1
|
Anne S, McDonald MR, Lu Y, Peterson RL. Pseudogymnoascus destructans Transcriptional Response to Chronic Copper Stress. J Fungi (Basel) 2025; 11:372. [PMID: 40422706 PMCID: PMC12113139 DOI: 10.3390/jof11050372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 04/30/2025] [Accepted: 05/06/2025] [Indexed: 05/28/2025] Open
Abstract
Copper (Cu) is an essential metal micronutrient, and a fungal pathogen's ability to thrive in diverse niches across a broad range of bioavailable copper levels is vital for host colonization and fungal propagation. Recent transcriptomic studies have implied that trace metal acquisition is important for the propagation of the white nose syndrome (WNS) causing fungus, Pseudogymnoascus destructans, on bat hosts. This report characterizes the P. destructans transcriptional response to Cu-withholding and Cu-overload stress. We identify 583 differently expressed genes (DEGs) that respond to Cu-withholding stress and 667 DEGs that respond to Cu-overload stress. We find that the P. destructans Cu-transporter genes CTR1a and CTR1b, as well as two homologs to Cryptococcus neoformans Cbi1/BIM1 VC83_03095 (BLP2) and VC83_07867 (BLP3), are highly regulated by Cu-withholding stress. We identify a cluster of genes, VC83_01834 - VC83_01838, that are regulated by copper bioavailability, which we identify as the Cu-Responsive gene Cluster (CRC). We find that chronic exposure to elevated copper levels leads to an increase in genes associated with DNA repair and DNA replication fidelity. A comparison of our transcriptomic datasets with P. destructans at WNS fungal infection sites reveals several putative fungal virulence factors that respond to environmental copper stress.
Collapse
Affiliation(s)
- Saika Anne
- Department of Biology, Texas State University, San Marcos, TX 78666, USA
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Maranda R. McDonald
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Yuan Lu
- Institute for Molecular Life Sciences, Texas State University, San Marcos, TX 78666, USA;
| | - Ryan L. Peterson
- Department of Biology, Texas State University, San Marcos, TX 78666, USA
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| |
Collapse
|
2
|
Savković Ž, Popović S, Stupar M. Unveiling the Subterranean Symphony: A Comprehensive Study of Cave Fungi Revealed Through National Center for Biotechnology Sequences. J Fungi (Basel) 2025; 11:286. [PMID: 40278107 PMCID: PMC12028181 DOI: 10.3390/jof11040286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 04/26/2025] Open
Abstract
Caves can be regarded as extreme environments, and fungi are known as omnipresent and highly adaptable organisms that can easily colonize such environments. The primary objective of this study was to use the statistical analysis of sequences stored in the NCBI database, together with related metadata, to find and uncover statistically significant distribution patterns of fungi occupying different substrata inside the caves. The obtained list included a total of 1447 sequences corresponding to fungi isolated from various substrata within cave environments around the world, which corresponds to 445 fungal species, members of the 394 genera. Ascomycota was the most dominant phylum and Eurotiomycetes the dominant class of fungal dwellers in these environments. The highest species richness is detected for the genus Penicillium (57), followed by Aspergillus (51). On the other hand, the most frequently documented single species was Pseudogymnoascus destructans, isolated mostly from hibernating bats and guano, followed by Penicillium chrysogenum. Because caves have stable, nutrient-limited, low-competition microhabitats that support unusual or cryptic species, many new fungal taxa have been reported as well (such as Aspergillus, Apiotrichum, and Cephalotrichum species). Finally, cutting-edge molecular technologies and better sampling methods are revealing hitherto undiscovered fungal diversity in caves worldwide.
Collapse
Affiliation(s)
| | | | - Miloš Stupar
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia; (Ž.S.); (S.P.)
| |
Collapse
|
3
|
Anne S, McDonald MR, Lu Y, Peterson RL. Pseudogymnoascus destructans transcriptional response to chronic copper stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.28.646060. [PMID: 40236230 PMCID: PMC11996344 DOI: 10.1101/2025.03.28.646060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Copper (Cu) is an essential metal micronutrient, and a fungal pathogens' ability to thrive in diverse niches across a broad range of bioavailable copper levels is vital for host-colonization and fungal-propagation. Recent transcriptomic studies have implemented that trace metal acquisition is important for the propagation of the white nose syndrome (WNS) causing fungus, Pseudogymnoascus destructans , on bat hosts. This report characterizes the P. destructans transcriptional response to Cu-withholding and Cu-overload stress. We identify 583 differently expressed genes (DEGs) that respond to Cu-withholding stress and 667 DEGs that respond to Cu-overload stress. We find that the P. destructans Cu-transporter genes CTR 1a and CTR1 b, as well as two homologs to Cryptococcus neoformans Cbi1/BIM1 VC83_03095 (BLP2) and VC83_07867 (BLP3) are highly regulated by Cu-withholding stress. We identify a cluster of genes, VC83_01834 - VC83_01837, that are regulated by copper bioavailability, which we identify as the Cu Responsive gene Cluster (CRC). We find that chronic exposure to elevated copper levels leads to an increase in genes associated with DNA repair and DNA replication fidelity. A comparison of our transcriptomic data sets with P. destructans at WNS fungal infection sites reveals several putative fungal virulence factors that respond to environmental copper stress.
Collapse
|
4
|
Whiting‐Fawcett F, Blomberg AS, Troitsky T, Meierhofer MB, Field KA, Puechmaille SJ, Lilley TM. A Palearctic view of a bat fungal disease. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2025; 39:e14265. [PMID: 38616727 PMCID: PMC11780211 DOI: 10.1111/cobi.14265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/02/2024] [Accepted: 01/20/2024] [Indexed: 04/16/2024]
Abstract
The fungal infection causing white-nose disease in hibernating bats in North America has resulted in dramatic population declines of affected species, since the introduction of the causative agent Pseudogymnoascus destructans. The fungus is native to the Palearctic, where it also infects several bat species, yet rarely causes severe pathology or the death of the host. Pseudogymnoascus destructans infects bats during hibernation by invading and digesting the skin tissue, resulting in the disruption of torpor patterns and consequent emaciation. Relations among pathogen, host, and environment are complex, and individuals, populations, and species respond to the fungal pathogen in different ways. For example, the Nearctic Myotis lucifugus responds to infection by mounting a robust immune response, leading to immunopathology often contributing to mortality. In contrast, the Palearctic M. myotis shows no significant immunological response to infection. This lack of a strong response, resulting from the long coevolution between the hosts and the pathogen in the pathogen's native range, likely contributes to survival in tolerant species. After more than 15 years since the initial introduction of the fungus to North America, some of the affected populations are showing signs of recovery, suggesting that the fungus, hosts, or both are undergoing processes that may eventually lead to coexistence. The suggested or implemented management methods of the disease in North America have encompassed, for example, the use of probiotics and fungicides, vaccinations, and modifying the environmental conditions of the hibernation sites to limit the growth of the pathogen, intensity of infection, or the hosts' responses to it. Based on current knowledge from Eurasia, policy makers and conservation managers should refrain from disrupting the ongoing evolutionary processes and adopt a holistic approach to managing the epizootic.
Collapse
Affiliation(s)
- F. Whiting‐Fawcett
- Department of Evolution, Ecology and BehaviourUniversity of LiverpoolLiverpoolUK
- BatLab Finland, Finnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland
| | - A. S. Blomberg
- BatLab Finland, Finnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland
| | - T. Troitsky
- BatLab Finland, Finnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland
| | - M. B. Meierhofer
- BatLab Finland, Finnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland
| | - K. A. Field
- Department of BiologyBucknell UniversityLewisburgPennsylvaniaUSA
| | - S. J. Puechmaille
- Institut des Sciences de l’Évolution Montpellier (ISEM)University of Montpellier, CNRS, EPHE, IRDMontpellierFrance
- Institut Universitaire de FranceParisFrance
| | - T. M. Lilley
- BatLab Finland, Finnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
5
|
Anne S, Friudenberg AD, Peterson RL. Characterization of a High-Affinity Copper Transporter CTR1a in the White-Nose Syndrome Causing Fungal Pathogen Pseudogymnoascus destructans. J Fungi (Basel) 2024; 10:729. [PMID: 39452681 PMCID: PMC11509074 DOI: 10.3390/jof10100729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
Copper is an essential micronutrient and the ability to scavenge tightly bound or trace levels of copper ions at the host-pathogen interface is vital for fungal proliferation in animal hosts. Recent studies suggest that trace metal ion acquisition is critical for the establishment and propagation of Pseudogymnoascus destructans, the fungal pathogen responsible for white-nose syndrome (WNS), on their bat host. However, little is known about these metal acquisition pathways in P. destructans. In this study, we report the characterization of the P. destructans high-affinity copper transporter VC83_00191 (PdCTR1a), which is implicated as a virulence factor associated with the WNS disease state. Using Saccharomyces cerevisiae as a recombinant expression host, we find that PdCTR1a can efficiently traffic Cu ions into the yeast cytoplasm. Complementary studies in the native P. destructans fungus provide evidence that PdCTR1a transcripts and protein levels are dictated by Cu-bioavailability in the growth media. Our study demonstrates that PdCTR1a is a functional high-affinity copper transporter and is relevant to Cu homeostasis pathways in P. destructans.
Collapse
Affiliation(s)
- Saika Anne
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666, USA;
| | - Alyssa D. Friudenberg
- Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX 78666, USA;
| | - Ryan L. Peterson
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666, USA;
- Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX 78666, USA;
| |
Collapse
|
6
|
Twort VG, Laine VN, Field KA, Whiting-Fawcett F, Ito F, Reiman M, Bartonicka T, Fritze M, Ilyukha VA, Belkin VV, Khizhkin EA, Reeder DM, Fukui D, Jiang TL, Lilley TM. Signals of positive selection in genomes of palearctic Myotis-bats coexisting with a fungal pathogen. BMC Genomics 2024; 25:828. [PMID: 39227786 PMCID: PMC11370307 DOI: 10.1186/s12864-024-10722-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/19/2024] [Indexed: 09/05/2024] Open
Abstract
Disease can act as a driving force in shaping genetic makeup across populations, even species, if the impacts influence a particularly sensitive part of their life cycles. White-nose disease is caused by a fungal pathogen infecting bats during hibernation. The mycosis has caused massive population declines of susceptible species in North America, particularly in the genus Myotis. However, Myotis bats appear to tolerate infection in Eurasia, where the fungal pathogen has co-evolved with its bat hosts for an extended period of time. Therefore, with susceptible and tolerant populations, the fungal disease provides a unique opportunity to tease apart factors contributing to tolerance at a genomic level to and gain an understanding of the evolution of non-harmful in host-parasite interactions. To investigate if the fungal disease has caused adaptation on a genomic level in Eurasian bat species, we adopted both whole-genome sequencing approaches and a literature search to compile a set of 300 genes from which to investigate signals of positive selection in genomes of 11 Eurasian bats at the codon-level. Our results indicate significant positive selection in 38 genes, many of which have a marked role in responses to infection. Our findings suggest that white-nose syndrome may have applied a significant selective pressure on Eurasian Myotis-bats in the past, which can contribute their survival in co-existence with the pathogen. Our findings provide an insight on the selective pressure pathogens afflict on their hosts using methodology that can be adapted to other host-pathogen study systems.
Collapse
Affiliation(s)
- V G Twort
- Finnish Museum of Natural History, BatLab Finland, University of Helsinki, Helsinki, Finland
| | - V N Laine
- Finnish Museum of Natural History, BatLab Finland, University of Helsinki, Helsinki, Finland
| | - K A Field
- Department of Biology, Bucknell University, Lewisburg, PA, USA
| | - F Whiting-Fawcett
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - F Ito
- Finnish Museum of Natural History, BatLab Finland, University of Helsinki, Helsinki, Finland
| | - M Reiman
- Finnish Museum of Natural History, BatLab Finland, University of Helsinki, Helsinki, Finland
| | - T Bartonicka
- Dept. Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, Brno, 611 37, Czech Republic
| | - M Fritze
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
- German Bat Observatory, Berlin, Germany
- Competence Center for Bat Conservation Saxony Anhalt, in the South Harz Karst Landscape Biosphere Reserve, Südharz, Germany
| | - V A Ilyukha
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - V V Belkin
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Russia
| | - E A Khizhkin
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Russia
| | - D M Reeder
- Department of Biology, Bucknell University, Lewisburg, PA, USA
| | - D Fukui
- Graduate School of Agricultural and Life Sciences, The University of Tokyo Fuji Iyashinomori Woodland Study Center, The University of Tokyo, Yamanakako, Japan
| | - T L Jiang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - T M Lilley
- Finnish Museum of Natural History, BatLab Finland, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
7
|
Isidoro-Ayza M, Lorch JM, Klein BS. The skin I live in: Pathogenesis of white-nose syndrome of bats. PLoS Pathog 2024; 20:e1012342. [PMID: 39207947 PMCID: PMC11361426 DOI: 10.1371/journal.ppat.1012342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
The emergence of white-nose syndrome (WNS) in North America has resulted in mass mortalities of hibernating bats and total extirpation of local populations. The need to mitigate this disease has stirred a significant body of research to understand its pathogenesis. Pseudogymnoascus destructans, the causative agent of WNS, is a psychrophilic (cold-loving) fungus that resides within the class Leotiomycetes, which contains mainly plant pathogens and is unrelated to other consequential pathogens of animals. In this review, we revisit the unique biology of hibernating bats and P. destructans and provide an updated analysis of the stages and mechanisms of WNS progression. The extreme life history of hibernating bats, the psychrophilic nature of P. destructans, and its evolutionary distance from other well-characterized animal-infecting fungi translate into unique host-pathogen interactions, many of them yet to be discovered.
