1
|
Medina J, Goss N, Correia GDS, Borreggine R, Teav T, Kutalik Z, Vidal PM, Gallart-Ayala H, Ivanisevic J. Clinical lipidomics reveals high individuality and sex specificity of circulatory lipid signatures: a prospective healthy population study. J Lipid Res 2025; 66:100780. [PMID: 40112951 PMCID: PMC12022646 DOI: 10.1016/j.jlr.2025.100780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/14/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025] Open
Abstract
Lipid metabolism and circulatory lipid levels are tightly associated with the (cardio)metabolic health. Consequently, MS-based lipidomics has emerged as a powerful phenotyping tool in epidemiological, human population, and in clinical intervention studies. However, ensuring high-throughput and reproducible measurement of a wide panel of circulatory lipid species in large-scale studies poses a significant challenge. Here, we applied a recently developed quantitative LC-MS/MS lipidomics approach to a subset of 1,086 fasted plasma samples belonging to apparently healthy participants from prospective Lausanne population study. This high-coverage and high-throughput hydrophilic interaction liquid chromatography-based methodology allowed for the robust measurement of 782 circulatory lipid species spanning 22 lipid classes and six orders of magnitude-wide concentration range. This was achieved by combining semiautomated sample preparation using a stable isotope dilution approach and the alternate analysis of National Institute of Standards and Technology plasma reference material, as a quality control. Based on National Institute of Standards and Technology quality control analysis, median between-batch reproducibility was 8.5%, over the course of analysis of 13 independent batches comprising 1,086 samples collected from 364 individuals at three time points. Importantly, the biological variability, per lipid species, was significantly higher than the batch-to-batch analytical variability. Furthermore, the significantly lower between-subject (than within-subject) variability and unsupervised sample clustering demonstrated the high individuality and sex specificity of circulatory lipidome. The most prominent sex differences were reported for sphingomyelins and ether-linked phospholipids present in significantly higher concentrations in female plasma. The high individuality and sex specificity of circulatory lipidome constitute important pre-requisites for the application of lipidomics in next-generation metabolic health monitoring.
Collapse
Affiliation(s)
- Jessica Medina
- Metabolomics and Lipidomics and Lipidomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Goss
- Metabolomics and Lipidomics and Lipidomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Gonçalo Dos Santos Correia
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK; March of Dimes Prematurity Research Centre at Imperial College London, London, UK
| | - Rebecca Borreggine
- Metabolomics and Lipidomics and Lipidomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Tony Teav
- Metabolomics and Lipidomics and Lipidomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Zoltan Kutalik
- Department of Computational Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Pedro Marques Vidal
- Department of Medicine, Internal Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Hector Gallart-Ayala
- Metabolomics and Lipidomics and Lipidomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| | - Julijana Ivanisevic
- Metabolomics and Lipidomics and Lipidomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
2
|
Oh J, Burla B, Muralidharan S, Wenk MR, Torta F. Sphingolipid Analysis in Clinical Research. Methods Mol Biol 2025; 2855:225-268. [PMID: 39354312 DOI: 10.1007/978-1-0716-4116-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Sphingolipids are the most diverse class of lipids due to the numerous variations in their structural components. This diversity is also reflected in their extremely different functions. Sphingolipids are not only constituents of cell membranes but have emerged as key signaling molecules involved in a variety of cellular functions, such as cell growth and differentiation, proliferation and apoptotic cell death. Lipidomic analyses in clinical research have identified pathways and products of sphingolipid metabolism that are altered in several human pathologies. In this article, we describe how to properly design a lipidomic experiment in clinical research, how to handle plasma and serum samples for this purpose, and how to measure sphingolipids using liquid chromatography-mass spectrometry.
Collapse
Affiliation(s)
- Jeongah Oh
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Precision Medicine Translational Research Programme and Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore, Singapore
| | - Bo Burla
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore.
| | - Sneha Muralidharan
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Markus R Wenk
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Precision Medicine Translational Research Programme and Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore, Singapore
- College of Health & Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Federico Torta
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore.
- Precision Medicine Translational Research Programme and Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore, Singapore.
- Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-NUS, Singapore, Singapore.
| |
Collapse
|
3
|
Hahnefeld L, Hackel J, Trautmann S, Angioni C, Schreiber Y, Gurke R, Thomas D, Wicker S, Geisslinger G, Tegeder I. Healthy plasma lipidomic signatures depend on sex, age, body mass index, and contraceptives but not perceived stress. Am J Physiol Cell Physiol 2024; 327:C1462-C1480. [PMID: 39437447 DOI: 10.1152/ajpcell.00630.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Perceived stress is thought to contribute to the pathogenesis of metabolic, vascular, mental, and immune diseases, with different susceptibilities in women and men. The present study investigated if and how perceived stress and/or demographic variables, including sex, age, body mass index, regular prescription drugs, occasional analgesics, or dietary supplements, manifested in plasma lipidomic profiles obtained by targeted and untargeted mass spectrometry analyses. The study included 217 healthy women and 108 healthy men, aged 18-68 yr, who were recruited in a 2:1 female:male ratio to account for women with/without contraceptives. As expected, dehydroepiandrosterone sulfate (DHEAS) and ceramides were higher in men than women, and DHEAS decreased with age, whereas ceramides increased. Contrary to expectations, neither DHEAS nor ceramides were associated with perceived stress [Perceived Stress Questionnaire with 30 questions (PSQ30 questionnaire)], which was, however, associated with BMI in men but not in women. None of the lipid species or classes showed a similar "age × sex × BMI" interaction, but the endocannabinoid palmitoylethanolamide (PEA) correlated with body mass index (BMI) and hypertension. Independent of perceived stress, lysophosphatidylcholines (LPCs) were lower in women than men, whereas LPC metabolites, lysophosphatidic acids (LPAs), were higher in women. The LPA:LPC ratio was particularly high in women using oral contraceptives, suggesting a strong hormone-induced extracellular conversion of LPCs to LPAs, which is catalyzed by the phospholipase D, autotaxin. The results reveal complex sex differences in perceived stress and lipidomic profiles, the latter being exacerbated by contraceptive use, but perceived stress and lipids were not directly correlated.NEW & NOTEWORTHY Perceived stress (PSQ questionnaire) depends on the interaction of "sex × age × BMI." Plasma lipid profiles depend on sex and age. Natural sex differences are exacerbated by the use of contraceptives. Perceived stress is not correlated with specific plasma lipids or lipidomic profiles. Women have high LPA:LPC ratios in association with high levels of autotaxin.
Collapse
Affiliation(s)
- Lisa Hahnefeld
- Faculty of Medicine, Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Juliane Hackel
- Faculty of Medicine, Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sandra Trautmann
- Faculty of Medicine, Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Carlo Angioni
- Faculty of Medicine, Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Yannick Schreiber
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Robert Gurke
- Faculty of Medicine, Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Dominique Thomas
- Faculty of Medicine, Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Sabine Wicker
- Goethe-University Frankfurt, University Hospital, Occupational Health Service, Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Faculty of Medicine, Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Irmgard Tegeder
- Faculty of Medicine, Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
4
|
Gowda D, Gowda SGB, Ikeda A, Ketema RM, Ait Bamai Y, Kishi R, Chiba H, Hui SP. Quantitative determination of plasma cholesteryl ester levels in Japanese preadolescents from the Hokkaido study using liquid chromatography/tandem mass spectrometry. Steroids 2024; 211:109498. [PMID: 39147006 DOI: 10.1016/j.steroids.2024.109498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Cholesteryl esters (CE) are sterols comprising various fatty acyl chains attached to a cholesterol hydroxyl moiety. CEs are often considered plasma biomarkers of liver function; however, their absolute concentrations in the plasma of Japanese preadolescents have not been well explored. This study aimed to determine the plasma CE levels in Japanese preadolescents of different sexes, ages, and body weights living in Hokkaido, Japan using targeted liquid chromatography/tandem mass spectrometry. The analysis was performed on the non-fasting plasma of preadolescents aged 9-12 years (n = 339 healthy volunteers; 178 boys and 161 girls) from Sapporo, Hokkaido, Japan. The analysis results showed that the total CE levels in boys and girls were 871 ± 153 and 862 ± 96 pmol/μL, respectively. CE 18:2 (41 ± 2.9 %) was found to be the most abundant species followed by CE 18:1 (16 ± 1.5 %) and CE 16:0 (13 ± 1.1 %). The ω-3 fatty acid-containing CEs such as CE 18:3 and CE 20:5 were significantly lower in girls than in boys. Despite the different ages, CEs were tightly regulated in the plasma of children's, and the total CEs ranged between 844 and 906 pmol/μL in boys and 824 and 875 pmol/μL in girls. The participants were further classified into three groups based on their body mass index underweight (n = 237), normal weight (n = 94), and overweight (n = 8). Most of the quantified CEs were accumulated in the overweight group. Interestingly, CE 18:3 was significantly upregulated in the overweight group compared to that in the normal range, and the area under the receiver operating characteristic curve was 0.73, suggesting that it could be a possible marker for obesity. This study marks the initial investigation of absolute CE levels in the plasma of children and can help elucidate the relationship between CEs and childhood obesity.
Collapse
Affiliation(s)
- Divyavani Gowda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan
| | - Siddabasave Gowda B Gowda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan; Graduate School of Global Food Resources, Hokkaido University, Kita-9, Nishi-9, Kita-Ku, Sapporo 060-0809, Japan
| | - Atsuko Ikeda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan; Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo 060-0812, Japan
| | - Rahel Mesfin Ketema
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan; Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo 060-0812, Japan
| | - Yu Ait Bamai
- Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo 060-0812, Japan
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo 060-0812, Japan
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma, Nishi-4-3-1-15, Higashi-ku, Sapporo 007-0894, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
5
|
Zhong Z, Hu Z, Zhou W, Qin X, Tan S. The bone marrow lipidomics of mice reveal sex-related differences. Biomed Chromatogr 2024; 38:e5875. [PMID: 38643980 DOI: 10.1002/bmc.5875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/25/2024] [Accepted: 03/17/2024] [Indexed: 04/23/2024]
Abstract
Osteoporosis is a common skeletal disorder characterized by an imbalance between bone resorption and formation, exhibiting a higher prevalence in women compared with men. While previous studies have primarily focused on genomics and genetics in osteoporosis susceptibility, there is a lack of systematic exploration of sex-specific differences in lipid levels in mouse bone marrow. Multiple reaction monitoring-based liquid chromatography-trandem mass spectrometry (LC-MS/MS) was used to quantify lipidomic profiles in bone marrow samples from three female mice and three male mice. The LC-MS/MS technique based on the multiple reaction monitoring method identified and quantified 184 lipids from 15 lipid classes. The contents of most lipids in the bone marrow cells of female mice were higher than those in male mice, including four polyunsaturated fatty acids, three phospholipids and four sphingolipids. Among all the lipid molecules, lactosylceramide (d18:0/16:0) showed the highest fold change in female mice, while its precursor lipid, glucosylceramide, was the most up-regulated in male mice. This study, focusing on bone marrow lipidomics, elucidates significant sexual dimorphism in lipid levels within bone marrow cells. It provides novel evidence supporting the higher prevalence of osteoporosis in women and enhances our understanding of the connection between sex-specific lipid levels and the risk of osteoporosis.
Collapse
Affiliation(s)
- Ziqing Zhong
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zuojian Hu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Wei Zhou
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xue Qin
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shaolin Tan
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
6
|
Hummel R, Dorochow E, Zander S, Ritter K, Hahnefeld L, Gurke R, Tegeder I, Schäfer MKE. Valproic Acid Treatment after Traumatic Brain Injury in Mice Alleviates Neuronal Death and Inflammation in Association with Increased Plasma Lysophosphatidylcholines. Cells 2024; 13:734. [PMID: 38727269 PMCID: PMC11083124 DOI: 10.3390/cells13090734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
The histone deacetylase inhibitor (HDACi) valproic acid (VPA) has neuroprotective and anti-inflammatory effects in experimental traumatic brain injury (TBI), which have been partially attributed to the epigenetic disinhibition of the transcription repressor RE1-Silencing Transcription Factor/Neuron-Restrictive Silencer Factor (REST/NRSF). Additionally, VPA changes post-traumatic brain injury (TBI) brain metabolism to create a neuroprotective environment. To address the interconnection of neuroprotection, metabolism, inflammation and REST/NRSF after TBI, we subjected C57BL/6N mice to experimental TBI and intraperitoneal VPA administration or vehicle solution at 15 min, 1, 2, and 3 days post-injury (dpi). At 7 dpi, TBI-induced an up-regulation of REST/NRSF gene expression and HDACi function of VPA on histone H3 acetylation were confirmed. Neurological deficits, brain lesion size, blood-brain barrier permeability, or astrogliosis were not affected, and REST/NRSF target genes were only marginally influenced by VPA. However, VPA attenuated structural damage in the hippocampus, microgliosis and expression of the pro-inflammatory marker genes. Analyses of plasma lipidomic and polar metabolomic patterns revealed that VPA treatment increased lysophosphatidylcholines (LPCs), which were inversely associated with interleukin 1 beta (Il1b) and tumor necrosis factor (Tnf) gene expression in the brain. The results show that VPA has mild neuroprotective and anti-inflammatory effects likely originating from favorable systemic metabolic changes resulting in increased plasma LPCs that are known to be actively taken up by the brain and function as carriers for neuroprotective polyunsaturated fatty acids.
Collapse
Affiliation(s)
- Regina Hummel
- Department of Anesthesiology, University Medical Center Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (R.H.); (K.R.)
| | - Erika Dorochow
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University Frankfurt, 60596 Frankfurt am Main, Germany; (E.D.); (L.H.); (R.G.)
| | - Sonja Zander
- Department of Anesthesiology, University Medical Center Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (R.H.); (K.R.)
| | - Katharina Ritter
- Department of Anesthesiology, University Medical Center Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (R.H.); (K.R.)
| | - Lisa Hahnefeld
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University Frankfurt, 60596 Frankfurt am Main, Germany; (E.D.); (L.H.); (R.G.)
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Fraunhofer Cluster of Excellence for Immune-Mediated Diseases, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Robert Gurke
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University Frankfurt, 60596 Frankfurt am Main, Germany; (E.D.); (L.H.); (R.G.)
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Fraunhofer Cluster of Excellence for Immune-Mediated Diseases, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University Frankfurt, 60596 Frankfurt am Main, Germany; (E.D.); (L.H.); (R.G.)
| | - Michael K. E. Schäfer
- Department of Anesthesiology, University Medical Center Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (R.H.); (K.R.)
