1
|
Kalafateli M, Tourkochristou E, Tsounis EP, Aggeletopoulou I, Triantos C. New Insights into the Pathogenesis of Intestinal Fibrosis in Inflammatory Bowel Diseases: Focusing on Intestinal Smooth Muscle Cells. Inflamm Bowel Dis 2025; 31:579-592. [PMID: 39680685 DOI: 10.1093/ibd/izae292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Indexed: 12/18/2024]
Abstract
Strictures in inflammatory bowel disease, especially Crohn's disease (CD), are characterized by increased intestinal wall thickness, which, according to recent accumulating data, is mainly attributed to the expansion of the intestinal smooth muscle layers and to a lesser extent to collagen deposition. In this review, we will discuss the role of intestinal smooth muscle cells (SMCs) as crucial orchestrators of stricture formation. Activated SMCs can synthesize extracellular matrix (ECM), thus contributing to intestinal fibrosis, as well as growth factors and cytokines that can further enhance ECM production, stimulate other surrounding mesenchymal and immune cells, and increase SMC proliferation via paracrine or autocrine signaling. There is also evidence that, in stricturing CD, a phenotypic modulation of SMC toward a myofibroblast-like synthetic phenotype takes place. Moreover, the molecular mechanisms and signaling pathways that regulate SMC hyperplasia/hypertrophy will be extensively reviewed. The understanding of the cellular network and the molecular background behind stricture formation is essential for the design of effective anti-fibrotic strategies, and SMCs might be a promising therapeutic target in the future.
Collapse
Affiliation(s)
- Maria Kalafateli
- Department of Gastroenterology, General Hospital of Patras, Patras, Greece
| | - Evanthia Tourkochristou
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Efthymios P Tsounis
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Christos Triantos
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
2
|
Tu Y, Li Y, Qu G, Ning Y, Li B, Li G, Wu M, Li S, Huang Y. A Review of Basic Fibroblast Growth Factor Delivery Strategies and Applications in Regenerative Medicine. J Biomed Mater Res A 2025; 113:e37834. [PMID: 39740125 DOI: 10.1002/jbm.a.37834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 01/02/2025]
Abstract
Basic fibroblast growth factor (bFGF) is a significant member of the fibroblast growth factor (FGF) family. The bFGF has a three-dimensional structure comprising 12 reverse parallel β-folds. This structure facilitates tissue wound repair, angiogenesis, bone formation, cartilage repair, and nerve regeneration. Consequently, it has garnered significant attention from scholars both domestically and internationally. However, the instability and degradation properties of bFGF in vivo have limited its clinical application. Significant interest has arisen in the development of novel bFGF delivery systems that can address the shortcomings of bFGF and enhance its bioavailability by controlling the release amount, timing, and location. This article offers a comprehensive overview of the research and recent advances in various bFGF delivery systems, including hydrogels, liposomes, microspheres, and nanoparticles. Subsequently, the applications of bFGF pharmaceutical preparations in various fields are described. Finally, the current clinical applications of bFGF drug formulations and those in clinical trials are discussed, along with their clinical translation and future trends.
Collapse
Affiliation(s)
- Yuhan Tu
- Department of Pharmacy, Yueqing Third People's Hospital, Wenzhou, China
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Yang Li
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Gaoer Qu
- Department of Pharmacy, Yueqing Third People's Hospital, Wenzhou, China
| | - Yangyang Ning
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Bin Li
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Guoben Li
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Min Wu
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Shijun Li
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Yangge Huang
- Department of Pharmacy, Yueqing Third People's Hospital, Wenzhou, China
| |
Collapse
|
3
|
Niro F, Fernandes S, Cassani M, Apostolico M, Oliver-De La Cruz J, Pereira-Sousa D, Pagliari S, Vinarsky V, Zdráhal Z, Potesil D, Pustka V, Pompilio G, Sommariva E, Rovina D, Maione AS, Bersanini L, Becker M, Rasponi M, Forte G. Fibrotic extracellular matrix impacts cardiomyocyte phenotype and function in an iPSC-derived isogenic model of cardiac fibrosis. Transl Res 2024; 273:58-77. [PMID: 39025226 PMCID: PMC11832458 DOI: 10.1016/j.trsl.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/14/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024]
Abstract
Cardiac fibrosis occurs following insults to the myocardium and is characterized by the abnormal accumulation of non-compliant extracellular matrix (ECM), which compromises cardiomyocyte contractile activity and eventually leads to heart failure. This phenomenon is driven by the activation of cardiac fibroblasts (cFbs) to myofibroblasts and results in changes in ECM biochemical, structural and mechanical properties. The lack of predictive in vitro models of heart fibrosis has so far hampered the search for innovative treatments, as most of the cellular-based in vitro reductionist models do not take into account the leading role of ECM cues in driving the progression of the pathology. Here, we devised a single-step decellularization protocol to obtain and thoroughly characterize the biochemical and micro-mechanical properties of the ECM secreted by activated cFbs differentiated from human induced pluripotent stem cells (iPSCs). We activated iPSC-derived cFbs to the myofibroblast phenotype by tuning basic fibroblast growth factor (bFGF) and transforming growth factor beta 1 (TGF-β1) signalling and confirmed that activated cells acquired key features of myofibroblast phenotype, like SMAD2/3 nuclear shuttling, the formation of aligned alpha-smooth muscle actin (α-SMA)-rich stress fibres and increased focal adhesions (FAs) assembly. Next, we used Mass Spectrometry, nanoindentation, scanning electron and confocal microscopy to unveil the characteristic composition and the visco-elastic properties of the abundant, collagen-rich ECM deposited by cardiac myofibroblasts in vitro. Finally, we demonstrated that the fibrotic ECM activates mechanosensitive pathways in iPSC-derived cardiomyocytes, impacting on their shape, sarcomere assembly, phenotype, and calcium handling properties. We thus propose human bio-inspired decellularized matrices as animal-free, isogenic cardiomyocyte culture substrates recapitulating key pathophysiological changes occurring at the cellular level during cardiac fibrosis.
Collapse
Affiliation(s)
- Francesco Niro
- International Clinical Research Center (ICRC), St Anne's University Hospital Brno; Masaryk University, Faculty of Medicine, Department of Biomedical Sciences, Brno 62500, Czech Republic; School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, UK
| | - Soraia Fernandes
- International Clinical Research Center (ICRC), St Anne's University Hospital Brno
| | - Marco Cassani
- International Clinical Research Center (ICRC), St Anne's University Hospital Brno
| | - Monica Apostolico
- International Clinical Research Center (ICRC), St Anne's University Hospital Brno
| | - Jorge Oliver-De La Cruz
- International Clinical Research Center (ICRC), St Anne's University Hospital Brno; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Daniel Pereira-Sousa
- International Clinical Research Center (ICRC), St Anne's University Hospital Brno; Masaryk University, Faculty of Medicine, Department of Biomedical Sciences, Brno 62500, Czech Republic
| | - Stefania Pagliari
- International Clinical Research Center (ICRC), St Anne's University Hospital Brno; School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, UK
| | - Vladimir Vinarsky
- International Clinical Research Center (ICRC), St Anne's University Hospital Brno
| | - Zbyněk Zdráhal
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - David Potesil
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Vaclav Pustka
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Milan, Italy; Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Milan, Italy
| | - Elena Sommariva
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Davide Rovina
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Angela Serena Maione
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | | | | | - Marco Rasponi
- Department of Electronics, Informatics and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Giancarlo Forte
- International Clinical Research Center (ICRC), St Anne's University Hospital Brno; School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, UK.
| |
Collapse
|
4
|
Yu Y, Cai Y, Yang F, Yang Y, Cui Z, Shi D, Bai R. Vascular smooth muscle cell phenotypic switching in atherosclerosis. Heliyon 2024; 10:e37727. [PMID: 39309965 PMCID: PMC11416558 DOI: 10.1016/j.heliyon.2024.e37727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Atherosclerosis (AS) is a complex pathology process involving intricate interactions among various cells and biological processes. Vascular smooth muscle cells (VSMCs) are the predominant cell type in normal arteries, and under atherosclerotic stimuli, VSMCs respond to altered blood flow and microenvironment changes by downregulating contractile markers and switching their phenotype. This review overviews the diverse phenotypes of VSMCs, including the canonical contractile VSMCs, synthetic VSMCs, and phenotypes resembling macrophages, foam cells, myofibroblasts, osteoblasts/chondrocytes, and mesenchymal stem cells. We summarize their presumed protective and pro-atherosclerotic roles in AS development. Additionally, we underscore the molecular mechanisms and regulatory pathways governing VSMC phenotypic switching, encompassing transcriptional regulation, biochemical factors, plaque microenvironment, epigenetics, miRNAs, and the cytoskeleton, emphasizing their significance in AS development. Finally, we outline probable future research directions targeting VSMCs, offering insights into potential therapeutic strategies for AS management.
Collapse
Affiliation(s)
- Yanqiao Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yajie Cai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Furong Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Yankai Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhuorui Cui
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dazhuo Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Ruina Bai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| |
Collapse
|
5
|
Ju X, Wang K, Wang C, Zeng C, Wang Y, Yu J. Regulation of myofibroblast dedifferentiation in pulmonary fibrosis. Respir Res 2024; 25:284. [PMID: 39026235 PMCID: PMC11264880 DOI: 10.1186/s12931-024-02898-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/29/2024] [Indexed: 07/20/2024] Open
Abstract
Idiopathic pulmonary fibrosis is a lethal, progressive, and irreversible condition that has become a significant focus of medical research due to its increasing incidence. This rising trend presents substantial challenges for patients, healthcare providers, and researchers. Despite the escalating burden of pulmonary fibrosis, the available therapeutic options remain limited. Currently, the United States Food and Drug Administration has approved two drugs for the treatment of pulmonary fibrosis-nintedanib and pirfenidone. However, their therapeutic effectiveness is limited, and they cannot reverse the fibrosis process. Additionally, these drugs are associated with significant side effects. Myofibroblasts play a central role in the pathophysiology of pulmonary fibrosis, significantly contributing to its progression. Consequently, strategies aimed at inhibiting myofibroblast differentiation or promoting their dedifferentiation hold promise as effective treatments. This review examines the regulation of myofibroblast dedifferentiation, exploring various signaling pathways, regulatory targets, and potential pharmaceutical interventions that could provide new directions for therapeutic development.
Collapse
Affiliation(s)
- Xuetao Ju
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Kai Wang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Congjian Wang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Chenxi Zeng
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Yi Wang
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China.
| | - Jun Yu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China.
| |
Collapse
|
6
|
Boullard NG, Paris JJ, Shariat-Madar Z, Mahdi F. Increased Prolylcarboxypeptidase Expression Can Serve as a Biomarker of Senescence in Culture. Molecules 2024; 29:2219. [PMID: 38792081 PMCID: PMC11123917 DOI: 10.3390/molecules29102219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Prolylcarboxypeptidase (PRCP, PCP, Lysosomal Pro-X-carboxypeptidase, Angiotensinase C) controls angiotensin- and kinin-induced cell signaling. Elevation of PRCP appears to be activated in chronic inflammatory diseases [cardiovascular disease (CVD), diabetes] in proportion to severity. Vascular endothelial cell senescence and mitochondrial dysfunction have consistently been shown in models of CVD in aging. Cellular senescence, a driver of age-related dysfunction, can differentially alter the expression of lysosomal enzymes due to lysosomal membrane permeability. There is a lack of data demonstrating the effect of age-related dysfunction on the expression and function of PRCP. To explore the changes in PRCP, the PRCP-dependent prekallikrein (PK) pathway was characterized in early- and late-passage human pulmonary artery endothelial cells (HPAECs). Detailed kinetic analysis of cells treated with high molecular weight kininogen (HK), a precursor of bradykinin (BK), and PK revealed a mechanism by which senescent HPAECs activate the generation of kallikrein upon the assembly of the HK-PK complex on HPAECs in parallel with an upregulation of PRCP and endothelial nitric oxide (NO) synthase (eNOS) and NO formation. The NO production and expression of both PRCP and eNOS increased in early-passage HPAECs and decreased in late-passage HPAECs. Low activity of PRCP in late-passage HPAECs was associated with rapid decreased telomerase reverse transcriptase mRNA levels. We also found that, with an increase in the passage number of HPAECs, reduced PRCP altered the respiration rate. These results indicated that aging dysregulates PRCP protein expression, and further studies will shed light into the complexity of the PRCP-dependent signaling pathway in aging.