Collapse
Affiliation(s)
- Marcos Isidoro-Ayza
- Department of Pediatrics, Medicine and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jeffrey M. Lorch
- U.S. Geological Survey, National Wildlife Health Center, Madison, Wisconsin, United States of America
| | - Bruce S. Klein
- Department of Pediatrics, Medicine and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
8
|
Pikula J, Brichta J, Seidlova V, Piacek V, Zukal J. Higher antibody titres against Pseudogymnoascus destructans are associated with less white-nose syndrome skin lesions in Palearctic bats. Front Immunol 2023; 14:1269526. [PMID: 38143741 PMCID: PMC10739372 DOI: 10.3389/fimmu.2023.1269526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/28/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction Serological tests can be used to test whether an animal has been exposed to an infectious agent, and whether its immune system has recognized and produced antibodies against it. Paired samples taken several weeks apart then document an ongoing infection and/or seroconversion. Methods In the absence of a commercial kit, we developed an indirect enzyme-linked immunosorbent assay (ELISA) to detect the fungus-specific antibodies for Pseudogymnoascus destructans, the agent of white-nose syndrome in bats. Results and Discussion Samples collected from European Myotis myotis (n=35) and Asian Myotis dasycneme (n=11) in their hibernacula at the end of the hibernation period displayed 100% seroprevalence of antibodies against P. destructans, demonstrating a high rate of exposure. Our results showed that the higher the titre of antibodies against P. destructans, the lower the infection intensity, suggesting that a degree of protection is provided by this arm of adaptive immunity in Palearctic bats. Moreover, P. destructans infection appears to be a seasonally self-limiting disease of Palearctic bats showing seroconversion as the WNS skin lesions heal in the early post-hibernation period.
Collapse
Affiliation(s)
- Jiri Pikula
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czechia
- CEITEC: Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Jiri Brichta
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czechia
| | - Veronika Seidlova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czechia
| | - Vladimir Piacek
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czechia
| | - Jan Zukal
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia
| |
Collapse
|
9
|
Li A, Leng H, Li Z, Jin L, Sun K, Feng J. Temporal dynamics of the bat wing transcriptome: Insight into gene-expression changes that enable protection against pathogen. Virulence 2023; 14:2156185. [PMID: 36599840 PMCID: PMC9815227 DOI: 10.1080/21505594.2022.2156185] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Skin acts as a mechanical barrier between the body and its surrounding environment and plays an important role in resistance to pathogens. However, we still know little regarding skin responses to physiological changes, particularly with regard to responses against potential pathogens. We herein executed RNA-seq on the wing of the Rhinolophus ferrumequinum to assess gene-expression variations at four physiological stages: pre-hibernation, hibernation (early-hibernation and late-hibernation), and post-hibernation, as well as the gene-expression patterns of infected and uninfected bats with the Pseudogymnoascus destructans (Pd). Our results showed that a greater number of differentially expressed genes between the more disparate physiological stages. Functional enrichment analysis showed that the down-regulated response pathways in hibernating bats included phosphorus metabolism and immune response, indicating metabolic suppression and decreased whole immune function. We also found up-regulated genes in post-hibernating bats that included C-type lectin receptor signalling, Toll-like receptor signalling pathway, and cell adhesion, suggesting that the immune response and skin integrity of the wing were improved after bats emerged from their hibernation and that this facilitated clearing Pd from the integument. Additionally, we found that the genes involved in cytokine or chemokine activity were up-regulated in late-hibernation compared to early-hibernation and that FOSB regulation of immune cell activation was differentially expressed in bats infected with Pd during late-hibernation, implying that the host's innate immune function was enhanced during late-hibernation so as to resist pathogenic infection. Our findings highlight the concept that maintenance of intrinsic immunity provides protection against pathogenic infections in highly resistant bats.
Collapse
Affiliation(s)
- Aoqiang Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China,School of Life Sciences, Central China Normal University, Wuhan, China
| | - Haixia Leng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Zhongle Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China,College of Life Science, Jilin Agricultural University, Changchun, China
| | - Longru Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China,CONTACT Keping Sun
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China,College of Life Science, Jilin Agricultural University, Changchun, China,Jiang Feng
| |
Collapse
|
10
|
Reinhold LM, Rymer TL, Helgen KM, Wilson DT. Photoluminescence in mammal fur: 111 years of research. J Mammal 2023; 104:892-906. [PMID: 37545668 PMCID: PMC10399922 DOI: 10.1093/jmammal/gyad027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 02/04/2023] [Indexed: 08/08/2023] Open
Abstract
Photoluminescence in the pelage of mammals, a topic that has gained considerable recent research interest, was first documented in the 1700s and reported sporadically in the literature over the last century. The first detailed species accounts were of rabbits and humans, published 111 years ago in 1911. Recent studies have largely overlooked this earlier research into photoluminescent mammalian taxa and their luminophores. Here we provide a comprehensive update on existing research on photoluminescence in mammal fur, with the intention of drawing attention to earlier pioneering research in this field. We provide an overview on appropriate terminology, explain the physics of photoluminescence, and explore pigmentation and the ubiquitous photoluminescence of animal tissues, before touching on the emerging debate regarding visual function. We then provide a chronological account of research into mammalian fur photoluminescence, from the earliest discoveries and identification of luminophores to the most recent studies. While all mammal fur is likely to have a general low-level photoluminescence due to the presence of the protein keratin, fur glows luminously under ultraviolet light if it contains significant concentrations of tryptophan metabolites or porphyrins. Finally, we briefly discuss issues associated with preserved museum specimens in studies of photoluminescence. The study of mammal fur photoluminescence has a substantial history, which provides a broad foundation on which future studies can be grounded.
Collapse
Affiliation(s)
- Linda M Reinhold
- College of Science and Engineering, James Cook University, P.O. Box 6811, Cairns, Queensland 4870, Australia
| | - Tasmin L Rymer
- College of Science and Engineering, James Cook University, P.O. Box 6811, Cairns, Queensland 4870, Australia
- Centre for Tropical Environmental and Sustainability Sciences, James Cook University, P.O. Box 6811, Cairns, Queensland 4870, Australia
| | - Kristofer M Helgen
- Australian Museum Research Institute, 1 William Street, Sydney, New South Wales 2010, Australia
| | - David T Wilson
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland 4878, Australia
| |
Collapse
|
11
|
Dmytruk KV, Ruchala J, Fayura LR, Chrzanowski G, Dmytruk OV, Tsyrulnyk AO, Andreieva YA, Fedorovych DV, Motyka OI, Mattanovich D, Marx H, Sibirny AA. Efficient production of bacterial antibiotics aminoriboflavin and roseoflavin in eukaryotic microorganisms, yeasts. Microb Cell Fact 2023; 22:132. [PMID: 37474952 PMCID: PMC10357625 DOI: 10.1186/s12934-023-02129-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/21/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Actinomycetes Streptomyces davaonensis and Streptomyces cinnabarinus synthesize a promising broad-spectrum antibiotic roseoflavin, with its synthesis starting from flavin mononucleotide and proceeding through an immediate precursor, aminoriboflavin, that also has antibiotic properties. Roseoflavin accumulation by the natural producers is rather low, whereas aminoriboflavin accumulation is negligible. Yeasts have many advantages as biotechnological producers relative to bacteria, however, no recombinant producers of bacterial antibiotics in yeasts are known. RESULTS Roseoflavin biosynthesis genes have been expressed in riboflavin- or FMN-overproducing yeast strains of Candida famata and Komagataella phaffii. Both these strains accumulated aminoriboflavin, whereas only the latter produced roseoflavin. Aminoriboflavin isolated from the culture liquid of C. famata strain inhibited the growth of Staphylococcus aureus (including MRSA) and Listeria monocytogenes. Maximal accumulation of aminoriboflavin in shake-flasks reached 1.5 mg L- 1 (C. famata), and that of roseoflavin was 5 mg L- 1 (K. phaffii). Accumulation of aminoriboflavin and roseoflavin by K. phaffii recombinant strain in a bioreactor reached 22 and 130 mg L- 1, respectively. For comparison, recombinant strains of the native bacterial producer S. davaonensis accumulated near one-order less of roseoflavin while no recombinant producers of aminoriboflavin was reported at all. CONCLUSIONS Yeast recombinant producers of bacterial antibiotics aminoriboflavin and roseoflavin were constructed and evaluated.
Collapse
Affiliation(s)
- Kostyantyn V Dmytruk
- Institute of Cell Biology, National Academy of Sciences of Ukraine, Drahomanov St, 14/16, Lviv, 79005, Ukraine
| | - Justyna Ruchala
- University of Rzeszow, Zelwerowicza 4, Rzeszow, 35-601, Poland
| | - Liubov R Fayura
- Institute of Cell Biology, National Academy of Sciences of Ukraine, Drahomanov St, 14/16, Lviv, 79005, Ukraine
| | | | - Olena V Dmytruk
- Institute of Cell Biology, National Academy of Sciences of Ukraine, Drahomanov St, 14/16, Lviv, 79005, Ukraine
| | - Andriy O Tsyrulnyk
- Institute of Cell Biology, National Academy of Sciences of Ukraine, Drahomanov St, 14/16, Lviv, 79005, Ukraine
| | - Yuliia A Andreieva
- Institute of Cell Biology, National Academy of Sciences of Ukraine, Drahomanov St, 14/16, Lviv, 79005, Ukraine
| | - Daria V Fedorovych
- Institute of Cell Biology, National Academy of Sciences of Ukraine, Drahomanov St, 14/16, Lviv, 79005, Ukraine
| | - Olena I Motyka
- Research Institute of Epidemiology and Hygiene of the Danylo Halytsky Lviv National Medical University, Zelena St, 12, Lviv, 79005, Ukraine
| | - Diethard Mattanovich
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, Vienna, 1190, Austria
| | - Hans Marx
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, Vienna, 1190, Austria
| | - Andriy A Sibirny
- Institute of Cell Biology, National Academy of Sciences of Ukraine, Drahomanov St, 14/16, Lviv, 79005, Ukraine.
- University of Rzeszow, Zelwerowicza 4, Rzeszow, 35-601, Poland.
| |
Collapse
|
12
|
Higher white-nose syndrome fungal isolate yields from UV-guided wing biopsies compared with skin swabs and optimal culture media. BMC Vet Res 2023; 19:40. [PMID: 36759833 PMCID: PMC9912490 DOI: 10.1186/s12917-023-03603-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 10/17/2022] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND North American bat populations have suffered severe declines over the last decade due to the Pseudogymnoascus destructans fungus infection. The skin disease associated with this causative agent, known as white-nose syndrome (WNS), is specific to bats hibernating in temperate regions. As cultured fungal isolates are required for epidemiological and phylogeographical studies, the purpose of the present work was to compare the efficacy and reliability of different culture approaches based on either skin swabs or wing membrane tissue biopsies for obtaining viable fungal isolates of P. destructans. RESULTS In total, we collected and analysed 69 fungal and 65 bacterial skin swabs and 51 wing membrane tissue biopsies from three bat species in the Czech Republic, Poland and the Republic of Armenia. From these, we obtained 12 viable P. destructans culture isolates. CONCLUSIONS Our results indicated that the efficacy of cultures based on wing membrane biopsies were significantly higher. Cultivable samples tended to be based on collections from bats with lower body surface temperature and higher counts of UV-visualised lesions. While cultures based on both skin swabs and wing membrane tissue biopsies can be utilised for monitoring and surveillance of P. destructans in bat populations, wing membrane biopsies guided by UV light for skin lesions proved higher efficacy. Interactions between bacteria on the host's skin also appear to play an important role.
Collapse
|
13
|
Nemcova M, Seidlova V, Zukal J, Dundarova H, Zukalova K, Pikula J. Performance of bat-derived macrophages at different temperatures. Front Vet Sci 2022; 9:978756. [PMID: 36157196 PMCID: PMC9500541 DOI: 10.3389/fvets.2022.978756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Heterothermy, as a temperature-dependent physiological continuum, may affect host-pathogen interactions through modulation of immune responses. Here, we evaluated proliferation and functional performance of a macrophage cell line established from the greater mouse-eared (Myotis myotis) bat at 8, 17.5, and 37°C to simulate body temperatures during hibernation, daily torpor and euthermia. Macrophages were also frozen to -20°C and then examined for their ability to proliferate in the immediate post-thaw period. We show that bat macrophages can proliferate at lower temperatures, though their growth rate is significantly slower than at 37°C. The cells differed in their shape, size and ability to attach to the plate surface at both lower temperatures, being spheroidal and free in suspension at 8°C and epithelial-like, spindle-shaped and/or spheroidal at 17.5°C. While phagocytosis at temperatures of 8 and 17.5°C amounted to 85.8 and 83.1% of the activity observed at 37°C, respectively, full phagocytic activity was restored within minutes of translocation into a higher temperature. Bat-derived macrophages were also able to withstand temperatures of -20°C in a cryoprotectant-free cultivation medium and, in the immediate post-thaw period, became viable and were able to proliferate. Our in vitro data enhance understanding of macrophage biology.
