downregulated (360 genes) during infection of iBECs. Interestingly, codY, encoding a pleiotropic transcriptional repressor in low-G + C Gram-positive bacteria, was identified as being highly downregulated. We conducted qPCR to confirm the codY downregulation observed via RNA-seq during the GBS-iBEC interaction and obtained codY mutants in three different GBS background parental strains. As anticipated from the RNA-seq results, the [Formula: see text]codY strains were more adherent and invasive in two in vitro BEC models. Together, this demonstrates the utility of RNA-seq during the BEC interaction to identify GBS virulence modulators. IMPORTANCE Group B Streptococcus (GBS) meningitis remains the leading cause of neonatal meningitis. Research work has identified surface factors and two-component systems that contribute to GBS disruption of the blood-brain barrier (BBB). These discoveries often relied on genetic screening approaches. Here, we provide transcriptomic data describing how GBS changes its transcriptome when interacting with brain endothelial cells. Additionally, we have phenotypically validated these data by obtaining mutants of a select regulator that is highly down-regulated during infection and testing on our BBB model. This work provides the research field with a validated data set that can provide an insight into potential pathways that GBS requires to interact with the BBB and open the door to new discoveries.
Collapse
Affiliation(s)
- Nadine Vollmuth
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
| | - Bailey E. Bridgers
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
| | - Madelyn L. Armstrong
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
| | - Jacob F. Wood
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
| | - Abigail R. Gildea
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
| | - Eric R. Espinal
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
| | - Thomas A. Hooven
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Richard King Mellon Institute for Pediatric Research, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Giulia Barbieri
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Alexander J. Westermann
- Institute of Molecular Infection Biology (IMIB), University of Wuerzburg, Wuerzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Wuerzburg, Germany
| | - Till Sauerwein
- Institute of Molecular Infection Biology (IMIB), University of Wuerzburg, Wuerzburg, Germany
- ZB MED, Information Centre for Life Sciences, Cologne, Germany
| | - Konrad U. Foerstner
- Institute of Molecular Infection Biology (IMIB), University of Wuerzburg, Wuerzburg, Germany
- ZB MED, Information Centre for Life Sciences, Cologne, Germany
- TH Koeln, University of Applied Sciences, Cologne, Germany
| | | | - Brandon J. Kim
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
- Department of Microbiology, University of Alabama at Birmingham Heesink School of Medicine, Birmingham, Alabama, USA
- University of Alabama Center of Convergent Biosciences and Medicine, Tuscaloosa, Alabama, USA
- University of Alabama Life Research, Tuscaloosa, Alabama, USA
| |
Collapse
|
4
|
Lux J, Sánchez García L, Chaparro Fernández P, Laloli L, Licheri MF, Gallay C, Hermans PWM, Croucher NJ, Veening JW, Dijkman R, Straume D, Hathaway LJ. AmiA and AliA peptide ligands, found in Klebsiella pneumoniae, are imported into pneumococci and alter the transcriptome. Sci Rep 2024; 14:12416. [PMID: 38816440 PMCID: PMC11139975 DOI: 10.1038/s41598-024-63217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/27/2024] [Indexed: 06/01/2024] Open
Abstract
Klebsiella pneumoniae releases the peptides AKTIKITQTR and FNEMQPIVDRQ, which bind the pneumococcal proteins AmiA and AliA respectively, two substrate-binding proteins of the ABC transporter Ami-AliA/AliB oligopeptide permease. Exposure to these peptides alters pneumococcal phenotypes such as growth. Using a mutant in which a permease domain of the transporter was disrupted, by growth analysis and epifluorescence microscopy, we confirmed peptide uptake via the Ami permease and intracellular location in the pneumococcus. By RNA-sequencing we found that the peptides modulated expression of genes involved in metabolism, as pathways affected were mostly associated with energy or synthesis and transport of amino acids. Both peptides downregulated expression of genes involved in branched-chain amino acid metabolism and the Ami permease; and upregulated fatty acid biosynthesis genes but differed in their regulation of genes involved in purine and pyrimidine biosynthesis. The transcriptomic changes are consistent with growth suppression by peptide treatment. The peptides inhibited growth of pneumococcal isolates of serotypes 3, 8, 9N, 12F and 19A, currently prevalent in Switzerland, and caused no detectable toxic effect to primary human airway epithelial cells. We conclude that pneumococci take up K. pneumoniae peptides from the environment via binding and transport through the Ami permease. This changes gene expression resulting in altered phenotypes, particularly reduced growth.
Collapse
Affiliation(s)
- Janine Lux
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Friedbühlstrasse 25, CH-3001, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Lucía Sánchez García
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Friedbühlstrasse 25, CH-3001, Bern, Switzerland
| | - Patricia Chaparro Fernández
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Friedbühlstrasse 25, CH-3001, Bern, Switzerland
| | - Laura Laloli
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Friedbühlstrasse 25, CH-3001, Bern, Switzerland
| | - Manon F Licheri
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Friedbühlstrasse 25, CH-3001, Bern, Switzerland
| | - Clement Gallay
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Peter W M Hermans
- Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht (UMCU), Utrecht, The Netherlands
| | - Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, White City Campus, Imperial College London, Sir Michael Uren Hub, London, UK
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Ronald Dijkman
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Friedbühlstrasse 25, CH-3001, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
- Microscopy Imaging Centre (MIC), Theodor Kocher Institute, University of Bern, Bern, Switzerland
- European Virus Bioinformatics Center, Jena, Germany
| | - Daniel Straume
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1430, Ås, Norway
| | - Lucy J Hathaway
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Friedbühlstrasse 25, CH-3001, Bern, Switzerland.
| |
Collapse
|
5
|
Lopes N, Pereira RB, Correia A, Vilanova M, Cerca N, França A. Deletion of codY impairs Staphylococcus epidermidis biofilm formation, generation of viable but non-culturable cells and stimulates cytokine production in human macrophages. J Med Microbiol 2024; 73. [PMID: 38743043 DOI: 10.1099/jmm.0.001837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
Introduction. Staphylococcus epidermidis biofilms are one of the major causes of bloodstream infections related to the use of medical devices. The diagnosis of these infections is challenging, delaying their treatment and resulting in increased morbidity and mortality rates. As such, it is urgent to characterize the mechanisms employed by this bacterium to endure antibiotic treatments and the response of the host immune system, to develop more effective therapeutic strategies. In several bacterial species, the gene codY was shown to encode a protein that regulates the expression of genes involved in biofilm formation and immune evasion. Additionally, in a previous study, our group generated evidence indicating that codY is involved in the emergence of viable but non-culturable (VBNC) cells in S. epidermidis.Gap statement/Hypothesis. As such, we hypothesized that the gene codY has have an important role in this bacterium virulence.Aim. This study aimed to assess, for the first time, the impact of the deletion of the gene codY in S. epidermidis virulence, namely, in antibiotic susceptibility, biofilm formation, VBNC state emergence and in vitro host immune system response.Methodology. Using an allelic replacement strategy, we constructed and then characterized an S. epidermidis strain lacking codY, in regards to biofilm and VBNC cell formation, susceptibility to antibiotics as well as their role in the interaction with human blood and plasma. Additionally, we investigate whether the codY gene can impact the activation of innate immune cells by evaluating the production of both pro- and anti-inflammatory cytokines by THP-1 macrophages.Results. We demonstrated that the deletion of the gene codY resulted in biofilms with less c.f.u. counts and fewer VBNC cells. Furthermore, we show that although WT and mutant cells were similarly internalized in vitro by human macrophages, a stronger cytokine response was elicited by the mutant in a toll-like receptor 4-dependent manner.Conclusion. Our results indicate that codY contributes to S. epidermidis virulence, which in turn may have an impact on our ability to manage the biofilm-associated infections caused by this bacterium.