Collapse
Affiliation(s)
| | - Jason J. Paris
- Division of Pharmacology, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA; (J.J.P.); (Z.S.-M.)
| | - Zia Shariat-Madar
- Division of Pharmacology, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA; (J.J.P.); (Z.S.-M.)
| | - Fakhri Mahdi
- Division of Pharmacology, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA; (J.J.P.); (Z.S.-M.)
| |
Collapse
|
7
|
Papaioannou I, Dritsoula A, Kang P, Baliga RS, Trinder SL, Cook E, Shiwen X, Hobbs AJ, Denton CP, Abraham DJ, Ponticos M. NKX2-5 regulates vessel remodeling in scleroderma-associated pulmonary arterial hypertension. JCI Insight 2024; 9:e164191. [PMID: 38652537 PMCID: PMC11141943 DOI: 10.1172/jci.insight.164191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
NKX2-5 is a member of the homeobox-containing transcription factors critical in regulating tissue differentiation in development. Here, we report a role for NKX2-5 in vascular smooth muscle cell phenotypic modulation in vitro and in vascular remodeling in vivo. NKX2-5 is upregulated in scleroderma patients with pulmonary arterial hypertension. Suppression of NKX2-5 expression in smooth muscle cells halted vascular smooth muscle proliferation and migration, enhanced contractility, and blocked the expression of extracellular matrix genes. Conversely, overexpression of NKX2-5 suppressed the expression of contractile genes (ACTA2, TAGLN, CNN1) and enhanced the expression of matrix genes (COL1) in vascular smooth muscle cells. In vivo, conditional deletion of NKX2-5 attenuated blood vessel remodeling and halted the progression to hypertension in a mouse chronic hypoxia model. This study revealed that signals related to injury such as serum and low confluence, which induce NKX2-5 expression in cultured cells, is potentiated by TGF-β and further enhanced by hypoxia. The effect of TGF-β was sensitive to ERK5 and PI3K inhibition. Our data suggest a pivotal role for NKX2-5 in the phenotypic modulation of smooth muscle cells during pathological vascular remodeling and provide proof of concept for therapeutic targeting of NKX2-5 in vasculopathies.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Middle Aged
- Cell Proliferation/genetics
- Disease Models, Animal
- Homeobox Protein Nkx-2.5/genetics
- Homeobox Protein Nkx-2.5/metabolism
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Pulmonary Arterial Hypertension/metabolism
- Pulmonary Arterial Hypertension/genetics
- Pulmonary Arterial Hypertension/pathology
- Pulmonary Arterial Hypertension/etiology
- Scleroderma, Systemic/pathology
- Scleroderma, Systemic/complications
- Scleroderma, Systemic/metabolism
- Scleroderma, Systemic/genetics
- Transforming Growth Factor beta/metabolism
- Vascular Remodeling
Collapse
Affiliation(s)
- Ioannis Papaioannou
- Division of Medicine, Department of Inflammation, University College London, Royal Free Campus, London, United Kingdom
| | - Athina Dritsoula
- Division of Medicine, Department of Inflammation, University College London, Royal Free Campus, London, United Kingdom
| | - Ping Kang
- Division of Medicine, Department of Inflammation, University College London, Royal Free Campus, London, United Kingdom
| | - Reshma S. Baliga
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Sarah L. Trinder
- Division of Medicine, Department of Inflammation, University College London, Royal Free Campus, London, United Kingdom
| | - Emma Cook
- Division of Medicine, Department of Inflammation, University College London, Royal Free Campus, London, United Kingdom
| | - Xu Shiwen
- Division of Medicine, Department of Inflammation, University College London, Royal Free Campus, London, United Kingdom
| | - Adrian J. Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Christopher P. Denton
- Division of Medicine, Department of Inflammation, University College London, Royal Free Campus, London, United Kingdom
| | - David J. Abraham
- Division of Medicine, Department of Inflammation, University College London, Royal Free Campus, London, United Kingdom
| | - Markella Ponticos
- Division of Medicine, Department of Inflammation, University College London, Royal Free Campus, London, United Kingdom
| |
Collapse
|
8
|
Dare A, Chen SY. Adipsin in the pathogenesis of cardiovascular diseases. Vascul Pharmacol 2024; 154:107270. [PMID: 38114042 PMCID: PMC10939892 DOI: 10.1016/j.vph.2023.107270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Adipsin is an adipokine predominantly synthesized in adipose tissues and released into circulation. It is also known as complement factor-D (CFD), acting as the rate-limiting factor in the alternative complement pathway and exerting essential functions on the activation of complement system. The deficiency of CFD in humans is a very rare condition. However, complement overactivation has been implicated in the etiology of numerous disorders, including cardiovascular disease (CVD). Increased circulating level of adipsin has been reported to promote vascular derangements, systemic inflammation, and endothelial dysfunction. Prospective and case-control studies showed that this adipokine is directly associated with all-cause death and rehospitalization in patients with coronary artery disease. Adipsin has also been implicated in pulmonary arterial hypertension, abdominal aortic aneurysm, pre-eclampsia, and type-2 diabetes which is a major risk factor for CVD. Importantly, serum adipsin has been recognized as a unique prognostic marker for assessing cardiovascular diseases. At present, there is paucity of experimental evidence about the precise role of adipsin in the etiology of CVD. However, this mini review provides some insight on the contribution of adipsin in the pathogenesis of CVD and highlights its role on endothelial, smooth muscle and immune cells that mediate cardiovascular functions.
Collapse
Affiliation(s)
- Ayobami Dare
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, USA
| | - Shi-You Chen
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, USA; The Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA.
| |
Collapse
|
9
|
Natsuki Y, Morioka T, Kakutani Y, Yamazaki Y, Ochi A, Kurajoh M, Mori K, Imanishi Y, Shoji T, Inaba M, Emoto M. Serum Fibroblast Growth Factor 23 Levels are Associated with Vascular Smooth Muscle Dysfunction in Type 2 Diabetes. J Atheroscler Thromb 2023; 30:1838-1848. [PMID: 37225519 DOI: 10.5551/jat.64000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023] Open
Abstract
AIM Increased level of serum fibroblast growth factor 23 (FGF23) is a hallmark of abnormal phosphate metabolism in patients with chronic kidney disease (CKD) and is recently shown to be associated with the risk of cardiovascular disease even in those without CKD. This study investigated the association between serum FGF23 levels and vascular function in patients with type 2 diabetes. METHODS This was a cross-sectional study involving 283 Japanese patients with type 2 diabetes. Flow-mediated dilatation (FMD) and nitroglycerin-mediated dilatation (NMD) of the brachial artery were measured via ultrasonography to evaluate vascular endothelial and smooth muscle functions, respectively. Serum intact FGF23 levels were determined via a sandwich enzyme-linked immunosorbent assay. RESULTS The median values of FMD, NMD, and serum FGF23 were 6.0%, 14.0%, and 27.3 pg/mL, respectively. The serum FGF23 levels were inversely associated with NMD but not with FMD, and the association was independent of atherosclerotic risk factors, estimated glomerular filtration rate (eGFR), and serum phosphate levels. Furthermore, the relationship between serum FGF23 levels and NMD was modified by kidney function, which was pronounced in subjects with normal kidney function (eGFR ≥ 60 mL/min/1.73 m2). CONCLUSION Serum FGF23 levels are independently and inversely associated with NMD in patients with type 2 diabetes, particularly in those with normal kidney function. Our results indicate that FGF23 is involved in vascular smooth muscle dysfunction and that increased serum levels of FGF23 may serve as a novel biomarker for vascular smooth muscle dysfunction in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Yuka Natsuki
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka Metropolitan University Graduate School of Medicine
| | - Tomoaki Morioka
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka Metropolitan University Graduate School of Medicine
| | - Yoshinori Kakutani
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka Metropolitan University Graduate School of Medicine
| | - Yuko Yamazaki
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka Metropolitan University Graduate School of Medicine
| | - Akinobu Ochi
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka Metropolitan University Graduate School of Medicine
| | - Masafumi Kurajoh
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka Metropolitan University Graduate School of Medicine
| | - Katsuhito Mori
- Department of Nephrology, Osaka Metropolitan University Graduate School of Medicine
| | - Yasuo Imanishi
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka Metropolitan University Graduate School of Medicine
| | - Tetsuo Shoji
- Department of Vascular Medicine, Osaka Metropolitan University Graduate School of Medicine
- Vascular Science Center for Translational Research, Osaka Metropolitan University Graduate School of Medicine
| | - Masaaki Inaba
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka Metropolitan University Graduate School of Medicine
| | - Masanori Emoto
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka Metropolitan University Graduate School of Medicine
- Vascular Science Center for Translational Research, Osaka Metropolitan University Graduate School of Medicine
| |
Collapse
|
10
|
Pineda-Castillo SA, Acar H, Detamore MS, Holzapfel GA, Lee CH. Modulation of Smooth Muscle Cell Phenotype for Translation of Tissue-Engineered Vascular Grafts. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:574-588. [PMID: 37166394 PMCID: PMC10618830 DOI: 10.1089/ten.teb.2023.0006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/25/2023] [Indexed: 05/12/2023]
Abstract
Translation of small-diameter tissue-engineered vascular grafts (TEVGs) for the treatment of coronary artery disease (CAD) remains an unfulfilled promise. This is largely due to the limited integration of TEVGs into the native vascular wall-a process hampered by the insufficient smooth muscle cell (SMC) infiltration and extracellular matrix deposition, and low vasoactivity. These processes can be promoted through the judicious modulation of the SMC toward a synthetic phenotype to promote remodeling and vascular integration; however, the expression of synthetic markers is often accompanied by a decrease in the expression of contractile proteins. Therefore, techniques that can precisely modulate the SMC phenotypical behavior could have the potential to advance the translation of TEVGs. In this review, we describe the phenotypic diversity of SMCs and the different environmental cues that allow the modulation of SMC gene expression. Furthermore, we describe the emerging biomaterial approaches to modulate the SMC phenotype in TEVG design and discuss the limitations of current techniques. In addition, we found that current studies in tissue engineering limit the analysis of the SMC phenotype to a few markers, which are often the characteristic of early differentiation only. This limited scope has reduced the potential of tissue engineering to modulate the SMC toward specific behaviors and applications. Therefore, we recommend using the techniques presented in this review, in addition to modern single-cell proteomics analysis techniques to comprehensively characterize the phenotypic modulation of SMCs. Expanding the holistic potential of SMC modulation presents a great opportunity to advance the translation of living conduits for CAD therapeutics.
Collapse
Affiliation(s)
- Sergio A. Pineda-Castillo
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, Oklahoma, USA
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, Oklahoma, USA
| | - Handan Acar
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, Oklahoma, USA
- Institute for Biomedical Engineering, Science and Technology, The University of Oklahoma, Norman, Oklahoma, USA
| | - Michael S. Detamore
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, Oklahoma, USA
- Institute for Biomedical Engineering, Science and Technology, The University of Oklahoma, Norman, Oklahoma, USA
| | - Gerhard A. Holzapfel
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Chung-Hao Lee
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, Oklahoma, USA
- Institute for Biomedical Engineering, Science and Technology, The University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
11
|
Zhou D, Ha HC, Yang G, Jang JM, Park BK, Fu Z, Shin IC, Kim DK. Hyaluronic acid and proteoglycan link protein 1 suppresses platelet‑derived growth factor-BB-induced proliferation, migration, and phenotypic switching of vascular smooth muscle cells. BMB Rep 2023; 56:445-450. [PMID: 37401239 PMCID: PMC10471460 DOI: 10.5483/bmbrep.2023-0088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 04/03/2024] Open
Abstract
The development of atherosclerotic cardiovascular disease is associated with the phenotypic switching of vascular smooth muscle cells (SMCs) from a contractile to a synthetic state, leading to cell migration and proliferation. Platelet‑derived growth factor‑BB (PDGF‑BB) modulates this de-differentiation by initiating a number of biological processes. In this study, we show that gene expression of hyaluronic acid (HA) and proteoglycan link protein 1 (HAPLN1) was upregulated during differentiation of human aortic SMCs (HASMCs) into a contractile state, but downregulated upon during PDGF-BB-induced dedifferentiation. This is the first study showing that the treatment of HASMCs with full-length recombinant human HAPLN1 (rhHAPLN1) significantly reversed PDGF-BB-induced decrease in the protein levels of contractile markers (SM22α, α-SMA, calponin, and SM-MHC), and inhibited the proliferation and migration of HASMCs induced by PDGF-BB. Furthermore, our results show that rhHAPLN1 significantly inhibited the phosphorylation of FAK, AKT, STAT3, p38 MAPK and Raf mediated by the binding of PDGF-BB to PDGFRβ. Together, these results indicated that rhHAPLN1 can suppress the PDGF-BB-stimulated phenotypic switching and subsequent de-differentiation of HASMCs, highlighting its potential as a novel therapeutic target for atherosclerosis and other vascular diseases. [BMB Reports 2023; 56(8): 445-450].
Collapse
Affiliation(s)
- Dan Zhou
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Korea
| | - Hae Chan Ha
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Goowon Yang
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Korea
| | - Ji Min Jang
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Korea
| | - Bo Kyung Park
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Zhicheng Fu
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Korea
| | - In Chul Shin
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Korea
| | - Dae Kyong Kim
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Korea
| |
Collapse
|
12
|
Zhou D, Ha HC, Yang G, Jang JM, Park BK, Fu Z, Shin IC, Kim DK. Hyaluronic acid and proteoglycan link protein 1 suppresses platelet‑derived growth factor-BB-induced proliferation, migration, and phenotypic switching of vascular smooth muscle cells. BMB Rep 2023; 56:445-450. [PMID: 37401239 PMCID: PMC10471460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/05/2023] Open
Abstract
The development of atherosclerotic cardiovascular disease is associated with the phenotypic switching of vascular smooth muscle cells (SMCs) from a contractile to a synthetic state, leading to cell migration and proliferation. Platelet‑derived growth factor‑BB (PDGF‑BB) modulates this de-differentiation by initiating a number of biological processes. In this study, we show that gene expression of hyaluronic acid (HA) and proteoglycan link protein 1 (HAPLN1) was upregulated during differentiation of human aortic SMCs (HASMCs) into a contractile state, but downregulated upon during PDGF-BB-induced dedifferentiation. This is the first study showing that the treatment of HASMCs with full-length recombinant human HAPLN1 (rhHAPLN1) significantly reversed PDGF-BB-induced decrease in the protein levels of contractile markers (SM22α, α-SMA, calponin, and SM-MHC), and inhibited the proliferation and migration of HASMCs induced by PDGF-BB. Furthermore, our results show that rhHAPLN1 significantly inhibited the phosphorylation of FAK, AKT, STAT3, p38 MAPK and Raf mediated by the binding of PDGF-BB to PDGFRβ. Together, these results indicated that rhHAPLN1 can suppress the PDGF-BB-stimulated phenotypic switching and subsequent de-differentiation of HASMCs, highlighting its potential as a novel therapeutic target for atherosclerosis and other vascular diseases. [BMB Reports 2023; 56(8): 445-450].
