1
|
Mbu'u CM, Gontao P, Wade A, Penning M, Sadeghi B, Mbange AE, LeBreton M, Kamdem SLS, Stoek F, Groschup MH, Mbacham WF, Balkema-Buschmann A. Serological and molecular analysis of henipavirus infections in synanthropic fruit bat and rodent populations in the Centre and North regions of Cameroon (2018-2020). BMC Vet Res 2025; 21:93. [PMID: 39994638 PMCID: PMC11849310 DOI: 10.1186/s12917-025-04530-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 01/29/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Bats and rodents have been identified as reservoirs for several highly pathogenic and zoonotic viruses including henipaviruses, a genus within the Paramyxoviridae family. A number of studies have revealed the circulation of henipaviruses at the wildlife-human-livestock interface in Cameroon. In this study, we describe the molecular analysis as well as the development and evaluation of a Bead-based Multiplex Binding Assay (BMBA) using an in-house Indirect Enzyme Linked Immunosorbent Assay (ELISA) to confirm the detection of henipavirus infection in wildlife species. RESULTS A total of 600 fruit bats and 600 rodents were sampled between March 2018 and June 2020. Samples were analyzed using a semi-nested RT-PCR assay followed by sequencing of the PCR fragments. Transudates (754) were screened for the presence of henipavirus-specific antibodies in a BMBA and confirmed by ELISA using Hendra virus (HeV), Nipah virus (NiV) and Ghana virus (GhV) glycoproteins expressed in Leishmania tarentolae, and commercially available HeV G and NiV G glycoproteins. Henipavirus-specific antibodies were detected in 19/531 (3.6%) bat transudates screened by BMBA and confirmed by ELISA. Seroprevalence rates in the Centre and North Regions were 12/291 (4.1%) and 7/240 (2.9%) respectively. All rodents and shrews were serologically negative. Henipavirus RNA sequences were not detected in any of the samples screened in this work. CONCLUSION This study provides further data supporting the circulation of Henipaviruses in fruit bats (Eidolon helvum) which are roosting and reproducing in proximity to human and livestock populations in the Centre and North Regions of Cameroon. This also establishes the first detection of Henipavirus specific antibodies in Eidolon helvum populations in the North Region of Cameroon.
Collapse
Affiliation(s)
- Cyrille Mbanwi Mbu'u
- Department of Microbiology, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
- Biotechnology Centre-University of Yaoundé 1 (BTC-UY1), Laboratory for Public Health Research Biotechnologies (LAPHER Biotech.), Yaoundé, Cameroon
| | - Pierre Gontao
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua, Cameroon
| | - Abel Wade
- National Veterinary Laboratory (LANAVET), Yaoundé, Cameroon
| | - Maren Penning
- Friedrich-Loeffler-Institut (FLI), Institute of Novel and Emerging Infectious Diseases (INNT), Greifswald-Insel Riems, Greifswald, Germany
| | - Balal Sadeghi
- Friedrich-Loeffler-Institut (FLI), Institute of Novel and Emerging Infectious Diseases (INNT), Greifswald-Insel Riems, Greifswald, Germany
| | - Aristid Ekollo Mbange
- Biotechnology Centre-University of Yaoundé 1 (BTC-UY1), Laboratory for Public Health Research Biotechnologies (LAPHER Biotech.), Yaoundé, Cameroon
- University of Ngaoundere, Institute of Technologies, Ngaoundere, Cameroon
| | | | | | - Franziska Stoek
- Friedrich-Loeffler-Institut (FLI), Institute of Novel and Emerging Infectious Diseases (INNT), Greifswald-Insel Riems, Greifswald, Germany
| | - Martin Hermann Groschup
- Friedrich-Loeffler-Institut (FLI), Institute of Novel and Emerging Infectious Diseases (INNT), Greifswald-Insel Riems, Greifswald, Germany
| | - Wilfred Fon Mbacham
- Biotechnology Centre-University of Yaoundé 1 (BTC-UY1), Laboratory for Public Health Research Biotechnologies (LAPHER Biotech.), Yaoundé, Cameroon.
- Faculty of Natural and Agricultural Sciences, The Northwest University, North-West University, Potchefstroom, South Africa.
- Centre for Health Implementation and Translational Research (CHITRES), The Fobang Institutes for Innovation in Science and Technology (FINISTECH), Box 8094, Yaoundé, Cameroon.
| | - Anne Balkema-Buschmann
- Friedrich-Loeffler-Institut (FLI), Institute of Novel and Emerging Infectious Diseases (INNT), Greifswald-Insel Riems, Greifswald, Germany.
| |
Collapse
|
2
|
Suzuki Y, Yaeshiro M, Uehara D, Ishihara R. Shared clusters between phylogenetic trees for genomic segments of Rotavirus A with distinct genotype constellations. GENE REPORTS 2024; 36:101956. [DOI: 10.1016/j.genrep.2024.101956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Sadiq A, Khan T, Bostan N, Yinda CK, Matthijnssens J. Antigenic epitope analysis of Pakistani G3 and G9 rotavirus strains compared to vaccine strains revealed multiple amino acid differences. Diagn Microbiol Infect Dis 2024; 109:116346. [PMID: 38759540 DOI: 10.1016/j.diagmicrobio.2024.116346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/13/2023] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
Rotaviruses belong to genotype VP4-P[8] are a significant cause of severe loose diarrhea in infants and young children. In the present study, we characterised the complete genome of three of the Pakistani P[8]b RVA strains by Illumina HiSeq sequencing technology to determine the complete genotype constellation providing insight into the evolutionary dynamics of their genes using maximum likelihood analysis. The maximum genomic sequences of our study strains were similar to more recent human Wa-Like G1P[8]a, G3P[8]a, G4P[6], G4P[8], G9P[4], G9P[8]a, G11P[25],G12P[8]a and G12P[6] strains circulating around the world. Therefore, strains PAK274, PAK439 and PAK624 carry natively distinctive VP4 gene with universally common human Wa-Like genetic backbone. Comparing our study P[8]b strains with vaccines strains RotarixTM and RotaTeqTM, multiple amino acid differences were examined between vaccine virus antigenic epitopes and Pakistani isolates. Over time, these differences may result in the selection for strains that will escape the vaccine-induced RVA-neutralizing-antibody effect.
Collapse
Affiliation(s)
- Asma Sadiq
- Department of Microbiology, University of Jhang, Jhang, Pakistan
| | - Tariq Khan
- Department of Biosciences, COMSATS University (CUI), Park Road, Tarlai Kalan, Chak Shahzad, Islamabad,45550, Pakistan
| | - Nazish Bostan
- Department of Biosciences, COMSATS University (CUI), Park Road, Tarlai Kalan, Chak Shahzad, Islamabad,45550, Pakistan.
| | - Claude Kwe Yinda
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Jelle Matthijnssens
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, Leuven, Belgium
| |
Collapse
|
4
|
Van Brussel K, Mahar JE, Hall J, Bender H, Ortiz-Baez AS, Chang WS, Holmes EC, Rose K. Gammaretroviruses, novel viruses and pathogenic bacteria in Australian bats with neurological signs, pneumonia and skin lesions. Virology 2023; 586:43-55. [PMID: 37487325 DOI: 10.1016/j.virol.2023.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/25/2023] [Accepted: 07/12/2023] [Indexed: 07/26/2023]
Abstract
More than 70 bat species are found in mainland Australia. While most studies of bat viromes focus on sampling seemingly healthy individuals, little is known about the viruses and bacteria associated with diseased bats. We performed traditional diagnostic techniques and metatranscriptomic sequencing on tissue samples from 43 Australian bats, comprising three flying fox (Pteropodidae) and two microbat species experiencing a range of disease syndromes, including mass mortality, neurological signs, pneumonia and skin lesions. Of note, we identified the recently discovered Hervey pteropid gammaretrovirus in a bat with lymphoid leukemia, with evidence of replication consistent with an exogenous virus. The possible association of Hervey pteropid gammaretrovirus with lymphoid leukemia clearly merits additional investigation. One novel picornavirus and at least three new astroviruses and bat pegiviruses were also identified in a variety of tissue types, as well as a number of likely bacterial pathogens or opportunistic infections, most notably Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Kate Van Brussel
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, NSW, 2006, Australia
| | - Jackie E Mahar
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, NSW, 2006, Australia
| | - Jane Hall
- Australian Registry of Wildlife Health, Taronga Conservation Society Australia, Mosman, New South Wales, Australia
| | - Hannah Bender
- Australian Registry of Wildlife Health, Taronga Conservation Society Australia, Mosman, New South Wales, Australia
| | - Ayda Susana Ortiz-Baez
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, NSW, 2006, Australia
| | - Wei-Shan Chang
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, NSW, 2006, Australia
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, NSW, 2006, Australia.
| | - Karrie Rose
- Australian Registry of Wildlife Health, Taronga Conservation Society Australia, Mosman, New South Wales, Australia.
| |
Collapse
|
5
|
Dong HV, Truong TH, Tran GTH, Rapichai W, Rattanasrisomporn A, Choowongkomon K, Rattanasrisomporn J. Porcine Sapovirus in Northern Vietnam: Genetic Detection and Characterization Reveals Co-Circulation of Multiple Genotypes. Vet Sci 2023; 10:430. [PMID: 37505835 PMCID: PMC10385290 DOI: 10.3390/vetsci10070430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
Porcine sapovirus (PoSaV) has been reported in many countries over the world, which may cause gastroenteritis symptoms in pigs with all ages. There has been no report on PoSaV infection in Vietnam up to now. In this study, a total of 102 samples were collected from piglets, fattening pigs, and sows with diarrhea in several cities and provinces in northern Vietnam. The PoSaV genome was examined using polymerase chain reaction (PCR). Sequencing of the partial RNA-dependent RNA polymerase (RdRp) gene sequences (324 bp) was performed. Of the 102 tested samples, 10 (9.8%) and 7/20 (35%) were detected as positive for the PoSaV RdRp gene using the PCR method at the individual and farm levels, respectively. Genetic analysis of the partial RdRp gene region of about 324 bp indicated that the nucleotide identity of the current 10 Vietnamese viral strains ranged from 61.39% to 100%. Among the 10 strains obtained, 8 belonged to genotype III and the remaining 2 strains were clustered in genotype VIII. The Vietnamese genotype III viruses formed two sub-clusters. The Vietnamese PoSaV strains were closely related to PoSaVs reported in South Korea, Venezuela, and the Netherlands. This research was the first to describe PoSaV infection in northern Vietnam during 2022-2023.