Collapse
Affiliation(s)
- Monika Nemcova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czechia
| | - Veronika Seidlova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czechia
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia
| | - Jan Zukal
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia
- Department of Botany and Zoology, Masaryk University, Brno, Czechia
| | - Heliana Dundarova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Katerina Zukalova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czechia
| | - Jiri Pikula
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czechia
- CEITEC-Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czechia
| |
Collapse
|
14
|
Marrubium alysson L. Ameliorated Methotrexate-Induced Testicular Damage in Mice through Regulation of Apoptosis and miRNA-29a Expression: LC-MS/MS Metabolic Profiling. PLANTS 2022; 11:plants11172309. [PMID: 36079691 PMCID: PMC9460399 DOI: 10.3390/plants11172309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 12/01/2022]
Abstract
Despite the efficient anti-cancer capabilities of methotrexate (MTX), it may induce myelosuppression, liver dysfunction and testicular toxicity. The purpose of this investigation was to determine whether Marrubium alysson L. (M. alysson L.) methanolic extract and its polyphenol fraction could protect mouse testicles from MTX-induced damage. We also investigated the protective effects of three selected pure flavonoid components of M. alysson L. extract. Mice were divided into seven groups (n = 8): (1) normal control, (2) MTX, (3) Methanolic extract + MTX, (4) Polyphenolic fraction + MTX, (5) Kaempferol + MTX, (6) Quercetin + MTX, and (7) Rutin + MTX. Pre-treatment of mice with the methanolic extract, the polyphenolic fraction of M. alysson L. and the selected pure compounds ameliorated the testicular histopathological damage and induced a significant increase in the serum testosterone level and testicular antioxidant enzymes along with a remarkable decline in the malondialdehyde (MDA) level versus MTX alone. Significant down-regulation of nuclear factor kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α), p53 and miRNA-29a testicular expression was also observed in all the protected groups. Notably, the polyphenolic fraction of M. alysson L. displayed a more pronounced decline in the testicular levels of interleukin-1β (IL-1β), interleukin-6 (IL-6) and MDA, with higher testosterone levels relative to the methanolic extract. Further improvements in the Johnsen score, histopathological results and all biochemical assays were achieved by pre-treatment with the three selected pure compounds kaempferol, quercetin and rutin. In conclusion, M. alysson L. could protect against MTX-induced testicular injury by its antioxidant, anti-inflammatory, antiapoptotic activities and through the regulation of the miRNA-29a testicular expression. The present study also included chemical profiling of M. alysson L. extract, which was accomplished by LC-ESI-TOF-MS/MS analysis. Forty compounds were provisionally assigned, comprising twenty compounds discovered in the positive mode and seventeen detected in the negative mode.
Collapse
|
15
|
Céspedes-Valenzuela DN, Sánchez-Rentería S, Cifuentes J, Gómez SC, Serna JA, Rueda-Gensini L, Ostos C, Muñoz-Camargo C, Cruz JC. Novel Photo- and Thermo-Responsive Nanocomposite Hydrogels Based on Functionalized rGO and Modified SIS/Chitosan Polymers for Localized Treatment of Malignant Cutaneous Melanoma. Front Bioeng Biotechnol 2022; 10:947616. [PMID: 35875496 PMCID: PMC9300866 DOI: 10.3389/fbioe.2022.947616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 11/20/2022] Open
Abstract
Melanoma is an aggressive type of skin cancer that accounts for over 75% of skin cancer deaths despite comprising less than 5% of all skin cancers. Despite promising improvements in surgical approaches for melanoma resection, the survival of undetectable microtumor residues has remained a concern. As a result, hyperthermia- and drug-based therapies have grown as attractive techniques to target and treat cancer. In this work, we aim to develop a stimuli-responsive hydrogel based on chitosan methacrylate (ChiMA), porcine small intestine submucosa methacrylate (SISMA), and doxorubicin-functionalized reduced graphene oxide (rGO-DOX) that eliminates microtumor residues from surgically resected melanoma through the coupled effect of NIR light-induced photothermal therapy and heat-induced doxorubicin release. Furthermore, we developed an in silico model to optimize heat and mass transport and evaluate the proposed chemo/photothermal therapy in vitro over melanoma cell cultures.
Collapse
Affiliation(s)
- Daniela N Céspedes-Valenzuela
- Grupo de Investigación en Nanobiomateriales, Ingeniería Celular y Bioimpresión (GINIB), Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Santiago Sánchez-Rentería
- Grupo de Investigación en Nanobiomateriales, Ingeniería Celular y Bioimpresión (GINIB), Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Javier Cifuentes
- Grupo de Investigación en Nanobiomateriales, Ingeniería Celular y Bioimpresión (GINIB), Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Saul C Gómez
- Grupo de Investigación en Nanobiomateriales, Ingeniería Celular y Bioimpresión (GINIB), Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Julian A Serna
- Grupo de Investigación en Nanobiomateriales, Ingeniería Celular y Bioimpresión (GINIB), Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Laura Rueda-Gensini
- Grupo de Investigación en Nanobiomateriales, Ingeniería Celular y Bioimpresión (GINIB), Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Carlos Ostos
- Grupo CATALAD, Instituto de Química, Universidad de Antioquia, Medellín, Colombia
| | - Carolina Muñoz-Camargo
- Grupo de Investigación en Nanobiomateriales, Ingeniería Celular y Bioimpresión (GINIB), Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Juan C Cruz
- Grupo de Investigación en Nanobiomateriales, Ingeniería Celular y Bioimpresión (GINIB), Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
| |
Collapse
|
16
|
Linhart P, Bandouchova H, Zukal J, Votýpka J, Baláž V, Heger T, Kalocsanyiova V, Kubickova A, Nemcova M, Sedlackova J, Seidlova V, Veitova L, Vlaschenko A, Divinova R, Pikula J. Blood Parasites and Health Status of Hibernating and Non-Hibernating Noctule Bats (Nyctalus noctula). Microorganisms 2022; 10:microorganisms10051028. [PMID: 35630470 PMCID: PMC9143927 DOI: 10.3390/microorganisms10051028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/16/2022] Open
Abstract
Co-existence of bats with a wide range of infectious agents relates to their co-evolutionary history and specific physiology. Here, we examined blood samples collected during hibernation and the post-hibernation period to assess the influence of trypanosomes and babesias on the health status of 50 Noctule bats (Nyctalus noctula) using nested PCR. The impact of blood parasites on health was assessed by analysis of haematology and blood chemistry parameters in 21 bats. Prevalence of trypanosomes (Trypanosoma dionisii and T. vespertilionis) and babesia (Babesia vesperuginis) was 44% and 8%, respectively. Analysis of blood parameters indicated impact of babesia on acid–base balance. Blood chemistry parameters showed a significant decrease in total dissolved carbon dioxide and bicarbonate, increased anion gap, and no change in blood pH, suggesting compensated metabolic acidosis. Adverse effects of babesia were only apparent in hibernating bats. Our results suggest differences in the pathogenicity of trypanosomes and babesia in bats. While trypanosomes in general had no significant impact on the health status, we observed alterations in the blood acid–base balance in Babesia-infected bats during hibernation. Despite being infected, Babesia-positive bats survived hibernation without showing any clinical signs.
Collapse
Affiliation(s)
- Petr Linhart
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences, 61242 Brno, Czech Republic; (P.L.); (V.B.); (T.H.); (V.K.); (A.K.); (M.N.); (J.S.); (V.S.); (L.V.); (J.P.)
- Department of Animal Protection and Welfare and Veterinary Public Health, University of Veterinary Sciences, 61242 Brno, Czech Republic
| | - Hana Bandouchova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences, 61242 Brno, Czech Republic; (P.L.); (V.B.); (T.H.); (V.K.); (A.K.); (M.N.); (J.S.); (V.S.); (L.V.); (J.P.)
- Correspondence: ; Tel.: +420-541-562-653
| | - Jan Zukal
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, 60365 Brno, Czech Republic;
- Department of Botany and Zoology, Masaryk University, 61137 Brno, Czech Republic;
| | - Jan Votýpka
- Department of Parasitology, Faculty of Science, Charles University, 12800 Prague, Czech Republic;
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
| | - Vojtech Baláž
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences, 61242 Brno, Czech Republic; (P.L.); (V.B.); (T.H.); (V.K.); (A.K.); (M.N.); (J.S.); (V.S.); (L.V.); (J.P.)
| | - Tomas Heger
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences, 61242 Brno, Czech Republic; (P.L.); (V.B.); (T.H.); (V.K.); (A.K.); (M.N.); (J.S.); (V.S.); (L.V.); (J.P.)
| | - Vendula Kalocsanyiova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences, 61242 Brno, Czech Republic; (P.L.); (V.B.); (T.H.); (V.K.); (A.K.); (M.N.); (J.S.); (V.S.); (L.V.); (J.P.)
| | - Aneta Kubickova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences, 61242 Brno, Czech Republic; (P.L.); (V.B.); (T.H.); (V.K.); (A.K.); (M.N.); (J.S.); (V.S.); (L.V.); (J.P.)
| | - Monika Nemcova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences, 61242 Brno, Czech Republic; (P.L.); (V.B.); (T.H.); (V.K.); (A.K.); (M.N.); (J.S.); (V.S.); (L.V.); (J.P.)
| | - Jana Sedlackova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences, 61242 Brno, Czech Republic; (P.L.); (V.B.); (T.H.); (V.K.); (A.K.); (M.N.); (J.S.); (V.S.); (L.V.); (J.P.)
| | - Veronika Seidlova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences, 61242 Brno, Czech Republic; (P.L.); (V.B.); (T.H.); (V.K.); (A.K.); (M.N.); (J.S.); (V.S.); (L.V.); (J.P.)
| | - Lucie Veitova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences, 61242 Brno, Czech Republic; (P.L.); (V.B.); (T.H.); (V.K.); (A.K.); (M.N.); (J.S.); (V.S.); (L.V.); (J.P.)
| | - Anton Vlaschenko
- Bat Rehabilitation Center of Feldman Ecopark, Lisne, 62340 Kharkiv, Ukraine;
| | - Renata Divinova
- Department of Botany and Zoology, Masaryk University, 61137 Brno, Czech Republic;
| | - Jiri Pikula
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences, 61242 Brno, Czech Republic; (P.L.); (V.B.); (T.H.); (V.K.); (A.K.); (M.N.); (J.S.); (V.S.); (L.V.); (J.P.)
| |
Collapse
|
17
|
Torpor/hibernation cycle may enhance the risk of insecticides for bats: an in vitro study. ACTA VET BRNO 2022. [DOI: 10.2754/avb202291010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Exposure to pollutants is considered one of the potential reasons of population declines in bats. In the context of previous studies, we managed to create and keep a wide collection of cell lines from European bat species. Liver cells were chosen for testing, as they represent the preferred model for toxicological studies. Bats are protected, cell lines replacing experimental animals thus represent a unique opportunity to examine effects of pollutants which animals are exposed to in their environments. Moreover, cell incubation temperature variation may simulate physiological states of heterothermic bats. Liver cell lines were cultivated to the required cell number. Exposure to five different concentrations of permethrin (PM) and imidacloprid (IMI) were used to determine cytotoxic effects of these pesticides on Nyctalus noctula-derived liver cells cultivated at 37 °C and 8 °C for 24 h. An assay based on the measurement of activity of lactate dehydrogenase released from damaged cells was used for quantitating cytotoxicity. Cytotoxicity of IMI ranged from 0% to 47% and from 56% to 67% at 37 °C and 8 °C, respectively. Cytotoxicity of PM ranged from 36% to 56% and from 43% to 88% at 37 °C and 8 °C, respectively. Permethrin was tested on the cells at an order of magnitude lower concentrations; even so, higher degree of cytotoxicity was recorded. Imidacloprid was more toxic to bat liver cells at a hibernation temperature than at body temperature of 37 °C.
