1
|
Olasard P, Suksri P, Taneerat C, Rungrassamee W, Sathapondecha P. In silico identification and functional study of long non-coding RNA involved in acute hepatopancreatic necrosis disease caused by Vibrio parahaemolyticus infection in white shrimp, Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2024; 152:109768. [PMID: 39013534 DOI: 10.1016/j.fsi.2024.109768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/04/2024] [Accepted: 07/13/2024] [Indexed: 07/18/2024]
Abstract
Acute hepatopancreatic necrosis disease (AHPND) caused by toxin-producing Vibrio parahaemolyticus (VpAHPND) has severely affected shrimp production. Long non-coding RNA (lncRNA), a regulatory non-coding RNA, which can play important function in shrimp disease responses. This study aimed to identify and investigate the role of lncRNA involved in VpAHPND infection in Pacific white shrimp, Litopenaeus vannamei. From a total of 368,736 de novo assembled transcripts, 67,559 were identified as putative lncRNAs, and only 72 putative lncRNAs showed differential expression between VpAHPND-infected and normal shrimp. The six candidate lncRNAs were validated for their expression profiles during VpAHPND infection and tissue distribution using RT-qPCR. The role of lnc2088 in response to VpAHPND infection was investigated through RNA interference. The result indicated that the suppression of lnc2088 expression led to an increase in shrimp mortality after VpAHPND infection. To explore the set of genes involved in lnc2088 knockdown, RNA sequencing was performed. A total of 275 differentially expressed transcripts were identified in the hepatopancreas of lnc2088 knockdown shrimp. The expression profiles of five candidate metabolic and immune-related genes were validated in lnc2088 knockdown and VpAHPND-infected shrimp. The result showed that the expression of ChiNAG was significantly increased, while that of NCBP1, WIPF2, and NFKB1 was significantly downregulated in ds2088-injected shrimp. Additionally, the expression of NFKB1, NCBP1 and WIPF2 was significantly increased, whereas that of ChiNAG and CUL5 were significantly decreased after infection with VpAHPND. Our work identified putative lncRNA profiles in L. vannamei in response to VpAHPND infection and investigated the role of lncRNA in shrimp immunity.
Collapse
Affiliation(s)
- Praewrung Olasard
- Center for Genomics and Bioinformatics Research, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Phassorn Suksri
- Center for Genomics and Bioinformatics Research, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Chanikan Taneerat
- Center for Genomics and Bioinformatics Research, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Wanilada Rungrassamee
- Biosensing and Bioprospectiing Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathum Thani 12120, Thailand
| | - Ponsit Sathapondecha
- Center for Genomics and Bioinformatics Research, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
2
|
Brealey JC, Kodama M, Rasmussen JA, Hansen SB, Santos-Bay L, Lecaudey LA, Hansen M, Fjære E, Myrmel LS, Madsen L, Bernhard A, Sveier H, Kristiansen K, Gilbert MTP, Martin MD, Limborg MT. Host-gut microbiota interactions shape parasite infections in farmed Atlantic salmon. mSystems 2024; 9:e0104323. [PMID: 38294254 PMCID: PMC10886447 DOI: 10.1128/msystems.01043-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/19/2023] [Indexed: 02/01/2024] Open
Abstract
Animals and their associated microbiota share long evolutionary histories. However, it is not always clear how host genotype and microbiota interact to affect phenotype. We applied a hologenomic approach to explore how host-microbiota interactions shape lifetime growth and parasite infection in farmed Atlantic salmon (Salmo salar). Multi-omics data sets were generated from the guts of 460 salmon, 82% of which were naturally infected with an intestinal cestode. A single Mycoplasma bacterial strain, MAG01, dominated the gut metagenome of large, non-parasitized fish, consistent with previous studies showing high levels of Mycoplasma in the gut microbiota of healthy salmon. While small and/or parasitized salmon also had high abundance of MAG01, we observed increased alpha diversity in these individuals, driven by increased frequency of low-abundance Vibrionaceae and other Mycoplasma species that carried known virulence genes. Colonization by one of these cestode-associated Mycoplasma strains was associated with host individual genomic variation in long non-coding RNAs. Integrating the multi-omic data sets revealed coordinated changes in the salmon gut mRNA transcriptome and metabolome that correlated with shifts in the microbiota of smaller, parasitized fish. Our results suggest that the gut microbiota of small and/or parasitized fish is in a state of dysbiosis that partly depends on the host genotype, highlighting the value of using a hologenomic approach to incorporate the microbiota into the study of host-parasite dynamics.IMPORTANCEStudying host-microbiota interactions through the perspective of the hologenome is gaining interest across all life sciences. Intestinal parasite infections are a huge burden on human and animal health; however, there are few studies investigating the role of the hologenome during parasite infections. We address this gap in the largest multi-omics fish microbiota study to date using natural cestode infection of farmed Atlantic salmon. We find a clear association between cestode infection, salmon lifetime growth, and perturbation of the salmon gut microbiota. Furthermore, we provide the first evidence that the genetic background of the host may partly determine how the gut microbiota changes during parasite-associated dysbiosis. Our study therefore highlights the value of a hologenomic approach for gaining a more in-depth understanding of parasitism.
Collapse
Affiliation(s)
- Jaelle C Brealey
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Miyako Kodama
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences,University of Copenhagen, Copenhagen, Denmark
| | - Jacob A Rasmussen
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences,University of Copenhagen, Copenhagen, Denmark
- Department of Biology, Laboratory of Genomics and Molecular Biomedicine, University of Copenhagen, Copenhagen, Denmark
| | - Søren B Hansen
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences,University of Copenhagen, Copenhagen, Denmark
| | - Luisa Santos-Bay
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences,University of Copenhagen, Copenhagen, Denmark
| | - Laurène A Lecaudey
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Aquaculture Department, SINTEF Ocean, Trondheim, Norway
| | - Martin Hansen
- Department of Environmental Science, Environmental Metabolomics Lab, Aarhus University, Roskilde, Denmark
| | - Even Fjære
- Institute of Marine Research, Bergen, Norway
| | | | - Lise Madsen
- Institute of Marine Research, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Norway, Bergen, Norway
| | | | | | - Karsten Kristiansen
- Department of Biology, Laboratory of Genomics and Molecular Biomedicine, University of Copenhagen, Copenhagen, Denmark
| | - M Thomas P Gilbert
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences,University of Copenhagen, Copenhagen, Denmark
| | - Michael D Martin
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Morten T Limborg
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences,University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Kang J, Chung A, Suresh S, Bonzi LC, Sourisse JM, Ramirez‐Calero S, Romeo D, Petit‐Marty N, Pegueroles C, Schunter C. Long non-coding RNAs mediate fish gene expression in response to ocean acidification. Evol Appl 2024; 17:e13655. [PMID: 38357358 PMCID: PMC10866067 DOI: 10.1111/eva.13655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
The majority of the transcribed genome does not have coding potential but these non-coding transcripts play crucial roles in transcriptional and post-transcriptional regulation of protein-coding genes. Regulation of gene expression is important in shaping an organism's response to environmental changes, ultimately impacting their survival and persistence as population or species face global change. However, the roles of long non-coding RNAs (lncRNAs), when confronted with environmental changes, remain largely unclear. To explore the potential role of lncRNAs in fish exposed to ocean acidification (OA), we analyzed publicly available brain RNA-seq data from a coral reef fish Acanthochromis polyacanthus. We annotated the lncRNAs in its genome and examined the expression changes of intergenic lncRNAs (lincRNAs) between A. polyacanthus samples from a natural CO2 seep and a nearby control site. We identified 4728 lncRNAs, including 3272 lincRNAs in this species. Remarkably, 93.03% of these lincRNAs were species-specific. Among the 125 highly expressed lincRNAs and 403 differentially expressed lincRNAs in response to elevated CO2, we observed that lincRNAs were either neighboring or potentially trans-regulating differentially expressed coding genes associated with pH regulation, neural signal transduction, and ion transport, which are known to be important in the response to OA in fish. In summary, lncRNAs may facilitate fish acclimation and mediate the responses of fish to OA by modulating the expression of crucial coding genes, which offers insight into the regulatory mechanisms underlying fish responses to environmental changes.
Collapse
Affiliation(s)
- Jingliang Kang
- Swire Institute of Marine Science, School of Biological SciencesThe University of Hong KongPokfulamHong Kong SAR
| | - Arthur Chung
- Swire Institute of Marine Science, School of Biological SciencesThe University of Hong KongPokfulamHong Kong SAR
| | - Sneha Suresh
- Swire Institute of Marine Science, School of Biological SciencesThe University of Hong KongPokfulamHong Kong SAR
| | - Lucrezia C. Bonzi
- Swire Institute of Marine Science, School of Biological SciencesThe University of Hong KongPokfulamHong Kong SAR
| | - Jade M. Sourisse
- Swire Institute of Marine Science, School of Biological SciencesThe University of Hong KongPokfulamHong Kong SAR
| | - Sandra Ramirez‐Calero
- Swire Institute of Marine Science, School of Biological SciencesThe University of Hong KongPokfulamHong Kong SAR
| | - Daniele Romeo
- Swire Institute of Marine Science, School of Biological SciencesThe University of Hong KongPokfulamHong Kong SAR
| | - Natalia Petit‐Marty
- Swire Institute of Marine Science, School of Biological SciencesThe University of Hong KongPokfulamHong Kong SAR
| | - Cinta Pegueroles
- Department of Genetics, Microbiology and Statistics, Institute for Research on Biodiversity (IRBio)University of BarcelonaBarcelonaSpain
| | - Celia Schunter
- Swire Institute of Marine Science, School of Biological SciencesThe University of Hong KongPokfulamHong Kong SAR
- State Key Laboratory of Marine Pollution and Department of ChemistryCity University of Hong KongHong Kong SARChina
| |
Collapse
|
4
|
Liu B, San L, Guo H, Zhu K, Zhang N, Yang J, Liu B, Hou J, Zhang D. Transcriptomic Analysis Reveals Functional Interaction of mRNA-lncRNA-miRNA in Trachinotus ovatus Infected by Cryptocaryon irritans. Int J Mol Sci 2023; 24:15886. [PMID: 37958869 PMCID: PMC10648848 DOI: 10.3390/ijms242115886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
The skin of Trachinotus ovatus is a crucial component of the mucosal immune system and serves as the primary site of infection by Cryptocaryon irritans. In order to investigate the significant role of skin in C. irritans infection, a comprehensive transcriptome analysis was conducted on skin tissues from the infection group, infection-adjacent group, and infection group compared with the infection-adjacent group (ATT_vs_PER, ADJ_vs_PER, ATT_vs_ADJ). This study identified differentially expressed long non-coding RNAs (DE lncRNAs), microRNAs (DE miRNAs), and differentially expressed genes (DEGs). The prediction of lncRNA target genes was accomplished by utilizing positional relationship (co-location) and expression correlation (co-expression) with protein-coding genes. Subsequently, functional enrichment analysis was conducted on the target genes of differentially expressed lncRNAs, revealing their involvement in signaling pathways such as tight junction, MAPK, and cell adhesion molecules. This study describes the regulatory network of lncRNA-miRNA-mRNA in T. ovatus skin tissue infected with C. irritans. Functional prediction analysis showed that differentially expressed lncRNA and miRNA may regulate the expression of immune genes such as interleukin-8 (il8) to resist the infection of C. irritans. Conducting additional research on these non-coding RNAs will facilitate a deeper understanding of their immune regulatory function in T. ovatus during C. irritans infection. The study of non-coding RNA in this study laid a foundation for revealing the molecular mechanism of the immune system of T. ovatus to respond to the infection of C. irritans. It provided a choice for the molecular breeding of Trachinotus ovatus against C. irritans.
Collapse
Affiliation(s)
- Baosuo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (B.L.); (B.L.)
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Lize San
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China
| | - Huayang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (B.L.); (B.L.)
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Kecheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (B.L.); (B.L.)
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (B.L.); (B.L.)
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Jingwen Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (B.L.); (B.L.)
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Bo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (B.L.); (B.L.)
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Jilun Hou
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China
| | - Dianchang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (B.L.); (B.L.)
