1
|
de Oliveira Souza R, Duarte Júnior JWB, Della Casa VS, Santoro Rosa D, Renia L, Claser C. Unraveling the complex interplay: immunopathology and immune evasion strategies of alphaviruses with emphasis on neurological implications. Front Cell Infect Microbiol 2024; 14:1421571. [PMID: 39211797 PMCID: PMC11358129 DOI: 10.3389/fcimb.2024.1421571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024] Open
Abstract
Arthritogenic alphaviruses pose a significant public health concern due to their ability to cause joint inflammation, with emerging evidence of potential neurological consequences. In this review, we examine the immunopathology and immune evasion strategies employed by these viruses, highlighting their complex mechanisms of pathogenesis and neurological implications. We delve into how these viruses manipulate host immune responses, modulate inflammatory pathways, and potentially establish persistent infections. Further, we explore their ability to breach the blood-brain barrier, triggering neurological complications, and how co-infections exacerbate neurological outcomes. This review synthesizes current research to provide a comprehensive overview of the immunopathological mechanisms driving arthritogenic alphavirus infections and their impact on neurological health. By highlighting knowledge gaps, it underscores the need for research to unravel the complexities of virus-host interactions. This deeper understanding is crucial for developing targeted therapies to address both joint and neurological manifestations of these infections.
Collapse
Affiliation(s)
- Raquel de Oliveira Souza
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | | | - Victória Simões Della Casa
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Daniela Santoro Rosa
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Laurent Renia
- ASTAR Infectious Diseases Labs (ASTAR ID Labs), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Carla Claser
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
2
|
Warnes CM, Bustos Carrillo FA, Zambrana JV, Lopez Mercado B, Arguello S, Ampié O, Collado D, Sanchez N, Ojeda S, Kuan G, Gordon A, Balmaseda A, Harris E. Longitudinal analysis of post-acute chikungunya-associated arthralgia in children and adults: A prospective cohort study in Managua, Nicaragua (2014-2018). PLoS Negl Trop Dis 2024; 18:e0011948. [PMID: 38416797 PMCID: PMC10962812 DOI: 10.1371/journal.pntd.0011948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 03/25/2024] [Accepted: 01/27/2024] [Indexed: 03/01/2024] Open
Abstract
Chikungunya can result in debilitating arthralgia, often presenting as acute, self-limited pain, but occasionally manifesting chronically. Little is known about differences in chikungunya-associated arthralgia comparing children to adults over time. To characterize long-term chikungunya-associated arthralgia, we recruited 770 patients (105 0-4 years old [y/o], 200 5-9 y/o, 307 10-15 y/o, and 158 16+ y/o) with symptomatic chikungunya virus infections in Managua, Nicaragua, during two consecutive chikungunya epidemics (2014-2015). Participants were assessed at ~15 days and 1, 3, 6, 12, and 18 months post-fever onset. Following clinical guidelines, we defined participants by their last reported instance of arthralgia as acute (≤10 days post-fever onset), interim (>10 and <90 days), or chronic (≥90 days) cases. We observed a high prevalence of arthralgia (80-95%) across all ages over the study period. Overall, the odds of acute arthralgia increased in an age-dependent manner, with the lowest odds of arthralgia in the 0-4 y/o group (odds ratio [OR]: 0.27, 95% confidence interval [CI]: 0.14-0.51) and the highest odds of arthralgia in the 16+ y/o participants (OR: 4.91, 95% CI: 1.42-30.95) relative to 10-15 y/o participants. Females had higher odds of acute arthralgia than males (OR: 1.63, 95% CI: 1.01-2.65) across all ages. We found that 23-36% of pediatric and 53% of adult participants reported an instance of post-acute arthralgia. Children exhibited the highest prevalence of post-acute polyarthralgia in their legs, followed by the hands and torso - a pattern not seen among adult participants. Further, we observed pediatric chikungunya presenting in two distinct phases: the acute phase and the subsequent interim/chronic phases. Thus, differences in the presentation of arthralgia were observed across age, sex, and disease phase in this longitudinal chikungunya cohort. Our results elucidate the long-term burden of chikungunya-associated arthralgia among pediatric and adult populations.
Collapse
Affiliation(s)
- Colin M. Warnes
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Fausto Andres Bustos Carrillo
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | | | | | | | | | | | - Nery Sanchez
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Sergio Ojeda
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Guillermina Kuan
- Sustainable Sciences Institute, Managua, Nicaragua
- Centro de Salud Sócrates Flores Vivas, Ministerio de Salud, Managua, Nicaragua
| | - Aubree Gordon
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, United States of America
| | - Angel Balmaseda
- Sustainable Sciences Institute, Managua, Nicaragua
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministerio de Salud, Managua, Nicaragua
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
3
|
Hossain MA, Sohel M, Sultana T, Hasan MI, Khan MS, Kibria KMK, Mahmud SMH, Rahman MH. Study of kaempferol in the treatment of COVID-19 combined with Chikungunya co-infection by network pharmacology and molecular docking technology. INFORMATICS IN MEDICINE UNLOCKED 2023; 40:101289. [PMID: 37346467 PMCID: PMC10264333 DOI: 10.1016/j.imu.2023.101289] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Abstract
Chikungunya (CHIK) patients may be vulnerable to coronavirus disease (COVID-19). However, presently there are no anti-COVID-19/CHIK therapeutic alternatives available. The purpose of this research was to determine the pharmacological mechanism through which kaempferol functions in the treatment of COVID-19-associated CHIK co-infection. We have used a series of network pharmacology and computational analysis-based techniques to decipher and define the binding capacity, biological functions, pharmacological targets, and treatment processes in COVID-19-mediated CHIK co-infection. We identified key therapeutic targets for COVID-19/CHIK, including TP53, MAPK1, MAPK3, MAPK8, TNF, IL6 and NFKB1. Gene ontology, molecular and upstream pathway analysis of kaempferol against COVID-19 and CHIK showed that DEGs were confined mainly to the cytokine-mediated signalling pathway, MAP kinase activity, negative regulation of the apoptotic process, lipid and atherosclerosis, TNF signalling pathway, hepatitis B, toll-like receptor signaling, IL-17 and IL-18 signaling pathways. The study of the gene regulatory network revealed several significant TFs including KLF16, GATA2, YY1 and FOXC1 and miRNAs such as let-7b-5p, mir-16-5p, mir-34a-5p, and mir-155-5p that target differential-expressed genes (DEG). According to the molecular coupling results, kaempferol exhibited a high affinity for 5 receptor proteins (TP53, MAPK1, MAPK3, MAPK8, and TNF) compared to control inhibitors. In combination, our results identified significant targets and pharmacological mechanisms of kaempferol in the treatment of COVID-19/CHIK and recommended that core targets be used as potential biomarkers against COVID-19/CHIK viruses. Before conducting clinical studies for the intervention of COVID-19 and CHIK, kaempferol might be evaluated in wet lab tests at the molecular level.
