1
|
Ma D, Wang D, Yu J, Huang N, Luo N, Yang Y, Xu M, Li J, Qiu Y, Fan J, Li Z, Chen W, Zhou Q. Single-Cell Profiling of Tubular Epithelial Cells in Adaptive State in the Urine Sediment of Patients With Early and Advanced Diabetic Kidney Disease. Kidney Int Rep 2025; 10:892-905. [PMID: 40225386 PMCID: PMC11993230 DOI: 10.1016/j.ekir.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 04/15/2025] Open
Abstract
Introduction Tubular epithelial cells (TECs) under adaptive state (aTECs) have been frequently reported in the injured kidney closely associated with disease progression. However, whether aTECs is present in the urine of patients with diabetic kidney disease (DKD) and its clinical implication have not been assessed. Methods Urine samples from patients with early and advanced DKD were collected and subjected to single-cell RNA sequencing (scRNA-seq). Kidney single nucleus RNA-seq, spatial scRNA-seq, and bulk RNA-seq datasets were employed to reconstruct their local environment and to delineate differences between shed cells and local residence. Results Most urinary TEC in patients with DKD are under adaptive states. Whereas the composition of urinary TEC is consistent in early and advanced DKD, a higher ratio of aTECs under progenitor and fibrosis state is defined in early DKD. Trajectory inference reveals that some aTECs are early derivatives of injured proximal tubule (PT). Spatial mapping reveals that proliferative and fibrosis aTECs reside close to the glomerulus region. Systemic evaluation of different states of urinary aTECs in patients of diverse-cause kidney injury suggests that the ratio of progenitor or proliferative aTECs to fibrosis aTECs is of diagnostic value. Conclusion Urine is an underestimated source of aTECs providing us noninvasive manner to interrogate the injured state of tubule. The ratio of fibrosis aTECs and progenitor or proliferative aTECs in urine features tubular injury state and may help improve DKD diagnosis.
Collapse
Affiliation(s)
- Dongzhao Ma
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University and NHC Key Laboratory of Clinical Nephrology and Guangdong Provincial Key Laboratory of Nephrology, Guangdong, China
| | - Dan Wang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University and NHC Key Laboratory of Clinical Nephrology and Guangdong Provincial Key Laboratory of Nephrology, Guangdong, China
| | - Jianwen Yu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University and NHC Key Laboratory of Clinical Nephrology and Guangdong Provincial Key Laboratory of Nephrology, Guangdong, China
| | - Naya Huang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University and NHC Key Laboratory of Clinical Nephrology and Guangdong Provincial Key Laboratory of Nephrology, Guangdong, China
| | - Ning Luo
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University and NHC Key Laboratory of Clinical Nephrology and Guangdong Provincial Key Laboratory of Nephrology, Guangdong, China
| | - Yue Yang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University and NHC Key Laboratory of Clinical Nephrology and Guangdong Provincial Key Laboratory of Nephrology, Guangdong, China
| | - Minghui Xu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University and NHC Key Laboratory of Clinical Nephrology and Guangdong Provincial Key Laboratory of Nephrology, Guangdong, China
| | - Jianbo Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University and NHC Key Laboratory of Clinical Nephrology and Guangdong Provincial Key Laboratory of Nephrology, Guangdong, China
| | - Yagui Qiu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University and NHC Key Laboratory of Clinical Nephrology and Guangdong Provincial Key Laboratory of Nephrology, Guangdong, China
| | - Jinjin Fan
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University and NHC Key Laboratory of Clinical Nephrology and Guangdong Provincial Key Laboratory of Nephrology, Guangdong, China
| | - Zhijian Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University and NHC Key Laboratory of Clinical Nephrology and Guangdong Provincial Key Laboratory of Nephrology, Guangdong, China
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University and NHC Key Laboratory of Clinical Nephrology and Guangdong Provincial Key Laboratory of Nephrology, Guangdong, China
| | - Qin Zhou
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University and NHC Key Laboratory of Clinical Nephrology and Guangdong Provincial Key Laboratory of Nephrology, Guangdong, China
| |
Collapse
|
2
|
Götz L, Wegert J, Paikari A, Appenzeller S, Bausenwein S, Vokuhl C, Treger TD, Drost J, Linderkamp C, Schneider DT, Ernestus K, Warman SW, Fuchs J, Welter N, Graf N, Behjati S, Furtwängler R, Gessler M. Wilms tumor primary cultures capture phenotypic heterogeneity and facilitate preclinical screening. Transl Oncol 2025; 52:102263. [PMID: 39740515 PMCID: PMC11750297 DOI: 10.1016/j.tranon.2024.102263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/26/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025] Open
Abstract
Wilms tumors (WT) are characterized by variable contributions of blastemal, epithelial and stromal elements, reflecting their diverse cellular origins and genetic drivers. In vitro models remain rare, despite a growing need to better characterize tumor biology and evaluate new treatments. Using three approaches, we have now established a large collection of long-term cultures that represent this diversity. Adherent WT cultures are predominated by stromal cells, 3D spheroids model blastema, and patient-derived organoid cultures of both tumor and healthy kidney tissue result in the preferential growth of epithelial cells. Adherent, spheroid and organoid cultures are also clearly distinguishable by their transcriptome. Preclinical drug screening experiments revealed sensitivity to a range of inhibitors, that are highly effective in other childhood solid tumors. Sensitivity was related to MYCN status, a marker associated with adverse outcome across human cancers including WT. The combination of the three culture techniques represents a promising tool to both explore tumor heterogeneity in vitro and to facilitate characterization of candidate driver genes, in order to improve treatment regimens in the future.
Collapse
Affiliation(s)
- Lisa Götz
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Jenny Wegert
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Alireza Paikari
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Silke Appenzeller
- Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany
| | - Sabrina Bausenwein
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Christian Vokuhl
- Section of Pediatric Pathology, Department of Pathology, University Hospital Bonn, Bonn, Germany
| | - Taryn D Treger
- Wellcome Sanger Institute, Hinxton, UK; Department of Pediatrics, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Christin Linderkamp
- Department of Pediatric Hematology and Oncology, Hannover Medical School (MHH), Hannover, Germany
| | - Dominik T Schneider
- Clinic of Pediatrics, Klinikum Dortmund, University Witten/Herdecke, Germany
| | - Karen Ernestus
- Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany; Department of Pathology, University of Würzburg, Würzburg, Germany
| | - Steven W Warman
- Clinic of Pediatric Surgery, Charité - University Hospital Berlin, Berlin, Germany; Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital, Tuebingen, Germany
| | - Jörg Fuchs
- Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital, Tuebingen, Germany
| | - Nils Welter
- Department of Pediatric Hematology and Oncology, Saarland University Hospital, Homburg, Germany
| | - Norbert Graf
- Department of Pediatric Hematology and Oncology, Saarland University Hospital, Homburg, Germany
| | - Sam Behjati
- Wellcome Sanger Institute, Hinxton, UK; Department of Pediatrics, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Rhoikos Furtwängler
- Department of Pediatric Hematology and Oncology, Saarland University Hospital, Homburg, Germany; Pediatric Hematology and Oncology, Dep. of Pediatrics, Bern University Hospital, University of Bern, Inselspital, Switzerland
| | - Manfred Gessler
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Julius-Maximilians-University Würzburg, Würzburg, Germany; Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany.
| |
Collapse
|
3
|
Hermo L, Oliveira R, Dufresne J, Gregory M, Cyr DG. Basal and Immune Cells of the Epididymis: An Electron Microscopy View of Their Association. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1469:67-87. [PMID: 40301253 DOI: 10.1007/978-3-031-82990-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
The epididymis is a highly coiled duct divided into the initial segment, caput, corpus, and cauda regions. It is a pseudostratified epithelium consisting of principal, narrow, apical, basal, and clear cells. Circulating halo cells, identified as nonepithelial cells, monocytes/macrophages (M/M) and T-lymphocytes, in addition to dendritic cells and a resident population of M/M cells, also inhabit the epididymal epithelium. Using electron microscopy (EM), we characterized the ultrastructural features of each of these different cell types. Basal cells with stem cell characteristics suggest a role in sustaining the epithelium following injury and inflammation, as well as maintaining the steady state of the epithelium. Interestingly, a close morphological affiliation was noted between circulating M/M cells with basal cells and an intraepithelial resident M/M population of cells, as well as between T-lymphocytes and dendritic cells. The association of all these cell types with one another suggests complex interactions enabling the coordination of their functions related to maturation, protection, survival of sperm, and renewal of the epithelium.
Collapse
Affiliation(s)
- Louis Hermo
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Regiana Oliveira
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Julie Dufresne
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada
| | - Mary Gregory
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada
| | - Daniel G Cyr
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada.
| |
Collapse
|
4
|
Perotti D, Williams RD, Wegert J, Brzezinski J, Maschietto M, Ciceri S, Gisselsson D, Gadd S, Walz AL, Furtwaengler R, Drost J, Al-Saadi R, Evageliou N, Gooskens SL, Hong AL, Murphy AJ, Ortiz MV, O'Sullivan MJ, Mullen EA, van den Heuvel-Eibrink MM, Fernandez CV, Graf N, Grundy PE, Geller JI, Dome JS, Perlman EJ, Gessler M, Huff V, Pritchard-Jones K. Hallmark discoveries in the biology of Wilms tumour. Nat Rev Urol 2024; 21:158-180. [PMID: 37848532 DOI: 10.1038/s41585-023-00824-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2023] [Indexed: 10/19/2023]
Abstract
The modern study of Wilms tumour was prompted nearly 50 years ago, when Alfred Knudson proposed the 'two-hit' model of tumour development. Since then, the efforts of researchers worldwide have substantially expanded our knowledge of Wilms tumour biology, including major advances in genetics - from cloning the first Wilms tumour gene to high-throughput studies that have revealed the genetic landscape of this tumour. These discoveries improve understanding of the embryonal origin of Wilms tumour, familial occurrences and associated syndromic conditions. Many efforts have been made to find and clinically apply prognostic biomarkers to Wilms tumour, for which outcomes are generally favourable, but treatment of some affected individuals remains challenging. Challenges are also posed by the intratumoural heterogeneity of biomarkers. Furthermore, preclinical models of Wilms tumour, from cell lines to organoid cultures, have evolved. Despite these many achievements, much still remains to be discovered: further molecular understanding of relapse in Wilms tumour and of the multiple origins of bilateral Wilms tumour are two examples of areas under active investigation. International collaboration, especially when large tumour series are required to obtain robust data, will help to answer some of the remaining unresolved questions.
Collapse
Affiliation(s)
- Daniela Perotti
- Predictive Medicine: Molecular Bases of Genetic Risk, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | - Richard D Williams
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Section of Genetics and Genomics, Faculty of Medicine, Imperial College London, London, UK
| | - Jenny Wegert
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Wuerzburg University, Wuerzburg, Germany
| | - Jack Brzezinski
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Mariana Maschietto
- Research Center, Boldrini Children's Hospital, Campinas, São Paulo, Brazil
| | - Sara Ciceri
- Predictive Medicine: Molecular Bases of Genetic Risk, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - David Gisselsson
- Cancer Cell Evolution Unit, Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Clinical Genetics, Pathology and Molecular Diagnostics, Office of Medical Services, Skåne, Sweden
| | - Samantha Gadd
- Department of Pathology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Amy L Walz
- Division of Hematology,Oncology, Neuro-Oncology, and Stem Cell Transplant, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Rhoikos Furtwaengler
- Division of Pediatric Oncology and Hematology, Department of Pediatrics, Inselspital Bern University, Bern, Switzerland
| | - Jarno Drost
- Princess Máxima Center for Paediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Reem Al-Saadi
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Histopathology, Great Ormond Street Hospital for Children, London, UK
| | - Nicholas Evageliou
- Divisions of Hematology and Oncology, Children's Hospital of Philadelphia, CHOP Specialty Care Center, Vorhees, NJ, USA
| | - Saskia L Gooskens
- Princess Máxima Center for Paediatric Oncology, Utrecht, Netherlands
| | - Andrew L Hong
- Aflac Cancer and Blood Disorders Center, Emory University and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Andrew J Murphy
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael V Ortiz
- Department of Paediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maureen J O'Sullivan
- Histology Laboratory, Children's Health Ireland at Crumlin, Dublin, Ireland
- Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland
| | - Elizabeth A Mullen
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | | | - Conrad V Fernandez
- Division of Paediatric Hematology Oncology, IWK Health Centre and Dalhousie University, Halifax, Nova Scotia, Canada
| | - Norbert Graf
- Department of Paediatric Oncology and Hematology, Saarland University Hospital, Homburg, Germany
| | - Paul E Grundy
- Department of Paediatrics Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - James I Geller
- Division of Oncology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Jeffrey S Dome
- Division of Oncology, Center for Cancer and Blood Disorders, Children's National Hospital and the Department of Paediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Elizabeth J Perlman
- Department of Pathology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Manfred Gessler
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Wuerzburg University, Wuerzburg, Germany
- Comprehensive Cancer Center Mainfranken, Wuerzburg, Germany
| | - Vicki Huff
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kathy Pritchard-Jones
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
5
|
Petrosyan A, Villani V, Aguiari P, Thornton ME, Wang Y, Rajewski A, Zhou S, Cravedi P, Grubbs BH, De Filippo RE, Sedrakyan S, Lemley KV, Csete M, Da Sacco S, Perin L. Identification and Characterization of the Wilms Tumor Cancer Stem Cell. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206787. [PMID: 37114795 PMCID: PMC10369255 DOI: 10.1002/advs.202206787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/24/2023] [Indexed: 06/19/2023]
Abstract
A nephrogenic progenitor cell (NP) with cancer stem cell characteristics driving Wilms tumor (WT) using spatial transcriptomics, bulk and single cell RNA sequencing, and complementary in vitro and transplantation experiments is identified and characterized. NP from WT samples with NP from the developing human kidney is compared. Cells expressing SIX2 and CITED1 fulfill cancer stem cell criteria by reliably recapitulating WT in transplantation studies. It is shown that self-renewal versus differentiation in SIX2+CITED1+ cells is regulated by the interplay between integrins ITGβ1 and ITGβ4. The spatial transcriptomic analysis defines gene expression maps of SIX2+CITED1+ cells in WT samples and identifies the interactive gene networks involved in WT development. These studies define SIX2+CITED1+ cells as the nephrogenic-like cancer stem cells of WT and points to the renal developmental transcriptome changes as a possible driver in regulating WT formation and progression.