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
- Sanya Tropical Fisheries Research Institute, Sanya 572000, China
| |
Collapse
|
5
|
Zheng W, Chen Y, Wang Y, Chen S, Xu XW. Genome-Wide Identification and Involvement in Response to Biotic and Abiotic Stresses of lncRNAs in Turbot ( Scophthalmus maximus). Int J Mol Sci 2023; 24:15870. [PMID: 37958851 PMCID: PMC10648414 DOI: 10.3390/ijms242115870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play crucial roles in a variety of biological processes, including stress response. However, the number, characteristics and stress-related expression of lncRNAs in turbot are still largely unknown. In this study, a total of 12,999 lncRNAs were identified at the genome-wide level of turbot for the first time using 24 RNA-seq datasets. Sequence characteristic analyses of transcripts showed that lncRNA transcripts were shorter in average length, lower in average GC content and in average expression level as compared to the coding genes. Expression pattern analyses of lncRNAs in 12 distinct tissues showed that lncRNAs, especially lincRNA, exhibited stronger tissue-specific expression than coding genes. Moreover, 612, 1351, 1060, 875, 420 and 1689 differentially expressed (DE) lncRNAs under Vibrio anguillarum, Enteromyxum scophthalmi, and Megalocytivirus infection and heat, oxygen, and salinity stress conditions were identified, respectively. Among them, 151 and 62 lncRNAs showed differential expression under various abiotic and biotic stresses, respectively, and 11 lncRNAs differentially expressed under both abiotic and biotic stresses were selected as comprehensive stress-responsive lncRNA candidates. Furthermore, expression pattern analysis and qPCR validation both verified the comprehensive stress-responsive functions of these 11 lncRNAs. In addition, 497 significantly co-expressed target genes (correlation coefficient (R) > 0.7 and q-value < 0.05) for these 11 comprehensive stress-responsive lncRNA candidates were identified. Finally, GO and KEGG enrichment analyses indicated that these target genes were enriched mainly in molecular function, such as cytokine activity and active transmembrane transporter activity, in biological processes, such as response to stimulus and immune response, and in pathways, such as protein families: signaling and cellular processes, transporters and metabolism. These findings not only provide valuable reference resources for further research on the molecular basis and function of lncRNAs in turbot but also help to accelerate the progress of molecularly selective breeding of stress-resistant turbot strains or varieties.
Collapse
Affiliation(s)
- Weiwei Zheng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (W.Z.); (Y.C.); (Y.W.)
| | - Yadong Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (W.Z.); (Y.C.); (Y.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Yaning Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (W.Z.); (Y.C.); (Y.W.)
- College of Life Science, Qingdao University, Qingdao 266071, China
| | - Songlin Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (W.Z.); (Y.C.); (Y.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Xi-wen Xu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (W.Z.); (Y.C.); (Y.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| |
Collapse
|
6
|
Abdellaoui N, Kim SY, Kim MS. Effect of TRAF6-knockout on gene expression and lncRNA expression in Epithelioma papulosum cyprini (EPC) cells. Anim Cells Syst (Seoul) 2023; 27:197-207. [PMID: 37808550 PMCID: PMC10552615 DOI: 10.1080/19768354.2023.2263070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023] Open
Abstract
TRAF6 is a key immune gene that plays a significant role in toll-like receptor signal transduction and activates downstream immune genes involved in antiviral immunity in fish. To explore the role of TRAF6 in Epithelioma papulosum cyprini (EPC) cells, we knocked out the TRAF6 gene using the Clustered Regularly Interspaced Short Palindromic Repeats-Cas9 (CRISPR-Cas9) technique and then analyzed the transcriptomes of the knockout cells. In this study, we identified that 232 transcripts were differentially expressed in naive cells. Using the pipeline, we identified 381 novel lncRNAs in EPC cells, 23 of which were differentially expressed. Gene Ontology enrichment analysis demonstrated that differentially expressed genes (DEG) are implicated in various immune processes, such as neutrophil chemotaxis and mitogen-activated protein kinase binding. In addition, the KEGG pathway analysis revealed enrichment in immune-related pathways (Interleukin-17 signaling pathway, cytokine-cytokine receptor interaction, and TNF signaling pathway). Furthermore, the target genes of the differentially expressed lncRNAs were implicated in the negative regulation of interleukin-6 and tumor necrosis factor production. These results indicate that lncRNAs and protein-coding genes participate in the regulation of immune and metabolic processes in fish.
Collapse
Affiliation(s)
- Najib Abdellaoui
- Department of Biological Sciences, Kongju National University, Gongju, South Korea
| | - Seon Young Kim
- Department of Biological Sciences, Kongju National University, Gongju, South Korea
| | - Min Sun Kim
- Department of Biological Sciences, Kongju National University, Gongju, South Korea
- BK21 Team for Field-oriented BioCore Human Resources Development, Kongju National University, Gongju, South Korea
| |
Collapse
|
7
|
Zhang Y, Hu X, Liu S, Zhou M, Wang C, Cao H. Identification and analysis of long non-coding RNAs that are involved in response to GCRV infection in grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2023; 134:108623. [PMID: 36809843 DOI: 10.1016/j.fsi.2023.108623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Long noncoding RNAs (lncRNAs) play important roles in many biological processes including the immune response against virus infection. However, their roles in grass carp reovirus (GCRV) pathogenicity are largely unknown. In this study, the next-generation sequencing (NGS) technology was used to analyze the profiles of lncRNAs in GCRV-infected and mock-infected grass carp kidney (CIK) cells. Our results showed that 37 lncRNAs and 1039 mRNA transcripts exhibited differential expression in CIK cells after GCRV infection compared with the mock infection. Functional analysis through the gene ontology and Kyoto Encyclopedia of Genes and Genomes databases (KEGG) indicated that target genes of the differentially expressed lncRNAs were mainly enriched in the biological processes - biological regulation, cellular process, metabolic process and regulation of the biological process, such as MAPK signaling pathway and Notch signaling. Furthermore, we observed that the lncRNA3076 (ON693852) was markedly upregulated after the GCRV infection. In addition, silencing lncRNA3076 decreased the GCRV replication, which indicates that it might play an important role in the replication of GCRV.
Collapse
Affiliation(s)
- Yexuan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xudong Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuai Liu
- College of Fishery and Life Sciences, Dalian Ocean University, Dalian, 116023, China
| | - Man Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunling Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Bai Y, Chen X, Qu A, Liu Y, Zhao J, Ke Q, Pu F, Wu L, Chi H, Gong H, Zhou T, Xu P. Identification and Expression Analysis of LncRNAs Reveal the Immune Mechanism of Visceral White-Nodules Disease Resistance in Large Yellow Croaker. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:57-69. [PMID: 36401080 DOI: 10.1007/s10126-022-10181-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Long non-coding RNAs (lncRNAs) have several known functions in fish growth processes and signal transduction, but their possible roles in response to bacterial diseases remain largely unresolved. In this study, we report a comprehensive cold-water bacterial disease-responsive lncRNA expression profile for understanding the transcriptional regulatory mechanisms of visceral white-nodules disease resistance in large yellow croaker. A total of 2534 high-confidence lncRNAs were identified by a rigorous filtering pipeline as a basic sequence set for comparative transcriptional analysis. In addition, a total of 10,200 lncRNA-mRNA pairs with high correlation coefficients were identified by expressions level correlation analysis, including non-redundant 381 DE lncRNAs and 2590 differential expressed genes. MSTRG_11084_1 and MSTRG_20402_1 were linked to a large number of target genes and may be involved in important functions in immune regulation. We further revealed the conserved and idiosyncratic features of the disease response process between the technical control strain (TCS) and the resistant strain (RS). Immune-related pathways were enriched in GO terms and KEGG pathways, among which cytokine-cytokine receptor interaction, MAPK signaling pathway, and NF-kappa B signaling pathway may play a key role in VWND resistance in large yellow croaker. Protein-protein interaction network (PPI) analysis revealed that immune-related target genes such as il-10, met, acta2, myc, cav1, and ntrk1, as well as growth and metabolism-related target genes such as pik3r2, igf1, sc5d, hmgcr, and lss were considered the main hub genes. This study represents the first characterization of lncRNAs involved in VWND resistance in large yellow croaker and provides new clues for elucidating the disease response mechanism of large yellow croaker.
Collapse
Affiliation(s)
- Yulin Bai
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Xintong Chen
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Ang Qu
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Yue Liu
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Ji Zhao
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Qiaozhen Ke
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352130, China
| | - Fei Pu
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Linni Wu
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Hongshu Chi
- Biotechnology Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Hui Gong
- Biotechnology Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Tao Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352130, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Peng Xu
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352130, China.
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
9
|
Haridevamuthu B, Guru A, Velayutham M, Snega Priya P, Arshad A, Arockiaraj J. Long non‐coding RNA, a supreme post‐transcriptional immune regulator of bacterial or virus‐driven immune evolution in teleost. REVIEWS IN AQUACULTURE 2023; 15:163-178. [DOI: 10.1111/raq.12709] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/18/2022] [Indexed: 10/16/2023]
Abstract
AbstractThe global aquaculture boom, fuelled by a reduction in wild population and detection of novel viruses, has created a demanding market, hence, there is a pressing need to investigate the immune system of fish, further. As the most diverse community of vertebrates and a central contributor to the progressing global aquaculture market, teleost continues to draw vast scientific interest. Recent breakthroughs in multi‐omics technologies have provided a platform to understand the role of long non‐coding RNA (lncRNA) in the host immune system during infection. Emerging evidence shows that teleost lncRNA might have a regulatory role in immune responses, mostly through lncRNA–microRNA (miRNA) sponging. Teleost lncRNA shares a functionally active short sequence complement to target the miRNA which is conserved among the several fish species. Recent report suggests that rhabdovirus exploits a lncRNA in teleost and, to dodge the host immune mechanism and negatively regulate the immune system. This observation reveals the essentiality of lncRNA in pathogen‐driven immunity in teleost. Reports available on the function of teleost lncRNA are still in early stages and experimental verifications are a limiting factor. Unravelling the lncRNA‐mediated immune regulation in fishes could be used against the invading pathogens to strengthen the aquaculture production. This review elaborates on the experimentally identified and functionally characterized lncRNA and its regulatory role in the teleost immune response during infection and pathogen‐driven host immune evolution, which could eventually lead to achieving high standards in aquaculture productivity.
Collapse
Affiliation(s)
- B. Haridevamuthu
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai Tamil Nadu India
| | - Ajay Guru
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai Tamil Nadu India
| | - Manikandan Velayutham
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai Tamil Nadu India
| | - P. Snega Priya
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai Tamil Nadu India
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I‐AQUAS) Universiti Putra Malaysia Port Dickson Malaysia
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai Tamil Nadu India
| |
Collapse
|
10
|
Fu Q, Li Y, Zhao S, Wang H, Zhao C, Zhang P, Cao M, Yang N, Li C. Comprehensive identification and expression profiling of immune-related lncRNAs and their target genes in the intestine of turbot (Scophthalmus maximus L.) in response to Vibrio anguillarum infection. FISH & SHELLFISH IMMUNOLOGY 2022; 130:233-243. [PMID: 36084890 DOI: 10.1016/j.fsi.2022.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/22/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Long non-coding RNA (lncRNA) play vital regulatory roles in various biological processes. Intestine is one of the most sensitive organs to environmental and homeostatic disruptions for fish. However, systematic profiles of lncRNAs in the intestine of teleost in responses to pathogen infections is still limited. Turbot (Scophthalmus maximus L.), an important commercial fish species in China, has been suffering with Vibrio anguillarum infection, resulted in dramatic economic loss. Hereinto, the intestinal tissues of turbot were sampled at 0 h, 2 h, 12 h, and 48 h following V. anguillarum infection. The histopathological analysis revealed that the pathological trauma was mainly present in intestinal tunica mucosal epithelium. After high-throughput sequencing and bioinformatic analysis, a total of 9722 lncRNAs and 21,194 mRNAs were obtained, and the average length and exon number of lncRNAs were both less than those of mRNAs. Among which, a set of 158 lncRNAs and 226 mRNAs were differentially expressed (DE-lncRNAs and DEGs) in turbot intestine at three time points, related to many immune-related genes such as complement, interleukin, chemokine, lysosome, and macrophage, indicating their potential critical roles in immune responses. In addition, 2803 and 1803 GO terms were enriched for DEGs and co-expressed target genes of DE-lncRNAs, respectively. Moreover, 127 and 50 KEGG pathways including cell adhesion molecules (CAMs), phagosome, JAK-STAT signaling pathway, cytokine-cytokine receptor interaction, and intestinal immune network for IgA production, were enriched for DEGs and co-expressed target genes of DE-lncRNAs, respectively. Finally, qRT-PCR was conducted to confirm the reliability of sequencing data. The present study will set the foundation for the future exploration of lncRNA functions in teleost in response to bacterial infection.