- Focus Program Translational Neurosciences (FTN), Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Research Center for Immunotherapy (FZI), Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| |
Collapse
|
7
|
Hussain AA, Bilgin M, Carlsson J, Foged MM, Mortensen EL, Bulik CM, Støving RK, Sjögren JM. Elevated lipid class concentrations in females with anorexia nervosa before and after intensive weight restoration treatment-A lipidomics study. Int J Eat Disord 2023; 56:2260-2272. [PMID: 37715358 DOI: 10.1002/eat.24063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/17/2023]
Abstract
OBJECTIVE To study the plasma lipidome of patients with anorexia nervosa (AN) before and after weight restoration treatment and report associations with AN subtypes and oral contraceptive pill (OCP) usage. METHODS Quantitative shotgun lipidomics analysis was used to study plasma lipids of 50 female patients with AN before and after weight restoration treatment and 50 healthy female controls (HC). The AN group was assessed with blood samples and questionnaires before and after weight restoration. RESULTS In total we quantified 260 lipid species representing 26 lipid classes of which 13 lipid class concentrations were elevated in patients with AN at admission compared with HC. Lipid classes remained elevated after weight restoration treatment of 84 days (median; interquartile range 28), and only the concentration of the ceramide lipid class increased between pre- and post-treatment (p = .03), whereas lysophosphatidylcholine (LPC, p = .02), ether-linked Phosphatidylcholine (LPCO, p = .02), and lysophosphatidylethanolamine (LPE, p = .009) decreased. CONCLUSION In AN, 13 out of 26 lipid class concentrations were elevated at admission and remained elevated post-treatment. Ceramides increased further between pre- and post-weight restoration treatment, which could be related to the rapid weight gain during re-nutrition. Further research is needed to elucidate the effects of weight restoration treatment on short- and long-term lipid profiles in individuals with AN. PUBLIC SIGNIFICANCE STATEMENT Lipidomics research can increase the understanding of AN, a complex and potentially life-threatening eating disorder. By analyzing lipids, or fats, in the body, we can identify biological markers that may inform diagnosis and develop more effective treatments. This research can also shed light on the underlying mechanisms of the disorder, leading to a better understanding of the processes involved in eating behavior.
Collapse
Affiliation(s)
- Alia Arif Hussain
- Eating Disorder Research Unit, Mental Health Center, Ballerup, Copenhagen University Hospital-Mental Health Services CPH, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mesut Bilgin
- Lipidomics Core Facility, Danish Cancer Institute, Copenhagen, Denmark
| | - Jessica Carlsson
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Competence Centre for Transcultural Psychiatry, Mental Health Centre Ballerup, Mental Health Services of the Capital Region of Denmark, Copenhagen, Denmark
| | - Mads Møller Foged
- Lipidomics Core Facility, Danish Cancer Institute, Copenhagen, Denmark
| | - Erik Lykke Mortensen
- Unit of Medical Psychology, Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Cynthia M Bulik
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - René Klinkby Støving
- Center for Eating Disorders, Odense University Hospital, Odense, Denmark
- Research Unit for Medical Endocrinology, Odense University Hospital, Odense, Denmark
- Research Unit, Child and Adolescent Psychiatry, Mental Health Services in the Region of Southern Denmark, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jan Magnus Sjögren
- Eating Disorder Research Unit, Mental Health Center, Ballerup, Copenhagen University Hospital-Mental Health Services CPH, Copenhagen, Denmark
- Institute of Clinical Science, Department of Psychiatry, Umeå University, Umeå, Sweden
| |
Collapse
|
8
|
Tabassum R, Widén E, Ripatti S. Effect of biological sex on human circulating lipidome: An overview of the literature. Atherosclerosis 2023; 384:117274. [PMID: 37743161 DOI: 10.1016/j.atherosclerosis.2023.117274] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/28/2023] [Accepted: 09/01/2023] [Indexed: 09/26/2023]
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide for both men and women, but their prevalence and burden show marked sex differences. The existing knowledge gaps in research, prevention, and treatment for women emphasize the need for understanding the biological mechanisms contributing to the sex differences in CVD. Sex differences in the plasma lipids that are well-known risk factors and predictors of CVD events have been recognized and are believed to contribute to the known disparities in CVD manifestations in men and women. However, the current understanding of sex differences in lipids has mainly come from the studies on routinely measured standard lipids- low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), total triglycerides, and total cholesterol, which have been the mainstay of the lipid profiling. Sex differences in individual lipid species, collectively called the lipidome, have until recently been less explored due to the technological challenges and analytic costs. With the technological advancements in the last decade and growing interest in understanding mechanisms of sexual dimorphism in metabolic disorders, many investigators utilized metabolomics and lipidomics based platforms to examine the effect of biological sex on detailed lipidomic profiles and individual lipid species. This review presents an overview of the research on sex differences in the concentrations of circulating lipid species, focusing on findings from the metabolome- and lipidome-wide studies. We also discuss the potential contribution of genetic factors including sex chromosomes and sex-specific physiological factors such as menopause and sex hormones to the sex differences in lipidomic profiles.
Collapse
Affiliation(s)
- Rubina Tabassum
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland.
| | - Elisabeth Widén
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland; Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.
| |
Collapse
|
9
|
Kopczynski D, Hoffmann N, Troppmair N, Coman C, Ekroos K, Kreutz MR, Liebisch G, Schwudke D, Ahrends R. LipidSpace: Simple Exploration, Reanalysis, and Quality Control of Large-Scale Lipidomics Studies. Anal Chem 2023; 95:15236-15244. [PMID: 37792961 PMCID: PMC10585661 DOI: 10.1021/acs.analchem.3c02449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/09/2023] [Indexed: 10/06/2023]
Abstract
Lipid analysis gained significant importance due to the enormous range of lipid functions, e.g., energy storage, signaling, or structural components. Whole lipidomes can be quantitatively studied in-depth thanks to recent analytical advancements. However, the systematic comparison of thousands of distinct lipidomes remains challenging. We introduce LipidSpace, a standalone tool for analyzing lipidomes by assessing their structural and quantitative differences. A graph-based comparison of lipid structures is the basis for calculating structural space models and subsequently computing lipidome similarities. When adding study variables such as body weight or health condition, LipidSpace can determine lipid subsets across all lipidomes that describe these study variables well by utilizing machine-learning approaches. The user-friendly GUI offers four built-in tutorials and interactive visual interfaces with pdf export. Many supported data formats allow an efficient (re)analysis of data sets from different sources. An integrated interactive workflow guides the user through the quality control steps. We used this suite to reanalyze and combine already published data sets (e.g., one with about 2500 samples and 576 lipids in one run) and made additional discoveries to the published conclusions with the potential to fill gaps in the current lipid biology understanding. LipidSpace is available for Windows or Linux (https://lifs-tools.org).
Collapse
Affiliation(s)
- Dominik Kopczynski
- Institute
of Analytical Chemistry, University of Vienna, Vienna 1070, Austria
| | - Nils Hoffmann
- Forschungszentrum
Jülich GmbH, Institute for Bio- and Geosciences (IBG-5), Jülich 52428, Germany
| | - Nina Troppmair
- Institute
of Analytical Chemistry, University of Vienna, Vienna 1070, Austria
| | - Cristina Coman
- Institute
of Analytical Chemistry, University of Vienna, Vienna 1070, Austria
| | - Kim Ekroos
- Lipidomics
Consulting Ltd., Esbo 02230, Finland
| | - Michael R. Kreutz
- Leibniz
Group “Dendritic Organelles and Synaptic Function” University
Medical Center Hamburg-Eppendorf, Center
for Molecular Neurobiology, ZMNH, Hamburg 20251, Germany
- RG
Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg 39118, Germany
| | - Gerhard Liebisch
- Institute
of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg 93053, Germany
| | - Dominik Schwudke
- German
Center for Infection Research (DZIF), Site
Hamburg-Lübeck-Borstel-Riems, Hamburg 22297, Germany
- Airway
Research Center North (ARCN), German Center
for Lung Research (DZL), Grosshansdorf 22927, Germany
- Bioanalytical
Chemistry, Research Center Borstel, Borstel 23845, Germany
| | - Robert Ahrends
- Institute
of Analytical Chemistry, University of Vienna, Vienna 1070, Austria
| |
Collapse
|
10
|
Davis J, Meyer T, Smolnig M, Smethurst DG, Neuhaus L, Heyden J, Broeskamp F, Edrich ES, Knittelfelder O, Kolb D, Haar TVD, Gourlay CW, Rockenfeller P. A dynamic actin cytoskeleton is required to prevent constitutive VDAC-dependent MAPK signalling and aberrant lipid homeostasis. iScience 2023; 26:107539. [PMID: 37636069 PMCID: PMC10450525 DOI: 10.1016/j.isci.2023.107539] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/14/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023] Open
Abstract
The dynamic nature of the actin cytoskeleton is required to coordinate many cellular processes, and a loss of its plasticity has been linked to accelerated cell aging and attenuation of adaptive response mechanisms. Cofilin is an actin-binding protein that controls actin dynamics and has been linked to mitochondrial signaling pathways that control drug resistance and cell death. Here we show that cofilin-driven chronic depolarization of the actin cytoskeleton activates cell wall integrity mitogen-activated protein kinase (MAPK) signalling and disrupts lipid homeostasis in a voltage-dependent anion channel (VDAC)-dependent manner. Expression of the cof1-5 mutation, which reduces the dynamic nature of actin, triggers loss of cell wall integrity, vacuole fragmentation, disruption of lipid homeostasis, lipid droplet (LD) accumulation, and the promotion of cell death. The integrity of the actin cytoskeleton is therefore essential to maintain the fidelity of MAPK signaling, lipid homeostasis, and cell health in S. cerevisiae.
Collapse
Affiliation(s)
- Jack Davis
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent, UK
| | - Thorsten Meyer
- Chair of Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke (UW/H), Stockumer Str. 10, 58453 Witten, Germany
| | - Martin Smolnig
- Chair of Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke (UW/H), Stockumer Str. 10, 58453 Witten, Germany
| | | | - Lisa Neuhaus
- Chair of Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke (UW/H), Stockumer Str. 10, 58453 Witten, Germany
| | - Jonas Heyden
- Chair of Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke (UW/H), Stockumer Str. 10, 58453 Witten, Germany
| | - Filomena Broeskamp
- Chair of Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke (UW/H), Stockumer Str. 10, 58453 Witten, Germany
| | | | - Oskar Knittelfelder
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Dagmar Kolb
- Medical University of Graz, Core Facility Ultrastructure Analysis, Neue Stiftingtalstraße 6/II, 8010 Graz, Austria
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Neue Stiftingtalstraße 6/II, 8010 Graz, Austria
| | - Tobias von der Haar
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent, UK
| | - Campbell W. Gourlay
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent, UK
| | - Patrick Rockenfeller
- Chair of Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke (UW/H), Stockumer Str. 10, 58453 Witten, Germany
| |
Collapse
|
11
|
Peschel G, Weigand K, Grimm J, Müller M, Krautbauer S, Höring M, Liebisch G, Buechler C. Gender-Specific Differences in Serum Sphingomyelin Species in Patients with Hepatitis C Virus Infection-Sphingomyelin Species Are Related to the Model of End-Stage Liver Disease (MELD) Score in Male Patients. Int J Mol Sci 2023; 24:8402. [PMID: 37176109 PMCID: PMC10179471 DOI: 10.3390/ijms24098402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Hepatitis C virus (HCV) replication depends on cellular sphingomyelin (SM), but serum SM composition in chronic HCV infection has been hardly analyzed. In this work, 18 SM species could be quantified in the serum of 178 patients with chronic HCV infection before therapy with direct-acting antivirals (DAAs) and 12 weeks later, when therapy was completed. Six SM species were higher in the serum of females than males before therapy and nine at the end of therapy; thus, sex-specific analysis was performed. Type 2 diabetes was associated with lower serum levels of SM 36:2;O2 and 38:2;O2 in men. Serum SM species did not correlate with the viral load in both sexes. Of note, three SM species were lower in males infected with HCV genotype 3 in comparison to genotype 1 infection. These SM species normalized after viral cure. SM 38:1;O2, 40:1;O2, 41:1;O2, and 42:1;O2 (and, thus, total SM levels) were higher in the serum of both sexes at the end of therapy. In males, SM 39:1;O2 was induced in addition, and higher levels of all of these SM species were already detected at 4 weeks after therapy has been started. Serum lipids are related to liver disease severity, and in females 15 serum SM species were low in patients with liver cirrhosis before initiation of and after treatment with DAAs. The serum SM species did not correlate with the model of end-stage liver disease (MELD) score in the cirrhosis and the non-cirrhosis subgroups in females. In HCV-infected male patients, nine SM species were lower in the serum of patients with cirrhosis before DAA treatment and eleven at the end of the study. Most of the SM species showed strong negative correlations with the MELD score in the male cirrhosis patients before DAA treatment and at the end of therapy. Associations of SM species with the MELD score were not detected in the non-cirrhosis male subgroup. In summary, the current analysis identified sex-specific differences in the serum levels of SM species in HCV infection, in liver cirrhosis, and during DAA therapy. Correlations of SM species with the MELD score in male but not in female patients indicate a much closer association between SM metabolism and liver function in male patients.
Collapse
Affiliation(s)
- Georg Peschel
- Department of Internal Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany; (G.P.); (K.W.); (J.G.); (M.M.)
- Department of Internal Medicine, Klinikum Fürstenfeldbruck, 82256 Fürstenfeldbruck, Germany
| | - Kilian Weigand
- Department of Internal Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany; (G.P.); (K.W.); (J.G.); (M.M.)
- Department of Gastroenterology, Gemeinschaftsklinikum Mittelrhein, 56073 Koblenz, Germany
| | - Jonathan Grimm
- Department of Internal Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany; (G.P.); (K.W.); (J.G.); (M.M.)
| | - Martina Müller
- Department of Internal Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany; (G.P.); (K.W.); (J.G.); (M.M.)
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany; (S.K.); (M.H.); (G.L.)
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany; (S.K.); (M.H.); (G.L.)
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany; (S.K.); (M.H.); (G.L.)
| | - Christa Buechler
- Department of Internal Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany; (G.P.); (K.W.); (J.G.); (M.M.)
| |
Collapse
|
12
|
Heimerl S, Höring M, Kopczynski D, Sigruener A, Hart C, Burkhardt R, Black A, Ahrends R, Liebisch G. Quantification of bulk lipid species in human platelets and their thrombin-induced release. Sci Rep 2023; 13:6154. [PMID: 37061580 PMCID: PMC10105721 DOI: 10.1038/s41598-023-33076-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 04/06/2023] [Indexed: 04/17/2023] Open
Abstract
Lipids play a central role in platelet physiology. Changes in the lipidome have already been described for basal and activated platelets. However, quantitative lipidomic data of platelet activation, including the released complex lipids, are unavailable. Here we describe an easy-to-use protocol based on flow-injection mass spectrometry for the quantitative analysis of bulk lipid species in basal and activated human platelets and their lipid release after thrombin activation. We provide lipid species concentrations of 12 healthy human donors, including cholesteryl ester (CE), ceramide (Cer), free cholesterol (FC), hexosylceramide (HexCer), lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), sphingomyelin (SM) and triglycerides (TG). The assay exhibited good technical repeatability (CVs < 5% for major lipid species in platelets). Except for CE and TG, the inter-donor variability of the majority of lipid species concentrations in platelets was < 30% CV. Balancing of concentrations revealed the generation of LPC and loss of TG. Changes in lipid species concentrations indicate phospholipase-mediated release of arachidonic acid mainly from PC, PI, and PE but not from PS. Thrombin induced lipid release was mainly composed of FC, PS, PC, LPC, CE, and TG. The similarity of the released lipidome with that of plasma implicates that lipid release may originate from the open-canalicular system (OCS). The repository of lipid species concentrations determined with this standardized platelet release assay contribute to elucidating the physiological role of platelet lipids and provide a basis for investigating the platelet lipidome in patients with hemorrhagic or thrombotic disorders.