Collapse
Affiliation(s)
- Astgik Petrosyan
- GOFARR LaboratoryChildren's Hospital Los AngelesDivision of UrologySaban Research InstituteLos AngelesCA90027USA
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
| | - Valentina Villani
- GOFARR LaboratoryChildren's Hospital Los AngelesDivision of UrologySaban Research InstituteLos AngelesCA90027USA
| | - Paola Aguiari
- GOFARR LaboratoryChildren's Hospital Los AngelesDivision of UrologySaban Research InstituteLos AngelesCA90027USA
- David Geffen School of Medicine at UCLA – VA Healthcare SystemLos AngelesCA90095USA
| | - Matthew E. Thornton
- Department of Obstetrics and GynecologyKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
| | - Yizhou Wang
- Genomics CoreDepartment of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCA90048USA
| | - Alex Rajewski
- Genomics CoreDepartment of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCA90048USA
| | - Shengmei Zhou
- Department of Pathology and Laboratory MedicineChildren's Hospital Los AngelesLos AngelesCA90027USA
| | - Paolo Cravedi
- Department of MedicineDivision of Nephrology and Translational Transplant Research CenterRecanati Miller Transplant InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Brendan H. Grubbs
- Department of Obstetrics and GynecologyKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
| | - Roger E. De Filippo
- GOFARR LaboratoryChildren's Hospital Los AngelesDivision of UrologySaban Research InstituteLos AngelesCA90027USA
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
| | - Sargis Sedrakyan
- GOFARR LaboratoryChildren's Hospital Los AngelesDivision of UrologySaban Research InstituteLos AngelesCA90027USA
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
| | - Kevin V. Lemley
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
- Children's Hospital Los AngelesDivision of NephrologyDepartment of PediatricsUniversity of Southern CaliforniaLos AngelesCA90027USA
| | - Marie Csete
- Department of AnesthesiologyUniversity of Southern CaliforniaLos AngelesCA90033USA
| | - Stefano Da Sacco
- GOFARR LaboratoryChildren's Hospital Los AngelesDivision of UrologySaban Research InstituteLos AngelesCA90027USA
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
| | - Laura Perin
- GOFARR LaboratoryChildren's Hospital Los AngelesDivision of UrologySaban Research InstituteLos AngelesCA90027USA
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
| |
Collapse
|
6
|
Wojcik HM, Lovvorn HN, Hollingshead M, Pierce J, Stotler H, Murphy AJ, Borgel S, Phelps HM, Correa H, Perantoni AO. Exploiting embryonic niche conditions to grow Wilms tumor blastema in culture. Front Oncol 2023; 13:1091274. [PMID: 37007076 PMCID: PMC10061139 DOI: 10.3389/fonc.2023.1091274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
IntroductionWilms Tumor (WT), or nephroblastoma, is the most common pediatric kidney cancer. Most WTs display a “favorable” triphasic histology, in which the tumor is comprised of blastemal, stromal, and epithelial cell types. Blastemal predominance after neoadjuvant chemotherapy or diffuse anaplasia (“unfavorable” histology; 5-8%) portend a worse prognosis. Blastema likely provide the putative cancer stem cells (CSCs), which retain molecular and histologic features characteristic of nephron progenitor cells (NPCs), within WTs. NPCs arise in the metanephric mesenchyme (MM) and populate the cap mesenchyme (CM) in the developing kidney. WT blastemal cells, like NPCs, similarly express markers, SIX2 and CITED1. Tumor xenotransplantation is currently the only dependable method to propagate tumor tissue for research or therapeutic screening, since efforts to culture tumors in vitro as monolayers have invariably failed. Therefore, a critical need exists to propagate WT stem cells rapidly and efficiently for high-throughput, real-time drug screening.MethodsPreviously, our lab developed niche conditions that support the propagation of murine NPCs in culture. Applying similar conditions to WTs, we assessed our ability to maintain key NPC "stemness" markers, SIX2, NCAM, and YAP1, and CSC marker ALDHI in cells from five distinct untreated patient tumors.ResultsAccordingly, our culture conditions maintained the expression of these markers in cultured WT cells through multiple passages of rapidly dividing cells.DiscussionThese findings suggest that our culture conditions sustain the WT blastemal population, as previously shown for normal NPCs. As a result, we have developed new WT cell lines and a multi-passage in vitro model for studying the blastemal lineage/CSCs in WTs. Furthermore, this system supports growth of heterogeneous WT cells, upon which potential drug therapies could be tested for efficacy and resistance.
Collapse
Affiliation(s)
- Heather M. Wojcik
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, United States
| | - Harold N. Lovvorn
- Department of Pediatric Surgery, Monroe Carell Jr. Children’s Hospital at Vanderbilt University, Nashville, TN, United States
| | - Melinda Hollingshead
- Biological Testing Branch/Developmental Therapeutics Program, National Cancer Institute, Frederick, MD, United States
| | - Janene Pierce
- Department of Pediatric Surgery, Monroe Carell Jr. Children’s Hospital at Vanderbilt University, Nashville, TN, United States
| | - Howard Stotler
- Leidos Biomedical Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Andrew J. Murphy
- Department of Pediatric Surgery, Monroe Carell Jr. Children’s Hospital at Vanderbilt University, Nashville, TN, United States
| | - Suzanne Borgel
- Leidos Biomedical Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Hannah M. Phelps
- Department of Pediatric Surgery, Monroe Carell Jr. Children’s Hospital at Vanderbilt University, Nashville, TN, United States
| | - Hernan Correa
- Division of Pediatric Pathology, Monroe Carell Jr. Children’s Hospital at Vanderbilt University, Nashville, TN, United States
| | - Alan O. Perantoni
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, United States
- *Correspondence: Alan O. Perantoni,
| |
Collapse
|
7
|
Characterization of alternative mRNA splicing in cultured cell populations representing progressive stages of human fetal kidney development. Sci Rep 2022; 12:19548. [PMID: 36380228 PMCID: PMC9666651 DOI: 10.1038/s41598-022-24147-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Nephrons are the functional units of the kidney. During kidney development, cells from the cap mesenchyme-a transient kidney-specific progenitor state-undergo a mesenchymal to epithelial transition (MET) and subsequently differentiate into the various epithelial cell types that create the tubular structures of the nephron. Faults in this transition can lead to a pediatric malignancy of the kidney called Wilms' tumor that mimics normal kidney development. While human kidney development has been characterized at the gene expression level, a comprehensive characterization of alternative splicing is lacking. Therefore, in this study, we performed RNA sequencing on cell populations representing early, intermediate, and late developmental stages of the human fetal kidney, as well as three blastemal-predominant Wilms' tumor patient-derived xenografts. Using this newly generated RNAseq data, we identified a set of transcripts that are alternatively spliced between the different developmental stages. Moreover, we found that cells from the earliest developmental stage have a mesenchymal splice-isoform profile that is similar to that of blastemal-predominant Wilms' tumor xenografts. RNA binding motif enrichment analysis suggests that the mRNA binding proteins ESRP1, ESRP2, RBFOX2, and QKI regulate alternative mRNA splicing during human kidney development. These findings illuminate new molecular mechanisms involved in human kidney development and pediatric kidney cancer.
Collapse
|
8
|
Bitaraf M, Mahmanzar M, Zafari N, Mohammadpour H, Vasei M, Moradi Matin L, Kajbafzadeh AM, Majidi Zolbin M. The potential key genes and pathways associated with Wilms tumor in quest of proper candidates for diagnostic and therapeutic purposes. Sci Rep 2022; 12:17906. [PMID: 36284226 PMCID: PMC9596724 DOI: 10.1038/s41598-022-22925-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/20/2022] [Indexed: 01/20/2023] Open
Abstract
To designate the probable most important differentially expressed genes and genetic pathways in Wilms tumor and assess their expression and diagnostic potential by RT-PCR and statistical analysis. Systematic review of the literature and various bioinformatics analysis was carried out to gather and narrow down data. The expression of end-resulting genes was compared in Wilms tumor and normal tissue samples using RT-PCR. Statistical tests reported the diagnostic accuracy of genes and their correlation with clinicopathological features. Four genes including CDH1, NCAM1, EGF, and IGF2 were designated. The panel combining them has 100% sensitivity and specificity in differentiating tumors from normal tissue. Eight pathways, most involved in cell-cell and cell-basal matrix junction interactions, were found to be associated with disease pathogenesis. The suggested genes should undergo further evaluation to be validated as diagnostic biomarkers. Further research on the eight proposed pathways is recommended.
Collapse
Affiliation(s)
- Masoud Bitaraf
- grid.411705.60000 0001 0166 0922Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children’s Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Qarib’s St, Keshavarz Blvd, Tehran, 14194 33151 Iran
| | - Mohammadamin Mahmanzar
- grid.411705.60000 0001 0166 0922Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children’s Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Qarib’s St, Keshavarz Blvd, Tehran, 14194 33151 Iran ,grid.46072.370000 0004 0612 7950Department of Bioinformatics, Kish International Campus, University of Tehran, Kish, Iran
| | - Narges Zafari
- grid.411705.60000 0001 0166 0922Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadiseh Mohammadpour
- grid.411705.60000 0001 0166 0922Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Vasei
- grid.415646.40000 0004 0612 6034 Cell Therapy Based Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Leyla Moradi Matin
- grid.411705.60000 0001 0166 0922Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children’s Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Qarib’s St, Keshavarz Blvd, Tehran, 14194 33151 Iran
| | - Abdol-Mohammad Kajbafzadeh
- grid.411705.60000 0001 0166 0922Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children’s Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Qarib’s St, Keshavarz Blvd, Tehran, 14194 33151 Iran
| | - Masoumeh Majidi Zolbin
- grid.411705.60000 0001 0166 0922Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children’s Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Qarib’s St, Keshavarz Blvd, Tehran, 14194 33151 Iran
| |
Collapse
|
9
|
Buglyó G, Magyar Z, Görbe ÉR, Bánusz R, Csóka M, Micsik T, Mezei M, Yani JAS, Varga P, Sápi Z, Nagy B. miRNA Profiling of Hungarian Regressive Wilms' Tumor Formalin-Fixed Paraffin-Embedded (FFPE) Samples by Quantitative Real-Time Polymerase Chain Reaction (RT-PCR). Med Sci Monit 2021; 27:e932731. [PMID: 34608109 PMCID: PMC8501895 DOI: 10.12659/msm.932731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Wilms' tumor is a common renal malignancy of early childhood with a generally favorable prognosis depending upon histological subtype. It is becoming increasingly clear that differences in miRNA (microRNA) expression signature represent important clues helping us predict a tumor's response to chemotherapy. In our study, we aimed to reveal miRNAs deregulated in regressive Wilms' tumors from FFPE (formalin-fixed, paraffin-embedded) samples, also showing whether such samples are reliable miRNA sources in Wilms' tumor. MATERIAL AND METHODS Samples from 8 Hungarian patients (3 males, 5 females, aged 1 to 7 years) were analyzed by qRT-PCR (quantitative real-time PCR). A PCR array was used in a pilot experiment, and selected miRNAs (miR-128-3p, miR-184, miR-194-5p, miR-203a) were studied in the rest of the samples using individual primers. RESULTS miR-194-5p was underexpressed in all tumor samples. miR-184 and miR-203a were underexpressed in 7 cases, the exception being a case with a high ratio of necrotic blastemal tissue. Results obtained with miR-128-3p are difficult to interpret due to varying directions of expression changes. CONCLUSIONS We conclude that a downregulation of miR-184, miR-194-5p, and miR-203a expression is observed in both regressive and blastemal tumors, but larger-scale studies are needed to confirm whether the degree of their underexpression correlates with the number of blastemal elements in a sample. In most of our FFPE samples aged up to 9 years, RNA extraction provided miRNA with quantity and quality sufficient for qRT-PCR-based analysis, emphasizing the relevance of pathological archives as miRNA sources in future studies.
