1
|
Parhizkar S, Holtzman DM. The night's watch: Exploring how sleep protects against neurodegeneration. Neuron 2025; 113:817-837. [PMID: 40054454 PMCID: PMC11925672 DOI: 10.1016/j.neuron.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/15/2024] [Accepted: 02/04/2025] [Indexed: 03/21/2025]
Abstract
Sleep loss is often regarded as an early manifestation of neurodegenerative diseases given its common occurrence and link to cognitive dysfunction. However, the precise mechanisms by which sleep disturbances contribute to neurodegeneration are not fully understood, nor is it clear why some individuals are more susceptible to these effects than others. This review addresses critical unanswered questions in the field, including whether sleep disturbances precede or result from neurodegenerative diseases, the functional significance of sleep changes during the preclinical disease phase, and the potential role of sleep homeostasis as an adaptive mechanism enhancing resilience against cognitive decline and neurodegeneration.
Collapse
Affiliation(s)
- Samira Parhizkar
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer Disease Research Center, Washington University, St. Louis, MO 63110, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer Disease Research Center, Washington University, St. Louis, MO 63110, USA.
| |
Collapse
|
2
|
Ungvari Z, Fekete M, Varga P, Fekete JT, Lehoczki A, Buda A, Szappanos Á, Purebl G, Ungvari A, Győrffy B. Imbalanced sleep increases mortality risk by 14-34%: a meta-analysis. GeroScience 2025:10.1007/s11357-025-01592-y. [PMID: 40072785 DOI: 10.1007/s11357-025-01592-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Sleep duration is a crucial factor influencing health outcomes, yet its relationship with mortality remains debated. In this meta-analysis, we aimed to investigate the association between short and long sleep duration and all-cause mortality in adults, including sex-specific differences. A systematic search was performed in multiple databases, including PubMed, Cochrane Central, and Web of Science, up to October 2024. Retrospective and prospective cohort studies involving adults with at least 1 year of follow-up and data on sleep duration and all-cause mortality were included. Hazard ratios were pooled using a random-effects model, with subgroup analyses performed based on sex and sleep duration categories. A total of 79 cohort studies were included, with data stratified by sex and categorized into short and long sleep durations. Short sleep duration (< 7 h per night) was associated with a 14% increase in mortality risk compared to the reference of 7-8 h, with a pooled hazard ratio of 1.14 (95% CI 1.10 to 1.18). Conversely, long sleep duration (≥ 9 h per night) was associated with a 34% higher risk of mortality, with a hazard ratio of 1.34 (95% CI 1.26 to 1.42). Sex-specific analyses indicated that both short and long sleep durations significantly elevated mortality risk in men and women, although the effect was more pronounced for long sleep duration in women. Both short and long sleep durations are associated with increased all-cause mortality, though the degree of risk varies by sex. These findings underscore the importance of considering optimal sleep duration in public health strategies aimed at enhancing longevity and highlight the need for sex-specific approaches in sleep health research.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College, Health Sciences Program/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Mónika Fekete
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Péter Varga
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
| | - János Tibor Fekete
- Department of Bioinformatics, Semmelweis University, 1094, Budapest, Hungary
- Cancer Biomarker Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Andrea Lehoczki
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
| | - Annamaria Buda
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
| | - Ágnes Szappanos
- Department of Vascular and Endovascular Surgery, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Department of Rheumatology and Clinical Immunology, Semmelweis University, Budapest, Hungary
| | - György Purebl
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Anna Ungvari
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary.
| | - Balázs Győrffy
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
- Department of Bioinformatics, Semmelweis University, 1094, Budapest, Hungary
- Department of Biophysics, Medical School, University of Pecs, 7624, Pecs, Hungary
| |
Collapse
|
3
|
Peng L, Xiang S, Wang T, Yang M, Duan Y, Ma X, Li S, Yu C, Zhang X, Hu H, Liu Z, Sun J, Sun C, Wang C, Liu B, Wang Z, Qian M. The hepatic clock synergizes with HIF-1α to regulate nucleotide availability during liver damage repair. Nat Metab 2025; 7:148-165. [PMID: 39775529 DOI: 10.1038/s42255-024-01184-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 11/18/2024] [Indexed: 01/11/2025]
Abstract
Nucleotide availability is crucial for DNA replication and repair; however, the coordinating mechanisms in vivo remain unclear. Here, we show that the circadian clock in the liver controls the activity of the pentose phosphate pathway (PPP) to support de novo nucleotide biosynthesis for DNA synthesis demands. We demonstrate that disrupting the hepatic clock by genetic manipulation or mistimed feeding impairs PPP activity in male mice, leading to nucleotide imbalance. Such defects not only elicit DNA replication stress to limit liver regeneration after resection but also allow genotoxin-induced hepatocyte senescence and STING signalling-dependent inflammation. Mechanistically, the molecular clock activator BMAL1 synergizes with hypoxia-inducible factor-1α (HIF-1α) to regulate the transcription of the PPP rate-limiting enzyme glucose-6-phosphate dehydrogenase (G6PD), which is enhanced during liver regeneration. Overexpressing G6PD restores the compromised regenerative capacity of the BMAL1- or HIF-1α-deficient liver. Moreover, boosting G6PD expression genetically or through preoperative intermittent fasting potently facilitates liver repair in normal mice. Hence, our findings highlight the physiological importance of the hepatic clock and suggest a promising pro-regenerative strategy.
Collapse
Affiliation(s)
- Linyuan Peng
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Siliang Xiang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Center for Anti-aging and Regenerative Medicine, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Tianzhi Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Mei Yang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yajun Duan
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xiaoyu Ma
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Su Li
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Cong Yu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Center for Anti-aging and Regenerative Medicine, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Xin Zhang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Haiyang Hu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Zuojun Liu
- School of Life Sciences, Hainan University, Haikou, China
| | - Jie Sun
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Center for Anti-aging and Regenerative Medicine, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Chunmeng Sun
- State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chen Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Baohua Liu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Center for Anti-aging and Regenerative Medicine, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, China.
| | - Zhongyuan Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| | - Minxian Qian
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
4
|
Hill AJ, Robinson B, Jones JG, Sternberg PW, Van Buskirk C. Sleep drive is coupled to tissue damage via shedding of Caenorhabditis elegans EGFR ligand SISS-1. Nat Commun 2024; 15:10886. [PMID: 39738055 DOI: 10.1038/s41467-024-55252-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/04/2024] [Indexed: 01/01/2025] Open
Abstract
The benefits of sleep extend beyond the nervous system. Peripheral tissues impact sleep regulation, and increased sleep is observed in response to damaging conditions, even those that selectively affect non-neuronal cells. However, the 'sleep need' signal released by stressed tissues is not known. Sleep in the nematode C. elegans is independent of circadian cues and can be triggered rapidly by damaging conditions. This stress-induced sleep is mediated by neurons that require the Epidermal Growth Factor Receptor (EGFR) for their sleep-promoting function, but the only known C. elegans EGFR ligand, LIN-3, is not required for sleep. Here we describe SISS-1 (stress-induced sleepless), an EGF family ligand that is required for stress-induced sleep. We show that SISS-1 overexpression induces sleep in an EGFR-dependent, sleep neuron-dependent manner. We find that SISS-1 undergoes stress-responsive shedding by the ADM-4/ADAM17 metalloprotease, and that the ADM-4 site of action depends on the tissue specificity of the stressor. Our findings support a model in which SISS-1 is released from damaged tissues to activate EGFR in sleep neurons, identifying a molecular link between cellular stress and organismal sleep drive. Our data also point to a mechanism insulating this sleep signal from EGFR-mediated signaling during development.