Collapse
|
18
|
Doty AC, Wilson AD, Forse LB, Risch TS. Biomarker Metabolites Discriminate between Physiological States of Field, Cave and White-nose Syndrome Diseased Bats. SENSORS 2022; 22:s22031031. [PMID: 35161777 PMCID: PMC8840073 DOI: 10.3390/s22031031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 01/27/2023]
Abstract
Analysis of volatile organic compound (VOC) emissions using electronic-nose (e-nose) devices has shown promise for early detection of white-nose syndrome (WNS) in bats. Tricolored bats, Perimyotis subflavus, from three separate sampling groups defined by environmental conditions, levels of physical activity, and WNS-disease status were captured temporarily for collection of VOC emissions to determine relationships between these combinations of factors and physiological states, Pseudogymnoascus destructans (Pd)-infection status, and metabolic conditions. Physiologically active (non-torpid) healthy individuals were captured outside of caves in Arkansas and Louisiana. In addition, healthy and WNS-diseased torpid bats were sampled within caves in Arkansas. Whole-body VOC emissions from bats were collected using portable air-collection and sampling-chamber devices in tandem. Electronic aroma-detection data using three-dimensional Principal Component Analysis provided strong evidence that the three groups of bats had significantly different e-nose aroma signatures, indicative of different VOC profiles. This was confirmed by differences in peak numbers, peak areas, and tentative chemical identities indicated by chromatograms from dual-column GC-analyses. The numbers and quantities of VOCs present in whole-body emissions from physiologically active healthy field bats were significantly greater than those of torpid healthy and diseased cave bats. Specific VOCs were identified as chemical biomarkers of healthy and diseased states, environmental conditions (outside and inside of caves), and levels of physiological activity. These results suggest that GC/E-nose dual-technologies based on VOC-detection and analyses of physiological states, provide noninvasive alternative means for early assessments of Pd-infection, WNS-disease status, and other physiological states.
Collapse
Affiliation(s)
- Anna C. Doty
- Department of Biology, California State University Bakersfield, Bakersfield, CA 93311, USA
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72467, USA;
- Correspondence: ; Tel.: +1-661-654-6836
| | - A. Dan Wilson
- Pathology Department, Southern Hardwoods Laboratory, Center for Forest Genetics & Ecosystems Biology, Southern Research Station, USDA Forest Service, 432 Stoneville Road, Stoneville, MS 38776, USA; (A.D.W.); (L.B.F.)
| | - Lisa B. Forse
- Pathology Department, Southern Hardwoods Laboratory, Center for Forest Genetics & Ecosystems Biology, Southern Research Station, USDA Forest Service, 432 Stoneville Road, Stoneville, MS 38776, USA; (A.D.W.); (L.B.F.)
| | - Thomas S. Risch
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72467, USA;
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72467, USA
| |
Collapse
|
19
|
Céspedes-Valenzuela DN, Sánchez-Rentería S, Cifuentes J, Gantiva-Diaz M, Serna JA, Reyes LH, Ostos C, Cifuentes-De la Portilla C, Muñoz-Camargo C, Cruz JC. Preparation and Characterization of an Injectable and Photo-Responsive Chitosan Methacrylate/Graphene Oxide Hydrogel: Potential Applications in Bone Tissue Adhesion and Repair. Polymers (Basel) 2021; 14:polym14010126. [PMID: 35012148 PMCID: PMC8747203 DOI: 10.3390/polym14010126] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022] Open
Abstract
As life expectancy continues to increase, the inevitable weakening and rupture of bone tissue have grown as concerns in the medical community, thus leading to the need for adhesive materials suitable for bone repair applications. However, current commercially available adhesives face certain drawbacks that prevent proper tissue repair, such as low biocompatibility, poor adhesion to wet surfaces, and the need for high polymerization temperatures. This work aims to develop an injectable and photo-responsive chitosan methacrylate/graphene oxide (ChiMA/GO) adhesive nanocomposite hydrogel of high biocompatibility that is easy to apply by simple extrusion and that offers the possibility for in situ polymer and physiological temperatures. The nanocomposite was thoroughly characterized spectroscopically, microscopically, rheologically, thermally, and through mechanical, textural, and biological assays to fully evaluate its correct synthesis and functionalization and its performance under physiological conditions that mimic those observed in vivo. In addition, a finite element analysis (FEA) simulation was used to evaluate its performance in femur fractures. Results suggest the material’s potential as a bioadhesive, as it can polymerize at room temperature, shows superior stability in physiological media, and is capable of withstanding loads from body weight and movement. Moreover, the material showed remarkable biocompatibility as evidenced by low hemolytic and intermediate platelet aggregation tendencies, and high cytocompatibility when in contact with osteoblasts. The comprehensive studies presented here strongly suggest that the developed hydrogels are promising alternatives to conventional bone adhesives that might be further tested in vivo in the near future.
Collapse
Affiliation(s)
- Daniela N. Céspedes-Valenzuela
- Grupo de Investigación en Nanobiomateriales, Ingeniería Celular y Bioimpresión (GINIB), Department of Biomedical Engineering, Universidad de los Andes, Bogota 111711, Colombia; (D.N.C.-V.); (S.S.-R.); (J.C.); (M.G.-D.); (J.A.S.)
| | - Santiago Sánchez-Rentería
- Grupo de Investigación en Nanobiomateriales, Ingeniería Celular y Bioimpresión (GINIB), Department of Biomedical Engineering, Universidad de los Andes, Bogota 111711, Colombia; (D.N.C.-V.); (S.S.-R.); (J.C.); (M.G.-D.); (J.A.S.)
| | - Javier Cifuentes
- Grupo de Investigación en Nanobiomateriales, Ingeniería Celular y Bioimpresión (GINIB), Department of Biomedical Engineering, Universidad de los Andes, Bogota 111711, Colombia; (D.N.C.-V.); (S.S.-R.); (J.C.); (M.G.-D.); (J.A.S.)
| | - Mónica Gantiva-Diaz
- Grupo de Investigación en Nanobiomateriales, Ingeniería Celular y Bioimpresión (GINIB), Department of Biomedical Engineering, Universidad de los Andes, Bogota 111711, Colombia; (D.N.C.-V.); (S.S.-R.); (J.C.); (M.G.-D.); (J.A.S.)
- Grupo de Investigación en Biomecánica (IBIOMECH), Department of Biomedical Engineering, Universidad de los Andes, Bogota 111711, Colombia;
| | - Julian A. Serna
- Grupo de Investigación en Nanobiomateriales, Ingeniería Celular y Bioimpresión (GINIB), Department of Biomedical Engineering, Universidad de los Andes, Bogota 111711, Colombia; (D.N.C.-V.); (S.S.-R.); (J.C.); (M.G.-D.); (J.A.S.)
| | - Luis H. Reyes
- Department of Chemical and Food Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, Bogota 111711, Colombia;
| | - Carlos Ostos
- Grupo CATALAD, Instituto de Química, Universidad de Antioquia, Medellin 050010, Colombia;
| | - Christian Cifuentes-De la Portilla
- Grupo de Investigación en Biomecánica (IBIOMECH), Department of Biomedical Engineering, Universidad de los Andes, Bogota 111711, Colombia;
| | - Carolina Muñoz-Camargo
- Grupo de Investigación en Nanobiomateriales, Ingeniería Celular y Bioimpresión (GINIB), Department of Biomedical Engineering, Universidad de los Andes, Bogota 111711, Colombia; (D.N.C.-V.); (S.S.-R.); (J.C.); (M.G.-D.); (J.A.S.)
- Correspondence: (C.M.-C.); (J.C.C.); Tel.: +57-13-394-949 (ext. 1789) (J.C.C.)
| | - Juan C. Cruz
- Grupo de Investigación en Nanobiomateriales, Ingeniería Celular y Bioimpresión (GINIB), Department of Biomedical Engineering, Universidad de los Andes, Bogota 111711, Colombia; (D.N.C.-V.); (S.S.-R.); (J.C.); (M.G.-D.); (J.A.S.)
- Correspondence: (C.M.-C.); (J.C.C.); Tel.: +57-13-394-949 (ext. 1789) (J.C.C.)
| |
Collapse
|
20
|
Reproductive toxicity of heavy metals in fallow deer in vitro. ACTA VET BRNO 2021. [DOI: 10.2754/avb202190030277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sertoli cells play a crucial role in male fertility through boosting and regulating the differentiation of spermatogonial stem cells into mature sperm during spermatogenesis. Female ovarian follicles are responsible for the production of mature ova and control of ovarian steroidogenesis. Disruption of these structures through exposure to environmental pollutants is critical for reproductive health. Here, we derived primary cell cultures of Sertoli cells and ovarian follicles from fallow deer (Dama dama). Cells were used as in vitro models to explore reproductive toxicity of heavy metals in wild species. Adverse effects of cadmium (CdCl2), methylmercury (MeHgCl2), and lead (PbCl2) were investigated through a range of equal molar concentrations (0, 15, 30, 60, 125, 250 µM). We found both concentration-dependent and independent cytotoxic patterns (P < 0.01, P < 0.05) in cells exposed to CdCl2, MeHgCl2, and PbCl2. Based on generation of lipid hydroperoxides, significant levels of cell oxidative perturbation were detected in the CdCl2 (P = 0.0001), PbCl2 (P = 0.001), and MeHgCl2 (P = 0.003) groups. Likewise, the antioxidant enzymes catalase and glutathione peroxidase were inhibited in all metal-treated groups (P < 0.01). Genotoxic DNA damage (single-strand break) was also observed (MeHgCl2 group, P = 0.002; CdCl2 and PbCl2 groups, P = 0.004). Increased activity of superoxide dismutase (P = 0.0002 and P = 0.01) was observed in MeHgCl2 and CdCl2, respectively. Cell apoptosis was detected in all the PbCl2 and CdCl2 (P = 0.00007) and MeHgCl2 (P = 0.001) groups. The results of this study can be used to characterize the responsiveness of fallow deer gonadal cells to the stress of toxic metal exposure.
Collapse
|
21
|
Abstract
To resolve the growing problem of drug resistance in the treatment of bacterial and fungal pathogens, specific cellular targets and pathways can be used as targets for new antimicrobial agents. Endogenous riboflavin biosynthesis is a conserved pathway that exists in most bacteria and fungi. In this review, the roles of endogenous and exogenous riboflavin in infectious disease as well as several antibacterial agents, which act as analogues of the riboflavin biosynthesis pathway, are summarized. In addition, the effects of exogenous riboflavin on immune cells, cytokines, and heat shock proteins are described. Moreover, the immune response of endogenous riboflavin metabolites in infectious diseases, recognized by MHC-related protein-1, and then presented to mucosal associated invariant T cells, is highlighted. This information will provide a strategy to identify novel drug targets as well as highlight the possible clinical use of riboflavin.
Collapse
Affiliation(s)
- Junwen Lei
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou People's Republic of China
| | - Caiyan Xin
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou People's Republic of China
| | - Wei Xiao
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou People's Republic of China
| | - Wenbi Chen
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou People's Republic of China
| | - Zhangyong Song
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou People's Republic of China
| |
Collapse
|
22
|
COUNTCOLORS, AN R PACKAGE FOR QUANTIFICATION OF THE FLUORESCENCE EMITTED BY PSEUDOGYMNOASCUS DESTRUCTANS LESIONS ON THE WING MEMBRANES OF HIBERNATING BATS. J Wildl Dis 2021; 56:759-767. [PMID: 32609601 DOI: 10.7589/2019-09-231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/30/2020] [Indexed: 11/20/2022]
Abstract
Pseudogymnoascus destructans colonizes the wing membrane of hibernating bats with the potential to form dense fungal hyphae aggregates within cupping erosions. These fungal cupping erosions emit a characteristic fluorescent orange-yellow color when the wing membrane is transilluminated with 385 nm ultraviolet (UV) light. The purpose of this study was to create and validate the R package, countcolors, for quantifying the distinct orange-yellow UV fluorescence in bat-wing membrane lesions caused by P. destructans. Validation of countcolors was completed by first quantifying the percent area of 20, 2.5 cm2 images. These generated images were of two known pixel colors ranging from 0% to 100% of the pixels. The countcolors package accurately measured the known proportion of a given color in each image. Next, 40, 2.5 cm2 sections of UV transilluminated photographs of little brown bat (Myotis lucifugus) wings were given to a single evaluator. The area of fluorescence was both manually measured and calculated using image analysis software and quantified with countcolors. There was good agreement between the two methods (Pearson's correlation=0.915); however, the manual use of imaging software showed a consistent negative bias. Reproducibility of the analysis methods was tested by providing the same images to naive evaluators who previously never used the software; no significant difference (P=0.099) was found among evaluators. Using the R package countcolors takes less time than does manually measuring the fluorescence in image analysis software, and our results showed that countcolors can improve the accuracy when quantifying the area of P. destructans infection in bat wing-membranes.
Collapse
|
23
|
Garzoli L, Bozzetta E, Varello K, Cappelleri A, Patriarca E, Debernardi P, Riccucci M, Boggero A, Girometta C, Picco AM. White-Nose Syndrome Confirmed in Italy: A Preliminary Assessment of Its Occurrence in Bat Species. J Fungi (Basel) 2021; 7:192. [PMID: 33803110 PMCID: PMC8000523 DOI: 10.3390/jof7030192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022] Open
Abstract
Although no mass mortality has been recorded so far, the precise demographic effect of white-nose syndrome (WNS) on European bats still remains to be ascertained. Following the first isolation of P. destructans in Italy, further surveys were performed to assess the distribution of the fungus in NW Italy and its effects on bats. Data were collected from March 2019 to April 2020 at sites used for hibernation (six sites) and/or for reproduction (four sites) in Piedmont and Aosta Valley. A total of 138 bats, belonging to 10 species, were examined to identify clinical features possibly related to the fungal presence. Culture from swabs and the molecular identification of isolates confirmed the presence of P. destructans in bats from five sites, including two maternal roosts. Dermal fungal infiltration, the criterion to assess the presence of WNS, was observed in biopsies of bats belonging to Myotis blythii, M. daubentonii, M. emarginatus and M. myotis. This is the first report of the disease in Italy. The results suggest a greater susceptibility to the infection of the genus Myotis and particularly of M. emarginatus, possibly due to the long length of its hibernation period. Other fungal dermatophytes were also observed.