Collapse
Affiliation(s)
- Gergely Buglyó
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsófia Magyar
- Department of Obstetrics and Gynaecology, Baross Street Division, Semmelweis University, Budapest, Hungary
| | - Éva Romicsné Görbe
- Department of Obstetrics and Gynaecology, Baross Street Division, Semmelweis University, Budapest, Hungary
| | - Rita Bánusz
- 2 Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Monika Csóka
- 2 Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Tamás Micsik
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Márta Mezei
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Jaxi Ayman Shawky Yani
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Varga
- Department of Obstetrics and Gynaecology, Baross Street Division, Semmelweis University, Budapest, Hungary
| | - Zoltán Sápi
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Bálint Nagy
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
10
|
Ferreira-Facio CDS, Botafogo V, Ferrão PM, Canellas MC, Milito CB, Romano S, Lopes DV, Teixeira LC, Oliveira E, Bruno-Riscarolli E, Mello FV, Siqueira PFR, Moura P, Macedo FN, Forny DN, Simião L, Pureza AL, Land MGP, Pedreira CE, van Dongen JJM, Orfao A, da Costa ES. Flow Cytometry Immunophenotyping for Diagnostic Orientation and Classification of Pediatric Cancer Based on the EuroFlow Solid Tumor Orientation Tube (STOT). Cancers (Basel) 2021; 13:cancers13194945. [PMID: 34638431 PMCID: PMC8508207 DOI: 10.3390/cancers13194945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/15/2022] Open
Abstract
Simple Summary Pediatric solid tumors are a heterogenous group of diseases that comprise ≈ 40% of all pediatric cancers, early diagnosis being key for improved survival. Here we designed, tested, and validated a single eight-color tube for the diagnostic screening of pediatric cancer—solid tumor orientation tube (STOT)—based on multiparameter flow cytometry vs. conventional diagnostic procedures. Prospective clinical validation of STOT in 149 samples (63 tumor mass, 38 bone marrow, 30 lymph node, and 18 body fluid samples) screened for pediatric cancer, apart from 26 blood specimens that were excluded from analysis, showed concordant results with the final WHO/ICCC-3 diagnosis in 138/149 cases (92.6%). This included correct diagnostic orientation by STOT in 43/44 (98%) malignant and 4/4 (100%) benign non-hematopoietic tumors, together with 28/38 (74%) leukemia/lymphoma cases. The only recurrently missed diagnosis was Hodgkin lymphoma (0/8), which would require additional markers. These results support the use of STOT as a complementary tool for fast and accurate diagnostic screening, orientation, and classification of pediatric cancer in suspicious patients. Abstract Early diagnosis of pediatric cancer is key for adequate patient management and improved outcome. Although multiparameter flow cytometry (MFC) has proven of great utility in the diagnosis and classification of hematologic malignancies, its application to non-hematopoietic pediatric tumors remains limited. Here we designed and prospectively validated a new single eight-color antibody combination—solid tumor orientation tube, STOT—for diagnostic screening of pediatric cancer by MFC. A total of 476 samples (139 tumor mass, 138 bone marrow, 86 lymph node, 58 peripheral blood, and 55 other body fluid samples) from 296 patients with diagnostic suspicion of pediatric cancer were analyzed by MFC vs. conventional diagnostic procedures. STOT was designed after several design–test–evaluate–redesign cycles based on a large panel of monoclonal antibody combinations tested on 301 samples. In its final version, STOT consists of a single 8-color/12-marker antibody combination (CD99-CD8/numyogenin/CD4-EpCAM/CD56/GD2/smCD3-CD19/cyCD3-CD271/CD45). Prospective validation of STOT in 149 samples showed concordant results with the patient WHO/ICCC-3 diagnosis in 138/149 cases (92.6%). These included: 63/63 (100%) reactive/disease-free samples, 43/44 (98%) malignant and 4/4 (100%) benign non-hematopoietic tumors together with 28/38 (74%) leukemia/lymphoma cases; the only exception was Hodgkin lymphoma that required additional markers to be stained. In addition, STOT allowed accurate discrimination among the four most common subtypes of malignant CD45− CD56++ non-hematopoietic solid tumors: 13/13 (GD2++ numyogenin− CD271−/+ nuMyoD1− CD99− EpCAM−) neuroblastoma samples, 5/5 (GD2− numyogenin++ CD271++ nuMyoD1++ CD99−/+ EpCAM−) rhabdomyosarcomas, 2/2 (GD2−/+ numyogenin− CD271+ nuMyoD1− CD99+ EpCAM−) Ewing sarcoma family of tumors, and 7/7 (GD2− numyogenin− CD271+ nuMyoD1− CD99− EpCAM+) Wilms tumors. In summary, here we designed and validated a new standardized antibody combination and MFC assay for diagnostic screening of pediatric solid tumors that might contribute to fast and accurate diagnostic orientation and classification of pediatric cancer in routine clinical practice.
Collapse
Affiliation(s)
- Cristiane de Sá Ferreira-Facio
- Internal Medicine Postgraduate Program, Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-617, Brazil; (C.d.S.F.-F.); (V.B.); (L.C.T.); (E.O.); (E.B.-R.); (P.F.R.S.); (M.G.P.L.)
- Cytometry Service, Institute of Paediatrics and Puericultura Martagão Gesteira (IPPMG), Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil; (P.M.F.); (M.C.C.); (D.V.L.); (F.V.M.); (L.S.); (A.L.P.)
| | - Vitor Botafogo
- Internal Medicine Postgraduate Program, Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-617, Brazil; (C.d.S.F.-F.); (V.B.); (L.C.T.); (E.O.); (E.B.-R.); (P.F.R.S.); (M.G.P.L.)
- Cytometry Service, Institute of Paediatrics and Puericultura Martagão Gesteira (IPPMG), Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil; (P.M.F.); (M.C.C.); (D.V.L.); (F.V.M.); (L.S.); (A.L.P.)
| | - Patrícia Mello Ferrão
- Cytometry Service, Institute of Paediatrics and Puericultura Martagão Gesteira (IPPMG), Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil; (P.M.F.); (M.C.C.); (D.V.L.); (F.V.M.); (L.S.); (A.L.P.)
| | - Maria Clara Canellas
- Cytometry Service, Institute of Paediatrics and Puericultura Martagão Gesteira (IPPMG), Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil; (P.M.F.); (M.C.C.); (D.V.L.); (F.V.M.); (L.S.); (A.L.P.)
| | - Cristiane B. Milito
- Department of Pathology, Faculty of Medicine, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-617, Brazil;
| | - Sérgio Romano
- Laboratory of Anatomical Pathology and Cytopathology, Instituto Nacional de Câncer (INCa), Rio de Janeiro 20220-400, Brazil;
| | - Daiana V. Lopes
- Cytometry Service, Institute of Paediatrics and Puericultura Martagão Gesteira (IPPMG), Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil; (P.M.F.); (M.C.C.); (D.V.L.); (F.V.M.); (L.S.); (A.L.P.)
| | - Lisandra C. Teixeira
- Internal Medicine Postgraduate Program, Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-617, Brazil; (C.d.S.F.-F.); (V.B.); (L.C.T.); (E.O.); (E.B.-R.); (P.F.R.S.); (M.G.P.L.)
- Cytometry Service, Institute of Paediatrics and Puericultura Martagão Gesteira (IPPMG), Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil; (P.M.F.); (M.C.C.); (D.V.L.); (F.V.M.); (L.S.); (A.L.P.)
| | - Elen Oliveira
- Internal Medicine Postgraduate Program, Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-617, Brazil; (C.d.S.F.-F.); (V.B.); (L.C.T.); (E.O.); (E.B.-R.); (P.F.R.S.); (M.G.P.L.)
- Cytometry Service, Institute of Paediatrics and Puericultura Martagão Gesteira (IPPMG), Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil; (P.M.F.); (M.C.C.); (D.V.L.); (F.V.M.); (L.S.); (A.L.P.)
| | - Enrico Bruno-Riscarolli
- Internal Medicine Postgraduate Program, Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-617, Brazil; (C.d.S.F.-F.); (V.B.); (L.C.T.); (E.O.); (E.B.-R.); (P.F.R.S.); (M.G.P.L.)
- Cytometry Service, Institute of Paediatrics and Puericultura Martagão Gesteira (IPPMG), Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil; (P.M.F.); (M.C.C.); (D.V.L.); (F.V.M.); (L.S.); (A.L.P.)
| | - Fabiana V. Mello
- Cytometry Service, Institute of Paediatrics and Puericultura Martagão Gesteira (IPPMG), Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil; (P.M.F.); (M.C.C.); (D.V.L.); (F.V.M.); (L.S.); (A.L.P.)
| | - Patrícia F. R. Siqueira
- Internal Medicine Postgraduate Program, Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-617, Brazil; (C.d.S.F.-F.); (V.B.); (L.C.T.); (E.O.); (E.B.-R.); (P.F.R.S.); (M.G.P.L.)
- Cytometry Service, Institute of Paediatrics and Puericultura Martagão Gesteira (IPPMG), Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil; (P.M.F.); (M.C.C.); (D.V.L.); (F.V.M.); (L.S.); (A.L.P.)
| | - Patrícia Moura
- I’Dor Institute, Hospital Estadual da Criança, Rio de Janeiro 21330-400, Brazil; (P.M.); (F.N.M.)
| | - Francisco Nicanor Macedo
- I’Dor Institute, Hospital Estadual da Criança, Rio de Janeiro 21330-400, Brazil; (P.M.); (F.N.M.)
| | - Danielle N. Forny
- Department of Pediatric Surgery, Institute of Paediatrics and Puericultura Martagão Gesteira (IPPMG), Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil;
| | - Luíza Simião
- Cytometry Service, Institute of Paediatrics and Puericultura Martagão Gesteira (IPPMG), Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil; (P.M.F.); (M.C.C.); (D.V.L.); (F.V.M.); (L.S.); (A.L.P.)
| | - Ana Luíza Pureza
- Cytometry Service, Institute of Paediatrics and Puericultura Martagão Gesteira (IPPMG), Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil; (P.M.F.); (M.C.C.); (D.V.L.); (F.V.M.); (L.S.); (A.L.P.)
| | - Marcelo Gerardin Poirot Land
- Internal Medicine Postgraduate Program, Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-617, Brazil; (C.d.S.F.-F.); (V.B.); (L.C.T.); (E.O.); (E.B.-R.); (P.F.R.S.); (M.G.P.L.)
| | - Carlos Eduardo Pedreira
- Systems and Computing Engineering Department (COPPE-PESC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-972, Brazil;
| | - Jacques J. M. van Dongen
- Department of Immunohematology and Blood Transfusion (IHB), Leiden University Medical Center (LUMC), 2333 ZA Leiden, The Netherlands;
| | - Alberto Orfao
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL), Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Correspondence: (A.O.); (E.S.d.C.); Tel.: +34-9232-9481 (A.O.); +55-21-3938-4725 (E.S.d.C.)
| | - Elaine Sobral da Costa
- Internal Medicine Postgraduate Program, Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-617, Brazil; (C.d.S.F.-F.); (V.B.); (L.C.T.); (E.O.); (E.B.-R.); (P.F.R.S.); (M.G.P.L.)
- Cytometry Service, Institute of Paediatrics and Puericultura Martagão Gesteira (IPPMG), Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil; (P.M.F.); (M.C.C.); (D.V.L.); (F.V.M.); (L.S.); (A.L.P.)
- Correspondence: (A.O.); (E.S.d.C.); Tel.: +34-9232-9481 (A.O.); +55-21-3938-4725 (E.S.d.C.)
| |
Collapse
|
11
|
Poll BG, Chen L, Chou CL, Raghuram V, Knepper MA. Landscape of GPCR expression along the mouse nephron. Am J Physiol Renal Physiol 2021; 321:F50-F68. [PMID: 34029142 PMCID: PMC8321805 DOI: 10.1152/ajprenal.00077.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/11/2022] Open
Abstract
Kidney transport and other renal functions are regulated by multiple G protein-coupled receptors (GPCRs) expressed along the renal tubule. The rapid, recent appearance of comprehensive unbiased gene expression data in the various renal tubule segments, chiefly RNA sequencing and protein mass spectrometry data, has provided a means of identifying patterns of GPCR expression along the renal tubule. To allow for comprehensive mapping, we first curated a comprehensive list of GPCRs in the genomes of mice, rats, and humans (https://hpcwebapps.cit.nih.gov/ESBL/Database/GPCRs/) using multiple online data sources. We used this list to mine segment-specific and cell type-specific expression data from RNA-sequencing studies in microdissected mouse tubule segments to identify GPCRs that are selectively expressed in discrete tubule segments. Comparisons of these mapped mouse GPCRs with other omics datasets as well as functional data from isolated perfused tubule and micropuncture studies confirmed patterns of expression for well-known receptors and identified poorly studied GPCRs that are likely to play roles in the regulation of renal tubule function. Thus, we provide data resources for GPCR expression across the renal tubule, highlighting both well-known GPCRs and understudied receptors to provide guidance for future studies.