Collapse
Affiliation(s)
- Hieu Van Dong
- Center for Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Trau Quy Town, Gia Lam District, Hanoi 131000, Vietnam
| | - Thai Ha Truong
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Trau Quy Town, Gia Lam District, Hanoi 131000, Vietnam
| | - Giang Thi Huong Tran
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Trau Quy Town, Gia Lam District, Hanoi 131000, Vietnam
| | - Witsanu Rapichai
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Amonpun Rattanasrisomporn
- Interdisciplinary of Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok 10900, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Jatuporn Rattanasrisomporn
- Center for Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
6
|
Isolation and Characterization of Distinct Rotavirus A in Bat and Rodent Hosts. J Virol 2023; 97:e0145522. [PMID: 36633410 PMCID: PMC9888233 DOI: 10.1128/jvi.01455-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Rotavirus A (RVA) causes diarrheal disease in humans and various animals. Recent studies have identified bat and rodent RVAs with evidence of zoonotic transmission and genome reassortment. However, the virological properties of bat and rodent RVAs with currently identified genotypes still need to be better clarified. Here, we performed virus isolation-based screening for RVA in animal specimens and isolated RVAs (representative strains: 16-06 and MpR12) from Egyptian fruit bat and Natal multimammate mouse collected in Zambia. Whole-genome sequencing and phylogenetic analysis revealed that the genotypes of bat RVA 16-06 were identical to that of RVA BATp39 strain from the Kenyan fruit bat, which has not yet been characterized. Moreover, all segments of rodent RVA MpR12 were highly divergent and assigned to novel genotypes, but RVA MpR12 was phylogenetically closer to bat RVAs than to other rodent RVAs, indicating a unique evolutionary history. We further investigated the virological properties of the isolated RVAs. In brief, we found that 16-06 entered cells by binding to sialic acids on the cell surface, while MpR12 entered in a sialic acid-independent manner. Experimental inoculation of suckling mice with 16-06 and MpR12 revealed that these RVAs are causative agents of diarrhea. Moreover, 16-06 and MpR12 demonstrated an ability to infect and replicate in a 3D-reconstructed primary human intestinal epithelium with comparable efficiency to the human RVA. Taken together, our results detail the unique genetic and virological features of bat and rodent RVAs and demonstrate the need for further investigation of their zoonotic potential. IMPORTANCE Recent advances in nucleotide sequence detection methods have enabled the detection of RVA genomes from various animals. These studies have discovered multiple divergent RVAs and have resulted in proposals for the genetic classification of novel genotypes. However, most of these RVAs have been identified via dsRNA viral genomes and not from infectious viruses, and their virological properties, such as cell/host tropisms, transmissibility, and pathogenicity, are unclear and remain to be clarified. Here, we successfully isolated RVAs with novel genome constellations from three bats and one rodent in Zambia. In addition to whole-genome sequencing, the isolated RVAs were characterized by glycan-binding affinity, pathogenicity in mice, and infectivity to the human gut using a 3D culture of primary intestinal epithelium. Our study reveals the first virological properties of bat and rodent RVAs with high genetic diversity and unique evolutional history and provides basic knowledge to begin estimating the potential of zoonotic transmission.
Collapse
|
7
|
Bassi C, Guerriero P, Pierantoni M, Callegari E, Sabbioni S. Novel Virus Identification through Metagenomics: A Systematic Review. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122048. [PMID: 36556413 PMCID: PMC9784588 DOI: 10.3390/life12122048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Metagenomic Next Generation Sequencing (mNGS) allows the evaluation of complex microbial communities, avoiding isolation and cultivation of each microbial species, and does not require prior knowledge of the microbial sequences present in the sample. Applications of mNGS include virome characterization, new virus discovery and full-length viral genome reconstruction, either from virus preparations enriched in culture or directly from clinical and environmental specimens. Here, we systematically reviewed studies that describe novel virus identification through mNGS from samples of different origin (plant, animal and environment). Without imposing time limits to the search, 379 publications were identified that met the search parameters. Sample types, geographical origin, enrichment and nucleic acid extraction methods, sequencing platforms, bioinformatic analytical steps and identified viral families were described. The review highlights mNGS as a feasible method for novel virus discovery from samples of different origins, describes which kind of heterogeneous experimental and analytical protocols are currently used and provides useful information such as the different commercial kits used for the purification of nucleic acids and bioinformatics analytical pipelines.
Collapse
Affiliation(s)
- Cristian Bassi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Laboratorio per Le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Paola Guerriero
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Laboratorio per Le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Marina Pierantoni
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Elisa Callegari
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Silvia Sabbioni
- Laboratorio per Le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
- Department of Life Science and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: ; Tel.: +39-053-245-5319
| |
Collapse
|
8
|
Díaz Alarcón RG, Liotta DJ, Miño S. Zoonotic RVA: State of the Art and Distribution in the Animal World. Viruses 2022; 14:v14112554. [PMID: 36423163 PMCID: PMC9694813 DOI: 10.3390/v14112554] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
Rotavirus species A (RVA) is a pathogen mainly affecting children under five years old and young animals. The infection produces acute diarrhea in its hosts and, in intensively reared livestock animals, can cause severe economic losses. In this study, we analyzed all RVA genomic constellations described in animal hosts. This review included animal RVA strains in humans. We compiled detection methods, hosts, genotypes and complete genomes. RVA was described in 86 animal species, with 52% (45/86) described by serology, microscopy or the hybridization method; however, strain sequences were not described. All of these reports were carried out between 1980 and 1990. In 48% (41/86) of them, 9251 strain sequences were reported, with 28% being porcine, 27% bovine, 12% equine and 33% from several other animal species. Genomic constellations were performed in 80% (32/40) of hosts. Typical constellation patterns were observed in groups such as birds, domestic animals and artiodactyls. The analysis of the constellations showed RVA's capacity to infect a broad range of species, because there are RVA genotypes (even entire constellations) from animal species which were described in other studies. This suggests that this virus could generate highly virulent variants through gene reassortments and that these strains could be transmitted to humans as a zoonotic disease, making future surveillance necessary for the prevention of future outbreaks.
Collapse
Affiliation(s)
- Ricardo Gabriel Díaz Alarcón
- Laboratory of Applied Molecular Biology (LaBiMAp), Faculty of Exacts, Chemical and Natural Sciences, National University of Misiones (UNaM), Posadas 3300, Misiones, Argentina
| | - Domingo Javier Liotta
- Laboratory of Applied Molecular Biology (LaBiMAp), Faculty of Exacts, Chemical and Natural Sciences, National University of Misiones (UNaM), Posadas 3300, Misiones, Argentina
- National Institute of Tropical Medicine (INMeT)—ANLIS “Dr. Carlos Malbrán”, Puerto Iguazú 3370, Misiones, Argentina
| | - Samuel Miño
- Laboratory of Applied Molecular Biology (LaBiMAp), Faculty of Exacts, Chemical and Natural Sciences, National University of Misiones (UNaM), Posadas 3300, Misiones, Argentina
- National Institute of Agricultural Technology (INTA), EEA Cerro Azul, National Route 14, Km 836, Cerro Azul 3313, Misiones, Argentina
- Correspondence: ; Tel.: +54-376-449-4740 (ext. 120)
| |
Collapse
|
9
|
Sasaki M. [Investigation of viruses harbored by wild animals: toward pre-emptive measures against future zoonotic diseases]. Uirusu 2022; 72:79-86. [PMID: 37899234 DOI: 10.2222/jsv.72.79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Zoonoses are caused by pathogens transmitted from animals. To prepare mitigating measures against emerging zoonoses, it is imperative to identify animal reservoirs that carry potential pathogens and also elucidate the transmission routes of these pathogens. Under the continuous collaboration with counterparts from Zambia and Indonesia, we have so far identified various viruses in wild animals. Some of the identified viruses were phylogenetically distinct from known virus species and this finding led to approved new virus species by the International Committee on Taxonomy of Viruses (ICTV). Our studies provided new insights into the divergence, natural hosts and lifecycle of viruses. Through the exploration and characterization of viruses in animals, we will endeavor to contribute to the existing knowledge on viral pathogens in wild animals. This is cardinal for evidence-based preemptive measures against future zoonoses.
Collapse
Affiliation(s)
- Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control,Hokkaido University
| |
Collapse
|
10
|
Abstract
Rotavirus (RV)-encoded nonstructural protein 1 (NSP1), the product of gene segment 5, effectively antagonizes host interferon (IFN) signaling via multiple mechanisms. Recent studies with the newly established RV reverse genetics system indicate that NSP1 is not essential for the replication of the simian RV SA11 strain in cell culture. However, the role of NSP1 in RV infection in vivo remains poorly characterized due to the limited replication of heterologous simian RVs in the suckling mouse model. Here, we used an optimized reverse genetics system and successfully recovered recombinant murine RVs with or without NSP1 expression. While the NSP1-null virus replicated comparably with the parental murine RV in IFN-deficient and IFN-competent cell lines in vitro, it was highly attenuated in 5-day-old wild-type suckling pups in both the 129sv and C57BL/6 backgrounds. In the absence of NSP1 expression, murine RV had significantly reduced replication in the ileum, systemic spread to mesenteric lymph nodes, fecal shedding, diarrhea occurrence, and transmission to uninoculated littermates. The defective replication of the NSP1-null RV in small intestinal tissues occurred as early as 1 day postinfection. Of interest, the replication and pathogenesis defects of NSP1-null RV were only minimally rescued in Stat1 knockout pups, suggesting that NSP1 facilitates RV replication in an IFN-independent manner. Our findings highlight a pivotal function of NSP1 during homologous RV infections in vivo and identify NSP1 as an ideal viral protein for targeted attenuation for future vaccine development.
Collapse
|
11
|
Simsek C, Bloemen M, Jansen D, Beller L, Descheemaeker P, Reynders M, Van Ranst M, Matthijnssens J. High Prevalence of Coinfecting Enteropathogens in Suspected Rotavirus Vaccine Breakthrough Cases. J Clin Microbiol 2021; 59:e0123621. [PMID: 34586890 PMCID: PMC8601229 DOI: 10.1128/jcm.01236-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/21/2021] [Indexed: 12/15/2022] Open
Abstract
Despite the global use of rotavirus vaccines, vaccine breakthrough cases remain a pediatric health problem. In this study, we investigated suspected rotavirus vaccine breakthrough cases using next-generation sequencing (NGS)-based viral metagenomics (n = 102) and a panel of semiquantitative reverse transcription-PCR (RT-qPCR) (n = 92) targeting known enteric pathogens. Overall, we identified coinfections in 80% of the cases. Enteropathogens such as adenovirus (32%), enterovirus (15%), diarrheagenic Escherichia coli (1 to 14%), astrovirus (10%), Blastocystis spp. (10%), parechovirus (9%), norovirus (9%), Clostridioides (formerly Clostridium) difficile (9%), Dientamoeba fragilis (9%), sapovirus (8%), Campylobacter jejuni (4%), and Giardia lamblia (4%) were detected. Except for a few reassortant rotavirus strains, unusual genotypes or genotype combinations were not present. However, in addition to well-known enteric viruses, divergent variants of enteroviruses and nonclassic astroviruses were identified using NGS. We estimated that in 31.5% of the patients, rotavirus was likely not the cause of gastroenteritis, and in 14.1% of the patients, it contributed together with another pathogen(s) to disease. The remaining 54.4% of the patients likely had a true vaccine breakthrough infection. The high prevalence of alternative enteropathogens in the suspected rotavirus vaccine breakthrough cases suggests that gastroenteritis is often the result of a coinfection and that rotavirus vaccine effectiveness might be underestimated in clinical and epidemiological studies.