Collapse
Affiliation(s)
- Md Arju Hossain
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Md Sohel
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
- Department of Biochemistry and Molecular Biology, Primeasia University, Dhaka, Bangladesh
| | - Tayeba Sultana
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Md Imran Hasan
- Department of Computer Science and Engineering, Islamic University, Kushtia, 7003, Bangladesh
| | - Md Sharif Khan
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - K M Kaderi Kibria
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - S M Hasan Mahmud
- Department of Computer Science, Faculty of Science and Technology, American International University-Bangladesh, Dhaka, Bangladesh
| | - Md Habibur Rahman
- Department of Computer Science and Engineering, Islamic University, Kushtia, 7003, Bangladesh
- Center for Advanced Bioinformatics and Artificial Intelligent Research, Islamic University, Kushtia, 7003, Bangladesh
| |
Collapse
|
4
|
Bezerra WP, Moizéis RNC, Salmeron ACA, Pereira HWB, de Araújo JMG, Guedes PMM, Fernandes JV, Nascimento MSL. Innate immune response in patients with acute Chikungunya disease. Med Microbiol Immunol 2023:10.1007/s00430-023-00771-y. [PMID: 37285099 DOI: 10.1007/s00430-023-00771-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/29/2023] [Indexed: 06/08/2023]
Abstract
Chikungunya disease (CHIKD) is an arbovirose that presents with high morbidity, mainly due to arthralgia. Inflammatory mediators including IL-6, IL-1β, GM-CSF and others have been implicated in the pathogenesis of CHIKD, whilst type I interferons can be associated with better outcomes. The role of pattern recognition receptors has been studied incompletely. Here, we evaluated the expression of RNA-specific PRRs, their adaptor molecules and downstream cytokines in acute CHIKD patients. Twenty-eight patients were recruited during the 3rd-5th day after the symptoms onset for clinical examination, peripheral blood collection and qRT-PCR analysis of PBMC to compare to the healthy control group (n = 20). We observed common symptoms of acute CHIKD, with fever, arthralgia, headache and myalgia being the most frequent. Compared with uninfected controls, acute CHIKV infection upregulates the expression of the receptors TLR3, RIG-I and MDA5, and also the adaptor molecule TRIF. Regarding cytokine expression, we found an upregulation of IL-6, IL-12, IFN-α, IFN-β and IFN-γ, which are related directly to the inflammatory or antiviral response. The TLR3-TRIF axis correlated with high expression of IL-6 and IFN-α. Interestingly, greater expression of MDA5, IL-12 and IFN-α was related to lower viral loads in CHIKD acute patients. Together, these findings help to complete the picture of innate immune activation during acute CHIKD, while confirming the induction of strong antiviral responses. Drawing the next steps in the understanding of the immunopathology and virus clearance mechanisms of CHIKD should be of utter importance in the aid of the development of effective treatment to reduce the severity of this debilitating disease.
Collapse
Affiliation(s)
- Wallace Pitanga Bezerra
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte. Natal, Rio Grande do Norte, Natal, Rio Grande Do Norte, 59078-970, Brazil
| | - Raíza Nara Cunha Moizéis
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte. Natal, Rio Grande do Norte, Natal, Rio Grande Do Norte, 59078-970, Brazil
| | - Amanda Costa Ayres Salmeron
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaiba, Rio Grande do Norte, Brazil
| | - Hannaly Wana Bezerra Pereira
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte. Natal, Rio Grande do Norte, Natal, Rio Grande Do Norte, 59078-970, Brazil
| | - Josélio Maria Galvão de Araújo
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte. Natal, Rio Grande do Norte, Natal, Rio Grande Do Norte, 59078-970, Brazil
| | - Paulo Marcos Matta Guedes
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte. Natal, Rio Grande do Norte, Natal, Rio Grande Do Norte, 59078-970, Brazil
| | - José Veríssimo Fernandes
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte. Natal, Rio Grande do Norte, Natal, Rio Grande Do Norte, 59078-970, Brazil
| | - Manuela Sales Lima Nascimento
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte. Natal, Rio Grande do Norte, Natal, Rio Grande Do Norte, 59078-970, Brazil.
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaiba, Rio Grande do Norte, Brazil.
| |
Collapse
|
5
|
Warnes CM, Carrillo FAB, Zambrana JV, Mercado BL, Arguello S, Ampié O, Collado D, Sanchez N, Ojeda S, Kuan G, Gordon A, Balmaseda A, Harris E. Longitudinal Analysis of the Burden of Post-Acute Chikungunya-Associated Arthralgia in Children and Adults: A Prospective Cohort Study in Managua, Nicaragua (2014-2019). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.09.23289726. [PMID: 37214808 PMCID: PMC10197786 DOI: 10.1101/2023.05.09.23289726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Chikungunya can result in debilitating arthralgia, often presenting as acute, self-limited pain, but occasionally manifesting chronically. Little is known about differences in chikungunya-associated arthralgia comparing children to adults over time. To characterize long-term chikungunya-associated arthralgia, we recruited 770 patients (105 0-4 year olds [y/o], 200 5-9 y/o, 307 10-15 y/o, and 158 16+ y/o) with symptomatic chikungunya virus infections in Managua, Nicaragua, during two chikungunya epidemics (2014-2015). Participants were assessed at ~15 days and 1, 3, 6, 12, and 18 months post-fever onset. Following clinical guidelines, we defined participants by their last reported instance of arthralgia as acute (≤10 days post-fever onset), interim (>10 and <90 days), or chronic (≥90 days) cases. We observed a high prevalence of arthralgia (80-95%) across all ages over the study period. Overall, the odds of acute arthralgia increased in an age-dependent manner, with the lowest odds of arthralgia in the 0-4 y/o group (odds ratio [OR]: 0.27, 95% confidence interval [CI]: 0.14-0.51) and the highest odds of arthralgia in the 16+ y/o participants (OR: 4.91, 95% CI: 1.42-30.95) relative to 10-15 y/o participants. Females had a higher odds of acute arthralgia than males (OR: 1.63, 95% CI: 1.01-2.65) across all ages. We found that 23-36% of pediatric and 53% of adult participants reported an instance of post-acute arthralgia. Children exhibited the highest prevalence of post-acute polyarthralgia in their legs, followed by the hands and torso - a pattern not seen among adult participants. Further, we observed pediatric chikungunya presenting in two distinct phases: the acute phase and the associated interim and chronic phases. Differences in the presentation of arthralgia were observed across age, sex, and disease phase in this longitudinal chikungunya cohort. Our results elucidate the long-term burden of chikungunya-associated arthralgia among pediatric and adult populations.
Collapse
Affiliation(s)
- Colin M. Warnes
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Fausto Andres Bustos Carrillo
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | | | | | | | | | | | - Nery Sanchez
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Sergio Ojeda
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Guillermina Kuan
- Sustainable Sciences Institute, Managua, Nicaragua
- Centro de Salud Sócrates Flores Vivas, Ministerio de Salud, Managua, Nicaragua
| | - Aubree Gordon
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Angel Balmaseda
- Sustainable Sciences Institute, Managua, Nicaragua
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministerio de Salud, Managua, Nicaragua
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
6
|
Bishop CR, Caten FT, Nakaya HI, Suhrbier A. Chikungunya patient transcriptional signatures faithfully recapitulated in a C57BL/6J mouse model. Front Immunol 2022; 13:1092370. [PMID: 36578476 PMCID: PMC9791225 DOI: 10.3389/fimmu.2022.1092370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction An adult wild-type C57BL/6J mouse model of chikungunya virus (CHIKV) infection and disease has been extensively used to study the alphaviral arthritic immunopathology and to evaluate new interventions. How well mouse models recapitulate the gene expression profiles seen in humans remains controversial. Methods Herein we perform a comparative transcriptomics analysis using RNA-Seq datasets from the C57BL/6J CHIKV mouse model with datasets obtained from adults and children acutely infected with CHIKV. Results Despite sampling quite different tissues, peripheral blood from humans and feet from mice, gene expression profiles were quite similar, with an overlap of up to ≈50% for up-regulated single copy orthologue differentially expressed genes. Furthermore, high levels of significant concordance between mouse and human were seen for immune pathways and signatures, which were dominated by interferons, T cells and monocyte/macrophages. Importantly, predicted responses to a series of anti-inflammatory drug and biologic treatments also showed cogent similarities between species. Discussion Comparative transcriptomics and subsequent pathway analysis provides a detailed picture of how a given model recapitulates human gene expression. Using this method, we show that the C57BL/6J CHIKV mouse model provides a reliable and representative system in which to study CHIKV immunopathology and evaluate new treatments.