Collapse
Affiliation(s)
- Brian G Poll
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Lihe Chen
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Chung-Lin Chou
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Viswanathan Raghuram
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
12
|
Pelosi A, Fiore PF, Di Matteo S, Veneziani I, Caruana I, Ebert S, Munari E, Moretta L, Maggi E, Azzarone B. Pediatric Tumors-Mediated Inhibitory Effect on NK Cells: The Case of Neuroblastoma and Wilms' Tumors. Cancers (Basel) 2021; 13:cancers13102374. [PMID: 34069127 PMCID: PMC8156764 DOI: 10.3390/cancers13102374] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/04/2021] [Accepted: 05/09/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Neuroblastoma (NB) and Wilms’ tumor (WT) are the most common childhood solid extracranial tumors. The current treatments consist of a combination of surgery and chemotherapy or radiotherapy in high-risk patients. Such treatments are responsible for significant adverse events requiring long-term monitoring. Thus, a main challenge in NB and WT treatment is the development of novel therapeutic strategies to eliminate or minimize the adverse effects. The characterization of the immune environment could allow for the identification of new therapeutic targets. Herein, we described the interaction between these tumors and innate immune cells, in particular natural killer cells and monocytes. The detection of the immunosuppressive activity of specific NB and WT tumor cells on natural killer cells and on monocytes could offer novel cellular and molecular targets for an effective immunotherapy of NB and WT. Abstract Natural killer (NK) cells play a key role in the control of cancer development, progression and metastatic dissemination. However, tumor cells develop an array of strategies capable of impairing the activation and function of the immune system, including NK cells. In this context, a major event is represented by the establishment of an immunosuppressive tumor microenvironment (TME) composed of stromal cells, myeloid-derived suppressor cells, tumor-associated macrophages, regulatory T cells and cancer cells themselves. The different immunoregulatory cells infiltrating the TME, through the release of several immunosuppressive molecules or by cell-to-cell interactions, cause an impairment of the recruitment of NK cells and other lymphocytes with effector functions. The different mechanisms by which stromal and tumor cells impair NK cell function have been particularly explored in adult solid tumors and, in less depth, investigated and discussed in a pediatric setting. In this review, we will compare pediatric and adult solid malignancies concerning the respective mechanisms of NK cell inhibition, highlighting novel key data in neuroblastoma and Wilms’ tumor, two of the most frequent pediatric extracranial solid tumors. Indeed, both tumors are characterized by the presence of stromal cells acting through the release of immunosuppressive molecules. In addition, specific tumor cell subsets inhibit NK cell cytotoxic function by cell-to-cell contact mechanisms likely controlled by the transcriptional coactivator TAZ. These findings could lead to a more performant diagnostic approach and to the development of novel immunotherapeutic strategies targeting the identified cellular and molecular targets.
Collapse
Affiliation(s)
- Andrea Pelosi
- Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.P.); (P.F.F.); (S.D.M.); (I.V.); (L.M.)
| | - Piera Filomena Fiore
- Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.P.); (P.F.F.); (S.D.M.); (I.V.); (L.M.)
| | - Sabina Di Matteo
- Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.P.); (P.F.F.); (S.D.M.); (I.V.); (L.M.)
| | - Irene Veneziani
- Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.P.); (P.F.F.); (S.D.M.); (I.V.); (L.M.)
| | - Ignazio Caruana
- Department of Paediatric Haematology, Oncology and Stem Cell Transplantation, University Children’s Hospital of Würzburg, 97080 Würzburg, Germany; (I.C.); (S.E.)
| | - Stefan Ebert
- Department of Paediatric Haematology, Oncology and Stem Cell Transplantation, University Children’s Hospital of Würzburg, 97080 Würzburg, Germany; (I.C.); (S.E.)
| | - Enrico Munari
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy;
| | - Lorenzo Moretta
- Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.P.); (P.F.F.); (S.D.M.); (I.V.); (L.M.)
| | - Enrico Maggi
- Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.P.); (P.F.F.); (S.D.M.); (I.V.); (L.M.)
- Correspondence: (E.M.); (B.A.)
| | - Bruno Azzarone
- Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.P.); (P.F.F.); (S.D.M.); (I.V.); (L.M.)
- Correspondence: (E.M.); (B.A.)
| |
Collapse
|
13
|
Namestnikov M, Pleniceanu O, Dekel B. Mixing Cells for Vascularized Kidney Regeneration. Cells 2021; 10:1119. [PMID: 34066487 PMCID: PMC8148539 DOI: 10.3390/cells10051119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/26/2021] [Accepted: 05/01/2021] [Indexed: 02/06/2023] Open
Abstract
The worldwide rise in prevalence of chronic kidney disease (CKD) demands innovative bio-medical solutions for millions of kidney patients. Kidney regenerative medicine aims to replenish tissue which is lost due to a common pathological pathway of fibrosis/inflammation and rejuvenate remaining tissue to maintain sufficient kidney function. To this end, cellular therapy strategies devised so far utilize kidney tissue-forming cells (KTFCs) from various cell sources, fetal, adult, and pluripotent stem-cells (PSCs). However, to increase engraftment and potency of the transplanted cells in a harsh hypoxic diseased environment, it is of importance to co-transplant KTFCs with vessel forming cells (VFCs). VFCs, consisting of endothelial cells (ECs) and mesenchymal stem-cells (MSCs), synergize to generate stable blood vessels, facilitating the vascularization of self-organizing KTFCs into renovascular units. In this paper, we review the different sources of KTFCs and VFCs which can be mixed, and report recent advances made in the field of kidney regeneration with emphasis on generation of vascularized kidney tissue by cell transplantation.
Collapse
Affiliation(s)
- Michael Namestnikov
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel;
- Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel;
- ediatric Nephrology Division, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel;
| | - Oren Pleniceanu
- Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel;
- The Kidney Research Lab, Institute of Nephrology and Hypertension, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel
| | - Benjamin Dekel
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel;
- Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel;
| |
Collapse
|
14
|
Tsujimoto H, Kasahara T, Sueta SI, Araoka T, Sakamoto S, Okada C, Mae SI, Nakajima T, Okamoto N, Taura D, Nasu M, Shimizu T, Ryosaka M, Li Z, Sone M, Ikeya M, Watanabe A, Osafune K. A Modular Differentiation System Maps Multiple Human Kidney Lineages from Pluripotent Stem Cells. Cell Rep 2021; 31:107476. [PMID: 32268094 DOI: 10.1016/j.celrep.2020.03.040] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 01/17/2020] [Accepted: 03/13/2020] [Indexed: 02/08/2023] Open
Abstract
Recent studies using human pluripotent stem cells (hPSCs) have developed protocols to induce kidney-lineage cells and reconstruct kidney organoids. However, the separate generation of metanephric nephron progenitors (NPs), mesonephric NPs, and ureteric bud (UB) cells, which constitute embryonic kidneys, in in vitro differentiation culture systems has not been fully investigated. Here, we create a culture system in which these mesoderm-like cell types and paraxial and lateral plate mesoderm-like cells are separately generated from hPSCs. We recapitulate nephrogenic niches from separately induced metanephric NP-like and UB-like cells, which are subsequently differentiated into glomeruli, renal tubules, and collecting ducts in vitro and further vascularized in vivo. Our selective differentiation protocols should contribute to understanding the mechanisms underlying human kidney development and disease and also supply cell sources for regenerative therapies.
Collapse
Affiliation(s)
- Hiraku Tsujimoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tomoko Kasahara
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shin-Ichi Sueta
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Toshikazu Araoka
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Satoko Sakamoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Chihiro Okada
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Mitsubishi Space Software, 5-4-36 Tsukaguchi-honmachi, Amagasaki, Hyogo 661-0001, Japan
| | - Shin-Ichi Mae
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Taiki Nakajima
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Natsumi Okamoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Daisuke Taura
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Makoto Nasu
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tatsuya Shimizu
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Makoto Ryosaka
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Zhongwei Li
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, 1333 San Pablo Street, MMR 618, Los Angeles, CA 90033, USA
| | - Masakatsu Sone
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Makoto Ikeya
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Akira Watanabe
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
15
|
van Ineveld RL, Margaritis T, Kooiman BAP, Groenveld F, Ariese HCR, Lijnzaad P, Johnson HR, Korving J, Wehrens EJ, Holstege F, van Rheenen J, Drost J, Rios AC, Bos FL. LGR6 marks nephron progenitor cells. Dev Dyn 2021; 250:1568-1583. [PMID: 33848015 PMCID: PMC8597161 DOI: 10.1002/dvdy.346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 11/12/2022] Open
Abstract
Background Nephron progenitor cells (NPCs) undergo a stepwise process to generate all mature nephron structures. Mesenchymal to epithelial transition (MET) is considered a multistep process of NPC differentiation to ensure progressive establishment of new nephrons. However, despite this important role, to date, no marker for NPCs undergoing MET in the nephron exists. Results Here, we identify LGR6 as a NPC marker, expressed in very early cap mesenchyme, pre‐tubular aggregates, renal vesicles, and in segments of S‐shaped bodies, following the trajectory of MET. By using a lineage tracing approach in embryonic explants in combination with confocal imaging and single‐cell RNA sequencing, we provide evidence for the multiple fates of LGR6+ cells during embryonic nephrogenesis. Moreover, by using long‐term in vivo lineage tracing, we show that postnatal LGR6+ cells are capable of generating the multiple lineages of the nephrons. Conclusions Given the profound early mesenchymal expression and MET signature of LGR6+ cells, together with the lineage tracing of mesenchymal LGR6+ cells, we conclude that LGR6+ cells contribute to all nephrogenic segments by undergoing MET. LGR6+ cells can therefore be considered an early committed NPC population during embryonic and postnatal nephrogenesis with potential regenerative capability. Lgr6 is expressed in the earliest cap mesenchyme pool, a niche where nephrogenic progenitor cells (NPCs) are found. Lgr6 marks NPCs undergoing mesenchymal to epithelial transition, following the main process of nephron development. Using ex vivo and vivo lineage tracing, we show that mesenchymal Lgr6 expressing cells give rise to multiple types of mesenchymal derived nephron segments, including specialized glomerular epithelium, such as podocytes.
Collapse
Affiliation(s)
- Ravian L van Ineveld
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | | | | | - Femke Groenveld
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center (UMC) Utrecht, Utrecht, The Netherlands
| | - Hendrikus C R Ariese
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Philip Lijnzaad
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Hannah R Johnson
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Jeroen Korving
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center (UMC) Utrecht, Utrecht, The Netherlands
| | - Ellen J Wehrens
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Frank Holstege
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Jacco van Rheenen
- Oncode Institute, Utrecht, The Netherlands.,Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Anne C Rios
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Frank L Bos
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| |
Collapse
|
16
|
Harari-Steinberg O, Omer D, Gnatek Y, Pleniceanu O, Goldberg S, Cohen-Zontag O, Pri-Chen S, Kanter I, Ben Haim N, Becker E, Ankawa R, Fuchs Y, Kalisky T, Dotan Z, Dekel B. Ex Vivo Expanded 3D Human Kidney Spheres Engraft Long Term and Repair Chronic Renal Injury in Mice. Cell Rep 2021; 30:852-869.e4. [PMID: 31968258 DOI: 10.1016/j.celrep.2019.12.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 10/04/2019] [Accepted: 12/12/2019] [Indexed: 12/26/2022] Open
Abstract
End-stage renal disease is a worldwide epidemic requiring renal replacement therapy. Harvesting tissue from failing kidneys and autotransplantation of tissue progenitors could theoretically delay the need for dialysis. Here we use healthy and end-stage human adult kidneys to robustly expand proliferative kidney epithelial cells and establish 3D kidney epithelial cultures termed "nephrospheres." Formation of nephrospheres reestablishes renal identity and function in primary cultures. Transplantation into NOD/SCID mice shows that nephrospheres restore self-organogenetic properties lost in monolayer cultures, allowing long-term engraftment as tubular structures, potentially adding nephron segments and demonstrating self-organization as critical to survival. Furthermore, long-term tubular engraftment of nephrospheres is functionally beneficial in murine models of chronic kidney disease. Remarkably, nephrospheres inhibit pro-fibrotic collagen production in cultured fibroblasts via paracrine modulation, while transplanted nephrospheres induce transcriptional signatures of proliferation and release from quiescence, suggesting re-activation of endogenous repair. These data support the use of human nephrospheres for renal cell therapy.