Collapse
Affiliation(s)
- Nathalie Lopes
- Laboratório de Investigação em Biofilmes Rosário Oliveira (LIBRO), Centro de Engenharia Biológica (CEB), Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Renato B Pereira
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Alexandra Correia
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Manuel Vilanova
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Nuno Cerca
- Laboratório de Investigação em Biofilmes Rosário Oliveira (LIBRO), Centro de Engenharia Biológica (CEB), Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- LABBELS-Laboratório Associado, Braga, Guimarães, Portugal
| | - Angela França
- Laboratório de Investigação em Biofilmes Rosário Oliveira (LIBRO), Centro de Engenharia Biológica (CEB), Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- LABBELS-Laboratório Associado, Braga, Guimarães, Portugal
| |
Collapse
|
6
|
Hainzl T, Bonde M, Almqvist F, Johansson J, Sauer-Eriksson A. Structural insights into CodY activation and DNA recognition. Nucleic Acids Res 2023; 51:7631-7648. [PMID: 37326020 PMCID: PMC10415144 DOI: 10.1093/nar/gkad512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/18/2023] [Accepted: 06/09/2023] [Indexed: 06/17/2023] Open
Abstract
Virulence factors enable pathogenic bacteria to infect host cells, establish infection, and contribute to disease progressions. In Gram-positive pathogens such as Staphylococcus aureus (Sa) and Enterococcus faecalis (Ef), the pleiotropic transcription factor CodY plays a key role in integrating metabolism and virulence factor expression. However, to date, the structural mechanisms of CodY activation and DNA recognition are not understood. Here, we report the crystal structures of CodY from Sa and Ef in their ligand-free form and their ligand-bound form complexed with DNA. Binding of the ligands-branched chain amino acids and GTP-induces conformational changes in the form of helical shifts that propagate to the homodimer interface and reorient the linker helices and DNA binding domains. DNA binding is mediated by a non-canonical recognition mechanism dictated by DNA shape readout. Furthermore, two CodY dimers bind to two overlapping binding sites in a highly cooperative manner facilitated by cross-dimer interactions and minor groove deformation. Our structural and biochemical data explain how CodY can bind a wide range of substrates, a hallmark of many pleiotropic transcription factors. These data contribute to a better understanding of the mechanisms underlying virulence activation in important human pathogens.
Collapse
Affiliation(s)
- Tobias Hainzl
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
- Umeå Centre of Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Mari Bonde
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
- QureTech Bio, Umeå, Sweden
| | - Fredrik Almqvist
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
- Umeå Centre of Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Jörgen Johansson
- Umeå Centre of Microbial Research (UCMR), Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
- Molecular Infection Medicine, Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden
| | - A Elisabeth Sauer-Eriksson
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
- Umeå Centre of Microbial Research (UCMR), Umeå University, Umeå, Sweden
| |
Collapse
|
7
|
Dresen M, Valentin-Weigand P, Berhanu Weldearegay Y. Role of Metabolic Adaptation of Streptococcus suis to Host Niches in Bacterial Fitness and Virulence. Pathogens 2023; 12:pathogens12040541. [PMID: 37111427 PMCID: PMC10144218 DOI: 10.3390/pathogens12040541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Streptococcus suis, both a common colonizer of the porcine upper respiratory tract and an invasive pig pathogen, successfully adapts to different host environments encountered during infection. Whereas the initial infection mainly occurs via the respiratory tract, in a second step, the pathogen can breach the epithelial barrier and disseminate within the whole body. Thereby, the pathogen reaches other organs such as the heart, the joints, or the brain. In this review, we focus on the role of S. suis metabolism for adaptation to these different in vivo host niches to encounter changes in nutrient availability, host defense mechanisms and competing microbiota. Furthermore, we highlight the close link between S. suis metabolism and virulence. Mutants deficient in metabolic regulators often show an attenuation in infection experiments possibly due to downregulation of virulence factors, reduced resistance to nutritive or oxidative stress and to phagocytic activity. Finally, metabolic pathways as potential targets for new therapeutic strategies are discussed. As antimicrobial resistance in S. suis isolates has increased over the last years, the development of new antibiotics is of utmost importance to successfully fight infections in the future.
Collapse
Affiliation(s)
- Muriel Dresen
- Institute for Microbiology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany
| | - Peter Valentin-Weigand
- Institute for Microbiology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany
| | | |
Collapse
|
8
|
A Small RNA, SaaS, Promotes Salmonella Pathogenicity by Regulating Invasion, Intracellular Growth, and Virulence Factors. Microbiol Spectr 2023; 11:e0293822. [PMID: 36688642 PMCID: PMC9927236 DOI: 10.1128/spectrum.02938-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Salmonella enterica serovar Enteritidis is a common foodborne pathogen that infects both humans and animals. The S. Enteritidis virulence regulation network remains largely incomplete, and knowledge regarding the specific virulence phenotype of small RNAs (sRNAs) is limited. Here, we investigated the role of a previously identified sRNA, Salmonella adhesive-associated sRNA (SaaS), in the virulence phenotype of S. Enteritidis by constructing mutant (ΔsaaS) and complemented (ΔsaaS/psaaS) strains. SaaS did not affect S. Enteritidis; it was activated in the simulated intestinal environment (SIE), regulating the expression of virulence target genes. We discovered that it directly binds ssaV mRNA. Caco-2 and RAW 264.7 cell assays revealed that SaaS promoted S. Enteritidis invasion and damage to epithelial cells while suppressing macrophage overgrowth and destruction. Furthermore, a BALB/c mouse model demonstrated that the deletion of SaaS significantly reduced mortality and attenuated the deterioration of pathophysiology, bacterial dissemination into systemic circulation, and systemic inflammation. Our findings indicate that SaaS is required for S. Enteritidis virulence and further highlight its biological role in bacterial pathogenesis. IMPORTANCE Salmonella is a zoonotic pathogen with high virulence worldwide, and sRNAs have recently been discovered to play important roles. We explored the biological characteristics of the sRNA SaaS and developed two cell infection models and a mouse infection model. SaaS is an SIE-responsive sRNA that regulates the expression of virulence-targeted genes. Additionally, it differentially mediates invasion and intracellular growth for survival and infection of the epithelium and macrophages. We further found that SaaS enhanced bacterial virulence by promoting lethality, colonization, and inflammatory response. These findings provide a better understanding of the critical role of sRNA in bacterial virulence.
Collapse
|
9
|
Zhong X, Ma J, Bai Q, Zhu Y, Zhang Y, Gu Q, Pan Z, Liu G, Wu Z, Yao H. Identification of the RNA-binding domain-containing protein RbpA that acts as a global regulator of the pathogenicity of Streptococcus suis serotype 2. Virulence 2022; 13:1304-1314. [PMID: 35903019 PMCID: PMC9341378 DOI: 10.1080/21505594.2022.2103233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Streptococcus suis serotype 2 (SS2), an emerging zoonotic pathogen, causes swine diseases and human cases of streptococcal toxic shock syndrome. RNA-binding proteins (RBPs) can modulate gene expression through post-transcriptional regulation. In this study, we identified an RBP harbouring an S1 domain, named RbpA, which facilitated SS2 adhesion to host epithelial cells and contributed to bacterial pathogenicity. Comparative proteomic analysis identified 145 proteins that were expressed differentially between ΔrbpA strain and wild-type strain, including several virulence-associated factors, such as the extracellular protein factor (EF), SrtF pilus, IgA1 protease, SBP2 pilus, and peptidoglycan-binding LysM’ proteins. The mechanisms underlying the regulatory effects of RbpA on their encoding genes were explored, and it was found that RbpA regulates gene expression through diverse mechanisms, including post-transcriptional regulation, and thus acts as a global regulator. These results partly reveal the pathogenic mechanism mediated by RbpA, improving our understanding of the regulatory systems of S. suis and providing new insights into bacterial pathogenicity.
Collapse
Affiliation(s)
- Xiaojun Zhong
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Jiale Ma
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qiankun Bai
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yinchu Zhu
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yue Zhang
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Qibing Gu
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zihao Pan
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Guangjin Liu
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zongfu Wu
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Huochun Yao
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
10
|
Pellegrini A, Lentini G, Famà A, Bonacorsi A, Scoffone VC, Buroni S, Trespidi G, Postiglione U, Sassera D, Manai F, Pietrocola G, Firon A, Biondo C, Teti G, Beninati C, Barbieri G. CodY Is a Global Transcriptional Regulator Required for Virulence in Group B Streptococcus. Front Microbiol 2022; 13:881549. [PMID: 35572655 PMCID: PMC9096947 DOI: 10.3389/fmicb.2022.881549] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/21/2022] [Indexed: 12/03/2022] Open
Abstract
Group B Streptococcus (GBS) is a Gram-positive bacterium able to switch from a harmless commensal of healthy adults to a pathogen responsible for invasive infections in neonates. The signals and regulatory mechanisms governing this transition are still largely unknown. CodY is a highly conserved global transcriptional regulator that links nutrient availability to the regulation of major metabolic and virulence pathways in low-G+C Gram-positive bacteria. In this work, we investigated the role of CodY in BM110, a GBS strain representative of a hypervirulent lineage associated with the majority of neonatal meningitis. Deletion of codY resulted in a reduced ability of the mutant strain to cause infections in neonatal and adult animal models. The observed decreased in vivo lethality was associated with an impaired ability of the mutant to persist in the blood, spread to distant organs, and cross the blood-brain barrier. Notably, the codY null mutant showed reduced adhesion to monolayers of human epithelial cells in vitro and an increased ability to form biofilms, a phenotype associated with strains able to asymptomatically colonize the host. RNA-seq analysis showed that CodY controls about 13% of the genome of GBS, acting mainly as a repressor of genes involved in amino acid transport and metabolism and encoding surface anchored proteins, including the virulence factor Srr2. CodY activity was shown to be dependent on the availability of branched-chain amino acids, which are the universal cofactors of this regulator. These results highlight a key role for CodY in the control of GBS virulence.