Collapse
Affiliation(s)
- Cameron R. Bishop
- Department of Infection and Inflammation, Queensland Institute of Medical Research, Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Felipe Ten Caten
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Helder I. Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil,*Correspondence: Helder I. Nakaya, ; Andreas Suhrbier,
| | - Andreas Suhrbier
- Department of Infection and Inflammation, Queensland Institute of Medical Research, Berghofer Medical Research Institute, Brisbane, QLD, Australia,Global Virus Network (GVN) Center of Excellence, Australian Infectious Disease Research Centre, Brisbane, QLD, Australia,*Correspondence: Helder I. Nakaya, ; Andreas Suhrbier,
| |
Collapse
|
7
|
Luvai EAC, Kyaw AK, Sabin NS, Yu F, Hmone SW, Thant KZ, Inoue S, Morita K, Ngwe Tun MM. Evidence of Chikungunya virus seroprevalence in Myanmar among dengue-suspected patients and healthy volunteers in 2013, 2015, and 2018. PLoS Negl Trop Dis 2021; 15:e0009961. [PMID: 34851949 PMCID: PMC8635363 DOI: 10.1371/journal.pntd.0009961] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 11/01/2021] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION Chikungunya virus (CHIKV) is a mosquito-borne virus known to cause acute febrile illness associated with debilitating polyarthritis. In 2019, several institutions in Myanmar reported a CHIKV outbreak. There are no official reports of CHIKV cases between 2011 and 2018. Therefore, this study sought to determine the seroprevalence of CHIKV infection before the 2019 outbreak. METHODS A total of 1,544 serum samples were collected from healthy volunteers and patients with febrile illnesses in Yangon, Mandalay, and the Myeik district in 2013, 2015, and 2018. Participants ranged from one month to 65 years of age. Antibody screening was performed with in-house anti-CHIKV IgG and IgM ELISA. A neutralization assay was used as a confirmatory test. RESULTS The seroprevalence of anti-CHIKV IgM and anti-CHIKV IgG was 8.9% and 28.6%, respectively, with an overall seropositivity rate of 34.5%. A focus reduction neutralization assay confirmed 32.5% seroprevalence of CHIKV in the study population. Age, health status, and region were significantly associated with neutralizing antibodies (NAbs) and CHIKV seropositivity (p < 0.05), while gender was not (p = 0.9). Seroprevalence in 2013, 2015, and 2018 was 32.1%, 28.8%, and 37.3%, respectively. Of the clinical symptoms observed in participants with fevers, arthralgia was mainly noted in CHIKV-seropositive patients. CONCLUSION The findings in this study reveal the circulation of CHIKV in Myanmar's Mandalay, Yangon, and Myeik regions before the 2019 CHIKV outbreak. As no treatment or vaccine for CHIKV exists, the virus must be monitored through systematic surveillance in Myanmar.
Collapse
Affiliation(s)
- Elizabeth Ajema Chebichi Luvai
- Department of Virology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Biomedical Sciences and Technology, School of Health and Biomedical Sciences, The Technical University of Kenya, Nairobi, Kenya
| | - Aung Kyaw Kyaw
- Department of Medical Research, Ministry of Health and Sports, Yangon, Myanmar
| | - Nundu Sabiti Sabin
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Fuxun Yu
- Guizhou Provincial People’s Hospital, Guiyang City, Guizhou Province, China
| | - Saw Wut Hmone
- Department of Pathology, University of Medicine-1, Lanmadaw township, Yangon, Myanmar
| | - Kyaw Zin Thant
- Department of Medical Research, Ministry of Health and Sports, Yangon, Myanmar
| | - Shingo Inoue
- Department of Virology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Kouichi Morita
- Department of Virology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Mya Myat Ngwe Tun
- Department of Virology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| |
Collapse
|
8
|
Pott F, Postmus D, Brown RJP, Wyler E, Neumann E, Landthaler M, Goffinet C. Single-cell analysis of arthritogenic alphavirus-infected human synovial fibroblasts links low abundance of viral RNA to induction of innate immunity and arthralgia-associated gene expression. Emerg Microbes Infect 2021; 10:2151-2168. [PMID: 34723780 PMCID: PMC8604527 DOI: 10.1080/22221751.2021.2000891] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/25/2022]
Abstract
Infection by (re-)emerging RNA arboviruses including Chikungunya virus (CHIKV) and Mayaro virus primarily cause acute febrile disease and transient polyarthralgia. However, in a significant subset of infected individuals, debilitating arthralgia persists for weeks over months up to years. The underlying immunopathogenesis of chronification of arthralgia upon primary RNA-viral infection remains unclear. Here, we analysed cell-intrinsic responses to ex vivo arthritogenic alphaviral infection of primary human synovial fibroblasts isolated from knee joints, one the most affected joint types during acute and chronic CHIKV disease. Synovial fibroblasts were susceptible and permissive to alphaviral infection. Base-line and exogenously added type I interferon (IFN) partially and potently restricted infection, respectively. RNA-seq revealed a CHIKV infection-induced transcriptional profile that comprised upregulation of expression of several hundred IFN-stimulated and arthralgia-mediating genes. Single-cell virus-inclusive RNA-seq uncovered a fine-tuned switch from induction to repression of cell-intrinsic immune responses depending on the abundance of viral RNA in an individual cell. Specifically, responses were most pronounced in cells displaying low-to-intermediate amounts of viral RNA and absence of virus-encoded, fluorescent reporter protein expression, arguing for efficient counteraction of innate immunity in cells expressing viral antagonists at sufficient quantities. In summary, cell-intrinsic sensing of viral RNA that potentially persists or replicates at low levels in synovial fibroblasts and other target cell types in vivo may contribute to the chronic arthralgia induced by alphaviral infections. Our findings might advance our understanding of the immunopathophysiology of long-term pathogenesis of RNA-viral infections.
Collapse
Affiliation(s)
- Fabian Pott
- Institute of Virology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Dylan Postmus
- Institute of Virology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Berlin, Germany
| | | | - Emanuel Wyler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Elena Neumann
- Internal Medicine and Rheumatology, Justus-Liebig-University Giessen, Bad Nauheim, Germany
| | - Markus Landthaler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
- IRI Life Sciences, Institut für Biologie, Humboldt Universität zu Berlin, Berlin, Germany
| | - Christine Goffinet
- Institute of Virology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
9
|
Jacob-Nascimento LC, Carvalho CX, Silva MMO, Kikuti M, Anjos RO, Fradico JRB, Campi-Azevedo AC, Tauro LB, Campos GS, Moreira PSDS, Portilho MM, Martins-Filho OA, Ribeiro GS, Reis MG. Acute-Phase Levels of CXCL8 as Risk Factor for Chronic Arthralgia Following Chikungunya Virus Infection. Front Immunol 2021; 12:744183. [PMID: 34659240 PMCID: PMC8517435 DOI: 10.3389/fimmu.2021.744183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/02/2021] [Indexed: 11/14/2022] Open
Abstract
The immunopathogenesis of chikungunya virus (CHIKV) infection and the role of acute-phase immune response on joint pain persistence is not fully understood. We investigated the profile of serum chemokine and cytokine in CHIKV-infected patients with acute disease, compared the levels of these biomarkers to those of patients with other acute febrile diseases (OAFD) and healthy controls (HC), and evaluated their role as predictors of chronic arthralgia development. Chemokines and cytokines were measured by flow Cytometric Bead Array. Patients with CHIKV infection were further categorized according to duration of arthralgia (≤ 3 months vs >3 months), presence of anti-CHIKV IgM at acute-phase sample, and number of days of symptoms at sample collection (1 vs 2-3 vs ≥4). Patients with acute CHIKV infection had significantly higher levels of CXCL8, CCL2, CXCL9, CCL5, CXCL10, IL-1β, IL-6, IL-12, and IL-10 as compared to HC. CCL2, CCL5, and CXCL10 levels were also significantly higher in patients with CHIKV infection compared to patients with OAFD. Patients whose arthralgia lasted > 3 months had increased CXCL8 levels compared to patients whose arthralgia did not (p<0.05). Multivariable analyses further indicated that high levels of CXCL8 and female sex were associated with arthralgia lasting >3 months. Patients with chikungunya and OAFD had similar cytokine kinetics for IL-1β, IL-12, TNF, IFN-γ, IL-2, and IL-4, although the levels were lower for CHIKV patients. This study suggests that chemokines may have an important role in the immunopathogenesis of chronic chikungunya-related arthralgia.