Collapse
Affiliation(s)
- Ceren Simsek
- KU Leuven—University of Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Leuven, Belgium
| | - Mandy Bloemen
- KU Leuven—University of Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Leuven, Belgium
| | - Daan Jansen
- KU Leuven—University of Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Leuven, Belgium
| | - Leen Beller
- KU Leuven—University of Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Leuven, Belgium
| | - Patrick Descheemaeker
- Department of Laboratory Medicine, Medical Microbiology, AZ Sint-Jan Brugge-Oostende AV, Bruges, Belgium
| | - Marijke Reynders
- Department of Laboratory Medicine, Medical Microbiology, AZ Sint-Jan Brugge-Oostende AV, Bruges, Belgium
| | - Marc Van Ranst
- KU Leuven—University of Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Leuven, Belgium
| | - Jelle Matthijnssens
- KU Leuven—University of Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Leuven, Belgium
| |
Collapse
|
12
|
Virome of bat-infesting arthropods: highly divergent viruses in different vectors. J Virol 2021; 96:e0146421. [PMID: 34586860 DOI: 10.1128/jvi.01464-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bats are reservoirs of important zoonotic viruses like Nipah and SARS viruses. However, whether the blood-sucking arthropods on the body surface of bats also carry these viruses, and the relationship between viruses carried by the blood-sucking arthropods and viruses carried by bats, have not been reported. This study collected 686 blood-sucking arthropods on the body surface of bats from Yunnan Province, China between 2012 and 2015, and they included wingless bat flies, bat flies, ticks, mites, and fleas. The viruses carried by these arthropods were analyzed using meta-transcriptomic approach, and 144 highly diverse positive-sense single-stranded RNA, negative-sense single-stranded RNA, and double-stranded RNA viruses were found, of which 138 were potentially new viruses. These viruses were classified into 14 different virus families or orders, including Bunyavirales, Mononegavirales, Reoviridae, and Picornavirales. Further analyses found that Bunyavirales were the most abundant virus group (84% of total virus RNA) in ticks, whereas narnaviruses were the most abundant (52-92%) in the bat flies and wingless bat flies libraries, followed by solemoviruses (1-29%) and reoviruses (0-43%). These viruses were highly structured based on the arthropod types. It is worth noting that no bat-borne zoonotic viruses were found in the virome of bat-infesting arthropod, seemly not supporting that bat surface arthropods are vectors of zoonotic viruses carried by bats. IMPORTANCE Bats are reservoir of many important viral pathogens. To evaluate whether bat-parasitic blood-sucking arthropods participate in the circulation of these important viruses, it is necessary to conduct unbiased virome studies on these arthropods. We evaluated five types of blood-sucking parasitic arthropods on the surface of bats in Yunnan, China and identified a variety of viruses, some of which had high prevalence and abundance level, although there is limited overlap in virome between distant arthropods. While most of the virome discovered here are potentially arthropod-specific viruses, we identified three possible arboviruses, including one orthobunyavirus and two vesiculoviruses (family Rhabdoviridae), suggesting bat-parasitic arthropods carry viruses with risk of spillage, which warrants further study.
Collapse
|
13
|
Kawasaki J, Kojima S, Tomonaga K, Horie M. Hidden Viral Sequences in Public Sequencing Data and Warning for Future Emerging Diseases. mBio 2021; 12:e0163821. [PMID: 34399612 PMCID: PMC8406186 DOI: 10.1128/mbio.01638-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/13/2021] [Indexed: 12/31/2022] Open
Abstract
RNA viruses cause numerous emerging diseases, mostly due to transmission from mammalian and avian reservoirs. Large-scale surveillance of RNA viral infections in these animals is a fundamental step for controlling viral infectious diseases. Metagenomic analysis is a powerful method for virus identification with low bias and has contributed substantially to the discovery of novel viruses. Deep-sequencing data have been collected from diverse animals and accumulated in public databases, which can be valuable resources for identifying unknown viral sequences. Here, we screened for infections of 33 RNA viral families in publicly available mammalian and avian sequencing data and found approximately 900 hidden viral infections. We also discovered six nearly complete viral genomes in livestock, wild, and experimental animals: hepatovirus in a goat, hepeviruses in blind mole-rats and a galago, astrovirus in macaque monkeys, parechovirus in a cow, and pegivirus in tree shrews. Some of these viruses were phylogenetically close to human-pathogenic viruses, suggesting the potential risk of causing disease in humans upon infection. Furthermore, infections of five novel viruses were identified in several different individuals, indicating that their infections may have already spread in the natural host population. Our findings demonstrate the reusability of public sequencing data for surveying viral infections and identifying novel viral sequences, presenting a warning about a new threat of viral infectious disease to public health. IMPORTANCE Monitoring the spread of viral infections and identifying novel viruses capable of infecting humans through animal reservoirs are necessary to control emerging viral diseases. Massive amounts of sequencing data collected from various animals are publicly available, and these data may contain sequences originating from a wide variety of viruses. Here, we analyzed more than 46,000 public sequencing data and identified approximately 900 hidden RNA viral infections in mammalian and avian samples. Some viruses discovered in this study were genetically similar to pathogens that cause hepatitis, diarrhea, or encephalitis in humans, suggesting the presence of new threats to public health. Our study demonstrates the effectiveness of reusing public sequencing data to identify known and unknown viral infections, indicating that future continuous monitoring of public sequencing data by metagenomic analyses would help prepare and mitigate future viral pandemics.
Collapse
Affiliation(s)
- Junna Kawasaki
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Laboratory of RNA Viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Shohei Kojima
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Keizo Tomonaga
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Laboratory of RNA Viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Molecular Virology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masayuki Horie
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan
- Division of Veterinary Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| |
Collapse
|
14
|
Hoxie I, Dennehy JJ. Rotavirus A Genome Segments Show Distinct Segregation and Codon Usage Patterns. Viruses 2021; 13:v13081460. [PMID: 34452326 PMCID: PMC8402926 DOI: 10.3390/v13081460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/29/2022] Open
Abstract
Reassortment of the Rotavirus A (RVA) 11-segment dsRNA genome may generate new genome constellations that allow RVA to expand its host range or evade immune responses. Reassortment may also produce phylogenetic incongruities and weakly linked evolutionary histories across the 11 segments, obscuring reassortment-specific epistasis and changes in substitution rates. To determine the co-segregation patterns of RVA segments, we generated time-scaled phylogenetic trees for each of the 11 segments of 789 complete RVA genomes isolated from mammalian hosts and compared the segments’ geodesic distances. We found that segments 4 (VP4) and 9 (VP7) occupied significantly different tree spaces from each other and from the rest of the genome. By contrast, segments 10 and 11 (NSP4 and NSP5/6) occupied nearly indistinguishable tree spaces, suggesting strong co-segregation. Host-species barriers appeared to vary by segment, with segment 9 (VP7) presenting the weakest association with host species. Bayesian Skyride plots were generated for each segment to compare relative genetic diversity among segments over time. All segments showed a dramatic decrease in diversity around 2007 coinciding with the introduction of RVA vaccines. To assess selection pressures, codon adaptation indices and relative codon deoptimization indices were calculated with respect to different host genomes. Codon usage varied by segment with segment 11 (NSP5) exhibiting significantly higher adaptation to host genomes. Furthermore, RVA codon usage patterns appeared optimized for expression in humans and birds relative to the other hosts examined, suggesting that translational efficiency is not a barrier in RVA zoonosis.
Collapse
Affiliation(s)
- Irene Hoxie
- Biology Department, The Graduate Center, The City University of New York, New York, NY 10016, USA;
- Biology Department, Queens College, The City University of New York, Flushing, New York, NY 11367, USA
- Correspondence:
| | - John J. Dennehy
- Biology Department, The Graduate Center, The City University of New York, New York, NY 10016, USA;
- Biology Department, Queens College, The City University of New York, Flushing, New York, NY 11367, USA
| |
Collapse
|
15
|
Tan CW, Yang X, Anderson DE, Wang LF. Bat virome research: the past, the present and the future. Curr Opin Virol 2021; 49:68-80. [PMID: 34052731 DOI: 10.1016/j.coviro.2021.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023]
Abstract
Bats have been increasingly recognised as an exceptional reservoir for emerging zoonotic viruses for the past few decades. Recent studies indicate that the unique bat immune system may be partially responsible for their ability to co-exist with viruses with minimal or no clinical diseases. In this review, we discuss the history and importance of bat virome studies and contrast the vast difference between such studies before and after the introduction of next generation sequencing (NGS) in this area of research. We also discuss the role of discovery serology and high-throughput single cell RNA-seq in future bat virome research.
Collapse
Affiliation(s)
- Chee Wah Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore
| | - Xinglou Yang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore; Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Danielle E Anderson
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore; SingHealth Duke-NUS Global Health Institute, 169857, Singapore.
| |
Collapse
|
16
|
Bergner LM, Mollentze N, Orton RJ, Tello C, Broos A, Biek R, Streicker DG. Characterizing and Evaluating the Zoonotic Potential of Novel Viruses Discovered in Vampire Bats. Viruses 2021; 13:252. [PMID: 33562073 PMCID: PMC7914986 DOI: 10.3390/v13020252] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/25/2021] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
The contemporary surge in metagenomic sequencing has transformed knowledge of viral diversity in wildlife. However, evaluating which newly discovered viruses pose sufficient risk of infecting humans to merit detailed laboratory characterization and surveillance remains largely speculative. Machine learning algorithms have been developed to address this imbalance by ranking the relative likelihood of human infection based on viral genome sequences, but are not yet routinely applied to viruses at the time of their discovery. Here, we characterized viral genomes detected through metagenomic sequencing of feces and saliva from common vampire bats (Desmodus rotundus) and used these data as a case study in evaluating zoonotic potential using molecular sequencing data. Of 58 detected viral families, including 17 which infect mammals, the only known zoonosis detected was rabies virus; however, additional genomes were detected from the families Hepeviridae, Coronaviridae, Reoviridae, Astroviridae and Picornaviridae, all of which contain human-infecting species. In phylogenetic analyses, novel vampire bat viruses most frequently grouped with other bat viruses that are not currently known to infect humans. In agreement, machine learning models built from only phylogenetic information ranked all novel viruses similarly, yielding little insight into zoonotic potential. In contrast, genome composition-based machine learning models estimated different levels of zoonotic potential, even for closely related viruses, categorizing one out of four detected hepeviruses and two out of three picornaviruses as having high priority for further research. We highlight the value of evaluating zoonotic potential beyond ad hoc consideration of phylogeny and provide surveillance recommendations for novel viruses in a wildlife host which has frequent contact with humans and domestic animals.
Collapse
Affiliation(s)
- Laura M. Bergner
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; (N.M.); (R.B.); (D.G.S.)
- MRC–University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (R.J.O.); (A.B.)
| | - Nardus Mollentze
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; (N.M.); (R.B.); (D.G.S.)
- MRC–University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (R.J.O.); (A.B.)
| | - Richard J. Orton
- MRC–University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (R.J.O.); (A.B.)
| | - Carlos Tello
- Association for the Conservation and Development of Natural Resources, Lima 15037, Peru;
- Yunkawasi, Lima 15049, Peru
| | - Alice Broos
- MRC–University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (R.J.O.); (A.B.)
| | - Roman Biek
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; (N.M.); (R.B.); (D.G.S.)
| | - Daniel G. Streicker
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; (N.M.); (R.B.); (D.G.S.)
- MRC–University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (R.J.O.); (A.B.)
| |
Collapse
|
17
|
At Least Seven Distinct Rotavirus Genotype Constellations in Bats with Evidence of Reassortment and Zoonotic Transmissions. mBio 2021; 12:mBio.02755-20. [PMID: 33468689 PMCID: PMC7845630 DOI: 10.1128/mbio.02755-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The increased research on bat coronaviruses after severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) allowed the very rapid identification of SARS-CoV-2. This is an excellent example of the importance of knowing viruses harbored by wildlife in general, and bats in particular, for global preparedness against emerging viral pathogens. Bats host many viruses pathogenic to humans, and increasing evidence suggests that rotavirus A (RVA) also belongs to this list. Rotaviruses cause diarrheal disease in many mammals and birds, and their segmented genomes allow them to reassort and increase their genetic diversity. Eighteen out of 2,142 bat fecal samples (0.8%) collected from Europe, Central America, and Africa were PCR-positive for RVA, and 11 of those were fully characterized using viral metagenomics. Upon contrasting their genomes with publicly available data, at least 7 distinct bat RVA genotype constellations (GCs) were identified, which included evidence of reassortments and 6 novel genotypes. Some of these constellations are spread across the world, whereas others appear to be geographically restricted. Our analyses also suggest that several unusual human and equine RVA strains might be of bat RVA origin, based on their phylogenetic clustering, despite various levels of nucleotide sequence identities between them. Although SA11 is one of the most widely used reference strains for RVA research and forms the backbone of a reverse genetics system, its origin remained enigmatic. Remarkably, the majority of the genotypes of SA11-like strains were shared with Gabonese bat RVAs, suggesting a potential common origin. Overall, our findings suggest an underexplored genetic diversity of RVAs in bats, which is likely only the tip of the iceberg. Increasing contact between humans and bat wildlife will further increase the zoonosis risk, which warrants closer attention to these viruses.