Collapse
Affiliation(s)
- Angelica Pellegrini
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Germana Lentini
- Department of Human Pathology and Medicine, University of Messina, Messina, Italy
| | - Agata Famà
- Department of Human Pathology and Medicine, University of Messina, Messina, Italy
| | - Andrea Bonacorsi
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Viola Camilla Scoffone
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Silvia Buroni
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Gabriele Trespidi
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Umberto Postiglione
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Davide Sassera
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Federico Manai
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | | | - Arnaud Firon
- Institut Pasteur, Université de Paris, CNRS UMR 6047, Unité Biologie des Bactéries Pathogènes à Gram-positif, Paris, France
| | - Carmelo Biondo
- Department of Human Pathology and Medicine, University of Messina, Messina, Italy
| | | | - Concetta Beninati
- Department of Human Pathology and Medicine, University of Messina, Messina, Italy
| | - Giulia Barbieri
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| |
Collapse
|
11
|
PK-PD Modeling and Optimal Dosing Regimen of Acetylkitasamycin against Streptococcus suis in Piglets. Antibiotics (Basel) 2022; 11:antibiotics11020283. [PMID: 35203885 PMCID: PMC8868236 DOI: 10.3390/antibiotics11020283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 02/04/2023] Open
Abstract
Streptococcus suis (S. suis) causes severe respiratory diseases in pigs and is also an important pathogen causing hidden dangers to public health and safety. Acetylkitasamycin is a new macrolide agent that has shown good activity to Gram-positive cocci such as Streptococcus. The purpose of this study was to perform pharmacokinetic–pharmacodynamic (PK-PD) modeling to formulate a dosing regimen of acetylkitasamycin for treatment of S. suis and to decrease the emergence of acetylkitasamycin-resistant S. suis. The minimal inhibitory concentration (MIC) of 110 S. suis isolates was determined by broth micro dilution method. The MIC50 of the 55 sensitive S. suis isolates was 1.21 μg/mL. The strain HB1607 with MIC close to MIC50 and high pathogenicity was used for the PK-PD experiments. The MIC and MBC of HB1607 in both MH broth and pulmonary epithelial lining fluid (PELF) was 1 and 2 μg/mL, respectively. The liquid chromatography–tandem mass spectrometry (LC-MS/MS) method was used to determine the concentration change of acetylkitasamycin in piglet plasma and PELF after intragastric administration of a single dose of 50 mg/kg b.w. acetylkitasamycin. The PK parameters were calculated by WinNolin software. The PK data showed that the maximum concentration (Cmax), peak time (Tmax), and area under the concentration–time curve (AUC) were 9.84 ± 0.39 μg/mL, 4.27 ± 0.19 h and 248.58 ± 21.17 h·μg/mL, respectively. Integration of the in vivo PK data and ex vivo PD data, an inhibition sigmoid Emax equation was established. The dosing regimen of acetylkitasamycin for the treatment S. suis infection established as 33.12 mg/kg b.w. every 12 h for 3 days. This study provided a reasonable dosing regimen for a new drug used in clinical treatment, which can effectively be used to treat S. suis infection and slow down the generation of drug resistance.
Collapse
|
12
|
Xu Q, Chen H, Sun W, Zhang Y, Zhu D, Rai KR, Chen JL, Chen Y. sRNA23, a novel small RNA, regulates to the pathogenesis of Streptococcus suis serotype 2. Virulence 2021; 12:3045-3061. [PMID: 34882070 PMCID: PMC8667912 DOI: 10.1080/21505594.2021.2008177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
ABBREVIATION sRNA: small noncoding RNA; FBA: fructose diphosphate aldolase; rplB: 50S ribosomal protein L2; RACE: rapid amplification of cDNA ends; EMSA: electrophoretic mobility shift assay; THB: Todd-Hewitt broth; FBS: fetal bovine serum; BIP: 2,2'-Bipyridine.
Collapse
Affiliation(s)
- Quanming Xu
- Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Fujian- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hong Chen
- Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Fujian- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wen Sun
- Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Fujian- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yongyi Zhang
- Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Fujian- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dewen Zhu
- Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Fujian- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kul Raj Rai
- Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Fujian- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ji-Long Chen
- Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Fujian- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ye Chen
- Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Fujian- Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
13
|
Li Q, Fei X, Zhang Y, Guo G, Shi H, Zhang W. The biological role of MutT in the pathogenesis of the zoonotic pathogen Streptococcus suis serotype 2. Virulence 2021; 12:1538-1549. [PMID: 34077309 PMCID: PMC8183525 DOI: 10.1080/21505594.2021.1936770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/27/2021] [Accepted: 05/26/2021] [Indexed: 11/08/2022] Open
Abstract
Streptococcus suis (S. suis) is an important rising pathogen that causes serious diseases in humans and pigs. Although some putative virulence factors of S. suis have been identified, its pathogenic mechanisms are largely unclear. Here, we identified a putative virulence-associated factor MutT, which is unique to S. suis serotype 2 (SS2) virulent strains. To investigate the biological roles of MutT in the SS2 virulent strain ZY05719, the mutT knockout mutant (ΔmutT) was generated and used to explore the phenotypic and virulent variations between the parental and ΔmutT strains. We found that the mutT mutation significantly inhibited cell growth ability, shortened the chain length, and displayed a high susceptibility to H2O2-induced oxidative stress. Moreover, this study revealed that MutT induced the adhesion and invasion of SS2 to host cells. Deletion of mutT increased microbial clearance in host tissues of the infected mice. Sequence alignment results suggested that mutT was encoded in a strain-specific manner, in which the detection was strongly linked to bacterial pathogenicity. In both zebrafish and mice infection models, the virulence of ΔmutT was largely reduced compared with that of ZY05719. Overall, this study provides compelling evidence that MutT is indispensable for the virulence of SS2 and highlights the biological role of MutT in bacteria pathogenesis during infection.
Collapse
Affiliation(s)
- Quan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xia Fei
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yuhang Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Genglin Guo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Wei Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
14
|
Zhu H, Zhou J, Wang D, Yu Z, Li B, Ni Y, He K. Quantitative proteomic analysis reveals that serine/threonine kinase is involved in Streptococcus suis virulence and adaption to stress conditions. Arch Microbiol 2021; 203:4715-4726. [PMID: 34028569 PMCID: PMC8141825 DOI: 10.1007/s00203-021-02369-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/27/2022]
Abstract
The eukaryotic-type serine/threonine kinase of Streptococcus suis serotype 2 (SS2) performs critical roles in bacterial pathogenesis. In this study, isobaric tags for relative and absolute quantification (iTRAQ) MS/MS were used to analyze the protein profiles of wild type strain SS2-1 and its isogenic STK deletion mutant (Δstk). A total of 281 significant differential proteins, including 147 up-regulated and 134 down-regulated proteins, were found in Δstk. Moreover, 69 virulence factors (VFs) among these 281 proteins were predicted by the Virulence Factor Database (VFDB), including 38 downregulated and 31 up-regulated proteins in Δstk, among which 15 down regulated VFs were known VFs of SS2. Among the down-regulated proteins, high temperature requirement A (HtrA), glutamine synthase (GlnA), ferrichrome ABC transporter substrate-binding protein FepB, and Zinc-binding protein AdcA are known to be involved in bacterial survival and/or nutrient and energy acquisition under adverse host conditions. Overall, our results indicate that STK regulates the expression of proteins involved in virulence of SS2 and its adaption to stress environments.
Collapse
Affiliation(s)
- Haodan Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, People's Republic of China
- Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, People's Republic of China
| | - Junming Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, People's Republic of China
- Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, People's Republic of China
| | - Dandan Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, People's Republic of China
- Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, People's Republic of China
| | - Zhengyu Yu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, People's Republic of China
- Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, People's Republic of China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, People's Republic of China
- Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, People's Republic of China
| | - Yanxiu Ni
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China.
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, People's Republic of China.
- Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, People's Republic of China.
| | - Kongwang He
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China.
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, People's Republic of China.
- Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, People's Republic of China.
| |
Collapse
|
15
|
Arenas J, Zomer A, Harders-Westerveen J, Bootsma HJ, De Jonge MI, Stockhofe-Zurwieden N, Smith HE, De Greeff A. Identification of conditionally essential genes for Streptococcus suis infection in pigs. Virulence 2021; 11:446-464. [PMID: 32419603 PMCID: PMC7239030 DOI: 10.1080/21505594.2020.1764173] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Streptococcus suis is a Gram-positive bacterium and zoonotic pathogen that causes meningitis and sepsis in pigs and humans. The aim of this study was to identify genes required for S. suis infection. We created Tn-Seq libraries in a virulent S. suis strain 10, which was used to inoculate pigs in an intrathecal experimental infection. Comparative analysis of the relative abundance of mutants recovered from different sites of infection (blood, cerebrospinal fluid, and meninges of the brain) identified 361 conditionally essential genes, i.e. required for infection, which is about 18% of the genome. The conditionally essential genes were primarily involved in metabolic and transport processes, regulation, ribosomal structure and biogenesis, transcription, and cell wall membrane and envelope biogenesis, stress defenses, and immune evasion. Directed mutants were created in a set of 10 genes of different genetic ontologies and their role was determined in ex vivo models. Mutants showed different levels of sensitivity to survival in whole blood, serum, cerebrospinal fluid, thermic shock, and stress conditions, as compared to the wild type. Additionally, the role of three selected mutants was validated in co-infection experiments in which pigs were infected with both wild type and isogenic mutant strains. The genetic determinants of infection identified in this work contribute to novel insights in S. suis pathogenesis and could serve as targets for novel vaccines or antimicrobial drugs.
Collapse
Affiliation(s)
- Jesús Arenas
- Department of Infection Biology, Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands.,Unit of Microbiology and Immunology, Faculty of Veterinary, University of Zaragoza, Zaragoza, Spain
| | - Aldert Zomer
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud, Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Jose Harders-Westerveen
- Department of Infection Biology, Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands
| | - Hester J Bootsma
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud, Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Marien I De Jonge
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud, Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | | | - Hilde E Smith
- Department of Infection Biology, Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands
| | - Astrid De Greeff
- Department of Infection Biology, Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands
| |
Collapse
|
16
|
Tetanus Toxin Synthesis is Under the Control of A Complex Network of Regulatory Genes in Clostridium tetani. Toxins (Basel) 2020; 12:toxins12050328. [PMID: 32429286 PMCID: PMC7290440 DOI: 10.3390/toxins12050328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 12/19/2022] Open
Abstract
Clostridium tetani produces a potent neurotoxin, the tetanus toxin (TeNT), which is responsible for an often-fatal neurological disease (tetanus) characterized by spastic paralysis. Prevention is efficiently acquired by vaccination with the TeNT toxoid, which is obtained by C.tetani fermentation and subsequent purification and chemical inactivation. C.tetani synthesizes TeNT in a regulated manner. Indeed, the TeNT gene (tent) is mainly expressed in the late exponential and early stationary growth phases. The gene tetR (tetanus regulatory gene), located immediately upstream of tent, encodes an alternative sigma factor which was previously identified as a positive regulator of tent. In addition, the genome of C.tetani encodes more than 127 putative regulators, including 30 two-component systems (TCSs). Here, we investigated the impact of 12 regulators on TeNT synthesis which were selected based on their homology with related regulatory elements involved in toxin production in other clostridial species. Among nine TCSs tested, three of them impact TeNT production, including two positive regulators that indirectly stimulate tent and tetR transcription. One negative regulator was identified that interacts with both tent and tetR promoters. Two other TCSs showed a moderate effect: one binds to the tent promoter and weakly increases the extracellular TeNT level, and another one has a weak inverse effect. In addition, CodY (control of dciA (decoyinine induced operon) Y) but not Spo0A (sporulation stage 0) or the DNA repair protein Mfd (mutation frequency decline) positively controls TeNT synthesis by interacting with the tent promoter. Moreover, we found that inorganic phosphate and carbonate are among the environmental factors that control TeNT production. Our data show that TeNT synthesis is under the control of a complex network of regulators that are largely distinct from those involved in the control of toxin production in Clostridium botulinum or Clostridium difficile.
Collapse
|
17
|
Lysis of a Lactococcus lactis Dipeptidase Mutant and Rescue by Mutation in the Pleiotropic Regulator CodY. Appl Environ Microbiol 2020; 86:AEM.02937-19. [PMID: 32005740 PMCID: PMC7117943 DOI: 10.1128/aem.02937-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
Lactococcus lactis subsp. cremoris MG1363 is a model for the lactic acid bacteria (LAB) used in the dairy industry. The proteolytic system, consisting of a proteinase, several peptide and amino acid uptake systems, and a host of intracellular peptidases, plays a vital role in nitrogen metabolism and is of eminent importance for flavor formation in dairy products. The dipeptidase PepV functions in the last stages of proteolysis. A link between nitrogen metabolism and peptidoglycan (PG) biosynthesis was underlined by the finding that deletion of the dipeptidase gene pepV (creating strain MGΔpepV) resulted in a prolonged lag phase when the mutant strain was grown with a high concentration of glycine. In addition, most MGΔpepV cells lyse and have serious defects in their shape. This phenotype is due to a shortage of alanine, since adding alanine can rescue the growth and shape defects. Strain MGΔpepV is more resistant to vancomycin, an antibiotic targeting peptidoglycan d-Ala-d-Ala ends, which confirmed that MGΔpepV has an abnormal PG composition. A mutant of MGΔpepV was obtained in which growth inhibition and cell shape defects were alleviated. Genome sequencing showed that this mutant has a single point mutation in the codY gene, resulting in an arginine residue at position 218 in the DNA-binding motif of CodY being replaced by a cysteine residue. Thus, this strain was named MGΔpepVcodY R218C Transcriptome sequencing (RNA-seq) data revealed a dramatic derepression in peptide uptake and amino acid utilization in MGΔpepVcodY R218C A model of the connections among PepV activity, CodY regulation, and PG synthesis of L. lactis is proposed.IMPORTANCE Precise control of peptidoglycan synthesis is essential in Gram-positive bacteria for maintaining cell shape and integrity as well as resisting stresses. Although neither the dipeptidase PepV nor alanine is essential for L. lactis MG1363, adequate availability of either ensures proper cell wall synthesis. We broaden the knowledge about the dipeptidase PepV, which acts as a linker between nitrogen metabolism and cell wall synthesis in L. lactis.
Collapse
|
18
|
Arenas J, Bossers-de Vries R, Harders-Westerveen J, Buys H, Ruuls-van Stalle LMF, Stockhofe-Zurwieden N, Zaccaria E, Tommassen J, Wells JM, Smith HE, de Greeff A. In vivo transcriptomes of Streptococcus suis reveal genes required for niche-specific adaptation and pathogenesis. Virulence 2020; 10:334-351. [PMID: 30957693 PMCID: PMC6527017 DOI: 10.1080/21505594.2019.1599669] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Streptococcus suis is a Gram-positive bacterium and a zoonotic pathogen residing in the nasopharynx or the gastrointestinal tract of pigs with a potential of causing life-threatening invasive disease. It is endemic in the porcine production industry worldwide, and it is also an emerging human pathogen. After invasion, the pathogen adapts to cause bacteremia and disseminates to different organs including the brain. To gain insights in this process, we infected piglets with a highly virulent strain of S. suis, and bacterial transcriptomes were obtained from blood and different organs (brain, joints, and heart) when animals had severe clinical symptoms of infection. Microarrays were used to determine the genome-wide transcriptional profile at different infection sites and during growth in standard growth medium in vitro. We observed differential expression of around 30% of the Open Reading Frames (ORFs) and infection-site specific patterns of gene expression. Genes with major changes in expression were involved in transcriptional regulation, metabolism, nutrient acquisition, stress defenses, and virulence, amongst others, and results were confirmed for a subset of selected genes using RT-qPCR. Mutants were generated in two selected genes, and the encoded proteins, i.e., NADH oxidase and MetQ, were shown to be important virulence factors in coinfection experiments and in vitro assays. The knowledge derived from this study regarding S. suis gene expression in vivo and identification of virulence factors is important for the development of novel diagnostic and therapeutic strategies to control S. suis disease.