Collapse
Affiliation(s)
- Andrew J Hill
- Department of Biology, California State University Northridge, Northridge, CA, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Bryan Robinson
- Department of Biology, California State University Northridge, Northridge, CA, USA
| | - Jesse G Jones
- Department of Biology, California State University Northridge, Northridge, CA, USA
| | - Paul W Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Cheryl Van Buskirk
- Department of Biology, California State University Northridge, Northridge, CA, USA.
| |
Collapse
|
5
|
Dziewa M, Złotek M, Herbet M, Piątkowska-Chmiel I. Molecular and Cellular Foundations of Aging of the Brain: Anti-aging Strategies in Alzheimer's Disease. Cell Mol Neurobiol 2024; 44:80. [PMID: 39607636 PMCID: PMC11604688 DOI: 10.1007/s10571-024-01514-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
Alzheimer's disease (AD) is a condition characterized by the gradual degeneration of the nervous system that poses significant challenges to cognitive function and overall mental health. Given the increasing global life expectancy, there is an urgent need for effective strategies to prevent and manage Alzheimer's disease, with a particular focus on anti-aging interventions. Recent scientific advancements have unveiled several promising strategies for combating Alzheimer's disease (AD), ranging from lifestyle interventions to cutting-edge pharmacological treatments and therapies targeting the underlying biological processes of aging and AD. Regular physical exercise, cognitive engagement, a balanced diet, and social interaction serve as key pillars in maintaining brain health. At the same time, therapies target key pathological mechanisms of AD, such as amyloid-beta accumulation, tau abnormalities, neuroinflammation, mitochondrial dysfunction, and synaptic loss, offering potential breakthroughs in treatment. Moreover, cutting-edge innovations such as gene therapy, stem cell transplantation, and novel drug delivery systems are emerging as potential game-changers in the fight against AD. This review critically evaluates the latest research on anti-aging interventions and their potential in preventing and treating Alzheimer's disease (AD) by exploring the connections between aging mechanisms and AD pathogenesis. It provides a comprehensive analysis of both well-established and emerging strategies, while also identifying key gaps in current knowledge to guide future research efforts.
Collapse
Affiliation(s)
- Magdalena Dziewa
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090, Lublin, Poland
| | - Magdalena Złotek
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090, Lublin, Poland
| | - Mariola Herbet
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090, Lublin, Poland
| | - Iwona Piątkowska-Chmiel
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090, Lublin, Poland.
| |
Collapse
|
6
|
Lloyd E, Xia F, Moore K, Zertuche C, Rastogi A, Kozol R, Kenzior O, Warren W, Appelbaum L, Moran RL, Zhao C, Duboue E, Rohner N, Keene AC. Elevated DNA Damage without signs of aging in the short-sleeping Mexican Cavefish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590174. [PMID: 38659770 PMCID: PMC11042282 DOI: 10.1101/2024.04.18.590174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Dysregulation of sleep has widespread health consequences and represents an enormous health burden. Short-sleeping individuals are predisposed to the effects of neurodegeneration, suggesting a critical role for sleep in the maintenance of neuronal health. While the effects of sleep on cellular function are not completely understood, growing evidence has identified an association between sleep loss and DNA damage, raising the possibility that sleep facilitates efficient DNA repair. The Mexican tetra fish, Astyanax mexicanus provides a model to investigate the evolutionary basis for changes in sleep and the consequences of sleep loss. Multiple cave-adapted populations of these fish have evolved to sleep for substantially less time compared to surface populations of the same species without identifiable impacts on healthspan or longevity. To investigate whether the evolved sleep loss is associated with DNA damage and cellular stress, we compared the DNA Damage Response (DDR) and oxidative stress levels between A. mexicanus populations. We measured markers of chronic sleep loss and discovered elevated levels of the DNA damage marker γH2AX in the brain, and increased oxidative stress in the gut of cavefish, consistent with chronic sleep deprivation. Notably, we found that acute UV-induced DNA damage elicited an increase in sleep in surface fish but not in cavefish. On a transcriptional level, only the surface fish activated the photoreactivation repair pathway following UV damage. These findings suggest a reduction of the DDR in cavefish compared to surface fish that coincides with elevated DNA damage in cavefish. To examine DDR pathways at a cellular level, we created an embryonic fibroblast cell line from the two populations of A. mexicanus. We observed that both the DDR and DNA repair were diminished in the cavefish cells, corroborating the in vivo findings and suggesting that the acute response to DNA damage is lost in cavefish. To investigate the long-term impact of these changes, we compared the transcriptome in the brain and gut of aged surface fish and cavefish. Strikingly, many genes that are differentially expressed between young and old surface fish do not transcriptionally vary by age in cavefish. Taken together, these findings suggest that cavefish have developed resilience to sleep loss, despite possessing cellular hallmarks of chronic sleep deprivation.
Collapse
Affiliation(s)
- Evan Lloyd
- Department of Biology, Texas A&M University, College Station, TX 77840
| | - Fanning Xia
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | - Kinsley Moore
- Department of Biology, Texas A&M University, College Station, TX 77840
| | - Carolina Zertuche
- Department of Biology, Texas A&M University, College Station, TX 77840
| | - Aakriti Rastogi
- Department of Biology, Texas A&M University, College Station, TX 77840
| | - Rob Kozol
- Harriet Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458
| | - Olga Kenzior
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | - Wesley Warren
- Department of Genomics, University of Missouri, Columbia, MO 65211
| | - Lior Appelbaum
- Faculty of Life Science and the Multidisciplinary Brain Research Center, Bar Illan University, Ramat Gan, Israel
| | - Rachel L Moran
- Department of Biology, Texas A&M University, College Station, TX 77840
| | - Chongbei Zhao
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | - Erik Duboue
- Harriet Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | - Alex C Keene
- Department of Biology, Texas A&M University, College Station, TX 77840
| |
Collapse
|
7
|
Feltes BC, Alvares LDO. PARP1 in the intersection of different DNA repair pathways, memory formation, and sleep pressure in neurons. J Neurochem 2024; 168:2351-2362. [PMID: 38750651 DOI: 10.1111/jnc.16131] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/10/2024] [Accepted: 05/04/2024] [Indexed: 10/04/2024]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP1) is a bottleneck that connects different DNA pathways during a DNA damage response. Interestingly, PARP1 has a dualist role in neurons, acting as a neuroprotector and inducer of cell death in distinct neurological diseases. Recent studies significantly expanded our knowledge of how PARP1 regulates repair pathways in neurons and uncovered new roles for PARP1 in promoting sleep to enhance DNA repair. Likewise, PARP1 is deeply associated with memory consolidation, implying that it has multiple layers of regulation in the neural tissue. In this review, we critically discuss PARP1 recent advances in neurons, focusing on its interplay with different DNA repair mechanisms, memory, and sleep. Provocative questions about how oxidative damage is accessed, and different hypotheses about the molecular mechanisms influenced by PARP1 in neurons are presented to expand the debate of future studies.
Collapse
Affiliation(s)
- Bruno César Feltes
- Department of Biophysics, Institute of BiosciencesFederal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Lucas de Oliveira Alvares
- Department of Biophysics, Institute of BiosciencesFederal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
8
|
Roberts A, Swerdlow RH, Wang N. Adaptive and Maladaptive DNA Breaks in Neuronal Physiology and Alzheimer's Disease. Int J Mol Sci 2024; 25:7774. [PMID: 39063016 PMCID: PMC11277458 DOI: 10.3390/ijms25147774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
DNA strand breaks excessively accumulate in the brains of patients with Alzheimer's disease (AD). While traditionally considered random, deleterious events, neuron activity itself induces DNA breaks, and these "adaptive" breaks help mediate synaptic plasticity and memory formation. Recent studies mapping the brain DNA break landscape reveal that despite a net increase in DNA breaks in ectopic genomic hotspots, adaptive DNA breaks around synaptic genes are lost in AD brains, and this is associated with transcriptomic dysregulation. Additionally, relationships exist between mitochondrial dysfunction, a hallmark of AD, and DNA damage, such that mitochondrial dysfunction may perturb adaptive DNA break formation, while DNA breaks may conversely impair mitochondrial function. A failure of DNA break physiology could, therefore, potentially contribute to AD pathogenesis.
Collapse
Affiliation(s)
- Anysja Roberts
- University of Kansas Alzheimer’s Disease Research Center, Kansas City, KS 66205, USA (R.H.S.)
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Russell H. Swerdlow
- University of Kansas Alzheimer’s Disease Research Center, Kansas City, KS 66205, USA (R.H.S.)
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City 66160, KS, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Ning Wang
- University of Kansas Alzheimer’s Disease Research Center, Kansas City, KS 66205, USA (R.H.S.)