Collapse
Affiliation(s)
- Dan Zhou
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Korea
| | - Hae Chan Ha
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Goowon Yang
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Korea
| | - Ji Min Jang
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Korea
| | - Bo Kyung Park
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Zhicheng Fu
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Korea
| | - In Chul Shin
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Korea
| | - Dae Kyong Kim
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Korea
| |
Collapse
|
13
|
von Siebenthal M, Akshay A, Besic M, Schneider MP, Hashemi Gheinani A, Burkhard FC, Monastyrskaya K. Molecular Characterization of Non-Neurogenic and Neurogenic Lower Urinary Tract Dysfunction (LUTD) in SCI-Induced and Partial Bladder Outlet Obstruction Mouse Models. Int J Mol Sci 2023; 24:ijms24032451. [PMID: 36768773 PMCID: PMC9916488 DOI: 10.3390/ijms24032451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
We examined bladder function following spinal cord injury (SCI) by repeated urodynamic investigation (UDI), including external urethral sphincter (EUS) electromyography (EMG) in awake restrained mice and correlated micturition parameters to gene expression and morphological changes in the bladder. A partial bladder outlet obstruction (pBOO) model was used for comparison to elucidate both the common and specific features of obstructive and neurogenic lower urinary tract dysfunction (LUTD). Thirty female C57Bl/6J mice in each group received an implanted bladder catheter with additional electrodes placed next to the EUS in the SCI group. UDI assessments were performed weekly for 7 weeks (pBOO group) or 8 weeks (SCI group), after which bladders were harvested for histological and transcriptome analysis. SCI mice developed detrusor sphincter dyssynergia (DSD) one week after injury with high-pressure oscillations and a significantly increased maximal bladder pressure Pmax and were unable to void spontaneously during the whole observation period. They showed an increased bladder-to-bodyweight ratio, bladder fibrosis, and transcriptome changes indicative of extracellular matrix remodeling and alterations of neuronal signaling and muscle contraction. In contrast, pBOO led to a significantly increased Pmax after one week, which normalized at later time points. Increased bladder-to-bodyweight ratio and pronounced gene expression changes involving immune and inflammatory pathways were observed 7 weeks after pBOO. Comparative transcriptome analysis of SCI and pBOO bladders revealed the activation of Wnt and TGF-beta signaling in both the neurogenic and obstructive LUTD and highlighted FGF2 as a major upregulated transcription factor during organ remodeling. We conclude that SCI-induced DSD in mice leads to profound changes in neuronal signaling and muscle contractility, leading to bladder fibrosis. In a similar time frame, significant bladder remodeling following pBOO allowed for functional compensation, preserving normal micturition parameters.
Collapse
Affiliation(s)
- Michelle von Siebenthal
- Functional Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3008 Bern, Switzerland
| | - Akshay Akshay
- Functional Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Mustafa Besic
- Functional Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3008 Bern, Switzerland
| | - Marc P. Schneider
- Functional Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3008 Bern, Switzerland
| | - Ali Hashemi Gheinani
- Functional Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3008 Bern, Switzerland
| | - Fiona C. Burkhard
- Functional Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3008 Bern, Switzerland
- Department of Urology, Inselspital University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Katia Monastyrskaya
- Functional Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3008 Bern, Switzerland
- Department of Urology, Inselspital University Hospital, University of Bern, 3010 Bern, Switzerland
- Correspondence: ; Tel.: +41-316328776
| |
Collapse
|
14
|
Tripković I, Ogorevc M, Vuković D, Saraga-Babić M, Mardešić S. Fibrosis-Associated Signaling Molecules Are Differentially Expressed in Palmar Connective Tissues of Patients with Carpal Tunnel Syndrome and Dupuytren's Disease. Biomedicines 2022; 10:biomedicines10123214. [PMID: 36551969 PMCID: PMC9775445 DOI: 10.3390/biomedicines10123214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Carpal tunnel syndrome (CTS) and Dupuytren's disease (DD) are fibrotic conditions that affect the connective tissue of the hand and limit its functionality. The exact molecular mechanism underlying the fibrosis is unknown, and only some profibrotic factors have been investigated. In this cross-sectional study, we analyzed the expression of FGF signaling pathway molecules associated with fibrotic changes in the palmar fascia and the flexor retinaculum of 15 CTS patients and both clinically affected and unaffected palmar fascia of 15 DD patients, using immunofluorescence techniques. The expression of FGFR1, FGFR2, and CTGF in the blood vessel walls and surrounding connective tissue cells differed significantly between the analyzed groups, with changes in expression present even in clinically unremarkable tissues from DD patients. We also found altered expression of the analyzed factors, as well as TGF-β1 and syndecan-1 in DD-associated sweat glands, possibly implicating their role in the pathophysiology of the disease. The increased expression of profibrotic factors in the clinically unaffected palmar fascia of DD patients may indicate that more extensive excision is needed during surgical treatment, while the profibrotic factors could be potential targets for developing pharmacological therapeutic strategies against DD-associated fibrosis.
Collapse
Affiliation(s)
- Ivo Tripković
- Department of Plastic Surgery, University Hospital Split, 21000 Split, Croatia
| | - Marin Ogorevc
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia
| | - Dubravka Vuković
- Department of Dermatovenerology, University Hospital Split, 21000 Split, Croatia
| | - Mirna Saraga-Babić
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia
| | - Snježana Mardešić
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia
- Correspondence:
| |
Collapse
|
15
|
Sasaki N, Hirano K, Shichi Y, Itakura Y, Ishiwata T, Toyoda M. PRC2-dependent regulation of ganglioside expression during dedifferentiation contributes to the proliferation and migration of vascular smooth muscle cells. Front Cell Dev Biol 2022; 10:1003349. [PMID: 36313564 PMCID: PMC9606594 DOI: 10.3389/fcell.2022.1003349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
Phenotypic switching between contractile (differentiated state) and proliferative (dedifferentiated state) vascular smooth muscle cells (VSMCs) is a hallmark of vascular remodeling that contributes to atherosclerotic diseases. Gangliosides, a group of glycosphingolipids, have been detected in atherosclerotic lesions and are suspected to contribute to the disease process. However, the underlying mechanism, specifically with respect to their role in VSMC phenotype switching, is not clear. In this study, we sought to reveal the endogenous expression of gangliosides and their functional significance in VSMCs during atherosclerosis. We found that switching from the contractile to proliferative phenotype was accompanied by upregulation of a- and b-series gangliosides, which in turn, were regulated by polycomb repressor complex 2 (PRC2). Downregulation of ganglioside expression using an siRNA targeting ST3GAL5, which is required for the synthesis of a- and b-series gangliosides, attenuated the proliferation and migration of dedifferentiated VSMCs. Therefore, we concluded that the increased expression of a- and b-series gangliosides via PRC2 activity during dedifferentiation is involved in the proliferation and migration of VSMCs. Gangliosides may be an effective target in VSMCs for atherosclerosis prevention and treatment.
Collapse
Affiliation(s)
- Norihiko Sasaki
- Department of Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
- *Correspondence: Norihiko Sasaki, ; Masashi Toyoda,
| | - Kazumi Hirano
- Molecular Neurophysiology Research Group, Biomedical Research Institute, The National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Yuuki Shichi
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Yoko Itakura
- Department of Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Toshiyuki Ishiwata
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Masashi Toyoda
- Department of Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
- *Correspondence: Norihiko Sasaki, ; Masashi Toyoda,
| |
Collapse
|
16
|
TNFAIP3 promotes ALDH-positive breast cancer stem cells through FGFR1/MEK/ERK pathway. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:230. [PMID: 36175778 DOI: 10.1007/s12032-022-01844-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/05/2022] [Indexed: 10/14/2022]
Abstract
Breast cancer stem cells (BCSCs) are a tiny population of self-renewing cells that may contribute to cancer initiation, progression, and resistance to therapy in patients. In our prior study, we found that tumor necrosis factor alpha-induced protein 3 (TNFAIP3) is necessary for fibroblast growth factors receptor 1 (FGFR1) signaling-promoted tumor growth and progression in breast cancer (BC). This study aims to investigate the involvement of TNFAIP3 in regulating BCSCs. In this work, we showed that ALDH-positive BCSCs were increased by activating the FGFR1-MEK-ERK pathway, meanwhile utilizing FGFR1 inhibitor, MEK inhibitor, or ERK inhibitor reversed the phenomenon in BC cells. Moreover, ALDH-positive BCSCs were decreased in TNFAIP3-knockout or TNFAIP3-depressing cells. In vivo analysis displayed that TNFAIP3-silenced MDA-MB-231 xenografts developed smaller tumors and ALDH immunostaining levels were significantly lower in TNFAIP3-depressing or TNFAIP3-knockout tumor tissues. Besides, our results also revealed that TNFAIP3 influences the transcription stemness factors gene expression. Taken together, TNFAIP3 could be a potential regulator in FGFR1-MEK-ERK-promoted ALDH-positive BCSCs.
Collapse
|
17
|
Sun C, Tian X, Jia Y, Yang M, Li Y, Fernig DG. Functions of exogenous FGF signals in regulation of fibroblast to myofibroblast differentiation and extracellular matrix protein expression. Open Biol 2022; 12:210356. [PMID: 36102060 PMCID: PMC9471990 DOI: 10.1098/rsob.210356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Fibroblasts are widely distributed cells found in most tissues and upon tissue injury, they are able to differentiate into myofibroblasts, which express abundant extracellular matrix (ECM) proteins. Overexpression and unordered organization of ECM proteins cause tissue fibrosis in damaged tissue. Fibroblast growth factor (FGF) family proteins are well known to promote angiogenesis and tissue repair, but their activities in fibroblast differentiation and fibrosis have not been systematically reviewed. Here we summarize the effects of FGFs in fibroblast to myofibroblast differentiation and ECM protein expression and discuss the underlying potential regulatory mechanisms, to provide a basis for the clinical application of recombinant FGF protein drugs in treatment of tissue damage.
Collapse
Affiliation(s)
- Changye Sun
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China
| | - Xiangqin Tian
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China
| | - Yangyang Jia
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China
| | - Mingming Yang
- Department of Cardiology, Affiliated Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, People's Republic of China
| | - Yong Li
- Department of Biochemistry, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - David G Fernig
- Department of Biochemistry, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
18
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
19
|
Avolio E, Katare R, Thomas AC, Caporali A, Schwenke D, Carrabba M, Meloni M, Caputo M, Madeddu P. Cardiac pericyte reprogramming by MEK inhibition promotes arteriologenesis and angiogenesis of the ischemic heart. J Clin Invest 2022; 132:e152308. [PMID: 35349488 PMCID: PMC9106362 DOI: 10.1172/jci152308] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
Pericytes (PCs) are abundant yet remain the most enigmatic and ill-defined cell population in the heart. Here, we investigated whether PCs can be reprogrammed to aid neovascularization. Primary PCs from human and mouse hearts acquired cytoskeletal proteins typical of vascular smooth muscle cells (VSMCs) upon exclusion of EGF/bFGF, which signal through ERK1/2, or upon exposure to the MEK inhibitor PD0325901. Differentiated PCs became more proangiogenic, more responsive to vasoactive agents, and insensitive to chemoattractants. RNA sequencing revealed transcripts marking the PD0325901-induced transition into proangiogenic, stationary VSMC-like cells, including the unique expression of 2 angiogenesis-related markers, aquaporin 1 (AQP1) and cellular retinoic acid-binding protein 2 (CRABP2), which were further verified at the protein level. This enabled us to trace PCs during in vivo studies. In mice, implantation of Matrigel plugs containing human PCs plus PD0325901 promoted the formation of αSMA+ neovessels compared with PC only. Two-week oral administration of PD0325901 to mice increased the heart arteriolar density, total vascular area, arteriole coverage by PDGFRβ+AQP1+CRABP2+ PCs, and myocardial perfusion. Short-duration PD0325901 treatment of mice after myocardial infarction enhanced the peri-infarct vascularization, reduced the scar, and improved systolic function. In conclusion, myocardial PCs have intrinsic plasticity that can be pharmacologically modulated to promote reparative vascularization of the ischemic heart.
Collapse
Affiliation(s)
- Elisa Avolio
- Bristol Medical School, Translational Health Sciences, and Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Rajesh Katare
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Anita C. Thomas
- Bristol Medical School, Translational Health Sciences, and Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Andrea Caporali
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Daryl Schwenke
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Michele Carrabba
- Bristol Medical School, Translational Health Sciences, and Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Marco Meloni
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Massimo Caputo
- Bristol Medical School, Translational Health Sciences, and Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Paolo Madeddu
- Bristol Medical School, Translational Health Sciences, and Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
20
|
Tsuji-Tamura K, Tamura M. Basic fibroblast growth factor uniquely stimulates quiescent vascular smooth muscle cells and induces proliferation and dedifferentiation. FEBS Lett 2022; 596:1686-1699. [PMID: 35363891 DOI: 10.1002/1873-3468.14345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 11/11/2022]
Abstract
Blood vessels normally remain stable over the long-term. However, in atherosclerosis, vascular cells leave the quiescent state and enter an activated state. Here, we investigated the factors that trigger breakage of the quiescent state by screening growth factors and cytokines using a vascular smooth muscle cell (SMC) line and an endothelial cell (EC) line. Despite known functions of the tested factors, only basic fibroblast growth factor (bFGF) was identified as a potent trigger of quiescence breakage in SMCs, but not ECs. bFGF disrupted tight SMC-monolayers, and caused morphological changes, proliferation and dedifferentiation. Human primary SMCs, but not ECs, also showed similar results. Aberrant SMC-proliferation is a critical histological event in atherosclerosis. We thus provide further insights into the role of bFGF in vascular pathobiology.