Collapse
Affiliation(s)
- Orit Harari-Steinberg
- Pediatric Stem Cell Research Institute, Edmond and Lily Sara Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel; Pediatric Research Center for Genetics, Development and Environment, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dorit Omer
- Pediatric Stem Cell Research Institute, Edmond and Lily Sara Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel; Pediatric Research Center for Genetics, Development and Environment, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yehudit Gnatek
- Pediatric Stem Cell Research Institute, Edmond and Lily Sara Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel; Pediatric Research Center for Genetics, Development and Environment, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Oren Pleniceanu
- Pediatric Stem Cell Research Institute, Edmond and Lily Sara Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel; Pediatric Research Center for Genetics, Development and Environment, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sanja Goldberg
- Pediatric Stem Cell Research Institute, Edmond and Lily Sara Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel; Pediatric Research Center for Genetics, Development and Environment, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Osnat Cohen-Zontag
- Pediatric Stem Cell Research Institute, Edmond and Lily Sara Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel; Pediatric Research Center for Genetics, Development and Environment, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sara Pri-Chen
- The Maurice and Gabriela Goldschleger Eye Research Institute, Sheba Medical Center, Ramat-Gan, Israel
| | - Itamar Kanter
- Faculty of Engineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel
| | - Nissim Ben Haim
- Faculty of Engineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel
| | - Eli Becker
- Faculty of Engineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel
| | - Roi Ankawa
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yaron Fuchs
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Tomer Kalisky
- Faculty of Engineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel
| | - Zohar Dotan
- Department of Urology, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Benjamin Dekel
- Pediatric Stem Cell Research Institute, Edmond and Lily Sara Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel; Pediatric Research Center for Genetics, Development and Environment, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Division of Pediatric Nephrology, Safra Children's Hospital, Sheba Medical Center, Ramat-Gan, Israel.
| |
Collapse
|
17
|
Fiore PF, Vacca P, Tumino N, Besi F, Pelosi A, Munari E, Marconi M, Caruana I, Pistoia V, Moretta L, Azzarone B. Wilms' Tumor Primary Cells Display Potent Immunoregulatory Properties on NK Cells and Macrophages. Cancers (Basel) 2021; 13:E224. [PMID: 33435455 PMCID: PMC7826641 DOI: 10.3390/cancers13020224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
The immune response plays a crucial defensive role in cancer growth and metastasis and is a promising target in different tumors. The role of the immune system in Wilm's Tumor (WT), a common pediatric renal malignancy, is still to be explored. The characterization of the immune environment in WT could allow the identification of new therapeutic strategies for targeting possible inhibitory mechanisms and/or lowering toxicity of the current treatments. In this study, we stabilized four WT primary cultures expressing either a blastematous (CD56+/CD133-) or an epithelial (CD56-/CD133+) phenotype and investigated their interactions with innate immune cells, namely NK cells and monocytes. We show that cytokine-activated NK cells efficiently kill WT cells. However, after co-culture with WT primary cells, NK cells displayed an impaired cytotoxic activity, decreased production of IFNγ and expression of CD107a, DNAM-1 and NKp30. Analysis of the effects of the interaction between WT cells and monocytes revealed their polarization towards alternatively activated macrophages (M2) that, in turn, further impaired NK cell functions. In conclusion, we show that both WT blastematous and epithelial components may contribute directly and indirectly to a tumor immunosuppressive microenvironment that is likely to play a role in tumor progression.
Collapse
Affiliation(s)
- Piera Filomena Fiore
- Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.F.F.); (P.V.); (N.T.); (F.B.); (A.P.); (V.P.)
| | - Paola Vacca
- Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.F.F.); (P.V.); (N.T.); (F.B.); (A.P.); (V.P.)
| | - Nicola Tumino
- Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.F.F.); (P.V.); (N.T.); (F.B.); (A.P.); (V.P.)
| | - Francesca Besi
- Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.F.F.); (P.V.); (N.T.); (F.B.); (A.P.); (V.P.)
| | - Andrea Pelosi
- Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.F.F.); (P.V.); (N.T.); (F.B.); (A.P.); (V.P.)
| | - Enrico Munari
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy;
| | - Marcella Marconi
- Department of Pathology, IRCCS Sacro Cuore Don Calabria, Negrar, 37024 Verona, Italy;
| | - Ignazio Caruana
- Department of Paediatric Haematology, Oncology and Stem Cell Transplantation University Children’s Hospital of Würzburg, 97080 Würzburg, Germany;
| | - Vito Pistoia
- Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.F.F.); (P.V.); (N.T.); (F.B.); (A.P.); (V.P.)
| | - Lorenzo Moretta
- Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.F.F.); (P.V.); (N.T.); (F.B.); (A.P.); (V.P.)
| | - Bruno Azzarone
- Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.F.F.); (P.V.); (N.T.); (F.B.); (A.P.); (V.P.)
| |
Collapse
|
18
|
Human kidney clonal proliferation disclose lineage-restricted precursor characteristics. Sci Rep 2020; 10:22097. [PMID: 33328501 PMCID: PMC7745030 DOI: 10.1038/s41598-020-78366-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 11/02/2020] [Indexed: 01/10/2023] Open
Abstract
In-vivo single cell clonal analysis in the adult mouse kidney has previously shown lineage-restricted clonal proliferation within varying nephron segments as a mechanism responsible for cell replacement and local regeneration. To analyze ex-vivo clonal growth, we now preformed limiting dilution to generate genuine clonal cultures from one single human renal epithelial cell, which can give rise to up to 3.4 * 106 cells, and analyzed their characteristics using transcriptomics. A comparison between clonal cultures revealed restriction to either proximal or distal kidney sub-lineages with distinct cellular and molecular characteristics; rapidly amplifying de-differentiated clones and a stably proliferating cuboidal epithelial-appearing clones, respectively. Furthermore, each showed distinct molecular features including cell-cycle, epithelial-mesenchymal transition, oxidative phosphorylation, BMP signaling pathway and cell surface markers. In addition, analysis of clonal versus bulk cultures show early clones to be more quiescent, with elevated expression of renal developmental genes and overall reduction in renal identity markers, but with an overlapping expression of nephron segment identifiers and multiple identity. Thus, ex-vivo clonal growth mimics the in-vivo situation displaying lineage-restricted precursor characteristics of mature renal cells. These data suggest that for reconstruction of varying renal lineages with human adult kidney based organoid technology and kidney regeneration ex-vivo, use of multiple heterogeneous precursors is warranted.
Collapse
|
19
|
Wineberg Y, Bar-Lev TH, Futorian A, Ben-Haim N, Armon L, Ickowicz D, Oriel S, Bucris E, Yehuda Y, Pode-Shakked N, Gilad S, Benjamin S, Hohenstein P, Dekel B, Urbach A, Kalisky T. Single-Cell RNA Sequencing Reveals mRNA Splice Isoform Switching during Kidney Development. J Am Soc Nephrol 2020; 31:2278-2291. [PMID: 32651222 PMCID: PMC7609002 DOI: 10.1681/asn.2019080770] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 05/23/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND During mammalian kidney development, nephron progenitors undergo a mesenchymal-to-epithelial transition and eventually differentiate into the various tubular segments of the nephron. Recently, Drop-seq single-cell RNA sequencing technology for measuring gene expression from thousands of individual cells identified the different cell types in the developing kidney. However, that analysis did not include the additional layer of heterogeneity that alternative mRNA splicing creates. METHODS Full transcript length single-cell RNA sequencing characterized the transcriptomes of 544 individual cells from mouse embryonic kidneys. RESULTS Gene expression levels measured with full transcript length single-cell RNA sequencing identified each cell type. Further analysis comprehensively characterized splice isoform switching during the transition between mesenchymal and epithelial cellular states, which is a key transitional process in kidney development. The study also identified several putative splicing regulators, including the genes Esrp1/2 and Rbfox1/2. CONCLUSIONS Discovery of the sets of genes that are alternatively spliced as the fetal kidney mesenchyme differentiates into tubular epithelium will improve our understanding of the molecular mechanisms that drive kidney development.
Collapse
Affiliation(s)
- Yishay Wineberg
- Department of Bioengineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Tali Hana Bar-Lev
- Department of Bioengineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Anna Futorian
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Nissim Ben-Haim
- Department of Bioengineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Leah Armon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Debby Ickowicz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Sarit Oriel
- Department of Bioengineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Efrat Bucris
- Department of Bioengineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Yishai Yehuda
- Department of Bioengineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Naomi Pode-Shakked
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel
- Division of Pediatric Nephrology, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Shlomit Gilad
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Sima Benjamin
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Peter Hohenstein
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Benjamin Dekel
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel
- Division of Pediatric Nephrology, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Achia Urbach
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Tomer Kalisky
- Department of Bioengineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
20
|
Pleniceanu O, Harari-Steinberg O, Omer D, Gnatek Y, Lachmi BE, Cohen-Zontag O, Manevitz-Mendelson E, Barzilai A, Yampolsky M, Fuchs Y, Rosenzweig B, Eisner A, Dotan Z, Fine LG, Dekel B, Greenberger S. Successful Introduction of Human Renovascular Units into the Mammalian Kidney. J Am Soc Nephrol 2020; 31:2757-2772. [PMID: 32753400 DOI: 10.1681/asn.2019050508] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 06/22/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Cell-based therapies aimed at replenishing renal parenchyma have been proposed as an approach for treating CKD. However, pathogenic mechanisms involved in CKD such as renal hypoxia result in loss of kidney function and limit engraftment and therapeutic effects of renal epithelial progenitors. Jointly administering vessel-forming cells (human mesenchymal stromal cells [MSCs] and endothelial colony-forming cells [ECFCs]) may potentially result in in vivo formation of vascular networks. METHODS We administered renal tubule-forming cells derived from human adult and fetal kidneys (previously shown to exert a functional effect in CKD mice) into mice, alongside MSCs and ECFCs. We then assessed whether this would result in generation of "renovascular units" comprising both vessels and tubules with potential interaction. RESULTS Directly injecting vessel-forming cells and renal tubule-forming cells into the subcutaneous and subrenal capsular space resulted in self-organization of donor-derived vascular networks that connected to host vasculature, alongside renal tubules comprising tubular epithelia of different nephron segments. Vessels derived from MSCs and ECFCs augmented in vivo tubulogenesis by the renal tubule-forming cells. In vitro coculture experiments showed that MSCs and ECFCs induced self-renewal and genes associated with mesenchymal-epithelial transition in renal tubule-forming cells, indicating paracrine effects. Notably, after renal injury, renal tubule-forming cells and vessel-forming cells infused into the renal artery did not penetrate the renal vascular network to generate vessels; only administering them into the kidney parenchyma resulted in similar generation of human renovascular units in vivo. CONCLUSIONS Combined cell therapy of vessel-forming cells and renal tubule-forming cells aimed at alleviating renal hypoxia and enhancing tubulogenesis holds promise as the basis for new renal regenerative therapies.
Collapse
Affiliation(s)
- Oren Pleniceanu
- The Pediatric Stem Cell Research Institute and Pediatric Nephrology Division, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orit Harari-Steinberg
- The Pediatric Stem Cell Research Institute and Pediatric Nephrology Division, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Dorit Omer
- The Pediatric Stem Cell Research Institute and Pediatric Nephrology Division, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Yehudit Gnatek
- The Pediatric Stem Cell Research Institute and Pediatric Nephrology Division, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Bat-El Lachmi
- The Pediatric Stem Cell Research Institute and Pediatric Nephrology Division, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Osnat Cohen-Zontag
- The Pediatric Stem Cell Research Institute and Pediatric Nephrology Division, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | | | - Aviv Barzilai
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Dermatology, Sheba Medical Center, Tel Hashomer, Israel
| | - Matan Yampolsky
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yaron Fuchs
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Barak Rosenzweig
- Department of Urology, Sheba Medical Center, Tel Hashomer, Israel
| | - Alon Eisner
- Department of Urology, Sheba Medical Center, Tel Hashomer, Israel
| | - Zohar Dotan
- Department of Urology, Sheba Medical Center, Tel Hashomer, Israel
| | - Leon G Fine
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Benjamin Dekel
- The Pediatric Stem Cell Research Institute and Pediatric Nephrology Division, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel .,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shoshana Greenberger
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Dermatology, Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
21
|
Faraj R, Irizarry-Alfonzo A, Puri P. Molecular characterization of nephron progenitors and their early epithelial derivative structures in the nephrogenic zone of the canine fetal kidney. Eur J Histochem 2019; 63. [PMID: 31544449 PMCID: PMC6763752 DOI: 10.4081/ejh.2019.3049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/10/2019] [Indexed: 01/14/2023] Open
Abstract
Nephron progenitors (NPs) and nephrogenesis have been extensively studied in mice and humans and have provided insights into the mechanisms of renal development, disease and possibility of NP-based therapies. However, molecular features of NPs and their derivatives in the canine fetal kidney (CFK) remain unknown. This study was focused to characterize the expression of potential markers of canine NPs and their derivatives by immuno-fluorescence and western blot analysis. Transcription factors (TFs) SIX1 and SIX2, well-characterized human NP markers, were expressed in NPs surrounding the ureteric bud in the CFK. Canine NPs also expressed ITGA8 and NCAM1, surface markers previously used to isolate NPs from the mouse and human fetal kidneys. TF, PAX2 was detected in the ureteric bud, NPs and their derivative structures such as renal vesicle and S-shaped body. This study highlights the similarities in dog, mouse and human renal development and characterizes markers to identify canine NPs and their derivatives. These results will facilitate the isolation of canine NPs and their functional characterization to develop NP-based therapies for canine renal diseases.
Collapse
Affiliation(s)
- Rawah Faraj
- Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee.
| | | | | |
Collapse
|
22
|
Activin Is Superior to BMP7 for Efficient Maintenance of Human iPSC-Derived Nephron Progenitors. Stem Cell Reports 2019; 13:322-337. [PMID: 31378669 PMCID: PMC6700502 DOI: 10.1016/j.stemcr.2019.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 12/29/2022] Open
Abstract
Kidney formation is regulated by the balance between maintenance and differentiation of nephron progenitor cells (NPCs). Now that directed differentiation of NPCs from human induced pluripotent stem cells (iPSCs) can be achieved, maintenance and propagation of NPCs in vitro should be beneficial for regenerative medicine. Although WNT and FGF signals were previously shown to be essential for NPC propagation, the requirement for BMP/TGFβ signaling remains controversial. Here we reveal that activin has superior effects to BMP7 on maintenance efficiency of human iPSC-derived NPCs. Activin expanded ITGA8+/PDGFRA-/SIX2-GFP+ NPCs by 5-fold per week at 80%-90% efficiency, and the propagated cells possessed robust capacity for nephron formation both in vitro and in vivo. The expanded cells also maintained their nephron-forming potential after freezing. Furthermore, the protocol was applicable to multiple non-GFP-tagged iPSC lines. Thus, our activin-based protocol will be applicable to a variety of research fields including disease modeling and drug screening.