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
9
|
Sharon O, Ben Simon E, Shah VD, Desel T, Walker MP. The new science of sleep: From cells to large-scale societies. PLoS Biol 2024; 22:e3002684. [PMID: 38976664 PMCID: PMC11230563 DOI: 10.1371/journal.pbio.3002684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
In the past 20 years, more remarkable revelations about sleep and its varied functions have arguably been made than in the previous 200. Building on this swell of recent findings, this essay provides a broad sampling of selected research highlights across genetic, molecular, cellular, and physiological systems within the body, networks within the brain, and large-scale social dynamics. Based on this raft of exciting new discoveries, we have come to realize that sleep, in this moment of its evolution, is very much polyfunctional (rather than monofunctional), yet polyfunctional for reasons we had never previously considered. Moreover, these new polyfunctional insights powerfully reaffirm sleep as a critical biological, and thus health-sustaining, requisite. Indeed, perhaps the only thing more impressive than the unanticipated nature of these newly emerging sleep functions is their striking divergence, from operations of molecular mechanisms inside cells to entire group societal dynamics.
Collapse
Affiliation(s)
- Omer Sharon
- Department of Psychology, University of California, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | - Eti Ben Simon
- Department of Psychology, University of California, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | - Vyoma D. Shah
- Department of Psychology, University of California, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | - Tenzin Desel
- Department of Psychology, University of California, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | - Matthew P. Walker
- Department of Psychology, University of California, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| |
Collapse
|
10
|
Coulson RL, Mourrain P, Wang GX. The intersection of sleep and synaptic translation in synaptic plasticity deficits in neurodevelopmental disorders. J Comp Physiol B 2024; 194:253-263. [PMID: 38396062 PMCID: PMC11233386 DOI: 10.1007/s00360-023-01531-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/29/2023] [Accepted: 12/19/2023] [Indexed: 02/25/2024]
Abstract
Individuals with neurodevelopmental disorders experience persistent sleep deficits, and there is increasing evidence that sleep dysregulation is an underlying cause, rather than merely an effect, of the synaptic and behavioral defects observed in these disorders. At the molecular level, dysregulation of the synaptic proteome is a common feature of neurodevelopmental disorders, though the mechanism connecting these molecular and behavioral phenotypes is an ongoing area of investigation. A role for eIF2α in shifting the local proteome in response to changes in the conditions at the synapse has emerged. Here, we discuss recent progress in characterizing the intersection of local synaptic translation and sleep and propose a reciprocal mechanism of dysregulation in the development of synaptic plasticity defects in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Rochelle L Coulson
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Philippe Mourrain
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- INSERM 1024, Ecole Normale Supérieure, Paris, France
| | - Gordon X Wang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
11
|
Smalheiser NR. Mobile circular DNAs regulating memory and communication in CNS neurons. Front Mol Neurosci 2023; 16:1304667. [PMID: 38125007 PMCID: PMC10730651 DOI: 10.3389/fnmol.2023.1304667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
Stimuli that stimulate neurons elicit transcription of immediate-early genes, a process which requires local sites of chromosomal DNA to form double-strand breaks (DSBs) generated by topoisomerase IIb within a few minutes, followed by repair within a few hours. Wakefulness, exploring a novel environment, and contextual fear conditioning also elicit turn-on of synaptic genes requiring DSBs and repair. It has been reported (in non-neuronal cells) that extrachromosomal circular DNA can form at DSBs as the sites are repaired. I propose that activated neurons may generate extrachromosomal circular DNAs during repair at DSB sites, thus creating long-lasting "markers" of that activity pattern which contain sequences from their sites of origin and which regulate long-term gene expression. Although the population of extrachromosomal DNAs is diverse and overall associated with pathology, a subclass of small circular DNAs ("microDNAs," ∼100-400 bases long), largely derives from unique genomic sequences and has attractive features to act as stable, mobile circular DNAs to regulate gene expression in a sequence-specific manner. Circular DNAs can be templates for the transcription of RNAs, particularly small inhibitory siRNAs, circular RNAs and other non-coding RNAs that interact with microRNAs. These may regulate translation and transcription of other genes involved in synaptic plasticity, learning and memory. Another possible fate for mobile DNAs is to be inserted stably into chromosomes after new DSB sites are generated in response to subsequent activation events. Thus, the insertions of mobile DNAs into activity-induced genes may tend to inactivate them and aid in homeostatic regulation to avoid over-excitation, as well as providing a "counter" for a neuron's activation history. Moreover, activated neurons release secretory exosomes that can be transferred to recipient cells to regulate their gene expression. Mobile DNAs may be packaged into exosomes, released in an activity-dependent manner, and transferred to recipient cells, where they may be templates for regulatory RNAs and possibly incorporated into chromosomes. Finally, aging and neurodegenerative diseases (including Alzheimer's disease) are also associated with an increase in DSBs in neurons. It will become important in the future to assess how pathology-associated DSBs may relate to activity-induced mobile DNAs, and whether the latter may potentially contribute to pathogenesis.
Collapse
Affiliation(s)
- Neil R. Smalheiser
- Department of Psychiatry, University of Illinois College of Medicine, Chicago, IL, United States
| |
Collapse
|
12
|
Cheng P, Kalmbach DA, Hsieh HF, Castelan AC, Sagong C, Drake CL. Improved resilience following digital cognitive behavioral therapy for insomnia protects against insomnia and depression one year later. Psychol Med 2023; 53:3826-3836. [PMID: 35257648 PMCID: PMC9452602 DOI: 10.1017/s0033291722000472] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/25/2022] [Accepted: 02/09/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND While the negative consequences of insomnia are well-documented, a strengths-based understanding of how sleep can increase health promotion is still emerging and much-needed. Correlational evidence has connected sleep and insomnia to resilience; however, this relationship has not yet been experimentally tested. This study examined resilience as a mediator of treatment outcomes in a randomized clinical trial with insomnia patients. METHODS Participants were randomized to either digital cognitive behavioral therapy for insomnia (dCBT-I; n = 358) or sleep education control (n = 300), and assessed at pre-treatment, post-treatment, and 1-year follow-up. A structural equation modeling framework was utilized to test resilience as a mediator of insomnia and depression. Risk for insomnia and depression was also tested in the model, operationalized as a latent factor with sleep reactivity, stress, and rumination as indicators (aligned with the 3-P model). Sensitivity analyses tested the impact of change in resilience on the insomnia relapse and incident depression at 1-year follow-up. RESULTS dCBT-I resulted in greater improvements in resilience compared to the sleep education control. Furthermore, improved resilience following dCBT-I lowered latent risk, which was further associated with reduced insomnia and depression at 1-year follow-up. Sensitivity analyses indicated that each point improvement in resilience following treatment reduced the odds of insomnia relapse and incident depression 1 year later by 76% and 65%, respectively. CONCLUSIONS Improved resilience is likely a contributing mechanism to treatment gains following insomnia therapy, which may then reduce longer-term risk for insomnia relapse and depression.