Collapse
Affiliation(s)
| | | | | | - Mariana Kikuti
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, Brazil
| | | | | | | | - Laura Beatriz Tauro
- Instituto de Biologia Subtropical, Consejo Nacional de Investigaciones Científicas y Tecnicas - Universidad Nacional de Misiones, Puerto Iguazú, Argentina
| | - Gúbio Soares Campos
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | | | | | | | - Guilherme Sousa Ribeiro
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Mitermayer Galvão Reis
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil.,Yale School of Public Health, Yale University, New Haven, CT, United States
| |
Collapse
|
10
|
Constant LEC, Rajsfus BF, Carneiro PH, Sisnande T, Mohana-Borges R, Allonso D. Overview on Chikungunya Virus Infection: From Epidemiology to State-of-the-Art Experimental Models. Front Microbiol 2021; 12:744164. [PMID: 34675908 PMCID: PMC8524093 DOI: 10.3389/fmicb.2021.744164] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/07/2021] [Indexed: 12/27/2022] Open
Abstract
Chikungunya virus (CHIKV) is currently one of the most relevant arboviruses to public health. It is a member of the Togaviridae family and alphavirus genus and causes an arthritogenic disease known as chikungunya fever (CHIKF). It is characterized by a multifaceted disease, which is distinguished from other arbovirus infections by the intense and debilitating arthralgia that can last for months or years in some individuals. Despite the great social and economic burden caused by CHIKV infection, there is no vaccine or specific antiviral drugs currently available. Recent outbreaks have shown a change in the severity profile of the disease in which atypical and severe manifestation lead to hundreds of deaths, reinforcing the necessity to understand the replication and pathogenesis processes. CHIKF is a complex disease resultant from the infection of a plethora of cell types. Although there are several in vivo models for studying CHIKV infection, none of them reproduces integrally the disease signature observed in humans, which is a challenge for vaccine and drug development. Therefore, understanding the potentials and limitations of the state-of-the-art experimental models is imperative to advance in the field. In this context, the present review outlines the present knowledge on CHIKV epidemiology, replication, pathogenesis, and immunity and also brings a critical perspective on the current in vitro and in vivo state-of-the-art experimental models of CHIKF.
Collapse
Affiliation(s)
- Larissa E. C. Constant
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bia F. Rajsfus
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro H. Carneiro
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tháyna Sisnande
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ronaldo Mohana-Borges
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diego Allonso
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Gupta S, Mishra KP, Gupta R, Singh SB. Andrographolide - A prospective remedy for chikungunya fever and viral arthritis. Int Immunopharmacol 2021; 99:108045. [PMID: 34435582 DOI: 10.1016/j.intimp.2021.108045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/01/2021] [Accepted: 08/01/2021] [Indexed: 12/14/2022]
Abstract
AIM Andrographolide, the major bioactive compound of the plant Andrographis paniculata, exerts anti-inflammatory, cyto-, neuro- and hepato-protective effects. Traditional remedies for infectious diseases include A. paniculata for maladies like fever, pain, rashes which are associated with chikungunya and other arboviral diseases. Since andrographolide and A. paniculata have potent antiviral properties, the present review aims to provide a comprehensive report of symptoms and immunological molecules involved in chikungunya virus (CHIKV) infection and the therapeutic role of andrographolide in the mitigation of chikungunya and associated symptoms. MATERIALS AND METHODS Studies on the therapeutic role of A. paniculata and andrographolide in chikungunya and other viral infections published between 1991 and 2021 were searched on various databases. RESULTS AND DISCUSSION The havoc created by chikungunya is due to the associated debilitating symptoms including arthralgia and myalgia which sometimes remains for years. The authors reviewed and summarized the various symptoms and immunological molecules related to CHIKV replication and associated inflammation, oxidative and unfolded protein stress, apoptosis and arthritis. Additionally, the authors suggested andrographolide as a remedy for chikungunya and other arboviral infections by highlighting its role in the regulation of molecules involved in unfolded protein response pathway, immunomodulation, inflammation, virus multiplication, oxidative stress, apoptosis and arthritis. CONCLUSION The present review demonstrated the major complications associated with chikungunya and the role of andrographolide in alleviating the chikungunya associated symptoms to encourage further investigations using this promising compound towards early development of an anti-CHIKV drug. Chemical Compound studied: andrographolide (PubChem CID: 5318517).
Collapse
Affiliation(s)
- Swati Gupta
- Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research (ICMR), Ansari Nagar, New Delhi 110029, India.
| | - K P Mishra
- Defence Research and Development Organization (DRDO)-HQ, Rajaji Marg, New Delhi 110011, India
| | - Rupali Gupta
- Department of Neurology, Duke University Medical Center, Durham, NC, United States
| | - S B Singh
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
12
|
Imad HA, Phadungsombat J, Nakayama EE, Suzuki K, Ibrahim AM, Afaa A, Azeema A, Nazfa A, Yazfa A, Ahmed A, Saeed A, Waheed A, Shareef F, Islam MM, Anees SM, Saleem S, Aroosha A, Afzal I, Leaungwutiwong P, Piyaphanee W, Phumratanaprapin W, Shioda T. Clinical Features of Acute Chikungunya Virus Infection in Children and Adults during an Outbreak in the Maldives. Am J Trop Med Hyg 2021; 105:946-954. [PMID: 34339379 PMCID: PMC8592165 DOI: 10.4269/ajtmh.21-0189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/20/2021] [Indexed: 11/17/2022] Open
Abstract
The chikungunya virus is an arthritogenic arbovirus that has re-emerged in many tropical and subtropical regions, causing explosive outbreaks. This re-emergence is due to a genomic polymorphism that has increased the vector susceptibility of the virus. The majority of those infected with chikungunya virus exhibit symptoms of fever, rash, and debilitating polyarthralgia or arthritis. Symptoms can persist for weeks, and patients can relapse months later. Fatalities are rare, but individuals of extreme age can develop severe infection. Here, we describe the 2019 outbreak, the second-largest since the virus re-emerged in the Maldives after the 2004 Indian Ocean epidemic, in which a total of 1,470 cases were reported to the Health Ministry. Sixty-seven patients presenting at the main referral tertiary care hospital in the Maldives capital with acute undifferentiated illness were recruited following a negative dengue serology. A novel point-of-care antigen kit was used to screen suspected cases, 50 of which were subsequently confirmed using real-time reverse transcription-polymerase chain reaction. We describe the genotype and polymorphism of Maldives chikungunya virus using phylogenetic analysis. All isolates were consistent with the East Central South African genotype of the Indian Ocean lineage, with a specific E1-K211E mutation. In addition, we explored the clinical and laboratory manifestations of acute chikungunya in children and adults, of which severe infection was found in some children, whereas arthritis primarily occurred in adults. Arthritides in adults occurred irrespective of underlying comorbidities and were associated with the degree of viremia.
Collapse
Affiliation(s)
- Hisham Ahmed Imad
- Mahidol-Osaka Center for Infectious Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Juthamas Phadungsombat
- Mahidol-Osaka Center for Infectious Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Emi E. Nakayama
- Mahidol-Osaka Center for Infectious Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Keita Suzuki
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- POCT Products Business Unit, TANAKA Kikinzoku Kogyo, Hiratsuka, Japan
| | | | | | | | | | | | | | | | - Azna Waheed
- Indira Gandhi Memorial Hospital, Malé, Maldives
| | | | | | | | - Sana Saleem
- Health Protection Agency, Ministry of Health, Malé, Maldives
| | - Aminath Aroosha
- Health Protection Agency, Ministry of Health, Malé, Maldives
| | - Ibrahim Afzal
- Health Protection Agency, Ministry of Health, Malé, Maldives
| | - Pornsawan Leaungwutiwong
- Tropical Medicine Diagnostic Reference Laboratory, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Watcharapong Piyaphanee
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Weerapong Phumratanaprapin
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tatsuo Shioda
- Mahidol-Osaka Center for Infectious Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| |
Collapse
|
13
|
Immunological Evaluation for Personalized Interventions in Children with Tuberculosis: Should It Be Routinely Performed? J Immunol Res 2020; 2020:8235149. [PMID: 33005692 PMCID: PMC7509549 DOI: 10.1155/2020/8235149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/03/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022] Open
Abstract
Childhood tuberculosis (TB) is a significant public health problem and the ninth leading cause of death worldwide. Progression of Mycobacterium tuberculosis infection to active disease depends on mycobacterial virulence, environmental diversity, and host susceptibility and immune response. In children, malnutrition and immaturity of the immune system contribute to an inadequate immune response. Coinfections, though rarely described in TB, might be associated with host immune deficiencies. Here, we describe the immunological evaluation of eight pediatric patients infected with a member of the M. tuberculosis complex, most of them with concomitant pulmonary infections (bacteria, viruses, or fungi). We assessed the functionality of several innate immunity receptors, IL-12 receptor, and IFN-γ receptor, as well as the antioxidant levels (glutathione), which are essential mechanisms for fighting intracellular pathogens such as M. tuberculosis. This study is aimed at developing a thorough immunological evaluation of patients with TB and a coinfection.