Collapse
Affiliation(s)
- Kiyomi Tsuji-Tamura
- Oral Biochemistry and Molecular Biology, Department of Oral Health Science, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-ku, Sapporo, 060-8586, Japan
| | - Masato Tamura
- Oral Biochemistry and Molecular Biology, Department of Oral Health Science, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-ku, Sapporo, 060-8586, Japan
| |
Collapse
|
21
|
Namiguchi K, Sakaue T, Okazaki M, Kanno K, Komoda Y, Shikata F, Kurata M, Ota N, Kubota Y, Kurobe H, Nishimura T, Masumoto J, Higashiyama S, Izutani H. Unique Angiogenesis From Cardiac Arterioles During Pericardial Adhesion Formation. Front Cardiovasc Med 2022; 8:761591. [PMID: 35187100 PMCID: PMC8852280 DOI: 10.3389/fcvm.2021.761591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/22/2021] [Indexed: 11/22/2022] Open
Abstract
Objectives The molecular mechanisms underlying post-operative pericardial adhesions remain poorly understood. We aimed to unveil the temporal molecular and cellular mechanisms underlying tissue dynamics during adhesion formation, including inflammation, angiogenesis, and fibrosis. Methods and Results We visualized cell-based tissue dynamics during pericardial adhesion using histological evaluations. To determine the molecular mechanism, RNA-seq was performed. Chemical inhibitors were administered to confirm the molecular mechanism underlying adhesion formation. A high degree of adhesion formation was observed during the stages in which collagen production was promoted. Histological analyses showed that arterioles excessively sprouted from pericardial tissues after the accumulation of neutrophils on the heart surface in mice as well as humans. The combination of RNA-seq and histological analyses revealed that hyperproliferative endothelial and smooth muscle cells with dedifferentiation appeared in cytokine-exposed sprouting vessels and adhesion tissue but not in quiescent vessels in the heart. SMAD2/3 and ERK activation was observed in sprouting vessels. The simultaneous abrogation of PI3K/ERK or TGF-β/MMP9 signaling significantly decreased angiogenic sprouting, followed by inhibition of adhesion formation. Depleting MMP9-positive neutrophils shortened mice survival and decreased angiogenic sprouting and fibrosis in the adhesion. Our data suggest that TGF-β/matrix metalloproteinase-dependent tissue remodeling and PI3K/ERK signaling activation might contribute to unique angiogenesis with dedifferentiation of vascular smooth muscle cells from the contractile to the synthetic phenotype for fibrosis in the pericardial cavity. Conclusions Our findings provide new insights in developing prevention strategies for pericardial adhesions by targeting the recruitment of vascular cells from heart tissues.
Collapse
Affiliation(s)
- Kenji Namiguchi
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Tomohisa Sakaue
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Toon, Japan
- Department of Cell Growth and Tumor Regulation, Proteo-Science Center, Toon, Japan
- *Correspondence: Tomohisa Sakaue
| | - Mikio Okazaki
- Department of General Thoracic Surgery, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Kaho Kanno
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Yuhei Komoda
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Fumiaki Shikata
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Mie Kurata
- Department of Pathology, Division of Analytical Pathology, Ehime University Graduate School of Medicine, Toon, Japan
- Department of Pathology, Proteo-Science Center, Toon, Japan
| | - Noritaka Ota
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Hirotsugu Kurobe
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Takashi Nishimura
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Junya Masumoto
- Department of Pathology, Division of Analytical Pathology, Ehime University Graduate School of Medicine, Toon, Japan
- Department of Pathology, Proteo-Science Center, Toon, Japan
| | - Shigeki Higashiyama
- Department of Cell Growth and Tumor Regulation, Proteo-Science Center, Toon, Japan
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Japan
- Department of Molecular and Cellular Biology, Research Center, Osaka International Cancer Institute, Osaka, Japan
| | - Hironori Izutani
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Toon, Japan
- Hironori Izutani
| |
Collapse
|
22
|
Zhang F, Guo X, Xia Y, Mao L. An update on the phenotypic switching of vascular smooth muscle cells in the pathogenesis of atherosclerosis. Cell Mol Life Sci 2021; 79:6. [PMID: 34936041 PMCID: PMC11072026 DOI: 10.1007/s00018-021-04079-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/20/2021] [Accepted: 12/03/2021] [Indexed: 12/11/2022]
Abstract
Vascular smooth muscle cells (VSMCs) are involved in phenotypic switching in atherosclerosis. This switching is characterized by VSMC dedifferentiation, migration, and transdifferentiation into other cell types. VSMC phenotypic transitions have historically been considered bidirectional processes. Cells can adopt a physiological contraction phenotype or an alternative "synthetic" phenotype in response to injury. However, recent studies, including lineage tracing and single-cell sequencing studies, have shown that VSMCs downregulate contraction markers during atherosclerosis while adopting other phenotypes, including macrophage-like, foam cell, mesenchymal stem-like, myofibroblast-like, and osteochondral-like phenotypes. However, the molecular mechanism and processes regulating the switching of VSMCs at the onset of atherosclerosis are still unclear. This systematic review aims to review the critical outstanding challenges and issues that need further investigation and summarize the current knowledge in this field.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoqing Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuanpeng Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Ling Mao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
23
|
Farooq M, Khan AW, Kim MS, Choi S. The Role of Fibroblast Growth Factor (FGF) Signaling in Tissue Repair and Regeneration. Cells 2021; 10:cells10113242. [PMID: 34831463 PMCID: PMC8622657 DOI: 10.3390/cells10113242] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023] Open
Abstract
Fibroblast growth factors (FGFs) are a large family of secretory molecules that act through tyrosine kinase receptors known as FGF receptors. They play crucial roles in a wide variety of cellular functions, including cell proliferation, survival, metabolism, morphogenesis, and differentiation, as well as in tissue repair and regeneration. The signaling pathways regulated by FGFs include RAS/mitogen-activated protein kinase (MAPK), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)–protein kinase B (AKT), phospholipase C gamma (PLCγ), and signal transducer and activator of transcription (STAT). To date, 22 FGFs have been discovered, involved in different functions in the body. Several FGFs directly or indirectly interfere with repair during tissue regeneration, in addition to their critical functions in the maintenance of pluripotency and dedifferentiation of stem cells. In this review, we summarize the roles of FGFs in diverse cellular processes and shed light on the importance of FGF signaling in mechanisms of tissue repair and regeneration.
Collapse
Affiliation(s)
- Mariya Farooq
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (M.F.); (A.W.K.); (M.S.K.)
| | - Abdul Waheed Khan
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (M.F.); (A.W.K.); (M.S.K.)
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (M.F.); (A.W.K.); (M.S.K.)
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (M.F.); (A.W.K.); (M.S.K.)
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Korea
- Correspondence:
| |
Collapse
|
24
|
Animal Models of Neointimal Hyperplasia and Restenosis: Species-Specific Differences and Implications for Translational Research. JACC Basic Transl Sci 2021; 6:900-917. [PMID: 34869956 PMCID: PMC8617545 DOI: 10.1016/j.jacbts.2021.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/17/2021] [Accepted: 06/20/2021] [Indexed: 12/29/2022]
Abstract
Neointimal hyperplasia is the major factor contributing to restenosis after angioplasty procedures. Multiple animal models exist to study basic and translational aspects of restenosis formation. Animal models differ substantially, and species-specific differences have major impact on the pathophysiology of the model. Genetic, dietary, and mechanical interventions determine the translational potential of the animal model used and have to be considered when choosing the model.
The process of restenosis is based on the interplay of various mechanical and biological processes triggered by angioplasty-induced vascular trauma. Early arterial recoil, negative vascular remodeling, and neointimal formation therefore limit the long-term patency of interventional recanalization procedures. The most serious of these processes is neointimal hyperplasia, which can be traced back to 4 main mechanisms: endothelial damage and activation; monocyte accumulation in the subintimal space; fibroblast migration; and the transformation of vascular smooth muscle cells. A wide variety of animal models exists to investigate the underlying pathophysiology. Although mouse models, with their ease of genetic manipulation, enable cell- and molecular-focused fundamental research, and rats provide the opportunity to use stent and balloon models with high throughput, both rodents lack a lipid metabolism comparable to humans. Rabbits instead build a bridge to close the gap between basic and clinical research due to their human-like lipid metabolism, as well as their size being accessible for clinical angioplasty procedures. Every different combination of animal, dietary, and injury model has various advantages and disadvantages, and the decision for a proper model requires awareness of species-specific biological properties reaching from vessel morphology to distinct cellular and molecular features.
Collapse
Key Words
- Apo, apolipoprotein
- CETP, cholesteryl ester transferase protein
- ECM, extracellular matrix
- FGF, fibroblast growth factor
- HDL, high-density lipoprotein
- LDL, low-density lipoprotein
- LDLr, LDL receptor
- PDGF, platelet-derived growth factor
- TGF, transforming growth factor
- VLDL, very low-density lipoprotein
- VSMC, vascular smooth muscle cell
- angioplasty
- animal model
- neointimal hyperplasia
- restenosis
Collapse
|
25
|
Woo KV, Shen IY, Weinheimer CJ, Kovacs A, Nigro J, Lin CY, Chakinala M, Byers DE, Ornitz DM. Endothelial FGF signaling is protective in hypoxia-induced pulmonary hypertension. J Clin Invest 2021; 131:141467. [PMID: 34623323 DOI: 10.1172/jci141467] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 06/25/2021] [Indexed: 01/08/2023] Open
Abstract
Hypoxia-induced pulmonary hypertension (PH) is one of the most common and deadliest forms of PH. Fibroblast growth factor receptors 1 and 2 (FGFR1/2) are elevated in patients with PH and in mice exposed to chronic hypoxia. Endothelial FGFR1/2 signaling is important for the adaptive response to several injury types and we hypothesized that endothelial FGFR1/2 signaling would protect against hypoxia-induced PH. Mice lacking endothelial FGFR1/2, mice with activated endothelial FGFR signaling, and human pulmonary artery endothelial cells (HPAECs) were challenged with hypoxia. We assessed the effect of FGFR activation and inhibition on right ventricular pressure, vascular remodeling, and endothelial-mesenchymal transition (EndMT), a known pathologic change seen in patients with PH. Hypoxia-exposed mice lacking endothelial FGFRs developed increased PH, while mice overexpressing a constitutively active FGFR in endothelial cells did not develop PH. Mechanistically, lack of endothelial FGFRs or inhibition of FGFRs in HPAECs led to increased TGF-β signaling and increased EndMT in response to hypoxia. These phenotypes were reversed in mice with activated endothelial FGFR signaling, suggesting that FGFR signaling inhibits TGF-β pathway-mediated EndMT during chronic hypoxia. Consistent with these observations, lung tissue from patients with PH showed activation of FGFR and TGF-β signaling. Collectively, these data suggest that activation of endothelial FGFR signaling could be therapeutic for hypoxia-induced PH.
Collapse
Affiliation(s)
- Kel Vin Woo
- Division of Cardiology, Department of Pediatrics.,Department of Developmental Biology
| | | | | | | | | | | | - Murali Chakinala
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Derek E Byers
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
26
|
Prudovsky I. Cellular Mechanisms of FGF-Stimulated Tissue Repair. Cells 2021; 10:cells10071830. [PMID: 34360000 PMCID: PMC8304273 DOI: 10.3390/cells10071830] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 01/10/2023] Open
Abstract
Growth factors belonging to the FGF family play important roles in tissue and organ repair after trauma. In this review, I discuss the regulation by FGFs of the aspects of cellular behavior important for reparative processes. In particular, I focus on the FGF-dependent regulation of cell proliferation, cell stemness, de-differentiation, inflammation, angiogenesis, cell senescence, cell death, and the production of proteases. In addition, I review the available literature on the enhancement of FGF expression and secretion in damaged tissues resulting in the increased FGF supply required for tissue repair.
Collapse
Affiliation(s)
- Igor Prudovsky
- Maine Medical Center Research Institute, 81 Research Dr., Scarborough, ME 04074, USA
| |
Collapse
|
27
|
Interplay of erythropoietin, fibroblast growth factor 23, and erythroferrone in patients with hereditary hemolytic anemia. Blood Adv 2021; 4:1678-1682. [PMID: 32324886 DOI: 10.1182/bloodadvances.2020001595] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/23/2020] [Indexed: 12/13/2022] Open
Abstract
Recently, erythropoietin (EPO) was identified as regulator of fibroblast growth factor 23 (FGF23). Proteolytic cleavage of biologically active intact FGF23 (iFGF23) results in the formation of C-terminal fragments (cFGF23). An increase in cFGF23 relative to iFGF23 suppresses FGF receptor signaling by competitive inhibition. EPO lowers the i:cFGF23 ratio, thereby overcoming iFGF23-mediated suppression of erythropoiesis. We investigated EPO-FGF23 signaling and levels of erythroferrone (ERFE) in 90 patients with hereditary hemolytic anemia (www.trialregister.nl [NL5189]). We show, for the first time, the importance of EPO-FGF23 signaling in hereditary hemolytic anemia: there was a clear correlation between total FGF23 and EPO levels (r = +0.64; 95% confidence interval [CI], 0.09-0.89), which persisted after adjustment for iron load, inflammation, and kidney function. There was no correlation between iFGF23 and EPO. Data are consistent with a low i:cFGF23 ratio. Therefore, as expected, we report a correlation between EPO and ERFE in a diverse set of hereditary hemolytic anemias (r = +0.47; 95% CI, 0.14-0.69). There was no association between ERFE and total FGF23 or iFGF23, which suggests that ERFE does not contribute to the connection between FGF23 and EPO. These findings open a new area of research and might provide potentially new druggable targets with the opportunity to ameliorate ineffective erythropoiesis and the development of disease complications in hereditary hemolytic anemias.