Collapse
Affiliation(s)
- Susanne Heimerl
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93042, Regensburg, Germany
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93042, Regensburg, Germany
| | - Dominik Kopczynski
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Alexander Sigruener
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93042, Regensburg, Germany
| | - Christina Hart
- Department of Hematology and Oncology, Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93042, Regensburg, Germany
| | - Anne Black
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93042, Regensburg, Germany
| | - Robert Ahrends
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93042, Regensburg, Germany.
| |
Collapse
|
13
|
Medina J, Borreggine R, Teav T, Gao L, Ji S, Carrard J, Jones C, Blomberg N, Jech M, Atkins A, Martins C, Schmidt-Trucksass A, Giera M, Cazenave-Gassiot A, Gallart-Ayala H, Ivanisevic J. Omic-Scale High-Throughput Quantitative LC-MS/MS Approach for Circulatory Lipid Phenotyping in Clinical Research. Anal Chem 2023; 95:3168-3179. [PMID: 36716250 DOI: 10.1021/acs.analchem.2c02598] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Lipid analysis at the molecular species level represents a valuable opportunity for clinical applications due to the essential roles that lipids play in metabolic health. However, a comprehensive and high-throughput lipid profiling remains challenging given the lipid structural complexity and exceptional diversity. Herein, we present an 'omic-scale targeted LC-MS/MS approach for the straightforward and high-throughput quantification of a broad panel of complex lipid species across 26 lipid (sub)classes. The workflow involves an automated single-step extraction with 2-propanol, followed by lipid analysis using hydrophilic interaction liquid chromatography in a dual-column setup coupled to tandem mass spectrometry with data acquisition in the timed-selective reaction monitoring mode (12 min total run time). The analysis pipeline consists of an initial screen of 1903 lipid species, followed by high-throughput quantification of robustly detected species. Lipid quantification is achieved by a single-point calibration with 75 isotopically labeled standards representative of different lipid classes, covering lipid species with diverse acyl/alkyl chain lengths and unsaturation degrees. When applied to human plasma, 795 lipid species were measured with median intra- and inter-day precisions of 8.5 and 10.9%, respectively, evaluated within a single and across multiple batches. The concentration ranges measured in NIST plasma were in accordance with the consensus intervals determined in previous ring-trials. Finally, to benchmark our workflow, we characterized NIST plasma materials with different clinical and ethnic backgrounds and analyzed a sub-set of sera (n = 81) from a clinically healthy elderly population. Our quantitative lipidomic platform allowed for a clear distinction between different NIST materials and revealed the sex-specificity of the serum lipidome, highlighting numerous statistically significant sex differences.
Collapse
Affiliation(s)
- Jessica Medina
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL-CHUV, Rue du Bugnon 19, Lausanne CH-1005, Switzerland
| | - Rebecca Borreggine
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL-CHUV, Rue du Bugnon 19, Lausanne CH-1005, Switzerland
| | - Tony Teav
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL-CHUV, Rue du Bugnon 19, Lausanne CH-1005, Switzerland
| | - Liang Gao
- Department of Biochemistry and Precision Medicine TRP, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore.,Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Shanshan Ji
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Justin Carrard
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, Basel CH-4052, Switzerland
| | - Christina Jones
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Niek Blomberg
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333ZA, Netherlands
| | - Martin Jech
- Thermo Fisher Scientific, 355 River Oaks Pkwy, San Jose, California 95134, United States
| | - Alan Atkins
- Thermo Fisher Scientific, 355 River Oaks Pkwy, San Jose, California 95134, United States
| | - Claudia Martins
- Thermo Fisher Scientific, 355 River Oaks Pkwy, San Jose, California 95134, United States
| | - Arno Schmidt-Trucksass
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, Basel CH-4052, Switzerland
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333ZA, Netherlands
| | - Amaury Cazenave-Gassiot
- Department of Biochemistry and Precision Medicine TRP, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore.,Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL-CHUV, Rue du Bugnon 19, Lausanne CH-1005, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL-CHUV, Rue du Bugnon 19, Lausanne CH-1005, Switzerland
| |
Collapse
|
14
|
Peschel G, Grimm J, Müller M, Höring M, Krautbauer S, Weigand K, Liebisch G, Buechler C. Sex-specific changes in triglyceride profiles in liver cirrhosis and hepatitis C virus infection. Lipids Health Dis 2022; 21:106. [PMID: 36280840 PMCID: PMC9590217 DOI: 10.1186/s12944-022-01715-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/11/2022] [Indexed: 12/05/2022] Open
Abstract
Background Hepatitis C virus (HCV) infection is associated with serum lipid abnormalities, which partly normalize following direct-acting antiviral (DAA) therapy. Here, associations of serum triglycerides (TGs) with viral genotype and markers of liver disease severity were evaluated in patients with chronic HCV. Methods The study included the serum of 177 patients with chronic HCV. TGs were quantified by flow injection analysis Fourier transform mass spectrometry. Laboratory values and noninvasive scores for liver fibrosis assessment were determined. The nonparametric Kruskal‒Wallis test, one-way ANOVA, multiple linear regression and Student’s t test were used as appropriate. P values were adjusted for multiple comparisons. Results HCV-infected women had lower serum TGs than men, and thus, a sex-specific analysis was performed. None of the 46 TG species analyzed differed in the serum of female patients with and without liver cirrhosis. In contrast, in the serum of male patients with liver cirrhosis, TGs with 53, 56 and 58 carbon atoms and three to eight double bonds were diminished. These polyunsaturated TGs were also low in males with a high fibrosis-4 score. TGs with 7 or 8 double bonds negatively correlated with the model of end-stage liver disease score in males. In addition, TGs with 49, 51 and 53 carbon atoms were reduced in male patients infected with genotype 3a in comparison to genotype 1a. TGs with 56 carbon atoms were lower in genotype 3a-infected males than in genotype 1b-infected males. TGs did not differ in females by genotype. Genotype 3-related changes disappeared at the end of therapy with DAAs. Overall, the levels of serum TGs did not change during DAA therapy in either sex. Consequently, the serum TGs of males with liver cirrhosis were lower than those of males without cirrhosis at the end of therapy. Such a difference was not apparent in females. Conclusions The decline in TGs observed only in male patients with liver cirrhosis and male patients infected with genotype 3 illustrates sex-specific changes in lipid metabolism in chronic HCV. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-022-01715-w.
Collapse
Affiliation(s)
- Georg Peschel
- grid.411941.80000 0000 9194 7179Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany ,Department of Internal Medicine, Klinikum Fürstenfeldbruck, 82256 Fürstenfeldbruck, Germany
| | - Jonathan Grimm
- grid.411941.80000 0000 9194 7179Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Martina Müller
- grid.411941.80000 0000 9194 7179Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Marcus Höring
- grid.411941.80000 0000 9194 7179Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, 93053 Regensburg, Germany
| | - Sabrina Krautbauer
- grid.411941.80000 0000 9194 7179Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, 93053 Regensburg, Germany
| | - Kilian Weigand
- grid.411941.80000 0000 9194 7179Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany ,grid.502406.50000 0004 0559 328XDepartment of Gastroenterology, Gemeinschaftsklinikum Mittelrhein, 56073 Koblenz, Germany
| | - Gerhard Liebisch
- grid.411941.80000 0000 9194 7179Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, 93053 Regensburg, Germany
| | - Christa Buechler
- grid.411941.80000 0000 9194 7179Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
15
|
Santos KGD, Yoshinaga MY, Glezer I, Chaves-Filho ADB, Santana AAD, Kovacs C, Magnoni CD, Lajolo FM, Miyamoto S, Aymoto Hassimotto NM. Orange juice intake by obese and insulin-resistant subjects lowers specific plasma triglycerides: A randomized clinical trial. Clin Nutr ESPEN 2022; 51:336-344. [PMID: 36184225 DOI: 10.1016/j.clnesp.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/24/2022] [Accepted: 08/03/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND & AIMS Dyslipidaemia is usually common in obesity, insulin resistance, and type 2 diabetes mellitus. Clinical trials suggest that orange juice may have a positive impact on lipid metabolism and blood lipid profiles; however conflicting results have been reported. Here, we applied a combined untargeted/targeted lipidomic analysis of plasma to examine the impact of orange (Citrus sinensis) juice intake on the lipidome profile of obese and insulin-resistant subjects. METHODS Twenty-five participants, both sexes, aged 40-60 years, with obesity and insulin resistance (homeostasis model assessment of insulin resistance (HOMA-IR) index >2.71) ingested 400 mL of orange juice 'Pera' (C. sinensis) for 15 d. Cardiometabolic biomarkers, anthropometric parameters, blood pressure, and plasma lipidomic analysis results were assessed at the beginning and end of the intervention. RESULTS After the 15-d intervention, a significant decrease was observed in the diastolic blood pressure and blood lipid profile. Among plasma lipidomes, 316 lipid molecules were identified, with the triglycerides (TGs) subclass being the most abundant (n = 106). Plasma lipidome profiling revealed a major signature of the intervention; with concentrations of 37 TG species decreasing after intervention. Qualitatively, oleic and linoleic acids were among the most prevalent fatty acids linked to the altered TG species, representing 50% of TG chains. Modulated TG species were positively correlated with total TG and very low-density lipoprotein levels, as well as systolic and diastolic blood pressure. A strong inter-individual trend was observed, wherein, compared with less responsive subjects, the high responsive subjects displayed the highest decrease in the concentrations of altered TG species, as as well as systolic blood pressure (decrease of 10.3 ± 6.8 mmHg) and body weight (decrease of 0.67 ± 0.71 kg). CONCLUSIONS These findings suggest that orange juice has a positive impact on lipid metabolism, mainly regarding the composition of TG-specific fatty acid chains and cholesterol esters, protecting against insulin resistance. Furthermore, lipidomics may help clarify alterations at the molecular level after an intervention, contributing to improve the evaluation of the link between dyslipidaemia, insulin resistance, and nutrition.
Collapse
Affiliation(s)
- Karina Gama Dos Santos
- Food Research Center (FoRC), 05508-080, São Paulo, Brazil; School of Pharmaceutical Sciences (University of São Paulo), 05508-000, São Paulo, Brazil; Department of Clinical Nutrition, Dante Pazzanese Institute of Cardiology, 04012-090, São Paulo, Brazil.
| | - Marcos Yukio Yoshinaga
- Department of Biochemistry, Institute of Chemistry (University of São Paulo), 05508-900, São Paulo, Brazil.
| | - Isaias Glezer
- Department of Biochemistry, Escola Paulista de Medicina (Federal University of São Paulo), São Paulo, Brazil
| | | | - Aline Alves de Santana
- Food Research Center (FoRC), 05508-080, São Paulo, Brazil; School of Pharmaceutical Sciences (University of São Paulo), 05508-000, São Paulo, Brazil
| | - Cristiane Kovacs
- Department of Clinical Nutrition, Dante Pazzanese Institute of Cardiology, 04012-090, São Paulo, Brazil
| | - Carlos Daniel Magnoni
- Department of Clinical Nutrition, Dante Pazzanese Institute of Cardiology, 04012-090, São Paulo, Brazil
| | - Franco Maria Lajolo
- Food Research Center (FoRC), 05508-080, São Paulo, Brazil; School of Pharmaceutical Sciences (University of São Paulo), 05508-000, São Paulo, Brazil
| | - Sayuri Miyamoto
- Department of Biochemistry, Institute of Chemistry (University of São Paulo), 05508-900, São Paulo, Brazil
| | - Neuza Mariko Aymoto Hassimotto
- Food Research Center (FoRC), 05508-080, São Paulo, Brazil; School of Pharmaceutical Sciences (University of São Paulo), 05508-000, São Paulo, Brazil
| |
Collapse
|
16
|
Validation of a multiplexed and targeted lipidomics assay for accurate quantification of lipidomes. J Lipid Res 2022; 63:100218. [PMID: 35489416 PMCID: PMC9168725 DOI: 10.1016/j.jlr.2022.100218] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/29/2022] Open
Abstract
A major challenge of lipidomics is to determine and quantify the precise content of complex lipidomes to the exact lipid molecular species. Often, multiple methods are needed to achieve sufficient lipidomic coverage to make these determinations. Multiplexed targeted assays offer a practical alternative to enable quantitative lipidomics amenable to quality control standards within a scalable platform. Herein, we developed a multiplexed normal phase liquid chromatography-hydrophilic interaction chromatography multiple reaction monitoring method that quantifies lipid molecular species across over 20 lipid classes spanning wide polarities in a single 20-min run. Analytical challenges such as in-source fragmentation, isomer separations, and concentration dynamics were addressed to ensure confidence in selectivity, quantification, and reproducibility. Utilizing multiple MS/MS product ions per lipid species not only improved the confidence of lipid identification but also enabled the determination of relative abundances of positional isomers in samples. Lipid class-based calibration curves were applied to interpolate lipid concentrations and guide sample dilution. Analytical validation was performed following FDA Bioanalytical Method Validation Guidance for Industry. We report repeatable and robust quantitation of 900 lipid species measured in NIST-SRM-1950 plasma, with over 700 lipids achieving inter-assay variability below 25%. To demonstrate proof of concept for biomarker discovery, we analyzed plasma from mice treated with a glucosylceramide synthase inhibitor, benzoxazole 1. We observed expected reductions in glucosylceramide levels in treated animals but, more notably, identified novel lipid biomarker candidates from the plasma lipidome. These data highlight the utility of this qualified lipidomic platform for enabling biological discovery.
Collapse
|
17
|
Vvedenskaya O, Holčapek M, Vogeser M, Ekroos K, Meikle PJ, Bendt AK. Clinical lipidomics – A community-driven roadmap to translate research into clinical applications. J Mass Spectrom Adv Clin Lab 2022; 24:1-4. [PMID: 35199094 PMCID: PMC8844780 DOI: 10.1016/j.jmsacl.2022.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 12/29/2022] Open
Abstract
Overview of current state of mass spectrometry based lipidomics. Highlighting ongoing efforts towards harmonization. Invitation to join international community.
Lipid metabolites, beyond triglycerides and cholesterol, have been shown to have vast potential for applications in clinical applications, with substantial societal and economical value. To successfully evolve from the current research-grade methods to assays suitable for routine clinical applications, a harmonization – if not standardization – of these mass spectrometry-based workflows is necessary. Input on clinical needs and technological capabilities must be obtained from all relevant stakeholders, including wet lab scientists, informaticians and data scientists, manufacturers, and medical professionals. In order to build bridges between this diverse group of professionals, the International Lipidomics Society and its Clinical Lipidomics Interest Group were created. This opinion article is intended to provide an overview of international efforts to tackle the issues of workflow harmonization, and to serve as an open invitation for others to join this growing community.