Collapse
Affiliation(s)
- Philip Cheng
- Thomas Roth Sleep Disorders and Research Center, Henry Ford Health System, 39450 W 12 Mile Road, Novi, MI 48197, USA
| | - David A. Kalmbach
- Thomas Roth Sleep Disorders and Research Center, Henry Ford Health System, 39450 W 12 Mile Road, Novi, MI 48197, USA
| | - Hsing-Fang Hsieh
- Department of Health Behavior and Health Education, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109 USA
| | - Andrea Cuamatzi Castelan
- Thomas Roth Sleep Disorders and Research Center, Henry Ford Health System, 39450 W 12 Mile Road, Novi, MI 48197, USA
| | - Chaewon Sagong
- Thomas Roth Sleep Disorders and Research Center, Henry Ford Health System, 39450 W 12 Mile Road, Novi, MI 48197, USA
| | - Christopher L. Drake
- Thomas Roth Sleep Disorders and Research Center, Henry Ford Health System, 39450 W 12 Mile Road, Novi, MI 48197, USA
| |
Collapse
|
13
|
Detection of neuronal OFF periods as low amplitude neural activity segments. BMC Neurosci 2023; 24:13. [PMID: 36809980 PMCID: PMC9942432 DOI: 10.1186/s12868-023-00780-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/27/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND During non-rapid eye movement sleep (NREM), alternating periods of synchronised high (ON period) and low (OFF period) neuronal activity are associated with high amplitude delta band (0.5-4 Hz) oscillations in neocortical electrophysiological signals termed slow waves. As this oscillation is dependent crucially on hyperpolarisation of cortical cells, there is an interest in understanding how neuronal silencing during OFF periods leads to the generation of slow waves and whether this relationship changes between cortical layers. A formal, widely adopted definition of OFF periods is absent, complicating their detection. Here, we grouped segments of high frequency neural activity containing spikes, recorded as multiunit activity from the neocortex of freely behaving mice, on the basis of amplitude and asked whether the population of low amplitude (LA) segments displayed the expected characteristics of OFF periods. RESULTS Average LA segment length was comparable to previous reports for OFF periods but varied considerably, from as short as 8 ms to > 1 s. LA segments were longer and occurred more frequently in NREM but shorter LA segments also occurred in half of rapid eye movement sleep (REM) epochs and occasionally during wakefulness. LA segments in all states were associated with a local field potential (LFP) slow wave that increased in amplitude with LA segment duration. We found that LA segments > 50 ms displayed a homeostatic rebound in incidence following sleep deprivation whereas short LA segments (< 50 ms) did not. The temporal organisation of LA segments was more coherent between channels located at a similar cortical depth. CONCLUSION We corroborate previous studies showing neural activity signals contain uniquely identifiable periods of low amplitude with distinct characteristics from the surrounding signal known as OFF periods and attribute the new characteristics of vigilance-state-dependent duration and duration-dependent homeostatic response to this phenomenon. This suggests that ON/OFF periods are currently underdefined and that their appearance is less binary than previously considered, instead representing a continuum.
Collapse
|
14
|
Huang Y, Hao J, Yang X, Xu L, Liu Y, Sun Y, Gu X, Zhang W, Ma Z. Pretreatment of the ROS Inhibitor Phenyl-N-tert-butylnitrone Alleviates Sleep Deprivation-Induced Hyperalgesia by Suppressing Microglia Activation and NLRP3 Inflammasome Activity in the Spinal Dorsal Cord. Neurochem Res 2023; 48:305-314. [PMID: 36104611 PMCID: PMC9823061 DOI: 10.1007/s11064-022-03751-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 01/11/2023]
Abstract
Sleep deprivation, a common perioperative period health problem, causes ocular discomfort and affects postsurgical pain. However, the mechanism of sleep deprivation-induced increased pain sensitivity is elusive. This study aims to explore the role of ROS in sleep deprivation (SD)-induced hyperalgesia and the underlying mechanism. A 48-h continuous SD was performed prior to the hind paw incision pain modeling in mice. We measured ROS levels, microglial activation, DNA damage and protein levels of iNOS, NLRP3, p-P65 and P65 in mouse spinal dorsal cord. The involvement of ROS in SD-induced prolongation of postsurgical pain was further confirmed by intrathecal injection of ROS inhibitor, phenyl-N-tert-butylnitrone (PBN). Pretreatment of 48-h SD in mice significantly prolonged postsurgical pain recovery, manifesting as lowered paw withdrawal mechanical threshold and paw withdrawal thermal latency. It caused ROS increase and upregulation of iNOS on both Day 1 and 7 in mouse spinal dorsal cord. In addition, upregulation of NLRP3 and p-P65, microglial activation and DNA damage were observed in mice pretreated with 48-h SD prior to the incision. Notably, intrathecal injection of PBN significantly reversed the harmful effects of SD on postsurgical pain recovery, hyperalgesia, microglial activation and DNA damage via the NF-κB signaling pathway. Collectively, ROS increase is responsible for SD-induced hyperalgesia through activating microglial, triggering DNA damage and enhancing NLRP3 inflammasome activity in the spinal dorsal cord.
Collapse
Affiliation(s)
- Yulin Huang
- Nanjing Drum Tower Hospital Clinical College, Nanjing Medical University, Nanjing, China
| | - Jing Hao
- Nanjing Drum Tower Hospital Clinical College, Nanjing Medical University, Nanjing, China
| | - Xuli Yang
- Nanjing Drum Tower Hospital Clinical College, Nanjing Medical University, Nanjing, China
| | - Li Xu
- Nanjing Drum Tower Hospital Clinical College, Nanjing Medical University, Nanjing, China
| | - Yue Liu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yu'e Sun
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaoping Gu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wei Zhang
- Nanjing Drum Tower Hospital Clinical College, Nanjing Medical University, Nanjing, China.
| | - Zhengliang Ma
- Nanjing Drum Tower Hospital Clinical College, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
15
|
Boots R, Xue G, Tromp D, Rawashdeh O, Bellapart J, Townsend S, Rudd M, Winter C, Mitchell G, Garner N, Clement P, Karamujic N, Zappala C. Circadian Rhythmicity of Vital Signs at Intensive Care Unit Discharge and Outcome of Traumatic Brain Injury. Am J Crit Care 2022; 31:472-482. [PMID: 36316179 DOI: 10.4037/ajcc2022821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Physiological functions with circadian rhythmicity are often disrupted during illness. OBJECTIVE To assess the utility of circadian rhythmicity of vital signs in predicting outcome of traumatic brain injury (TBI). METHODS A retrospective single-center cohort study of adult intensive care unit (ICU) patients with largely isolated TBI to explore the relationship between the circadian rhythmicity of vital signs during the last 24 hours before ICU discharge and clinical markers of TBI severity and score on the Glasgow Outcome Scale 6 months after injury (GOS-6). RESULTS The 130 study participants had a median age of 39.0 years (IQR, 23.0-59.0 years), a median Glasgow Coma Scale score at the scene of 8.0 (IQR, 3.0-13.0), and a median Rotterdam score on computed tomography of the head of 3 (IQR, 3-3), with 105 patients (80.8%) surviving to hospital discharge. Rhythmicity was present for heart rate (30.8% of patients), systolic blood pressure (26.2%), diastolic blood pressure (20.0%), and body temperature (26.9%). Independent predictors of a dichotomized GOS-6 ≥4 were the Rotterdam score (odds ratio [OR], 0.38 [95% CI, 0.18-0.81]; P = .01), Glasgow Coma Scale score at the scene (OR, 1.22 [95% CI, 1.05-1.41]; P = .008), age (OR, 0.95 [95% CI, 0.92-0.98]; P = .003), oxygen saturation <90% in the first 24 hours (OR, 0.19 [95% CI, 0.05-0.73]; P = .02), serum sodium level <130 mmol/L (OR, 0.20 [95% CI, 0.05-0.70]; P = .01), and active intracranial pressure management (OR, 0.16 [95% CI, 0.04-0.62]; P = .008), but not rhythmicity of any vital sign. CONCLUSION Circadian rhythmicity of vital signs at ICU discharge is not predictive of GOS-6 in patients with TBI.