Collapse
|
14
|
de Moraes L, Cerqueira-Silva T, Nobrega V, Akrami K, Santos LA, Orge C, Casais P, Cambui L, Rampazzo RDCP, Trinta KS, Montalbano CA, Teixeira MJ, Cavalcante LP, Andrade BB, da Cunha RV, Krieger MA, Barral-Netto M, Barral A, Khouri R, Boaventura VS. A clinical scoring system to predict long-term arthralgia in Chikungunya disease: A cohort study. PLoS Negl Trop Dis 2020; 14:e0008467. [PMID: 32693402 PMCID: PMC7373495 DOI: 10.1371/journal.pntd.0008467] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 06/09/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Chikungunya virus (CHIKV) has caused worldwide epidemics that impose a major burden on health systems. Approximately half of infected individuals develop chronic debilitating arthralgia, affecting their quality of life. Here, we identified the relevant clinical and demographic variables in the acute phase of CHIKV infection prospectively linked to chronic arthralgia to elaborate a prognostic scoring system. METHODS Acute CHIKV infection cases (n = 134) confirmed by serology or molecular test were examined <10 days of disease onset and followed for one year to evaluate for disease progression. Potential risk factors for chronic arthralgia were evaluated by multivariate analysis to develop a prognostic scoring system, which was subsequently tested in an independent validation cohort consisting of 42 individuals. RESULTS A total of 107 out of 134 (80%) acute CHIKV-confirmed cases from the derivation cohort were re-examined one year after enrollment. Chronic arthralgia post-CHIKV infection was diagnosed in 64 (60%). Five of the 12 parameters evaluated in the acute phase were statistically associated with persistent arthralgia and were further tested by Bayesian analysis. These variables were weighted to yield a prognosis score denominated SHERA (Sex, Hypertension, Edema, Retroocular pain, Age), which exhibited 81.3% accuracy in predicting long-term arthralgia post-CHIKV infection in the derivation cohort, and 76.5% accuracy in the validation cohort. CONCLUSIONS The simplified and externally validated prognostic scoring system, SHERA, is a useful method to screen acutely CHIKV-infected patients at elevated risk of chronic arthralgia who will benefit from specific interventions. This tool could guide public health policies, particularly in resource-constrained settings.
Collapse
Affiliation(s)
- Laise de Moraes
- Instituto Gonçalo Moniz (IGM)—Fundação Oswaldo Cruz (Fiocruz) Bahia
- Faculdade de Medicina da Bahia—Universidade Federal da Bahia, Salvador-BA, Brazil
| | - Thiago Cerqueira-Silva
- Instituto Gonçalo Moniz (IGM)—Fundação Oswaldo Cruz (Fiocruz) Bahia
- Faculdade de Medicina da Bahia—Universidade Federal da Bahia, Salvador-BA, Brazil
| | - Victor Nobrega
- Instituto Gonçalo Moniz (IGM)—Fundação Oswaldo Cruz (Fiocruz) Bahia
- Faculdade de Medicina da Bahia—Universidade Federal da Bahia, Salvador-BA, Brazil
| | - Kevan Akrami
- Instituto Gonçalo Moniz (IGM)—Fundação Oswaldo Cruz (Fiocruz) Bahia
- University of California, San Diego, Division of Infectious Disease, Department of Medi- cine, San Diego, California, United States of America
| | | | - Cibele Orge
- Instituto Gonçalo Moniz (IGM)—Fundação Oswaldo Cruz (Fiocruz) Bahia
- Faculdade de Medicina da Bahia—Universidade Federal da Bahia, Salvador-BA, Brazil
| | - Paula Casais
- Instituto Gonçalo Moniz (IGM)—Fundação Oswaldo Cruz (Fiocruz) Bahia
- Faculdade de Medicina da Bahia—Universidade Federal da Bahia, Salvador-BA, Brazil
| | - Lais Cambui
- Instituto Gonçalo Moniz (IGM)—Fundação Oswaldo Cruz (Fiocruz) Bahia
- Faculdade de Medicina da Bahia—Universidade Federal da Bahia, Salvador-BA, Brazil
| | | | | | | | | | | | - Bruno B. Andrade
- Instituto Gonçalo Moniz (IGM)—Fundação Oswaldo Cruz (Fiocruz) Bahia
| | - Rivaldo Venâncio da Cunha
- Faculdade de Medicina, Universidade do Mato Grosso do Sul, Campo Grande- MS, Brazil
- Fiocruz, Campo Grande, MS, Brazil
| | - Marco Aurélio Krieger
- Instituto de Biologia Molecular do Paraná, Curitiba, PR, Brasil
- Instituto Carlos Chagas—ICC/Fiocruz, Curitiba-PR, Brazil
| | - Manoel Barral-Netto
- Instituto Gonçalo Moniz (IGM)—Fundação Oswaldo Cruz (Fiocruz) Bahia
- Faculdade de Medicina da Bahia—Universidade Federal da Bahia, Salvador-BA, Brazil
- Instituto Nacional de Ciência e Tecnologia de Investigação em Imunologia, São Paulo- SP, Brazil
| | - Aldina Barral
- Instituto Gonçalo Moniz (IGM)—Fundação Oswaldo Cruz (Fiocruz) Bahia
- Faculdade de Medicina da Bahia—Universidade Federal da Bahia, Salvador-BA, Brazil
- Instituto Nacional de Ciência e Tecnologia de Investigação em Imunologia, São Paulo- SP, Brazil
| | - Ricardo Khouri
- Instituto Gonçalo Moniz (IGM)—Fundação Oswaldo Cruz (Fiocruz) Bahia
- Faculdade de Medicina da Bahia—Universidade Federal da Bahia, Salvador-BA, Brazil
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Viviane Sampaio Boaventura
- Instituto Gonçalo Moniz (IGM)—Fundação Oswaldo Cruz (Fiocruz) Bahia
- Faculdade de Medicina da Bahia—Universidade Federal da Bahia, Salvador-BA, Brazil
- Serviço de Otorrinolaringologia do Hospital Santa Izabel/Santa Casa de Misericórdia da Bahia (HIS/SCMBa), Salvador, Brazil
- * E-mail:
| |
Collapse
|
15
|
Casais PM, Akrami K, Cerqueira-Silva T, Moraes LP, Rigaud VN, Neto ES, Orge CM, Gusmão LC, Cavalcanti LP, Santos LA, Barral-Netto M, Barral AP, Khouri R, Boaventura VS. Oral lesions are frequent in patients with Chikungunya infection. J Travel Med 2020; 27:5809510. [PMID: 32186714 PMCID: PMC7359922 DOI: 10.1093/jtm/taaa040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/13/2020] [Accepted: 03/27/2020] [Indexed: 11/14/2022]
Affiliation(s)
- Paula M Casais
- Fundação Oswaldo Cruz-Fiocruz, Instituto Gonçalo Moniz, Laboratório de Enfermidades Transmitidas por Vetores, Salvador, BA, Brazil.,Universidade Federal da Bahia, Faculdade de Medicina, Salvador, BA, Brazil
| | - Kevan Akrami
- Fundação Oswaldo Cruz-Fiocruz, Instituto Gonçalo Moniz, Laboratório de Enfermidades Transmitidas por Vetores, Salvador, BA, Brazil.,Universidade Federal da Bahia, Faculdade de Medicina, Salvador, BA, Brazil.,Division of Infectious Disease, Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Thiago Cerqueira-Silva
- Fundação Oswaldo Cruz-Fiocruz, Instituto Gonçalo Moniz, Laboratório de Enfermidades Transmitidas por Vetores, Salvador, BA, Brazil.,Universidade Federal da Bahia, Faculdade de Medicina, Salvador, BA, Brazil
| | - Laise P Moraes
- Fundação Oswaldo Cruz-Fiocruz, Instituto Gonçalo Moniz, Laboratório de Enfermidades Transmitidas por Vetores, Salvador, BA, Brazil.,Universidade Federal da Bahia, Faculdade de Medicina, Salvador, BA, Brazil
| | - Victor N Rigaud
- Universidade Federal da Bahia, Faculdade de Medicina, Salvador, BA, Brazil
| | - Emílio S Neto
- Hospital Santa Izabel, Santa Casa de Misericórdia da Bahia, Serviço de Otorrinolaringologia, Salvador, BA, Brazil
| | - Cibele M Orge
- Fundação Oswaldo Cruz-Fiocruz, Instituto Gonçalo Moniz, Laboratório de Enfermidades Transmitidas por Vetores, Salvador, BA, Brazil.,Universidade Federal da Bahia, Faculdade de Medicina, Salvador, BA, Brazil
| | - Lais C Gusmão
- Fundação Oswaldo Cruz-Fiocruz, Instituto Gonçalo Moniz, Laboratório de Enfermidades Transmitidas por Vetores, Salvador, BA, Brazil.,Universidade Federal da Bahia, Faculdade de Medicina, Salvador, BA, Brazil
| | - Luciano P Cavalcanti