Collapse
Affiliation(s)
- Laura Garzoli
- Department of Earth and Environmental Sciences, University of Pavia, 27100 Pavia, Italy; (C.G.); (A.M.P.)
- S.Te.P. Stazione Teriologica Piemontese, 10022 Carmagnola, Italy; (E.P.); (P.D.)
- CNR-Water Research Institute (IRSA), 28922 Verbania, Italy;
| | - Elena Bozzetta
- Department of Specialised Diagnostic, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy; (E.B.); (K.V.)
| | - Katia Varello
- Department of Specialised Diagnostic, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy; (E.B.); (K.V.)
| | - Andrea Cappelleri
- Department of Veterinary Medicine, University of Milan, 26900 Lodi, Italy;
- Mouse and Animal Pathology Laboratory (MAPLab), Fondazione UniMi, 20139 Milan, Italy
| | - Elena Patriarca
- S.Te.P. Stazione Teriologica Piemontese, 10022 Carmagnola, Italy; (E.P.); (P.D.)
| | - Paolo Debernardi
- S.Te.P. Stazione Teriologica Piemontese, 10022 Carmagnola, Italy; (E.P.); (P.D.)
| | - Marco Riccucci
- Zoological Section «La Specola», Museum of Natural History of the University of Florence, 50125 Florence, Italy;
| | - Angela Boggero
- CNR-Water Research Institute (IRSA), 28922 Verbania, Italy;
| | - Carolina Girometta
- Department of Earth and Environmental Sciences, University of Pavia, 27100 Pavia, Italy; (C.G.); (A.M.P.)
| | - Anna Maria Picco
- Department of Earth and Environmental Sciences, University of Pavia, 27100 Pavia, Italy; (C.G.); (A.M.P.)
| |
Collapse
|
24
|
Johnson JS, Sharp NW, Monarchino MN, Lilley TM, Edelman AJ. No Sign of Infection in Free-Ranging Myotis austroriparius Hibernating in the Presence of Pseudogymnoascus destructans in Alabama. SOUTHEAST NAT 2021. [DOI: 10.1656/058.020.0102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Joseph S. Johnson
- Department of Biological Sciences, Ohio University, Athens, OH 45701
| | - Nicholas W. Sharp
- Alabama Non-game Wildlife Program, Division of Wildlife and Freshwater Fisheries, Tanner, AL 35671
| | | | - Thomas M. Lilley
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Andrew J. Edelman
- Department of Biology, University of West Georgia, Carrollton, GA 30118
| |
Collapse
|
25
|
Seidlova V, Nemcova M, Pikula J, Bartonička T, Ghazaryan A, Heger T, Kokurewicz T, Orlov OL, Patra S, Piacek V, Treml F, Zukalova K, Zukal J. Urinary shedding of leptospires in palearctic bats. Transbound Emerg Dis 2021; 68:3089-3095. [PMID: 33527732 DOI: 10.1111/tbed.14011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/28/2020] [Accepted: 01/25/2021] [Indexed: 01/21/2023]
Abstract
Leptospirosis is a bacterial zoonotic infection of worldwide occurrence. Bats, like other mammalian reservoirs, may be long-term carriers that maintain endemicity of infection and shed viable leptospires in urine. Direct and/or indirect contact with these Leptospira shedders is the main risk factor as regards public health concern. However, knowledge about bat leptospirosis in the Palearctic Region, and in Europe in particular, is poor. We collected urine from 176 specimens of 11 bat species in the Czech Republic, Poland, Republic of Armenia and the Altai Region of Russia between 2014 and 2019. We extracted DNA from the urine samples to detect Leptospira spp. shedders using PCR amplification of the 16S rRNA and LipL32 genes. Four bat species (Barbastella barbastellus n = 1, Myotis bechsteinii n = 1, Myotis myotis n = 24 and Myotis nattereri n = 1) tested positive for Leptospira spp., with detected amplicons showing 100% genetic identity with pathogenic Leptospira interrogans. The site- and species-specific prevalence range was 0%-24.1% and 0%-20%, respectively. All bats sampled in the Republic of Armenia and Russia were negative. Given the circulation of pathogenic leptospires in strictly protected Palearctic bat species and their populations, non-invasive and non-lethal sampling of urine for molecular Leptospira spp. detection is recommended as a suitable surveillance and monitoring strategy. Moreover, our results should raise awareness of this potential disease risk among health professionals, veterinarians, chiropterologists and wildlife rescue workers handling bats, as well as speleologists and persons cleaning premises following bat infestation.
Collapse
Affiliation(s)
- Veronika Seidlova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Monika Nemcova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Jiri Pikula
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Tomáš Bartonička
- Institute of Botany and Zoology, Masaryk University, Brno, Czech Republic
| | | | - Tomas Heger
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Tomasz Kokurewicz
- Department of Vertebrate Ecology and Palaeontology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Oleg L Orlov
- X-BIO Institute, Tyumen State University, Tyumen, Russia.,Department of Biochemistry, Tyumen State Medical University, Tyumen, Russia
| | - Sneha Patra
- Laboratory of Ecological Plant Physiology, CzechGlobe, Global Change Research Institute Academy of Sciences, Brno, Czech Republic.,Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Mendel University in Brno, Brno, Czech Republic
| | - Vladimir Piacek
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Frantisek Treml
- Department of Infectious Diseases and Microbiology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Katerina Zukalova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Jan Zukal
- Institute of Botany and Zoology, Masaryk University, Brno, Czech Republic.,Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
26
|
Seidlova V, Zukal J, Brichta J, Anisimov N, Apoznański G, Bandouchova H, Bartonička T, Berková H, Botvinkin AD, Heger T, Dundarova H, Kokurewicz T, Linhart P, Orlov OL, Piacek V, Presetnik P, Shumkina AP, Tiunov MP, Treml F, Pikula J. Active surveillance for antibodies confirms circulation of lyssaviruses in Palearctic bats. BMC Vet Res 2020; 16:482. [PMID: 33302915 PMCID: PMC7731468 DOI: 10.1186/s12917-020-02702-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/02/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Palearctic bats host a diversity of lyssaviruses, though not the classical rabies virus (RABV). As surveillance for bat rabies over the Palearctic area covering Central and Eastern Europe and Siberian regions of Russia has been irregular, we lack data on geographic and seasonal patterns of the infection. RESULTS To address this, we undertook serological testing, using non-lethally sampled blood, on 1027 bats of 25 species in Bulgaria, the Czech Republic, Poland, Russia and Slovenia between 2014 and 2018. The indirect enzyme-linked immunosorbent assay (ELISA) detected rabies virus anti-glycoprotein antibodies in 33 bats, giving an overall seroprevalence of 3.2%. Bat species exceeding the seroconversion threshold included Myotis blythii, Myotis gracilis, Myotis petax, Myotis myotis, Murina hilgendorfi, Rhinolophus ferrumequinum and Vespertilio murinus. While Myotis species (84.8%) and adult females (48.5%) dominated in seropositive bats, juveniles of both sexes showed no difference in seroprevalence. Higher numbers tested positive when sampled during the active season (10.5%), as compared with the hibernation period (0.9%). Bat rabies seroprevalence was significantly higher in natural habitats (4.0%) compared with synanthropic roosts (1.2%). Importantly, in 2018, we recorded 73.1% seroprevalence in a cave containing a M. blythii maternity colony in the Altai Krai of Russia. CONCLUSIONS Identification of such "hotspots" of non-RABV lyssavirus circulation not only provides important information for public health protection, it can also guide research activities aimed at more in-depth bat rabies studies.
Collapse
Affiliation(s)
- Veronika Seidlova
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic.
| | - Jan Zukal
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65, Brno, Czech Republic
- Department of Botany and Zoology, Masaryk University, Kotlářská 267/2, 611 37, Brno, Czech Republic
| | - Jiri Brichta
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Nikolay Anisimov
- Land Use and Biodiversity, International Complex Research Laboratory for Study of Climate Change, Tyumen State University, Volodarckogo 6, 625003, Tyumen, Russia
| | - Grzegorz Apoznański
- Institute of Biology, Department of Vertebrate Ecology and Palaeontology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Hana Bandouchova
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Tomáš Bartonička
- Department of Botany and Zoology, Masaryk University, Kotlářská 267/2, 611 37, Brno, Czech Republic
| | - Hana Berková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65, Brno, Czech Republic
| | - Alexander D Botvinkin
- Irkutsk State Medical University, Krasnogo Vosstania street 1, 664003, Irkutsk, Russian Federation
| | - Tomas Heger
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Heliana Dundarova
- Department of Ecosystem Research, Environment Risk Assessment and Conservation Biology, Institute of Biodiversity and Ecosystem Research, Tsar Osvoboditel 1, 1000, Sofia, Bulgaria
| | - Tomasz Kokurewicz
- Institute of Biology, Department of Vertebrate Ecology and Palaeontology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Petr Linhart
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Oleg L Orlov
- Land Use and Biodiversity, International Complex Research Laboratory for Study of Climate Change, Tyumen State University, Volodarckogo 6, 625003, Tyumen, Russia
- Department of Biochemistry, Ural State Medical University, Repina 3, 620014, Ekaterinburg, Russia
| | - Vladimir Piacek
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Primož Presetnik
- Centre for Cartography of Fauna and Flora, Antoličičeva 1, SI-2204 , Miklavž na Dravskem polju, Slovenia
| | - Alexandra P Shumkina
- Western Baikal protected areas, Federal State Budgetary Institution "Zapovednoe Pribaikalye", Baikalskaya st. 291B, 664050, Irkutsk, Russia
| | - Mikhail P Tiunov
- Institute of Biology and Soil Science, Far East Branch of the Russian Academy of Sciences, Pr- t 100-letiya Vladivostoka 159, 690022, Vladivostok, Russia
| | - Frantisek Treml
- Department of Infectious Diseases and Microbiology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Jiri Pikula
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
- CEITEC - Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| |
Collapse
|
27
|
Davy CM, Donaldson ME, Bandouchova H, Breit AM, Dorville NA, Dzal YA, Kovacova V, Kunkel EL, Martínková N, Norquay KJ, Paterson JE, Zukal J, Pikula J, Willis CK, Kyle CJ. Transcriptional host-pathogen responses of Pseudogymnoascus destructans and three species of bats with white-nose syndrome. Virulence 2020; 11:781-794. [PMID: 32552222 PMCID: PMC7549942 DOI: 10.1080/21505594.2020.1768018] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 03/07/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
Understanding how context (e.g., host species, environmental conditions) drives disease susceptibility is an essential goal of disease ecology. We hypothesized that in bat white-nose syndrome (WNS), species-specific host-pathogen interactions may partly explain varying disease outcomes among host species. We characterized bat and pathogen transcriptomes in paired samples of lesion-positive and lesion-negative wing tissue from bats infected with Pseudogymnoascus destructans in three parallel experiments. The first two experiments analyzed samples collected from the susceptible Nearctic Myotis lucifugus and the less-susceptible Nearctic Eptesicus fuscus, following experimental infection and hibernation in captivity under controlled conditions. The third experiment applied the same analyses to paired samples from infected, free-ranging Myotis myotis, a less susceptible, Palearctic species, following natural infection and hibernation (n = 8 sample pairs/species). Gene expression by P. destructans was similar among the three host species despite varying environmental conditions among the three experiments and was similar within each host species between saprophytic contexts (superficial growth on wings) and pathogenic contexts (growth in lesions on the same wings). In contrast, we observed qualitative variation in host response: M. lucifugus and M. myotis exhibited systemic responses to infection, while E. fuscus up-regulated a remarkably localized response. Our results suggest potential phylogenetic determinants of response to WNS and can inform further studies of context-dependent host-pathogen interactions.