Collapse
Affiliation(s)
- Jesús Arenas
- a Department of Infection Biology , Wageningen BioVeterinary Research (WBVR) , Lelystad , The Netherlands
| | - Ruth Bossers-de Vries
- a Department of Infection Biology , Wageningen BioVeterinary Research (WBVR) , Lelystad , The Netherlands
| | - José Harders-Westerveen
- a Department of Infection Biology , Wageningen BioVeterinary Research (WBVR) , Lelystad , The Netherlands
| | - Herma Buys
- a Department of Infection Biology , Wageningen BioVeterinary Research (WBVR) , Lelystad , The Netherlands
| | | | | | - Edoardo Zaccaria
- b Host Microbe Interactions , Wageningen UR , Wageningen , The Netherlands
| | - Jan Tommassen
- c Department of Molecular Microbiology and Institute of Biomembranes , Utrecht University , Utrecht , The Netherlands
| | - Jerry M Wells
- b Host Microbe Interactions , Wageningen UR , Wageningen , The Netherlands
| | - Hilde E Smith
- a Department of Infection Biology , Wageningen BioVeterinary Research (WBVR) , Lelystad , The Netherlands
| | - Astrid de Greeff
- a Department of Infection Biology , Wageningen BioVeterinary Research (WBVR) , Lelystad , The Netherlands
| |
Collapse
|
19
|
Wang Y, Wang Y, Liu B, Wang S, Li J, Gong S, Sun L, Yi L. pdh modulate virulence through reducing stress tolerance and biofilm formation of Streptococcus suis serotype 2. Virulence 2020; 10:588-599. [PMID: 31232165 PMCID: PMC6592368 DOI: 10.1080/21505594.2019.1631661] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Streptococcus suis serotype 2 (S. suis 2) is a zoonotic pathogen. It causes meningitis, arthritis, pneumonia and sepsis in pigs, leading to extremely high mortality, which seriously affects public health and the development of the pig industry. Pyruvate dehydrogenase (PDH) is an important sugar metabolism enzyme that is widely present in microorganisms, mammals and higher plants. It catalyzes the irreversible oxidative decarboxylation of pyruvate to acetyl-CoA and reduces NAD+ to NADH. In this study, we found that the virulence of the S. suis ZY05719 sequence type 7 pdh deletion strain (Δpdh) was significantly lower than the wild-type strain (WT) in the mouse infection model. The distribution of viable bacteria in the blood and organs of mice infected with the Δpdh was significantly lower than those infected with WT. Bacterial survival rates were reduced in response to temperature stress, salt stress and oxidative stress. Additionally, compared to WT, the ability to adhere to and invade PK15 cells, biofilm formation and stress resistance of Δpdh were significantly reduced. Moreover, real-time PCR results showed that pdh deletion reduced the expression of multiple adhesion-related genes. However, there was no significant difference in the correlation biological analysis between the complemented strain (CΔpdh) and WT. Moreover, the survival rate of Δpdh in RAW264.7 macrophages was significantly lower than that of the WT strain. This study shows that PDH is involved in the pathogenesis of S. suis 2 and reduction in virulence of Δpdh may be related to the decreased ability to resist stress of the strain.
Collapse
Affiliation(s)
- Yang Wang
- a College of Animal Science and Technology , Henan University of Science and Technology , Luoyang , China.,b Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang , Luoyang , China
| | - Yuxin Wang
- a College of Animal Science and Technology , Henan University of Science and Technology , Luoyang , China
| | - Baobao Liu
- a College of Animal Science and Technology , Henan University of Science and Technology , Luoyang , China
| | - Shaohui Wang
- c Shanghai Veterinary Research Institute , Chinese Academy of Agricultural Sciences , Shanghai , China
| | - Jinpeng Li
- a College of Animal Science and Technology , Henan University of Science and Technology , Luoyang , China
| | - Shenglong Gong
- a College of Animal Science and Technology , Henan University of Science and Technology , Luoyang , China
| | - Liyun Sun
- a College of Animal Science and Technology , Henan University of Science and Technology , Luoyang , China.,b Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang , Luoyang , China
| | - Li Yi
- d College of Life Science , Luoyang Normal University , Luoyang , China
| |
Collapse
|
20
|
Vacík T, Lađinović D, Raška I. KDM2A/B lysine demethylases and their alternative isoforms in development and disease. Nucleus 2019; 9:431-441. [PMID: 30059280 PMCID: PMC7000146 DOI: 10.1080/19491034.2018.1498707] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Aberrant levels of histone modifications lead to chromatin malfunctioning and consequently to various developmental defects and human diseases. Therefore, the proteins bearing the ability to modify histones have been extensively studied and the molecular mechanisms of their action are now fairly well understood. However, little attention has been paid to naturally occurring alternative isoforms of chromatin modifying proteins and to their biological roles. In this review, we focus on mammalian KDM2A and KDM2B, the only two lysine demethylases whose genes have been described to produce also an alternative isoform lacking the N-terminal demethylase domain. These short KDM2A/B-SF isoforms arise through alternative promoter usage and seem to play important roles in development and disease. We hypothesise about the biological significance of these alternative isoforms, which might represent a more common evolutionarily conserved regulatory mechanism.
Collapse
Affiliation(s)
- Tomáš Vacík
- a Institute of Biology and Medical Genetics, First Faculty of Medicine , Charles University and General University Hospital in Prague , Praha 2 , Czech Republic
| | - Dijana Lađinović
- a Institute of Biology and Medical Genetics, First Faculty of Medicine , Charles University and General University Hospital in Prague , Praha 2 , Czech Republic
| | - Ivan Raška
- a Institute of Biology and Medical Genetics, First Faculty of Medicine , Charles University and General University Hospital in Prague , Praha 2 , Czech Republic
| |
Collapse
|
21
|
Co-regulation of CodY and (p)ppGpp synthetases on morphology and pathogenesis of Streptococcus suis. Microbiol Res 2019; 223-225:88-98. [PMID: 31178056 DOI: 10.1016/j.micres.2019.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/28/2019] [Accepted: 04/06/2019] [Indexed: 01/04/2023]
Abstract
CodY and (p)ppGpp synthetases are two important global regulators of bacteria. In some pathogens, such as Listeria monocytogenes, the GTP pool links these two regulatory systems, and introducing a codY mutant into the ΔrelA strain restored the pathogenicity of the attenuated ΔrelA mutant. In previous studies, we identified the (p)ppGpp synthetases (RelA and RelQ) and CodY of Streptococcus suis. To understand the interrelationships between these two regulators in S. suis, a ΔrelAΔrelQΔcodY mutant was constructed, and its growth, morphology, and pathogenicity were evaluated. Compared with ΔrelAΔrelQ, ΔcodY, its growth was very slow, but its chain length was partly restored to the wild-type length and its capsule became thick and rough. The adherence, invasion ability, and resistance to whole-blood killing in vitro of ΔrelAΔrelQΔcodY and its lethality and colonization ability in mice were clearly reduced, which differs from the effects of these mutations in L. monocytogenes. An analysis of gene expression showed that CodY interacted with the relA promoter in a GTP-independent manner to positively regulate the expression of relA. The introduction of a codY mutant into the ΔrelAΔrelQ strain further reduced the expression of virulence factors, which suggests a novel interaction between the (p)ppGpp synthetases and CodY. This study extends our understanding of the relationship between the (p)ppGpp-mediated stringent response and the regulation of CodY in S. suis.
Collapse
|
22
|
Zhang D, Ke X, Liu Z, Cao J, Su Y, Lu M, Gao F, Wang M, Yi M, Qin F. Capsular polysaccharide of Streptococcus agalactiae is an essential virulence factor for infection in Nile tilapia (Oreochromis niloticus Linn.). JOURNAL OF FISH DISEASES 2019; 42:293-302. [PMID: 30549284 DOI: 10.1111/jfd.12935] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/13/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
Streptococcus agalactiae (Group B Streptococcus, GBS) is associated with diverse diseases in aquatic animals. The capsule polysaccharide (CPS) encoded by the cps gene cluster is the major virulence factor of S. agalactiae; however, limited information is available regarding the pathogenic role of the CPS of serotype Ia piscine GBS strains in fish. Here, a non-encapsulated mutant (Δcps) was constructed by insertional mutagenesis of the cps gene cluster. Mutant pathogenicity was evaluated in vitro based on the killing of whole blood from tilapia, in vivo infections, measuring mutant survival in tilapia spleen tissues and pathological analysis. Compared to wild-type (WT) GBS strain, the Δcps mutant had lower resistance to fresh tilapia whole blood in vitro (p < 0.01), and more easily cleared in tilapia spleen tissue, and was highly attenuated in tilapia and zebrafish. Additionally, compared to the Δcps mutant, numerous GBS strains and severe tissue necrosis were observed in the tilapia spleen tissue infected with WT strains. These results indicated that the CPS is essential for GBS pathogenicity and may serve as a target for attenuation in vaccine development. Gaining a better understanding of the role, the GBS pathogenicity in fish will provide insight into related pathogenesis and host-pathogen interactions.