Collapse
Affiliation(s)
- Olga Vvedenskaya
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Spectroswiss Sarl, Lausanne, Switzerland
| | - Michal Holčapek
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Michael Vogeser
- Institute for Laboratory Medicine in the Munich University Clinic, Munich, Germany
| | - Kim Ekroos
- Lipidomics Consulting Ltd., Esbo, Finland
| | - Peter J. Meikle
- Baker Heart and Diabetes Institute, Melbourne Victoria, Australia
| | - Anne K. Bendt
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore
- Corresponding author.
| |
Collapse
|
18
|
Macdonald-Dunlop E, Taba N, Klarić L, Frkatović A, Walker R, Hayward C, Esko T, Haley C, Fischer K, Wilson JF, Joshi PK. A catalogue of omics biological ageing clocks reveals substantial commonality and associations with disease risk. Aging (Albany NY) 2022; 14:623-659. [PMID: 35073279 PMCID: PMC8833109 DOI: 10.18632/aging.203847] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 12/20/2021] [Indexed: 11/25/2022]
Abstract
Biological age (BA), a measure of functional capacity and prognostic of health outcomes that discriminates between individuals of the same chronological age (chronAge), has been estimated using a variety of biomarkers. Previous comparative studies have mainly used epigenetic models (clocks), we use ~1000 participants to compare fifteen omics ageing clocks, with correlations of 0.21-0.97 with chronAge, even with substantial sub-setting of biomarkers. These clocks track common aspects of ageing with 95% of the variance in chronAge being shared among clocks. The difference between BA and chronAge - omics clock age acceleration (OCAA) - often associates with health measures. One year’s OCAA typically has the same effect on risk factors/10-year disease incidence as 0.09/0.25 years of chronAge. Epigenetic and IgG glycomics clocks appeared to track generalised ageing while others capture specific risks. We conclude BA is measurable and prognostic and that future work should prioritise health outcomes over chronAge.
Collapse
Affiliation(s)
- Erin Macdonald-Dunlop
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Nele Taba
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia.,Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| | - Lucija Klarić
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Azra Frkatović
- Genos Glycoscience Research Laboratory, Zagreb 10000, Croatia
| | - Rosie Walker
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Tõnu Esko
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia.,Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
| | - Chris Haley
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Krista Fischer
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia.,Institute of Mathematics and Statistics, University of Tartu, Tartu 51009, Estonia
| | - James F Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh EH8 9AG, UK.,MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Peter K Joshi
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh EH8 9AG, UK
| |
Collapse
|
19
|
Wolrab D, Jirásko R, Cífková E, Höring M, Mei D, Chocholoušková M, Peterka O, Idkowiak J, Hrnčiarová T, Kuchař L, Ahrends R, Brumarová R, Friedecký D, Vivo-Truyols G, Škrha P, Škrha J, Kučera R, Melichar B, Liebisch G, Burkhardt R, Wenk MR, Cazenave-Gassiot A, Karásek P, Novotný I, Greplová K, Hrstka R, Holčapek M. Lipidomic profiling of human serum enables detection of pancreatic cancer. Nat Commun 2022; 13:124. [PMID: 35013261 PMCID: PMC8748654 DOI: 10.1038/s41467-021-27765-9] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 12/13/2021] [Indexed: 12/30/2022] Open
Abstract
Pancreatic cancer has the worst prognosis among all cancers. Cancer screening of body fluids may improve the survival time prognosis of patients, who are often diagnosed too late at an incurable stage. Several studies report the dysregulation of lipid metabolism in tumor cells, suggesting that changes in the blood lipidome may accompany tumor growth. Here we show that the comprehensive mass spectrometric determination of a wide range of serum lipids reveals statistically significant differences between pancreatic cancer patients and healthy controls, as visualized by multivariate data analysis. Three phases of biomarker discovery research (discovery, qualification, and verification) are applied for 830 samples in total, which shows the dysregulation of some very long chain sphingomyelins, ceramides, and (lyso)phosphatidylcholines. The sensitivity and specificity to diagnose pancreatic cancer are over 90%, which outperforms CA 19-9, especially at an early stage, and is comparable to established diagnostic imaging methods. Furthermore, selected lipid species indicate a potential as prognostic biomarkers.
Collapse
Affiliation(s)
- Denise Wolrab
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Robert Jirásko
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Eva Cífková
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, Regensburg, Germany
| | - Ding Mei
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Michaela Chocholoušková
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Ondřej Peterka
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Jakub Idkowiak
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Tereza Hrnčiarová
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Ladislav Kuchař
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Robert Ahrends
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Radana Brumarová
- Palacký University Olomouc, Institute of Molecular and Translational Medicine, Olomouc, Czech Republic
| | - David Friedecký
- Palacký University Olomouc, Institute of Molecular and Translational Medicine, Olomouc, Czech Republic
| | | | - Pavel Škrha
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Škrha
- 3rd Department of Internal Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Radek Kučera
- Department of Immunochemistry Diagnostics, University Hospital in Pilsen, Pilsen, Czech Republic
| | - Bohuslav Melichar
- Department of Oncology, Faculty of Medicine and Dentistry, Palacký University and University Hospital, Olomouc, Czech Republic
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, Regensburg, Germany
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, Regensburg, Germany
| | - Markus R Wenk
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Amaury Cazenave-Gassiot
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Petr Karásek
- Clinic of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Ivo Novotný
- Clinic of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Kristína Greplová
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Roman Hrstka
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Michal Holčapek
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic.
| |
Collapse
|
20
|
Yoshinaga MY, Quintanilha BJ, Chaves-Filho AB, Miyamoto S, Sampaio GR, Rogero MM. Postprandial plasma lipidome responses to a high-fat meal among healthy women. J Nutr Biochem 2021; 97:108809. [PMID: 34192591 DOI: 10.1016/j.jnutbio.2021.108809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/27/2021] [Accepted: 06/08/2021] [Indexed: 11/20/2022]
Abstract
Postprandial lipemia consists of changes in concentrations and composition of plasma lipids after food intake, commonly presented as increased levels of triglyceride-rich lipoproteins. Postprandial hypertriglyceridemia may also affect high-density lipoprotein (HDL) structure and function, resulting in a net decrease in HDL concentrations. Elevated triglycerides (TG) and reduced HDL levels have been positively associated with risk of cardiovascular diseases development. Here, we investigated the plasma lipidome composition of 12 clinically healthy, nonobese and young women in response to an acute high-caloric (1135 kcal) and high-fat (64 g) breakfast meal. For this purpose, we employed a detailed untargeted mass spectrometry-based lipidomic approach and data was obtained at four sampling points: fasting and 1, 3 and 5 h postprandial. Analysis of variance revealed 73 significantly altered lipid species between all sampling points. Nonetheless, two divergent subgroups have emerged at 5 h postprandial as a function of differential plasma lipidome responses, and were thereby designated slow and fast TG metabolizers. Late responses by slow TG metabolizers were associated with increased concentrations of several species of TG and phosphatidylinositol (PI). Lipidomic analysis of lipoprotein fractions at 5 h postprandial revealed higher TG and PI concentrations in HDL from slow relative to fast TG metabolizers, but not in apoB-containing fraction. These data indicate that modulations in HDL lipidome during prolonged postprandial lipemia may potentially impact HDL functions. A comprehensive characterization of plasma lipidome responses to acute metabolic challenges may contribute to a better understanding of diet/lifestyle regulation in the metabolism of lipid and glucose.
Collapse
Affiliation(s)
- Marcos Yukio Yoshinaga
- Laboratory of Modified Lipids, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil.
| | - Bruna Jardim Quintanilha
- Nutritional Genomics and Inflammation Laboratory, Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil; Food Research Center (FoRC), CEPID-FAPESP, Research Innovation and Dissemination Centers São Paulo Research Foundation, São Paulo, Brazil
| | - Adriano Britto Chaves-Filho
- Laboratory of Modified Lipids, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Sayuri Miyamoto
- Laboratory of Modified Lipids, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Geni Rodrigues Sampaio
- Nutritional Genomics and Inflammation Laboratory, Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Marcelo Macedo Rogero
- Nutritional Genomics and Inflammation Laboratory, Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil; Food Research Center (FoRC), CEPID-FAPESP, Research Innovation and Dissemination Centers São Paulo Research Foundation, São Paulo, Brazil.
| |
Collapse
|
21
|
Wolrab D, Jirásko R, Peterka O, Idkowiak J, Chocholoušková M, Vaňková Z, Hořejší K, Brabcová I, Vrána D, Študentová H, Melichar B, Holčapek M. Plasma lipidomic profiles of kidney, breast and prostate cancer patients differ from healthy controls. Sci Rep 2021; 11:20322. [PMID: 34645896 PMCID: PMC8514434 DOI: 10.1038/s41598-021-99586-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/28/2021] [Indexed: 01/10/2023] Open
Abstract
Early detection of cancer is one of the unmet needs in clinical medicine. Peripheral blood analysis is a preferred method for efficient population screening, because blood collection is well embedded in clinical practice and minimally invasive for patients. Lipids are important biomolecules, and variations in lipid concentrations can reflect pathological disorders. Lipidomic profiling of human plasma by the coupling of ultrahigh-performance supercritical fluid chromatography and mass spectrometry is investigated with the aim to distinguish patients with breast, kidney, and prostate cancers from healthy controls. The mean sensitivity, specificity, and accuracy of the lipid profiling approach were 85%, 95%, and 92% for kidney cancer; 91%, 97%, and 94% for breast cancer; and 87%, 95%, and 92% for prostate cancer. No association of statistical models with tumor stage is observed. The statistically most significant lipid species for the differentiation of cancer types studied are CE 16:0, Cer 42:1, LPC 18:2, PC 36:2, PC 36:3, SM 32:1, and SM 41:1 These seven lipids represent a potential biomarker panel for kidney, breast, and prostate cancer screening, but a further verification step in a prospective study has to be performed to verify clinical utility.
Collapse
Affiliation(s)
- Denise Wolrab
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Robert Jirásko
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Ondřej Peterka
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Jakub Idkowiak
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Michaela Chocholoušková
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Zuzana Vaňková
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Karel Hořejší
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Ivana Brabcová
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - David Vrána
- Department of Oncology, Faculty of Medicine and Dentistry, Palacký University and University Hospital, I.P. Pavlova 6, 775 20, Olomouc, Czech Republic
- Comprehensive Cancer Center Nový Jičín, Hospital Nový Jičín, Nový Jičín, Czech Republic
| | - Hana Študentová
- Department of Oncology, Faculty of Medicine and Dentistry, Palacký University and University Hospital, I.P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Bohuslav Melichar
- Department of Oncology, Faculty of Medicine and Dentistry, Palacký University and University Hospital, I.P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Michal Holčapek
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic.
| |
Collapse
|
22
|
Katz L, Tata A, Woolman M, Zarrine-Afsar A. Lipid Profiling in Cancer Diagnosis with Hand-Held Ambient Mass Spectrometry Probes: Addressing the Late-Stage Performance Concerns. Metabolites 2021; 11:metabo11100660. [PMID: 34677375 PMCID: PMC8537725 DOI: 10.3390/metabo11100660] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023] Open
Abstract
Untargeted lipid fingerprinting with hand-held ambient mass spectrometry (MS) probes without chromatographic separation has shown promise in the rapid characterization of cancers. As human cancers present significant molecular heterogeneities, careful molecular modeling and data validation strategies are required to minimize late-stage performance variations of these models across a large population. This review utilizes parallels from the pitfalls of conventional protein biomarkers in reaching bedside utility and provides recommendations for robust modeling as well as validation strategies that could enable the next logical steps in large scale assessment of the utility of ambient MS profiling for cancer diagnosis. Six recommendations are provided that range from careful initial determination of clinical added value to moving beyond just statistical associations to validate lipid involvements in disease processes mechanistically. Further guidelines for careful selection of suitable samples to capture expected and unexpected intragroup variance are provided and discussed in the context of demographic heterogeneities in the lipidome, further influenced by lifestyle factors, diet, and potential intersect with cancer lipid pathways probed in ambient mass spectrometry profiling studies.
Collapse
Affiliation(s)
- Lauren Katz
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada; (L.K.); (M.W.)
- Techna Institute for the Advancement of Technology for Health, University Health Network, 100 College Street, Toronto, ON M5G 1P5, Canada
| | - Alessandra Tata
- Laboratorio di Chimica Sperimentale, Istituto Zooprofilattico delle Venezie, Viale Fiume 78, 36100 Vicenza, Italy;
| | - Michael Woolman
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada; (L.K.); (M.W.)
- Techna Institute for the Advancement of Technology for Health, University Health Network, 100 College Street, Toronto, ON M5G 1P5, Canada
| | - Arash Zarrine-Afsar
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada; (L.K.); (M.W.)
- Techna Institute for the Advancement of Technology for Health, University Health Network, 100 College Street, Toronto, ON M5G 1P5, Canada
- Department of Surgery, University of Toronto, 149 College Street, Toronto, ON M5T 1P5, Canada
- Keenan Research Center for Biomedical Science & the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Correspondence: ; Tel.: +1-416-581-8473
| |
Collapse
|
23
|
Porin 1 Modulates Autophagy in Yeast. Cells 2021; 10:cells10092416. [PMID: 34572064 PMCID: PMC8464718 DOI: 10.3390/cells10092416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/27/2022] Open
Abstract
Autophagy is a cellular recycling program which efficiently reduces the cellular burden of ageing. Autophagy is characterised by nucleation of isolation membranes, which grow in size and further expand to form autophagosomes, engulfing cellular material to be degraded by fusion with lysosomes (vacuole in yeast). Autophagosomal membranes do not bud from a single cell organelle, but are generated de novo. Several lipid sources for autophagosomal membranes have been identified, but the whole process of their generation is complex and not entirely understood. In this study, we investigated how the mitochondrial outer membrane protein porin 1 (Por1), the yeast orthologue of mammalian voltage-dependent anion channel (VDAC), affects autophagy in yeast. We show that POR1 deficiency reduces the autophagic capacity and leads to changes in vacuole and lipid homeostasis. We further investigated whether limited phosphatidylethanolamine (PE) availability in por1∆ was causative for reduced autophagy by overexpression of the PE-generating phosphatidylserine decarboxylase 1 (Psd1). Altogether, our results show that POR1 deficiency is associated with reduced autophagy, which can be circumvented by additional PSD1 overexpression. This suggests a role for Por1 in Psd1-mediated autophagy regulation.
Collapse
|
24
|
Vvedenskaya O, Rose TD, Knittelfelder O, Palladini A, Wodke JAH, Schuhmann K, Ackerman JM, Wang Y, Has C, Brosch M, Thangapandi VR, Buch S, Züllig T, Hartler J, Köfeler HC, Röcken C, Coskun Ü, Klipp E, von Schoenfels W, Gross J, Schafmayer C, Hampe J, Pauling JK, Shevchenko A. Nonalcoholic fatty liver disease stratification by liver lipidomics. J Lipid Res 2021; 62:100104. [PMID: 34384788 PMCID: PMC8488246 DOI: 10.1016/j.jlr.2021.100104] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/20/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common metabolic dysfunction leading to hepatic steatosis. However, NAFLD's global impact on the liver lipidome is poorly understood. Using high-resolution shotgun mass spectrometry, we quantified the molar abundance of 316 species from 22 major lipid classes in liver biopsies of 365 patients, including nonsteatotic patients with normal or excessive weight, patients diagnosed with NAFL (nonalcoholic fatty liver) or NASH (nonalcoholic steatohepatitis), and patients bearing common mutations of NAFLD-related protein factors. We confirmed the progressive accumulation of di- and triacylglycerols and cholesteryl esters in the liver of NAFL and NASH patients, while the bulk composition of glycerophospho- and sphingolipids remained unchanged. Further stratification by biclustering analysis identified sphingomyelin species comprising n24:2 fatty acid moieties as membrane lipid markers of NAFLD. Normalized relative abundance of sphingomyelins SM 43:3;2 and SM 43:1;2 containing n24:2 and n24:0 fatty acid moieties, respectively, showed opposite trends during NAFLD progression and distinguished NAFL and NASH lipidomes from the lipidome of nonsteatotic livers. Together with several glycerophospholipids containing a C22:6 fatty acid moiety, these lipids serve as markers of early and advanced stages of NAFL.