Collapse
|
18
|
Esona MD, Gautam R, Katz E, Jaime J, Ward ML, Wikswo ME, Betrapally NS, Rustempasic SM, Selvarangan R, Harrison CJ, Boom JA, Englund J, Klein EJ, Staat MA, McNeal MM, Halasa N, Chappell J, Weinberg GA, Payne DC, Parashar UD, Bowen MD. Comparative genomic analysis of genogroup 1 and genogroup 2 rotaviruses circulating in seven US cities, 2014-2016. Virus Evol 2021; 7:veab023. [PMID: 34522389 PMCID: PMC8432945 DOI: 10.1093/ve/veab023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
For over a decade, the New Vaccine Surveillance Network (NVSN) has conducted active rotavirus (RVA) strain surveillance in the USA. The evolution of RVA in the post-vaccine introduction era and the possible effects of vaccine pressure on contemporary circulating strains in the USA are still under investigation. Here, we report the whole-gene characterization (eleven ORFs) for 157 RVA strains collected at seven NVSN sites during the 2014 through 2016 seasons. The sequenced strains included 52 G1P[8], 47 G12P[8], 18 G9P[8], 24 G2P[4], 5 G3P[6], as well as 7 vaccine strains, a single mixed strain (G9G12P[8]), and 3 less common strains. The majority of the single and mixed strains possessed a Wa-like backbone with consensus genotype constellation of G1/G3/G9/G12-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1, while the G2P[4], G3P[6], and G2P[8] strains displayed a DS-1-like genetic backbone with consensus constellation of G2/G3-P[4]/P[6]/P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2. Two intergenogroup reassortant G1P[8] strains were detected that appear to be progenies of reassortment events between Wa-like G1P[8] and DS-1-like G2P[4] strains. Two Rotarix® vaccine (RV1) and two RV5 derived (vd) reassortant strains were detected. Phylogenetic and similarity matrices analysis revealed 2-11 sub-genotypic allelic clusters among the genes of Wa- and DS-1-like strains. Most study strains clustered into previously defined alleles. Amino acid (AA) substitutions occurring in the neutralization epitopes of the VP7 and VP4 proteins characterized in this study were mostly neutral in nature, suggesting that these RVA proteins were possibly under strong negative or purifying selection in order to maintain competent and actual functionality, but fourteen radical (AA changes that occur between groups) AA substitutions were noted that may allow RVA strains to gain a selective advantage through immune escape. The tracking of RVA strains at the sub-genotypic allele constellation level will enhance our understanding of RVA evolution under vaccine pressure, help identify possible mechanisms of immune escape, and provide valuable information for formulation of future RVA vaccines.
Collapse
Affiliation(s)
- Mathew D Esona
- Division of Viral Diseases, Centers for Disease Control and Prevention, Viral Gastroenteritis Branch, Atlanta, GA, USA
- Corresponding author: E-mail:
| | - Rashi Gautam
- Division of Viral Diseases, Centers for Disease Control and Prevention, Viral Gastroenteritis Branch, Atlanta, GA, USA
| | - Eric Katz
- Cherokee Nation Assurance, Contracting Agency to the Division of Viral Diseases, Centers for Disease Control and Prevention, Arlington, VA, USA
| | - Jose Jaime
- Division of Viral Diseases, Centers for Disease Control and Prevention, Viral Gastroenteritis Branch, Atlanta, GA, USA
| | - M Leanne Ward
- Division of Viral Diseases, Centers for Disease Control and Prevention, Viral Gastroenteritis Branch, Atlanta, GA, USA
| | - Mary E Wikswo
- Division of Viral Diseases, Centers for Disease Control and Prevention, Viral Gastroenteritis Branch, Atlanta, GA, USA
| | - Naga S Betrapally
- Division of Viral Diseases, Centers for Disease Control and Prevention, Viral Gastroenteritis Branch, Atlanta, GA, USA
| | - Slavica M Rustempasic
- Division of Viral Diseases, Centers for Disease Control and Prevention, Viral Gastroenteritis Branch, Atlanta, GA, USA
| | | | | | | | - Jan Englund
- Seattle Children’s Hospital, Seattle, WA, USA
| | | | - Mary Allen Staat
- Division of Infectious Diseases, Department of Pediatrics, University of Cincinnati, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Monica M McNeal
- Division of Infectious Diseases, Department of Pediatrics, University of Cincinnati, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Natasha Halasa
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - James Chappell
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - Geoffrey A Weinberg
- University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Daniel C Payne
- Division of Viral Diseases, Centers for Disease Control and Prevention, Viral Gastroenteritis Branch, Atlanta, GA, USA
| | - Umesh D Parashar
- Division of Viral Diseases, Centers for Disease Control and Prevention, Viral Gastroenteritis Branch, Atlanta, GA, USA
| | - Michael D Bowen
- Division of Viral Diseases, Centers for Disease Control and Prevention, Viral Gastroenteritis Branch, Atlanta, GA, USA
| |
Collapse
|
19
|
Komoto S, Tacharoenmuang R, Guntapong R, Upachai S, Singchai P, Ide T, Fukuda S, Hatazawa R, Sutthiwarakom K, Kongjorn S, Onvimala N, Luechakham T, Sriwanthana B, Murata T, Uppapong B, Taniguchi K. Genomic characterization of a novel G3P[10] rotavirus strain from a diarrheic child in Thailand: Evidence for bat-to-human zoonotic transmission. INFECTION GENETICS AND EVOLUTION 2021; 87:104667. [DOI: 10.1016/j.meegid.2020.104667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/18/2020] [Accepted: 12/02/2020] [Indexed: 02/04/2023]
|
20
|
Abstract
Bats are natural reservoirs for potential zoonotic viruses. In this study, next-generation sequencing was performed to obtain entire genome sequences of picornavirus from a picornavirus-positive bat feces sample (16BF77) and to explore novel viruses in a pooled bat sample (16BP) from samples collected in South Korea, 2016. Fourteen mammalian viral sequences were identified from 16BF77 and 29 from 16BP, and verified by RT-PCR. The most abundant virus in 16BF77 was picornavirus. Highly variable picornavirus sequences encoding 3Dpol were classified into genera Kobuvirus, Shanbavirus, and an unassigned group within the family Picornaviridae. Amino acid differences between these partial 3Dpol sequences were ≥ 65.7%. Results showed that one bat was co-infected by picornaviruses of more than two genera. Retrovirus, coronavirus, and rotavirus A sequences also were found in the BP sample. The retrovirus and coronavirus genomes were identified in nine and eight bats, respectively. Korean bat retroviruses and coronavirus demonstrated strong genetic relationships with a Chinese bat retrovirus (RfRV) and coronavirus (HKU5-1), respectively. A co-infection was identified in one bat with a retrovirus and a coronavirus. Our results indicate that Korean bats were multiply infected by several mammal viruses.
Collapse
|
21
|
Islam A, Hossain ME, Rostal MK, Ferdous J, Islam A, Hasan R, Miah M, Rahman M, Rahman MZ, Daszak P, Epstein JH. Epidemiology and Molecular Characterization of Rotavirus A in Fruit Bats in Bangladesh. ECOHEALTH 2020; 17:398-405. [PMID: 32876756 PMCID: PMC7464061 DOI: 10.1007/s10393-020-01488-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 07/07/2020] [Accepted: 07/28/2020] [Indexed: 05/06/2023]
Abstract
Rotavirus A (RVA) is the primary cause of acute dehydrating diarrhea in human and numerous animal species. Animal-to-human interspecies transmission is one of the evolutionary mechanisms driving rotavirus strain diversity in humans. We screened fresh feces from 416 bats (201 Pteropus medius, 165 Rousettus leschenaultii and 50 Taphozous melanopogon) for RVA using rRT-PCR. We detected a prevalence of 7% (95% CI 3.5-10.8) and 2% (95% CI 0.4-5.2) in P. medius and R. leschenaultii, respectively. We did not detect RVA in the insectivorous bat (T. melanopogon). We identified RVA strains similar to the human strains of G1 and G8 based on sequence-based genotyping, which underscores the importance of including wildlife species in surveillance for zoonotic pathogens to understand pathogen transmission and evolution better.
Collapse
Affiliation(s)
- Ariful Islam
- EcoHealth Alliance, 460 West 34th Street, Suite 17, New York, NY, 10001, USA
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| | - Mohammad Enayet Hossain
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Melinda K Rostal
- EcoHealth Alliance, 460 West 34th Street, Suite 17, New York, NY, 10001, USA
| | - Jinnat Ferdous
- EcoHealth Alliance, 460 West 34th Street, Suite 17, New York, NY, 10001, USA
- Institute of Epidemiology, Disease Control and Research (IEDCR), Mohakhali, Dhaka, 1212, Bangladesh
| | - Ausraful Islam
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Rashedul Hasan
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mojnu Miah
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mustafizur Rahman
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mohammed Ziaur Rahman
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Peter Daszak
- EcoHealth Alliance, 460 West 34th Street, Suite 17, New York, NY, 10001, USA
| | - Jonathan H Epstein
- EcoHealth Alliance, 460 West 34th Street, Suite 17, New York, NY, 10001, USA.
| |
Collapse
|
22
|
Falkenhagen A, Patzina-Mehling C, Rückner A, Vahlenkamp TW, Johne R. Generation of simian rotavirus reassortants with diverse VP4 genes using reverse genetics. J Gen Virol 2020; 100:1595-1604. [PMID: 31665098 DOI: 10.1099/jgv.0.001322] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Species A rotaviruses (RVAs) are a major cause of gastroenteritis in animals and humans. Their genome consists of 11 segments of dsRNA, and reassortment events between animal and human strains can contribute to the high genetic diversity of RVAs. We used a plasmid-based reverse genetics system to investigate the reassortment potential of the genome segment encoding the viral outer capsid protein VP4, which is a major antigenic determinant, mediates viral entry and plays an important role in host cell tropism. We rescued reassortant viruses containing VP4 from porcine, bovine, bat, pheasant or chicken RVA strains in the backbone of simian strain SA11. The VP4 reassortants could be stably passaged in MA-104 cells and induced cytopathic effects. However, analysis of growth kinetics revealed marked differences in replication efficiency. Our results show that the VP4-encoding genome segment has a high reassortment potential, even between virus strains from highly divergent species. This can result in replication-competent reassortants with new genomic, growth and antigenic features.