Collapse
Affiliation(s)
- Defeng Zhang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Xiaoli Ke
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Zhigang Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jianmeng Cao
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Youlu Su
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Maixin Lu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Fengying Gao
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Miao Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Mengmeng Yi
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Fengling Qin
- Core Facility for Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
23
|
Daou N, Wang Y, Levdikov VM, Nandakumar M, Livny J, Bouillaut L, Blagova E, Zhang K, Belitsky BR, Rhee K, Wilkinson AJ, Sun X, Sonenshein AL. Impact of CodY protein on metabolism, sporulation and virulence in Clostridioides difficile ribotype 027. PLoS One 2019; 14:e0206896. [PMID: 30699117 PMCID: PMC6353076 DOI: 10.1371/journal.pone.0206896] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 09/25/2018] [Indexed: 12/16/2022] Open
Abstract
Toxin synthesis and endospore formation are two of the most critical factors that determine the outcome of infection by Clostridioides difficile. The two major toxins, TcdA and TcdB, are the principal factors causing damage to the host. Spores are the infectious form of C. difficile, permit survival of the bacterium during antibiotic treatment and are the predominant cell form that leads to recurrent infection. Toxin production and sporulation have their own specific mechanisms of regulation, but they share negative regulation by the global regulatory protein CodY. Determining the extent of such regulation and its detailed mechanism is important for understanding the linkage between two apparently independent biological phenomena and raises the possibility of creating new ways of limiting infection. The work described here shows that a codY null mutant of a hypervirulent (ribotype 027) strain is even more virulent than its parent in a mouse model of infection and that the mutant expresses most sporulation genes prematurely during exponential growth phase. Moreover, examining the expression patterns of mutants producing CodY proteins with different levels of residual activity revealed that expression of the toxin genes is dependent on total CodY inactivation, whereas most sporulation genes are turned on when CodY activity is only partially diminished. These results suggest that, in wild-type cells undergoing nutrient limitation, sporulation genes can be turned on before the toxin genes.
Collapse
Affiliation(s)
- Nadine Daou
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States of America
| | - Yuanguo Wang
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, United States of America
| | - Vladimir M. Levdikov
- Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom
| | - Madhumitha Nandakumar
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY, United States of America
| | - Jonathan Livny
- Broad Institute of MIT and Harvard, Cambridge, MA, United States of America
| | - Laurent Bouillaut
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States of America
| | - Elena Blagova
- Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom
| | - Keshan Zhang
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, United States of America
| | - Boris R. Belitsky
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States of America
| | - Kyu Rhee
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY, United States of America
| | - Anthony J. Wilkinson
- Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States of America
| | - Abraham L. Sonenshein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
24
|
Atack JM, Weinert LA, Tucker AW, Husna AU, Wileman TM, F. Hadjirin N, Hoa NT, Parkhill J, Maskell DJ, Blackall PJ, Jennings MP. Streptococcus suis contains multiple phase-variable methyltransferases that show a discrete lineage distribution. Nucleic Acids Res 2018; 46:11466-11476. [PMID: 30304532 PMCID: PMC6265453 DOI: 10.1093/nar/gky913] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/20/2018] [Accepted: 10/06/2018] [Indexed: 12/22/2022] Open
Abstract
Streptococcus suis is a major pathogen of swine, responsible for a number of chronic and acute infections, and is also emerging as a major zoonotic pathogen, particularly in South-East Asia. Our study of a diverse population of S. suis shows that this organism contains both Type I and Type III phase-variable methyltransferases. In all previous examples, phase-variation of methyltransferases results in genome wide methylation differences, and results in differential regulation of multiple genes, a system known as the phasevarion (phase-variable regulon). We hypothesized that each variant in the Type I and Type III systems encoded a methyltransferase with a unique specificity, and could therefore control a distinct phasevarion, either by recombination-driven shuffling between different specificities (Type I) or by biphasic on-off switching via simple sequence repeats (Type III). Here, we present the identification of the target specificities for each Type III allelic variant from S. suis using single-molecule, real-time methylome analysis. We demonstrate phase-variation is occurring in both Type I and Type III methyltransferases, and show a distinct association between methyltransferase type and presence, and population clades. In addition, we show that the phase-variable Type I methyltransferase was likely acquired at the origin of a highly virulent zoonotic sub-population.
Collapse
Affiliation(s)
- John M Atack
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Lucy A Weinert
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Alexander W Tucker
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Asma U Husna
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Thomas M Wileman
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Nazreen F. Hadjirin
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Ngo T Hoa
- Oxford University Clinical Research Unit (OUCRU), 764 Vo Van Kiet, Quan 5, Ho Chi Minh City, Viet Nam, and Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | | | - Duncan J Maskell
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Patrick J Blackall
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| |
Collapse
|
25
|
Zhu H, Wang Y, Ni Y, Zhou J, Han L, Yu Z, Mao A, Wang D, Fan H, He K. The Redox-Sensing Regulator Rex Contributes to the Virulence and Oxidative Stress Response of Streptococcus suis Serotype 2. Front Cell Infect Microbiol 2018; 8:317. [PMID: 30280091 PMCID: PMC6154617 DOI: 10.3389/fcimb.2018.00317] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/20/2018] [Indexed: 01/06/2023] Open
Abstract
Streptococcus suis serotype 2 (SS2) is an important zoonotic pathogen responsible for septicemia and meningitis. The redox-sensing regulator Rex has been reported to play critical roles in the metabolism regulation, oxidative stress response, and virulence of various pathogens. In this study, we identified and characterized a Rex ortholog in the SS2 virulent strain SS2-1 that is involved in bacterial pathogenicity and stress environment susceptibility. Our data show that the Rex-knockout mutant strain Δrex exhibited impaired growth in medium with hydrogen peroxide or a low pH compared with the wildtype strain SS2-1 and the complementary strain CΔrex. In addition, Δrex showed a decreased level of survival in whole blood and in RAW264.7 macrophages. Further analyses revealed that Rex deficiency significantly attenuated bacterial virulence in an animal model. A comparative proteome analysis found that the expression levels of several proteins involved in virulence and oxidative stress were significantly different in Δrex compared with SS2-1. Electrophoretic mobility shift assays revealed that recombinant Rex specifically bound to the promoters of target genes in a manner that was modulated by NADH and NAD+. Taken together, our data suggest that Rex plays critical roles in the virulence and oxidative stress response of SS2.
Collapse
Affiliation(s)
- Haodan Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| | - Yong Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yanxiu Ni
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| | - Junming Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China.,Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, China
| | - Lixiao Han
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhengyu Yu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| | - Aihua Mao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| | - Dandan Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| | - Hongjie Fan
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Kongwang He
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China.,Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, China
| |
Collapse
|
26
|
Role of Neuraminidase-Producing Bacteria in Exposing Cryptic Carbohydrate Receptors for Streptococcus gordonii Adherence. Infect Immun 2018; 86:IAI.00068-18. [PMID: 29661931 DOI: 10.1128/iai.00068-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/13/2018] [Indexed: 12/11/2022] Open
Abstract
Streptococcus gordonii is an early colonizer of the oral cavity. Although a variety of S. gordonii adherence mechanisms have been described, current dogma is that the major receptor for S. gordonii is sialic acid. However, as many bacterial species in the oral cavity produce neuraminidase that can cleave terminal sialic acid, it is unclear whether S. gordonii relies on sialic acid for adherence to oral surfaces or if this species has developed alternative binding strategies. Previous studies have examined adherence to immobilized glycoconjugates and identified binding to additional glycans, but no prior studies have defined the contribution of these different glycan structures in adherence to oral epithelial cells. We determined that the majority of S. gordonii strains tested did not rely on sialic acid for efficient adherence. In fact, adherence of some strains was significantly increased following neuraminidase treatment. Further investigation of representative strains that do not rely on sialic acid for adherence revealed binding not only to sialic acid via the serine-rich repeat protein GspB but also to β-1,4-linked galactose. Adherence to this carbohydrate occurs via an unknown adhesin distinct from those utilized by Streptococcus oralis and Streptococcus pneumoniae Demonstrating the potential biological relevance of binding to this cryptic receptor, we established that S. oralis increases S. gordonii adherence in a neuraminidase-dependent manner. These data suggest that S. gordonii has evolved to simultaneously utilize both terminal and cryptic receptors in response to the production of neuraminidase by other species in the oral environment.
Collapse
|
27
|
Xu Z, Chen B, Zhang Q, Liu L, Zhang A, Yang Y, Huang K, Yan S, Yu J, Sun X, Jin M. Streptococcus suis 2 Transcriptional Regulator TstS Stimulates Cytokine Production and Bacteremia to Promote Streptococcal Toxic Shock-Like Syndrome. Front Microbiol 2018; 9:1309. [PMID: 29973920 PMCID: PMC6020791 DOI: 10.3389/fmicb.2018.01309] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/29/2018] [Indexed: 01/18/2023] Open
Abstract
Two large-scale outbreaks of streptococcal toxic shock-like syndrome (STSLS) have revealed Streptococcus suis 2 to be a severe and evolving human pathogen. We investigated the mechanism by which S. suis 2 causes STSLS. The transcript abundance of the transcriptional regulator gene tstS was found to be upregulated during experimental infection. Compared with the wild-type 05ZY strain, a tstS deletion mutant (ΔtstS) elicited reduced cytokine secretion in macrophages. In a murine infection model, tstS deletion resulted in decreased virulence and bacterial load, and affected cytokine production. Moreover, TstS expression in the P1/7 strain of S. suis led to the induction of STSLS in the infected mice. This is noteworthy because, although it is virulent, the P1/7 strain does not normally induce STSLS. Through a microarray-based comparative transcriptomics analysis, we found that TstS regulates multiple metabolism-related genes and several virulence-related genes associated with immune evasion.