Collapse
Affiliation(s)
- Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuqing Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shoucong Zhao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Haojie Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Chunyan Zhao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Pei Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
11
|
Zhang X, Sun B, Bai Y, Canário AVM, Xu X, Li J. Long non-coding RNAs are involved in immune resistance to Aeromonas hydrophila in black carp (Mylopharyngodon piceus). FISH & SHELLFISH IMMUNOLOGY 2022; 127:366-374. [PMID: 35772677 DOI: 10.1016/j.fsi.2022.06.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/24/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
A growing number of studies identified long non-coding RNAs (lncRNAs) to be closely associated with immune function through the regulation of immune cell differentiation and immune cell effector function. Here we tested whether lncRNAs are involved in immune function in black carp (Mylopharyngodon piceus) through the exposure to Aeromonas hydrophila and analysis of the spleen gene expression response using RNA-seq. A total of 9036 lncRNAs were identified with high confidence. Differential expression analysis identified a total of 3558 DElncRNAs (Differential expression lncRNA) involved in A. hydrophila infection and 4526 target genes corresponding to DElncRNAs. After screening 4526 target genes in the InnateDB database, a total of 150 immunity genes were identified. After GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis of the obtained immunity genes, the Toll-like receptor (TLR) signaling pathway, TLR2, TLR3, TLR5, and TLR8 were identified as particularly significant in A. hydrophyla-resistant black carp. At the same time, the Ras signaling pathway was particularly enriched in the spleen of susceptible black carp. Analysis of PPI (protein-protein interaction) networks of the obtained immune genes identified SRC (SRC Proto-Oncogene), MYD88 (Myeloid differentiation primary response 88), MAPK3 (Mitogen-Activated Protein Kinase 3), MYC (MYC Proto-Oncogene) as main hub genes regulated by lncRNA and possibly mediating a mechanism of susceptibility to bacteria. These results establish a functional role of lncRNAs and a mechanistic base for the immune response in black carp resistant to A. hydrophila.
Collapse
Affiliation(s)
- Xueshu Zhang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; CCMAR/CIMAR Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Bingyan Sun
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Yulin Bai
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Adelino V M Canário
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; CCMAR/CIMAR Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
12
|
Samsing F, Wynne JW, Valenzuela-Muñoz V, Valenzuela-Miranda D, Gallardo-Escárate C, Alexandre PA. Competing endogenous RNA-networks reveal key regulatory microRNAs involved in the response of Atlantic salmon to a novel orthomyxovirus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 132:104396. [PMID: 35304180 DOI: 10.1016/j.dci.2022.104396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
One of the most intriguing discoveries of the genomic era is that only a small fraction of the genome is dedicated to protein coding. The remaining fraction of the genome contains, amongst other elements, a number of non-coding transcripts that regulate the transcription of protein coding genes. Here we used transcriptome sequencing data to explore these gene regulatory networks using RNA derived from gill tissue of Atlantic salmon (Salmo salar) infected with Pilchard orthomyxovirus (POMV), but showing no clinical signs of disease. We examined fish sampled early during the challenge trial (8-12 days after infection) to uncover potential biomarkers of early infection and innate immunity, and fish sampled late during the challenge trial (19 dpi) to elucidate potential markers of resistance to POMV. We analysed total RNA-sequencing data to find differentially expressed messenger RNAs (mRNA) and identify new long-noncoding RNAs (lncRNAs). We also evaluated small RNA sequencing data to find differentially transcribed microRNAs (miRNAs) and explore their role in gene regulatory networks. Whole-genome expression data (both coding and non-coding transcripts) were used to explore the crosstalk between RNA molecules by constructing competing endogenous RNA networks (ceRNA). The teleost specific miR-462/miR-731 cluster was strongly induced in POMV infected fish and deemed a potential biomarker of early infection. Gene networks also identified a selenoprotein (selja), downregulated in fish sampled late during the challenge, which may be associated to viral clearance and the return to homeostasis after infection. This study provides the basis for further investigations using molecular tools to overexpress or inhibit miRNAs to confirm the functional impact of the interactions presented here on gene expression and their potential application at commercial level.
Collapse
Affiliation(s)
- Francisca Samsing
- CSIRO Agriculture and Food, Livestock and Aquaculture, Hobart, TAS, Australia
| | - James W Wynne
- CSIRO Agriculture and Food, Livestock and Aquaculture, Hobart, TAS, Australia.
| | | | - Diego Valenzuela-Miranda
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción, Chile
| | | | - Pâmela A Alexandre
- CSIRO Agriculture and Food, Livestock and Aquaculture, Brisbane, QLD, Australia
| |
Collapse
|
13
|
Zhang X, Shi J, Sun Y, Wang Y, Zhang Z. The potential role of eyestalk in the immunity of Litopenaeus vannamei to Vibrio parahaemolyticus infection II. From the perspective of long non-coding RNA. FISH & SHELLFISH IMMUNOLOGY 2022; 124:300-312. [PMID: 35398223 DOI: 10.1016/j.fsi.2022.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Long non-coding RNAs (lncRNAs) have been linked to immunological modulation. Unfortunately, little is known about the processes of immune control in shrimp. In crustaceans such as Litopenaeus vannamei, a prominent aquaculture species, the X-organ-sinus gland complex (XO-SG) in the eyestalk is an essential neuroendocrine regulatory organ. Eyestalk ablation is commonly employed in aquaculture to accelerate ovarian maturation in shrimp. It does, however, have a negative impact on the shrimps' immunocompetence and causes death. As a result, we used RNA-seq to profile the transcriptomes of L. vannamei hemocytes infected with Vibrio parahaemolyticus after the eyestalk ablation. Following strict transcript screening procedures, 2307 lncRNAs were identified from L. vannamei hemocytes in this study. Pearson correlation analysis was finally used to uncover 535 DElncRNAs and 1566 DEmRNA targets. According to the Venn diagram analysis, 326 non-eyestalk regulatory lncRNAs (NElncRNAs) with a target of 1014 non-eyestalk regulatory genes (NEmRNAs), 47 eyestalk negative regulatory lncRNAs (ENRlncRNAs) with a target of 95 eyestalk negative regulatory genes (ENRmRNAs), and 162 eyestalk positive regulatory lncRNAs (EPRlncRNAs) with a target of 457 eyestalk positive regulatory genes (EPRmRNAs) were screened. The bioinformatics analysis revealed that lncRNAs were associated with Axon regeneration, Rap1 signaling pathway, Thyroid hormone signaling pathway, TGF-beta signaling pathway, and PI3K-Akt signaling pathway, implying that lncRNAs may play a role in the regulation of the neuroendocrine-immune (NEI) system. Furthermore, several lncRNAs targeting HSP70, YWHAZ, FER2, HIF1α, and Notch were discovered and verified by qRT-PCR. These findings showed that regulation of lncRNAs in hemocytes which were controlled by the eyestalk might be one of the impact variables in controlling the differential expression of mRNAs associated with immune response in L. vannamei infected with V. parahaemolyticus.
Collapse
Affiliation(s)
- Xin Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Jialong Shi
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yulong Sun
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China.
| | - Ziping Zhang
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
14
|
Comparative transcriptome analysis reveals immunoregulation mechanism of lncRNA-mRNA in gill and skin of large yellow croaker (Larimichthys crocea) in response to Cryptocaryon irritans infection. BMC Genomics 2022; 23:206. [PMID: 35287569 PMCID: PMC8922914 DOI: 10.1186/s12864-022-08431-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/28/2022] [Indexed: 12/14/2022] Open
Abstract
Background Cryptocaryonosis caused by Cryptocaryon irritans is one of the major diseases of large yellow croaker (Larimichthys crocea), which lead to massive economic losses annually to the aquaculture industry of L. crocea. Although there have been some studies on the pathogenesis for cryptocaryonosis, little is known about the innate defense mechanism of different immune organs of large yellow croaker. Results In order to analyze the roles of long non-coding RNAs and genes specifically expressed between immune organs during the infection of C. irritans, in this study, by comparing transcriptome data from different tissues of L. crocea, we identified tissue-specific transcripts in the gills and skin, including 507 DE lncRNAs and 1592 DEGs identified in the gills, and 110 DE lncRNAs and 1160 DEGs identified in the skin. Furthermore, we constructed transcriptome co-expression profiles of L. crocea gill and skin, including 7,503 long noncoding RNAs (lncRNAs) and 23,172 protein-coding genes. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed that the DEGs and the target genes of the DE lncRNAs in the gill were specifically enriched in several pathways related to immune such as HIF-1 signaling pathway. The target genes of DE lncRNAs and DEGs in the skin are specifically enriched in the complement and coagulation cascade pathways. Protein–protein interaction (PPI) network analysis identified 3 hub genes including NFKBIA, TNFAIP3 and CEBPB, and 5 important DE lncRNAs including MSTRG.24134.4, MSTRG.3038.5, MSTRG.27019.3, MSTRG.26559.1, and MSTRG.10983.1. The expression patterns of 6 randomly selected differentially expressed immune-related genes were validated using the quantitative real-time PCR method. Conclusions In short, our study is helpful to explore the potential interplay between lncRNAs and protein coding genes in different tissues of L. crocea post C. irritans and the molecular mechanism of pathogenesis for cryptocaryonosis. Highlights Skin and gills are important sources of pro-inflammatory molecules,
and their gene expression patterns are tissue-specific after C. irritans infection. 15 DEGs and 5 DE
lncRNAs were identified as hub regulatory elements after C. irritans infection The HIF-1 signaling
pathway and the complement and coagulation cascade pathway may be key
tissue-specific regulatory pathways in gills and skin, respectively.
Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08431-w.
Collapse
|
15
|
Genome-wide integrated analysis reveals functions of lncRNA-miRNA-mRNA interactions in Atlantic salmon challenged by Aeromonas salmonicida. Genomics 2021; 114:328-339. [PMID: 34933071 DOI: 10.1016/j.ygeno.2021.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/01/2021] [Accepted: 12/15/2021] [Indexed: 12/25/2022]
Abstract
Aeromonas salmonicida (A. salmonicida) is a pathogenic bacterium that causes serious problems in the global Atlantic salmon aquaculture industry. In this study, we comprehensively analyzed the profiles of lncRNAs, miRNAs and mRNAs in gills of Atlantic salmon at high-dose A. salmonicida infection (3.06 × 108 CFU/mL), low-dose A. salmonicida infection (3.06 × 105 CFU/mL), and a PBS (100 μL) control. We identified 65 differentially expressed lncRNAs, 41 miRNAs, and 512 mRNAs between the control group and infection groups. Functional analysis showed that these genes were significantly enriched in the p53 signaling pathway, Wnt signaling pathway, mTOR signaling pathway, JAK-STAT signaling pathway, and Toll-like receptor signaling pathway. In addition, we predicted key genes in immune-related pathways and constructed a lncRNA-miRNA-mRNA network based on whole transcriptomic analysis. We further predicted three lncRNA-miRNA-mRNA axes as potential novel biomarkers in regulating the immune response of Atlantic salmon against A. salmonicida infection.
Collapse
|
16
|
Liu S, Yu T, Zhang Y, Pan C, Cai L, Yang M. Integrated analysis of mRNA and long non-coding RNA expression profiles reveals the potential roles of lncRNA-mRNA network in carp macrophage immune regulation. In Vitro Cell Dev Biol Anim 2021; 57:835-847. [PMID: 34554377 DOI: 10.1007/s11626-021-00610-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/28/2021] [Indexed: 12/27/2022]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as a hot topic in research as mounting evidence has indicated their transcriptional or post-transcriptional regulatory potential in multiple biological processes. Previous studies have revealed the involvement of lncRNAs in the immunoregulation of mammalian macrophages by changing mRNA expression; however, studies on the lncRNAs in fish macrophages and their potential roles in the immune system remain unknown. Primary macrophages were isolated from the head kidney (HK) of red common carp (Cyprinus carpio) and high-throughput lncRNA-mRNA sequencing was performed using the Illumina HiSeq platform. The results revealed that the most highly expressed mRNAs in primary HK macrophages were mainly involved in immune-related signal pathways. Furthermore, the most enriched immune-related GO term and KEGG pathway of the mRNAs were "immune system development" and "chemokine signaling pathway," respectively. A total of 20,333 lncRNAs, composed of 10,512 known and 9821 novel lncRNAs, were identified, and functional enrichment analysis of the lncRNA-mRNA network indicated that the expressed lncRNAs in primary HK macrophages could be associated with the regulation of multiple immune-related signaling pathways. In addition, the expressions of several selected lncRNAs and their related mRNAs were determined in carp macrophages following a 6-h exposure to lipopolysaccharide (LPS) and Poly(I: C), the results of which confirmed the co-expression regulation of lncRNAs and target mRNAs in the immune response of carp macrophages. These results suggest the correlative of the lncRNA-mRNA network in fish macrophage immune response, which may further affect the cross-talk of various signaling pathways by interaction with other network genes. Here, we provided fundamental data about the transcriptome profiles of primary HK macrophages from red common carp by analysis of the lncRNA-mRNA network, and ultimately suggest the potential roles of lncRNA-mRNA networks in immune regulation in teleost fish.