Collapse
Affiliation(s)
- Olga Vvedenskaya
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Tim Daniel Rose
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Oskar Knittelfelder
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Alessandra Palladini
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum Munich at the University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | | | - Kai Schuhmann
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Yuting Wang
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Canan Has
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Mario Brosch
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Germany; Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Veera Raghavan Thangapandi
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Germany; Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Stephan Buch
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Germany; Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Thomas Züllig
- Core Facility Mass Spectrometry, Medical University of Graz, Graz, Austria
| | - Jürgen Hartler
- Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria; Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Harald C Köfeler
- Core Facility Mass Spectrometry, Medical University of Graz, Graz, Austria
| | - Christoph Röcken
- Department of Pathology, University Hospital Schleswig Holstein, Kiel, Schleswig-Holstein, Germany
| | - Ünal Coskun
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum Munich at the University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany; Department of Membrane Biochemistry and Lipid Research, University Hospital Carl Gustav Carus of Technische Universität Dresden, Dresden, Germany
| | - Edda Klipp
- Theoretical Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Witigo von Schoenfels
- Department of Visceral and Thoracic Surgery, University Hospital Schleswig-Holstein, Kiel Campus, Christian-Albrechts-University Kiel, Kiel, Germany; Christian Albrechts University in Kiel Center of Clinical Anatomy Kiel, Schleswig-Holstein, Germany
| | - Justus Gross
- Department of General, Visceral, Vascular and Transplant Surgery, Rostock University Medical Center, Rostock, Germany
| | - Clemens Schafmayer
- Department of General, Visceral, Vascular and Transplant Surgery, Rostock University Medical Center, Rostock, Germany
| | - Jochen Hampe
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Germany
| | - Josch Konstantin Pauling
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany.
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
25
|
Retention dependences support highly confident identification of lipid species in human plasma by reversed-phase UHPLC/MS. Anal Bioanal Chem 2021; 414:319-331. [PMID: 34244835 DOI: 10.1007/s00216-021-03492-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/31/2022]
Abstract
Reversed-phase ultrahigh-performance liquid chromatography-mass spectrometry (RP-UHPLC/MS) method was developed with the aim to unambiguously identify a large number of lipid species from multiple lipid classes in human plasma. The optimized RP-UHPLC/MS method employed the C18 column with sub-2-μm particles with the total run time of 25 min. The chromatographic resolution was investigated with 42 standards from 18 lipid classes. The UHPLC system was coupled to high-resolution quadrupole-time-of-flight (QTOF) mass analyzer using electrospray ionization (ESI) measuring full-scan and tandem mass spectra (MS/MS) in positive- and negative-ion modes with high mass accuracy. Our identification approach was based on m/z values measured with mass accuracy within 5 ppm tolerance in the full-scan mode, characteristic fragment ions in MS/MS, and regularity in chromatographic retention dependences for individual lipid species, which provides the highest level of confidence for reported identifications of lipid species including regioisomeric and other isobaric forms. The graphs of dependences of retention times on the carbon number or on the number of double bond(s) in fatty acyl chains were constructed to support the identification of lipid species in homologous lipid series. Our list of identified lipid species is also compared with previous publications investigating human blood samples by various MS-based approaches. In total, we have reported more than 500 lipid species representing 26 polar and nonpolar lipid classes detected in NIST Standard reference material 1950 human plasma.
Collapse
|
26
|
Muralidharan S, Shimobayashi M, Ji S, Burla B, Hall MN, Wenk MR, Torta F. A reference map of sphingolipids in murine tissues. Cell Rep 2021; 35:109250. [PMID: 34133933 DOI: 10.1016/j.celrep.2021.109250] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/21/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Sphingolipids (SPs) have both a structural role in the cell membranes and a signaling function that regulates many cellular processes. The enormous structural diversity and low abundance of many SPs pose a challenge for their identification and quantification. Recent advances in lipidomics, in particular liquid chromatography (LC) coupled with mass spectrometry (MS), provide methods to detect and quantify many low-abundant SP species reliably. Here we use LC-MS to compile a "murine sphingolipid atlas," containing the qualitative and quantitative distribution of 114 SPs in 21 tissues of a widely utilized wild-type laboratory mouse strain (C57BL/6). We report tissue-specific SP fingerprints, as well as sex-specific differences in the same tissue. This is a comprehensive, quantitative sphingolipidomic map of mammalian tissues collected in a systematic fashion. It will complement other tissue compendia for interrogation into the role of SP in mammalian health and disease.
Collapse
Affiliation(s)
- Sneha Muralidharan
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore; Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Mitsugu Shimobayashi
- Biozentrum - Center for Molecular Life Sciences, University of Basel, 4056 Basel, Switzerland
| | - Shanshan Ji
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Bo Burla
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Michael N Hall
- Biozentrum - Center for Molecular Life Sciences, University of Basel, 4056 Basel, Switzerland
| | - Markus R Wenk
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore.
| | - Federico Torta
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore.
| |
Collapse
|
27
|
Balder Y, Vignoli A, Tenori L, Luchinat C, Saccenti E. Exploration of Blood Lipoprotein and Lipid Fraction Profiles in Healthy Subjects through Integrated Univariate, Multivariate, and Network Analysis Reveals Association of Lipase Activity and Cholesterol Esterification with Sex and Age. Metabolites 2021; 11:metabo11050326. [PMID: 34070169 PMCID: PMC8158518 DOI: 10.3390/metabo11050326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 02/08/2023] Open
Abstract
In this study, we investigated blood lipoprotein and lipid fraction profiles, quantified using nuclear magnetic resonance, in a cohort of 844 healthy blood donors, integrating standard univariate and multivariate analysis with predictive modeling and network analysis. We observed a strong association of lipoprotein and lipid main fraction profiles with sex and age. Our results suggest an age-dependent remodulation of lipase lipoprotein activity in men and a change in the mechanisms controlling the ratio between esterified and non-esterified cholesterol in both men and women.
Collapse
Affiliation(s)
- Yasmijn Balder
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands;
| | - Alessia Vignoli
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy; (A.V.); (L.T.); (C.L.)
- Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Leonardo Tenori
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy; (A.V.); (L.T.); (C.L.)
- Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy; (A.V.); (L.T.); (C.L.)
- Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Edoardo Saccenti
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands;
- Correspondence:
| |
Collapse
|
28
|
Thangapandi VR, Knittelfelder O, Brosch M, Patsenker E, Vvedenskaya O, Buch S, Hinz S, Hendricks A, Nati M, Herrmann A, Rekhade DR, Berg T, Matz-Soja M, Huse K, Klipp E, Pauling JK, Wodke JA, Miranda Ackerman J, Bonin MV, Aigner E, Datz C, von Schönfels W, Nehring S, Zeissig S, Röcken C, Dahl A, Chavakis T, Stickel F, Shevchenko A, Schafmayer C, Hampe J, Subramanian P. Loss of hepatic Mboat7 leads to liver fibrosis. Gut 2021; 70:940-950. [PMID: 32591434 PMCID: PMC8040158 DOI: 10.1136/gutjnl-2020-320853] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVE The rs641738C>T variant located near the membrane-bound O-acyltransferase domain containing 7 (MBOAT7) locus is associated with fibrosis in liver diseases, including non-alcoholic fatty liver disease (NAFLD), alcohol-related liver disease, hepatitis B and C. We aim to understand the mechanism by which the rs641738C>T variant contributes to pathogenesis of NAFLD. DESIGN Mice with hepatocyte-specific deletion of MBOAT7 (Mboat7Δhep) were generated and livers were characterised by histology, flow cytometry, qPCR, RNA sequencing and lipidomics. We analysed the association of rs641738C>T genotype with liver inflammation and fibrosis in 846 NAFLD patients and obtained genotype-specific liver lipidomes from 280 human biopsies. RESULTS Allelic imbalance analysis of heterozygous human liver samples pointed to lower expression of the MBOAT7 transcript on the rs641738C>T haplotype. Mboat7Δhep mice showed spontaneous steatosis characterised by increased hepatic cholesterol ester content after 10 weeks. After 6 weeks on a high fat, methionine-low, choline-deficient diet, mice developed increased hepatic fibrosis as measured by picrosirius staining (p<0.05), hydroxyproline content (p<0.05) and transcriptomics, while the inflammatory cell populations and inflammatory mediators were minimally affected. In a human biopsied NAFLD cohort, MBOAT7 rs641738C>T was associated with fibrosis (p=0.004) independent of the presence of histological inflammation. Liver lipidomes of Mboat7Δhep mice and human rs641738TT carriers with fibrosis showed increased total lysophosphatidylinositol levels. The altered lysophosphatidylinositol and phosphatidylinositol subspecies in MBOAT7Δhep livers and human rs641738TT carriers were similar. CONCLUSION Mboat7 deficiency in mice and human points to an inflammation-independent pathway of liver fibrosis that may be mediated by lipid signalling and a potentially targetable treatment option in NAFLD.
Collapse
Affiliation(s)
- Veera Raghavan Thangapandi
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Sachsen, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Oskar Knittelfelder
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Sachsen, Germany
| | - Mario Brosch
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Sachsen, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Eleonora Patsenker
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Olga Vvedenskaya
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Sachsen, Germany
| | - Stephan Buch
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Sachsen, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Sebastian Hinz
- Department of Visceral and Thoracic Surgery, Universitatsklinikum Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
| | - Alexander Hendricks
- Department of Visceral and Thoracic Surgery, Universitatsklinikum Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
| | - Marina Nati
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Sachsen, Germany
| | - Alexander Herrmann
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Sachsen, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Devavrat Ravindra Rekhade
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Sachsen, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Thomas Berg
- Division of Hepatology, Department of Oncology, Gastroenterology, Hepatology Pulmonology, and Infectious Diseases, University Hospital Leipzig, Leipzig, Sachsen, Germany
| | - Madlen Matz-Soja
- Division of Hepatology, Department of Oncology, Gastroenterology, Hepatology Pulmonology, and Infectious Diseases, University Hospital Leipzig, Leipzig, Sachsen, Germany
- Rudolf Schönheimer- Institute of Biochemistry, University of Leipzig Faculty of Medicine, Leipzig, Germany
| | - Klaus Huse
- Leibniz Institute for Age Research Fritz-Lipmann Institute, Jena, Thüringen, Germany
| | - Edda Klipp
- Department of Theoretical Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Josch K Pauling
- Department of Theoretical Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising, Bayern, Germany
| | - Judith Ah Wodke
- Department of Theoretical Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Malte von Bonin
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Sachsen, Germany
- German Cancer Consortium, Heidelberg, Baden-Württemberg, Germany
| | - Elmar Aigner
- Department of Medicine, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Christian Datz
- Department of Internal Medicine, Hospital Oberndorf, Teaching Hospital of the Paracelsus Private University of Salzburg, Obendorf, Austria
| | - Witigo von Schönfels
- Department of Visceral and Thoracic Surgery, Universitatsklinikum Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
| | - Sophie Nehring
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Sachsen, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Sebastian Zeissig
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Sachsen, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Christoph Röcken
- Department of Pathology, University Hospital Schleswig Holstein, Kiel, Schleswig-Holstein, Germany
| | - Andreas Dahl
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Triantafyllos Chavakis
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Sachsen, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Sachsen, Germany
- German Center for Diabetes Research, Neuherberg, Germany
- Paul Langerhans Institute Dresden, Helmholtz Zentrum München, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Sachsen, Germany
| | - Felix Stickel
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Andrej Shevchenko
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Sachsen, Germany
| | - Clemens Schafmayer
- Department of General, Visceral, Vascular and Transplantation Surgery, University of Rostock, Rostock, Mecklenburg-Vorpommern, Germany
| | - Jochen Hampe
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Sachsen, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Pallavi Subramanian
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Sachsen, Germany
| |
Collapse
|
29
|
Durán C, Ciucci S, Palladini A, Ijaz UZ, Zippo AG, Sterbini FP, Masucci L, Cammarota G, Ianiro G, Spuul P, Schroeder M, Grill SW, Parsons BN, Pritchard DM, Posteraro B, Sanguinetti M, Gasbarrini G, Gasbarrini A, Cannistraci CV. Nonlinear machine learning pattern recognition and bacteria-metabolite multilayer network analysis of perturbed gastric microbiome. Nat Commun 2021; 12:1926. [PMID: 33771992 PMCID: PMC7997970 DOI: 10.1038/s41467-021-22135-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/24/2021] [Indexed: 12/11/2022] Open
Abstract
The stomach is inhabited by diverse microbial communities, co-existing in a dynamic balance. Long-term use of drugs such as proton pump inhibitors (PPIs), or bacterial infection such as Helicobacter pylori, cause significant microbial alterations. Yet, studies revealing how the commensal bacteria re-organize, due to these perturbations of the gastric environment, are in early phase and rely principally on linear techniques for multivariate analysis. Here we disclose the importance of complementing linear dimensionality reduction techniques with nonlinear ones to unveil hidden patterns that remain unseen by linear embedding. Then, we prove the advantages to complete multivariate pattern analysis with differential network analysis, to reveal mechanisms of bacterial network re-organizations which emerge from perturbations induced by a medical treatment (PPIs) or an infectious state (H. pylori). Finally, we show how to build bacteria-metabolite multilayer networks that can deepen our understanding of the metabolite pathways significantly associated to the perturbed microbial communities.
Collapse
Affiliation(s)
- Claudio Durán
- Biomedical Cybernetics Group, Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Center for Systems Biology Dresden (CSBD), Cluster of Excellence Physics of Life (PoL), Department of Physics, Technische Universität Dresden, Dresden, Germany
| | - Sara Ciucci
- Biomedical Cybernetics Group, Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Center for Systems Biology Dresden (CSBD), Cluster of Excellence Physics of Life (PoL), Department of Physics, Technische Universität Dresden, Dresden, Germany
| | - Alessandra Palladini
- Biomedical Cybernetics Group, Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Center for Systems Biology Dresden (CSBD), Cluster of Excellence Physics of Life (PoL), Department of Physics, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden, Helmholtz Zentrum Munchen, Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Umer Z Ijaz
- Department of Infrastructure and Environment University of Glasgow, School of Engineering, Glasgow, UK
| | - Antonio G Zippo
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Milan, Italy
| | | | - Luca Masucci
- Institute of Microbiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanni Cammarota
- Internal Medicine and Gastroenterology Unit, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gianluca Ianiro
- Internal Medicine and Gastroenterology Unit, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Pirjo Spuul
- Department of Chemistry and Biotechnology, Division of Gene Technology, Tallinn University of Technology, Tallinn, 12618, Estonia
| | - Michael Schroeder
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Stephan W Grill
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Bryony N Parsons
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - D Mark Pritchard
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
- Department of Gastroenterology, Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, UK
| | - Brunella Posteraro
- Institute of Microbiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Giovanni Gasbarrini
- Internal Medicine and Gastroenterology Unit, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology Unit, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Carlo Vittorio Cannistraci
- Biomedical Cybernetics Group, Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Center for Systems Biology Dresden (CSBD), Cluster of Excellence Physics of Life (PoL), Department of Physics, Technische Universität Dresden, Dresden, Germany.