Collapse
Affiliation(s)
- Zhongmin Xu
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bo Chen
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qiang Zhang
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Liang Liu
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Anding Zhang
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yujie Yang
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Kaisong Huang
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shuxian Yan
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Junping Yu
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaomei Sun
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Meilin Jin
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China
| |
Collapse
|
28
|
Feng L, Niu X, Mei W, Li W, Liu Y, Willias SP, Yuan C, Bei W, Wang X, Li J. Immunogenicity and protective capacity of EF-Tu and FtsZ of Streptococcus suis serotype 2 against lethal infection. Vaccine 2018; 36:2581-2588. [PMID: 29627237 DOI: 10.1016/j.vaccine.2018.03.079] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/24/2018] [Accepted: 03/28/2018] [Indexed: 10/17/2022]
Abstract
Vaccine development efforts against Streptococcus suis serotype 2 (S. suis 2) are often constrained by strain/serotype antigen variability. Bioinformatics analyses revealed two highly conserved S. suis 2 factors, EF-Tu and FtsZ. Murine immunization with recombinant proteins emulsified in white oil adjuvant or eukaryotic DNA vaccine vectors provided significant protection against lethal S. suis 2 challenge. Immune responses elicited by recombinant protein immunization revealed the robust generation of humoral immune responses, with a mixed induction of Th1-type and Th2-type responses. Furthermore, the antiserum from mice immunized with recombinant proteins significantly inhibited the growth of S. suis 2 in healthy pig whole blood, suggesting the triggering of a strong opsonizing response. Histological examination found that immunizing mice with purified recombinant proteins reduced neutrophil and macrophage accumulation in brain and lung tissues after challenge with virulent S. suis. Taken together, these findings reveal that EF-Tu and FtsZ may be promising targets for subunit and DNA vaccine candidates against S. suis 2 infection.
Collapse
Affiliation(s)
- Liping Feng
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China; Shanghai Laboratory Animal Research Center, Shanghai, People's Republic of China
| | - Xiaona Niu
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Wen Mei
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Weitian Li
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Yuan Liu
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Stephan P Willias
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL, USA
| | - Chao Yuan
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Weicheng Bei
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Xiaohong Wang
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Jinquan Li
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China.
| |
Collapse
|
29
|
Roy D, Takamatsu D, Okura M, Goyette-Desjardins G, Van Calsteren MR, Dumesnil A, Gottschalk M, Segura M. Capsular Sialyltransferase Specificity Mediates Different Phenotypes in Streptococcus suis and Group B Streptococcus. Front Microbiol 2018; 9:545. [PMID: 29666608 PMCID: PMC5891629 DOI: 10.3389/fmicb.2018.00545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/09/2018] [Indexed: 01/04/2023] Open
Abstract
The capsular polysaccharide (CPS) represents a key virulence factor for most encapsulated streptococci. Streptococcus suis and Group B Streptococcus (GBS) are both well-encapsulated pathogens of clinical importance in veterinary and/or human medicine and responsible for invasive systemic diseases. S. suis and GBS are the only Gram-positive bacteria which express a sialylated CPS at their surface. An important difference between these two sialylated CPSs is the linkage between the side-chain terminal galactose and sialic acid, being α-2,6 for S. suis but α-2,3 for GBS. It is still unclear how sialic acid may affect CPS production and, consequently, the pathogenesis of the disease caused by these two bacterial pathogens. Here, we investigated the role of sialic acid and the putative effect of sialic acid linkage modification in CPS synthesis using inter-species allelic exchange mutagenesis. To this aim, a new molecular biogenetic approach to express CPS with modified sialic acid linkage was developed. We showed that sialic acid (and its α-2,6 linkage) is crucial for S. suis CPS synthesis, whereas for GBS, CPS synthesis may occur in presence of an α-2,6 sialyltransferase or in absence of sialic acid moiety. To evaluate the effect of the CPS composition/structure on sialyltransferase activity, two distinct capsular serotypes within each bacterial species were compared (S. suis serotypes 2 and 14 and GBS serotypes III and V). It was demonstrated that the observed differences in sialyltransferase activity and specificity between S. suis and GBS were serotype unrestricted. This is the first time that a study investigates the interspecies exchange of capsular sialyltransferase genes in Gram-positive bacteria. The obtained mutants represent novel tools that could be used to further investigate the immunomodulatory properties of sialylated CPSs. Finally, in spite of common CPS structural characteristics and similarities in the cps loci, sialic acid exerts differential control of CPS expression by S. suis and GBS.
Collapse
Affiliation(s)
- David Roy
- Faculty of Veterinary Medicine, Swine and Poultry Infectious Disease Research Centre, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Daisuke Takamatsu
- Division of Bacterial and Parasitic Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan.,The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Masatoshi Okura
- Division of Bacterial and Parasitic Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Guillaume Goyette-Desjardins
- Faculty of Veterinary Medicine, Swine and Poultry Infectious Disease Research Centre, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Marie-Rose Van Calsteren
- Faculty of Veterinary Medicine, Swine and Poultry Infectious Disease Research Centre, University of Montreal, Saint-Hyacinthe, QC, Canada.,Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Hyacinthe, QC, Canada
| | - Audrey Dumesnil
- Faculty of Veterinary Medicine, Swine and Poultry Infectious Disease Research Centre, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Marcelo Gottschalk
- Faculty of Veterinary Medicine, Swine and Poultry Infectious Disease Research Centre, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Mariela Segura
- Faculty of Veterinary Medicine, Swine and Poultry Infectious Disease Research Centre, University of Montreal, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
30
|
Yuan F, Liu J, You W, Bei W, Wang C, Zhao J, Tian Y, Liu S. Generation, safety and immunogenicity of an Actinobacillus pleuropneumoniae quintuple deletion mutant SLW07 (ΔapxICΔapxIICΔorf1ΔcpxARΔarcA). Vaccine 2018; 36:1830-1836. [PMID: 29486946 DOI: 10.1016/j.vaccine.2018.02.083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/05/2018] [Accepted: 02/19/2018] [Indexed: 10/18/2022]
Abstract
We inactivated a virulence determinant, ArcA, in an Actinobacillus pleuropneumoniae quadruple deletion mutant SLW06 (ΔapxICΔapxIICΔorf1ΔcpxAR, serovar 1), and a quintuple deletion mutant SLW07 was generated. SLW07 showed decreased adherence to and invasion of host cells, compared to its parent strain SLW06. SLW07 was more sensitive in RAW264.7 macrophage-mediated phagocytosis and clearance. SLW07 was less virulent in mice. An immunization assay indicated that both SLW07 and SLW06 preferentially stimulated T helper cell type 2 response in mice. Live vaccines induced the production of interleukin-6 and tumor necrosis factor-α by splenic lymphocytes. Furthermore, the protective immunity of SLW07 was not affected after ArcA mutation. Immunization with SLW07 could provide a complete protection following virulent A. pleuropneumoniae challenge in mice. Our results suggest that SLW07 is a promising live vaccine candidate, which is further attenuated from and shares similar protective efficacy with its quadruple deletion parent SLW06.
Collapse
Affiliation(s)
- Fangyan Yuan
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Wuhan, Hubei 430064, China
| | - Jinlin Liu
- College of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Wujin You
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Weicheng Bei
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chunlai Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Jin Zhao
- College of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Yiongxiang Tian
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Wuhan, Hubei 430064, China.
| | - Siguo Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| |
Collapse
|
31
|
Characterization and functional analysis of PnuC that is involved in the oxidative stress tolerance and virulence of Streptococcus suis serotype 2. Vet Microbiol 2018. [DOI: 10.1016/j.vetmic.2018.02.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
32
|
Abstract
Antibiotics have saved millions of lives over the past decades. However, the accumulation of so many antibiotic resistance genes by some clinically relevant pathogens has begun to lead to untreatable infections worldwide. The current antibiotic resistance crisis will require greater efforts by governments and the scientific community to increase the research and development of new antibacterial drugs with new mechanisms of action. A major challenge is the identification of novel microbial targets, essential for in vivo growth or pathogenicity, whose inhibitors can overcome the currently circulating resistome of human pathogens. In this article, we focus on the potential high value of bacterial transcriptional regulators as targets for the development of new antibiotics, discussing in depth the molecular role of these regulatory proteins in bacterial physiology and pathogenesis. Recent advances in the search for novel compounds that inhibit the biological activity of relevant transcriptional regulators in pathogenic bacteria are reviewed.