Collapse
|
23
|
Abstract
Wilms tumour is the most common renal malignancy of childhood. The disease is curable in the majority of cases, albeit at considerable cost in terms of late treatment-related effects in some children. However, one in ten children with Wilms tumour will die of their disease despite modern treatment approaches. The genetic changes that underpin Wilms tumour have been defined by studies of familial cases and by unbiased DNA sequencing of tumour genomes. Together, these approaches have defined the landscape of cancer genes that are operative in Wilms tumour, many of which are intricately linked to the control of fetal nephrogenesis. Advances in our understanding of the germline and somatic genetic changes that underlie Wilms tumour may translate into better patient outcomes. Improvements in risk stratification have already been seen through the introduction of molecular biomarkers into clinical practice. A host of additional biomarkers are due to undergo clinical validation. Identifying actionable mutations has led to potential new targets, with some novel compounds undergoing testing in early phase trials. Avenues that warrant further exploration include targeting Wilms tumour cancer genes with a non-redundant role in nephrogenesis and targeting the fetal renal transcriptome.
Collapse
Affiliation(s)
- Taryn Dora Treger
- Wellcome Sanger Institute, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Tanzina Chowdhury
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Kathy Pritchard-Jones
- UCL Great Ormond Street Institute of Child Health, London, UK.
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| | - Sam Behjati
- Wellcome Sanger Institute, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| |
Collapse
|
24
|
Hariharan K, Stachelscheid H, Rossbach B, Oh SJ, Mah N, Schmidt-Ott K, Kurtz A, Reinke P. Parallel generation of easily selectable multiple nephronal cell types from human pluripotent stem cells. Cell Mol Life Sci 2019; 76:179-192. [PMID: 30310934 PMCID: PMC11105784 DOI: 10.1007/s00018-018-2929-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 09/21/2018] [Accepted: 09/26/2018] [Indexed: 02/05/2023]
Abstract
Human pluripotent stem cells (hPSCs) provide a source for the generation of defined kidney cells and renal organoids applicable in regenerative medicine, disease modeling, and drug screening. These applications require the provision of hPSC-derived renal cells by reproducible, scalable, and efficient methods. We established a chemically defined protocol by application of Activin A, BMP4, and Retinoic acid followed by GDNF, which steered hPSCs to the renal lineage and resulted in populations of SIX2+/CITED1+ metanephric mesenchyme- (MM) and of HOXB7+/GRHL2+ ureteric bud (UB)-like cells already by 6 days. Transcriptome analysis corroborated that the PSC-derived cell types at day 8 resemble their renal vesicle and ureteric epithelial counterpart in vivo, forming tubular and glomerular renal cells 6 days later. We demonstrate that starting from hPSCs, our in vitro protocol generates a pool of nephrogenic progenitors at the renal vesicle stage, which can be further directed into specialized nephronal cell types including mesangial-, proximal tubular-, distal tubular, collecting duct epithelial cells, and podocyte precursors after 14 days. This simple and rapid method to produce renal cells from a common precursor pool in 2D culture provides the basis for scaled-up production of tailored renal cell types, which are applicable for drug testing or cell-based regenerative therapies.
Collapse
Affiliation(s)
- Krithika Hariharan
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Harald Stachelscheid
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health (BIH), Stem Cell Core, Berlin, Germany
| | - Bella Rossbach
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Su-Jun Oh
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Nancy Mah
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Kai Schmidt-Ott
- Department of Nephrology and Intensive Care, Charité University Medicine Berlin, Berlin, Germany
- Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Andreas Kurtz
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Petra Reinke
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Department of Nephrology and Intensive Care, Charité University Medicine Berlin, Berlin, Germany
| |
Collapse
|
25
|
Recapitulating kidney development: Progress and challenges. Semin Cell Dev Biol 2018; 91:153-168. [PMID: 30184476 DOI: 10.1016/j.semcdb.2018.08.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/22/2018] [Accepted: 08/28/2018] [Indexed: 12/14/2022]
Abstract
Decades of research into the molecular and cellular regulation of kidney morphogenesis in rodent models, particularly the mouse, has provided both an atlas of the mammalian kidney and a roadmap for recreating kidney cell types with potential applications for the treatment of kidney disease. With advances in both our capacity to maintain nephron progenitors in culture, reprogram to kidney cell types and direct the differentiation of human pluripotent stem cells to kidney endpoints, renal regeneration via cellular therapy or tissue engineering may be possible. Human kidney models also have potential for disease modelling and drug screening. Such applications will rely upon the accuracy of the model at the cellular level and the capacity for stem-cell derived kidney tissue to recapitulate both normal and diseased kidney tissue. In this review, we will discuss the available cell sources, how well they model the human kidney and how far we are from application either as models or for tissue engineering.
Collapse
|
26
|
Regenerative medicine in kidney disease: where we stand and where to go. Pediatr Nephrol 2018; 33:1457-1465. [PMID: 28735502 DOI: 10.1007/s00467-017-3754-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 05/23/2017] [Accepted: 05/26/2017] [Indexed: 02/07/2023]
Abstract
The kidney is a complex organ with more than 20 types of specialized cells that play an important role in maintaining the body's homeostasis. The epithelial tubular cell is formed during embryonic development and has little proliferative capacity under physiological conditions, but after acute injury the kidney does have regenerative capacity. However, after repetitive or severe lesions, it may undergo a maladaptation process that predisposes it to chronic kidney injury. Regenerative medicine includes various repair and regeneration techniques, and these have gained increasing attention in the scientific literature. In the future, not only will these techniques contribute to the repair and regeneration of the human kidney, but probably also to the construction of an entire organ. New mechanisms studied for kidney regeneration and repair include circulating stem cells as mesenchymal stromal/stem cells and their paracrine mechanisms of action; renal progenitor stem cells; the leading role of tubular epithelial cells in the tubular repair process; the study of zebrafish larvae to understand the process of nephron development, kidney scaffold and its repopulation; and, finally, the development of organoids. This review elucidates where we are in terms of current scientific knowledge regarding these mechanisms and the promises of future scientific perspectives.
Collapse
|
27
|
Menon R, Otto EA, Kokoruda A, Zhou J, Zhang Z, Yoon E, Chen YC, Troyanskaya O, Spence JR, Kretzler M, Cebrián C. Single-cell analysis of progenitor cell dynamics and lineage specification in the human fetal kidney. Development 2018; 145:145/16/dev164038. [PMID: 30166318 PMCID: PMC6124540 DOI: 10.1242/dev.164038] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 07/30/2018] [Indexed: 12/11/2022]
Abstract
The mammalian kidney develops through reciprocal interactions between the ureteric bud and the metanephric mesenchyme to give rise to the entire collecting system and the nephrons. Most of our knowledge of the developmental regulators driving this process arises from the study of gene expression and functional genetics in mice and other animal models. In order to shed light on human kidney development, we have used single-cell transcriptomics to characterize gene expression in different cell populations, and to study individual cell dynamics and lineage trajectories during development. Single-cell transcriptome analyses of 6414 cells from five individual specimens identified 11 initial clusters of specific renal cell types as defined by their gene expression profile. Further subclustering identifies progenitors, and mature and intermediate stages of differentiation for several renal lineages. Other lineages identified include mesangium, stroma, endothelial and immune cells. Novel markers for these cell types were revealed in the analysis, as were components of key signaling pathways driving renal development in animal models. Altogether, we provide a comprehensive and dynamic gene expression profile of the developing human kidney at the single-cell level. Summary: New markers for specific cell types in the developing human kidney are identified and computational approaches infer developmental trajectories and interrogate the complex network of signaling pathways and cellular transitions.
Collapse
Affiliation(s)
- Rajasree Menon
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Edgar A Otto
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Austin Kokoruda
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jian Zhou
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.,Graduate Program in Quantitative and Computational Biology, Princeton University, Princeton, NJ 08544, USA
| | - Zidong Zhang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.,Graduate Program in Quantitative and Computational Biology, Princeton University, Princeton, NJ 08544, USA
| | - Euisik Yoon
- Department of Electrical Engineering and Computer Science, Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yu-Chih Chen
- Department of Electrical Engineering and Computer Science, Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Olga Troyanskaya
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.,Flatiron Institute, Simons Foundation, New York, NY 10010, USA.,Department of Computer Science, Princeton University, Princeton, NJ
| | - Jason R Spence
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI 48109, USA .,Department of Cell and Developmental Biology, Division of Gastroenterology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthias Kretzler
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Cristina Cebrián
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
28
|
Zhu W, Chen X, Yu J, Xiao Y, Li Y, Wan S, Su W, Liang D. Baicalin modulates the Treg/Teff balance to alleviate uveitis by activating the aryl hydrocarbon receptor. Biochem Pharmacol 2018; 154:18-27. [PMID: 29656117 DOI: 10.1016/j.bcp.2018.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 04/09/2018] [Indexed: 12/22/2022]
Abstract
Autoimmune uveitis is a sight-threatening ocular inflammatory disorder. Immunological inflammation is regarded as the key to pathogenesis in autoimmune uveitis. Baicalin, the major bioactive component of Scutellaria baicalensis, possesses immunomodulatory properties. However, the role of baicalin in uveitis and its underlying mechanisms remain unclear. In the current study, we found that baicalin treatment obviously inhibited the intraocular inflammatory process in mice with experimental autoimmune uveitis, along with clear declines in infiltrated inflammatory cells and inflammatory cytokine transcription in the retina and draining lymph nodes. Furthermore, baicalin treatment increased the frequency and number of regulatory T cells and decreased the frequency and number of effector T cells (Th1 and Th17 cells) in the draining lymph nodes of mice with experimental autoimmune uveitis. In vitro, baicalin treatment suppressed interphotoreceptor retinoid binding protein-specific CD4+ T cell proliferation and converted CD4+ T cell differentiation. Furthermore, the expression of aryl hydrocarbon receptor was activated by baicalin treatment. Baicalin-mediated modulation of CD4+ T cell differentiation was partially abrogated by the suppression of aryl hydrocarbon receptor. These findings suggest that baicalin modulates the Treg/Teff balance and CD4+ T cell proliferation to ameliorate experimental autoimmune uveitis by activating the aryl hydrocarbon receptor.
Collapse
Affiliation(s)
- Wenjie Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaoqing Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jianfeng Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yichen Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yingqi Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shangtao Wan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
| | - Dan Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
29
|
Brossa A, Papadimitriou E, Collino F, Incarnato D, Oliviero S, Camussi G, Bussolati B. Role of CD133 Molecule in Wnt Response and Renal Repair. Stem Cells Transl Med 2018; 7:283-294. [PMID: 29431914 PMCID: PMC5827750 DOI: 10.1002/sctm.17-0158] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 12/06/2017] [Indexed: 02/06/2023] Open
Abstract
Renal repair after injury is dependent on clonal expansion of proliferation-competent cells. In the human kidney, the expression of CD133 characterizes a population of resident scattered cells with resistance to damage and ability to proliferate. However, the biological function of the CD133 molecule is unknown. By RNA sequencing, we found that cells undergoing cisplatin damage lost the CD133 signature and acquired metanephric mesenchymal and regenerative genes such as SNAIL1, KLF4, SOX9, and WNT3. CD133 was reacquired in the recovery phase. In CD133-Kd cells, lack of CD133 limited cell proliferation after injury and was specifically correlated with deregulation of Wnt signaling and E-cadherin pathway. By immunoprecipitation, CD133 appeared to form a complex with E-cadherin and β-catenin. In parallel, CD133-Kd cells showed lower β-catenin levels in basal condition and after Wnt pathway activation and reduced TCF/LEF promoter activation in respect to CD133+ cells. Finally, the lack of CD133 impaired generation of nephrospheres while favoring senescence. These data indicate that CD133 may act as a permissive factor for β-catenin signaling, preventing its degradation in the cytoplasm. Therefore, CD133 itself appears to play a functional role in renal tubular repair through maintenance of proliferative response and control of senescence. Stem Cells Translational Medicine 2018;7:283-294.