- Universidade Federal do Ceará, Faculdade de Medicina, Departamento de Saúde Comunitária, Fortaleza, CE, Brazil
| | - Luciane A Santos
- Fundação Oswaldo Cruz-Fiocruz, Instituto Gonçalo Moniz, Laboratório de Enfermidades Transmitidas por Vetores, Salvador, BA, Brazil
| | - Manoel Barral-Netto
- Fundação Oswaldo Cruz-Fiocruz, Instituto Gonçalo Moniz, Laboratório de Enfermidades Transmitidas por Vetores, Salvador, BA, Brazil.,Universidade Federal da Bahia, Faculdade de Medicina, Salvador, BA, Brazil.,Instituto Nacional de Ciência e Tecnologia de Investigação em Imunologia (iii-INCT), Salvador, BA, Brazil
| | - Aldina P Barral
- Fundação Oswaldo Cruz-Fiocruz, Instituto Gonçalo Moniz, Laboratório de Enfermidades Transmitidas por Vetores, Salvador, BA, Brazil.,Universidade Federal da Bahia, Faculdade de Medicina, Salvador, BA, Brazil.,Instituto Nacional de Ciência e Tecnologia de Investigação em Imunologia (iii-INCT), Salvador, BA, Brazil
| | - Ricardo Khouri
- Fundação Oswaldo Cruz-Fiocruz, Instituto Gonçalo Moniz, Laboratório de Enfermidades Transmitidas por Vetores, Salvador, BA, Brazil.,Universidade Federal da Bahia, Faculdade de Medicina, Salvador, BA, Brazil.,Rega Institute for Medical Research, Department of Microbiology and Immunology, KULeuven, Leuven, Belgium
| | - Viviane S Boaventura
- Fundação Oswaldo Cruz-Fiocruz, Instituto Gonçalo Moniz, Laboratório de Enfermidades Transmitidas por Vetores, Salvador, BA, Brazil.,Universidade Federal da Bahia, Faculdade de Medicina, Salvador, BA, Brazil.,Hospital Santa Izabel, Santa Casa de Misericórdia da Bahia, Serviço de Otorrinolaringologia, Salvador, BA, Brazil
| |
Collapse
|
16
|
Chan YH, Teo TH, Utt A, Tan JJ, Amrun SN, Abu Bakar F, Yee WX, Becht E, Lee CYP, Lee B, Rajarethinam R, Newell E, Merits A, Carissimo G, Lum FM, Ng LF. Mutating chikungunya virus non-structural protein produces potent live-attenuated vaccine candidate. EMBO Mol Med 2020; 11:emmm.201810092. [PMID: 31015278 PMCID: PMC6554673 DOI: 10.15252/emmm.201810092] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Currently, there are no commercially available live-attenuated vaccines against chikungunya virus (CHIKV). Here, CHIKVs with mutations in non-structural proteins (nsPs) were investigated for their suitability as attenuated CHIKV vaccines. R532H mutation in nsP1 caused reduced infectivity in mouse tail fibroblasts but an enhanced type-I IFN response compared to WT-CHIKV Adult mice infected with this nsP-mutant exhibited a mild joint phenotype with low-level viremia that rapidly cleared. Mechanistically, ingenuity pathway analyses revealed a tilt in the anti-inflammatory IL-10 versus pro-inflammatory IL-1β and IL-18 balance during CHIKV nsP-mutant infection that modified acute antiviral and cell signaling canonical pathways. Challenging CHIKV nsP-mutant-infected mice with WT-CHIKV or the closely related O'nyong-nyong virus resulted in no detectable viremia, observable joint inflammation, or damage. Challenged mice showed high antibody titers with efficient neutralizing capacity, indicative of immunological memory. Manipulating molecular processes that govern CHIKV replication could lead to plausible vaccine candidates against alphavirus infection.
Collapse
Affiliation(s)
- Yi-Hao Chan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore City, Singapore
| | - Teck-Hui Teo
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore.,Molecular Microbial Pathogenesis Unit, Department of Cell Biology and Infection, Institute Pasteur, Paris, France
| | - Age Utt
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Jeslin Jl Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Siti Naqiah Amrun
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Farhana Abu Bakar
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| | - Wearn-Xin Yee
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Etienne Becht
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Cheryl Yi-Pin Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore City, Singapore
| | - Bernett Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | | | - Evan Newell
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Guillaume Carissimo
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Fok-Moon Lum
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Lisa Fp Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore .,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore.,Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
17
|
Rheumatic manifestations of chikungunya: emerging concepts and interventions. Nat Rev Rheumatol 2019; 15:597-611. [DOI: 10.1038/s41584-019-0276-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2019] [Indexed: 12/15/2022]
|
18
|
Soares-Schanoski A, Baptista Cruz N, de Castro-Jorge LA, de Carvalho RVH, dos Santos CA, da Rós N, Oliveira Ú, Costa DD, dos Santos CLS, Cunha MDP, Oliveira MLS, Alves JC, Océa RADLC, Ribeiro DR, Gonçalves ANA, Gonzalez-Dias P, Suhrbier A, Zanotto PMDA, de Azevedo IJ, Zamboni DS, Almeida RP, Ho PL, Kalil J, Nishiyama MY, Nakaya HI. Systems analysis of subjects acutely infected with the Chikungunya virus. PLoS Pathog 2019; 15:e1007880. [PMID: 31211814 PMCID: PMC6599120 DOI: 10.1371/journal.ppat.1007880] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/28/2019] [Accepted: 05/30/2019] [Indexed: 12/21/2022] Open
Abstract
The largest ever recorded epidemic of the Chikungunya virus (CHIKV) broke out in 2004 and affected four continents. Acute symptomatic infections are typically associated with the onset of fever and often debilitating polyarthralgia/polyarthritis. In this study, a systems biology approach was adopted to analyze the blood transcriptomes of adults acutely infected with the CHIKV. Gene signatures that were associated with viral RNA levels and the onset of symptoms were identified. Among these genes, the putative role of the Eukaryotic Initiation Factor (eIF) family genes and apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC3A) in the CHIKV replication process were displayed. We further compared these signatures with signatures induced by the Dengue virus infection and rheumatoid arthritis. Finally, we demonstrated that the CHIKV in vitro infection of murine bone marrow-derived macrophages induced IL-1 beta production in a mechanism that is significantly dependent on the inflammasome NLRP3 activation. The observations provided valuable insights into virus-host interactions during the acute phase and can be instrumental in the investigation of new and effective therapeutic interventions. The Chikungunya virus (CHIKV) has infected millions of people worldwide and presents a serious public health issue. Acute symptomatic infections caused by contracting this mosquito-transmitted arbovirus are typically associated with an abrupt onset of fever and often debilitating polyarthralgia/ polyarthritis, as well as prolonged periods of disability in some patients. These dramatic effects call for a careful evaluation of the molecular mechanisms involved in this puzzling infection. By analyzing the blood transcriptome of adults acutely infected with CHIKV, we were able to provide a detailed picture of the early molecular events induced by the infection. Additionally, the systems biology approach revealed genes that can be investigated extensively as probable therapeutic targets for the disease.