Collapse
Affiliation(s)
| | | | - Antje Rückner
- Institute of Virology, Leipzig University, Leipzig, Germany
| | | | - Reimar Johne
- The German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
23
|
Van Eynde B, Christiaens O, Delbare D, Shi C, Vanhulle E, Yinda CK, Matthijnssens J, Smagghe G. Exploration of the virome of the European brown shrimp (Crangon crangon). J Gen Virol 2020; 101:651-666. [DOI: 10.1099/jgv.0.001412] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Crangon crangon is economically a very important species. Recently, promising culture attempts have been made, but a major problem is the uncontrollable mortality during the grow-out phase. As of yet, the life cycle of C. crangon is not closed in captivity so wild-caught individuals are used for further rearing. Therefore, it is important to investigate the virome of C. crangon both in wild-caught animals as in cultured animals. In recent years, next-generation-sequencing (NGS) technologies have been very important in the unravelling of the virome of a wide range of environments and matrices, such as soil, sea, potable water, but also of a wide range of animal species. This will be the first report of a virome study in C. crangon using NGS in combination with the NetoVIR protocol. The near complete genomes of 16 novel viruses were described, most of which were rather distantly related to unclassified viruses or viruses belonging to the Picornavirales, Bunyavirales Nudiviridae, Parvoviridae, Flaviviridae, Hepeviridae, Tombusviridae, Narnaviridae, Nodaviridae, Sobemovirus. A difference in virome composition was observed between muscle and hepatopancreatic tissue, suggesting a distinct tissue tropism of several of these viruses. Some differences in the viral composition were noted between the cultured and wild shrimp, which could indicate that in sub-optimal aquaculture conditions some viruses become more abundant. This research showed that a plethora of unknown viruses is present in C. crangon and that more research is needed to determine which virus is potentially dangerous for the culture of C. crangon.
Collapse
Affiliation(s)
- Benigna Van Eynde
- Animal Sciences Unit-Fisheries, Flanders research institute for agriculture, fisheries and food (ILVO), 8400 Ostend, Belgium
- Department of Plant and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Olivier Christiaens
- Department of Plant and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Daan Delbare
- Animal Sciences Unit-Fisheries, Flanders research institute for agriculture, fisheries and food (ILVO), 8400 Ostend, Belgium
| | - Chenyan Shi
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Emiel Vanhulle
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Claude Kwe Yinda
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Jelle Matthijnssens
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Guy Smagghe
- Department of Plant and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
24
|
Wahba L, Jain N, Fire AZ, Shoura MJ, Artiles KL, McCoy MJ, Jeong DE. An Extensive Meta-Metagenomic Search Identifies SARS-CoV-2-Homologous Sequences in Pangolin Lung Viromes. mSphere 2020. [PMID: 32376697 DOI: 10.1101/2020.02.08.939660] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
In numerous instances, tracking the biological significance of a nucleic acid sequence can be augmented through the identification of environmental niches in which the sequence of interest is present. Many metagenomic data sets are now available, with deep sequencing of samples from diverse biological niches. While any individual metagenomic data set can be readily queried using web-based tools, meta-searches through all such data sets are less accessible. In this brief communication, we demonstrate such a meta-metagenomic approach, examining close matches to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in all high-throughput sequencing data sets in the NCBI Sequence Read Archive accessible with the "virome" keyword. In addition to the homology to bat coronaviruses observed in descriptions of the SARS-CoV-2 sequence (F. Wu, S. Zhao, B. Yu, Y. M. Chen, et al., Nature 579:265-269, 2020, https://doi.org/10.1038/s41586-020-2008-3; P. Zhou, X. L. Yang, X. G. Wang, B. Hu, et al., Nature 579:270-273, 2020, https://doi.org/10.1038/s41586-020-2012-7), we note a strong homology to numerous sequence reads in metavirome data sets generated from the lungs of deceased pangolins reported by Liu et al. (P. Liu, W. Chen, and J. P. Chen, Viruses 11:979, 2019, https://doi.org/10.3390/v11110979). While analysis of these reads indicates the presence of a similar viral sequence in pangolin lung, the similarity is not sufficient to either confirm or rule out a role for pangolins as an intermediate host in the recent emergence of SARS-CoV-2. In addition to the implications for SARS-CoV-2 emergence, this study illustrates the utility and limitations of meta-metagenomic search tools in effective and rapid characterization of potentially significant nucleic acid sequences.IMPORTANCE Meta-metagenomic searches allow for high-speed, low-cost identification of potentially significant biological niches for sequences of interest.
Collapse
Affiliation(s)
- Lamia Wahba
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Nimit Jain
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Andrew Z Fire
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Massa J Shoura
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Karen L Artiles
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Matthew J McCoy
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Dae-Eun Jeong
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
25
|
Wahba L, Jain N, Fire AZ, Shoura MJ, Artiles KL, McCoy MJ, Jeong DE. An Extensive Meta-Metagenomic Search Identifies SARS-CoV-2-Homologous Sequences in Pangolin Lung Viromes. mSphere 2020; 5:e00160-20. [PMID: 32376697 PMCID: PMC7203451 DOI: 10.1128/msphere.00160-20] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/24/2020] [Indexed: 12/21/2022] Open
Abstract
In numerous instances, tracking the biological significance of a nucleic acid sequence can be augmented through the identification of environmental niches in which the sequence of interest is present. Many metagenomic data sets are now available, with deep sequencing of samples from diverse biological niches. While any individual metagenomic data set can be readily queried using web-based tools, meta-searches through all such data sets are less accessible. In this brief communication, we demonstrate such a meta-metagenomic approach, examining close matches to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in all high-throughput sequencing data sets in the NCBI Sequence Read Archive accessible with the "virome" keyword. In addition to the homology to bat coronaviruses observed in descriptions of the SARS-CoV-2 sequence (F. Wu, S. Zhao, B. Yu, Y. M. Chen, et al., Nature 579:265-269, 2020, https://doi.org/10.1038/s41586-020-2008-3; P. Zhou, X. L. Yang, X. G. Wang, B. Hu, et al., Nature 579:270-273, 2020, https://doi.org/10.1038/s41586-020-2012-7), we note a strong homology to numerous sequence reads in metavirome data sets generated from the lungs of deceased pangolins reported by Liu et al. (P. Liu, W. Chen, and J. P. Chen, Viruses 11:979, 2019, https://doi.org/10.3390/v11110979). While analysis of these reads indicates the presence of a similar viral sequence in pangolin lung, the similarity is not sufficient to either confirm or rule out a role for pangolins as an intermediate host in the recent emergence of SARS-CoV-2. In addition to the implications for SARS-CoV-2 emergence, this study illustrates the utility and limitations of meta-metagenomic search tools in effective and rapid characterization of potentially significant nucleic acid sequences.IMPORTANCE Meta-metagenomic searches allow for high-speed, low-cost identification of potentially significant biological niches for sequences of interest.
Collapse
Affiliation(s)
- Lamia Wahba
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Nimit Jain
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Andrew Z Fire
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Massa J Shoura
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Karen L Artiles
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Matthew J McCoy
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Dae-Eun Jeong
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
26
|
Sadiq A, Bostan N, Bokhari H, Yinda KC, Matthijnssens J. Whole Genome Analysis of Selected Human Group A Rotavirus Strains Revealed Evolution of DS-1-Like Single- and Double-Gene Reassortant Rotavirus Strains in Pakistan During 2015-2016. Front Microbiol 2019; 10:2641. [PMID: 31798563 PMCID: PMC6868104 DOI: 10.3389/fmicb.2019.02641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 10/30/2019] [Indexed: 12/20/2022] Open
Abstract
Acute gastroenteritis due to group A rotaviruses (RVAs) is the leading cause of infant and childhood morbidity and mortality particularly in developing countries including Pakistan. In this study we have characterized the whole genomes of five RVA strains (PAK56, PAK419, PAK585, PAK622, and PAK663) using the Illumina HiSeq platform. The strains PAK56 and PAK622 exhibited a typical Wa-like genotype constellation (G9-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1 and G3-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1, respectively), whereas PAK419, PAK585, and PAK663 exhibited distinct DS-1-like genotype constellations (G3P[4]-I2-R2-C2-M2-A2-N2-T1-E2-H2, G1P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2, and G3P[4]-I2-R2-C2-M2-A2-N2-T2-E2-H2, respectively). Despite their DS-1-like genotype constellation, strain PAK585 possessed the typical Wa-like G1P[8] genotypes, whereas both PAK419 and PAK663 possessed the G3 genotype. In addition, PAK419 also possessed the Wa-like NSP3 genotype T1, suggesting that multiple reassortments have occurred. On Phylogenetic analysis, all of the gene segments of the five strains examined in this study were genetically related to globally circulating human G1, G2, G3, G6, G8, G9, and G12 strains. Interestingly, the NSP2 gene of strain PAK419 showed closest relationship with Indian bovine strain (India/HR/B91), suggesting the occurrence of reassortment between human and bovine RVA strains. Furthermore, strains PAK419, PAK585, and PAK663 were closely related to one another in most of their gene segments, indicating that these strains might have been derived from a common ancestor. To our knowledge this is the first whole genome-based molecular characterization of human rotavirus strains in Pakistan. The results of our study will enhance our existing knowledge on the diversity and evolutionary dynamics of novel RVA strains including DS-1-like intergenogroup reassortant strains spreading in Asian countries including Pakistan, in the pre-vaccine era. Therefore, continuous surveillance is recommended to monitor the evolution, spread and genetic stability of novel reassortant rotavirus strains derived from such events.
Collapse
Affiliation(s)
- Asma Sadiq
- Department of Biosciences, COMSATS University (CUI), Islamabad, Pakistan
| | - Nazish Bostan
- Department of Biosciences, COMSATS University (CUI), Islamabad, Pakistan
| | - Habib Bokhari
- Department of Biosciences, COMSATS University (CUI), Islamabad, Pakistan
| | - Kwe Claude Yinda
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, KU Leuven, Leuven, Belgium
| | - Jelle Matthijnssens
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, KU Leuven, Leuven, Belgium
| |
Collapse
|
27
|
Yinda CK, Esefeld J, Peter HU, Matthijnssens J, Zell R. Penguin megrivirus, a novel picornavirus from an Adélie penguin (Pygoscelis adeliae). Arch Virol 2019; 164:2887-2890. [PMID: 31494778 DOI: 10.1007/s00705-019-04404-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/13/2019] [Indexed: 01/25/2023]
Abstract
The complete genome sequence of a novel megrivirus of the family Picornaviridae was determined from nucleic acid extracted from a pool of six faecal specimens of Adélie penguins. The samples were collected near Bellingshausen Station, King George Island of the South Shetland Islands, Antarctica. Penguin megrivirus is the first megrivirus with a predicted L protein. It has an L-3-5-4 genome layout, a type IV IRES, and a long 3' untranslated region of 668 nt.