Collapse
Affiliation(s)
- Christina M. Davy
- Environmental and Life Sciences Program, Trent University, Peterborough, Canada
- Wildlife Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, Peterborough, Canada
| | | | - Hana Bandouchova
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Ana M. Breit
- Department of Biology and Centre for Forest Interdisciplinary Research (C-FIR), University of Winnipeg, Winnipeg, Canada
| | - Nicole A.S. Dorville
- Department of Biology and Centre for Forest Interdisciplinary Research (C-FIR), University of Winnipeg, Winnipeg, Canada
| | - Yvonne A. Dzal
- Department of Biology and Centre for Forest Interdisciplinary Research (C-FIR), University of Winnipeg, Winnipeg, Canada
| | - Veronika Kovacova
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Emma L. Kunkel
- Department of Biology and Centre for Forest Interdisciplinary Research (C-FIR), University of Winnipeg, Winnipeg, Canada
| | - Natália Martínková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Kaleigh J.O. Norquay
- Department of Biology and Centre for Forest Interdisciplinary Research (C-FIR), University of Winnipeg, Winnipeg, Canada
| | - James E. Paterson
- Environmental and Life Sciences Program, Trent University, Peterborough, Canada
| | - Jan Zukal
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Jiri Pikula
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Craig K.R. Willis
- Department of Biology and Centre for Forest Interdisciplinary Research (C-FIR), University of Winnipeg, Winnipeg, Canada
| | - Christopher J. Kyle
- Environmental and Life Sciences Program, Trent University, Peterborough, Canada
- Natural Resources DNA Profiling and Forensics Centre, Trent University, Peterborough, Canada
| |
Collapse
|
28
|
Veselská T, Homutová K, García Fraile P, Kubátová A, Martínková N, Pikula J, Kolařík M. Comparative eco-physiology revealed extensive enzymatic curtailment, lipases production and strong conidial resilience of the bat pathogenic fungus Pseudogymnoascus destructans. Sci Rep 2020; 10:16530. [PMID: 33020524 PMCID: PMC7536203 DOI: 10.1038/s41598-020-73619-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 09/15/2020] [Indexed: 01/16/2023] Open
Abstract
The genus Pseudogymnoascus encompasses soil psychrophilic fungi living also in caves. Some are opportunistic pathogens; nevertheless, they do not cause outbreaks. Pseudogymnoascus destructans is the causative agent of the white-nose syndrome, which is decimating cave-hibernating bats. We used comparative eco-physiology to contrast the enzymatic potential and conidial resilience of P. destructans with that of phylogenetically diverse cave fungi, including Pseudogymnoascus spp., dermatophytes and outdoor saprotrophs. Enzymatic potential was assessed by Biolog MicroArray and by growth on labelled substrates and conidial viability was detected by flow cytometry. Pseudogymnoascus destructans was specific by extensive losses of metabolic variability and by ability of lipid degradation. We suppose that lipases are important enzymes allowing fungal hyphae to digest and invade the skin. Pseudogymnoascus destructans prefers nitrogenous substrates occurring in bat skin and lipids. Additionally, P. destructans alkalizes growth medium, which points to another possible virulence mechanism. Temperature above 30 °C substantially decreases conidial viability of cave fungi including P. destructans. Nevertheless, survival of P. destructans conidia prolongs by the temperature regime simulating beginning of the flight season, what suggests that conidia could persist on the body surface of bats and contribute to disease spreading during bats active season.
Collapse
Affiliation(s)
- Tereza Veselská
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences (CAS), Vídeňská 1083, 14220, Prague, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 12801, Prague, Czech Republic
| | - Karolína Homutová
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences (CAS), Vídeňská 1083, 14220, Prague, Czech Republic
| | - Paula García Fraile
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences (CAS), Vídeňská 1083, 14220, Prague, Czech Republic
| | - Alena Kubátová
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 12801, Prague, Czech Republic
| | - Natália Martínková
- Institute of Vertebrate Biology, Czech Academy of Sciences (CAS), Květná 8, 60365, Brno, Czech Republic
| | - Jiří Pikula
- Department of Ecology and Diseases of Game, Fish and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého třída 1946/1, 61242, Brno, Czech Republic
| | - Miroslav Kolařík
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences (CAS), Vídeňská 1083, 14220, Prague, Czech Republic.
| |
Collapse
|
29
|
Evasion of MAIT cell recognition by the African Salmonella Typhimurium ST313 pathovar that causes invasive disease. Proc Natl Acad Sci U S A 2020; 117:20717-20728. [PMID: 32788367 PMCID: PMC7456131 DOI: 10.1073/pnas.2007472117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are innate T lymphocytes activated by bacteria that produce vitamin B2 metabolites. Mouse models of infection have demonstrated a role for MAIT cells in antimicrobial defense. However, proposed protective roles of MAIT cells in human infections remain unproven and clinical conditions associated with selective absence of MAIT cells have not been identified. We report that typhoidal and nontyphoidal Salmonella enterica strains activate MAIT cells. However, S. Typhimurium sequence type 313 (ST313) lineage 2 strains, which are responsible for the burden of multidrug-resistant nontyphoidal invasive disease in Africa, escape MAIT cell recognition through overexpression of ribB This bacterial gene encodes the 4-dihydroxy-2-butanone-4-phosphate synthase enzyme of the riboflavin biosynthetic pathway. The MAIT cell-specific phenotype did not extend to other innate lymphocytes. We propose that ribB overexpression is an evolved trait that facilitates evasion from immune recognition by MAIT cells and contributes to the invasive pathogenesis of S. Typhimurium ST313 lineage 2.
Collapse
|
30
|
Molecular Elucidation of Riboflavin Production and Regulation in Candida albicans, toward a Novel Antifungal Drug Target. mSphere 2020; 5:5/4/e00714-20. [PMID: 32759338 PMCID: PMC7407072 DOI: 10.1128/msphere.00714-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Candida albicans is an important fungal pathogen causing common superficial infections as well as invasive diseases with an extremely high morbidity and mortality. Antifungal therapies are limited in efficiency and availability. In this research, we describe the regulation of riboflavin production in C. albicans. Since riboflavin biosynthesis is essential to this organism, we can appreciate that targeting it would be a promising new strategy to combat these fungal infections. We provide evidence that one particular enzyme in the production process, CaRib1, would be most promising as an antifungal drug target, as it plays a central role in regulation and proves to be essential in a mouse model of systemic infection. Candida albicans is a major cause of fungal infections, both superficial and invasive. The economic costs as well as consequences for patient welfare are substantial. Only a few treatment options are available due to the high resemblance between fungal targets and host molecules, as both are eukaryotes. Riboflavin is a yellow pigment, also termed vitamin B2. Unlike animals, fungi can synthesize this essential component themselves, thereby leading us to appreciate that targeting riboflavin production is a promising novel strategy against fungal infections. Here, we report that the GTP cyclohydrolase encoded by C. albicansRIB1 (CaRIB1) is essential and rate-limiting for production of riboflavin in the fungal pathogen. We confirm the high potential of CaRib1 as an antifungal drug target, as its deletion completely impairs in vivo infectibility by C. albicans in model systems. Furthermore, the stimulating effect of iron deprivation and PKA activation on riboflavin production seems to involve CaRib1 and the upstream transcription factor CaSef1. Gathering insights in the synthesis mechanism of riboflavin in pathogenic fungi, like C. albicans, will allow us to design a novel strategy and specifically target this process to combat fungal infections. IMPORTANCECandida albicans is an important fungal pathogen causing common superficial infections as well as invasive diseases with an extremely high morbidity and mortality. Antifungal therapies are limited in efficiency and availability. In this research, we describe the regulation of riboflavin production in C. albicans. Since riboflavin biosynthesis is essential to this organism, we can appreciate that targeting it would be a promising new strategy to combat these fungal infections. We provide evidence that one particular enzyme in the production process, CaRib1, would be most promising as an antifungal drug target, as it plays a central role in regulation and proves to be essential in a mouse model of systemic infection.
Collapse
|
31
|
Pikula J, Heger T, Bandouchova H, Kovacova V, Nemcova M, Papezikova I, Piacek V, Zajíčková R, Zukal J. Phagocyte activity reflects mammalian homeo- and hetero-thermic physiological states. BMC Vet Res 2020; 16:232. [PMID: 32631329 PMCID: PMC7339577 DOI: 10.1186/s12917-020-02450-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 06/30/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Emergence of both viral zoonoses from bats and diseases that threaten bat populations has highlighted the necessity for greater insights into the functioning of the bat immune system. Particularly when considering hibernating temperate bat species, it is important to understand the seasonal dynamics associated with immune response. Body temperature is one of the factors that modulates immune functions and defence mechanisms against pathogenic agents in vertebrates. To better understand innate immunity mediated by phagocytes in bats, we measured respiratory burst and haematology and blood chemistry parameters in heterothermic greater mouse-eared bats (Myotis myotis) and noctules (Nyctalus noctula) and homeothermic laboratory mice (Mus musculus). RESULTS Bats displayed similar electrolyte levels and time-related parameters of phagocyte activity, but differed in blood profile parameters related to metabolism and red blood cell count. Greater mouse-eared bats differed from mice in all phagocyte activity parameters and had the lowest phagocytic activity overall, while noctules had the same quantitative phagocytic values as mice. Homeothermic mice were clustered separately in a high phagocyte activity group, while both heterothermic bat species were mixed in two lower phagocyte activity clusters. Stepwise regression identified glucose, white blood cell count, haemoglobin, total dissolved carbon dioxide and chloride variables as the best predictors of phagocyte activity. White blood cell counts, representing phagocyte numbers available for respiratory burst, were the best predictors of both time-related and quantitative parameters of phagocyte activity. Haemoglobin, as a proxy variable for oxygen available for uptake by phagocytes, was important for the onset of phagocytosis. CONCLUSIONS Our comparative data indicate that phagocyte activity reflects the physiological state and blood metabolic and cellular characteristics of homeothermic and heterothermic mammals. However, further studies elucidating trade-offs between immune defence, seasonal lifestyle physiology, hibernation behaviour, roosting ecology and geographic patterns of immunity of heterothermic bat species will be necessary. An improved understanding of bat immune responses will have positive ramifications for wildlife and conservation medicine.
Collapse
Affiliation(s)
- Jiri Pikula
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackého třída 1946/1, 612 42, Brno, Czech Republic.
- CEITEC - Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.
| | - Tomas Heger
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackého třída 1946/1, 612 42, Brno, Czech Republic.
| | - Hana Bandouchova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackého třída 1946/1, 612 42, Brno, Czech Republic
| | - Veronika Kovacova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackého třída 1946/1, 612 42, Brno, Czech Republic
| | - Monika Nemcova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackého třída 1946/1, 612 42, Brno, Czech Republic
| | - Ivana Papezikova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackého třída 1946/1, 612 42, Brno, Czech Republic
| | - Vladimir Piacek
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackého třída 1946/1, 612 42, Brno, Czech Republic
| | - Renata Zajíčková
- Department of Botany and Zoology, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
- Institute of Biostatistics and Analyses, Masaryk University, Kamenice 3, 625 00, Brno, Czech Republic
| | - Jan Zukal
- Department of Botany and Zoology, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65, Brno, Czech Republic
| |
Collapse
|
32
|
Ergochromes: Heretofore Neglected Side of Ergot Toxicity. Toxins (Basel) 2019; 11:toxins11080439. [PMID: 31349616 PMCID: PMC6722540 DOI: 10.3390/toxins11080439] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/17/2022] Open
Abstract
Ergot, fungal genus Claviceps, are worldwide distributed grass pathogens known for their production of toxic ergot alkaloids (EAs) and the great agricultural impact they have on both cereal crop and farm animal production. EAs are traditionally considered as the only factor responsible for ergot toxicity. Using broad sampling covering 13 ergot species infecting wild or agricultural grasses (including cereals) across Europe, USA, New Zealand, and South Africa we showed that the content of ergochrome pigments were comparable to the content of EAs in sclerotia. While secalonic acids A–C (SAs), the main ergot ergochromes (ECs), are well known toxins, our study is the first to address the question about their contribution to overall ergot toxicity. Based on our and published data, the importance of SAs in acute intoxication seems to be negligible, but the effect of chronic exposure needs to be evaluated. Nevertheless, they have biological activities at doses corresponding to quantities found in natural conditions. Our study highlights the need for a re-evaluation of ergot toxicity mechanisms and further studies of SAs’ impact on livestock production and food safety.
Collapse
|
33
|
Martínková N, Pikula J, Zukal J, Kovacova V, Bandouchova H, Bartonička T, Botvinkin AD, Brichta J, Dundarova H, Kokurewicz T, Irwin NR, Linhart P, Orlov OL, Piacek V, Škrabánek P, Tiunov MP, Zahradníková A. Hibernation temperature-dependent Pseudogymnoascus destructans infection intensity in Palearctic bats. Virulence 2018; 9:1734-1750. [PMID: 36595968 PMCID: PMC10022473 DOI: 10.1080/21505594.2018.1548685] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
White-nose syndrome (WNS) is a fungal disease caused by Pseudogymnoascus destructans that is devastating to Nearctic bat populations but tolerated by Palearctic bats. Temperature is a factor known to be important for fungal growth and bat choice of hibernation. Here we investigated the effect of temperature on the pathogenic fungal growth in the wild across the Palearctic. We modelled body surface temperature of bats with respect to fungal infection intensity and disease severity and were able to relate this to the mean annual surface temperature at the site. Bats that hibernated at lower temperatures had less fungal growth and fewer skin lesions on their wings. Contrary to expectation derived from laboratory P. destructans culture experiments, natural infection intensity peaked between 5 and 6°C and decreased at warmer hibernating temperature. We made predictive maps based on bat species distributions, temperature and infection intensity and disease severity data to determine not only where P. destructans will be found but also where the infection will be invasive to bats across the Palearctic. Together these data highlight the mechanistic model of the interplay between environmental and biological factors, which determine progression in a wildlife disease.