Collapse
Affiliation(s)
- Shuai Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang, 330012, China
| | - Ting Yu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yuanyuan Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Chenyuan Pan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Ling Cai
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
| | - Ming Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
17
|
Sun Q, Wang J, Wang G, Wang H, Liu H. Integrated analysis of lncRNA and mRNA in liver of Megalobrama amblycephala post Aeromonas hydrophila infection. BMC Genomics 2021; 22:653. [PMID: 34511071 PMCID: PMC8435129 DOI: 10.1186/s12864-021-07969-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/28/2021] [Indexed: 01/01/2023] Open
Abstract
Background As non-coding RNA molecules of more than 200 bp in length, long non-coding RNAs (lncRNAs) play a variety of roles in biological processes, including regulating the immune responses to bacterial infections. In recent years, there have been many in-depth studies on mammalian lncRNAs, but the relevant studies in fish are very limited. Meanwhile, since lncRNAs are not conserved among species, it is difficult to apply the existing results directly to unstudied species. Results To obtain the information of lncRNAs in Megalobrama amblycephala, one of the most economically important freshwater fish in China, also to better understand the biological significance of lncRNAs in the immunity system, the fish liver at 0, 4, 12, 24, and 72 h post Aeromonas hydrophila infection (hpi) were obtained for lncRNA-sequencing (lncRNA-seq). A total of 14,849 lncRNAs were identified, and 2196 lncRNAs showed significant differences at different time points post A. hydrophila infection. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed that the target genes of the differentially expressed lncRNAs were enriched in several pathways related to immune such as apoptosis, inflammation, and immune response. Time-specific modules were then identified, using weighted correlation network analysis (WGCNA), and 28 modules significantly correlated with different time point after infection were found. Furthermore, four immune-related genes and six lncRNAs in the time-specific modules were subsequently verified by RT-qPCR. Conclusions The above findings reveal the discovery of widespread differentially expressed lncRNAs in the M. amblycephala liver post A. hydrophila infection, suggesting that lncRNAs might participate in the regulation of host response to bacterial infection, enriching the information of lncRNAs in teleost and providing a resources basis for further studies on the immune function of lncRNAs. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07969-5.
Collapse
Affiliation(s)
- Qianhui Sun
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair / Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Jixiu Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair / Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Guowen Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair / Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Huanling Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair / Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Hong Liu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair / Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China. .,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China.
| |
Collapse
|
18
|
Jia Z, Wu N, Jiang X, Li H, Sun J, Shi M, Li C, Ge Y, Hu X, Ye W, Tang Y, Shan J, Cheng Y, Xia XQ, Shi L. Integrative Transcriptomic Analysis Reveals the Immune Mechanism for a CyHV-3-Resistant Common Carp Strain. Front Immunol 2021; 12:687151. [PMID: 34290708 PMCID: PMC8287582 DOI: 10.3389/fimmu.2021.687151] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/14/2021] [Indexed: 12/19/2022] Open
Abstract
Anti-disease breeding is becoming the most promising solution to cyprinid herpesvirus-3 (CyHV-3) infection, the major threat to common carp aquaculture. Virus challenging studies suggested that a breeding strain of common carp developed resistance to CyHV-3 infection. This study illustrates the immune mechanisms involved in both sensitivity and anti-virus ability for CyHV3 infection in fish. An integrative analysis of the protein-coding genes and long non-coding RNAs (lncRNAs) using transcriptomic data was performed. Tissues from the head kidney of common carp were extracted at days 0 (the healthy control) and 7 after CyHV-3 infection (the survivors) and used to analyze the transcriptome through both Illumina and PacBio sequencing. Following analysis of the GO terms and KEGG pathways involved, the immune-related terms and pathways were merged. To dig out details on the immune aspect, the DEGs were filtered using the current common carp immune gene library. Immune gene categories and their corresponding genes in different comparison groups were revealed. Also, the immunological Gene Ontology terms for lncRNA modulation were retained. The weighted gene co-expression network analysis was used to reveal the regulation of immune genes by lncRNA. The results demonstrated that the breeding carp strain develops a marked resistance to CyHV-3 infection through a specific innate immune mechanism. The featured biological processes were autophagy, phagocytosis, cytotoxicity, and virus blockage by lectins and MUC3. Moreover, the immune-suppressive signals, such as suppression of IL21R on STAT3, PI3K mediated inhibition of inflammation by dopamine upon infection, as well as the inhibition of NLRC3 on STING during a steady state. Possible susceptible factors for CyHV-3, such as ITGB1, TLR18, and CCL4, were also revealed from the non-breeding strain. The results of this study also suggested that Nramp and PAI regulated by LncRNA could facilitate virus infection and proliferation for infected cells respectively, while T cell leukemia homeobox 3 (TLX3), as well as galectin 3 function by lncRNA, may play a role in the resistance mechanism. Therefore, immune factors that are immunogenetically insensitive or susceptible to CyHV-3 infection have been revealed.
Collapse
Affiliation(s)
- Zhiying Jia
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.,National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Harbin, China.,Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Beijing, China
| | - Nan Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaona Jiang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.,National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Harbin, China
| | - Heng Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiaxin Sun
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.,National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Harbin, China
| | - Mijuan Shi
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Chitao Li
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.,National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Harbin, China
| | - Yanlong Ge
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.,National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Harbin, China
| | - Xuesong Hu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.,National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Harbin, China
| | - Weidong Ye
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Tang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Junwei Shan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Yingyin Cheng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiao-Qin Xia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.,The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Lianyu Shi
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.,National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Harbin, China
| |
Collapse
|
19
|
Abo-Al-Ela HG. The emerging regulatory roles of noncoding RNAs in immune function of fish: MicroRNAs versus long noncoding RNAs. Mol Genet Genomics 2021; 296:765-781. [PMID: 33904988 DOI: 10.1007/s00438-021-01786-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
The genome could be considered as raw data expressed in proteins and various types of noncoding RNAs (ncRNAs). However, a large portion of the genome is dedicated to ncRNAs, which in turn represent a considerable amount of the transcriptome. ncRNAs are modulated on levels of type and amount whenever any physiological process occurs or as a response to external modulators. ncRNAs, typically forming complexes with other partners, are key molecules that influence diverse cellular processes. Based on the knowledge of mammalian biology, ncRNAs are known to regulate and control diverse trafficking pathways and cellular activities. Long noncoding RNAs (lncRNAs) notably have diverse and more regulatory roles than microRNAs. Expanding these studies on fish has derived the same conclusion with relevance to other species, including invertebrates, explored the potentials to harness such types of RNA to further understand the biology of such organisms, and opened gates for applying recent technologies, such as RNA interference and delivering micromolecules as microRNAs to living cells and possibly to target organs. These technologies should improve aquaculture productivity and fish health, as well as help understand fish biology.
Collapse
Affiliation(s)
- Haitham G Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, 43518, Suez, Egypt.
| |
Collapse
|
20
|
Valenzuela-Muñoz V, Váldes JA, Gallardo-Escárate C. Transcriptome Profiling of Long Non-coding RNAs During the Atlantic Salmon Smoltification Process. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:308-320. [PMID: 33638736 DOI: 10.1007/s10126-021-10024-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
For salmon aquaculture, one of the most critical phase is the parr-smolt transformation. Studies around this process have mainly focused on physiological changes and the Na+/K+-ATPase activity during the osmoregulatory activity. However, understanding how the salmon genome regulates the parr-smolt transformation, specifically the molecular mechanisms involved, remains uncovered. This study aimed to explore the transcriptional modulation of long non-coding RNAs (lncRNAs), as key molecular regulators, during the freshwater (FW) to seawater (SW) transfer in Atlantic salmon. Transcriptome sequencing was performed from gill samples of Atlantic salmon adapted from FW to SW through gradual salinity changes from 0 to 30 PSU. The results showed that most transcripts differently modulated were downregulated in all salinity conditions. Relevant biological processes were associated with growth, collagen formation, immune response, metabolism, and heme transport. Notably, 2864 putative lncRNAs were identified in Atlantic salmon gills differently expressed during fish smoltification. The highest number of lncRNAs differently modulated was observed at 30 PSU. Correlation expression analysis suggests putative regulatory roles of lncRNAs with smoltification-related genes. Herein, co-localization of Na+/K+-ATPase, growth hormone receptor, and thyroid hormone receptor genes with lncRNAs differentially expressed suggest putative regulatory mechanisms in the Atlantic salmon genome. The lncRNAs can be used as novel biomarkers for the fish smoltification process. Here, the lncRNA_145326 and lncRNA_18762 are putatively related to the parr-smolt transfer in Atlantic salmon. This study is the first description of lncRNAs with putative regulatory roles in Atlantic salmon during the SW adaptation.
Collapse
Affiliation(s)
- Valentina Valenzuela-Muñoz
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción, Chile.
- Laboratorio de Biotecnología Molecular, Universidad Andrés Bello, Facultad de Ciencias de la Vida, Santiago, Chile.
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepción, Chile.
| | - Juan Antonio Váldes
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción, Chile
- Laboratorio de Biotecnología Molecular, Universidad Andrés Bello, Facultad de Ciencias de la Vida, Santiago, Chile
| | - Cristian Gallardo-Escárate
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción, Chile
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepción, Chile
| |
Collapse
|
21
|
Xiu Y, Li Y, Liu X, Su L, Zhou S, Li C. Identification and Characterization of Long Non-coding RNAs in the Intestine of Olive Flounder ( Paralichthys olivaceus) During Edwardsiella tarda Infection. Front Immunol 2021; 12:623764. [PMID: 33868240 PMCID: PMC8044400 DOI: 10.3389/fimmu.2021.623764] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/23/2021] [Indexed: 12/19/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play widespread roles in fundamental biological processes, including immune responses. The olive flounder (Paralichthys olivaceus), an important economical flatfish widely cultured in Japan, Korea, and China, is threatened by infectious pathogens, including bacteria, viruses, and parasites. However, the role of lncRNAs in the immune responses of this species against pathogen infections is not well-understood. Therefore, in this study, we aimed to identify lncRNAs in the intestine of olive flounder and evaluate their differential expression profiles during Edwardsiella tarda infection, which is an important zoonotic and intestinal pathogen. A total of 4,445 putative lncRNAs were identified, including 3,975 novel lncRNAs and 470 annotated lncRNAs. These lncRNAs had shorter lengths and fewer exons compared with mRNAs. In total, 115 differentially expressed lncRNAs (DE-lncRNAs) were identified during E. tarda infection. To validate the expression pattern of lncRNAs, six DE-lncRNAs were randomly selected for quantitative real-time PCR. The co-located and co-expressed mRNAs of DE-lncRNAs were predicted, which were used to conduct the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The target genes of DE-lncRNAs enriched numerous immune-related processes and exhibited a strong correlation with immune-related signaling pathways. To better understand the extensive regulatory functions of lncRNAs, the lncRNA–miRNA–mRNA regulatory networks were constructed, and two potential competing endogenous RNA (ceRNA) networks, LNC_001979-novel_171-Potusc2 and LNC_001979-novel_171-Podad1, were preliminarily identified from the intestine of olive flounders for the first time. In conclusion, this study provides an invaluable annotation and expression profile of lncRNAs in the intestine of olive flounder infected with E. tarda; this forms a basis for further studies on the regulatory function of lncRNAs in the intestinal mucosal immune responses of olive flounder.