Collapse
Affiliation(s)
- Rob Boots
- Rob Boots is an associate professor, Thoracic Medicine, Royal Brisbane and Women's Hospital, a senior specialist, Intensive Care, Bundaberg Hospital, Faculty of Medicine, The University of Queensland, Herston, and a professsor, Faculty of Medicine and Dentistry, Griffith University, Queensland, Australia
| | - George Xue
- George Xue is the medical registrar, Royal Brisbane and Women's Hospital
| | - Dirk Tromp
- Dirk Tromp is the senior radiology registrar, Royal Brisbane and Women's Hospital
| | - Oliver Rawashdeh
- Oliver Rawashdeh is director, Chronobiology and Sleep Research, School of Biomedical Sciences, Faculty of Medicine, The University of Queensland
| | - Judith Bellapart
- Judith Bellapart is a senior specialist, Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, and Burns, Trauma, and Critical Care, The University of Queensland
| | - Shane Townsend
- Shane Townsend is director, Intensive Care Services, Royal Brisbane and Women's Hospital
| | - Michael Rudd
- Michael Rudd is acting director, Trauma, Royal Brisbane and Women's Hospital
| | - Craig Winter
- Craig Winter is a staff specialist neurosurgeon, Royal Brisbane and Women's Hospital
| | - Gary Mitchell
- Gary Mitchell is a staff specialist, Emergency Medicine, Royal Brisbane and Women's Hospital
| | - Nicholas Garner
- Nicholas Garner is a PhD student, Chronobiology and Sleep Research Lab, School of Biomedical Sciences, Faculty of Medicine, The University of Queensland
| | - Pierre Clement
- Pierre Clement is a clinical information systems manager, Intensive Care Services, Royal Brisbane and Women's Hospital
| | - Nermin Karamujic
- Nermin Karamujic is a data manager and clinical information systems manager, Intensive Care Services, Royal Brisbane and Women's Hospital
| | - Christopher Zappala
- Christopher Zappala is a senior staff specialist, Thoracic Medicine, Royal Brisbane and Women's Hospital
| |
Collapse
|
16
|
Wang N, Langfelder P, Stricos M, Ramanathan L, Richman JB, Vaca R, Plascencia M, Gu X, Zhang S, Tamai TK, Zhang L, Gao F, Ouk K, Lu X, Ivanov LV, Vogt TF, Lu QR, Morton AJ, Colwell CS, Aaronson JS, Rosinski J, Horvath S, Yang XW. Mapping brain gene coexpression in daytime transcriptomes unveils diurnal molecular networks and deciphers perturbation gene signatures. Neuron 2022; 110:3318-3338.e9. [PMID: 36265442 PMCID: PMC9665885 DOI: 10.1016/j.neuron.2022.09.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/16/2022] [Accepted: 09/22/2022] [Indexed: 01/07/2023]
Abstract
Brain tissue transcriptomes may be organized into gene coexpression networks, but their underlying biological drivers remain incompletely understood. Here, we undertook a large-scale transcriptomic study using 508 wild-type mouse striatal tissue samples dissected exclusively in the afternoons to define 38 highly reproducible gene coexpression modules. We found that 13 and 11 modules are enriched in cell-type and molecular complex markers, respectively. Importantly, 18 modules are highly enriched in daily rhythmically expressed genes that peak or trough with distinct temporal kinetics, revealing the underlying biology of striatal diurnal gene networks. Moreover, the diurnal coexpression networks are a dominant feature of daytime transcriptomes in the mouse cortex. We next employed the striatal coexpression modules to decipher the striatal transcriptomic signatures from Huntington's disease models and heterozygous null mice for 52 genes, uncovering novel functions for Prkcq and Kdm4b in oligodendrocyte differentiation and bipolar disorder-associated Trank1 in regulating anxiety-like behaviors and nocturnal locomotion.
Collapse
Affiliation(s)
- Nan Wang
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; UCLA Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peter Langfelder
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; UCLA Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Matthew Stricos
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; UCLA Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lalini Ramanathan
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; UCLA Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jeffrey B Richman
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; UCLA Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Raymond Vaca
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; UCLA Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mary Plascencia
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; UCLA Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xiaofeng Gu
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; UCLA Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shasha Zhang
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; UCLA Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - T Katherine Tamai
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; UCLA Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Liguo Zhang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Fuying Gao
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Koliane Ouk
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Xiang Lu
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Thomas F Vogt
- CHDI Management /CHDI Foundation, Princeton, NJ, USA
| | - Qing Richard Lu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - A Jennifer Morton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Christopher S Colwell
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; UCLA Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Jim Rosinski
- CHDI Management /CHDI Foundation, Princeton, NJ, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, USA
| | - X William Yang
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
17
|
Weber Boutros S, Unni VK, Raber J. An Adaptive Role for DNA Double-Strand Breaks in Hippocampus-Dependent Learning and Memory. Int J Mol Sci 2022; 23:8352. [PMID: 35955487 PMCID: PMC9368779 DOI: 10.3390/ijms23158352] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022] Open
Abstract
DNA double-strand breaks (DSBs), classified as the most harmful type of DNA damage based on the complexity of repair, lead to apoptosis or tumorigenesis. In aging, DNA damage increases and DNA repair decreases. This is exacerbated in disease, as post-mortem tissue from patients diagnosed with mild cognitive impairment (MCI) or Alzheimer's disease (AD) show increased DSBs. A novel role for DSBs in immediate early gene (IEG) expression, learning, and memory has been suggested. Inducing neuronal activity leads to increases in DSBs and upregulation of IEGs, while increasing DSBs and inhibiting DSB repair impairs long-term memory and alters IEG expression. Consistent with this pattern, mice carrying dominant AD mutations have increased baseline DSBs, and impaired DSB repair is observed. These data suggest an adaptive role for DSBs in the central nervous system and dysregulation of DSBs and/or repair might drive age-related cognitive decline (ACD), MCI, and AD. In this review, we discuss the adaptive role of DSBs in hippocampus-dependent learning, memory, and IEG expression. We summarize IEGs, the history of DSBs, and DSBs in synaptic plasticity, aging, and AD. DSBs likely have adaptive functions in the brain, and even subtle alterations in their formation and repair could alter IEGs, learning, and memory.
Collapse
Affiliation(s)
- Sydney Weber Boutros
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA;
| | - Vivek K. Unni
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA;
- Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR 97239, USA
- Oregon Health & Science University Parkinson Center, Portland, OR 97239, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA;
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA;
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR 97239, USA
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| |
Collapse
|
18
|
Minakawa EN. Bidirectional Relationship Between Sleep Disturbances and Parkinson's Disease. Front Neurol 2022; 13:927994. [PMID: 35923835 PMCID: PMC9342689 DOI: 10.3389/fneur.2022.927994] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/15/2022] [Indexed: 12/01/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease (AD). Both diseases share common clinical and pathological features: the gradual progression of neurological and psychiatric symptoms caused by neuronal dysfunction and neuronal cell death due to the accumulation of misfolded and neurotoxic proteins. Furthermore, both of them are multifactorial diseases in which both genetic and non-genetic factors contribute to the disease course. Non-genetic factors are of particular interest for the development of preventive and therapeutic approaches for these diseases because they are modifiable; of these, sleep is a particularly intriguing factor. Sleep disturbances are highly prevalent among both patients with AD and PD. To date, research has suggested that sleep disturbances are a consequence as well as a risk factor for the onset and progression of AD, which implies a bidirectional relationship between sleep and AD. Whether such a relationship exists in PD is less certain, albeit highly plausible given the shared pathomechanisms. This review examines the current evidence for the bidirectional relationship between sleep and PD. It includes research in both humans and animal models, followed by a discussion of the current understanding of the mechanisms underlying this relationship. Finally, potential avenues of research toward achieving disease modification to treat or prevent PD are proposed. Although further efforts are crucial for preventing the onset and slowing the progress of PD, it is evident that sleep is a valuable candidate target for future interventions to improve the outcomes of PD patients.
Collapse
Affiliation(s)
- Eiko N. Minakawa
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
- Parkinson Disease and Movement Disorder Center, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
- Sleep Disorder Center, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
- Research Center for Neurocognitive Disorders, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
- *Correspondence: Eiko N. Minakawa
| |
Collapse
|
19
|
Flores CC, Loschky SS, Marshall W, Spano GM, Massaro Cenere M, Tononi G, Cirelli C. Identification of ultrastructural signatures of sleep and wake in the fly brain. Sleep 2022; 45:zsab235. [PMID: 35554595 PMCID: PMC9113029 DOI: 10.1093/sleep/zsab235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/12/2021] [Indexed: 11/14/2022] Open
Abstract
The cellular consequences of sleep loss are poorly characterized. In the pyramidal neurons of mouse frontal cortex, we found that mitochondria and secondary lysosomes occupy a larger proportion of the cytoplasm after chronic sleep restriction compared to sleep, consistent with increased cellular burden due to extended wake. For each morphological parameter, the within-animal variance was high, suggesting that the effects of sleep and sleep loss vary greatly among neurons. However, the analysis was based on 4-5 mice/group and a single section/cell. Here, we applied serial block-face scanning electron microscopy to identify signatures of sleep and sleep loss in the Drosophila brain. Stacks of images were acquired and used to obtain full 3D reconstructions of the cytoplasm and nucleus of 263 Kenyon cells from adult flies collected after a night of sleep (S) or after 11 h (SD11) or 35 h (SD35) of sleep deprivation (9 flies/group). Relative to S flies, SD35 flies showed increased density of dark clusters of chromatin and Golgi apparata and a trend increase in the percent of cell volume occupied by mitochondria, consistent with increased need for energy and protein supply during extended wake. Logistic regression models could assign each neuron to the correct experimental group with good accuracy, but in each cell, nuclear and cytoplasmic changes were poorly correlated, and within-fly variance was substantial in all experimental groups. Together, these results support the presence of ultrastructural signatures of sleep and sleep loss but underscore the complexity of their effects at the single-cell level.