Collapse
Affiliation(s)
- Natália Martínková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic.,Institute of Biostatistics and Analyses, Masaryk University, Brno, Czech Republic
| | - Jiri Pikula
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Jan Zukal
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic.,Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
| | - Veronika Kovacova
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Hana Bandouchova
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Tomáš Bartonička
- Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
| | - Alexander D Botvinkin
- Epidemiology Department, Irkutsk State Medical University, Irkutsk, Russian Federation
| | - Jiri Brichta
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Heliana Dundarova
- Department of Ecosystem Research, Environmental Risk Assessment and Conservation Biology, Institute of Biodiversity and Ecosystem Research, Sofia, Bulgaria
| | - Tomasz Kokurewicz
- Institute of Biology, Department of Vertebrate Ecology and Palaeontology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | | | - Petr Linhart
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Oleg L Orlov
- International Complex Research Laboratory for Study of Climate Change, Land Use and Biodiversity, Tyumen State University, Tyumen, Russian Federation.,Department of Biochemistry, Ural State Medical University, Ekaterinburg, Russian Federation
| | - Vladimir Piacek
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Pavel Škrabánek
- Department of Process Control, Faculty of Electrical Engineering and Informatics, University of Pardubice, Pardubice, Czech Republic.,Institute of Automation and Computer Science, Brno University of Technology, Brno, Czech Republic
| | - Mikhail P Tiunov
- Institute of Biology and Soil Science, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Alexandra Zahradníková
- Department of Muscle Cell Research, Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
34
|
Martínková N, Škrabánek P, Pikula J. Modelling invasive pathogen load from non-destructive sampling data. J Theor Biol 2018; 464:98-103. [PMID: 30578799 DOI: 10.1016/j.jtbi.2018.12.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/22/2018] [Accepted: 12/18/2018] [Indexed: 12/24/2022]
Abstract
Where microbes colonizing skin surface may help maintain organism homeostasis, those that invade living skin layers cause disease. In bats, white-nose syndrome is a fungal skin infection that affects animals during hibernation and may lead to mortality in severe cases. Here, we inferred the amount of fungus that had invaded skin tissue of diseased animals. We used simulations to estimate the unobserved disease severity in a non-lethal wing punch biopsy and to relate the simulated pathology to the measured fungal load in paired biopsies. We found that a single white-nose syndrome skin lesion packed with spores and hyphae of the causative agent, Pseudogymnoascus destructans, contains 48.93 pg of the pathogen DNA, which amounts to about 1560 P destructans genomes in one skin lesion. Relating the information to the known UV fluorescence in Nearctic and Palearctic bats shows that Nearctic bats carry about 1.7 µg of fungal DNA per cm2, whereas Palearctic bats have 0.04 µg cm-2 of P. destructans DNA. With the information on the fungal load that had invaded the host skin, the researchers can now calculate disease severity as a function of invasive fungal growth using non-destructive UV light transillumination of each bat's wing membranes. Our results will enable and promote thorough disease severity assessment in protected bat species without the need for extensive animal and laboratory labor sacrifices.
Collapse
Affiliation(s)
- Natália Martínková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic; Institute of Biostatistics and Analyses, Masaryk University, Kamenice 3, 625 00 Brno, Czech Republic.
| | - Pavel Škrabánek
- Institute of Automation and Computer Science, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic.
| | - Jiri Pikula
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackého třída 1946/1, 612 42 Brno, Czech Republic.
| |
Collapse
|
35
|
Li Z, Quan G, Jiang X, Yang Y, Ding X, Zhang D, Wang X, Hardwidge PR, Ren W, Zhu G. Effects of Metabolites Derived From Gut Microbiota and Hosts on Pathogens. Front Cell Infect Microbiol 2018; 8:314. [PMID: 30276161 PMCID: PMC6152485 DOI: 10.3389/fcimb.2018.00314] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/16/2018] [Indexed: 12/13/2022] Open
Abstract
Intestinal metabolites participate in various physiological processes, including energy metabolism, cell-to-cell communication, and host immunity. These metabolites mainly originate from gut microbiota and hosts. Although many host metabolites are dominant in intestines, such as free fatty acids, amino acids and vitamins, the metabolites derived from gut microbiota are also essential for intestinal homeostasis. In addition, some metabolites are only generated and released by gut microbiota, such as bacteriocins, short-chain fatty acids, and quorum-sensing autoinducers. In this review, we summarize recent studies regarding the crosstalk between pathogens and metabolites from different sources, including the influence on bacterial development and the activation/inhibition of immune responses of hosts. All of these functions would affect the colonization of and infection by pathogens. This review provides clear ideas and directions for further exploring the regulatory mechanisms and effects of metabolites on pathogens.
Collapse
Affiliation(s)
- Zhendong Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine Yangzhou University, Yangzhou, China
| | - Guomei Quan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine Yangzhou University, Yangzhou, China
| | - Xinyi Jiang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine Yangzhou University, Yangzhou, China
| | - Yang Yang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine Yangzhou University, Yangzhou, China
| | - Xueyan Ding
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine Yangzhou University, Yangzhou, China
| | - Dong Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine Yangzhou University, Yangzhou, China
| | - Xiuqing Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine Yangzhou University, Yangzhou, China
| | - Philip R Hardwidge
- College of Veterinary Medicine, Kansas State University Manhattan, KS, United States
| | - Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University Guangzhou, Guangdong, China
| | - Guoqiang Zhu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine Yangzhou University, Yangzhou, China
| |
Collapse
|
36
|
Beekman CN, Meckler L, Kim E, Bennett RJ. Galleria mellonella as an insect model for P. destructans, the cause of White-nose Syndrome in bats. PLoS One 2018; 13:e0201915. [PMID: 30183704 PMCID: PMC6124720 DOI: 10.1371/journal.pone.0201915] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 07/24/2018] [Indexed: 12/14/2022] Open
Abstract
Pseudogymnoascus destructans is the fungal pathogen responsible for White-nose Syndrome (WNS), a disease that has killed millions of bats in North America over the last decade. A major obstacle to research on P. destructans has been the lack of a tractable infection model for monitoring virulence. Here, we establish a high-throughput model of infection using larvae of Galleria mellonella, an invertebrate used to study host-pathogen interactions for a wide range of microbial species. We demonstrate that P. destructans can kill G. mellonella larvae in an inoculum-dependent manner when infected larvae are housed at 13°C or 18°C. Larval killing is an active process, as heat-killed P. destructans spores caused significantly decreased levels of larval death compared to live spores. We also show that fungal spores that were germinated prior to inoculation were able to kill larvae 3–4 times faster than non-germinated spores. Lastly, we identified chemical inhibitors of P. destructans and used G. mellonella to evaluate these inhibitors for their ability to reduce virulence. We demonstrate that amphotericin B can effectively block larval killing by P. destructans and thereby establish that this infection model can be used to screen biocontrol agents against this fungal pathogen.
Collapse
Affiliation(s)
- Chapman N. Beekman
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI United States of America
| | - Lauren Meckler
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI United States of America
| | - Eleanor Kim
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI United States of America
| | - Richard J. Bennett
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI United States of America
- * E-mail:
| |
Collapse
|
37
|
Harazim M, Horáček I, Jakešová L, Luermann K, Moravec JC, Morgan S, Pikula J, Sosík P, Vavrušová Z, Zahradníková A, Zukal J, Martínková N. Natural selection in bats with historical exposure to white-nose syndrome. BMC ZOOL 2018. [DOI: 10.1186/s40850-018-0035-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
38
|
Field KA, Sewall BJ, Prokkola JM, Turner GG, Gagnon MF, Lilley TM, Paul White J, Johnson JS, Hauer CL, Reeder DM. Effect of torpor on host transcriptomic responses to a fungal pathogen in hibernating bats. Mol Ecol 2018; 27:3727-3743. [PMID: 30080945 DOI: 10.1111/mec.14827] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 07/25/2018] [Accepted: 07/28/2018] [Indexed: 01/07/2023]
Abstract
Hibernation, the use of prolonged torpor to depress metabolism, is employed by mammals to conserve resources during extended periods of extreme temperatures and/or resource limitation. Mammalian hibernators arouse to euthermy periodically during torpor for reasons that are not well understood, and these arousals may facilitate immune processes. To determine whether arousals enable host responses to pathogens, we used dual RNA-Seq and a paired sampling approach to examine gene expression in a hibernating bat, the little brown myotis (Myotis lucifugus). During torpor, transcript levels differed in only a few genes between uninfected wing tissue and adjacent tissue infected with Pseudogymnoascus destructans, the fungal pathogen that causes white-nose syndrome. Within 70-80 min after emergence from torpor, large changes in gene expression were observed due to local infection, particularly in genes involved in pro-inflammatory host responses to fungal pathogens, but also in many genes involved in immune responses and metabolism. These results support the hypothesis that torpor is a period of relative immune dormancy and arousals allow for local immune responses in infected tissues during hibernation. Host-pathogen interactions were also found to regulate gene expression in the pathogen differently depending on the torpor state of the host. Hibernating species must balance the benefits of energy and water conservation achieved during torpor with the costs of decreased immune competence. Interbout arousals allow hibernators to optimize these, and other, trade-offs during prolonged hibernation by enabling host responses to pathogens within brief, periodic episodes of euthermy.
Collapse
Affiliation(s)
- Kenneth A Field
- Department of Biology, Bucknell University, Lewisburg, Pennsylvania
| | - Brent J Sewall
- Department of Biology, Temple University, Philadelphia, Pennsylvania
| | - Jenni M Prokkola
- Department of Biology, Bucknell University, Lewisburg, Pennsylvania
| | - Gregory G Turner
- Wildlife Diversity Division, Pennsylvania Game Commission, Harrisburg, Pennsylvania
| | - Marianne F Gagnon
- Department of Biology, Temple University, Philadelphia, Pennsylvania
| | - Thomas M Lilley
- Department of Biology, Bucknell University, Lewisburg, Pennsylvania
| | - J Paul White
- Wisconsin Department of Natural Resources, Madison, Wisconsin
| | - Joseph S Johnson
- Department of Biology, Bucknell University, Lewisburg, Pennsylvania
| | | | - DeeAnn M Reeder
- Department of Biology, Bucknell University, Lewisburg, Pennsylvania
| |
Collapse
|
39
|
Kovacova V, Zukal J, Bandouchova H, Botvinkin AD, Harazim M, Martínková N, Orlov OL, Piacek V, Shumkina AP, Tiunov MP, Pikula J. White-nose syndrome detected in bats over an extensive area of Russia. BMC Vet Res 2018; 14:192. [PMID: 29914485 PMCID: PMC6007069 DOI: 10.1186/s12917-018-1521-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/10/2018] [Indexed: 02/08/2023] Open
Abstract
Background Spatiotemporal distribution patterns are important infectious disease epidemiological characteristics that improve our understanding of wild animal population health. The skin infection caused by the fungus Pseudogymnoascus destructans emerged as a panzootic disease in bats of the northern hemisphere. However, the infection status of bats over an extensive geographic area of the Russian Federation has remained understudied. Results We examined bats at the geographic limits of bat hibernation in the Palearctic temperate zone and found bats with white-nose syndrome (WNS) on the European slopes of the Ural Mountains through the Western Siberian Plain, Central Siberia and on to the Far East. We identified the diagnostic symptoms of WNS based on histopathology in the Northern Ural region at 11° (about 1200 km) higher latitude than the current northern limit in the Nearctic. While body surface temperature differed between regions, bats at all study sites hibernated in very cold conditions averaging 3.6 °C. Each region also differed in P. destructans fungal load and the number of UV fluorescent skin lesions indicating skin damage intensity. Myotis bombinus, M. gracilis and Murina hilgendorfi were newly confirmed with histopathological symptoms of WNS. Prevalence of UV-documented WNS ranged between 16 and 76% in species of relevant sample size. Conclusions To conclude, the bat pathogen P. destructans is widely present in Russian hibernacula but infection remains at low intensity, despite the high exposure rate. Electronic supplementary material The online version of this article (10.1186/s12917-018-1521-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Veronika Kovacova
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic.