Collapse
Affiliation(s)
- Yunji Xiu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Yingrui Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China.,College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Xiaofei Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China.,College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Lin Su
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Shun Zhou
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
22
|
Zhu Y, Sun J, Yan M, Lian S, Hu B, Lv S, Li Y, Zhang Y, Yan X. The biological characteristics of the canine adenovirus type 1 from fox and the transcriptome analysis of the infected MDCK cell. Cell Biol Int 2021; 45:936-947. [PMID: 33382191 DOI: 10.1002/cbin.11537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/09/2020] [Accepted: 12/25/2020] [Indexed: 11/09/2022]
Abstract
Canine adenovirus type 1 (CAdV-1) is the etiologic agent of fox encephalitis, and a virus strain from fox encephalitis is isolated and related research are conducted. In this experiment, the results showed that the F1301 strain was confirmed to be the CAdV-1. The whole genome of the CAdV-1 F1301 strain isolated from fox was 30,535 bp and had higher homology to the other reported CAdV-1 strains. After 0, 12, and 36 h of CAdV-1 infection, the difference gene of the 592 long noncoding RNA and 11,215 microRNA were involved in cell responses to CAdV-1 infection through the PI3K-AKT, Wnt, Herpes simplex, hepatitis C, and Epstein-Barr virus infection pathway in Madin-Darby canine kidney cell line (MDCK). The results indicate that the biological characterization of the CAdV-1 and the MDCK cell-CAdV-1 interaction are clarified.
Collapse
Affiliation(s)
- Yanzhu Zhu
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jie Sun
- Pharmaron Beijing Co., Ltd., Beijing, China
| | - Minghao Yan
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shizhen Lian
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Bo Hu
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Shuang Lv
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yali Li
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yufei Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Xijun Yan
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China.,Sinovet Biopharm. Co., Ltd., Taizhou, China
| |
Collapse
|
23
|
Li Y, Shi H, Chen R, Zhou S, Lei S, She Y. Role of miRNAs and lncRNAs in dexamethasone-induced myotube atrophy in vitro. Exp Ther Med 2020; 21:146. [PMID: 33456513 PMCID: PMC7791919 DOI: 10.3892/etm.2020.9577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 11/17/2020] [Indexed: 12/02/2022] Open
Abstract
Skeletal muscle atrophy is a well-known adverse effect of long-term glucocorticoid (GC) therapy. MicroRNAs (miRNAs or miRs) and long non-coding RNAs (lncRNAs) are important regulators in a number of physiological and pathological processes. However, the role of miRNAs and lncRNAs in the regulation of GC-treated muscle atrophy remains poorly understood. In the current study, muscular atrophy was induced and the results indicated that C2C12 myotubes were thinner than normal, while the expression of muscle ring finger protein 1 and Atrogin-1 was increased. The expression of nine miRNAs and seven lncRNAs associated with proliferation and differentiation were analyzed in a dexamethasone (DEX)-induced muscle atrophy cell model. In addition, the mRNA expression of the downstream targets of lncRNAs that were differentially expressed between DEX-treated and control cells were determined. The results indicated that the expression of miR-133a, miR-133b, miR-206 and five lncRNAs (increased Atrolnc-1, Dum, MAR1, linc-MD1 and decreased Myolinc) were significantly different between the DEX and the control group. Furthermore, the relative mRNA expression of Wnt5a and MyoD was significantly different between the two groups. The results of the current study indicated that some important miRNAs and lncRNAs are associated with DEX-induced muscle atrophy and have the potential to be further developed as a diagnostic tool for this condition.
Collapse
Affiliation(s)
- Yang Li
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Huacai Shi
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Rui Chen
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Shanyao Zhou
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Si Lei
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Yanling She
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| |
Collapse
|
24
|
Potential Involvement of lncRNAs in the Modulation of the Transcriptome Response to Nodavirus Challenge in European Sea Bass ( Dicentrarchus labrax L.). BIOLOGY 2020; 9:biology9070165. [PMID: 32679770 PMCID: PMC7407339 DOI: 10.3390/biology9070165] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022]
Abstract
Long noncoding RNAs (lncRNAs) are being increasingly recognised as key modulators of various biological mechanisms, including the immune response. Although investigations in teleosts are still lagging behind those conducted in mammals, current research indicates that lncRNAs play a pivotal role in the response of fish to a variety of pathogens. During the last several years, interest in lncRNAs has increased considerably, and a small but notable number of publications have reported the modulation of the lncRNA profile in some fish species after pathogen challenge. This study was the first to identify lncRNAs in the commercial species European sea bass. A total of 12,158 potential lncRNAs were detected in the head kidney and brain. We found that some lncRNAs were not common for both tissues, and these lncRNAs were located near coding genes that are primarily involved in tissue-specific processes, reflecting a degree of cellular specialisation in the synthesis of lncRNAs. Moreover, lncRNA modulation was analysed in both tissues at 24 and 72 h after infection with nodavirus. Enrichment analysis of the neighbouring coding genes of the modulated lncRNAs revealed many terms related to the immune response and viral infectivity but also related to the stress response. An integrated analysis of the lncRNAs and coding genes showed a strong correlation between the expression of the lncRNAs and their flanking coding genes. Our study represents the first systematic identification of lncRNAs in European sea bass and provides evidence regarding the involvement of these lncRNAs in the response to nodavirus.
Collapse
|
25
|
Dettleff P, Hormazabal E, Aedo J, Fuentes M, Meneses C, Molina A, Valdes JA. Identification and Evaluation of Long Noncoding RNAs in Response to Handling Stress in Red Cusk-Eel (Genypterus chilensis) via RNA-seq. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:94-108. [PMID: 31748906 DOI: 10.1007/s10126-019-09934-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
The red cusk-eel (Genypterus chilensis) is a native species with strong potential to support Chilean aquaculture diversification. Under commercial conditions, fish are exposed to several stressors. To date, little is known about the mechanism involved in the stress response of red cusk-eel, and there is no information related to the regulation mediated by long noncoding RNAs (lncRNAs). The objective of this work was to identify for the first time the lncRNAs in the transcriptome of G. chilensis and to evaluate the differential expression levels of lncRNAs in the liver, head kidney, and skeletal muscle in response to handling stress. We used previously published transcriptome data to identify the lncRNAs by applying a series of filters based on annotation information in several databases to discard coding sequences. We identified a total of 14,614 putative lncRNAs in the transcriptome of red cusk-eel, providing a useful lncRNA reference resource to be used in future studies. We evaluated their differential expression in response to handling stress in the liver, head kidney, and skeletal muscle, identifying 112, 323, and 108 differentially expressed lncRNAs, respectively. The results suggest that handling stress in red cusk-eel generate an altered metabolic status in liver, altered immune response in head kidney, and skeletal muscle atrophy through an important coding and noncoding gene network. This is the first study that identifies lncRNAs in Genypterus genus and that evaluates the relation between handling stress and lncRNAs in teleost fish, thereby providing valuable information regarding noncoding responses to stress in Genypterus species.
Collapse
Affiliation(s)
- Phillip Dettleff
- Laboratory of Molecular Biotechnology, Faculty of Life Sciences, Andres Bello University, Republica 440, 8370186, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), 4070386, Concepción, Chile
| | - Elizabeth Hormazabal
- Laboratory of Molecular Biotechnology, Faculty of Life Sciences, Andres Bello University, Republica 440, 8370186, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), 4070386, Concepción, Chile
| | - Jorge Aedo
- Laboratory of Molecular Biotechnology, Faculty of Life Sciences, Andres Bello University, Republica 440, 8370186, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), 4070386, Concepción, Chile
| | - Marcia Fuentes
- Laboratory of Molecular Biotechnology, Faculty of Life Sciences, Andres Bello University, Republica 440, 8370186, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), 4070386, Concepción, Chile
| | - Claudio Meneses
- Plant Biotechnology Center, Andres Bello University, 8370186, Santiago, Chile
- FONDAP Center for Genome Regulation, Andres Bello University, 8370186, Santiago, Chile
| | - Alfredo Molina
- Laboratory of Molecular Biotechnology, Faculty of Life Sciences, Andres Bello University, Republica 440, 8370186, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), 4070386, Concepción, Chile
- CIMARQ, Andres Bello University, Quintay, Chile
| | - Juan Antonio Valdes
- Laboratory of Molecular Biotechnology, Faculty of Life Sciences, Andres Bello University, Republica 440, 8370186, Santiago, Chile.
- Interdisciplinary Center for Aquaculture Research (INCAR), 4070386, Concepción, Chile.
- CIMARQ, Andres Bello University, Quintay, Chile.
| |
Collapse
|
26
|
Comparative modulation of lncRNAs in wild-type and rag1-heterozygous mutant zebrafish exposed to immune challenge with spring viraemia of carp virus (SVCV). Sci Rep 2019; 9:14174. [PMID: 31578442 PMCID: PMC6775065 DOI: 10.1038/s41598-019-50766-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/17/2019] [Indexed: 12/27/2022] Open
Abstract
Although the modulation of immune-related genes after viral infection has been widely described in vertebrates, the potential implications of non-coding RNAs (ncRNAs), especially long non-coding RNAs (lncRNAs), in immunity are still a nascent research field. The model species zebrafish could serve as a useful organism for studying the functionality of lncRNAs due to the numerous advantages of this teleost, including the existence of numerous mutant lines. In this work, we conducted a whole-transcriptome analysis of wild-type (WT) and heterozygous rag1 mutant (rag1+/-) zebrafish after infection with the pathogen spring viraemia of carp virus (SVCV). WT and rag1+/- zebrafish were infected with SVCV for 24 h. Kidney samples were sampled from infected and uninfected fish for transcriptome sequencing. From a total of 198,540 contigs, 12,165 putative lncRNAs were identified in zebrafish. Most of the putative lncRNAs were shared by the two zebrafish lines. However, by comparing the lncRNA profiles induced after SVCV infection in WT and rag1+/- fish, most of the lncRNAs that were significantly induced after viral challenge were exclusive to each line, reflecting a highly differential response to the virus. Analysis of the neighboring genes of lncRNAs that were exclusively modulated in WT revealed high representation of metabolism-related terms, whereas those from rag1+/- fish showed enrichment in terms related to the adaptive immune response, among others. On the other hand, genes involved in numerous antiviral processes surrounded commonly modulated lncRNAs, as expected. These results clearly indicate that after SVCV infection in zebrafish, the expression of an array of lncRNAs with functions in different aspects of immunity is induced.
Collapse
|
27
|
Lei S, She Y, Zeng J, Chen R, Zhou S, Shi H. Expression patterns of regulatory lncRNAs and miRNAs in muscular atrophy models induced by starvation in vitro and in vivo. Mol Med Rep 2019; 20:4175-4185. [PMID: 31545487 PMCID: PMC6798001 DOI: 10.3892/mmr.2019.10661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/30/2019] [Indexed: 01/07/2023] Open
Abstract
Starvation or severe deprivation of nutrients, which is commonly seen in surgical patients, can result in catabolic changes in skeletal muscles, such as muscle atrophy. Therefore, it is important to elucidate the underlying molecular regulatory mechanisms during skeletal muscle atrophy. In the present study, muscular atrophy was induced by starvation and the results demonstrated that myosin heavy chain was decreased, whereas muscle RING finger protein 1 and atrogin-1 were increased, both in vitro and in vivo. The impact of starvation on the expression patterns of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) was next determined. The expression patterns of miR-23a, miR-206 and miR-27b in the starved mice exhibited similar trends as those in starved C2C12 cells in vitro, whereas the expression patterns of six other miRNAs (miR-18a, miR-133a, miR-133b, miR-186, miR-1a and miR-29b) differed between the in vivo and the in vitro starvation models. The present study indicated that in vitro expression of the selected miRNAs was not completely consistent with that in vivo. By contrast, lncRNAs showed excellent consistency in their expression patterns in both the in vitro and in vivo starvation models; six of the lncRNAs (Atrolnc-1, long intergenic non-protein coding RNA of muscle differentiation 1, Myolinc, lncRNA myogenic differentiation 1, Dum and muscle anabolic regulator 1) were significantly elevated in starved tissues and cells, while lnc-mg was significantly decreased, compared with the control groups. Thus, lncRNAs involved in muscle atrophy have the potential to be developed as diagnostic tools.