Collapse
Affiliation(s)
| | - Natália Baptista Cruz
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luíza Antunes de Castro-Jorge
- Departamento de Biologia Celular, Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Renan Villanova Homem de Carvalho
- Departamento de Biologia Celular, Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Cliomar Alves dos Santos
- Health Foundation Parreiras Horta, Central Laboratory of Public Health (LACEN/SE), State Secretary for Health, Sergipe, Brazil
| | - Nancy da Rós
- Special Laboratory for Applied Toxinology, Butantan Institute, São Paulo, Brazil
| | - Úrsula Oliveira
- Special Laboratory for Applied Toxinology, Butantan Institute, São Paulo, Brazil
| | - Danuza Duarte Costa
- Health Foundation Parreiras Horta, Central Laboratory of Public Health (LACEN/SE), State Secretary for Health, Sergipe, Brazil
| | | | - Marielton dos Passos Cunha
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | | | - Juliana Cardoso Alves
- Division of Immunology and Molecular Biology Laboratory, University Hospital/EBSERH, Federal University of Sergipe, Sergipe, Brazil
| | | | - Danielle Rodrigues Ribeiro
- Division of Immunology and Molecular Biology Laboratory, University Hospital/EBSERH, Federal University of Sergipe, Sergipe, Brazil
| | - André Nicolau Aquime Gonçalves
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Patricia Gonzalez-Dias
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Paolo Marinho de Andrade Zanotto
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | | | - Dario S. Zamboni
- Departamento de Biologia Celular, Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Roque Pacheco Almeida
- Division of Immunology and Molecular Biology Laboratory, University Hospital/EBSERH, Federal University of Sergipe, Sergipe, Brazil
| | - Paulo Lee Ho
- Bacteriology Service, Bioindustrial Division, Butantan Institute, São Paulo, Brazil
| | - Jorge Kalil
- Heart Institute, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Helder I. Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
19
|
Freeman MC, Coyne CB, Green M, Williams JV, Silva LA. Emerging arboviruses and implications for pediatric transplantation: A review. Pediatr Transplant 2019; 23:e13303. [PMID: 30338634 DOI: 10.1111/petr.13303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 08/29/2018] [Accepted: 09/19/2018] [Indexed: 11/28/2022]
Abstract
Recent years have brought a rise in newly emergent viral infections, primarily in the form of previously known arthropod-transmitted viruses that have increased significantly in both incidence and geographical range. Of particular note are DENV, CHIKV, and ZIKV, which are transmitted mostly by Aedes species of mosquitoes that exhibit a wide and increasing global distribution. Being important pathogens for the general population, these viruses have the potential to be devastating in the international transplant community, with graft rejection and death as possible outcomes of infection. In this review, we discuss the current state of knowledge for these viruses as well as repercussions of infection in the solid organ and HSCT population, with a focus, when possible, on pediatric patients.
Collapse
Affiliation(s)
- Megan Culler Freeman
- Division of Pediatric Infectious Disease, Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Carolyn B Coyne
- Division of Pediatric Infectious Disease, Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael Green
- Division of Pediatric Infectious Disease, Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - John V Williams
- Division of Pediatric Infectious Disease, Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Laurie A Silva
- Division of Pediatric Infectious Disease, Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
20
|
Milligan GN, Schnierle BS, McAuley AJ, Beasley DWC. Defining a correlate of protection for chikungunya virus vaccines. Vaccine 2018; 37:7427-7436. [PMID: 30448337 DOI: 10.1016/j.vaccine.2018.10.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 10/08/2018] [Indexed: 12/22/2022]
Abstract
Chikungunya virus infection causes a debilitating febrile illness that in many affected individuals is associated with long-term sequelae that can persist for months or years. Over the past decade a large number of candidate vaccines have been developed, several of which have now entered clinical trials. The rapid and sporadic nature of chikungunya outbreaks poses challenges for planning of large clinical efficacy trials suggesting that licensure of chikungunya vaccines may utilize non-traditional approval pathways based on identification of immunological endpoint(s) predictive of clinical benefit. This report reviews the current status of nonclinical and clinical testing and potential challenges for defining a suitable surrogate or correlate of protection.
Collapse
Affiliation(s)
- Gregg N Milligan
- WHO Collaborating Center for Vaccine Research, Evaluation and Training on Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA; Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Barbara S Schnierle
- WHO Collaborating Center for Standardization and Evaluation of Vaccines, Paul Ehrlich Institut, Langen, Germany; Section AIDS, New and Emerging Pathogens, Virology Division, Paul Ehrlich Institut, Langen, Germany
| | - Alexander J McAuley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - David W C Beasley
- WHO Collaborating Center for Vaccine Research, Evaluation and Training on Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
21
|
Tanabe ISB, Tanabe ELL, Santos EC, Martins WV, Araújo IMTC, Cavalcante MCA, Lima ARV, Câmara NOS, Anderson L, Yunusov D, Bassi ÊJ. Cellular and Molecular Immune Response to Chikungunya Virus Infection. Front Cell Infect Microbiol 2018; 8:345. [PMID: 30364124 PMCID: PMC6191487 DOI: 10.3389/fcimb.2018.00345] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/11/2018] [Indexed: 11/13/2022] Open
Abstract
Chikungunya virus (CHIKV) is a re-emergent arthropod-borne virus (arbovirus) that causes a disease characterized primarily by fever, rash and severe persistent polyarthralgia. In the last decade, CHIKV has become a serious public health problem causing several outbreaks around the world. Despite the fact that CHIKV has been around since 1952, our knowledge about immunopathology, innate and adaptive immune response involved in this infectious disease is incomplete. In this review, we provide an updated summary of the current knowledge about immune response to CHIKV and about soluble immunological markers associated with the morbidity, prognosis and chronicity of this arbovirus disease. In addition, we discuss the progress in the research of new vaccines for preventing CHIKV infection and the use of monoclonal antibodies as a promising therapeutic strategy.