| | - Jan Zukal
- Institute of Vertebrate Biology of the Czech Academy of Sciences, v.v.i., Květná 8, 603 65, Brno, Czech Republic.,Institute of Botany and Zoology, Masaryk University, Kotlářská 267/2, 611 37, Brno, Czech Republic
| | - Hana Bandouchova
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Alexander D Botvinkin
- Irkutsk State Medical University, Krasnogo Vosstania street 1, Irkutsk, Russian Federation, 664003
| | - Markéta Harazim
- Institute of Vertebrate Biology of the Czech Academy of Sciences, v.v.i., Květná 8, 603 65, Brno, Czech Republic.,Institute of Botany and Zoology, Masaryk University, Kotlářská 267/2, 611 37, Brno, Czech Republic
| | - Natália Martínková
- Institute of Vertebrate Biology of the Czech Academy of Sciences, v.v.i., Květná 8, 603 65, Brno, Czech Republic.,Institute of Biostatistics and Analyses, Masaryk University, Kamenice 126/3, 625 00, Brno, Czech Republic
| | - Oleg L Orlov
- International Complex Research Laboratory for Study of Climate Change, Land Use and Biodiversity, Tyumen State University, Volodarckogo 6, 625003, Tyumen, Russia.,Department of Biochemistry, Ural State Medical University, Repina 3, 620014, Ekaterinburg, Russia
| | - Vladimir Piacek
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Alexandra P Shumkina
- Western Baikal protected areas, Federal State Budgetary Institution "Zapovednoe Pribaikalye", Baikalskaya st. 291B, 664050, Irkutsk, Russia
| | - Mikhail P Tiunov
- Institute of Biology and Soil Science, Far East Branch of the Russian Academy of Sciences, Pr-t 100-letiya Vladivostoka 159, 690022, Vladivostok, Russia
| | - Jiri Pikula
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| |
Collapse
|
40
|
Bandouchova H, Bartonička T, Berkova H, Brichta J, Kokurewicz T, Kovacova V, Linhart P, Piacek V, Pikula J, Zahradníková A, Zukal J. Alterations in the health of hibernating bats under pathogen pressure. Sci Rep 2018; 8:6067. [PMID: 29666436 PMCID: PMC5904171 DOI: 10.1038/s41598-018-24461-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 04/04/2018] [Indexed: 12/24/2022] Open
Abstract
In underground hibernacula temperate northern hemisphere bats are exposed to Pseudogymnoascus destructans, the fungal agent of white-nose syndrome. While pathological and epidemiological data suggest that Palearctic bats tolerate this infection, we lack knowledge about bat health under pathogen pressure. Here we report blood profiles, along with body mass index (BMI), infection intensity and hibernation temperature, in greater mouse-eared bats (Myotis myotis). We sampled three European hibernacula that differ in geomorphology and microclimatic conditions. Skin lesion counts differed between contralateral wings of a bat, suggesting variable exposure to the fungus. Analysis of blood parameters suggests a threshold of ca. 300 skin lesions on both wings, combined with poor hibernation conditions, may distinguish healthy bats from those with homeostatic disruption. Physiological effects manifested as mild metabolic acidosis, decreased glucose and peripheral blood eosinophilia which were strongly locality-dependent. Hibernating bats displaying blood homeostasis disruption had 2 °C lower body surface temperatures. A shallow BMI loss slope with increasing pathogen load suggested a high degree of infection tolerance. European greater mouse-eared bats generally survive P. destructans invasion, despite some health deterioration at higher infection intensities (dependant on hibernation conditions). Conservation measures should minimise additional stressors to conserve constrained body reserves of bats during hibernation.
Collapse
Affiliation(s)
- Hana Bandouchova
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Tomáš Bartonička
- Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
| | - Hana Berkova
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Jiri Brichta
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Tomasz Kokurewicz
- Institute of Biology, Department of Vertebrate Ecology and Palaeontology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Veronika Kovacova
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Petr Linhart
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Vladimir Piacek
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Jiri Pikula
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic. .,CEITEC - Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.
| | - Alexandra Zahradníková
- Department of Muscle Cell Research, Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jan Zukal
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
41
|
McGuire LP, Mayberry HW, Willis CKR. White-nose syndrome increases torpid metabolic rate and evaporative water loss in hibernating bats. Am J Physiol Regul Integr Comp Physiol 2017; 313:R680-R686. [PMID: 28835446 DOI: 10.1152/ajpregu.00058.2017] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/26/2017] [Accepted: 08/21/2017] [Indexed: 01/08/2023]
Abstract
Fungal diseases of wildlife typically manifest as superficial skin infections but can have devastating consequences for host physiology and survival. White-nose syndrome (WNS) is a fungal skin disease that has killed millions of hibernating bats in North America since 2007. Infection with the fungus Pseudogymnoascus destructans causes bats to rewarm too often during hibernation, but the cause of increased arousal rates remains unknown. On the basis of data from studies of captive and free-living bats, two mechanistic models have been proposed to explain disease processes in WNS. Key predictions of both models are that WNS-affected bats will show 1) higher metabolic rates during torpor (TMR) and 2) higher rates of evaporative water loss (EWL). We collected bats from a WNS-negative hibernaculum, inoculated one group with P. destructans, and sham-inoculated a second group as controls. After 4 mo of hibernation, TMR and EWL were measured using respirometry. Both predictions were supported, and our data suggest that infected bats were more affected by variation in ambient humidity than controls. Furthermore, disease severity, as indicated by the area of the wing with UV fluorescence, was positively correlated with EWL, but not TMR. Our results provide the first direct evidence that heightened energy expenditure during torpor and higher EWL independently contribute to WNS pathophysiology, with implications for the design of potential treatments for the disease.
Collapse
Affiliation(s)
- Liam P McGuire
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada; .,Department of Biological Sciences, Texas Tech University, Lubbock, Texas; and
| | - Heather W Mayberry
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada.,Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Craig K R Willis
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada
| |
Collapse
|
42
|
Pikula J, Amelon SK, Bandouchova H, Bartonička T, Berkova H, Brichta J, Hooper S, Kokurewicz T, Kolarik M, Köllner B, Kovacova V, Linhart P, Piacek V, Turner GG, Zukal J, Martínková N. White-nose syndrome pathology grading in Nearctic and Palearctic bats. PLoS One 2017; 12:e0180435. [PMID: 28767673 PMCID: PMC5540284 DOI: 10.1371/journal.pone.0180435] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 05/26/2017] [Indexed: 11/18/2022] Open
Abstract
While white-nose syndrome (WNS) has decimated hibernating bat populations in the Nearctic, species from the Palearctic appear to cope better with the fungal skin infection causing WNS. This has encouraged multiple hypotheses on the mechanisms leading to differential survival of species exposed to the same pathogen. To facilitate intercontinental comparisons, we proposed a novel pathogenesis-based grading scheme consistent with WNS diagnosis histopathology criteria. UV light-guided collection was used to obtain single biopsies from Nearctic and Palearctic bat wing membranes non-lethally. The proposed scheme scores eleven grades associated with WNS on histopathology. Given weights reflective of grade severity, the sum of findings from an individual results in weighted cumulative WNS pathology score. The probability of finding fungal skin colonisation and single, multiple or confluent cupping erosions increased with increase in Pseudogymnoascus destructans load. Increasing fungal load mimicked progression of skin infection from epidermal surface colonisation to deep dermal invasion. Similarly, the number of UV-fluorescent lesions increased with increasing weighted cumulative WNS pathology score, demonstrating congruence between WNS-associated tissue damage and extent of UV fluorescence. In a case report, we demonstrated that UV-fluorescence disappears within two weeks of euthermy. Change in fluorescence was coupled with a reduction in weighted cumulative WNS pathology score, whereby both methods lost diagnostic utility. While weighted cumulative WNS pathology scores were greater in the Nearctic than Palearctic, values for Nearctic bats were within the range of those for Palearctic species. Accumulation of wing damage probably influences mortality in affected bats, as demonstrated by a fatal case of Myotis daubentonii with natural WNS infection and healing in Myotis myotis. The proposed semi-quantitative pathology score provided good agreement between experienced raters, showing it to be a powerful and widely applicable tool for defining WNS severity.
Collapse
Affiliation(s)
- Jiri Pikula
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
- CEITEC—Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
- * E-mail:
| | - Sybill K. Amelon
- United States Department of Agriculture Forest Service, Northern Research Station, Columbia, Missouri, United States of America
| | - Hana Bandouchova
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Tomáš Bartonička
- Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
| | - Hana Berkova
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Jiri Brichta
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Sarah Hooper
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
| | - Tomasz Kokurewicz
- Institute of Biology, Department of Vertebrate Ecology and Palaeontology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Miroslav Kolarik
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Bernd Köllner
- Institute of Immunology, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Veronika Kovacova
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Petr Linhart
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Vladimir Piacek
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Gregory G. Turner
- Pennsylvania Game Commission, Harrisburg, Pennsylvania, United States of America
| | - Jan Zukal
- Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Natália Martínková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
- Institute of Biostatistics and Analyses, Masaryk University, Brno, Czech Republic
| |
Collapse
|
43
|
Reeder SM, Palmer JM, Prokkola JM, Lilley TM, Reeder DM, Field KA. Pseudogymnoascus destructans transcriptome changes during white-nose syndrome infections. Virulence 2017; 8:1695-1707. [PMID: 28614673 PMCID: PMC5810475 DOI: 10.1080/21505594.2017.1342910] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
White nose syndrome (WNS) is caused by the psychrophilic fungus Pseudogymnoascus destructans that can grow in the environment saprotrophically or parasitically by infecting hibernating bats. Infections are pathological in many species of North American bats, disrupting hibernation and causing mortality. To determine what fungal pathways are involved in infection of living tissue, we examined fungal gene expression using RNA-Seq. We compared P. destructans gene expression when grown in culture to that during infection of a North American bat species, Myotis lucifugus, that shows high WNS mortality. Cultured P. destructans was grown at 10 to 14 C and P. destructans growing in vivo was presumably exposed to temperatures ranging from 4 to 8 C during torpor and up to 37 C during periodic arousals. We found that when P. destructans is causing WNS, the most significant differentially expressed genes were involved in heat shock responses, cell wall remodeling, and micronutrient acquisition. These results indicate that this fungal pathogen responds to host-pathogen interactions by regulating gene expression in ways that may contribute to evasion of host responses. Alterations in fungal cell wall structures could allow P. destructans to avoid detection by host pattern recognition receptors and antibody responses. This study has also identified several fungal pathways upregulated during WNS infection that may be candidates for mitigating infection pathology. By identifying host-specific pathogen responses, these observations have important implications for host-pathogen evolutionary relationships in WNS and other fungal diseases.
Collapse
Affiliation(s)
- Sophia M Reeder
- a Department of Biology , Bucknell University , Lewisburg , PA , USA
| | - Jonathan M Palmer
- b Center for Forest Mycology Research , Northern Research Station, US Forest Service , Madison , WI , USA
| | - Jenni M Prokkola
- a Department of Biology , Bucknell University , Lewisburg , PA , USA
| | - Thomas M Lilley
- a Department of Biology , Bucknell University , Lewisburg , PA , USA
| | - DeeAnn M Reeder
- a Department of Biology , Bucknell University , Lewisburg , PA , USA
| | - Kenneth A Field
- a Department of Biology , Bucknell University , Lewisburg , PA , USA
| |
Collapse
|
44
|
The superfamily keeps growing: Identification in trypanosomatids of RibJ, the first riboflavin transporter family in protists. PLoS Negl Trop Dis 2017; 11:e0005513. [PMID: 28406895 PMCID: PMC5404878 DOI: 10.1371/journal.pntd.0005513] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/25/2017] [Accepted: 03/21/2017] [Indexed: 01/07/2023] Open
Abstract
Background Trypanosomatid parasites represent a major health issue affecting hundreds of million people worldwide, with clinical treatments that are partially effective and/or very toxic. They are responsible for serious human and plant diseases including Trypanosoma cruzi (Chagas disease), Trypanosoma brucei (Sleeping sickness), Leishmania spp. (Leishmaniasis), and Phytomonas spp. (phytoparasites). Both, animals and trypanosomatids lack the biosynthetic riboflavin (vitamin B2) pathway, the vital precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) cofactors. While metazoans obtain riboflavin from the diet through RFVT/SLC52 transporters, the riboflavin transport mechanisms in trypanosomatids still remain unknown. Methodology/Principal findings Here, we show that riboflavin is imported with high affinity in Trypanosoma cruzi, Trypanosoma brucei, Leishmania (Leishmania) mexicana, Crithidia fasciculata and Phytomonas Jma using radiolabeled riboflavin transport assays. The vitamin is incorporated through a saturable carrier-mediated process. Effective competitive uptake occurs with riboflavin analogs roseoflavin, lumiflavin and lumichrome, and co-factor derivatives FMN and FAD. Moreover, important biological processes evaluated in T. cruzi (i.e. proliferation, metacyclogenesis and amastigote replication) are dependent on riboflavin availability. In addition, the riboflavin competitive analogs were found to interfere with parasite physiology on riboflavin-dependent processes. By means of bioinformatics analyses we identified a novel family of riboflavin transporters (RibJ) in trypanosomatids. Two RibJ members, TcRibJ and TbRibJ from T. cruzi and T. brucei respectively, were functionally characterized using homologous and/or heterologous expression systems. Conclusions/Significance The RibJ family represents the first riboflavin transporters found in protists and the third eukaryotic family known to date. The essentiality of riboflavin for trypanosomatids, and the structural/biochemical differences that RFVT/SLC52 and RibJ present, make the riboflavin transporter -and its downstream metabolism- a potential trypanocidal drug target. In this work, we show that riboflavin plays a key role in the trypanosomatid life cycles and describe a novel family of riboflavin transporters (RibJ) with uptake function. Despite the vital importance of riboflavin for all living cells, RibJ are the first transporters described in protists. We functionally characterized the T. cruzi and T. brucei RibJ members and the effect of riboflavin analogs on parasite physiology. The structural and biochemical differences presented between human transporters and RibJ members make riboflavin transport and downstream metabolism, attractive and potential trypanosomatid targets.
Collapse
|