Collapse
Affiliation(s)
- Si Lei
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Yanling She
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Jie Zeng
- Department of Medical Ultrasonics, The Third Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Rui Chen
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Shanyao Zhou
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Huacai Shi
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| |
Collapse
|
28
|
Leiva F, Rojas-Herrera M, Reyes D, Bravo S, Garcia KK, Moya J, Vidal R. Identification and characterization of miRNAs and lncRNAs of coho salmon (Oncorhynchus kisutch) in normal immune organs. Genomics 2019; 112:45-54. [PMID: 31376527 DOI: 10.1016/j.ygeno.2019.07.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/27/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) and long noncoding RNAs (lncRNAs) are two relevant non-coding RNAs (ncRNAs) class. Oncorhynchus kisutch (coho salmon) is an important aquaculture pacific salmon species without report of miRNAs and a very limited register of lncRNAs. To gain knowledge about the interaction and discovery of miRNAs and lncRNAs in coho salmon we used high-throughput sequencing technology to sequence small and transcriptome libraries from three immune organs. A total of 163 mature miRNAs and 4,975 lncRNAs were discovered. The profiles of expression of both ncRNAs indicated that liver and head-kidney share relatively similar expression patterns. We identified 814 and 181 putative target sequences for 1048 lncRNAs and 47 miRNAs, respectively. The results obtained provide new information and enlarge our understanding of the diversities of ncRNAs in coho salmon.
Collapse
Affiliation(s)
- Francisco Leiva
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile.
| | - Marcelo Rojas-Herrera
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile.
| | - Daniela Reyes
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile.
| | - Scarleth Bravo
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Killen Ko Garcia
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile.
| | - Javier Moya
- Fish Vet Group, Bernardino 1978 Parque Industrial San Andres, Puerto Montt, Chile.
| | - Rodrigo Vidal
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
29
|
Gallardo-Escárate C, Valenzuela-Muñoz V, Núñez-Acuña G, Carrera C, Gonçalves AT, Valenzuela-Miranda D, Benavente BP, Roberts S. Catching the complexity of salmon-louse interactions. FISH & SHELLFISH IMMUNOLOGY 2019; 90:199-209. [PMID: 31048036 DOI: 10.1016/j.fsi.2019.04.065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The study of host-parasite relationships is an integral part of the immunology of aquatic species, where the complexity of both organisms has to be overlayed with the lifecycle stages of the parasite and immunological status of the host. A deep understanding of how the parasite survives in its host and how they display molecular mechanisms to face the immune system can be applied for novel parasite control strategies. This review highlights current knowledge about salmon and sea louse, two key aquatic animals for aquaculture research worldwide. With the aim to catch the complexity of the salmon-louse interactions, molecular information gleaned through genomic studies are presented. The host recognition system and the chemosensory receptors found in sea lice reveal complex molecular components, that in turn, can be disrupted through specific molecules such as non-coding RNAs.
Collapse
Affiliation(s)
- Cristian Gallardo-Escárate
- Interdisciplinary Center for Aquaculture Research, Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Universidad de Concepción, Concepción, Chile.
| | - Valentina Valenzuela-Muñoz
- Interdisciplinary Center for Aquaculture Research, Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Universidad de Concepción, Concepción, Chile
| | - Gustavo Núñez-Acuña
- Interdisciplinary Center for Aquaculture Research, Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Universidad de Concepción, Concepción, Chile
| | - Crisleri Carrera
- Interdisciplinary Center for Aquaculture Research, Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Universidad de Concepción, Concepción, Chile
| | - Ana Teresa Gonçalves
- Interdisciplinary Center for Aquaculture Research, Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Universidad de Concepción, Concepción, Chile
| | - Diego Valenzuela-Miranda
- Interdisciplinary Center for Aquaculture Research, Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Universidad de Concepción, Concepción, Chile
| | - Bárbara P Benavente
- Interdisciplinary Center for Aquaculture Research, Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Universidad de Concepción, Concepción, Chile
| | - Steven Roberts
- School of Aquatic and Fishery Sciences (SAFS), University of Washington, Seattle, USA
| |
Collapse
|
30
|
Tang X, Lan T, Wu R, Zhou Z, Chen Y, Sun Y, Zheng Y, Ma J. Analysis of long non-coding RNAs in neonatal piglets at different stages of porcine deltacoronavirus infection. BMC Vet Res 2019; 15:111. [PMID: 30971240 PMCID: PMC6458635 DOI: 10.1186/s12917-019-1862-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/03/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND PDCoV (Porcine Deltacoronavirus) is a novel porcine coronavirus that causes intestinal necrosis of piglets, thinning of the intestinal wall and severe villus atrophy in the small intestine. PDCoV is a highly contagious infectious disease characterized by diarrhea, dehydration and vomiting. It has been reported that lncRNA has a significant effect on viral replication and increased or decreased virulence. At present, there is almost no research on lncRNA related to PDCoV infection. With the development of the research, a large number of lncRNAs related to PDCoV infection have been discovered. Identifying the role of these lncRNAs in the infection process facilitates the screening of diagnostically significant biomarkers. RESULTS Using high throughput sequencing to screen differentially expressed long non-coding RNA (lncRNA) during PDCoV infection, we identified 99, 41 and 33 differentially expressed lncRNAs in the early, middle and late stages of infection, respectively. These lncRNAs were involved in glycolysis / gluconeogenesis, histidine metabolism and pentose and Chloroalkane and chloroalkene degradation pathway. We obtained expression data of miRNAs, lncRNAs and mRNAs during PDCoV infection and constructed and investigated an interaction network. The qRT-PCR validation results of 6 differentially expressed lncRNAs were consistent with RNA-Seq results. CONCLUSIONS This study is the first to examine differentially expressed lncRNAs after PDCoV infection of piglets. These results can provide new insights into PDCoV infection and antiviral strategies.
Collapse
Affiliation(s)
- Xiaoyu Tang
- College of Animal Science, South China Agricultural University, Tianhe District, Wushan Road 483, Guangzhou, 510642, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China
| | - Tian Lan
- College of Animal Science, South China Agricultural University, Tianhe District, Wushan Road 483, Guangzhou, 510642, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China
| | - Ruiting Wu
- College of Animal Science, South China Agricultural University, Tianhe District, Wushan Road 483, Guangzhou, 510642, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China
| | - Zhihai Zhou
- College of Animal Science, South China Agricultural University, Tianhe District, Wushan Road 483, Guangzhou, 510642, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China
| | - Yuqi Chen
- College of Animal Science, South China Agricultural University, Tianhe District, Wushan Road 483, Guangzhou, 510642, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China
| | - Yuan Sun
- College of Animal Science, South China Agricultural University, Tianhe District, Wushan Road 483, Guangzhou, 510642, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China
| | - Yaoyao Zheng
- College of Animal Science, South China Agricultural University, Tianhe District, Wushan Road 483, Guangzhou, 510642, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China
| | - Jingyun Ma
- College of Animal Science, South China Agricultural University, Tianhe District, Wushan Road 483, Guangzhou, 510642, China. .,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China.
| |
Collapse
|
31
|
Li D, Li F, Jiang K, Zhang M, Han R, Jiang R, Li Z, Tian Y, Yan F, Kang X, Sun G. Integrative analysis of long noncoding RNA and mRNA reveals candidate lncRNAs responsible for meat quality at different physiological stages in Gushi chicken. PLoS One 2019; 14:e0215006. [PMID: 30964907 PMCID: PMC6456248 DOI: 10.1371/journal.pone.0215006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 03/25/2019] [Indexed: 12/14/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) play important roles in transcriptional and posttranscriptional regulation. However, the effects of lncRNAs on the meat quality of chicken hasn’t been elucidated clearly yet. Gushi chickens are popular in China because of their superior meat quality, particularly the tender flesh, and unique flavor. Gushi chickens are popular in China because of their superior meat quality, delicate flesh, and unique flavor. We performed RNA-Seq analysis of breast muscle from Gushi chicken at two physiological stages, including juvenile (G20W) and laying (G55W). In total, 186 lncRNAs and 881 mRNAs were differentially expressed between G20W and G55W (fold change ≥ 2.0, P < 0.05). Among them, 131 lncRNAs presented upregulated and 55 were downregulated. We identified the cis and trans target genes of the differentially expressed lncRNAs, and constructed lncRNA-mRNA interaction networks. The results showed that differentially expressed mRNAs and lncRNAs were mainly involved in ECM-receptor interaction, glycerophospholipid metabolism, ubiquitin-mediated proteolysis, and the biosynthesis of amino acids. In summary, our study utilized RNA-seq analysis to predict the functions of lncRNA on chicken meat quality. Furthermore, comprehensive analysis identified lncRNAs and their target genes, which may contribute to a better understanding of the molecular mechanisms underlying in poultry meat quality and provide a theoretical basis for further research.
Collapse
Affiliation(s)
- Donghua Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Fang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Keren Jiang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Meng Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Ruili Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China
| | - Ruirui Jiang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China
| | - Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China
| | - Yadong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China
| | - Fengbin Yan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China
- * E-mail: (GRS); (XTK)
| | - Guirong Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China
- * E-mail: (GRS); (XTK)
| |
Collapse
|
32
|
Gonçalves AT, Núñez-Acuña G, Détrée C, Gallardo-Escárate C. Coding/non-coding cross-talk in intestinal epithelium transcriptome gives insights on how fish respond to stocking density. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 29:14-23. [DOI: 10.1016/j.cbd.2018.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 02/04/2023]
|
33
|
Abstract
Marine organisms' persistence hinges on the capacity for acclimatization and adaptation to the myriad of interacting environmental stressors associated with global climate change. In this context, epigenetics-mechanisms that facilitate phenotypic variation through genotype-environment interactions-are of great interest ecologically and evolutionarily. Our comprehensive review of marine environmental epigenetics guides our recommendations of four key areas for future research: the dynamics of wash-in and wash-out of epigenetic effects, the mechanistic understanding of the interplay of different epigenetic marks and the interaction with the microbiome, the capacity for and mechanisms of transgenerational epigenetic inheritance, and the evolutionary implications of the interaction of genetic and epigenetic features. Emerging insights in marine environmental epigenetics can be applied to critical issues such as aquaculture, biomonitoring, and biological invasions, thereby improving our ability to explain and predict the responses of marine taxa to global climate change.
Collapse
Affiliation(s)
- Jose M Eirin-Lopez
- Environmental Epigenetics Laboratory, Center for Coastal Oceans Research, Institute for Water and Environment, Florida International University, North Miami, Florida 33181, USA;
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island 02881, USA;
| |
Collapse
|
34
|
Wang M, Jiang S, Wu W, Yu F, Chang W, Li P, Wang K. Non-coding RNAs Function as Immune Regulators in Teleost Fish. Front Immunol 2018; 9:2801. [PMID: 30546368 PMCID: PMC6279911 DOI: 10.3389/fimmu.2018.02801] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/13/2018] [Indexed: 12/13/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are functional RNA molecules that are transcribed from DNA but not translated into proteins. ncRNAs function as key regulators of gene expression and chromatin modification. Recently, the functional role of ncRNAs in teleost fish has been extensively studied. Teleost fish are a highly diverse group among the vertebrate lineage. Fish are also important in terms of aquatic ecosystem, food production and human life, being the source of animal proteins worldwide and models of biomedical research. However, teleost fish always suffer from the invasion of infectious pathogens including viruses and bacteria, which has resulted in a tremendous economic loss to the fishing industry worldwide. Emerging evidence suggests that ncRNAs, especially miRNAs and lncRNAs, may serve as important regulators in cytokine and chemokine signaling, antigen presentation, complement and coagulation cascades, and T cell response in teleost fish. In this review, we summarize current knowledge and understanding of the roles of both miRNAs and lncRNAs in immune regulation in teleost fish. Molecular mechanism insights into the function of ncRNAs in fish immune response may contribute to the development of potential biomarkers and therapeutic targets for the prevention and treatment of fish diseases.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, China
| | - Shuai Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Wei Wu
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, China
| | - Fei Yu
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, China
| | - Wenguang Chang
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, China
| | - Kun Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, China
| |
Collapse
|
35
|
Porcine endemic diarrhea virus infection regulates long noncoding RNA expression. Virology 2018; 527:89-97. [PMID: 30471453 PMCID: PMC7112091 DOI: 10.1016/j.virol.2018.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 12/14/2022]
Abstract
Long noncoding RNAs (lncRNAs) have been implicated in various life processes. However, the lncRNA expression and potential functions in porcine endemic diarrhea virus (PEDV) infection and host defense are still poorly understood. In this study, we investigated the lncRNA expression profiles during PEDV infection in intestinal porcine epithelial cell-jejunum 2 (IPEC-J2) cell lines by next-generation sequencing and identified 6188 novel lncRNAs. The functional annotation analysis revealed that these lncRNAs might be associated with many immunity-related genes. We next selected candidate lncRNAs related to immune response pathways and further identified their differential expression in PEDV-infected IPEC-J2 cells and newborn piglets. Our results demonstrated that PEDV infection regulated lncRNA expression patterns in both the IPEC-J2 cell line and piglet ileum. These findings provide the first large-scale survey of lncRNAs associated with PEDV infection, specifically the lncRNAs responsible for the activation of the immune system within the ileum.