- Center for Complex Network Intelligence (CCNI) at Tsinghua Laboratory of Brain and Intelligence (THBI), Department of Biomedical Engineering, Tsinghua University, Beijing, China.
| |
Collapse
|
30
|
Leimanis-Laurens ML, Ferguson K, Wolfrum E, Boville B, Sanfilippo D, Lydic TA, Prokop JW, Rajasekaran S. Pediatric Multi-Organ Dysfunction Syndrome: Analysis by an Untargeted "Shotgun" Lipidomic Approach Reveals Low-Abundance Plasma Phospholipids and Dynamic Recovery over 8-Day Period, a Single-Center Observational Study. Nutrients 2021; 13:774. [PMID: 33673500 PMCID: PMC7997359 DOI: 10.3390/nu13030774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/12/2021] [Accepted: 02/23/2021] [Indexed: 12/30/2022] Open
Abstract
Lipids are molecules involved in metabolism and inflammation. This study investigates the plasma lipidome for markers of severity and nutritional status in critically ill children. Children with multi-organ dysfunction syndrome (MODS) (n = 24) are analyzed at three time-points and cross-referenced to sedation controls (n = 4) for a total of N = 28. Eight of the patients with MODS, needed veno-arterial extracorporeal membrane oxygenation (VA ECMO) support to survive. Blood plasma lipid profiles are quantified by nano-electrospray (nESI), direct infusion high resolution/accurate mass spectrometry (MS), and tandem mass spectrometry (MS/MS), and compared to nutritional profiles and pediatric logistic organ dysfunction (PELOD) scores. Our results show that PELOD scores were not significantly different between MODS and ECMO cases across time-points (p = 0.66). Lipid profiling provides stratification between sedation controls and all MODS patients for total lysophosphatidylserine (lysoPS) (p-value = 0.004), total phosphatidylserine (PS) (p-value = 0.015), and total ether-linked phosphatidylethanolamine (ether-PE) (p-value = 0.03) after adjusting for sex and age. Nutrition intake over time did not correlate with changes in lipid profiles, as measured by caloric and protein intake. Lipid measurement in the intensive care environment shows dynamic changes over an 8-day pediatric intensive care unit (PICU) course, suggesting novel metabolic indicators for defining critically ill children.
Collapse
Affiliation(s)
- Mara L. Leimanis-Laurens
- Pediatric Critical Care Unit, Helen DeVos Children’s Hospital, 100 Michigan Street NE, Grand Rapids, MI 49503, USA; (K.F.); (B.B.); (D.S.); (S.R.)
- Department of Pediatric and Human Development, College of Human Medicine, Michigan State University, Life Sciences Bldg. 1355 Bogue Street, East Lansing, MI 48824, USA;
| | - Karen Ferguson
- Pediatric Critical Care Unit, Helen DeVos Children’s Hospital, 100 Michigan Street NE, Grand Rapids, MI 49503, USA; (K.F.); (B.B.); (D.S.); (S.R.)
| | - Emily Wolfrum
- Van Andel Institute, Bioinformatics & Biostatistics Core, 333 Bostwick Avenue NE, Grand Rapids, MI 49503, USA;
| | - Brian Boville
- Pediatric Critical Care Unit, Helen DeVos Children’s Hospital, 100 Michigan Street NE, Grand Rapids, MI 49503, USA; (K.F.); (B.B.); (D.S.); (S.R.)
- Department of Pediatric and Human Development, College of Human Medicine, Michigan State University, Life Sciences Bldg. 1355 Bogue Street, East Lansing, MI 48824, USA;
| | - Dominic Sanfilippo
- Pediatric Critical Care Unit, Helen DeVos Children’s Hospital, 100 Michigan Street NE, Grand Rapids, MI 49503, USA; (K.F.); (B.B.); (D.S.); (S.R.)
- Department of Pediatric and Human Development, College of Human Medicine, Michigan State University, Life Sciences Bldg. 1355 Bogue Street, East Lansing, MI 48824, USA;
| | - Todd A. Lydic
- Department of Physiology, Collaborative Mass Spectrometry Core, 567 Wilson Road, East Lansing, MI 48824, USA;
| | - Jeremy W. Prokop
- Department of Pediatric and Human Development, College of Human Medicine, Michigan State University, Life Sciences Bldg. 1355 Bogue Street, East Lansing, MI 48824, USA;
- Department of Pharmacology and Toxicology, Michigan State University, 1355 Bogue Street, East Lansing, MI 48824, USA
| | - Surender Rajasekaran
- Pediatric Critical Care Unit, Helen DeVos Children’s Hospital, 100 Michigan Street NE, Grand Rapids, MI 49503, USA; (K.F.); (B.B.); (D.S.); (S.R.)
- Department of Pediatric and Human Development, College of Human Medicine, Michigan State University, Life Sciences Bldg. 1355 Bogue Street, East Lansing, MI 48824, USA;
| |
Collapse
|
31
|
Pikó P, Pál L, Szűcs S, Kósa Z, Sándor J, Ádány R. Obesity-Related Changes in Human Plasma Lipidome Determined by the Lipidyzer Platform. Biomolecules 2021; 11:biom11020326. [PMID: 33669967 PMCID: PMC7924880 DOI: 10.3390/biom11020326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity is an increasing public health concern both in the developed and developing countries. Previous studies have demonstrated that considerable alterations in lipid metabolism and consequently marked changes in lipid profile are associated with the onset and progression of obesity-related complications. To characterize the full spectrum of obesity-induced changes in lipid metabolism, direct infusion tandem mass spectrometry analysis is the most promising approach. To better understand which of the many lipid species are the most strongly associated with obesity, the aim of our work was to measure and profile plasma lipids in normal (n = 57), overweight (n = 31), and obese (n = 48) individuals randomly selected from samples of Hungarian general and Roma populations by using the targeted quantitative lipidomics platform, the Lipidyzer. Principal component and stepwise regression analyses were used to identify the most significant clusters and species of lipids by increasing body mass index (BMI). From the 18 clusters identified four key lipid species (PE P-16:0/20:3, TG 20:4_33:1, TG 22:6_36:4, TG 18:3_33:0) showed a strong significant positive and three others (Hex-Cer 18:1;O2/22:0, LPC 18:2, PC 18:1_18:1) significant negative association with BMI. Compared to individual lipid species alone, the lipid species ratio (LSR) we introduced showed an extremely strong, at least 9 orders of magnitude stronger, association with BMI. The LSR can be used as a sensitive and predictive indicator to monitor obesity-related alterations in human plasma and control the effectiveness of treatment of obesity associated non-communicable diseases.
Collapse
Affiliation(s)
- Péter Pikó
- MTA-DE Public Health Research Group, University of Debrecen, 4032 Debrecen, Hungary;
| | - László Pál
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (L.P.); (S.S.); (J.S.)
| | - Sándor Szűcs
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (L.P.); (S.S.); (J.S.)
| | - Zsigmond Kósa
- Department of Health Methodology and Public Health, Faculty of Health, University of Debrecen, 4400 Nyíregyháza, Hungary;
| | - János Sándor
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (L.P.); (S.S.); (J.S.)
| | - Róza Ádány
- MTA-DE Public Health Research Group, University of Debrecen, 4032 Debrecen, Hungary;
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (L.P.); (S.S.); (J.S.)
- Correspondence: ; Tel.: +36-52-512-765 (ext. 77408)
| |
Collapse
|
32
|
Claus RA, Graeler MH. Sphingolipidomics in Translational Sepsis Research-Biomedical Considerations and Perspectives. Front Med (Lausanne) 2021; 7:616578. [PMID: 33553212 PMCID: PMC7854573 DOI: 10.3389/fmed.2020.616578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Scientific Background: Sphingolipids are a highly diverse group of lipids with respect to physicochemical properties controlling either structure, distribution, or function, all of them regulating cellular response in health and disease. Mass spectrometry, on the other hand, is an analytical technique characterizing ionized molecules or fragments thereof by mass-to-charge ratios, which has been prosperingly developed for rapid and reliable qualitative and quantitative identification of lipid species. Parallel to best performance of in-depth chromatographical separation of lipid classes, preconditions of precise quantitation of unique molecular species by preprocessing of biological samples have to be fulfilled. As a consequence, “lipid profiles” across model systems and human individuals, esp. complex (clinical) samples, have become eminent over the last couple of years due to sensitivity, specificity, and discriminatory capability. Therefore, it is significance to consider the entire experimental strategy from sample collection and preparation, data acquisition, analysis, and interpretation. Areas Covered: In this review, we outline considerations with clinical (i.e., human) samples with special emphasis on sample handling, specific physicochemical properties, target measurements, and resulting profiling of sphingolipids in biomedicine and translational research to maximize sensitivity and specificity as well as to provide robust and reproducible results. A brief commentary is also provided regarding new insights of “clinical sphingolipidomics” in translational sepsis research. Expert Opinion: The role of mass spectrometry of sphingolipids and related species (“sphingolipidomics”) to investigate cellular and compartment-specific response to stress, e.g., in generalized infection and sepsis, is on the rise and the ability to integrate multiple datasets from diverse classes of biomolecules by mass spectrometry measurements and metabolomics will be crucial to fostering our understanding of human health as well as response to disease and treatment.
Collapse
Affiliation(s)
- Ralf A Claus
- Department for Anesthesiology and Intensive Care Medicine, Sepsis Research, Jena University Hospital, Jena, Germany
| | - Markus H Graeler
- Department for Anesthesiology and Intensive Care Medicine, Sepsis Research, Jena University Hospital, Jena, Germany.,Center for Sepsis Care & Control, Jena University Hospital, Jena, Germany.,Center for Molecular Biomedicine (CMB), Jena University Hospital, Jena, Germany
| |
Collapse
|
33
|
Addepalli RV, Mullangi R. A concise review on lipidomics analysis in biological samples. ADMET AND DMPK 2020; 9:1-22. [PMID: 35299875 PMCID: PMC8923307 DOI: 10.5599/admet.913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
Lipids are a complex and critical heterogeneous molecular entity, playing an intricate and key role in understanding biological activities and disease processes. Lipidomics aims to quantitatively define the lipid classes, including their molecular species. The analysis of the biological tissues and fluids are challenging due to the extreme sample complexity and occurrence of the molecular species as isomers or isobars. This review documents the overview of lipidomics workflow, beginning from the approaches of sample preparation, various analytical techniques and emphasizing the state-of-the-art mass spectrometry either by shotgun or coupled with liquid chromatography. We have considered the latest ion mobility spectroscopy technologies to deal with the vast number of structural isomers, different imaging techniques. All these techniques have their pitfalls and we have discussed how to circumvent them after reviewing the power of each technique with examples..
Collapse
Affiliation(s)
| | - Ramesh Mullangi
- Laxai Life Sciences Pvt Ltd, MN Park, Genome Valley, Shamirpet, Hyderabad-500 078, India
| |
Collapse
|
34
|
Metabolic regulation of prostate cancer heterogeneity and plasticity. Semin Cancer Biol 2020; 82:94-119. [PMID: 33290846 DOI: 10.1016/j.semcancer.2020.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/12/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
Metabolic reprogramming is one of the main hallmarks of cancer cells. It refers to the metabolic adaptations of tumor cells in response to nutrient deficiency, microenvironmental insults, and anti-cancer therapies. Metabolic transformation during tumor development plays a critical role in the continued tumor growth and progression and is driven by a complex interplay between the tumor mutational landscape, epigenetic modifications, and microenvironmental influences. Understanding the tumor metabolic vulnerabilities might open novel diagnostic and therapeutic approaches with the potential to improve the efficacy of current tumor treatments. Prostate cancer is a highly heterogeneous disease harboring different mutations and tumor cell phenotypes. While the increase of intra-tumor genetic and epigenetic heterogeneity is associated with tumor progression, less is known about metabolic regulation of prostate cancer cell heterogeneity and plasticity. This review summarizes the central metabolic adaptations in prostate tumors, state-of-the-art technologies for metabolic analysis, and the perspectives for metabolic targeting and diagnostic implications.
Collapse
|
35
|
Luque de Castro M, Quiles-Zafra R. Lipidomics: An omics discipline with a key role in nutrition. Talanta 2020; 219:121197. [DOI: 10.1016/j.talanta.2020.121197] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022]
|
36
|
Höring M, Ekroos K, Baker PRS, Connell L, Stadler SC, Burkhardt R, Liebisch G. Correction of Isobaric Overlap Resulting from Sodiated Ions in Lipidomics. Anal Chem 2020; 92:10966-10970. [PMID: 32672443 DOI: 10.1021/acs.analchem.0c02408] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lipidomic analyses aim for absolute quantification of lipid species profiles in biological samples. In past years, mass spectrometry (MS) methods based on high resolution accurate masses (HRAM) have increasingly been applied to identify and quantify lipid species on the MS level. This strategy requires consideration of isobaric overlaps which may also result from various adduct ions. Generally applied solvent additives favor the formation of protonated and ammoniated ions in positive ion mode, yet sodiated ions are also frequently observed. These sodiated ions interfere with protonated ions of the species of the same lipid class with two additional CH2 and three double bonds (Δm/z = 0.0025) and the first isotopic peak overlaps with ammoniated ions of a species with one additional CH2 and four double bonds (Δm/z = 0.0057). In this work, we present an algorithm based on the sodiated to protonated/ammoniated adduct ion ratios of applied internal standards to correct for these interferences. We could demonstrate that these ratios differ significantly between lipid classes but are affected by neither chain length nor number of double bonds within a lipid class. Finally, the algorithm is demonstrated for correcting human serum samples analyzed by Fourier-transform mass spectrometry (FTMS). Here, the application of sodium correction significantly reduced overestimations and misidentifications.
Collapse
Affiliation(s)
- Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Kim Ekroos
- Lipidomics Consulting Ltd., Irisviksvägen 31D, 02230 Esbo, Finland
| | - Paul R S Baker
- Avanti Polar Lipids, 700 Industrial Park Dr, Alabaster, Alabama 35007, United States
| | - Lisa Connell
- Avanti Polar Lipids, 700 Industrial Park Dr, Alabaster, Alabama 35007, United States
| | - Sonja C Stadler
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
37
|
Hardikar S, Albrechtsen RD, Achaintre D, Lin T, Pauleck S, Playdon M, Holowatyj AN, Gigic B, Schrotz-King P, Boehm J, Habermann N, Brezina S, Gsur A, van Roekel EH, Weijenberg MP, Keski-Rahkonen P, Scalbert A, Ose J, Ulrich CM. Impact of Pre-blood Collection Factors on Plasma Metabolomic Profiles. Metabolites 2020; 10:E213. [PMID: 32455751 PMCID: PMC7281389 DOI: 10.3390/metabo10050213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 12/30/2022] Open
Abstract
Demographic, lifestyle and biospecimen-related factors at the time of blood collection can influence metabolite levels in epidemiological studies. Identifying the major influences on metabolite concentrations is critical to designing appropriate sample collection protocols and considering covariate adjustment in metabolomics analyses. We examined the association of age, sex, and other short-term pre-blood collection factors (time of day, season, fasting duration, physical activity, NSAID use, smoking and alcohol consumption in the days prior to collection) with 133 targeted plasma metabolites (acylcarnitines, amino acids, biogenic amines, sphingolipids, glycerophospholipids, and hexoses) among 108 individuals that reported exposures within 48 h before collection. The differences in mean metabolite concentrations were assessed between groups based on pre-collection factors using two-sided t-tests and ANOVA with FDR correction. Percent differences in metabolite concentrations were negligible across season, time of day of collection, fasting status or lifestyle behaviors at the time of collection, including physical activity or the use of tobacco, alcohol or NSAIDs. The metabolites differed in concentration between the age and sex categories for 21.8% and 14.3% metabolites, respectively. In conclusion, extrinsic factors in the short period prior to collection were not meaningfully associated with concentrations of selected endogenous metabolites in a cross-sectional sample, though metabolite concentrations differed by age and sex. Larger studies with more coverage of the human metabolome are warranted.