Collapse
|
28
|
Dissecting FGF Signalling to Target Cellular Crosstalk in Pancreatic Cancer. Cells 2021; 10:cells10040847. [PMID: 33918004 PMCID: PMC8068358 DOI: 10.3390/cells10040847] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/25/2021] [Accepted: 04/04/2021] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis with a 5 year survival rate of less than 8%, and is predicted to become the second leading cause of cancer-related death by 2030. Alongside late detection, which impacts upon surgical treatment, PDAC tumours are challenging to treat due to their desmoplastic stroma and hypovascular nature, which limits the effectiveness of chemotherapy and radiotherapy. Pancreatic stellate cells (PSCs), which form a key part of this stroma, become activated in response to tumour development, entering into cross-talk with cancer cells to induce tumour cell proliferation and invasion, leading to metastatic spread. We and others have shown that Fibroblast Growth Factor Receptor (FGFR) signalling can play a critical role in the interactions between PDAC cells and the tumour microenvironment, but it is clear that the FGFR signalling pathway is not acting in isolation. Here we describe our current understanding of the mechanisms by which FGFR signalling contributes to PDAC progression, focusing on its interaction with other pathways in signalling networks and discussing the therapeutic approaches that are being developed to try and improve prognosis for this terrible disease.
Collapse
|
29
|
Mannino G, Gennuso F, Giurdanella G, Conti F, Drago F, Salomone S, Furno DL, Bucolo C, Giuffrida R. Pericyte-like differentiation of human adipose-derived mesenchymal stem cells: An in vitro study. World J Stem Cells 2020; 12:1152-1170. [PMID: 33178398 PMCID: PMC7596446 DOI: 10.4252/wjsc.v12.i10.1152] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/18/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Adipose-derived mesenchymal stem cells (ASCs) are characterized by long-term self-renewal and a high proliferation rate. Under adequate conditions, they may differentiate into cells belonging to mesodermal, endodermal or ectodermal lineages. Pericytes support endothelial cells and play an important role in stabilizing the vessel wall at the microcirculation level. The loss of pericytes, as occurs in diabetic retinopathy, results in a breakdown of the blood-retina barrier (BRB) and infiltration of inflammatory cells. In this context, the use of pericyte-like differentiated ASCs may represent a valuable therapeutic strategy for restoring BRB damage. AIM To test in vitro strategies to obtain pericyte-like differentiation of human ASCs (hASCs). METHODS Different culture conditions were tested: hASCs cultured in a basal medium supplemented with transforming growth factor β1; and hASCs cultured in a specific pericyte medium (PM-hASCs). In a further sample, pericyte growth supplement was omitted from the PM. In addition, cultures of human retinal pericytes (hRPCs) were used for comparison. Pericyte-like differentiation of hASCs was tested by immunocytochemical staining and western blotting to evaluate the expression of α-smooth muscle actin (α-SMA) and neural/glial antigen 2 (NG2). Interactions between human retinal endothelial cells (hRECs) and different groups of hASCs were investigated in co-culture experiments. In these cases, the expression of typical junctional proteins such as vascular endothelial-Cadherin, zonula occludens-1 and Occludin were assessed in hRECs. In an in vitro model of the BRB, values of trans-endothelial electrical resistance were measured when hRECs were co-cultured with various groups of pretreated hASCs. The values observed were compared with co-cultures of hRECs and hRPCs as well as with cultures of hRECs alone. Three-dimensional co-cultures of hRECs and hRPCs or pericyte-like hASCs in Matrigel were designed to assess their reciprocal localization. RESULTS After 3-6 d of culture, α-SMA and NG2 immunocytochemistry showed that the closest pericyte-like phenotype was observed when hASCs were cultured in Pericyte Medium (PM-hASCs). In particular, α-SMA immunoreactivity, already visible at the basal level in pericytes and ASCs, was strongly increased only when transforming growth factor was added to the culture medium. NG2 expression, almost undetectable in most conditions, was substantially increased only in PM-hASCs. Immunocytochemical results were confirmed by western blot analysis. The presence of pericyte growth supplement seems to increase NG2 expression rather than α-SMA, in agreement with its role in maintaining pericytes in the proliferative state. In co-culture experiments, immunoreactivity of vascular endothelial-Cadherin, zonula occludens-1 and Occludin was considerably increased in hRECs when hRPCs or PM-hASCs were also present. Supporting results were found by trans-endothelial electrical resistance measurements, gathered at 3 and 6 d of co-culture. The highest resistance values were obtained when hRECs were co-cultured with hRPCs or PM-hASCs. The pericyte-like phenotype of PM-hASCs was also confirmed in three-dimensional co-cultures in Matrigel, where PM-hASCs and hRPCs similarly localized around the tubular formations made by hRECs. CONCLUSION PM-hASCs seem able to strengthen the intercellular junctions between hRECs, likely reinforcing the BRB; thus, hASC-based therapeutic approaches may be developed to restore the integrity of retinal microcirculation.
Collapse
Affiliation(s)
- Giuliana Mannino
- Physiology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, Italy
| | - Florinda Gennuso
- Pharmacology Section, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania 95123, Italy
| | - Giovanni Giurdanella
- Biochemistry Section, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania 95123, Italy
| | - Federica Conti
- Pharmacology Section, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania 95123, Italy
| | - Filippo Drago
- Pharmacology Section, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania 95123, Italy
| | - Salvatore Salomone
- Pharmacology Section, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania 95123, Italy
| | - Debora Lo Furno
- Physiology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, Italy.
| | - Claudio Bucolo
- Pharmacology Section, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania 95123, Italy
| | - Rosario Giuffrida
- Physiology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, Italy
| |
Collapse
|
30
|
Linnerbauer M, Rothhammer V. Protective Functions of Reactive Astrocytes Following Central Nervous System Insult. Front Immunol 2020; 11:573256. [PMID: 33117368 PMCID: PMC7561408 DOI: 10.3389/fimmu.2020.573256] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022] Open
Abstract
Astrocytes play important roles in numerous central nervous system disorders including autoimmune inflammatory, hypoxic, and degenerative diseases such as Multiple Sclerosis, ischemic stroke, and Alzheimer’s disease. Depending on the spatial and temporal context, activated astrocytes may contribute to the pathogenesis, progression, and recovery of disease. Recent progress in the dissection of transcriptional responses to varying forms of central nervous system insult has shed light on the mechanisms that govern the complexity of reactive astrocyte functions. While a large body of research focuses on the pathogenic effects of reactive astrocytes, little is known about how they limit inflammation and contribute to tissue regeneration. However, these protective astrocyte pathways might be of relevance for the understanding of the underlying pathology in disease and may lead to novel targeted approaches to treat autoimmune inflammatory and degenerative disorders of the central nervous system. In this review article, we have revisited the emerging concept of protective astrocyte functions and discuss their role in the recovery from inflammatory and ischemic disease as well as their role in degenerative disorders. Focusing on soluble astrocyte derived mediators, we aggregate the existing knowledge on astrocyte functions in the maintenance of homeostasis as well as their reparative and tissue-protective function after acute lesions and in neurodegenerative disorders. Finally, we give an outlook of how these mediators may guide future therapeutic strategies to tackle yet untreatable disorders of the central nervous system.
Collapse
Affiliation(s)
- Mathias Linnerbauer
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Veit Rothhammer
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
31
|
Takeuchi S, Yamanouchi K, Sugihara H, Matsuwaki T, Nishihara M. Differentiation of skeletal muscle Mesenchymal progenitor cells to myofibroblasts is reversible. Anim Sci J 2020; 91:e13368. [PMID: 32285501 PMCID: PMC7216888 DOI: 10.1111/asj.13368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 12/15/2022]
Abstract
Accumulation of intramuscular adipose tissue (IMAT) and development of fibrous tissues due to accumulation of collagen both affect meat quality such as tenderness, texture, and flavor. Thus, it is important for the production of high‐quality meat to regulate the amount of adipose and fibrous tissues in skeletal muscle. IMAT is comprised of adipocytes, while collagens included in fibrous tissues are mainly produced by activated fibroblasts. Both adipocytes and fibroblasts are differentiated from their common ancestors, called mesenchymal progenitor cells (MPC). We previously established rat MPC clone, 2G11 cells. As several reports implicated the plasticity of fibroblast differentiation, in the present study, using 2G11 cells, we asked whether myofibroblasts differentiated from MPC are capable of re‐gaining adipogenic potential in vitro. By treating with bFGF, their αSMA expression was reduced and adipogenic potential was restored partially. Furthermore, by lowering cell density together with bFGF treatment, 2G11 cell‐derived myofibroblasts lost αSMA expression and showed the highest adipogenic potential, and this was along with their morphological change from flattened‐ to spindle‐like shape, which is typically observed with MPC. These results indicated that MPC‐derived myofibroblasts could re‐acquire adipogenic potential, possibly mediated through returning to an undifferentiated MPC‐like state.
Collapse
Affiliation(s)
- Shiho Takeuchi
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Keitaro Yamanouchi
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hidetoshi Sugihara
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takashi Matsuwaki
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masugi Nishihara
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
32
|
Seong JH, Song YS, Joo HW, Park IH, Shen GY, Shin NK, Lee AH, Kwon AM, Lee Y, Kim H, Kim KS. Modified method for effective primary vascular smooth muscle progenitor cell culture from peripheral blood. Cytotechnology 2020; 72:763-772. [PMID: 32909140 PMCID: PMC7547929 DOI: 10.1007/s10616-020-00419-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 09/02/2020] [Indexed: 11/24/2022] Open
Abstract
In previous studies, vascular smooth muscle progenitor cells (vSMPCs) isolated from peripheral blood mononuclear cells (PBMCs) were cultured using medium containing platelet-derived growth factor-BB (PDGF-BB) for 4 weeks. However, this method requires long culture periods of up to 4 weeks and yields low cell counts. Therefore, we proposed the modified method to improve the cell yield and purity and to reduce the cell culture period. PBMCs were isolated from human peripheral blood and cultured by the conventional method using medium containing PDGF-BB alone or the modified method using medium containing PDGF-BB, basic fibroblast growth factor (bFGF), and insulin-transferrin-selenium ITS for 4 weeks. The purity of vSMPCs was analyzed for the expression of a- smooth muscle actin (SMA) by flow cytometry and significantly higher in the modified method than conventional methods at the 1st and 2nd weeks. Also, mRNA expression of a-SMA by real-time PCR was significantly higher in the modified method than conventional method at the 2 weeks. The yield of vSMPCs by trypan blue exclusion assay was significantly higher in the modified method than conventional method at the 1st, 2nd and 3rd weeks. The primary culture using the modified method with PDGF-BB, bFGF, and ITS not only improved cell purity and yield, but also shortened the culture period, compared to the conventional culture method for vSMPCs. The modified method will be a time-saving and useful tool in various studies related to vascular pathology.
Collapse
Affiliation(s)
- Jin-Hee Seong
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Yi-Sun Song
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Hyun-Woo Joo
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - In-Hwa Park
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Guang-Yin Shen
- Division of Cardiology, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, South Korea
- Division of Cardiology, Department of Internal Medicine, Jilin University Jilin Central Hospital, Jilin, China
| | - Na-Kyoung Shin
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - A-Hyeon Lee
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Amy M Kwon
- Biostatistical Consulting and Research Laboratory, Medical Research Collaborating Center, Industry-University Cooperation Foundation, Hanyang University, Seoul, South Korea
| | - Yonggu Lee
- Department of Internal Medicine, Hanyang University Guri Hospital, Guri, South Korea
| | - Hyuck Kim
- Department of Thoracic Surgery, Hanyang University Seoul Hospital, Seoul, South Korea
| | - Kyung-Soo Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea.
- Division of Cardiology, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, South Korea.
| |
Collapse
|
33
|
El-Baz LMF, Shoukry NM, Hafez HS, Guzy RD, Salem ML. Fibroblast Growth Factor 2 Augments Transforming Growth Factor Beta 1 Induced Epithelial-mesenchymal Transition in Lung Cell Culture Model. IRANIAN JOURNAL OF ALLERGY, ASTHMA, AND IMMUNOLOGY 2020; 19:348-361. [PMID: 33463102 PMCID: PMC8366022 DOI: 10.18502/ijaai.v19i4.4110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/27/2020] [Indexed: 02/05/2023]
Abstract
Impaired lung epithelial cell regeneration following injury may contribute to the development of pulmonary fibrosis. Epithelial-mesenchymal transition (EMT) is a critical event in embryonic development, wound healing following injury, and even cancer progression. Previous studies have shown that the combination of transforming growth factor beta-1 (TGFβ1) and fibroblast growth factor 2 (FGF2) induces EMT during cancer metastasis. However, this synergy remains to be elucidated in inducing EMT associated with wound healing after injury. We set out this study to determine the effect of fibroblast growth factor 2 (FGF2) on TGFβ1-induced EMT in the human lung epithelium. BEAS-2B and A549 cells were treated with TGFβ1, FGF2, or both. EMT phenotype was investigated morphologically and by measuring mRNA expression levels; using quantitative real-time PCR. E-cadherin expression was assayed by western blot and immunofluorescence staining. Cell migration was confirmed using a wound-healing assay. TGFβ1 induced a morphological change and a significant increase in cell migration of BEAS-2B cells. TGFβ1 significantly reduced E-cadherin (CDH1) mRNA expression and markedly induced expression of N-cadherin (CDH2), tenascin C (TNC), fibronectin (FN), actin alpha 2 (ACTA2), and collagen I (COL1A1). While FGF2 alone did not significantly alter EMT gene expression, it enhanced TGFβ1-induced suppression of CDH1 and upregulation of ACTA2, but not TNC, FN, and CDH2. FGF2 significantly inhibited TGFβ1-induced COL1A1 expression. Furthermore, FGF2 maintained TGFβ1-induced morphologic changes and increased the migration of TGFβ1-treated cells. This study suggests a synergistic effect between TGFβ1 and FGF2 in inducing EMT in lung epithelial cells, which may play an important role in wound healing and tissue repair after injury.