Collapse
|
36
|
Valenzuela-Muñoz V, Valenzuela-Miranda D, Gallardo-Escárate C. Comparative analysis of long non-coding RNAs in Atlantic and Coho salmon reveals divergent transcriptome responses associated with immunity and tissue repair during sea lice infestation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 87:36-50. [PMID: 29803715 DOI: 10.1016/j.dci.2018.05.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/19/2018] [Accepted: 05/20/2018] [Indexed: 06/08/2023]
Abstract
The increasing capacity of transcriptomic analysis by high throughput sequencing has highlighted the presence of a large proportion of transcripts that do not encode proteins. In particular, long non-coding RNAs (lncRNAs) are sequences with low coding potential and conservation among species. Moreover, cumulative evidence has revealed important roles in post-transcriptional gene modulation in several taxa. In fish, the role of lncRNAs has been scarcely studied and even less so during the immune response against sea lice. In the present study we mined for lncRNAs in Atlantic salmon (Salmo salar) and Coho salmon (Oncorhynkus kisutch), which are affected by the sea louse Caligus rogercresseyi, evaluating the degree of sequence conservation between these two fish species and their putative roles during the infection process. Herein, Atlantic and Coho salmon were infected with 35 lice/fish and evaluated after 7 and 14 days post-infestation (dpi). For RNA sequencing, samples from skin and head kidney were collected. A total of 5658/4140 and 3678/2123 lncRNAs were identified in uninfected/infected Atlantic and Coho salmon transcriptomes, respectively. Species-specific transcription patterns were observed in exclusive lncRNAs according to the tissue analyzed. Furthermore, neighbor gene GO enrichment analysis of the top 100 highly regulated lncRNAs in Atlantic salmon showed that lncRNAs were localized near genes related to the immune response. On the other hand, in Coho salmon the highly regulated lncRNAs were localized near genes involved in tissue repair processes. This study revealed high regulation of lncRNAs closely localized to immune and tissue repair-related genes in Atlantic and Coho salmon, respectively, suggesting putative roles for lncRNAs in salmon against sea lice infestation.
Collapse
Affiliation(s)
- Valentina Valenzuela-Muñoz
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research, University of Concepcion, Barrio Universitario s/n, Concepción, Chile
| | - Diego Valenzuela-Miranda
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research, University of Concepcion, Barrio Universitario s/n, Concepción, Chile
| | - Cristian Gallardo-Escárate
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research, University of Concepcion, Barrio Universitario s/n, Concepción, Chile.
| |
Collapse
|
37
|
Sun W, Feng J. Differential lncRNA expression profiles reveal the potential roles of lncRNAs in antiviral immune response of Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2018; 81:233-241. [PMID: 30010017 DOI: 10.1016/j.fsi.2018.07.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
Long noncoding RNAs (lncRNAs) may play widespread roles in various biological processes. However, systematic profiles of lncRNAs in the biological responses of Pacific Oyster (Crassostrea gigas) to pathogen infection have not yet been demonstrated. Here, we have conducted an exhaustive comparative transcriptome analysis using a bioinformatics approach to exam the functions of lncRNAs response to Ostreid herpesvirus 1μVar (OsHV-1μVar) challenge. In total, 101 differentially expressed lncRNAs (DE-lncRNA) during OsHV-1μVar infections were identified. Compared with differentially expressed mRNAs (DE-mRNA), DE-lncRNAs are shorter in terms of overall length but longer in terms of exon length. These lncRNAs shared similar characteristics with previously reported invertebrate lncRNAs, such as relatively low GC content, low exon number and low sequence conservation, but low expression level were not observed. 20 DE-lncRNAs are typically co-expressed with their neighboring genes annotated as GO terms (GO: 0044237), indicating that these lncRNAs are involved in binding and cellular process functions in cis mode. The weighted gene co-expression network (WGCNA) analysis resulted in 15 modules. The highlighted blue module was specifically demonstrated a co-expression relationship between 14 DE-lncRNAs and 17 immune-related DE-mRNAs (IR-DE-mRNA). Three hub lncRNAs within this module were co-expressed with one hub IR-DE-mRNA involved in fibrinogen-related protein. It was speculated that lncRNAs is extensively involved in oyster antiviral innate immune system. The present study will facilitate subsequently experimental studies to unravel the function of lncRNAs in marine invertebrate response to pathogen infection.
Collapse
Affiliation(s)
- Weiming Sun
- Ocean School, Yantai University, Yantai 264005, China.
| | - Jixing Feng
- Ocean School, Yantai University, Yantai 264005, China
| |
Collapse
|
38
|
Rebl A, Goldammer T. Under control: The innate immunity of fish from the inhibitors' perspective. FISH & SHELLFISH IMMUNOLOGY 2018; 77:328-349. [PMID: 29631025 DOI: 10.1016/j.fsi.2018.04.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
The innate immune response involves a concerted network of induced gene products, preformed immune effectors, biochemical signalling cascades and specialised cells. However, the multifaceted activation of these defensive measures can derail or overshoot and, if left unchecked, overwhelm the host. A plenty of regulatory devices therefore mediate the fragile equilibrium between pathogen defence and pathophysiological manifestations. Over the past decade in particular, an almost complete set of teleostean sequences orthologous to mammalian immunoregulatory factors has been identified in various fish species, which prove the remarkable conservation of innate immune-control concepts among vertebrates. This review will present the current knowledge on more than 50 teleostean regulatory factors (plus additional fish-specific paralogs) that are of paramount importance for controlling the clotting cascade, the complement system, pattern-recognition pathways and cytokine-signalling networks. A special focus lies on those immunoregulatory features that have emerged as potential biomarker genes in transcriptome-wide research studies. Moreover, we report on the latest progress in elucidating control elements that act directly with immune-gene-encoding nucleic acids, such as transcription factors, hormone receptors and micro- and long noncoding RNAs. Investigations into the function of teleostean inhibitory factors are still mainly based on gene-expression profiling or overexpression studies. However, in support of structural and in-vitro analyses, evidence from in-vivo trials is also available and revealed many biochemical details on piscine immune regulation. The presence of multiple gene copies in fish adds a degree of complexity, as it is so far hardly understood if they might play distinct roles during inflammation. The present review addresses this and other open questions that should be tackled by fish immunologists in future.
Collapse
Affiliation(s)
- Alexander Rebl
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Fish Genetics Unit, Dummerstorf, Germany.
| | - Tom Goldammer
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Fish Genetics Unit, Dummerstorf, Germany
| |
Collapse
|
39
|
Epigenetics in teleost fish: From molecular mechanisms to physiological phenotypes. Comp Biochem Physiol B Biochem Mol Biol 2018; 224:210-244. [PMID: 29369794 DOI: 10.1016/j.cbpb.2018.01.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 02/07/2023]
Abstract
While the field of epigenetics is increasingly recognized to contribute to the emergence of phenotypes in mammalian research models across different developmental and generational timescales, the comparative biology of epigenetics in the large and physiologically diverse vertebrate infraclass of teleost fish remains comparatively understudied. The cypriniform zebrafish and the salmoniform rainbow trout and Atlantic salmon represent two especially important teleost orders, because they offer the unique possibility to comparatively investigate the role of epigenetic regulation in 3R and 4R duplicated genomes. In addition to their sequenced genomes, these teleost species are well-characterized model species for development and physiology, and therefore allow for an investigation of the role of epigenetic modifications in the emergence of physiological phenotypes during an organism's lifespan and in subsequent generations. This review aims firstly to describe the evolution of the repertoire of genes involved in key molecular epigenetic pathways including histone modifications, DNA methylation and microRNAs in zebrafish, rainbow trout, and Atlantic salmon, and secondly, to discuss recent advances in research highlighting a role for molecular epigenetics in shaping physiological phenotypes in these and other teleost models. Finally, by discussing themes and current limitations of the emerging field of teleost epigenetics from both theoretical and technical points of view, we will highlight future research needs and discuss how epigenetics will not only help address basic research questions in comparative teleost physiology, but also inform translational research including aquaculture, aquatic toxicology, and human disease.
Collapse
|
40
|
Gavery MR, Roberts SB. Epigenetic considerations in aquaculture. PeerJ 2017; 5:e4147. [PMID: 29230373 PMCID: PMC5723431 DOI: 10.7717/peerj.4147] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/17/2017] [Indexed: 12/14/2022] Open
Abstract
Epigenetics has attracted considerable attention with respect to its potential value in many areas of agricultural production, particularly under conditions where the environment can be manipulated or natural variation exists. Here we introduce key concepts and definitions of epigenetic mechanisms, including DNA methylation, histone modifications and non-coding RNA, review the current understanding of epigenetics in both fish and shellfish, and propose key areas of aquaculture where epigenetics could be applied. The first key area is environmental manipulation, where the intention is to induce an ‘epigenetic memory’ either within or between generations to produce a desired phenotype. The second key area is epigenetic selection, which, alone or combined with genetic selection, may increase the reliability of producing animals with desired phenotypes. Based on aspects of life history and husbandry practices in aquaculture species, the application of epigenetic knowledge could significantly affect the productivity and sustainability of aquaculture practices. Conversely, clarifying the role of epigenetic mechanisms in aquaculture species may upend traditional assumptions about selection practices. Ultimately, there are still many unanswered questions regarding how epigenetic mechanisms might be leveraged in aquaculture.
Collapse
Affiliation(s)
- Mackenzie R Gavery
- School of Aquatic & Fishery Sciences, University of Washington, Seattle, WA, USA
| | - Steven B Roberts
- School of Aquatic & Fishery Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
41
|
Valenzuela-Miranda D, Valenzuela-Muñoz V, Farlora R, Gallardo-Escárate C. MicroRNA-based transcriptomic responses of Atlantic salmon during infection by the intracellular bacterium Piscirickettsia salmonis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 77:287-296. [PMID: 28870451 DOI: 10.1016/j.dci.2017.08.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/28/2017] [Accepted: 08/28/2017] [Indexed: 06/07/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that have emerged as key regulators in diverse biological processes across taxa. However, despite the importance of these transcripts, little is known about their role during the immune response in salmonids. Because of this, we use deep sequencing technologies to explore the microRNA-based transcriptomic response of the Atlantic salmon (Salmo salar) to the intracellular bacteria Piscirickettsia salmonis, one of the main threats to salmon aquaculture in Chile. Hence, 594 different miRNAs were identified from head kidney and spleen transcriptomic data. Among them, miRNA families mir-181, mir-143 and mir-21 were the most abundant in control groups, while after infection with P. salmonis, mir-21, mir-181 and mir-30 were the most predominant families. Furthermore, transcriptional analysis revealed 84 and 25 differentially expressed miRNAs in head kidney and spleen respectively, with an overlapping response of 10 miRNAs between the analyzed tissues. Target prediction, coupled with GO enrichment analysis, revealed that the possible targets of the most regulated miRNAs were genes involved in the immune response, such as cortisol metabolism, chemokine-mediated signaling pathway and neutrophil chemotaxis genes. Among these, predicted putative target genes such as C-C motif chemokine 19-like, stromal cell-derived factor 1-like, myxovirus resistance protein 2 and hepcidin-1 were identified. Overall, our results suggest that miRNA expression in co-modulation with transcription activity of target genes is related to putative roles of non-coding RNAs in the immune response of Atlantic salmon against intracellular bacterial pathogens.
Collapse
Affiliation(s)
- Diego Valenzuela-Miranda
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P. O. Box 160-C, Concepción, Chile
| | - Valentina Valenzuela-Muñoz
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P. O. Box 160-C, Concepción, Chile
| | - Rodolfo Farlora
- Laboratorio de Biotecnología Acuática y Genómica Reproductiva/Instituto de Biología, Facultad de Ciencias Universidad de Valparaíso, Chile
| | - Cristian Gallardo-Escárate
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P. O. Box 160-C, Concepción, Chile.
| |
Collapse
|
42
|
Tarifeño-Saldivia E, Valenzuela-Miranda D, Gallardo-Escárate C. In the shadow: The emerging role of long non-coding RNAs in the immune response of Atlantic salmon. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 73:193-205. [PMID: 28373064 DOI: 10.1016/j.dci.2017.03.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 06/07/2023]
Abstract
The genomic era has increased the research effort to uncover how the genome of an organism, and specifically the transcriptome, is modulated after interplaying with pathogenic microorganisms and ectoparasites. However, the ever-increasing accessibility of sequencing technology has also evidenced regulatory roles of long non-coding RNAs (lncRNAs) related to several biological processes including immune response. This study reports a high-confidence annotation and a comparative transcriptome analysis of lncRNAs from several tissues of Salmo salar infected with the most prevalent pathogens in the Chilean salmon aquaculture such as the infectious salmon anemia (ISA) virus, the intracellular bacterium Piscirickettsia salmonis and the ectoparasite copepod Caligus rogercresseyi. Our analyses showed that lncRNAs are widely modulated during infection. However, this modulation is pathogen-specific and highly correlated with immuno-related genes associated with innate immune response. These findings represent the first discovery for the widespread differential expression of lncRNAs in response to infections with different types of pathogens in Atlantic salmon, suggesting that lncRNAs are pivotal player during the fish immune response.