Collapse
Affiliation(s)
- Carlos C Flores
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Sophia S Loschky
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - William Marshall
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Mathematics and Statistics, Brock University, St. Catharines, ON, Canada
| | | | | | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
20
|
Wang L, Aton SJ. Perspective - ultrastructural analyses reflect the effects of sleep and sleep loss on neuronal cell biology. Sleep 2022; 45:zsac047. [PMID: 35554582 PMCID: PMC9113019 DOI: 10.1093/sleep/zsac047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/05/2022] [Indexed: 11/13/2022] Open
Abstract
Recent electron microscopic analyses of neurons in the Drosophila and rodent brain demonstrate that acute or chronic sleep loss can alter the structures of various organelles, including mitochondria, nucleus, and Golgi apparatus. Here, we discuss these findings in the context of biochemical findings from the sleep deprived brain, to clarify how these morphological changes may related to altered organelle function. We discuss how, taken together, the available data suggest that sleep loss (particularly chronic sleep loss) disrupts such fundamental cellular processes as transcription, translation, intracellular transport, and metabolism. A better understanding of these effects will have broad implications for understanding the biological importance of sleep, and the relationship of sleep loss to neuropathology.
Collapse
Affiliation(s)
- Lijing Wang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Sara J Aton
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
21
|
Translational Approaches to Influence Sleep and Arousal. Brain Res Bull 2022; 185:140-161. [PMID: 35550156 PMCID: PMC9554922 DOI: 10.1016/j.brainresbull.2022.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 12/16/2022]
Abstract
Sleep disorders are widespread in society and are prevalent in military personnel and in Veterans. Disturbances of sleep and arousal mechanisms are common in neuropsychiatric disorders such as schizophrenia, post-traumatic stress disorder, anxiety and affective disorders, traumatic brain injury, dementia, and substance use disorders. Sleep disturbances exacerbate suicidal ideation, a major concern for Veterans and in the general population. These disturbances impair quality of life, affect interpersonal relationships, reduce work productivity, exacerbate clinical features of other disorders, and impair recovery. Thus, approaches to improve sleep and modulate arousal are needed. Basic science research on the brain circuitry controlling sleep and arousal led to the recent approval of new drugs targeting the orexin/hypocretin and histamine systems, complementing existing drugs which affect GABAA receptors and monoaminergic systems. Non-invasive brain stimulation techniques to modulate sleep and arousal are safe and show potential but require further development to be widely applicable. Invasive viral vector and deep brain stimulation approaches are also in their infancy but may be used to modulate sleep and arousal in severe neurological and psychiatric conditions. Behavioral, pharmacological, non-invasive brain stimulation and cell-specific invasive approaches covered here suggest the potential to selectively influence arousal, sleep initiation, sleep maintenance or sleep-stage specific phenomena such as sleep spindles or slow wave activity. These manipulations can positively impact the treatment of a wide range of neurological and psychiatric disorders by promoting the restorative effects of sleep on memory consolidation, clearance of toxic metabolites, metabolism, and immune function and by decreasing hyperarousal.
Collapse
|
22
|
Sleep deficiency as a driver of cellular stress and damage in neurological disorders. Sleep Med Rev 2022; 63:101616. [PMID: 35381445 PMCID: PMC9177816 DOI: 10.1016/j.smrv.2022.101616] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/23/2022]
Abstract
Neurological disorders encompass an extremely broad range of conditions, including those that present early in development and those that progress slowly or manifest with advanced age. Although these disorders have distinct underlying etiologies, the activation of shared pathways, e.g., integrated stress response (ISR) and the development of shared phenotypes (sleep deficits) may offer clues toward understanding some of the mechanistic underpinnings of neurologic dysfunction. While it is incontrovertibly complex, the relationship between sleep and persistent stress in the brain has broad implications in understanding neurological disorders from development to degeneration. The convergent nature of the ISR could be a common thread linking genetically distinct neurological disorders through the dysregulation of a core cellular homeostasis pathway.
Collapse
|
23
|
Tagorti G, Kaya B. Genotoxic effect of microplastics and COVID-19: The hidden threat. CHEMOSPHERE 2022; 286:131898. [PMID: 34411929 DOI: 10.1016/j.chemosphere.2021.131898] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/26/2021] [Accepted: 08/12/2021] [Indexed: 05/10/2023]
Abstract
Microplastics (MPs) are ubiquitous anthropogenic contaminants, and their abundance in the entire ecosystem raises the question of how far is the impact of these MPs on the biota, humans, and the environment. Recent research has overemphasized the occurrence, characterization, and direct toxicity of MPs; however, determining and understanding their genotoxic effect is still limited. Thus, the present review addresses the genotoxic potential of these emerging contaminants in aquatic organisms and in human peripheral lymphocytes and identified the research gaps in this area. Several genotoxic endpoints were implicated, including the frequency of micronuclei (MN), nucleoplasmic bridge (NPB), nuclear buds (NBUD), DNA strand breaks, and the percentage of DNA in the tail (%Tail DNA). In addition, the mechanism of MPs-induced genotoxicity seems to be closely associated with reactive oxygen species (ROS) production, inflammatory responses, and DNA repair interference. However, the gathered information urges the need for more studies that present environmentally relevant conditions. Taken into consideration, the lifestyle changes within the COVID-19 pandemic, we discussed the impact of the pandemic on enhancing the genotoxic potential of MPs whether through increasing human exposure to MPs via inappropriate disposal and overconsumption of plastic-based products or by disrupting the defense system owing to unhealthy food and sleep deprivation as well as stress. Overall, this review provided a reference for the genotoxic effect of MPs, their mechanism of action, as well as the contribution of COVID-19 to increase the genotoxic risk of MPs.
Collapse
Affiliation(s)
- Ghada Tagorti
- Akdeniz University, Faculty of Sciences, Department of Biology, 07058-Campus, Antalya, Turkey
| | - Bülent Kaya
- Akdeniz University, Faculty of Sciences, Department of Biology, 07058-Campus, Antalya, Turkey.
| |
Collapse
|
24
|
Zada D, Sela Y, Matosevich N, Monsonego A, Lerer-Goldshtein T, Nir Y, Appelbaum L. Parp1 promotes sleep, which enhances DNA repair in neurons. Mol Cell 2021; 81:4979-4993.e7. [PMID: 34798058 PMCID: PMC8688325 DOI: 10.1016/j.molcel.2021.10.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 10/19/2022]
Abstract
The characteristics of the sleep drivers and the mechanisms through which sleep relieves the cellular homeostatic pressure are unclear. In flies, zebrafish, mice, and humans, DNA damage levels increase during wakefulness and decrease during sleep. Here, we show that 6 h of consolidated sleep is sufficient to reduce DNA damage in the zebrafish dorsal pallium. Induction of DNA damage by neuronal activity and mutagens triggered sleep and DNA repair. The activity of the DNA damage response (DDR) proteins Rad52 and Ku80 increased during sleep, and chromosome dynamics enhanced Rad52 activity. The activity of the DDR initiator poly(ADP-ribose) polymerase 1 (Parp1) increased following sleep deprivation. In both larva zebrafish and adult mice, Parp1 promoted sleep. Inhibition of Parp1 activity reduced sleep-dependent chromosome dynamics and repair. These results demonstrate that DNA damage is a homeostatic driver for sleep, and Parp1 pathways can sense this cellular pressure and facilitate sleep and repair activity.