Collapse
Affiliation(s)
- Alessia Brossa
- Department of Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Torino, Italy
| | - Elli Papadimitriou
- Department of Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Torino, Italy
| | - Federica Collino
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danny Incarnato
- Italian Institute for Genomic Medicine (IIGM), Torino, Italy.,Dipartimento di Scienze della Vita e Biologia dei Sistemi, University of Turin, Torino, Italy
| | - Salvatore Oliviero
- Italian Institute for Genomic Medicine (IIGM), Torino, Italy.,Dipartimento di Scienze della Vita e Biologia dei Sistemi, University of Turin, Torino, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Torino, Italy
| | - Benedetta Bussolati
- Department of Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Torino, Italy
| |
Collapse
|
30
|
Renal lineage cells as a source for renal regeneration. Pediatr Res 2018; 83:267-274. [PMID: 28985199 DOI: 10.1038/pr.2017.255] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/29/2017] [Indexed: 12/24/2022]
Abstract
The mammalian kidney is a highly complex organ, composed of various cell types within a unique structural framework. Nonetheless, in recent years, giant leaps in our understanding of nephrogenesis and the origin of new cells in the adult kidney have resulted in novel routes to regenerate damaged nephrons. While several strategies can be envisioned to achieve this aim, one common theme is the reliance on renal lineage cells, as extrarenal cells, such as bone marrow-derived cells, have been shown to be devoid of renal differentiation capacity. Herein, we will present the main motivation for the pursuit for cell-based therapies, which is the ever growing problem of chronic kidney disease (CKD), and discuss different strategies toward replenishing the damaged renal parenchyma. These include transplantation of fetal kidney grafts or fetal kidney stem cells, directed differentiation of pluripotent stem cells into kidney epithelia, establishment of renal progenitors from the adult kidney, and genetic reprogramming of mature kidney cells into a progenitor state. Taken together with novel techniques recapitulating the three-dimensional developmental environment, these advances are expected to take the field into a new era, bringing us closer than ever to the day when kidney stem cell-based therapy becomes a viable therapeutic option.
Collapse
|
31
|
Gadd S, Huff V, Walz AL, Ooms AH, Armstrong AE, Gerhard DS, Smith MA, Guidry Auvil JM, Meerzaman D, Chen QR, Hsu CH, Yan C, Nguyen C, Hu Y, Hermida LC, Davidsen T, Gesuwan P, Ma Y, Zong Z, Mungall AJ, Moore RA, Marra MA, Dome JS, Mullighan CG, Ma J, Wheeler DA, Hampton OA, Ross N, Gastier-Foster JM, Arold ST, Perlman EJ. A Children's Oncology Group and TARGET initiative exploring the genetic landscape of Wilms tumor. Nat Genet 2017; 49:1487-1494. [PMID: 28825729 PMCID: PMC5712232 DOI: 10.1038/ng.3940] [Citation(s) in RCA: 250] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 07/28/2017] [Indexed: 12/12/2022]
Abstract
We performed genome-wide sequencing and analyzed mRNA and miRNA expression, DNA copy number, and DNA methylation in 117 Wilms tumors, followed by targeted sequencing of 651 Wilms tumors. In addition to genes previously implicated in Wilms tumors (WT1, CTNNB1, AMER1, DROSHA, DGCR8, XPO5, DICER1, SIX1, SIX2, MLLT1, MYCN, and TP53), we identified mutations in genes not previously recognized as recurrently involved in Wilms tumors, the most frequent being BCOR, BCORL1, NONO, MAX, COL6A3, ASXL1, MAP3K4, and ARID1A. DNA copy number changes resulted in recurrent 1q gain, MYCN amplification, LIN28B gain, and MIRLET7A loss. Unexpected germline variants involved PALB2 and CHEK2. Integrated analyses support two major classes of genetic changes that preserve the progenitor state and/or interrupt normal development.
Collapse
Affiliation(s)
- Samantha Gadd
- Department of Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University's Feinberg School of Medicine and Robert H. Lurie Cancer Center, Chicago, Illinois, 60611, USA
| | - Vicki Huff
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Amy L. Walz
- Division of Hematology-Oncology and Transplantation, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University's Feinberg School of Medicine, Chicago, Illinois, 60611, USA
| | - Ariadne H.A.G. Ooms
- Department of Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University's Feinberg School of Medicine and Robert H. Lurie Cancer Center, Chicago, Illinois, 60611, USA
- Department of Pathology, Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Amy E. Armstrong
- Division of Hematology-Oncology and Transplantation, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University's Feinberg School of Medicine, Chicago, Illinois, 60611, USA
| | - Daniela S. Gerhard
- Office of Cancer Genomics, National Cancer Institute, Bethesda, Maryland, 20892, USA
| | - Malcolm A. Smith
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland, 20892, USA
| | - Jaime M. Guidry Auvil
- Office of Cancer Genomics, National Cancer Institute, Bethesda, Maryland, 20892, USA
| | - Daoud Meerzaman
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, Maryland, 20892, USA
| | - Qing-Rong Chen
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, Maryland, 20892, USA
| | - Chih Hao Hsu
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, Maryland, 20892, USA
| | - Chunhua Yan
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, Maryland, 20892, USA
| | - Cu Nguyen
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, Maryland, 20892, USA
| | - Ying Hu
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, Maryland, 20892, USA
| | - Leandro C. Hermida
- Office of Cancer Genomics, National Cancer Institute, Bethesda, Maryland, 20892, USA
| | - Tanja Davidsen
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, Maryland, 20892, USA
| | - Patee Gesuwan
- Office of Cancer Genomics, National Cancer Institute, Bethesda, Maryland, 20892, USA
| | - Yussanne Ma
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency (BCCA), Vancouver, British Columbia, V5Z 4S6, Canada
| | - Zusheng Zong
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency (BCCA), Vancouver, British Columbia, V5Z 4S6, Canada
| | - Andrew J. Mungall
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency (BCCA), Vancouver, British Columbia, V5Z 4S6, Canada
| | - Richard A. Moore
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency (BCCA), Vancouver, British Columbia, V5Z 4S6, Canada
| | - Marco A. Marra
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency (BCCA), Vancouver, British Columbia, V5Z 4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
| | - Jeffrey S. Dome
- Division of Pediatric Hematology/Oncology, Children's National Medical Center, Washington, DC, 20010, USA
| | - Charles G. Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - David A. Wheeler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Oliver A. Hampton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Nicole Ross
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Ohio State University College of Medicine, Columbus, Ohio, 43205, USA
| | - Julie M. Gastier-Foster
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Ohio State University College of Medicine, Columbus, Ohio, 43205, USA
| | - Stefan T. Arold
- King Abdullah University of Science and Technology, Computational Bioscience Research Center, Division of Biological and Environmental Sciences and Engineering, Thuwal, 23955-6900, Saudi Arabia
| | - Elizabeth J. Perlman
- Department of Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University's Feinberg School of Medicine and Robert H. Lurie Cancer Center, Chicago, Illinois, 60611, USA
| |
Collapse
|
32
|
Pleniceanu O, Shukrun R, Omer D, Vax E, Kanter I, Dziedzic K, Pode-Shakked N, Mark-Daniei M, Pri-Chen S, Gnatek Y, Alfandary H, Varda-Bloom N, Bar-Lev DD, Bollag N, Shtainfeld R, Armon L, Urbach A, Kalisky T, Nagler A, Harari-Steinberg O, Arbiser JL, Dekel B. Peroxisome proliferator-activated receptor gamma (PPARγ) is central to the initiation and propagation of human angiomyolipoma, suggesting its potential as a therapeutic target. EMBO Mol Med 2017; 9:508-530. [PMID: 28275008 PMCID: PMC5376758 DOI: 10.15252/emmm.201506111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Angiomyolipoma (AML), the most common benign renal tumor, can result in severe morbidity from hemorrhage and renal failure. While mTORC1 activation is involved in its growth, mTORC1 inhibitors fail to eradicate AML, highlighting the need for new therapies. Moreover, the identity of the AML cell of origin is obscure. AML research, however, is hampered by the lack of in vivo models. Here, we establish a human AML‐xenograft (Xn) model in mice, recapitulating AML at the histological and molecular levels. Microarray analysis demonstrated tumor growth in vivo to involve robust PPARG‐pathway activation. Similarly, immunostaining revealed strong PPARG expression in human AML specimens. Accordingly, we demonstrate that while PPARG agonism accelerates AML growth, PPARG antagonism is inhibitory, strongly suppressing AML proliferation and tumor‐initiating capacity, via a TGFB‐mediated inhibition of PDGFB and CTGF. Finally, we show striking similarity between AML cell lines and mesenchymal stem cells (MSCs) in terms of antigen and gene expression and differentiation potential. Altogether, we establish the first in vivo human AML model, which provides evidence that AML may originate in a PPARG‐activated renal MSC lineage that is skewed toward adipocytes and smooth muscle and away from osteoblasts, and uncover PPARG as a regulator of AML growth, which could serve as an attractive therapeutic target.
Collapse
Affiliation(s)
- Oren Pleniceanu
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Hematology and Cord Blood Bank, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Racheli Shukrun
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dorit Omer
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Einav Vax
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Itamar Kanter
- Faculty of Engineering, Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Klaudyna Dziedzic
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Naomi Pode-Shakked
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michal Mark-Daniei
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Sara Pri-Chen
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Yehudit Gnatek
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Hadas Alfandary
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Institute of Nephrology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Nira Varda-Bloom
- Division of Hematology and Cord Blood Bank, Sheba Medical Center, Ramat Gan, Israel
| | - Dekel D Bar-Lev
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Naomi Bollag
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Rachel Shtainfeld
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Leah Armon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Achia Urbach
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Tomer Kalisky
- Faculty of Engineering, Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Arnon Nagler
- Division of Hematology and Cord Blood Bank, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orit Harari-Steinberg
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Jack L Arbiser
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA.,Winship Cancer Institute, Atlanta Veterans Administration Hospital, Atlanta, GA, USA
| | - Benjamin Dekel
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel .,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
33
|
Morizane R, Miyoshi T, Bonventre JV. Concise Review: Kidney Generation with Human Pluripotent Stem Cells. Stem Cells 2017; 35:2209-2217. [PMID: 28869686 DOI: 10.1002/stem.2699] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/15/2017] [Accepted: 08/19/2017] [Indexed: 12/30/2022]
Abstract
Chronic kidney disease (CKD) is a worldwide health care problem, resulting in increased cardiovascular mortality and often leading to end-stage kidney disease, where patients require kidney replacement therapies such as hemodialysis or kidney transplantation. Loss of functional nephrons contributes to the progression of CKD, which can be attenuated but not reversed due to inability to generate new nephrons in human adult kidneys. Human pluripotent stem cells (hPSCs), by virtue of their unlimited self-renewal and ability to differentiate into cells of all three embryonic germ layers, are attractive sources for kidney regenerative therapies. Recent advances in stem cell biology have identified key signals necessary to maintain stemness of human nephron progenitor cells (NPCs) in vitro, and led to establishment of protocols to generate NPCs and nephron epithelial cells from human fetal kidneys and hPSCs. Effective production of large amounts of human NPCs and kidney organoids will facilitate elucidation of developmental and pathobiological pathways, kidney disease modeling and drug screening as well as kidney regenerative therapies. We summarize the recent studies to induce NPCs and kidney cells from hPSCs, studies of NPC expansion from mouse and human embryonic kidneys, and discuss possible approaches in vivo to regenerate kidneys with cell therapies and the development of bioengineered kidneys. Stem Cells 2017;35:2209-2217.
Collapse
Affiliation(s)
- Ryuji Morizane
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Tomoya Miyoshi
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph V Bonventre
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
34
|
Markovsky E, Vax E, Ben-Shushan D, Eldar-Boock A, Shukrun R, Yeini E, Barshack I, Caspi R, Harari-Steinberg O, Pode-Shakked N, Dekel B, Satchi-Fainaro R. Wilms Tumor NCAM-Expressing Cancer Stem Cells as Potential Therapeutic Target for Polymeric Nanomedicine. Mol Cancer Ther 2017; 16:2462-2472. [DOI: 10.1158/1535-7163.mct-17-0184] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/14/2017] [Accepted: 07/13/2017] [Indexed: 11/16/2022]
|
35
|
Pode-Shakked N, Gershon R, Tam G, Omer D, Gnatek Y, Kanter I, Oriel S, Katz G, Harari-Steinberg O, Kalisky T, Dekel B. Evidence of In Vitro Preservation of Human Nephrogenesis at the Single-Cell Level. Stem Cell Reports 2017; 9:279-291. [PMID: 28552604 PMCID: PMC5511042 DOI: 10.1016/j.stemcr.2017.04.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 01/09/2023] Open
Abstract
During nephrogenesis, stem/progenitor cells differentiate and give rise to early nephron structures that segment to proximal and distal nephron cell types. Previously, we prospectively isolated progenitors from human fetal kidney (hFK) utilizing a combination of surface markers. However, upon culture nephron progenitors differentiated and could not be robustly maintained in vitro. Here, by culturing hFK in a modified medium used for in vitro growth of mouse nephron progenitors, and by dissection of NCAM+/CD133− progenitor cells according to EpCAM expression (NCAM+/CD133−/EpCAM−, NCAM+/CD133−/EpCAMdim, NCAM+/CD133−/EpCAMbright), we show at single-cell resolution a preservation of uninduced and induced cap mesenchyme as well as a transitioning mesenchymal-epithelial state. Concomitantly, differentiating and differentiated epithelial lineages are also maintained. In vitro expansion of discrete stages of early human nephrogenesis in nephron stem cell cultures may be used for drug screening on a full repertoire of developing kidney cells and for prospective isolation of mesenchymal or epithelial renal lineages for regenerative medicine. mNPEM enables in vitro preservation of human renal embryonic CM and epithelia EpCAM allows further dissection of expanded NCAM+CD133− early nephric population Single-cell analysis unveils a continuous lineage hierarchy in nephrogenesis and WT Splice isoform switching confirms a unified MET hierarchy in nephrogenesis and WT
Collapse
Affiliation(s)
- Naomi Pode-Shakked
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer 52621, Israel; Sheba Centers for Regenerative Medicine and Cancer Research, Sheba Medical Center, Tel-Hashomer 52621, Israel; The Dr. Pinchas Borenstein Talpiot Medical Leadership Program, Sheba Medical Center, Tel-Hashomer 52621, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Rotem Gershon
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer 52621, Israel; Sheba Centers for Regenerative Medicine and Cancer Research, Sheba Medical Center, Tel-Hashomer 52621, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Gal Tam
- Faculty of Engineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Dorit Omer
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer 52621, Israel; Sheba Centers for Regenerative Medicine and Cancer Research, Sheba Medical Center, Tel-Hashomer 52621, Israel
| | - Yehudit Gnatek
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer 52621, Israel; Sheba Centers for Regenerative Medicine and Cancer Research, Sheba Medical Center, Tel-Hashomer 52621, Israel
| | - Itamar Kanter
- Faculty of Engineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Sarit Oriel
- Faculty of Engineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Guy Katz
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer 52621, Israel; Sheba Centers for Regenerative Medicine and Cancer Research, Sheba Medical Center, Tel-Hashomer 52621, Israel; The Dr. Pinchas Borenstein Talpiot Medical Leadership Program, Sheba Medical Center, Tel-Hashomer 52621, Israel; The Joseph Buchman Gynecology and Maternity Center, Sheba Medical Center, Tel-Hashomer 52621, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Orit Harari-Steinberg
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer 52621, Israel; Sheba Centers for Regenerative Medicine and Cancer Research, Sheba Medical Center, Tel-Hashomer 52621, Israel
| | - Tomer Kalisky
- Faculty of Engineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Benjamin Dekel
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer 52621, Israel; Sheba Centers for Regenerative Medicine and Cancer Research, Sheba Medical Center, Tel-Hashomer 52621, Israel; Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer 52621, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel.