Collapse
Affiliation(s)
- Sheetal Hardikar
- Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT 84112, USA; (R.D.A.); (T.L.); (S.P.); (M.P.); (A.N.H.); (J.B.); (J.O.); (C.M.U.)
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84108, USA
- Cancer Prevention, Population Health Sciences, Fred Hutchinson Cancer Research Institute, Seattle, WA 19024, USA
| | - Richard D. Albrechtsen
- Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT 84112, USA; (R.D.A.); (T.L.); (S.P.); (M.P.); (A.N.H.); (J.B.); (J.O.); (C.M.U.)
| | - David Achaintre
- International Agency for Research on Cancer, 69372 Lyon, France; (D.A.); (P.K.-R.); (A.S.)
| | - Tengda Lin
- Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT 84112, USA; (R.D.A.); (T.L.); (S.P.); (M.P.); (A.N.H.); (J.B.); (J.O.); (C.M.U.)
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84108, USA
| | - Svenja Pauleck
- Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT 84112, USA; (R.D.A.); (T.L.); (S.P.); (M.P.); (A.N.H.); (J.B.); (J.O.); (C.M.U.)
| | - Mary Playdon
- Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT 84112, USA; (R.D.A.); (T.L.); (S.P.); (M.P.); (A.N.H.); (J.B.); (J.O.); (C.M.U.)
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84108, USA
| | - Andreana N. Holowatyj
- Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT 84112, USA; (R.D.A.); (T.L.); (S.P.); (M.P.); (A.N.H.); (J.B.); (J.O.); (C.M.U.)
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84108, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt-Ingram Cancer Center, Nashville, TN 37232, USA
| | - Biljana Gigic
- Department of Surgery, University of Heidelberg, 69120 Heidelberg, Germany;
| | - Petra Schrotz-King
- Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (P.S.-K.); (N.H.)
| | - Juergen Boehm
- Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT 84112, USA; (R.D.A.); (T.L.); (S.P.); (M.P.); (A.N.H.); (J.B.); (J.O.); (C.M.U.)
| | - Nina Habermann
- Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (P.S.-K.); (N.H.)
- Genome Biology, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Stefanie Brezina
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (S.B.); (A.G.)
| | - Andrea Gsur
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (S.B.); (A.G.)
| | - Eline H. van Roekel
- Department of Epidemiology, GROW School for Oncology and Developmental Biology, Maastricht University, 6211 LK Maastricht, The Netherlands; (E.H.v.R.); (M.P.W.)
| | - Matty P. Weijenberg
- Department of Epidemiology, GROW School for Oncology and Developmental Biology, Maastricht University, 6211 LK Maastricht, The Netherlands; (E.H.v.R.); (M.P.W.)
| | - Pekka Keski-Rahkonen
- International Agency for Research on Cancer, 69372 Lyon, France; (D.A.); (P.K.-R.); (A.S.)
| | - Augustin Scalbert
- International Agency for Research on Cancer, 69372 Lyon, France; (D.A.); (P.K.-R.); (A.S.)
| | - Jennifer Ose
- Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT 84112, USA; (R.D.A.); (T.L.); (S.P.); (M.P.); (A.N.H.); (J.B.); (J.O.); (C.M.U.)
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84108, USA
| | - Cornelia M. Ulrich
- Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT 84112, USA; (R.D.A.); (T.L.); (S.P.); (M.P.); (A.N.H.); (J.B.); (J.O.); (C.M.U.)
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84108, USA
| |
Collapse
|
38
|
Peng B, Kopczynski D, Pratt BS, Ejsing CS, Burla B, Hermansson M, Benke PI, Tan SH, Chan MY, Torta F, Schwudke D, Meckelmann SW, Coman C, Schmitz OJ, MacLean B, Manke MC, Borst O, Wenk MR, Hoffmann N, Ahrends R. LipidCreator workbench to probe the lipidomic landscape. Nat Commun 2020; 11:2057. [PMID: 32345972 PMCID: PMC7188904 DOI: 10.1038/s41467-020-15960-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022] Open
Abstract
Mass spectrometry (MS)-based targeted lipidomics enables the robust quantification of selected lipids under various biological conditions but comprehensive software tools to support such analyses are lacking. Here we present LipidCreator, a software that fully supports targeted lipidomics assay development. LipidCreator offers a comprehensive framework to compute MS/MS fragment masses for over 60 lipid classes. LipidCreator provides all functionalities needed to define fragments, manage stable isotope labeling, optimize collision energy and generate in silico spectral libraries. We validate LipidCreator assays computationally and analytically and prove that it is capable to generate large targeted experiments to analyze blood and to dissect lipid-signaling pathways such as in human platelets.
Collapse
Affiliation(s)
- Bing Peng
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139, Dortmund, Germany
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Dominik Kopczynski
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139, Dortmund, Germany
| | - Brian S Pratt
- University of Washington, Department of Genome Sciences, WA, 98195, Seattle, USA
| | - Christer S Ejsing
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-, 5230, Odense, Denmark
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Bo Burla
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, 117456, Singapore, Singapore
| | - Martin Hermansson
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-, 5230, Odense, Denmark
- Wihuri Research Institute, 00290, Helsinki, Finland
| | - Peter Imre Benke
- Singapore Lipidomics Incubator (SLING), Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117596, Singapore, Singapore
| | - Sock Hwee Tan
- Department of Medicine, Yong Loo Lin School of Medicine, National University Hospital, 119228, Singapore, Singapore
- Cardiovascular Research Institute, National University of Singapore, 117599, Singapore, Singapore
| | - Mark Y Chan
- Department of Medicine, Yong Loo Lin School of Medicine, National University Hospital, 119228, Singapore, Singapore
- Cardiovascular Research Institute, National University of Singapore, 117599, Singapore, Singapore
- National University Heart Centre, National University Health System, 117599, Singapore, Singapore
| | - Federico Torta
- Singapore Lipidomics Incubator (SLING), Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117596, Singapore, Singapore
| | - Dominik Schwudke
- Research Center Borstel, Leibniz Lung Center, Borstel, Germany
- German Center for Infection Research (DZIF), 38124, Braunschweig, Germany
- Airway Research Center North Member of the German Center for Lung Research (DZL), 22927, Großhansdorf, Germany
| | - Sven W Meckelmann
- Applied Analytical Chemistry, University of Duisburg-Essen, 45141, Essen, Germany
| | - Cristina Coman
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139, Dortmund, Germany
- Department of Analytical Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| | - Oliver J Schmitz
- Applied Analytical Chemistry, University of Duisburg-Essen, 45141, Essen, Germany
| | - Brendan MacLean
- University of Washington, Department of Genome Sciences, WA, 98195, Seattle, USA
| | - Mailin-Christin Manke
- Department of Cardiology and Cardiovascular Medicine, University of Tübingen, 72076, Tübingen, Germany
| | - Oliver Borst
- Department of Cardiology and Cardiovascular Medicine, University of Tübingen, 72076, Tübingen, Germany
| | - Markus R Wenk
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, 117456, Singapore, Singapore
- Singapore Lipidomics Incubator (SLING), Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117596, Singapore, Singapore
| | - Nils Hoffmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139, Dortmund, Germany
| | - Robert Ahrends
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139, Dortmund, Germany.
- Department of Analytical Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria.
| |
Collapse
|
39
|
Ekroos K, Lavrynenko O, Titz B, Pater C, Hoeng J, Ivanov NV. Lipid-based biomarkers for CVD, COPD, and aging - A translational perspective. Prog Lipid Res 2020; 78:101030. [PMID: 32339553 DOI: 10.1016/j.plipres.2020.101030] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/23/2020] [Accepted: 03/16/2020] [Indexed: 12/11/2022]
Abstract
For many diseases, there is an unmet need for new or better biomarkers for improved disease risk assessment and monitoring, as available markers lack sufficient specificity. Lipids are drawing major interest as potential candidates for filling these gaps. This has recently been demonstrated by the identification of selective ceramides for prediction of cardiovascular mortality, enabling improved risk assessment of cardiovascular disease compared with conventional clinical markers. In this review, we discuss current lipid biomarker findings and the possible connection between cardiovascular disease, chronic obstructive pulmonary disease, and aging. Moreover, we discuss how to overcome the current roadblocks facing lipid biomarker research. We stress the need for improved quantification, standardization of methodologies, and establishment of initial reference values to allow for an efficient transfer path of research findings into the clinical landscape, and, ultimately, to put newly identified biomarkers into practical use.
Collapse
Affiliation(s)
- Kim Ekroos
- Lipidomics Consulting Ltd., Irisviksvägen 31D, 02230 Esbo, Finland.
| | - Oksana Lavrynenko
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland.
| | - Bjoern Titz
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland.
| | - Calin Pater
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland.
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland.
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland.
| |
Collapse
|
40
|
Characterisation of the dynamic nature of lipids throughout the lifespan of genetically identical female and male Daphnia magna. Sci Rep 2020; 10:5576. [PMID: 32221338 PMCID: PMC7101400 DOI: 10.1038/s41598-020-62476-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/24/2020] [Indexed: 01/08/2023] Open
Abstract
Lipids play a significant role in regulation of health and disease. To enhance our understanding of the role of lipids in regulation of lifespan and healthspan additional studies are required. Here, UHPLC-MS/MS lipidomics was used to measure dynamic changes in lipid composition as a function of age and gender in genetically identical male and female Daphnia magna with different average lifespans. We demonstrate statistically significant age-related changes in triglycerides (TG), diglycerides (DG), phosphatidylcholine, phosphatidylethanolamine, ceramide and sphingomyelin lipid groups, for example, in males, 17.04% of TG lipid species decline with age whilst 37.86% increase in relative intensity with age. In females, 23.16% decrease and 25.31% increase in relative intensity with age. Most interestingly, the rate and direction of change can differ between genetically identical female and male Daphnia magna, which could be the cause and/or the consequence of the different average lifespans between the two genetically identical genders. This study provides a benchmark dataset to understand how lipids alter as a function of age in genetically identical female and male species with different average lifespan and ageing rate.
Collapse
|
41
|
Wolrab D, Chocholoušková M, Jirásko R, Peterka O, Holčapek M. Validation of lipidomic analysis of human plasma and serum by supercritical fluid chromatography-mass spectrometry and hydrophilic interaction liquid chromatography-mass spectrometry. Anal Bioanal Chem 2020; 412:2375-2388. [PMID: 32078000 DOI: 10.1007/s00216-020-02473-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/22/2020] [Accepted: 01/30/2020] [Indexed: 01/05/2023]
Abstract
Ultrahigh-performance supercritical fluid chromatography-mass spectrometry (UHPSFC/MS) has a great potential for the high-throughput lipidomic quantitation of biological samples; therefore, the full optimization and method validation of UHPSFC/MS is compared here with ultrahigh-performance liquid chromatography-mass spectrometry (UHPLC/MS) in hydrophilic interaction liquid chromatography (HILIC) mode as the second powerful technique for the lipid class separation. First, the performance of six common extraction protocols is investigated, where the Folch procedure yields the best results with regard to recovery rate, matrix effect, and precision. Then, the full optimization and analytical validation for eight lipid classes using UHPSFC/MS and HILIC-UHPLC/MS methods are performed for the same sample set and applied for the lipidomic characterization of pooled samples of human plasma, human serum, and NIST SRM 1950 human plasma. The choice of appropriate internal standards (IS) for individual lipid classes has a key importance for reliable quantitative workflows illustrated by the selectivity while validation and the calculation of the quantitation error using multiple internal standards per lipid class. Validation results confirm the applicability of both methods, but UHPSFC/MS provides some distinct advantages, such as the successful separation of both non-polar and polar lipid classes unlike to HILIC-UHPLC/MS, shorter total run times (8 vs. 10.5 min), and slightly higher robustness. Various types of correlations between methods (UHPSFC/MS and HILIC-UHPLC/MS), biological material (plasma and serum), IS (laboratory and commercially mixtures), and literature data on the standard reference material show the intra- and inter-laboratory comparison in the quantitation of lipid species from eight lipid classes, the concentration differences in serum and plasma as well as the applicability of non-commercially available internal standard mixtures for lipid quantitation.
Collapse
Affiliation(s)
- Denise Wolrab
- Faculty of Chemical Technology, Department of Analytical Chemistry, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Michaela Chocholoušková
- Faculty of Chemical Technology, Department of Analytical Chemistry, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Robert Jirásko
- Faculty of Chemical Technology, Department of Analytical Chemistry, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Ondřej Peterka
- Faculty of Chemical Technology, Department of Analytical Chemistry, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Michal Holčapek
- Faculty of Chemical Technology, Department of Analytical Chemistry, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic.
| |
Collapse
|
42
|
Abstract
Lipidomics data generated using untargeted mass spectrometry techniques can offer great biological insight to metabolic status and disease diagnoses. As the community's ability to conduct large-scale studies with deep coverage of the lipidome expands, approaches to analyzing untargeted data and extracting biological insight are needed. Currently, the function of most individual lipids are not known; however, meaningful biological information can be extracted. Here, I will describe a step-by-step approach to identify patterns and trends in untargeted mass spectrometry lipidomics data to assist users in extracting information leading to a greater understanding of biological systems.
Collapse
|
43
|
Vvedenskaya O, Wang Y, Ackerman JM, Knittelfelder O, Shevchenko A. Analytical challenges in human plasma lipidomics: A winding path towards the truth. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
44
|
Disrupted Blood-Retina Lysophosphatidylcholine Transport Impairs Photoreceptor Health But Not Visual Signal Transduction. J Neurosci 2019; 39:9689-9701. [PMID: 31676603 DOI: 10.1523/jneurosci.1142-19.2019] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/04/2019] [Accepted: 10/23/2019] [Indexed: 01/09/2023] Open
Abstract
Retinal photoreceptor cells contain the highest concentration of docosahexaenoic acid (DHA) in our bodies, and it has been long assumed that this is critical for supporting normal vision. Indeed, early studies using DHA dietary restriction documented reduced light sensitivity by DHA-deprived retinas. Recently, it has been demonstrated that a major route of DHA entry in the retina is the delivery across the blood-retina barrier by the sodium-dependent lipid transporter, Mfsd2a. This discovery opened a unique opportunity to analyze photoreceptor health and function in DHA-deprived retinas using the Mfsd2a knock-out mouse as animal model. Our lipidome analyses of Mfsd2a -/- retinas and outer segment membranes corroborated the previously reported decrease in the fraction of DHA-containing phospholipids and a compensatory increase in phospholipids containing arachidonic acid. We also revealed an increase in the retinal content of monounsaturated fatty acids and a reduction in very long chain fatty acids. These changes could be explained by a combination of reduced DHA supply to the retina and a concomitant upregulation of several fatty acid desaturases controlled by sterol regulatory element-binding transcription factors, which are upregulated in Mfsd2a -/- retinas. Mfsd2a -/- retinas undergo slow progressive degeneration, with ∼30% of photoreceptor cells lost by the age of 6 months. Despite this pathology, the ultrastructure Mfsd2a -/- photoreceptors and their ability to produce light responses were essentially normal. These data demonstrate that, whereas maintaining the lysophosphatidylcholine route of DHA supply to the retina is essential for long-term photoreceptor survival, it is not important for supporting normal phototransduction.SIGNIFICANCE STATEMENT Phospholipids containing docosahexaenoic acid (DHA) are greatly enriched in the nervous system, with the highest concentration found in the light-sensitive membranes of photoreceptor cells. In this study, we analyzed the consequences of impaired DHA transport across the blood-retina barrier. We have found that, in addition to a predictable reduction in the DHA level, the affected retinas undergo a complex, transcriptionally-driven rebuilding of their membrane lipidome in a pattern preserving the overall saturation/desaturation balance of retinal phospholipids. Remarkably, these changes do not affect the ability of photoreceptors to produce responses to light but are detrimental for the long-term survival of these cells.