Collapse
Affiliation(s)
- Lamis M F El-Baz
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois, USA AND Department of Zoology, Faculty of Science, Suez University, Suez, Egypt.
| | - Nahla M Shoukry
- Department of Zoology, Faculty of Science, Suez University, Suez, Egypt.
| | - Hani S Hafez
- Department of Zoology, Faculty of Science, Suez University, Suez, Egypt.
| | - Robert D Guzy
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois, USA.
| | - Mohamed Labib Salem
- Department of Immunology and Biotechnology, Faculty of Science, Center of Excellence in Cancer Research, Tanta University, Tanta, Egypt.
| |
Collapse
|
34
|
EPAC in Vascular Smooth Muscle Cells. Int J Mol Sci 2020; 21:ijms21145160. [PMID: 32708284 PMCID: PMC7404248 DOI: 10.3390/ijms21145160] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/09/2020] [Accepted: 07/19/2020] [Indexed: 02/07/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) are major components of blood vessels. They regulate physiological functions, such as vascular tone and blood flow. Under pathological conditions, VSMCs undergo a remodeling process known as phenotypic switching. During this process, VSMCs lose their contractility and acquire a synthetic phenotype, where they over-proliferate and migrate from the tunica media to the tunica interna, contributing to the occlusion of blood vessels. Since their discovery as effector proteins of cyclic adenosine 3′,5′-monophosphate (cAMP), exchange proteins activated by cAMP (EPACs) have been shown to play vital roles in a plethora of pathways in different cell systems. While extensive research to identify the role of EPAC in the vasculature has been conducted, much remains to be explored to resolve the reported discordance in EPAC’s effects. In this paper, we review the role of EPAC in VSMCs, namely its regulation of the vascular tone and phenotypic switching, with the likely involvement of reactive oxygen species (ROS) in the interplay between EPAC and its targets/effectors.
Collapse
|
35
|
Jia L, Wei F, Wang L, Chen H, Yu H, Wang Z, Jiang A. Retracted: Transforming Growth Factor Beta-1 Promotes Smooth Muscle Cell Proliferation and Migration in an Arteriovenous Fistulae: The Role of Wall Shear Stress. Ther Apher Dial 2020; 24:345. [PMID: 30520239 DOI: 10.1111/1744-9987.12781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/20/2018] [Accepted: 11/30/2018] [Indexed: 11/26/2022]
Abstract
Retraction: Lan Jia, Fang Wei, Lihua Wang, Haiyan Chen, Haibo Yu, Zhe Wang and Aili Jiang "Transforming Growth Factor Beta-1 Promotes Smooth Muscle Cell Proliferation and Migration in an Arteriovenous Fistulae: The Role of Wall Shear Stress" Therapeutic Apheresis and Dialysis (https://onlinelibrary.wiley.com/doi/10.1111/1744-9987.12781). The above article, published online on 06 December 2018 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the authors, the journal Editor in Chief, Tadao Akizawa, and John Wiley and Sons Australia Ltd. The retraction has been agreed due to major overlap with a previously published article.
Collapse
Affiliation(s)
- Lan Jia
- Department of Kidney Disease and Blood Purification, Institute of Urology & Key Laboratory of Tianjin, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Fang Wei
- Department of Kidney Disease and Blood Purification, Institute of Urology & Key Laboratory of Tianjin, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Lihua Wang
- Department of Kidney Disease and Blood Purification, Institute of Urology & Key Laboratory of Tianjin, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Haiyan Chen
- Department of Kidney Disease and Blood Purification, Institute of Urology & Key Laboratory of Tianjin, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Haibo Yu
- Department of Kidney Disease and Blood Purification, Institute of Urology & Key Laboratory of Tianjin, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhe Wang
- Department of Kidney Disease and Blood Purification, Institute of Urology & Key Laboratory of Tianjin, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Aili Jiang
- Department of Kidney Disease and Blood Purification, Institute of Urology & Key Laboratory of Tianjin, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
36
|
Markou M, Kouroupis D, Badounas F, Katsouras A, Kyrkou A, Fotsis T, Murphy C, Bagli E. Tissue Engineering Using Vascular Organoids From Human Pluripotent Stem Cell Derived Mural Cell Phenotypes. Front Bioeng Biotechnol 2020; 8:278. [PMID: 32363181 PMCID: PMC7182037 DOI: 10.3389/fbioe.2020.00278] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/16/2020] [Indexed: 12/28/2022] Open
Abstract
Diffusion is a limiting factor in regenerating large tissues (100–200 μm) due to reduced nutrient supply and waste removal leading to low viability of the regenerating cells as neovascularization of the implant by the host is a slow process. Thus, generating prevascularized tissue engineered constructs, in which endothelial (ECs) and mural (MCs) cells, such as smooth muscle cells (SMCs), and pericytes (PCs), are preassembled into functional in vitro vessels capable of rapidly connecting to the host vasculature could overcome this obstacle. Toward this purpose, using feeder-free and low serum conditions, we developed a simple, efficient and rapid in vitro approach to induce the differentiation of human pluripotent stem cells-hPSCs (human embryonic stem cells and human induced pluripotent stem cells) to defined SMC populations (contractile and synthetic hPSC-SMCs) by extensively characterizing the cellular phenotype (expression of CD44, CD73, CD105, NG2, PDGFRβ, and contractile proteins) and function of hPSC-SMCs. The latter were phenotypically and functionally stable for at least 8 passages, and could stabilize vessel formation and inhibit vessel network regression, when co-cultured with ECs in vitro. Subsequently, using a methylcellulose-based hydrogel system, we generated spheroids consisting of EC/hPSC-SMC (vascular organoids), which were extensively phenotypically characterized. Moreover, the vascular organoids served as focal starting points for the sprouting of capillary-like structures in vitro, whereas their delivery in vivo led to rapid generation of a complex functional vascular network. Finally, we investigated the vascularization potential of these vascular organoids, when embedded in hydrogels composed of defined extracellular components (collagen/fibrinogen/fibronectin) that can be used as scaffolds in tissue engineering applications. In summary, we developed a robust method for the generation of defined SMC phenotypes from hPSCs. Fabrication of vascularized tissue constructs using hPSC-SMC/EC vascular organoids embedded in chemically defined matrices is a significant step forward in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Maria Markou
- Laboratory of Biological Chemistry, Medical School, University of Ioannina, Ioannina, Greece.,Foundation for Research and Technology-Hellas, Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Ioannina, Greece
| | - Dimitrios Kouroupis
- Foundation for Research and Technology-Hellas, Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Ioannina, Greece
| | - Fotios Badounas
- Transgenic Technology Laboratory, Inflammation Group, Department of Immunology, Hellenic Pasteur Institute, Athens, Greece
| | - Athanasios Katsouras
- Foundation for Research and Technology-Hellas, Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Ioannina, Greece
| | - Athena Kyrkou
- Foundation for Research and Technology-Hellas, Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Ioannina, Greece
| | - Theodore Fotsis
- Laboratory of Biological Chemistry, Medical School, University of Ioannina, Ioannina, Greece.,Foundation for Research and Technology-Hellas, Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Ioannina, Greece
| | - Carol Murphy
- Foundation for Research and Technology-Hellas, Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Ioannina, Greece
| | - Eleni Bagli
- Foundation for Research and Technology-Hellas, Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Ioannina, Greece
| |
Collapse
|
37
|
Chen PY, Qin L, Li G, Malagon-Lopez J, Wang Z, Bergaya S, Gujja S, Caulk AW, Murtada SI, Zhang X, Zhuang ZW, Rao DA, Wang G, Tobiasova Z, Jiang B, Montgomery RR, Sun L, Sun H, Fisher EA, Gulcher JR, Fernandez-Hernando C, Humphrey JD, Tellides G, Chittenden TW, Simons M. Smooth Muscle Cell Reprogramming in Aortic Aneurysms. Cell Stem Cell 2020; 26:542-557.e11. [PMID: 32243809 PMCID: PMC7182079 DOI: 10.1016/j.stem.2020.02.013] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 08/27/2019] [Accepted: 02/21/2020] [Indexed: 11/29/2022]
Abstract
The etiology of aortic aneurysms is poorly understood, but it is associated with atherosclerosis, hypercholesterolemia, and abnormal transforming growth factor β (TGF-β) signaling in smooth muscle. Here, we investigated the interactions between these different factors in aortic aneurysm development and identified a key role for smooth muscle cell (SMC) reprogramming into a mesenchymal stem cell (MSC)-like state. SMC-specific ablation of TGF-β signaling in Apoe-/- mice on a hypercholesterolemic diet led to development of aortic aneurysms exhibiting all the features of human disease, which was associated with transdifferentiation of a subset of contractile SMCs into an MSC-like intermediate state that generated osteoblasts, chondrocytes, adipocytes, and macrophages. This combination of medial SMC loss with marked increases in non-SMC aortic cell mass induced exuberant growth and dilation of the aorta, calcification and ossification of the aortic wall, and inflammation, resulting in aneurysm development.
Collapse
Affiliation(s)
- Pei-Yu Chen
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Lingfeng Qin
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Guangxin Li
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA; Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, Guangdong Province, China
| | - Jose Malagon-Lopez
- Computational Statistics and Bioinformatics Group, Advanced Artificial Intelligence Research Laboratory, WuXiNextCODE, Cambridge, MA, USA; Complex Biological Systems Alliance, Medford, MA, USA
| | - Zheng Wang
- School of Basic Medicine, Qingdao University, Shandong, China
| | - Sonia Bergaya
- Department of Medicine (Cardiology), the Marc and Ruti Bell Program in Vascular Biology and the Center for the Prevention of Cardiovascular Disease, New York University School of Medicine, New York, NY, USA
| | - Sharvari Gujja
- Computational Statistics and Bioinformatics Group, Advanced Artificial Intelligence Research Laboratory, WuXiNextCODE, Cambridge, MA, USA; Complex Biological Systems Alliance, Medford, MA, USA
| | - Alexander W Caulk
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Sae-Il Murtada
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Xinbo Zhang
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, and Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Zhen W Zhuang
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Deepak A Rao
- Division of Rheumatology, Inflammation, Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Guilin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Zuzana Tobiasova
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Bo Jiang
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA; Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Ruth R Montgomery
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Lele Sun
- Genomics Laboratory, WuXiNextCODE, Shanghai, China
| | - Hongye Sun
- Genomics Laboratory, WuXiNextCODE, Shanghai, China
| | - Edward A Fisher
- Department of Medicine (Cardiology), the Marc and Ruti Bell Program in Vascular Biology and the Center for the Prevention of Cardiovascular Disease, New York University School of Medicine, New York, NY, USA
| | | | - Carlos Fernandez-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, and Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - George Tellides
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA.
| | - Thomas W Chittenden
- Computational Statistics and Bioinformatics Group, Advanced Artificial Intelligence Research Laboratory, WuXiNextCODE, Cambridge, MA, USA; Complex Biological Systems Alliance, Medford, MA, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Michael Simons
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA; Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
38
|
Luo J, Qin L, Zhao L, Gui L, Ellis MW, Huang Y, Kural MH, Clark JA, Ono S, Wang J, Yuan Y, Zhang SM, Cong X, Li G, Riaz M, Lopez C, Hotta A, Campbell S, Tellides G, Dardik A, Niklason LE, Qyang Y. Tissue-Engineered Vascular Grafts with Advanced Mechanical Strength from Human iPSCs. Cell Stem Cell 2020; 26:251-261.e8. [PMID: 31956039 DOI: 10.1016/j.stem.2019.12.012] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 10/25/2019] [Accepted: 12/23/2019] [Indexed: 12/17/2022]
Abstract
Vascular smooth muscle cells (VSMCs) can be derived in large numbers from human induced pluripotent stem cells (hiPSCs) for producing tissue-engineered vascular grafts (TEVGs). However, hiPSC-derived TEVGs are hampered by low mechanical strength and significant radial dilation after implantation. Here, we report generation of hiPSC-derived TEVGs with mechanical strength comparable to native vessels used in arterial bypass grafts by utilizing biodegradable scaffolds, incremental pulsatile stretching, and optimal culture conditions. Following implantation into a rat aortic model, hiPSC-derived TEVGs show excellent patency without luminal dilation and effectively maintain mechanical and contractile function. This study provides a foundation for future production of non-immunogenic, cellularized hiPSC-derived TEVGs composed of allogenic vascular cells, potentially serving needs to a considerable number of patients whose dysfunctional vascular cells preclude TEVG generation via other methods.