Collapse
Affiliation(s)
- E Tarifeño-Saldivia
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción, Chile
| | - D Valenzuela-Miranda
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción, Chile
| | - C Gallardo-Escárate
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción, Chile.
| |
Collapse
|
43
|
Détrée C, Núñez-Acuña G, Tapia F, Gallardo-Escárate C. Long non-coding RNAs are associated with spatiotemporal gene expression profiles in the marine gastropod Tegula atra. Mar Genomics 2017; 33:39-45. [DOI: 10.1016/j.margen.2017.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/27/2016] [Accepted: 01/07/2017] [Indexed: 01/05/2023]
|
44
|
Long noncoding RNAs: Unexplored players in the drug response of the sea louse Caligus rogercresseyi. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.aggene.2017.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
45
|
Núñez-Acuña G, Détrée C, Gallardo-Escárate C, Gonçalves AT. Functional Diets Modulate lncRNA-Coding RNAs and Gene Interactions in the Intestine of Rainbow Trout Oncorhynchus mykiss. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2017; 19:287-300. [PMID: 28500613 DOI: 10.1007/s10126-017-9750-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/19/2017] [Indexed: 06/07/2023]
Abstract
The advent of functional genomics has sparked the interest in inferring the function of non-coding regions from the transcriptome in non-model species. However, numerous biological processes remain understudied from this perspective, including intestinal immunity in farmed fish. The aim of this study was to infer long non-coding RNA (lncRNAs) expression profiles in rainbow trout (Oncorhynchus mykiss) fed for 30 days with functional diets based on pre- and probiotics. For this, whole transcriptome sequencing was conducted through Illumina technology, and lncRNAs were mined to evaluate transcriptional activity in conjunction with known protein sequences. To detect differentially expressed transcripts, 880 novels and 9067 previously described O. mykiss lncRNAs were used. Expression levels and genome co-localization correlations with coding genes were also analyzed. Significant differences in gene expression were primarily found in the probiotic diet, which had a twofold downregulation of lncRNAs compared to other treatments. Notable differences by diet were also evidenced between the coding genes of distinct metabolic processes. In contrast, genome co-localization of lncRNAs with coding genes was similar for all diets. This study contributes novel knowledge regarding lncRNAs in fish, suggesting key roles in salmons fed with in-feed additives with the capacity to modulate the intestinal homeostasis and host health.
Collapse
Affiliation(s)
- Gustavo Núñez-Acuña
- Interdisciplinary Center for Aquaculture Research (INCAR), Department of Oceanography, University of Concepción, Concepción, Chile
| | - Camille Détrée
- Interdisciplinary Center for Aquaculture Research (INCAR), Department of Oceanography, University of Concepción, Concepción, Chile
| | - Cristian Gallardo-Escárate
- Interdisciplinary Center for Aquaculture Research (INCAR), Department of Oceanography, University of Concepción, Concepción, Chile
| | - Ana Teresa Gonçalves
- Interdisciplinary Center for Aquaculture Research (INCAR), Department of Oceanography, University of Concepción, Concepción, Chile.
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P.O. Box 160-C, Concepción, Chile.
| |
Collapse
|
46
|
Valenzuela-Miranda D, Gallardo-Escárate C. Novel insights into the response of Atlantic salmon (Salmo salar) to Piscirickettsia salmonis: Interplay of coding genes and lncRNAs during bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2016; 59:427-438. [PMID: 27818337 DOI: 10.1016/j.fsi.2016.11.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 10/11/2016] [Accepted: 11/02/2016] [Indexed: 06/06/2023]
Abstract
Despite the high prevalence and impact to Chilean salmon aquaculture of the intracellular bacterium Piscirickettsia salmonis, the molecular underpinnings of host-pathogen interactions remain unclear. Herein, the interplay of coding and non-coding transcripts has been proposed as a key mechanism involved in immune response. Therefore, the aim of this study was to evidence how coding and non-coding transcripts are modulated during the infection process of Atlantic salmon with P. salmonis. For this, RNA-seq was conducted in brain, spleen, and head kidney samples, revealing different transcriptional profiles according to bacterial load. Additionally, while most of the regulated genes annotated for diverse biological processes during infection, a common response associated with clathrin-mediated endocytosis and iron homeostasis was present in all tissues. Interestingly, while endocytosis-promoting factors and clathrin inductions were upregulated, endocytic receptors were mainly downregulated. Furthermore, the regulation of genes related to iron homeostasis suggested an intracellular accumulation of iron, a process in which heme biosynthesis/degradation pathways might play an important role. Regarding the non-coding response, 918 putative long non-coding RNAs were identified, where 425 were newly characterized for S. salar. Finally, co-localization and co-expression analyses revealed a strong correlation between the modulations of long non-coding RNAs and genes associated with endocytosis and iron homeostasis. These results represent the first comprehensive study of putative interplaying mechanisms of coding and non-coding RNAs during bacterial infection in salmonids.
Collapse
Affiliation(s)
- Diego Valenzuela-Miranda
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P. O. Box 160-C, Concepción, Chile
| | - Cristian Gallardo-Escárate
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P. O. Box 160-C, Concepción, Chile.
| |
Collapse
|
47
|
Polinski MP, Bradshaw JC, Inkpen SM, Richard J, Fritsvold C, Poppe TT, Rise ML, Garver KA, Johnson SC. De novo assembly of Sockeye salmon kidney transcriptomes reveal a limited early response to piscine reovirus with or without infectious hematopoietic necrosis virus superinfection. BMC Genomics 2016; 17:848. [PMID: 27806699 PMCID: PMC5094019 DOI: 10.1186/s12864-016-3196-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 10/22/2016] [Indexed: 12/19/2022] Open
Abstract
Background Piscine reovirus (PRV) has been associated with the serious disease known as Heart and Skeletal Muscle Inflammation (HSMI) in cultured Atlantic salmon Salmo salar in Norway. PRV is also prevalent in wild and farmed salmon without overt disease manifestations, suggesting multifactorial triggers or PRV variant-specific factors are required to initiate disease. In this study, we explore the head kidney transcriptome of Sockeye salmon Oncorhynchus nerka during early PRV infection to identify host responses in the absence of disease in hopes of elucidating mechanisms by which PRV may directly alter host functions and contribute to the development of a disease state. We further investigate the role of PRV as a coinfecting agent following superinfection with infectious hematopoietic necrosis virus (IHNV) – a highly pathogenic rhabdovirus endemic to the west coast of North America. Results Challenge of Sockeye salmon with PRV resulted in high quantities of viral transcripts to become present in the blood and kidney of infected fish without manifestations of disease. De novo transcriptome assembly of over 2.3 billion paired RNA-seq reads from the head kidneys of 36 fish identified more than 320,000 putative unigenes, of which less than 20 were suggested to be differentially expressed in response to PRV at either 2 or 3 weeks post challenge by DESeq2 and edgeR analysis. Of these, only one, Ependymin, was confirmed to be differentially expressed by qPCR in an expanded sample set. In contrast, IHNV induced substantial transcriptional changes (differential expression of > 20,000 unigenes) which included transcripts involved in antiviral and inflammatory response pathways. Prior infection with PRV had no significant effect on host responses to superinfecting IHNV, nor did host responses initiated by IHNV exposure influence increasing PRV loads. Conclusions PRV does not substantially alter the head kidney transcriptome of Sockeye salmon during early (2 to 3 week) infection and dissemination in a period of significant increasing viral load, nor does the presence of PRV change the host transcriptional response to an IHNV superinfection. Further, concurrent infections of PRV and IHNV do not appear to significantly influence the infectivity or severity of IHNV associated disease, or conversely, PRV load. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3196-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mark P Polinski
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Rd, Nanaimo, BC, V9T6N7, Canada.
| | - Julia C Bradshaw
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Rd, Nanaimo, BC, V9T6N7, Canada
| | - Sabrina M Inkpen
- Department of Ocean Sciences, Memorial University, St. John's, NF, A1C5S7, Canada
| | - Jon Richard
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Rd, Nanaimo, BC, V9T6N7, Canada
| | - Camilla Fritsvold
- Department of Pathology, Norwegian Veterinary Institute, Oslo, NO-0106, Norway
| | - Trygve T Poppe
- Department of Pathology, Norwegian Veterinary Institute, Oslo, NO-0106, Norway.,Department of Basic Sciences and Aquatic Medicine (Basam), Norwegian University of Life Sciences, P.O. Box 8146, Dep, N-0033, Oslo, Norway
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University, St. John's, NF, A1C5S7, Canada
| | - Kyle A Garver
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Rd, Nanaimo, BC, V9T6N7, Canada
| | - Stewart C Johnson
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Rd, Nanaimo, BC, V9T6N7, Canada
| |
Collapse
|
48
|
Liu W, Pu Y, Wang C, Gu C, Zhang X. Expression profiles of long noncoding RNAs in cardiac stem cells under hyperglycemic conditions. Int J Cardiol 2016; 222:933-939. [DOI: 10.1016/j.ijcard.2016.08.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/02/2016] [Indexed: 12/20/2022]
|
49
|
Paneru B, Al-Tobasei R, Palti Y, Wiens GD, Salem M. Differential expression of long non-coding RNAs in three genetic lines of rainbow trout in response to infection with Flavobacterium psychrophilum. Sci Rep 2016; 6:36032. [PMID: 27786264 PMCID: PMC5081542 DOI: 10.1038/srep36032] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 10/10/2016] [Indexed: 12/15/2022] Open
Abstract
Bacterial cold-water disease caused by Flavobacterium psychrophilum is one of the major causes of mortality of salmonids. Three genetic lines of rainbow trout designated as ARS-Fp-R (resistant), ARS-Fp-C (control) and ARS-Fp-S (susceptible) have significant differences in survival rate following F. psychrophilum infection. Previous study identified transcriptome differences of immune-relevant protein-coding genes at basal and post infection levels among these genetic lines. Using RNA-Seq approach, we quantified differentially expressed (DE) long non-coding RNAs (lncRNAs) in response to F. psychrophilum challenge in these genetic lines. Pairwise comparison between genetic lines and different infection statuses identified 556 DE lncRNAs. A positive correlation existed between the number of the differentially regulated lncRNAs and that of the protein-coding genes. Several lncRNAs showed strong positive and negative expression correlation with their overlapped, neighboring and distant immune related protein-coding genes including complement components, cytokines, chemokines and several signaling molecules involved in immunity. The correlated expressions and genome-wide co-localization suggested that some lncRNAs may be involved in regulating immune-relevant protein-coding genes. This study provides the first evidence of lncRNA-mediated regulation of the anti-bacterial immune response in a commercially important aquaculture species and will likely help developing new genetic markers for rainbow trout disease resistance.
Collapse
Affiliation(s)
- Bam Paneru
- Department of Biology and Molecular Biosciences Program, Middle Tennessee State University, Murfreesboro, TN, 37132, U.S
| | - Rafet Al-Tobasei
- Computational Science Program, Middle Tennessee State University, Murfreesboro, TN 37132, U.S
| | - Yniv Palti
- The National Center for Cool and Cold Water Aquaculture, USDA Agricultural Research Service, Kearneysville, WV 25430, U.S
| | - Gregory D Wiens
- The National Center for Cool and Cold Water Aquaculture, USDA Agricultural Research Service, Kearneysville, WV 25430, U.S
| | - Mohamed Salem
- Department of Biology and Molecular Biosciences Program, Middle Tennessee State University, Murfreesboro, TN, 37132, U.S.,Computational Science Program, Middle Tennessee State University, Murfreesboro, TN 37132, U.S
| |
Collapse
|