Collapse
|
33
|
Li Q, Fu Y, Ma C, He Y, Yu Y, Du D, Yao H, Lu C, Zhang W. The non-conserved region of MRP is involved in the virulence of Streptococcus suis serotype 2. Virulence 2017; 8:1274-1289. [PMID: 28362221 DOI: 10.1080/21505594.2017.1313373] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Muramidase-released protein (MRP) of Streptococcus suis serotype 2 (SS2) is an important epidemic virulence marker with an unclear role in bacterial infection. To investigate the biologic functions of MRP, 3 mutants named Δmrp, Δmrp domain 1 (Δmrp-d1), and Δmrp domain 2 (Δmrp-d2) were constructed to assess the phenotypic changes between the parental strain and the mutant strains. The results indicated that MRP domain 1 (MRP-D1, the non-conserved region of MRP from a virulent strain, a.a. 242-596) played a critical role in adherence of SS2 to host cells, compared with MRP domain 1* (MRP-D1*, the non-conserved region of MRP from a low virulent strain, a.a. 239-598) or MRP domain 2 (MRP-D2, the conserved region of MRP, a.a. 848-1222). We found that MRP-D1 but not MRP-D2, could bind specifically to fibronectin (FN), factor H (FH), fibrinogen (FG), and immunoglobulin G (IgG). Additionally, we confirmed that mrp-d1 mutation significantly inhibited bacteremia and brain invasion in a mouse infection model. The mrp-d1 mutation also attenuated the intracellular survival of SS2 in RAW246.7 macrophages, shortened the growth ability in pig blood and decreased the virulence of SS2 in BALB/c mice. Furthermore, antiserum against MRP-D1 was found to dramatically impede SS2 survival in pig blood. Finally, immunization with recombinant MRP-D1 efficiently enhanced murine viability after SS2 challenge, indicating its potential use in vaccination strategies. Collectively, these results indicated that MRP-D1 is involved in SS2 virulence and eloquently demonstrate the function of MRP in pathogenesis of infection.
Collapse
Affiliation(s)
- Quan Li
- a Key Lab of Animal Bacteriology, OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Ministry of Agriculture , Nanjing Agricultural University , Nanjing , China
| | - Yang Fu
- a Key Lab of Animal Bacteriology, OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Ministry of Agriculture , Nanjing Agricultural University , Nanjing , China
| | - Caifeng Ma
- a Key Lab of Animal Bacteriology, OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Ministry of Agriculture , Nanjing Agricultural University , Nanjing , China
| | - Yanan He
- a Key Lab of Animal Bacteriology, OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Ministry of Agriculture , Nanjing Agricultural University , Nanjing , China
| | - Yanfei Yu
- a Key Lab of Animal Bacteriology, OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Ministry of Agriculture , Nanjing Agricultural University , Nanjing , China
| | - Dechao Du
- a Key Lab of Animal Bacteriology, OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Ministry of Agriculture , Nanjing Agricultural University , Nanjing , China
| | - Huochun Yao
- a Key Lab of Animal Bacteriology, OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Ministry of Agriculture , Nanjing Agricultural University , Nanjing , China
| | - Chengping Lu
- a Key Lab of Animal Bacteriology, OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Ministry of Agriculture , Nanjing Agricultural University , Nanjing , China
| | - Wei Zhang
- a Key Lab of Animal Bacteriology, OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Ministry of Agriculture , Nanjing Agricultural University , Nanjing , China
| |
Collapse
|
34
|
Monedero V, Revilla-Guarinos A, Zúñiga M. Physiological Role of Two-Component Signal Transduction Systems in Food-Associated Lactic Acid Bacteria. ADVANCES IN APPLIED MICROBIOLOGY 2017; 99:1-51. [PMID: 28438266 DOI: 10.1016/bs.aambs.2016.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Two-component systems (TCSs) are widespread signal transduction pathways mainly found in bacteria where they play a major role in adaptation to changing environmental conditions. TCSs generally consist of sensor histidine kinases that autophosphorylate in response to a specific stimulus and subsequently transfer the phosphate group to their cognate response regulators thus modulating their activity, usually as transcriptional regulators. In this review we present the current knowledge on the physiological role of TCSs in species of the families Lactobacillaceae and Leuconostocaceae of the group of lactic acid bacteria (LAB). LAB are microorganisms of great relevance for health and food production as the group spans from starter organisms to pathogens. Whereas the role of TCSs in pathogenic LAB (most of them belonging to the family Streptococcaceae) has focused the attention, the roles of TCSs in commensal LAB, such as most species of Lactobacillaceae and Leuconostocaceae, have been somewhat neglected. However, evidence available indicates that TCSs are key players in the regulation of the physiology of these bacteria. The first studies in food-associated LAB showed the involvement of some TCSs in quorum sensing and production of bacteriocins, but subsequent studies have shown that TCSs participate in other physiological processes, such as stress response, regulation of nitrogen metabolism, regulation of malate metabolism, and resistance to antimicrobial peptides, among others.
Collapse
Affiliation(s)
- Vicente Monedero
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Paterna, Spain
| | | | - Manuel Zúñiga
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Paterna, Spain
| |
Collapse
|
35
|
Brinsmade SR. CodY, a master integrator of metabolism and virulence in Gram-positive bacteria. Curr Genet 2016; 63:417-425. [PMID: 27744611 DOI: 10.1007/s00294-016-0656-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 09/27/2016] [Indexed: 12/22/2022]
Abstract
A growing body of evidence points to CodY, a global regulator in Gram-positive bacteria, as a critical link between microbial physiology and pathogenesis in diverse environments. Recent studies uncovering graded regulation of CodY gene targets reflect the true nature of this transcription factor controlled by ligands and reveal nutrient availability as a potentially critical factor in modulating pathogenesis. This review will serve to update the status of the field and raise new questions to be answered.
Collapse
|
36
|
Segura M, Calzas C, Grenier D, Gottschalk M. Initial steps of the pathogenesis of the infection caused by Streptococcus suis: fighting against nonspecific defenses. FEBS Lett 2016; 590:3772-3799. [PMID: 27539145 DOI: 10.1002/1873-3468.12364] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 08/11/2016] [Accepted: 08/16/2016] [Indexed: 12/16/2022]
Abstract
Interactions between a bacterial pathogen and its potentially susceptible host are initiated with the colonization step. During respiratory/oral infection, the pathogens must compete with the normal microflora, resist defense mechanisms of the local mucosal immunity, and finally reach, adhere, and breach the mucosal epithelial cell barrier in order to induce invasive disease. This is the case during infection by the swine and zoonotic pathogen Streptococcus suis, which is able to counteract mucosal barriers to induce severe meningitis and sepsis in swine and in humans. The initial steps of the pathogenesis of S. suis infection has been a neglected area of research, overshadowed by studies on the systemic and central nervous phases of the disease. In this Review article, we provide for the first time, an exclusive focus on S. suis colonization and the potential mechanisms involved in S. suis establishment at the mucosa, as well as the mechanisms regulating mucosal barrier breakdown. The role of mucosal immunity is also addressed. Finally, we demystify the extensive list of putative adhesins and virulence factors reported to be involved in the initial steps of pathogenesis by S. suis.
Collapse
Affiliation(s)
- Mariela Segura
- Laboratory of Immunology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada.,Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Cynthia Calzas
- Laboratory of Immunology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada.,Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.,Laboratory of Streptococcus suis, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Daniel Grenier
- Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.,Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada
| | - Marcelo Gottschalk
- Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.,Laboratory of Streptococcus suis, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
37
|
Willenborg J, Goethe R. Metabolic traits of pathogenic streptococci. FEBS Lett 2016; 590:3905-3919. [PMID: 27442496 DOI: 10.1002/1873-3468.12317] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/12/2016] [Accepted: 07/18/2016] [Indexed: 12/13/2022]
Abstract
Invasive and noninvasive diseases caused by facultative pathogenic streptococci depend on their equipment with virulence factors and on their ability to sense and adapt to changing nutrients in different host environments. The knowledge of the principal metabolic mechanisms which allow these bacteria to recognize and utilize nutrients in host habitats is a prerequisite for our understanding of streptococcal pathogenicity and the development of novel control strategies. This review aims to summarize and compare the central carbohydrate metabolic and amino acid biosynthetic pathways of a selected group of streptococcal species, all belonging to the naso-oropharyngeal microbiome in humans and/or animals. We also discuss the urgent need of comprehensive metabolomics approaches for a better understanding of the streptococcal metabolism during host-pathogen interaction.
Collapse
Affiliation(s)
- Jörg Willenborg
- Institute for Microbiology, University of Veterinary Medicine Hannover, Germany
| | - Ralph Goethe
- Institute for Microbiology, University of Veterinary Medicine Hannover, Germany
| |
Collapse
|