Collapse
Affiliation(s)
- Jiesi Luo
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| | - Lingfeng Qin
- Department of Surgery, Yale University, New Haven, CT 06520, USA
| | - Liping Zhao
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Anesthesiology, Yale University, New Haven, CT 06519, USA
| | - Liqiong Gui
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Anesthesiology, Yale University, New Haven, CT 06519, USA
| | - Matthew W Ellis
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA; Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06519, USA
| | - Yan Huang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| | - Mehmet H Kural
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Anesthesiology, Yale University, New Haven, CT 06519, USA
| | - J Alexander Clark
- Department of Biomedical Engineering, Yale University, New Haven, CT 06519, USA
| | - Shun Ono
- Department of Surgery, Yale University, New Haven, CT 06520, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Juan Wang
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Anesthesiology, Yale University, New Haven, CT 06519, USA
| | - Yifan Yuan
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Anesthesiology, Yale University, New Haven, CT 06519, USA
| | - Shang-Min Zhang
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Xiaoqiang Cong
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA; Department of Cardiology, Bethune First Hospital of Jilin University, ChangChun 130021, China
| | - Guangxin Li
- Department of Surgery, Yale University, New Haven, CT 06520, USA; Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang 110122, China
| | - Muhammad Riaz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| | - Colleen Lopez
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| | - Akitsu Hotta
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8501, Japan
| | - Stuart Campbell
- Department of Biomedical Engineering, Yale University, New Haven, CT 06519, USA
| | - George Tellides
- Department of Surgery, Yale University, New Haven, CT 06520, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Alan Dardik
- Department of Surgery, Yale University, New Haven, CT 06520, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Laura E Niklason
- Yale Stem Cell Center, New Haven, CT 06520, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Anesthesiology, Yale University, New Haven, CT 06519, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06519, USA
| | - Yibing Qyang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
39
|
Li SQ, Tu C, Wan L, Chen RQ, Duan ZX, Ren XL, Li ZH. FGF-induced LHX9 regulates the progression and metastasis of osteosarcoma via FRS2/TGF-β/β-catenin pathway. Cell Div 2019; 14:13. [PMID: 31788020 PMCID: PMC6876112 DOI: 10.1186/s13008-019-0056-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/09/2019] [Indexed: 01/21/2023] Open
Abstract
Background Fibroblast growth factor (FGF) and tumor growth factor-β (TGFβ) have emerged as pivotal regulators during the progression of osteosarcoma (OS). LHX9 is one crucial transcription factor controlled by FGF, however, its function in OS has not been investigated yet. Methods The expression of LHX9, FRS2, BMP4, TGF-beta R1, SMAD2, beta-catenin and metastasis-related proteins was measured by real-time quantitative PCR (RT-qPCR) and Western blot. CCK-8 assay and colony formation assay were employed to determine the proliferation of OS cells, while scratch wound healing assay and transwell assay were used to evaluate their migration and invasion, respectively. In vivo tumor growth and metastasis were determined by subcutaneous or intravenous injection of OS cells into nude mice. Results LHX9 expression was evidently up-regulated in OS tumor tissues and cell lines. Knockdown of LHX9 impaired the proliferation, migration, invasion and metastasis of OS cells. Mechanistically, LHX9 silencing led to the down-regulation of BMP-4, β-catenin and metastasis-related proteins, which was also observed in beta-catenin knockdown OS cells. By contrast, FRS2 knockdown conduced to the up-regulation of LHX9, BMP4, β-catenin and TGF-βR1, while TGF-beta inhibition repressed the expression of LHX9 and metastasis-related proteins. Additionally, let-7c modulates LHX9 and metastasis-related proteins by suppressing TGF-beta R1 expression on transcriptional level. Conclusions This study revealed LHX9 was essential for the proliferation, migration, invasion, and metastasis of OS cells via FGF and TGF-β/β-catenin signaling pathways.
Collapse
Affiliation(s)
- Shuang-Qing Li
- Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, No. 139 Renming Road, Changsha, 410010 Hunan People's Republic of China
| | - Chao Tu
- Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, No. 139 Renming Road, Changsha, 410010 Hunan People's Republic of China
| | - Lu Wan
- Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, No. 139 Renming Road, Changsha, 410010 Hunan People's Republic of China
| | - Rui-Qi Chen
- Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, No. 139 Renming Road, Changsha, 410010 Hunan People's Republic of China
| | - Zhi-Xi Duan
- Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, No. 139 Renming Road, Changsha, 410010 Hunan People's Republic of China
| | - Xiao-Lei Ren
- Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, No. 139 Renming Road, Changsha, 410010 Hunan People's Republic of China
| | - Zhi-Hong Li
- Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, No. 139 Renming Road, Changsha, 410010 Hunan People's Republic of China
| |
Collapse
|
40
|
FRS2α-dependent cell fate transition during endocardial cushion morphogenesis. Dev Biol 2019; 458:88-97. [PMID: 31669335 DOI: 10.1016/j.ydbio.2019.10.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/03/2019] [Accepted: 10/22/2019] [Indexed: 12/31/2022]
Abstract
Atrioventricular valve development requires endothelial-to-mesenchymal transition (EndMT) that induces cushion endocardial cells to give rise to mesenchymal cells crucial to valve formation. In the adult endothelium, deletion of the docking protein FRS2α induces EndMT by activating TGFβ signaling in a miRNA let-7-dependent manner. To study the role of endothelial FRS2α during embryonic development, we generated mice with an inducible endothelial-specific deletion of Frs2α (FRS2αiECKO). Analysis of the FRS2αiECKO embryos uncovered a combination of impaired EndMT in AV cushions and defective maturation of AV valves leading to development of thickened, abnormal valves when Frs2α was deleted early (E7.5) in development. At the same time, no AV valve developmental abnormalities were observed after late (E10.5) deletion. These observations identify FRS2α as a pivotal controller of cell fate transition during both EndMT and post-EndMT valvulogenesis.
Collapse
|
41
|
FGF2-induced STAT3 activation regulates pathologic neovascularization. Exp Eye Res 2019; 187:107775. [PMID: 31449793 DOI: 10.1016/j.exer.2019.107775] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/29/2019] [Accepted: 08/22/2019] [Indexed: 12/23/2022]
Abstract
Cell-autonomous endothelial cell (EC) fibroblast growth factor receptor (FGFR) signaling through FGFR1/2 is essential for injury-induced wound vascularization and pathologic neovascularization as in blinding eye diseases such as age-related macular degeneration. Which FGF ligand(s) is critical in regulating angiogenesis is unknown. Utilizing ex vivo models of choroidal endothelial sprouting and in vivo models of choroidal neovascularization (CNV), we demonstrate here that only FGF2 is the essential ligand. Though FGF-FGFR signaling can activate multiple intracellular signaling pathways, we show that FGF2 regulates pathogenic angiogenesis via STAT3 activation. The identification of FGF2 as a critical mediator in aberrant neovascularization provides a new opportunity for developing multi-target therapies in blinding eye diseases especially given the limitations of anti-VEGF monotherapy.
Collapse
|
42
|
Qi M, Xin S. FGF signaling contributes to atherosclerosis by enhancing the inflammatory response in vascular smooth muscle cells. Mol Med Rep 2019; 20:162-170. [PMID: 31115530 PMCID: PMC6579995 DOI: 10.3892/mmr.2019.10249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 03/07/2019] [Indexed: 01/11/2023] Open
Abstract
The contractile to synthetic phenotypic switching of vascular smooth muscle cells (VSMCs) in response to fibroblast growth factor (FGF) has been previously described. However, the role of the inflammatory response induced by FGF signaling in VSMCs and its occurrence in atherosclerosis remains unclear. In the present study, FGF signaling promoted a contractile to secretory phenotypic transition in VSMCs. VSMCs (primary human aortic smooth muscle cells) treated with FGF exhibited a decrease in the protein expression levels of factors involved in contractility and the secretion of various chemokines was increased, as assessed by reverse transcription-quantitative PCR and ELISA. Additionally, inhibition of FGF signaling by silencing FGF receptor substrate 2 (FRS2) decreased the protein expression levels of various chemokines. Furthermore, VSMCs in the medial layers of arteries from apolipoprotein E-deficient mice and human atherosclerotic samples exhibited an increase in FGF signaling that was identified to be associated with an increase in the protein expression levels of pro-inflammatory molecules, including C-C motif chemokine ligand 2, C-X-C motif chemokine ligand (CXCL) 9, CXCL10 and CXCL11, compared with wild-type mice and healthy control samples, respectively. The present results suggested that FGF signaling induced dedifferentiation of contractile VSMCs and the transition to a secretory phenotype, which may be involved in the progression of atherosclerosis. Collectively, the present results suggested that the FGF signaling pathway may represent a novel target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Ming Qi
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shijie Xin
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
43
|
Post A, Diaz-Rodriguez P, Balouch B, Paulsen S, Wu S, Miller J, Hahn M, Cosgriff-Hernandez E. Elucidating the role of graft compliance mismatch on intimal hyperplasia using an ex vivo organ culture model. Acta Biomater 2019; 89:84-94. [PMID: 30878448 PMCID: PMC6558989 DOI: 10.1016/j.actbio.2019.03.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 03/09/2019] [Accepted: 03/12/2019] [Indexed: 01/24/2023]
Abstract
There is a growing clinical need to address high failure rates of small diameter (<6 mm) synthetic vascular grafts. Although there is a strong empirical correlation between low patency rates and low compliance of synthetic grafts, the mechanism by which compliance mismatch leads to intimal hyperplasia is poorly understood. To elucidate this relationship, synthetic vascular grafts were fabricated that varied compliance independent of other graft variables. A computational model was then used to estimate changes in fluid flow and wall shear stress as a function of graft compliance. The effect of compliance on arterial remodeling in an ex vivo organ culture model was then examined to identify early markers of intimal hyperplasia. The computational model prediction of low wall shear stress of low compliance grafts and clinical control correlated well with alterations in arterial smooth muscle cell marker, extracellular matrix, and inflammatory marker staining patterns at the distal anastomoses. Conversely, high compliance grafts displayed minimal changes in fluid flow and arterial remodeling, similar to the sham control. Overall, this work supports the intrinsic link between compliance mismatch and intimal hyperplasia and highlights the utility of this ex vivo organ culture model for rapid screening of small diameter vascular grafts. STATEMENT OF SIGNIFICANCE: We present an ex vivo organ culture model as a means to screen vascular grafts for early markers of intimal hyperplasia, a leading cause of small diameter vascular graft failure. Furthermore, a computational model was used to predict the effect of graft compliance on wall shear stress and then correlate these values to changes in arterial remodeling in the organ culture model. Combined, the ex vivo bioreactor system and computational model provide insight into the mechanistic relationship between graft-arterial compliance mismatch and the onset of intimal hyperplasia.
Collapse
Affiliation(s)
- Allison Post
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Patricia Diaz-Rodriguez
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - Bailey Balouch
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - Samantha Paulsen
- Department of Biomedical Engineering, Rice University, Houston, TX 77005, United States
| | - Siliang Wu
- Department of Biomedical Engineering, University of Texas, Austin, TX 78712, United States
| | - Jordan Miller
- Department of Biomedical Engineering, Rice University, Houston, TX 77005, United States
| | - Mariah Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States.
| | | |
Collapse
|
44
|
Reactive Oxygen Species from NADPH Oxidase and Mitochondria Participate in the Proliferation of Aortic Smooth Muscle Cells from a Model of Metabolic Syndrome. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5835072. [PMID: 30671170 PMCID: PMC6323422 DOI: 10.1155/2018/5835072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/27/2018] [Accepted: 11/01/2018] [Indexed: 12/12/2022]
Abstract
In metabolic diseases, the increased reactive oxygen species (ROS) represents one of the pathogenic mechanisms for vascular disease probably by promoting vascular smooth muscle cell (SMC) proliferation that contributes to the development of arterial remodeling and stenosis, hypertension, and atherosclerosis. Therefore, this work was undertaken to evaluate the participation of ROS from NADPH oxidase and mitochondria in the proliferation of SMCs from the aorta in a model of metabolic syndrome induced by sucrose feeding in rats. After 24 weeks, sucrose-fed (SF) rats develop hypertension, intra-abdominal obesity, hyperinsulinemia, and hyperleptinemia. In addition SMCs from SF rats had a higher growth rate and produce more ROS than control cells. The treatment of SMCs with DPI and apocynin to inhibit NADPH oxidase and with tempol to scavenge superoxide anion significantly blocked the proliferation of both SF and control cells suggesting the participation of NADPH oxidase as a source of superoxide anion. MitoTEMPO, which targets mitochondria within the cell, also significantly inhibited the proliferation of SMCs having a greater effect on cells from SF than from the control aorta. The higher rate of cell growth from the SF aorta is supported by the increased content of cyclophilin A and CD147, proteins involved in the mechanism of cell proliferation. In addition, caldesmon, α-actin, and phosphorylated myosin light chain, contractile phenotype proteins, were found significantly lower in SF cells in no confluent state and increased in confluent state but without difference between both cell types. Our results suggest that ROS from NADPH oxidase and mitochondria significantly participate in the difference found in the rate of cell growth between SF and control cells.