Collapse
Affiliation(s)
- David Zada
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Yaniv Sela
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| | - Noa Matosevich
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| | - Adir Monsonego
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Tali Lerer-Goldshtein
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Yuval Nir
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| | - Lior Appelbaum
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
25
|
Jaggard JB, Wang GX, Mourrain P. Non-REM and REM/paradoxical sleep dynamics across phylogeny. Curr Opin Neurobiol 2021; 71:44-51. [PMID: 34583217 PMCID: PMC8719594 DOI: 10.1016/j.conb.2021.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022]
Abstract
All animals carefully studied sleep, suggesting that sleep as a behavioral state exists in all animal life. Such evolutionary maintenance of an otherwise vulnerable period of environmental detachment suggests that sleep must be integral in fundamental biological needs. Despite over a century of research, the knowledge of what sleep does at the tissue, cellular or molecular levels remain cursory. Currently, sleep is defined based on behavioral criteria and physiological measures rather than at the cellular or molecular level. Physiologically, sleep has been described as two main states, non-rapid eye moment (NREM) and REM/paradoxical sleep (PS), which are defined in the neocortex by synchronous oscillations and paradoxical wake-like activity, respectively. For decades, these two sleep states were believed to be defining characteristics of only mammalian and avian sleep. Recent work has revealed slow oscillation, silencing, and paradoxical/REM-like activities in reptiles, fish, flies, worms, and cephalopods suggesting that these sleep dynamics and associated physiological states may have emerged early in animal evolution. Here, we discuss these recent developments supporting the conservation of neural dynamics (silencing, oscillation, paradoxical activity) of sleep states across phylogeny.
Collapse
Affiliation(s)
- James B Jaggard
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Gordon X Wang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA; Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
| | - Philippe Mourrain
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA; INSERM 1024, Ecole Normale Supérieure, Paris, France.
| |
Collapse
|
26
|
Stott RT, Kritsky O, Tsai LH. Profiling DNA break sites and transcriptional changes in response to contextual fear learning. PLoS One 2021; 16:e0249691. [PMID: 34197463 PMCID: PMC8248687 DOI: 10.1371/journal.pone.0249691] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Neuronal activity generates DNA double-strand breaks (DSBs) at specific loci in vitro and this facilitates the rapid transcriptional induction of early response genes (ERGs). Physiological neuronal activity, including exposure of mice to learning behaviors, also cause the formation of DSBs, yet the distribution of these breaks and their relation to brain function remains unclear. Here, following contextual fear conditioning (CFC) in mice, we profiled the locations of DSBs genome-wide in the medial prefrontal cortex and hippocampus using γH2AX ChIP-Seq. Remarkably, we found that DSB formation is widespread in the brain compared to cultured primary neurons and they are predominately involved in synaptic processes. We observed increased DNA breaks at genes induced by CFC in neuronal and non-neuronal nuclei. Activity-regulated and proteostasis-related transcription factors appear to govern some of these gene expression changes across cell types. Finally, we find that glia but not neurons have a robust transcriptional response to glucocorticoids, and many of these genes are sites of DSBs. Our results indicate that learning behaviors cause widespread DSB formation in the brain that are associated with experience-driven transcriptional changes across both neuronal and glial cells.
Collapse
Affiliation(s)
- Ryan T. Stott
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Oleg Kritsky
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| |
Collapse
|
27
|
Sleep in disorders of consciousness: diagnostic, prognostic, and therapeutic considerations. Curr Opin Neurol 2021; 33:684-690. [PMID: 33177374 DOI: 10.1097/wco.0000000000000870] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE OF REVIEW Sleep is important in the evaluation of patients with disorders of consciousness (DOC). However, it remains unclear whether reconstitution of sleep could enable consciousness or vice versa. Here we synthesize recent evidence on natural recovery of sleep in DOC, and sleep-promoting therapeutic interventions for recovery of consciousness. RECENT FINDINGS In subacute DOC, physiological sleep--wake cycles and complex sleep patterns are related to better outcomes. Moreover, structured rapid-eye-movement (REM), non-REM (NREM) stages, and presence of sleep spindles correlate with full or partial recovery. In chronic DOC, sleep organization may reflect both integrity of consciousness-supporting brain networks and engagement of those networks during wakefulness. Therapeutic strategies have integrated improvement of sleep and sleep--wake cycles in DOC patients; use of bright light stimulation or drugs enhancing sleep and/or vigilance, treatment of sleep apneas, and neuromodulatory stimulations are promising tools to promote healthy sleep architecture and wakeful recovery. SUMMARY Sleep features and sleep--wake cycles are important prognostic markers in subacute DOC and can provide insight into covert recovery in chronic DOC. Although large-scale studies are needed, preliminary studies in limited patients suggest that therapeutic options restoring sleep and/or sleep--wake cycles may improve cognitive function and outcomes in DOC.
Collapse
|
28
|
Relation of repeated exposures to air emissions from swine industrial livestock operations to sleep duration and awakenings in nearby residential communities. Sleep Health 2021; 7:528-534. [PMID: 34193392 DOI: 10.1016/j.sleh.2021.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Since waste from swine industrial livestock operations (ILOs) produces air pollutants associated with negative health outcomes among nearby residents, we assessed the impact of odorant emissions on sleep duration and awakenings. DESIGN A repeated-measures design. SETTING Sixteen residential communities in eastern North Carolina hosting swine ILOs. PARTICIPANTS Eighty participants residing in eastern North Carolina from 2003 to 2005. INTERVENTION (IF ANY) Not applicable. MEASUREMENTS Study participants completed twice-daily diaries in which they rated the strength of hog odors and indicated whether they were asleep or awake per hour for 2 weeks. Simultaneously, a monitoring trailer placed in a central location in each community measured the atmospheric concentration of hydrogen sulfide (H2S). Subject-conditional fixed-effects regression models were used to estimate associations between 2 markers of swine ILO pollutant exposures (H2S and swine odor) and 2 self-reported sleep outcomes (nightly sleep duration and awakening from sleep). RESULTS Among 80 participants, nightly (across a 12-hour period) swine odor was associated with lower nightly sleep duration (mean difference = -14.3 minutes, 95% confidence interval -25.0 to -3.3 minutes) compared to odor-free nights and detection of nightly hydrogen sulfide was associated with an increased risk of awakening (hazard ratio = 1.23, 95% confidence interval 0.98 to 1.55) compared to nights with no detection of hydrogen sulfide. CONCLUSIONS These results suggest that environmental odorants are important considerations for sleep health and highlight the importance of sleep as a potential mediator between environmental air pollution and health outcomes impacted by poor sleep.
Collapse
|
29
|
Proshkina EN, Solovev IA, Shaposhnikov MV, Moskalev AA. Key Molecular Mechanisms of Aging, Biomarkers, and Potential Interventions. Mol Biol 2021. [DOI: 10.1134/s0026893320060096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
30
|
Gomes AM, Martins MC. Child perception and parent's perception about child sleep quality. Sleep Sci 2021; 14:342-347. [PMID: 35087631 PMCID: PMC8776258 DOI: 10.5935/1984-0063.20200107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/20/2021] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION Sleep is a physiological necessity that interferes with the activity during the day. This study aimed to analyze child perception about sleep quality and compare it with parent's perception about the quality of their children's sleep, and to investigate the sleep quality of Portuguese schoolchildren. Analyze the differences between the sexes and the type of school attended. MATERIAL AND METHODS Cross-sectional study, quantitative methodology. The results of two questionnaires, the Pittsburgh sleep quality index (PSQI) answered directly by the children, and the children's sleep habits questionnaire (CSHQ), answered by the parents of 883 children, were analyzed and compared. RESULTS PSQI reveals good sleep quality, which contradicts the results of CSHQ. The CSHQ indicates a mean sleep deterioration index (IPS) value of 46.12 (above the cutoff point, 44) indicating that on average the children in this sample have poor sleep quality. There is no significant difference between girls and boys regarding IPS. There is a significant difference in the level of daytime drowsiness (p=.018), girls wake up moodier (p=.011), have more difficulty getting out of bed in the morning (p=.019), and take longer to fully awaken than boys (p=.004). CONCLUSION The data show that children seem to have poor sleep quality and that they erroneously evaluate it, but these same data should be read with caution since the reason for the different perception between parents and children is not known.