Collapse
Affiliation(s)
- C K Yinda
- Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - J Esefeld
- Polar- and Bird Ecology Group, Institute of Ecology and Evolution, Friedrich Schiller University, Jena, Germany
| | - H U Peter
- Polar- and Bird Ecology Group, Institute of Ecology and Evolution, Friedrich Schiller University, Jena, Germany
| | - J Matthijnssens
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - R Zell
- Section of Experimental Virology, Jena University Hospital, Friedrich Schiller University, Hans-Knöll-Str. 2, 07745, Jena, Germany.
| |
Collapse
|
28
|
Sadiq A, Bostan N, Bokhari H, Matthijnssens J, Yinda KC, Raza S, Nawaz T. Molecular characterization of human group A rotavirus genotypes circulating in Rawalpindi, Islamabad, Pakistan during 2015-2016. PLoS One 2019; 14:e0220387. [PMID: 31361761 PMCID: PMC6667158 DOI: 10.1371/journal.pone.0220387] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 07/15/2019] [Indexed: 01/17/2023] Open
Abstract
Group A rotaviruses (RVA) are one of the major causes of acute gastroenteritis (AGE) in young children worldwide. Owing to lack of proper surveillance programs and health facilities, developing countries of Asia and Africa carry a disproportionately heavy share of the RVA disease burden. The aim of this hospital-based study was to investigate the circulation of RVA genotypes in Rawalpindi and Islamabad, Pakistan in 2015 and 2016, prior to the implementation of RVA vaccine. 639 faecal samples collected from children under 10 years of age hospitalized with AGE were tested for RVA antigen by ELISA. Among 171 ELISA positive samples, 143 were successfully screened for RT-PCR and sequencing. The prevalence of RVA was found to be 26.8% with the highest frequency (34.9%) found among children of age group 6-11 months. The most predominant circulating genotypes were G3P[8] (22.4%) followed by G12P[6] (20.3%), G2P[4] (12.6%), G1P[8] (11.9%), G9P[6] (11.9%), G3P[4] (9.1%), G1P[6] (4.2%), G9P[8] (4.2%), and G3P[6] (0.7%). A single mixed genotype G1G3P[8] was also detected. The findings of this study provide baseline data, that will help to assess if future vaccination campaigns using currently available RVA vaccine will reduce RVA disease burden and instigate evolutionary changes in the overall RVA biology. The high prevalence of RVA infections in Pakistan require to improve and strengthen the surveillance and monitoring system for RVA. This will provide useful information for health authorities in planning public health care strategies to mitigate the disease burden caused by RVA.
Collapse
Affiliation(s)
- Asma Sadiq
- Department of Biosciences, COMSATS University (CUI), Tarlai Kalan, Chak Shahzad, Islamabad, Pakistan
| | - Nazish Bostan
- Department of Biosciences, COMSATS University (CUI), Tarlai Kalan, Chak Shahzad, Islamabad, Pakistan
| | - Habib Bokhari
- Department of Biosciences, COMSATS University (CUI), Tarlai Kalan, Chak Shahzad, Islamabad, Pakistan
| | - Jelle Matthijnssens
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Kwe Claude Yinda
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Saqlain Raza
- Department of Biosciences, COMSATS University (CUI), Tarlai Kalan, Chak Shahzad, Islamabad, Pakistan
| | - Tayyab Nawaz
- Department of Biosciences, COMSATS University (CUI), Tarlai Kalan, Chak Shahzad, Islamabad, Pakistan
| |
Collapse
|
29
|
Harvey E, Rose K, Eden JS, Lawrence A, Doggett SL, Holmes EC. Identification of diverse arthropod associated viruses in native Australian fleas. Virology 2019; 535:189-199. [PMID: 31319276 DOI: 10.1016/j.virol.2019.07.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/02/2019] [Accepted: 07/08/2019] [Indexed: 10/26/2022]
Abstract
Fleas are important vectors of zoonotic disease. However, little is known about the natural diversity and abundance of flea viruses, particularly in the absence of disease associations, nor the evolutionary relationships among those viruses found in different parasitic vector species. Herein, we present the first virome scale study of fleas, based on the meta-transcriptomic analysis of 52 fleas collected along the eastern coast of Australia. Our analysis revealed 18 novel RNA viruses belonging to nine viral families with diverse genome organizations, although the majority (72%) possessed single-stranded positive-sense genomes. Notably, a number of the viruses identified belonged to the same phylogenetic groups as those observed in ticks sampled at the same locations, although none were likely associated with mammalian infection. Overall, we identified high levels of genomic diversity and abundance of viruses in the flea species studied, and established that fleas harbor viruses similar to those seen to other vectors.
Collapse
Affiliation(s)
- Erin Harvey
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Karrie Rose
- Australian Registry of Wildlife Health, Taronga Conservation Society Australia, Mosman, NSW, 2088, Australia
| | - John-Sebastian Eden
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia; Centre for Virus Research, Westmead Institute for Medical Research, Westmead, NSW, 2145, Australia
| | - Andrea Lawrence
- Medical Entomology, NSW Health Pathology, ICPMR, Westmead Hospital, Westmead, NSW, 2145, Australia; Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, 2006, Australia; SpeeDx, Pty Ltd., Eveleigh, NSW, 2015, Australia
| | - Stephen L Doggett
- Department of Medical Entomology, NSWHP-ICPMR, Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
30
|
Mishra N, Fagbo SF, Alagaili AN, Nitido A, Williams SH, Ng J, Lee B, Durosinlorun A, Garcia JA, Jain K, Kapoor V, Epstein JH, Briese T, Memish ZA, Olival KJ, Lipkin WI. A viral metagenomic survey identifies known and novel mammalian viruses in bats from Saudi Arabia. PLoS One 2019; 14:e0214227. [PMID: 30969980 PMCID: PMC6457491 DOI: 10.1371/journal.pone.0214227] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/09/2019] [Indexed: 12/31/2022] Open
Abstract
Bats are implicated as natural reservoirs for a wide range of zoonotic viruses including SARS and MERS coronaviruses, Ebola, Marburg, Nipah, Hendra, Rabies and other lyssaviruses. Accordingly, many One Health surveillance and viral discovery programs have focused on bats. In this report we present viral metagenomic data from bats collected in the Kingdom of Saudi Arabia [KSA]. Unbiased high throughput sequencing of fecal samples from 72 bat individuals comprising four species; lesser mouse-tailed bat (Rhinopoma hardwickii), Egyptian tomb bat (Taphozous perforatus), straw-colored fruit bat (Eidolon helvum), and Egyptian fruit bat (Rousettus aegyptiacus) revealed molecular evidence of a diverse set of viral families: Picornaviridae (hepatovirus, teschovirus, parechovirus), Reoviridae (rotavirus), Polyomaviridae (polyomavirus), Papillomaviridae (papillomavirus), Astroviridae (astrovirus), Caliciviridae (sapovirus), Coronaviridae (coronavirus), Adenoviridae (adenovirus), Paramyxoviridae (paramyxovirus), and unassigned mononegavirales (chuvirus). Additionally, we discovered a bastro-like virus (Middle East Hepe-Astrovirus), with a genomic organization similar to Hepeviridae. However, since it shared homology with Hepeviridae and Astroviridae at ORF1 and in ORF2, respectively, the newly discovered Hepe-Astrovirus may represent a phylogenetic bridge between Hepeviridae and Astroviridae.
Collapse
Affiliation(s)
- Nischay Mishra
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
- * E-mail: (NM); (ZAM)
| | - Shamsudeen F. Fagbo
- One Health Unit, Executive Directorate for Surveillance and Response, National Center for Disease Prevention and Control, Riyadh, Saudi Arabia
| | - Abdulaziz N. Alagaili
- KSU Mammals Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Adam Nitido
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Simon H. Williams
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - James Ng
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Bohyun Lee
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | | | - Joel A. Garcia
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Komal Jain
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Vishal Kapoor
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | | | - Thomas Briese
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Ziad A. Memish
- The College of Medicine, Al faisal University & Prince Mohammed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, Kingdom of Saudi Arabia
- * E-mail: (NM); (ZAM)
| | - Kevin J. Olival
- EcoHealth Alliance, New York, New York, United States of America
| | - W. Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| |
Collapse
|
31
|
Diversity and Evolution of Viral Pathogen Community in Cave Nectar Bats ( Eonycteris spelaea). Viruses 2019; 11:v11030250. [PMID: 30871070 PMCID: PMC6466414 DOI: 10.3390/v11030250] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022] Open
Abstract
Bats are unique mammals, exhibit distinctive life history traits and have unique immunological approaches to suppression of viral diseases upon infection. High-throughput next-generation sequencing has been used in characterizing the virome of different bat species. The cave nectar bat, Eonycteris spelaea, has a broad geographical range across Southeast Asia, India and southern China, however, little is known about their involvement in virus transmission. Here we investigate the diversity and abundance of viral communities from a colony of Eonycteris spelaea residing in Singapore. Our results detected 47 and 22 different virus families from bat fecal and urine samples, respectively. Among these, we identify a large number of virus families including Adenoviridae, Flaviviridae, Reoviridae, Papillomaviridae, Paramyxoviridae, Parvoviridae, Picornaviridae, and Polyomaviridae. In most cases, viral sequences from Eonycteris spelaea are genetically related to a group of bat viruses from other bat genera (e.g., Eidolon, Miniopterus, Rhinolophus and Rousettus). The results of this study improve our knowledge of the host range, spread and evolution of several important viral pathogens. More significantly, our findings provide a baseline to study the temporal patterns of virus shedding and how they correlate with bat phenological trends.
Collapse
|
32
|
Yinda CK, Vanhulle E, Conceição-Neto N, Beller L, Deboutte W, Shi C, Ghogomu SM, Maes P, Van Ranst M, Matthijnssens J. Gut Virome Analysis of Cameroonians Reveals High Diversity of Enteric Viruses, Including Potential Interspecies Transmitted Viruses. mSphere 2019; 4:e00585-18. [PMID: 30674646 PMCID: PMC6344602 DOI: 10.1128/msphere.00585-18] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/17/2018] [Indexed: 12/11/2022] Open
Abstract
Diarrhea remains one of the most common causes of deaths in children. A limited number of studies have investigated the prevalence of enteric pathogens in Cameroon, and as in many other African countries, the cause of many diarrheal episodes remains unexplained. A proportion of these unknown cases of diarrhea are likely caused by yet-unidentified viral agents, some of which could be the result of (recent) interspecies transmission from animal reservoirs, like bats. Using viral metagenomics, we screened fecal samples of 221 humans (almost all with gastroenteritis symptoms) between 0 and 89 years of age with different degrees of bat contact. We identified viruses belonging to families that are known to cause gastroenteritis such as Adenoviridae, Astroviridae, Caliciviridae, Picornaviridae, and Reoviridae Interestingly, a mammalian orthoreovirus, picobirnaviruses, a smacovirus, and a pecovirus were also found. Although there was no evidence of interspecies transmission of the most common human gastroenteritis-related viruses (Astroviridae, Caliciviridae, and Reoviridae), the phylogenies of the identified orthoreovirus, picobirnavirus, and smacovirus indicate a genetic relatedness of these viruses identified in stools of humans and those of bats and/or other animals. These findings points out the possibility of interspecies transmission or simply a shared host of these viruses (bacterial, fungal, parasitic, …) present in both animals (bats) and humans. Further screening of bat viruses in humans or vice versa will elucidate the epidemiological potential threats of animal viruses to human health. Furthermore, this study showed a huge diversity of highly divergent novel phages, thereby expanding the existing phageome considerably.IMPORTANCE Despite the availability of diagnostic tools for different enteric viral pathogens, a large fraction of human cases of gastroenteritis remains unexplained. This could be due to pathogens not tested for or novel divergent viruses of potential animal origin. Fecal virome analyses of Cameroonians showed a very diverse group of viruses, some of which are genetically related to those identified in animals. This is the first attempt to describe the gut virome of humans from Cameroon. Therefore, the data represent a baseline for future studies on enteric viral pathogens in this area and contribute to our knowledge of the world's virome. The studies also highlight the fact that more viruses may be associated with diarrhea than the typical known ones. Hence, it provides meaningful epidemiological information on diarrhea-related viruses in this area.