Collapse
Affiliation(s)
- Ithallo S B Tanabe
- IMUNOREG-Grupo de Pesquisa em Regulação da Resposta Imune, Laboratório de Pesquisas em Virologia e Imunologia, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Brazil
| | - Eloiza L L Tanabe
- IMUNOREG-Grupo de Pesquisa em Regulação da Resposta Imune, Laboratório de Pesquisas em Virologia e Imunologia, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Brazil
| | - Elane C Santos
- IMUNOREG-Grupo de Pesquisa em Regulação da Resposta Imune, Laboratório de Pesquisas em Virologia e Imunologia, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Brazil
| | - Wanessa V Martins
- IMUNOREG-Grupo de Pesquisa em Regulação da Resposta Imune, Laboratório de Pesquisas em Virologia e Imunologia, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Brazil
| | - Isadora M T C Araújo
- IMUNOREG-Grupo de Pesquisa em Regulação da Resposta Imune, Laboratório de Pesquisas em Virologia e Imunologia, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Brazil
| | - Maria C A Cavalcante
- IMUNOREG-Grupo de Pesquisa em Regulação da Resposta Imune, Laboratório de Pesquisas em Virologia e Imunologia, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Brazil
| | - Ana R V Lima
- IMUNOREG-Grupo de Pesquisa em Regulação da Resposta Imune, Laboratório de Pesquisas em Virologia e Imunologia, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Brazil
| | - Niels O S Câmara
- Laboratório de Imunobiologia dos Transplantes, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Leticia Anderson
- IMUNOREG-Grupo de Pesquisa em Regulação da Resposta Imune, Laboratório de Pesquisas em Virologia e Imunologia, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Brazil.,Centro Universitário CESMAC, Maceió, Brazil
| | - Dinar Yunusov
- Cold Spring Harbor Laboratory, Genome Research Center, Woodbury, NY, United States
| | - Ênio J Bassi
- IMUNOREG-Grupo de Pesquisa em Regulação da Resposta Imune, Laboratório de Pesquisas em Virologia e Imunologia, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Brazil
| |
Collapse
|
22
|
Chen H, Chen S, Shi Y, Lu Y, Yu B. Children with open tibial fractures show significantly lower infection rates than adults: clinical comparative study. INTERNATIONAL ORTHOPAEDICS 2018; 43:713-718. [DOI: 10.1007/s00264-018-3996-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 05/18/2018] [Indexed: 01/03/2023]
|
23
|
Chan Y, Ng LFP. Age has a role in driving host immunopathological response to alphavirus infection. Immunology 2017; 152:545-555. [PMID: 28744856 PMCID: PMC5680050 DOI: 10.1111/imm.12799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/15/2017] [Accepted: 07/21/2017] [Indexed: 12/11/2022] Open
Abstract
Alphaviruses are a group of arthropod-borne pathogens capable of causing a wide spectrum of clinical symptoms, ranging from milder symptoms like rashes, fever and polyarthralgia, to life-threatening encephalitis. This genus of viruses is prevalent globally, and can infect patients across a wide age range. Interestingly, disease severity of virus-infected patients is wide-ranging. Definitions of the pathogenesis of alphaviruses, as well as the host factors influencing disease severity, remain limited. The innate and adaptive immune systems are important host defences against alphavirus infections. Several reports have highlighted the roles of specific immune subsets in contributing to the immune pathogenesis of these viruses. However, immunosenescence, a gradual deterioration of the immune system brought about by the natural advancement of age, affects the functional roles of these immune subsets. This phenomenon compromises the host's ability to defend against alphavirus infection and pathogenesis. In addition, the lack of maturity in the immune system in newborns and infants also results in more severe disease outcomes. In this review, we will summarize the subtle yet diverse physiological changes in the immune system during aging, and how these changes underlie the differences in disease severity for common alphaviruses.
Collapse
Affiliation(s)
- Yi‐Hao Chan
- Singapore Immunology NetworkAgency for ScienceTechnology and Research (A*STAR)Singapore
- NUS Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingapore
| | - Lisa F. P. Ng
- Singapore Immunology NetworkAgency for ScienceTechnology and Research (A*STAR)Singapore
- Department of BiochemistryYong Loo Lin School of MedicineNational University of SingaporeSingapore
- Institute of Infection and Global HealthUniversity of LiverpoolLiverpoolUK
- Present address:
8A Biomedical Grove, Biopolis#04‐06 Immunos138648Singapore
| |
Collapse
|
24
|
Priya SP, Sakinah S, Sharmilah K, Hamat RA, Sekawi Z, Higuchi A, Ling MP, Nordin SA, Benelli G, Kumar SS. Leptospirosis: Molecular trial path and immunopathogenesis correlated with dengue, malaria and mimetic hemorrhagic infections. Acta Trop 2017; 176:206-223. [PMID: 28823908 DOI: 10.1016/j.actatropica.2017.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 12/12/2022]
Abstract
Immuno-pathogenesis of leptospirosis can be recounted well by following its trail path from entry to exit, while inducing disastrous damages in various tissues of the host. Dysregulated, inappropriate and excessive immune responses are unanimously blamed in fatal leptospirosis. The inherent abilities of the pathogen and inabilities of the host were debated targeting the severity of the disease. Hemorrhagic manifestation through various mechanisms leading to a fatal end is observed when this disease is unattended. The similar vascular destructions and hemorrhage manifestations are noted in infections with different microbes in endemic areas. The simultaneous infection in a host with more than one pathogen or parasite is referred as the coinfection. Notably, common endemic infections such as leptospirosis, dengue, chikungunya, and malaria, harbor favorable environments to flourish in similar climates, which is aggregated with stagnated water and aggravated with the poor personal and environmental hygiene of the inhabitants. These factors aid the spread of pathogens and parasites to humans and potential vectors, eventually leading to outbreaks of public health relevance. Malaria, dengue and chikungunya need mosquitoes as vectors, in contrast with leptospirosis, which directly invades human, although the environmental bacterial load is maintained through other mammals, such as rodents. The more complicating issue is that infections by different pathogens exhibiting similar symptoms but require different treatment management. The current review explores different pathogens expressing specific surface proteins and their ability to bind with array of host proteins with or without immune response to enter into the host tissues and their ability to evade the host immune responses to invade and their affinity to certain tissues leading to the common squeal of hemorrhage. Furthermore, at the host level, the increased susceptibility and inability of the host to arrest the pathogens' and parasites' spread in different tissues, various cytokines accumulated to eradicate the microorganisms and their cellular interactions, the antibody dependent defense and the susceptibility of individual organs bringing the manifestation of the diseases were explored. Lastly, we provided a discussion on the immune trail path of pathogenesis from entry to exit to narrate the similarities and dissimilarities among various hemorrhagic fevers mentioned above, in order to outline future possibilities of prevention, diagnosis, and treatment of coinfections, with special reference to endemic areas.
Collapse
|
25
|
Abstract
Chikungunya virus (CHIKV) is an arthropod-borne alphavirus that causes acute and chronic arthritis. The virus reemerged in the Indian Ocean islands in 2005-2006 and is responsible for outbreaks in the Caribbean islands and the Americas since late 2013. Despite the wealth of research over the past 10 years, there are no commercially available antiviral drugs or vaccines. Treatment usually involves analgesics, anti-inflammatory drugs, and supportive care. Most studies have been focused on understanding the pathogenesis of CHIKV infection through clinical observation and with animal models. In this review, the clinical manifestations of CHIKV that define the disease and the use of relevant animal models, from mice to nonhuman primates, are discussed. Understanding key cellular factors in CHIKV infection and the interplay with the immune system will aid in the development of preventive and therapeutic approaches to combat this painful viral disease in humans.
Collapse
Affiliation(s)
- Lisa F P Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore 138648; .,Institute of Infection and Global Health, University of Liverpool, Liverpool L69 3BX, United Kingdom
| |
Collapse
|
26
|
The neutralizing role of IgM during early Chikungunya virus infection. PLoS One 2017; 12:e0171989. [PMID: 28182795 PMCID: PMC5300252 DOI: 10.1371/journal.pone.0171989] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/30/2017] [Indexed: 12/13/2022] Open
Abstract
The antibody isotype IgM appears earlier than IgG, within days of onset of symptoms, and is important during the early stages of the adaptive immune response. Little is known about the functional role of IgM during infection with chikungunya virus (CHIKV), a recently reemerging arbovirus that has caused large global outbreaks. In this study, we studied antibody responses in 102 serum samples collected during CHIKV outbreaks in Malaysia. We described the neutralizing role of IgM at different times post-infection and examined the independent contributions of IgM and IgG towards the neutralizing capacity of human immune sera during the early phase of infection, including the differences in targets of neutralizing epitopes. Neutralizing IgM starts to appear as early as day 4 of symptoms, and their appearance from day 6 is associated with a reduction in viremia. IgM acts in a complementary manner with the early IgG, but plays the main neutralizing role up to a point between days 4 and 10 which varies between individuals. After this point, total neutralizing capacity is attributable almost entirely to the robust neutralizing IgG response. IgM preferentially binds and targets epitopes on the CHIKV surface E1-E2 glycoproteins, rather than individual E1 or E2. These findings provide insight into the early antibody responses to CHIKV, and have implications for design of diagnostic serological assays.
Collapse
|