Collapse
|
45
|
Zeng M, Luo Y, Xu C, Li R, Chen N, Deng X, Fang D, Wang L, Wu J, Luo M. Platelet-endothelial cell interactions modulate smooth muscle cell phenotype in an in vitro model of type 2 diabetes mellitus. Am J Physiol Cell Physiol 2018; 316:C186-C197. [PMID: 30517030 DOI: 10.1152/ajpcell.00428.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Platelet (PLT)-endothelial cell (EC) interaction appears to contribute to phenotypic transition of vascular smooth muscle cells (VSMCs), which play an important role in the physiological and pathological process of vascular complications in type 2 diabetes mellitus (DM2). However, the precise mechanisms by which interactions between PLTs and ECs affect VSMC phenotype have largely remained unclear. We determined the effect of diabetic PLT-EC interaction to influence VSMC migration, proliferation, and phenotypic transformation in triple-cell coculture models using the quantitative real-time PCR, Western blot, fluorescence microscopy, wound scratch assays, CCK-8 assays, and gelatin zymography assays. Our results revealed DM2 PLT-EC interaction to be associated with a significant downregulation of VSMC-specific contractile phenotypic genes and proteins, including SM22α, smooth muscle actin, Smoothelin-B, and smooth muscle-myosin heavy chain. Inversely, VSMC-specific proliferative phenotype gene and protein levels, including cyclin D1 and 2, nonmuscle myosin heavy chain B, and PCNA were in upregulation. Furthermore, the DM2-originated PLT-EC interaction promoted the expression level of transforming growth factor-β1, and the PI3K/Akt and matrix metalloproteinase 9 signaling pathway was activated subsequently. Finally, these reactions contributed to a synthetic phenotype of VSMCs, including the proliferation, migration, and gelatinolytic activities. These findings suggest that PLT-EC interaction modulates the phenotypic transition of VSMCs between a contractile and proliferative/synthetic phenotype under diabetic conditions, conceivably providing important implications regarding the mechanisms controlling the VSMC phenotypic transition and the development of cardiovascular complications.
Collapse
Affiliation(s)
- Min Zeng
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China.,Drug Discovery Research Center, Southwest Medical University, Luzhou, China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yulin Luo
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China.,Drug Discovery Research Center, Southwest Medical University, Luzhou, China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,GCP Center, Affiliated Hospital (Traditional Chinese Medicine) of Southwest Medical University, Luzhou, China
| | - Chunrong Xu
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China.,Drug Discovery Research Center, Southwest Medical University, Luzhou, China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Rong Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China.,Drug Discovery Research Center, Southwest Medical University, Luzhou, China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Ni Chen
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China.,Drug Discovery Research Center, Southwest Medical University, Luzhou, China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xin Deng
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China.,Drug Discovery Research Center, Southwest Medical University, Luzhou, China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Dan Fang
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China.,Drug Discovery Research Center, Southwest Medical University, Luzhou, China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Liqun Wang
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China.,Drug Discovery Research Center, Southwest Medical University, Luzhou, China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jianbo Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China.,Drug Discovery Research Center, Southwest Medical University, Luzhou, China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Dalton Cardiovascular Research Center, University of Missouri-Columbia , Columbia, Missouri
| | - Mao Luo
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China.,Drug Discovery Research Center, Southwest Medical University, Luzhou, China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
46
|
Kim YS, Hong G, Kim DH, Kim YM, Kim YK, Oh YM, Jee YK. The role of FGF-2 in smoke-induced emphysema and the therapeutic potential of recombinant FGF-2 in patients with COPD. Exp Mol Med 2018; 50:1-10. [PMID: 30429461 PMCID: PMC6235987 DOI: 10.1038/s12276-018-0178-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 08/22/2018] [Accepted: 09/04/2018] [Indexed: 01/01/2023] Open
Abstract
Although the positive effects of recombinant fibroblast growth factor-2 (rFGF-2) in chronic obstructive pulmonary disease (COPD) have been implicated in previous studies, knowledge of its role in COPD remains limited. The mechanism of FGF2 in a COPD mouse model and the therapeutic potential of rFGF-2 were investigated in COPD. The mechanism and protective effects of rFGF-2 were evaluated in cigarette smoke-exposed or elastase-induced COPD animal models. Inflammation was assessed in alveolar cells and lung tissues from mice. FGF-2 was decreased in the lungs of cigarette smoke-exposed mice. Intranasal use of rFGF-2 significantly reduced macrophage-dominant inflammation and alveolar destruction in the lungs. In the elastase-induced emphysema model, rFGF-2 improved regeneration of the lungs. In humans, plasma FGF-2 was decreased significantly in COPD compared with normal subjects (10 subjects, P = 0.037). The safety and efficacy of inhaled rFGF-2 use was examined in COPD patients, along with changes in respiratory symptoms and pulmonary function. A 2-week treatment with inhaled rFGF-2 in COPD (n = 6) resulted in significantly improved respiratory symptoms compared with baseline levels (P < 0.05); however, the results were not significant compared with the placebo. The pulmonary function test results of COPD improved numerically compared with those in the placebo, but the difference was not statistically significant. No serious adverse events occurred during treatment with inhaled rFGF-2. The loss of FGF-2 production is an important mechanism in the development of COPD. Inhaling rFGF-2 may be a new therapeutic option for patients with COPD because rFGF-2 decreases inflammation in lungs exposed to cigarette smoke.
Collapse
Affiliation(s)
- You-Sun Kim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Goohyeon Hong
- Department of Internal Medicine, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Doh Hyung Kim
- Department of Internal Medicine, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Young Min Kim
- Department of Internal Medicine, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Yoon-Keun Kim
- Institute of MD Healthcare, Inc, Seoul, Republic of Korea
| | - Yeon-Mok Oh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Young-Koo Jee
- Department of Internal Medicine, Dankook University College of Medicine, Cheonan, Republic of Korea.
| |
Collapse
|
47
|
Aschner Y, Downey GP. The Importance of Tyrosine Phosphorylation Control of Cellular Signaling Pathways in Respiratory Disease: pY and pY Not. Am J Respir Cell Mol Biol 2018; 59:535-547. [PMID: 29812954 PMCID: PMC6236691 DOI: 10.1165/rcmb.2018-0049tr] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/23/2018] [Indexed: 01/02/2023] Open
Abstract
Reversible phosphorylation of proteins on tyrosine residues is an essential signaling mechanism by which diverse cellular processes are closely regulated. The tight temporal and spatial control of the tyrosine phosphorylation status of proteins by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs) is critical to cellular homeostasis as well as to adaptations to the external environment. Via regulation of cellular signaling cascades involving other protein kinases and phosphatases, receptors, adaptor proteins, and transcription factors, PTKs and PTPs closely control diverse cellular processes such as proliferation, differentiation, migration, inflammation, and maintenance of cellular barrier function. Given these key regulatory roles, it is not surprising that dysfunction of PTKs and PTPs is important in the pathogenesis of human disease, including many pulmonary diseases. The roles of various PTKs and PTPs in acute lung injury and repair, pulmonary fibrosis, pulmonary vascular disease, and inflammatory airway disease are discussed in this review. It is important to note that although there is overlap among many of these proteins in various disease states, the mechanisms by which they influence the pathogenesis of these conditions differ, suggesting wide-ranging roles for these enzymes and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Yael Aschner
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, and
| | - Gregory P. Downey
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, and
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado; and
- Department of Medicine
- Department of Pediatrics, and
- Department of Biomedical Research, National Jewish Health, Denver, Colorado
| |
Collapse
|
48
|
Chen PY, Simons M. Fibroblast growth factor-transforming growth factor beta dialogues, endothelial cell to mesenchymal transition, and atherosclerosis. Curr Opin Lipidol 2018; 29:397-403. [PMID: 30080704 PMCID: PMC6290915 DOI: 10.1097/mol.0000000000000542] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Despite much effort, atherosclerosis remains an important public health problem, leading to substantial morbidity and mortality worldwide. The purpose of this review is to provide an understanding of the role of endothelial cell fate change in atherosclerosis process. RECENT FINDINGS Recent studies indicate that a process known as endothelial-to-mesenchymal transition (EndMT) may play an important role in atherosclerosis development. Transforming growth factor beta (TGFβ) has been shown to be an important driver of the endothelial cell phenotype transition. SUMMARY The current review deals with the current state of knowledge regarding EndMT's role in atherosclerosis and its regulation by fibroblast growth factor (FGF)-TGFβ cross-talk. A better understanding of FGF-TGFβ signaling in the regulation of endothelial cell phenotypes is key to the development of novel therapeutic agents.
Collapse
Affiliation(s)
- Pei-Yu Chen
- Yale Cardiovascular Research Center, Department of Internal Medicine
| | - Michael Simons
- Yale Cardiovascular Research Center, Department of Internal Medicine
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
49
|
Koo HY, El-Baz LM, House SL, Cilvik SN, Dorry SJ, Shoukry NM, Salem ML, Hafez HS, Dulin NO, Ornitz DM, Guzy RD. Fibroblast growth factor 2 decreases bleomycin-induced pulmonary fibrosis and inhibits fibroblast collagen production and myofibroblast differentiation. J Pathol 2018; 246:54-66. [PMID: 29873400 PMCID: PMC6175645 DOI: 10.1002/path.5106] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 04/12/2018] [Accepted: 05/19/2018] [Indexed: 02/05/2023]
Abstract
Fibroblast growth factor (FGF) signaling has been implicated in the pathogenesis of pulmonary fibrosis. Mice lacking FGF2 have increased mortality and impaired epithelial recovery after bleomycin exposure, supporting a protective or reparative function following lung injury. To determine whether FGF2 overexpression reduces bleomycin-induced injury, we developed an inducible genetic system to express FGF2 in type II pneumocytes. Double-transgenic (DTG) mice with doxycycline-inducible overexpression of human FGF2 (SPC-rtTA;TRE-hFGF2) or single-transgenic controls were administered intratracheal bleomycin and fed doxycycline chow, starting at either day 0 or day 7. In addition, wild-type mice received intratracheal or intravenous recombinant FGF2, starting at the time of bleomycin treatment. Compared to controls, doxycycline-induced DTG mice had decreased pulmonary fibrosis 21 days after bleomycin, as assessed by gene expression and histology. This beneficial effect was seen when FGF2 overexpression was induced at day 0 or day 7 after bleomycin. FGF2 overexpression did not alter epithelial gene expression, bronchoalveolar lavage cellularity or total protein. In vitro studies using primary mouse and human lung fibroblasts showed that FGF2 strongly inhibited baseline and TGFβ1-induced expression of alpha smooth muscle actin (αSMA), collagen, and connective tissue growth factor. While FGF2 did not suppress phosphorylation of Smad2 or Smad-dependent gene expression, FGF2 inhibited TGFβ1-induced stress fiber formation and serum response factor-dependent gene expression. FGF2 inhibition of stress fiber formation and αSMA requires FGF receptor 1 (FGFR1) and downstream MEK/ERK, but not AKT signaling. In summary, overexpression of FGF2 protects against bleomycin-induced pulmonary fibrosis in vivo and reverses TGFβ1-induced collagen and αSMA expression and stress fiber formation in lung fibroblasts in vitro, without affecting either inflammation or epithelial gene expression. Our results suggest that in the lung, FGF2 is antifibrotic in part through decreased collagen expression and fibroblast to myofibroblast differentiation. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Hyun Young Koo
- University of Chicago, Department of Medicine, Section of Pulmonary and Critical Care Medicine, Chicago, IL, USA
| | - Lamis M.F. El-Baz
- University of Chicago, Department of Medicine, Section of Pulmonary and Critical Care Medicine, Chicago, IL, USA
- Suez University, Faculty of Science, Zoology Department, Suez, Egypt
| | - Stacey L. House
- Washington University School of Medicine, Department of Emergency Medicine, St. Louis, MO, USA
| | - Sarah N. Cilvik
- Washington University School of Medicine, Department of Developmental Biology, St. Louis, MO, USA
| | - Samuel J. Dorry
- University of Chicago, Department of Medicine, Section of Pulmonary and Critical Care Medicine, Chicago, IL, USA
| | - Nahla M. Shoukry
- Suez University, Faculty of Science, Zoology Department, Suez, Egypt
| | - Mohamed L. Salem
- Tanta University, Center of Excellence in Cancer Research, Faculty of Science, Immunology & Biotechnology Department, Tanta, Egypt
| | - Hani S. Hafez
- Suez University, Faculty of Science, Zoology Department, Suez, Egypt
| | - Nickolai O. Dulin
- University of Chicago, Department of Medicine, Section of Pulmonary and Critical Care Medicine, Chicago, IL, USA
| | - David M. Ornitz
- Washington University School of Medicine, Department of Developmental Biology, St. Louis, MO, USA
| | - Robert D. Guzy
- University of Chicago, Department of Medicine, Section of Pulmonary and Critical Care Medicine, Chicago, IL, USA
| |
Collapse
|
50
|
Taylor S, Dirir O, Zamanian RT, Rabinovitch M, Thompson AAR. The Role of Neutrophils and Neutrophil Elastase in Pulmonary Arterial Hypertension. Front Med (Lausanne) 2018; 5:217. [PMID: 30131961 PMCID: PMC6090899 DOI: 10.3389/fmed.2018.00217] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/16/2018] [Indexed: 01/11/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe vasculopathy characterized by the presence of fibrotic lesions in the arterial wall and the loss of small distal pulmonary arteries. The vasculopathy is accompanied by perivascular inflammation and increased protease levels, with neutrophil elastase notably implicated in aberrant vascular remodeling. However, the source of elevated elastase levels in PAH remains unclear. A major source of neutrophil elastase is the neutrophil, an understudied cell population in PAH. The principal function of neutrophils is to destroy invading pathogens by means of phagocytosis and NET formation, but proteases, chemokines, and cytokines implicated in PAH can be released by and/or prime and activate neutrophils. This review focuses on the contribution of inflammation to the development and progression of the disease, highlighting studies implicating neutrophils, neutrophil elastase, and other neutrophil proteases in PAH. The roles of cytokines, chemokines, and neutrophil elastase in the disease are discussed and we describe new insight into the role neutrophils potentially play in the pathogenesis of PAH.
Collapse
Affiliation(s)
- Shalina Taylor
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA, United States
| | - Omar Dirir
- Infection, Immunity, and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Roham T. Zamanian
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA, United States
- Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Marlene Rabinovitch
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA, United States
| | - A. A. Roger Thompson
- Infection, Immunity, and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|