Collapse
Affiliation(s)
- Claude Kwe Yinda
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, KU Leuven-University of Leuven, Leuven, Belgium
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory for Clinical and Epidemiological Virology, KU Leuven-University of Leuven, Leuven, Belgium
| | - Emiel Vanhulle
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, KU Leuven-University of Leuven, Leuven, Belgium
| | - Nádia Conceição-Neto
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, KU Leuven-University of Leuven, Leuven, Belgium
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory for Clinical and Epidemiological Virology, KU Leuven-University of Leuven, Leuven, Belgium
| | - Leen Beller
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, KU Leuven-University of Leuven, Leuven, Belgium
| | - Ward Deboutte
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, KU Leuven-University of Leuven, Leuven, Belgium
| | - Chenyan Shi
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, KU Leuven-University of Leuven, Leuven, Belgium
| | - Stephen Mbigha Ghogomu
- Department of Biochemistry and Molecular Biology, Biotechnology Unit, Molecular and Cell Biology Laboratory, University of Buea, Buea, Cameroon
| | - Piet Maes
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory for Clinical and Epidemiological Virology, KU Leuven-University of Leuven, Leuven, Belgium
| | - Marc Van Ranst
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory for Clinical and Epidemiological Virology, KU Leuven-University of Leuven, Leuven, Belgium
| | - Jelle Matthijnssens
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, KU Leuven-University of Leuven, Leuven, Belgium
| |
Collapse
|
33
|
Viruses in bats and potential spillover to animals and humans. Curr Opin Virol 2019; 34:79-89. [PMID: 30665189 PMCID: PMC7102861 DOI: 10.1016/j.coviro.2018.12.007] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 12/17/2022]
Abstract
Bats are a very important source of emerging viruses. Bat coronavirus, filovirus, paramyxovirus and reovirus are known zoonotic viruses. Many of the emergent bat viruses are highly lethal in livestock and humans. Past incidents and viral genetic features predict bat coronaviruses as the highest risk.
In the last two decades, several high impact zoonotic disease outbreaks have been linked to bat-borne viruses. These include SARS coronavirus, Hendra virus and Nipah virus. In addition, it has been suspected that ebolaviruses and MERS coronavirus are also linked to bats. It is being increasingly accepted that bats are potential reservoirs of a large number of known and unknown viruses, many of which could spillover into animal and human populations. However, our knowledge into basic bat biology and immunology is very limited and we have little understanding of major factors contributing to the risk of bat virus spillover events. Here we provide a brief review of the latest findings in bat viruses and their potential risk of cross-species transmission.
Collapse
|
34
|
Group A Rotavirus VP1 Polymerase and VP2 Core Shell Proteins: Intergenotypic Sequence Variation and In Vitro Functional Compatibility. J Virol 2019; 93:JVI.01642-18. [PMID: 30355692 DOI: 10.1128/jvi.01642-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/16/2018] [Indexed: 02/05/2023] Open
Abstract
Group A rotaviruses (RVAs) are classified according to a nucleotide sequence-based system that assigns a genotype to each of the 11 double-stranded RNA (dsRNA) genome segments. For the segment encoding the VP1 polymerase, 22 genotypes (R1 to R22) are defined with an 83% nucleotide identity cutoff value. For the segment encoding the VP2 core shell protein, which is a functional VP1-binding partner, 20 genotypes (C1 to C20) are defined with an 84% nucleotide identity cutoff value. However, the extent to which the VP1 and VP2 proteins encoded by these genotypes differ in their sequences or interactions has not been described. Here, we sought to (i) delineate the relationships and sites of variation for VP1 and VP2 proteins belonging to the known RVA genotypes and (ii) correlate intergenotypic sequence diversity with functional VP1-VP2 interaction(s) during dsRNA synthesis. Using bioinformatic approaches, we revealed which VP1 and VP2 genotypes encode divergent proteins and identified the positional locations of amino acid changes in the context of known structural domains/subdomains. We then employed an in vitro dsRNA synthesis assay to test whether genotype R1, R2, R4, and R7 VP1 polymerases could be enzymatically activated by genotype C1, C2, C4, C5, and C7 VP2 core shell proteins. Genotype combinations that were incompatible informed the rational design and in vitro testing of chimeric mutant VP1 and VP2 proteins. The results of this study connect VP1 and VP2 nucleotide-level diversity to protein-level diversity for the first time, and they provide new insights into regions/residues critical for VP1-VP2 interaction(s) during viral genome replication.IMPORTANCE Group A rotaviruses (RVAs) are widespread in nature, infecting numerous mammalian and avian hosts and causing severe gastroenteritis in human children. RVAs are classified using a system that assigns a genotype to each viral gene according to its nucleotide sequence. To date, 22 genotypes have been described for the gene encoding the viral polymerase (VP1), and 20 genotypes have been described for the gene encoding the core shell protein (VP2). Here, we analyzed if/how the VP1 and VP2 proteins encoded by the known RVA genotypes differ from each other in their sequences. We also used a biochemical approach to test whether the intergenotypic sequence differences influenced how VP1 and VP2 functionally engage each other to mediate RNA synthesis in a test tube. This work is important because it increases our understanding of RVA protein-level diversity and raises new ideas about the VP1-VP2 binding interface(s) that is important for viral replication.
Collapse
|
35
|
Sasaki M, Kajihara M, Changula K, Mori-Kajihara A, Ogawa H, Hang'ombe BM, Mweene AS, Simuunza M, Yoshida R, Carr M, Orba Y, Takada A, Sawa H. Identification of group A rotaviruses from Zambian fruit bats provides evidence for long-distance dispersal events in Africa. INFECTION GENETICS AND EVOLUTION 2018; 63:104-109. [PMID: 29792990 PMCID: PMC7173303 DOI: 10.1016/j.meegid.2018.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 11/28/2022]
Abstract
Group A rotavirus (RVA) is a major cause of diarrhea in children worldwide. Although RVA infects many animals, little is known about RVA in bats. The present study investigated the genetic diversity of RVA in Zambian bats. We identified RVA from two straw-colored fruit bats (Eidolon helvum) and an Egyptian fruit bat (Rousettus aegyptiacus), and analyzed the genome sequences of these strains. Genome segments of the RVA strains from Zambian E. helvum showed 97%–99% nucleotide sequence identity with those of other RVA strains from E. helvum in Cameroon, which is 2800 km from the sampling locations. These findings suggest that migratory straw-colored fruit bat species, distributed across sub-Saharan Africa, have the potential to disseminate RVA across long distances. By contrast, the RVA strain from Zambian R. aegyptiacus carried highly divergent NSP2 and NSP4 genes, leading us to propose novel genotypes N21 and E27, respectively. Notably, this RVA strain also shared the same genotype for VP6 and NSP3 with the RVA strains from Zambian E. helvum, suggesting interspecies transmission and genetic reassortment may have occurred between these two bat species in the past. Our study has important implications for RVA dispersal in bat populations, and expands our knowledge of the ecology, diversity and evolutionary relationships of RVA. Detection of group A rotavirus from Zambian fruit bats. Some viral genes were almost identical to those of rotavirus from Cameroonian bats. The findings provide evidence for long-distance dispersal events of rotavirus. First report of novel N21 and E27 genotypes.
Collapse
Affiliation(s)
- Michihito Sasaki
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan.
| | - Masahiro Kajihara
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Katendi Changula
- Department of Paraclinical Studies, School of Veterinary and Medicine, University of Zambia, PO Box 32379, Lusaka, Zambia
| | - Akina Mori-Kajihara
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Hirohito Ogawa
- Hokudai Center for Zoonosis Control in Zambia, School of Veterinary Medicine, University of Zambia, PO Box 32379, Lusaka, Zambia
| | - Bernard M Hang'ombe
- Department of Paraclinical Studies, School of Veterinary and Medicine, University of Zambia, PO Box 32379, Lusaka, Zambia; Africa Center of Excellence for Infectious Diseases of Humans and Animals, University of Zambia, PO Box 32379, Lusaka, Zambia
| | - Aaron S Mweene
- Department of Disease Control, School of Veterinary and Medicine, University of Zambia, PO Box 32379, Lusaka, Zambia; Africa Center of Excellence for Infectious Diseases of Humans and Animals, University of Zambia, PO Box 32379, Lusaka, Zambia; Global Virus Network, Baltimore, MD 21201, USA
| | - Martin Simuunza
- Department of Disease Control, School of Veterinary and Medicine, University of Zambia, PO Box 32379, Lusaka, Zambia
| | - Reiko Yoshida
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Michael Carr
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 001-0020, Japan; National Virus Reference Laboratory, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Yasuko Orba
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Ayato Takada
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 001-0020, Japan
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; Global Virus Network, Baltimore, MD 21201, USA; Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 001-0020, Japan.
| |
Collapse
|
36
|
Yinda CK, Ghogomu SM, Conceição-Neto N, Beller L, Deboutte W, Vanhulle E, Maes P, Van Ranst M, Matthijnssens J. Cameroonian fruit bats harbor divergent viruses, including rotavirus H, bastroviruses, and picobirnaviruses using an alternative genetic code. Virus Evol 2018; 4:vey008. [PMID: 29644096 PMCID: PMC5888411 DOI: 10.1093/ve/vey008] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Most human emerging infectious diseases originate from wildlife and bats are a major reservoir of viruses, a few of which have been highly pathogenic to humans. In some regions of Cameroon, bats are hunted and eaten as a delicacy. This close proximity between human and bats provides ample opportunity for zoonotic events. To elucidate the viral diversity of Cameroonian fruit bats, we collected and metagenomically screened eighty-seven fecal samples of Eidolon helvum and Epomophorus gambianus fruit bats. The results showed a plethora of known and novel viruses. Phylogenetic analyses of the eleven gene segments of the first complete bat rotavirus H genome, showed clearly separated clusters of human, porcine, and bat rotavirus H strains, not indicating any recent interspecies transmission events. Additionally, we identified and analyzed a bat bastrovirus genome (a novel group of recently described viruses, related to astroviruses and hepatitis E viruses), confirming their recombinant nature, and provide further evidence of additional recombination events among bat bastroviruses. Interestingly, picobirnavirus-like RNA-dependent RNA polymerase gene segments were identified using an alternative mitochondrial genetic code, and further principal component analyses suggested that they may have a similar lifestyle to mitoviruses, a group of virus-like elements known to infect the mitochondria of fungi. Although identified bat coronavirus, parvovirus, and cyclovirus strains belong to established genera, most of the identified partitiviruses and densoviruses constitute putative novel genera in their respective families. Finally, the results of the phage community analyses of these bats indicate a very diverse geographically distinct bat phage population, probably reflecting different diets and gut bacterial ecosystems.
Collapse
Affiliation(s)
- Claude Kwe Yinda
- Laboratory of Viral Metagenomics
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute, KU Leuven – University of Leuven, B-3000 Leuven, Belgium
| | - Stephen Mbigha Ghogomu
- Molecular and Cell Biology Laboratory, Biotechnology Unit, Department of Biochemistry and Molecular Biology, University of Buea, Buea, 237, Cameroon
| | - Nádia Conceição-Neto
- Laboratory of Viral Metagenomics
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute, KU Leuven – University of Leuven, B-3000 Leuven, Belgium
| | | | | | | | - Piet Maes
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute, KU Leuven – University of Leuven, B-3000 Leuven, Belgium
| | - Marc Van Ranst
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute, KU Leuven – University of Leuven, B-3000 Leuven, Belgium
| | | |
Collapse
|
37
|
Molecular characterization of a human G20P[28] rotavirus a strain with multiple genes related to bat rotaviruses. INFECTION GENETICS AND EVOLUTION 2017; 57:166-170. [PMID: 29187315 DOI: 10.1016/j.meegid.2017.11.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/20/2017] [Accepted: 11/25/2017] [Indexed: 12/14/2022]
Abstract
Group A rotaviruses are the major cause of severe gastroenteritis in the young of mammals and birds. This report describes characterization of an unusual G20P[28] rotavirus strain detected in a 24month old child from Suriname. Genomic sequence analyses revealed that the genotype constellation of the Suriname strain RVA/Human-wt/SUR/2014735512/2013/G20P[28] was G20-P[28]-I13-R13-C13-M12-A23-N13-T15-E20-H15. Genes VP1, VP2, VP3, NSP1, NSP2, NSP3, NSP4 and NSP5 were recently assigned novel genotypes by the Rotavirus Classification Working Group (RCWG). Three of the 11 gene segments (VP7, VP4, VP6) were similar to cognate gene sequences of bat-like human rotavirus strain Ecu534 from Ecuador and the VP7, NSP3 and NSP5 gene segments of strain RVA/Human-wt/SUR/2014735512/2013/G20P[28] were found to be closely related to gene sequences of bat rotavirus strain 3081/BRA detected in Brazil. Although distantly related, the VP1 gene of the study strain and bat strain BatLi09 detected in Cameroon in 2014 are monophyletic. The NSP1 gene was found to be most closely related to human strain QUI-35-F5 from Brazil. These findings suggest that strain RVA/Human-wt/SUR/2014735512/2013/G20P[28] represents a zoonotic infection from a bat host.