| |
Collapse
|
36
|
Assady S, Wanner N, Skorecki KL, Huber TB. New Insights into Podocyte Biology in Glomerular Health and Disease. J Am Soc Nephrol 2017; 28:1707-1715. [PMID: 28404664 DOI: 10.1681/asn.2017010027] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Podocyte and glomerular research is center stage for the development of improved preventive and therapeutic strategies for chronic progressive kidney diseases. Held April 3-6, 2016, the 11th International Podocyte Conference took place in Haifa and Jerusalem, Israel, where participants from all over the world presented their work on new developments in podocyte research. In this review, we briefly highlight the advances made in characterizing the mechanisms involved in podocyte development, metabolism, acquired injury, and repair, including progress in determining the roles of genetic variants and microRNA in particular, as well as the advances made in diagnostic techniques and therapeutics.
Collapse
Affiliation(s)
- Suheir Assady
- Department of Nephrology and Hypertension, Rambam Health Care Campus, Haifa, Israel.,Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Nicola Wanner
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Karl L Skorecki
- Department of Nephrology and Hypertension, Rambam Health Care Campus, Haifa, Israel; .,Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tobias B Huber
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Freiburg, Germany; .,BIOSS-Centre for Biological Signalling Studies and.,III. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,ZBSA-Center for Biological Systems Analysis, Albert Ludwigs University, Freiburg, Germany; and
| |
Collapse
|
37
|
Santeramo I, Herrera Perez Z, Illera A, Taylor A, Kenny S, Murray P, Wilm B, Gretz N. Human Kidney-Derived Cells Ameliorate Acute Kidney Injury Without Engrafting into Renal Tissue. Stem Cells Transl Med 2017; 6:1373-1384. [PMID: 28375556 PMCID: PMC5442715 DOI: 10.1002/sctm.16-0352] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 12/01/2016] [Accepted: 12/21/2016] [Indexed: 12/12/2022] Open
Abstract
Previous studies have suggested that CD133+ cells isolated from human kidney biopsies have the potential to ameliorate injury following intravenous (IV) administration in rodent models of kidney disease by integrating into damaged renal tissue and generating specialized renal cells. However, whether renal engraftment of CD133+ cells is a prerequisite for ameliorating injury has not yet been unequivocally resolved. Here, we have established a cisplatin‐induced nephropathy model in immunodeficient rats to assess the efficacy of CD133+ human kidney cells in restoring renal health, and to determine the fate of these cells after systemic administration. Specifically, following IV administration, we evaluated the impact of the CD133+ cells on renal function by undertaking longitudinal measurements of the glomerular filtration rate using a novel transcutaneous device. Using histological assays, we assessed whether the human kidney cells could promote renal regeneration, and if this was related to their ability to integrate into the damaged kidneys. Our results show that both CD133+ and CD133− cells improve renal function and promote renal regeneration to a similar degree. However, this was not associated with engraftment of the cells into the kidneys. Instead, after IV administration, both cell types were exclusively located in the lungs, and had disappeared by 24 hours. Our data therefore indicate that renal repair is not mediated by CD133+ cells homing to the kidneys and generating specialized renal cells. Instead, renal repair is likely to be mediated by paracrine or endocrine factors. Stem Cells Translational Medicine2017;6:1373–1384
Collapse
Affiliation(s)
- Ilaria Santeramo
- Department of Cellular and Molecular Physiology, Centre for Preclinical Imaging, Institute of Translational Medicine, the University of Liverpool, Liverpool, United Kingdom
| | - Zeneida Herrera Perez
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Ana Illera
- Department of Cellular and Molecular Physiology, Centre for Preclinical Imaging, Institute of Translational Medicine, the University of Liverpool, Liverpool, United Kingdom
| | - Arthur Taylor
- Department of Cellular and Molecular Physiology, Centre for Preclinical Imaging, Institute of Translational Medicine, the University of Liverpool, Liverpool, United Kingdom
| | - Simon Kenny
- Department of Paediatric Surgery and Urology, Alder Hey Children's NHS Trust, Liverpool, United Kingdom
| | - Patricia Murray
- Department of Cellular and Molecular Physiology, Centre for Preclinical Imaging, Institute of Translational Medicine, the University of Liverpool, Liverpool, United Kingdom
| | - Bettina Wilm
- Department of Cellular and Molecular Physiology, Centre for Preclinical Imaging, Institute of Translational Medicine, the University of Liverpool, Liverpool, United Kingdom
| | - Norbert Gretz
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
38
|
Abstract
The cell-surface glycoprotein CD56 has three major isoforms that play important roles in cell adhesion and signaling, which may promote cell proliferation, differentiation, survival, or migration. It is an important molecule in normal kidney development and acts as a key marker in Wilms tumor stem and progenitor cells. Here, we review the structural and genetic features of the CD56 glycoprotein, and summarize its roles in the normal versus diseased metanephric blastema. We discuss areas of CD56-related research that may complement or improve existing Wilms tumor treatment strategies, including the antibody-drug conjugate lorvotuzumab mertansine that binds to CD56.
Collapse
Affiliation(s)
- Li-Wei Yap
- a Department of Life Sciences , Imperial College London , London , UK
| | - Jesper Brok
- b University College London Institute of Child Health, Cancer Section , London , UK
- c Rigshospitalet , Kobenhavn , Denmark
| | | |
Collapse
|
39
|
Functional significance of CD105-positive cells in papillary renal cell carcinoma. BMC Cancer 2017; 17:21. [PMID: 28056882 PMCID: PMC5217207 DOI: 10.1186/s12885-016-2985-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 12/06/2016] [Indexed: 12/20/2022] Open
Abstract
Background CD105 was postulated as a renal cell carcinoma (RCC) stem cell marker, and CD133 as a putative RCC progenitor. Hypoxia, a natural microenvironment that prevails in tumors, was also incorporated into the study, especially in terms of the promotion of hypothetical stem-like cell properties. Methods Within this study, we verify the existence of CD105+ and CD133+ populations in selected papillary subtype RCC (pRCC) cell lines. Both populations were analyzed for correlation with stem-like cell properties, such as stemness gene expression, and sphere and colony formation. For the preliminary analysis, several RCC cell lines were chosen (786-O, SMKT-R2, Caki-2, 796-P, ACHN, RCC6) and the control was human kidney cancer stem cells (HKCSC) and renal cells of embryonic origin (ASE-5063). Four cell lines were chosen for further investigation: Caki-2 (one of the highest numbers of CD105+ cells; primary origin), ACHN (a low number of CD105+ cells; metastatic origin), HKCSC (putative positive control), and ASE-5063 (additional control). Results In 769-P and RCC6, we could not detect a CD105+ population. Hypoxia variously affects pRCC cell growth, and mainly diminishes the stem-like properties of cells. Furthermore, we could not observe the correlation of CD105 and/or CD133 expression with the enhancement of stem-like properties. Conclusions Based on this analysis, CD105/CD133 cannot be validated as cancer stem cell markers of pRCC cell lines.
Collapse
|
40
|
Abstract
New nephrons are induced by the interaction between mesenchymal progenitor cells and collecting duct tips, both of which are located at the outer edge of the kidney. This leading edge of active nephron induction is known as the nephrogenic zone. Cell populations found within this zone include collecting duct tips, cap mesenchyme cells, pretubular aggregates, nephrogenic zone interstitium, hemoendothelial progenitor cells, and macrophages. The close association of these dynamic progenitor cell compartments enables the intricate and synchronized patterning of the epithelial and the vascular components of the nephron. Understanding signaling interactions between the distinct progenitor cells of the nephrogenic zone are essential to determining the basis for new nephron formation, an important goal in regenerative medicine. A variety of technologies have been applied to define essential signaling pathways, including organ culture, mouse genetics, and primary cell culture. This chapter provides an overview of essential signaling pathways and discusses how these may be integrated.
Collapse
|
41
|
Abstract
Terminally differentiated cells can be reprogrammed to pluripotency or directly to another differentiated cell type in vitro, a capacity termed cellular plasticity. Plasticity is not limited to in vitro manipulations but rather represents an important aspect of the regenerative response to injury in organs. Differentiated adult cells retain the capacity to dedifferentiate, adopting a progenitor-like phenotype after injury or, alternatively, to transdifferentiate, directly converting to a different mature cell type. Emerging concepts on cellular plasticity have relevance to our understanding of repair after kidney injury, including epithelial regeneration. Here we discuss work published in the past 5 years on the cellular hierarchies and mechanisms underlying kidney injury and repair, with a particular focus on potential roles for cellular plasticity in this response.
Collapse
Affiliation(s)
- Monica Chang-Panesso
- Division of Nephrology, Department of Medicine, Washington University in Saint Louis School of Medicine, 660 S. Euclid Avenue, CB 8126, Saint Louis, Missouri 63110, USA
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University in Saint Louis School of Medicine, 660 S. Euclid Avenue, CB 8126, Saint Louis, Missouri 63110, USA
| |
Collapse
|
42
|
Da Sacco S, Thornton ME, Petrosyan A, Lavarreda‐Pearce M, Sedrakyan S, Grubbs BH, De Filippo RE, Perin L. Direct Isolation and Characterization of Human Nephron Progenitors. Stem Cells Transl Med 2016; 6:419-433. [PMID: 28191781 PMCID: PMC5442819 DOI: 10.5966/sctm.2015-0429] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 08/04/2016] [Indexed: 01/29/2023] Open
Abstract
Mature nephrons originate from a small population of uninduced nephrogenic progenitor cells (NPs) within the cap mesenchyme. These cells are characterized by the coexpression of SIX2 and CITED1. Many studies on mouse models as well as on human pluripotent stem cells have advanced our knowledge of NPs, but very little is known about this population in humans, since it is exhausted before birth and strategies for its direct isolation are still limited. Here we report an efficient protocol for direct isolation of human NPs without genetic manipulation or stepwise induction procedures. With the use of RNA‐labeling probes, we isolated SIX2+CITED1+ cells from human fetal kidney for the first time. We confirmed their nephrogenic state by gene profiling and evaluated their nephrogenic capabilities in giving rise to mature renal cells. We also evaluated the ability to culture these cells without complete loss of SIX2 and CITED1 expression over time. In addition to defining the gene profile of human NPs, this in vitro system facilitates studies of human renal development and provides a novel tool for renal regeneration and bioengineering purposes. Stem Cells Translational Medicine2017;6:419–433
Collapse
Affiliation(s)
- Stefano Da Sacco
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Saban Research Institute, Division of Urology, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Matthew E. Thornton
- Maternal‐Fetal Medicine Division, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Astgik Petrosyan
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Saban Research Institute, Division of Urology, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Maria Lavarreda‐Pearce
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Saban Research Institute, Division of Urology, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Sargis Sedrakyan
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Saban Research Institute, Division of Urology, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Brendan H. Grubbs
- Maternal‐Fetal Medicine Division, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Roger E. De Filippo
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Saban Research Institute, Division of Urology, Children's Hospital Los Angeles, Los Angeles, California, USA
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Laura Perin
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Saban Research Institute, Division of Urology, Children's Hospital Los Angeles, Los Angeles, California, USA
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|