Collapse
|
45
|
Gerl MJ, Klose C, Surma MA, Fernandez C, Melander O, Männistö S, Borodulin K, Havulinna AS, Salomaa V, Ikonen E, Cannistraci CV, Simons K. Machine learning of human plasma lipidomes for obesity estimation in a large population cohort. PLoS Biol 2019; 17:e3000443. [PMID: 31626640 PMCID: PMC6799887 DOI: 10.1371/journal.pbio.3000443] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/04/2019] [Indexed: 01/05/2023] Open
Abstract
Obesity is associated with changes in the plasma lipids. Although simple lipid quantification is routinely used, plasma lipids are rarely investigated at the level of individual molecules. We aimed at predicting different measures of obesity based on the plasma lipidome in a large population cohort using advanced machine learning modeling. A total of 1,061 participants of the FINRISK 2012 population cohort were randomly chosen, and the levels of 183 plasma lipid species were measured in a novel mass spectrometric shotgun approach. Multiple machine intelligence models were trained to predict obesity estimates, i.e., body mass index (BMI), waist circumference (WC), waist-hip ratio (WHR), and body fat percentage (BFP), and validated in 250 randomly chosen participants of the Malmö Diet and Cancer Cardiovascular Cohort (MDC-CC). Comparison of the different models revealed that the lipidome predicted BFP the best (R2 = 0.73), based on a Lasso model. In this model, the strongest positive and the strongest negative predictor were sphingomyelin molecules, which differ by only 1 double bond, implying the involvement of an unknown desaturase in obesity-related aberrations of lipid metabolism. Moreover, we used this regression to probe the clinically relevant information contained in the plasma lipidome and found that the plasma lipidome also contains information about body fat distribution, because WHR (R2 = 0.65) was predicted more accurately than BMI (R2 = 0.47). These modeling results required full resolution of the lipidome to lipid species level, and the predicting set of biomarkers had to be sufficiently large. The power of the lipidomics association was demonstrated by the finding that the addition of routine clinical laboratory variables, e.g., high-density lipoprotein (HDL)- or low-density lipoprotein (LDL)- cholesterol did not improve the model further. Correlation analyses of the individual lipid species, controlled for age and separated by sex, underscores the multiparametric and lipid species-specific nature of the correlation with the BFP. Lipidomic measurements in combination with machine intelligence modeling contain rich information about body fat amount and distribution beyond traditional clinical assays.
Collapse
Affiliation(s)
| | | | - Michal A. Surma
- Lipotype GmbH, Dresden, Germany
- Łukasiewicz Research Network—PORT Polish Center for Technology Development, Wroclaw, Poland
| | | | - Olle Melander
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- Department of Emergency and Internal Medicine, Skåne University Hospital, Malmö, Sweden
| | - Satu Männistö
- Public Health Promotion Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Katja Borodulin
- National Institute for Health and Welfare, Helsinki, Finland
| | - Aki S. Havulinna
- National Institute for Health and Welfare, Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM-HiLife), Helsinki, Finland
| | - Veikko Salomaa
- National Institute for Health and Welfare, Helsinki, Finland
| | - Elina Ikonen
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland
| | - Carlo V. Cannistraci
- Biomedical Cybernetics Group, Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Department of Physics, Technische Universität Dresden, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
- Complex Network Intelligence Lab, Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China
| | - Kai Simons
- Lipotype GmbH, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
46
|
Lightbody G, Haberland V, Browne F, Taggart L, Zheng H, Parkes E, Blayney JK. Review of applications of high-throughput sequencing in personalized medicine: barriers and facilitators of future progress in research and clinical application. Brief Bioinform 2019; 20:1795-1811. [PMID: 30084865 PMCID: PMC6917217 DOI: 10.1093/bib/bby051] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/01/2018] [Indexed: 12/28/2022] Open
Abstract
There has been an exponential growth in the performance and output of sequencing technologies (omics data) with full genome sequencing now producing gigabases of reads on a daily basis. These data may hold the promise of personalized medicine, leading to routinely available sequencing tests that can guide patient treatment decisions. In the era of high-throughput sequencing (HTS), computational considerations, data governance and clinical translation are the greatest rate-limiting steps. To ensure that the analysis, management and interpretation of such extensive omics data is exploited to its full potential, key factors, including sample sourcing, technology selection and computational expertise and resources, need to be considered, leading to an integrated set of high-performance tools and systems. This article provides an up-to-date overview of the evolution of HTS and the accompanying tools, infrastructure and data management approaches that are emerging in this space, which, if used within in a multidisciplinary context, may ultimately facilitate the development of personalized medicine.
Collapse
Affiliation(s)
- Gaye Lightbody
- School of Computing, Ulster University, Newtownabbey, UK
| | - Valeriia Haberland
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Fiona Browne
- School of Computing, Ulster University, Newtownabbey, UK
| | | | - Huiru Zheng
- School of Computing, Ulster University, Newtownabbey, UK
| | - Eileen Parkes
- Centre for Cancer Research & Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, UK
| | - Jaine K Blayney
- Centre for Cancer Research & Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, UK
| |
Collapse
|
47
|
Schuhmann K, Moon H, Thomas H, Ackerman JM, Groessl M, Wagner N, Kellmann M, Henry I, Nadler A, Shevchenko A. Quantitative Fragmentation Model for Bottom-Up Shotgun Lipidomics. Anal Chem 2019; 91:12085-12093. [PMID: 31441640 PMCID: PMC6751524 DOI: 10.1021/acs.analchem.9b03270] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/23/2019] [Indexed: 01/01/2023]
Abstract
Quantitative bottom-up shotgun lipidomics relies on molecular species-specific "signature" fragments consistently detectable in tandem mass spectra of analytes and standards. Molecular species of glycerophospholipids are typically quantified using carboxylate fragments of their fatty acid moieties produced by higher-energy collisional dissociation of their molecular anions. However, employing standards whose fatty acids moieties are similar, yet not identical, to the target lipids could severely compromise their quantification. We developed a generic and portable fragmentation model implemented in the open-source LipidXte software that harmonizes the abundances of carboxylate anion fragments originating from fatty acid moieties having different sn-1/2 positions at the glycerol backbone, length of the hydrocarbon chain, and number and location of double bonds. The postacquisition adjustment enables unbiased absolute (molar) quantification of glycerophospholipid species independent of instrument settings, collision energy, and employed internal standards.
Collapse
Affiliation(s)
- Kai Schuhmann
- Max
Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - HongKee Moon
- Max
Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Henrik Thomas
- Max
Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Jacobo Miranda Ackerman
- Max
Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Michael Groessl
- Department
of Nephrology and Hypertension, Inselspital,
Bern University Hospital, Freiburgstr. 15, 3010 Bern, Switzerland
- Department
for BioMedical Research, University of Bern, Murtenstr. 35, 3010 Bern, Switzerland
| | - Nicolai Wagner
- Max
Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Markus Kellmann
- Thermo
Fisher Scientific, Hanna-Kunath-Str.
11, 28199 Bremen, Germany
| | - Ian Henry
- Max
Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - André Nadler
- Max
Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Andrej Shevchenko
- Max
Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| |
Collapse
|
48
|
Nilsson AK, Sjöbom U, Christenson K, Hellström A. Lipid profiling of suction blister fluid: comparison of lipids in interstitial fluid and plasma. Lipids Health Dis 2019; 18:164. [PMID: 31443723 PMCID: PMC6708155 DOI: 10.1186/s12944-019-1107-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/14/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Recent technical advances in the extraction of dermal interstitial fluid (ISF) have stimulated interest in using this rather unexploited biofluid as an alternative to blood for detection and prediction of disease. However, knowledge about the presence of useful biomarkers for health monitoring in ISF is still limited. In this study, we characterized the lipidome of human suction blister fluid (SBF) as a surrogate for pure ISF and compared it to that of plasma. METHODS Plasma and SBF samples were obtained from 18 healthy human volunteers after an overnight fast. Total lipids were extracted and analyzed by liquid chromatography-tandem mass spectrometry. One hundred ninety-three lipid species covering 10 complex lipid classes were detected and quantified in both plasma and SBF using multiple reaction monitoring. A fraction of the lipid extract was subjected to alkaline transesterification and fatty acid methyl esters were analyzed by gas chromatography-mass spectrometry. RESULTS The total concentration of lipids in SBF was 17% of the plasma lipid concentration. The molar fraction of lipid species within lipid classes, as well as total fatty acids, showed a generally high correlation between plasma and SBF. However, SBF had larger fractions of lysophospholipids and diglycerides relative to plasma, and consequently less diacylphospholipids and triglycerides. Principal component analysis revealed that the interindividual variation in SBF lipid profiles was considerably larger than the within-subject variation between plasma and SBF. CONCLUSIONS Plasma and SBF lipid profiles show high correlation and SBF could be used interchangeably with blood for the analysis of major lipids used in health monitoring.
Collapse
Affiliation(s)
- Anders K Nilsson
- Section for Ophthalmology, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Department of Clinical Neuroscience at Institute of Neuroscience and Physiology, Drottning Silvias Barn- och Ungdomssjukhus, Tillväxtcentrum, Vitaminvägen 21, 416 50, Göteborg, Sweden.
| | - Ulrika Sjöbom
- Section for Ophthalmology, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Karin Christenson
- Department of Oral Microbiology and Immunology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ann Hellström
- Section for Ophthalmology, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
49
|
Gross AS, Zimmermann A, Pendl T, Schroeder S, Schoenlechner H, Knittelfelder O, Lamplmayr L, Santiso A, Aufschnaiter A, Waltenstorfer D, Ortonobes Lara S, Stryeck S, Kast C, Ruckenstuhl C, Hofer SJ, Michelitsch B, Woelflingseder M, Müller R, Carmona-Gutierrez D, Madl T, Büttner S, Fröhlich KU, Shevchenko A, Eisenberg T. Acetyl-CoA carboxylase 1-dependent lipogenesis promotes autophagy downstream of AMPK. J Biol Chem 2019; 294:12020-12039. [PMID: 31209110 PMCID: PMC6690696 DOI: 10.1074/jbc.ra118.007020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/31/2019] [Indexed: 12/16/2022] Open
Abstract
Autophagy, a membrane-dependent catabolic process, ensures survival of aging cells and depends on the cellular energetic status. Acetyl-CoA carboxylase 1 (Acc1) connects central energy metabolism to lipid biosynthesis and is rate-limiting for the de novo synthesis of lipids. However, it is unclear how de novo lipogenesis and its metabolic consequences affect autophagic activity. Here, we show that in aging yeast, autophagy levels highly depend on the activity of Acc1. Constitutively active Acc1 (acc1S/A ) or a deletion of the Acc1 negative regulator, Snf1 (yeast AMPK), shows elevated autophagy levels, which can be reversed by the Acc1 inhibitor soraphen A. Vice versa, pharmacological inhibition of Acc1 drastically reduces cell survival and results in the accumulation of Atg8-positive structures at the vacuolar membrane, suggesting late defects in the autophagic cascade. As expected, acc1S/A cells exhibit a reduction in acetate/acetyl-CoA availability along with elevated cellular lipid content. However, concomitant administration of acetate fails to fully revert the increase in autophagy exerted by acc1S/A Instead, administration of oleate, while mimicking constitutively active Acc1 in WT cells, alleviates the vacuolar fusion defects induced by Acc1 inhibition. Our results argue for a largely lipid-dependent process of autophagy regulation downstream of Acc1. We present a versatile genetic model to investigate the complex relationship between acetate metabolism, lipid homeostasis, and autophagy and propose Acc1-dependent lipogenesis as a fundamental metabolic path downstream of Snf1 to maintain autophagy and survival during cellular aging.
Collapse
Affiliation(s)
- Angelina S Gross
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Andreas Zimmermann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria; Central Lab Gracia, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Tobias Pendl
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Sabrina Schroeder
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria
| | - Hannes Schoenlechner
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Oskar Knittelfelder
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Laura Lamplmayr
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Ana Santiso
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Andreas Aufschnaiter
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria; Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, 114 19 Stockholm, Sweden
| | - Daniel Waltenstorfer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Sandra Ortonobes Lara
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Sarah Stryeck
- Gottfried Schatz Research Center for Cell Signaling, Metabolism, and Aging, Institute of Molecular Biology and Biochemistry, Medical University of Graz, 8036 Graz, Austria
| | - Christina Kast
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Christoph Ruckenstuhl
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Sebastian J Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria
| | - Birgit Michelitsch
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria; Division of Plastic, Aesthetic, and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | | | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland, 66123 Saarbrücken, Germany
| | | | - Tobias Madl
- BioTechMed-Graz, 8010 Graz, Austria; Gottfried Schatz Research Center for Cell Signaling, Metabolism, and Aging, Institute of Molecular Biology and Biochemistry, Medical University of Graz, 8036 Graz, Austria
| | - Sabrina Büttner
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria; Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, 114 19 Stockholm, Sweden
| | - Kai-Uwe Fröhlich
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria; Central Lab Gracia, NAWI Graz, University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria.
| |
Collapse
|
50
|
Abstract
Extensive research demonstrates unequivocally that nutrition plays a fundamental role in maintaining health and preventing disease. In parallel nutrition research provides evidence that the risks and benefits of diet and lifestyle choices do not affect people equally, as people are inherently variable in their responses to nutrition and associated interventions to maintain health and prevent disease. To simplify the inherent complexity of human subjects and their nutrition, with the aim of managing expectations for dietary guidance required to ensure healthy populations and individuals, nutrition researchers often seek to group individuals based on commonly used criteria. This strategy relies on demonstrating meaningful conclusions based on comparison of group mean responses of assigned groups. Such studies are often confounded by the heterogeneous nutrition response. Commonly used criteria applied in grouping study populations and individuals to identify mechanisms and determinants of responses to nutrition often contribute to the problem of interpreting the results of group comparisons. Challenges of interpreting the group mean using diverse populations will be discussed with respect to studies in human subjects, in vivo and in vitro model systems. Future advances in nutrition research to tackle inter-individual variation require a coordinated approach from funders, learned societies, nutrition scientists, publishers and reviewers of the scientific literature. This will be essential to develop and implement improved study design, data recording, analysis and reporting to facilitate more insightful interpretation of the group mean with respect to population diversity and the heterogeneous nutrition response.
Collapse
|