Collapse
|
38
|
Krishnamurthy SR, Wang D. Origins and challenges of viral dark matter. Virus Res 2017; 239:136-142. [DOI: 10.1016/j.virusres.2017.02.002] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/31/2017] [Accepted: 02/06/2017] [Indexed: 02/07/2023]
|
39
|
Shanker S, Hu L, Ramani S, Atmar RL, Estes MK, Venkataram Prasad BV. Structural features of glycan recognition among viral pathogens. Curr Opin Struct Biol 2017; 44:211-218. [PMID: 28591681 DOI: 10.1016/j.sbi.2017.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 10/19/2022]
Abstract
Recognition and binding to host glycans present on cellular surfaces is an initial and critical step in viral entry. Diverse families of host glycans such as histo-blood group antigens, sialoglycans and glycosaminoglycans are recognized by viruses. Glycan binding determines virus-host specificity, tissue tropism, pathogenesis and potential for interspecies transmission. Viruses including noroviruses, rotaviruses, enteroviruses, influenza, and papillomaviruses have evolved novel strategies to bind specific glycans often in a strain-specific manner. Structural studies have been instrumental in elucidating the molecular determinants of these virus-glycan interactions, aiding in developing vaccines and antivirals targeting this key interaction. Our review focuses on these key structural aspects of virus-glycan interactions, particularly highlighting the different strain-specific strategies employed by viruses to bind host glycans.
Collapse
Affiliation(s)
- Sreejesh Shanker
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology.
| | - Liya Hu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology
| | | | - Robert L Atmar
- Department of Molecular Virology and Microbiology; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, United States
| | - Mary K Estes
- Department of Molecular Virology and Microbiology; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, United States
| | | |
Collapse
|
40
|
Group A Rotaviruses in Chinese Bats: Genetic Composition, Serology, and Evidence for Bat-to-Human Transmission and Reassortment. J Virol 2017; 91:JVI.02493-16. [PMID: 28381569 DOI: 10.1128/jvi.02493-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 03/08/2017] [Indexed: 01/24/2023] Open
Abstract
Bats are natural reservoirs for many pathogenic viruses, and increasing evidence supports the notion that bats can also harbor group A rotaviruses (RVAs), important causative agents of diarrhea in children and young animals. Currently, 8 RVA strains possessing completely novel genotype constellations or genotypes possibly originating from other mammals have been identified from African and Chinese bats. However, all the data were mainly based on detection of RVA RNA, present only during acute infections, which does not permit assessment of the true exposure of a bat population to RVA. To systematically investigate the genetic diversity of RVAs, 547 bat anal swabs or gut samples along with 448 bat sera were collected from five South Chinese provinces. Specific reverse transcription-PCR (RT-PCR) screening found four RVA strains. Strain GLRL1 possessed a completely novel genotype constellation, whereas the other three possessed a constellation consistent with the MSLH14-like genotype, a newly characterized group of viruses widely prevalent in Chinese insectivorous bats. Among the latter, strain LZHP2 provided strong evidence of cross-species transmission of RVAs from bats to humans, whereas strains YSSK5 and BSTM70 were likely reassortants between typical MSLH14-like RVAs and human RVAs. RVA-specific antibodies were detected in 10.7% (48/448) of bat sera by an indirect immunofluorescence assay (IIFA). Bats in Guangxi and Yunnan had a higher RVA-specific antibody prevalence than those from Fujian and Zhejiang provinces. These observations provide evidence for cross-species transmission of MSLH14-like bat RVAs to humans, highlighting the impact of bats as reservoirs of RVAs on public health.IMPORTANCE Bat viruses, such as severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), Ebola, Hendra, and Nipah viruses, are important pathogens causing outbreaks of severe emerging infectious diseases. However, little is known about bat viruses capable of causing gastroenteritis in humans, even though 8 group A viruses (RVAs) have been identified from bats so far. In this study, another 4 RVA strains were identified, with one providing strong evidence for zoonotic transmission from bats to humans. Serological investigation has also indicated that RVA infection in bats is far more prevalent than expected based on the detection of viral RNA.
Collapse
|
41
|
Molecular detection of viruses in Kenyan bats and discovery of novel astroviruses, caliciviruses and rotaviruses. Virol Sin 2017; 32:101-114. [PMID: 28393313 PMCID: PMC6702250 DOI: 10.1007/s12250-016-3930-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/15/2017] [Indexed: 12/12/2022] Open
Abstract
This is the first country-wide surveillance of bat-borne viruses in Kenya spanning
from 2012–2015 covering sites perceived to have medium to high level bat-human
interaction. The objective of this surveillance study was to apply a non-invasive
approach using fresh feces to detect viruses circulating within the diverse species
of Kenyan bats. We screened for both DNA and RNA viruses; specifically, astroviruses
(AstVs), adenoviruses (ADVs), caliciviruses (CalVs), coronaviruses (CoVs),
flaviviruses, filoviruses, paramyxoviruses (PMVs), polyomaviruses (PYVs) and
rotaviruses. We used family-specific primers, amplicon sequencing and further
characterization by phylogenetic analysis. Except for filoviruses, eight virus
families were detected with varying distributions and positive rates across the five
regions (former provinces) studied. AstVs (12.83%), CoVs (3.97%), PMV (2.4%), ADV
(2.26%), PYV (1.65%), CalVs (0.29%), rotavirus (0.19%) and flavivirus (0.19%). Novel
CalVs were detected in Rousettus aegyptiacus and
Mops condylurus while novel
Rotavirus-A-related viruses were detected in Taphozous bats and R.
aegyptiacus. The two Rotavirus A (RVA)
strains detected were highly related to human strains with VP6 genotypes I2 and I16.
Genotype I16 has previously been assigned to human RVA-strain B10 from Kenya only,
which raises public health concern, particularly considering increased human-bat
interaction. Additionally, 229E-like bat CoVs were detected in samples originating
from Hipposideros bats roosting in sites with
high human activity. Our findings confirm the presence of diverse viruses in Kenyan
bats while providing extended knowledge on bat virus distribution. The detection of
viruses highly related to human strains and hence of public health concern,
underscores the importance of continuous surveillance.
Collapse
|
42
|
Yinda CK, Zell R, Deboutte W, Zeller M, Conceição-Neto N, Heylen E, Maes P, Knowles NJ, Ghogomu SM, Van Ranst M, Matthijnssens J. Highly diverse population of Picornaviridae and other members of the Picornavirales, in Cameroonian fruit bats. BMC Genomics 2017; 18:249. [PMID: 28335731 PMCID: PMC5364608 DOI: 10.1186/s12864-017-3632-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 03/16/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The order Picornavirales represents a diverse group of positive-stranded RNA viruses with small non-enveloped icosahedral virions. Recently, bats have been identified as an important reservoir of several highly pathogenic human viruses. Since many members of the Picornaviridae family cause a wide range of diseases in humans and animals, this study aimed to characterize members of the order Picornavirales in fruit bat populations located in the Southwest region of Cameroon. These bat populations are frequently in close contact with humans due to hunting, selling and eating practices, which provides ample opportunity for interspecies transmissions. RESULTS Fecal samples from 87 fruit bats (Eidolon helvum and Epomophorus gambianus), were combined into 25 pools and analyzed using viral metagenomics. In total, Picornavirales reads were found in 19 pools, and (near) complete genomes of 11 picorna-like viruses were obtained from 7 of these pools. The picorna-like viruses possessed varied genomic organizations (monocistronic or dicistronic), and arrangements of gene cassettes. Some of the viruses belonged to established families, including the Picornaviridae, whereas others clustered distantly from known viruses and most likely represent novel genera and families. Phylogenetic and nucleotide composition analyses suggested that mammals were the likely host species of bat sapelovirus, bat kunsagivirus and bat crohivirus, whereas the remaining viruses (named bat iflavirus, bat posalivirus, bat fisalivirus, bat cripavirus, bat felisavirus, bat dicibavirus and bat badiciviruses 1 and 2) were most likely diet-derived. CONCLUSION The existence of a vast genetic variability of picorna-like viruses in fruit bats may increase the probability of spillover infections to humans especially when humans and bats have direct contact as the case in this study site. However, further screening for these viruses in humans will fully indicate their zoonotic potential.
Collapse
Affiliation(s)
- Claude Kwe Yinda
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, KU Leuven - University of Leuven, Leuven, Belgium
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory for Clinical and Epidemiological Virology, KU Leuven - University of Leuven, Leuven, Belgium
| | - Roland Zell
- Department of Virology and Antiviral Therapy, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Ward Deboutte
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, KU Leuven - University of Leuven, Leuven, Belgium
| | - Mark Zeller
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, KU Leuven - University of Leuven, Leuven, Belgium
| | - Nádia Conceição-Neto
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, KU Leuven - University of Leuven, Leuven, Belgium
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory for Clinical and Epidemiological Virology, KU Leuven - University of Leuven, Leuven, Belgium
| | - Elisabeth Heylen
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, KU Leuven - University of Leuven, Leuven, Belgium
| | - Piet Maes
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory for Clinical and Epidemiological Virology, KU Leuven - University of Leuven, Leuven, Belgium
| | - Nick J. Knowles
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF UK
| | - Stephen Mbigha Ghogomu
- Department of Biochemistry and Molecular Biology, Biotechnology Unit, Molecular and cell biology laboratory, University of Buea, Buea, Cameroon
| | - Marc Van Ranst
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory for Clinical and Epidemiological Virology, KU Leuven - University of Leuven, Leuven, Belgium
| | - Jelle Matthijnssens
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
43
|
Johnson RI, Smith IL. Virus discovery in bats. MICROBIOLOGY AUSTRALIA 2017. [DOI: 10.1071/ma17008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Comprising approximately 20% of known mammalian species, bats are abundant throughout the world1. In recent years, bats have been shown to be the reservoir host for many highly pathogenic viruses, leading to increased attempts to identify other zoonotic bat-borne viruses. These efforts have led to the discovery of over 200 viruses in bats and many more viral nucleic acid sequences from 27 different viral families2,3 (Table 1). Over half of the world’s recently emerged infectious diseases originated in wildlife15, with the genetic diversity of viruses greater in bats than in any other animal16. As humans continue to encroach on the habitat of bats, the risk of spillover of potentially zoonotic viruses is also continuing to increase. Therefore, the surveillance of bats and discovery of novel pathogens is necessary to prepare for these spillover events17.
Collapse
|