Collapse
Affiliation(s)
- Ana Maria Gomes
- Universidade Autónoma de Lisboa, Departamento de Psicologia e
Centro de Investigação em Psicologia - Lisboa - Portugal
| | - Mariana Costa Martins
- Universidade Autónoma de Lisboa, Departamento de Psicologia e
Centro de Investigação em Psicologia - Lisboa - Portugal
| |
Collapse
|
31
|
Colnaghi L, Rondelli D, Muzi-Falconi M, Sertic S. Tau and DNA Damage in Neurodegeneration. Brain Sci 2020; 10:E946. [PMID: 33297375 PMCID: PMC7762255 DOI: 10.3390/brainsci10120946] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/29/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disorders are a family of incurable conditions. Among them, Alzheimer's disease and tauopathies are the most common. Pathological features of these two disorders are synaptic loss, neuronal cell death and increased DNA damage. A key pathological protein for the onset and progression of the conditions is the protein tau, a microtubule-binding protein highly expressed in neurons and encoded by the MAPT (microtubule-associated protein tau) gene. Tau is predominantly a cytosolic protein that interacts with numerous other proteins and molecules. Recent findings, however, have highlighted new and unexpected roles for tau in the nucleus of neuronal cells. This review summarizes the functions of tau in the metabolism of DNA, describing them in the context of the disorders.
Collapse
Affiliation(s)
- Luca Colnaghi
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Negri 2, 20156 Milan, Italy
| | - Diego Rondelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy; (D.R.); (M.M.-F.)
| | - Marco Muzi-Falconi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy; (D.R.); (M.M.-F.)
| | - Sarah Sertic
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy; (D.R.); (M.M.-F.)
| |
Collapse
|
32
|
Time is of the essence: Coupling sleep-wake and circadian neurobiology to the antidepressant effects of ketamine. Pharmacol Ther 2020; 221:107741. [PMID: 33189715 DOI: 10.1016/j.pharmthera.2020.107741] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/03/2020] [Indexed: 12/28/2022]
Abstract
Several studies have demonstrated the effectiveness of ketamine in rapidly alleviating depression and suicidal ideation. Intense research efforts have been undertaken to expose the precise mechanism underlying the antidepressant action of ketamine; however, the translation of findings into new clinical treatments has been slow. This translational gap is partially explained by a lack of understanding of the function of time and circadian timing in the complex neurobiology around ketamine. Indeed, the acute pharmacological effects of a single ketamine treatment last for only a few hours, whereas the antidepressant effects peak at around 24 hours and are sustained for the following few days. Numerous studies have investigated the acute and long-lasting neurobiological changes induced by ketamine; however, the most dramatic and fundamental change that the brain undergoes each day is rarely taken into consideration. Here, we explore the link between sleep and circadian regulation and rapid-acting antidepressant effects and summarize how diverse phenomena associated with ketamine's antidepressant actions - such as cortical excitation, synaptogenesis, and involved molecular determinants - are intimately connected with the neurobiology of wake, sleep, and circadian rhythms. We review several recently proposed hypotheses about rapid antidepressant actions, which focus on sleep or circadian regulation, and discuss their implications for ongoing research. Considering these aspects may be the last piece of the puzzle necessary to gain a more comprehensive understanding of the effects of rapid-acting antidepressants on the brain.
Collapse
|
33
|
Humer E, Pieh C, Brandmayr G. Metabolomics in Sleep, Insomnia and Sleep Apnea. Int J Mol Sci 2020; 21:ijms21197244. [PMID: 33008070 PMCID: PMC7583860 DOI: 10.3390/ijms21197244] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023] Open
Abstract
Sleep-wake disorders are highly prevalent disorders, which can lead to negative effects on cognitive, emotional and interpersonal functioning, and can cause maladaptive metabolic changes. Recent studies support the notion that metabolic processes correlate with sleep. The study of metabolite biomarkers (metabolomics) in a large-scale manner offers unique opportunities to provide insights into the pathology of diseases by revealing alterations in metabolic pathways. This review aims to summarize the status of metabolomic analyses-based knowledge on sleep disorders and to present knowledge in understanding the metabolic role of sleep in psychiatric disorders. Overall, findings suggest that sleep-wake disorders lead to pronounced alterations in specific metabolic pathways, which might contribute to the association of sleep disorders with other psychiatric disorders and medical conditions. These alterations are mainly related to changes in the metabolism of branched-chain amino acids, as well as glucose and lipid metabolism. In insomnia, alterations in branched-chain amino acid and glucose metabolism were shown among studies. In obstructive sleep apnea, biomarkers related to lipid metabolism seem to be of special importance. Future studies are needed to examine severity, subtypes and treatment of sleep-wake disorders in the context of metabolite levels.
Collapse
Affiliation(s)
- Elke Humer
- Department for Psychotherapy and Biopsychosocial Health, Danube University Krems, 3500 Krems, Austria;
- Correspondence: ; Tel.: +43-273-2893-2676
| | - Christoph Pieh
- Department for Psychotherapy and Biopsychosocial Health, Danube University Krems, 3500 Krems, Austria;
| | - Georg Brandmayr
- Section for Artificial Intelligence and Decision Support, Medical University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
34
|
Guo X, Gao X, Keenan BT, Zhu J, Sarantopoulou D, Lian J, Galante RJ, Grant GR, Pack AI. RNA-seq analysis of galaninergic neurons from ventrolateral preoptic nucleus identifies expression changes between sleep and wake. BMC Genomics 2020; 21:633. [PMID: 32928100 PMCID: PMC7491139 DOI: 10.1186/s12864-020-07050-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Previous studies show that galanin neurons in ventrolateral preoptic nucleus (VLPO-Gal) are essential for sleep regulation. Here, we explored the transcriptional regulation of the VLPO-Gal neurons in sleep by comparing their transcriptional responses between sleeping mice and those kept awake, sacrificed at the same diurnal time. RESULTS RNA-sequencing (RNA-seq) analysis was performed on eGFP(+) galanin neurons isolated using laser captured microdissection (LCM) from VLPO. Expression of Gal was assessed in our LCM eGFP(+) neurons via real time qPCR and showed marked enrichment when compared to LCM eGFP(-) cells and to bulk VLPO samples. Gene set enrichment analysis utilizing data from a recent single-cell RNA-seq study of the preoptic area demonstrated that our VLPO-Gal samples were highly enriched with galanin-expressing inhibitory neurons, but not galanin-expressing excitatory neurons. A total of 263 genes were differentially expressed between sleep and wake in VLPO-Gal neurons. When comparing differentially expressed genes in VLPO-Gal neurons to differentially expressed genes in a wake-active neuronal region (the medial prefrontal cortex), evidence indicates that both systemic and cell-specific mechanisms contribute to the transcriptional regulation in VLPO-Gal neurons. In both wake-active and sleep-active neurons, ER stress pathways are activated by wake and cold-inducible RNA-binding proteins are activated by sleep. In contrast, expression of DNA repair genes is increased in VLPO-Gal during wakefulness, but increased in wake-active cells during sleep. CONCLUSION Our study identified transcriptomic responses of the galanin neurons in the ventrolateral preoptic nucleus during sleep and sleep deprivation. Data indicate that VLPO contains mainly sleep-active inhibitory galaninergic neurons. The VLPO galanin neurons show responses to sleep and wake similar to wake-active regions, indicating these responses, such as ER stress and cold-inducible RNA-binding proteins, are systemic affecting all neuronal populations. Region-specific differences in sleep/wake responses were also identified, in particular DNA repair. Our study expands knowledge about the transcriptional response of a distinct group of neurons essential for sleep.
Collapse
Affiliation(s)
- Xiaofeng Guo
- Division of Sleep Medicine/Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, 19104, USA
| | - Xiaoling Gao
- Department of Respiratory and Critical Care Medicine, Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Brendan T Keenan
- Division of Sleep Medicine/Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, 19104, USA
| | - Jingxu Zhu
- Division of Sleep Medicine/Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, 19104, USA
| | - Dimitra Sarantopoulou
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, 19104, USA
- Present address at National Institute on Aging, National Institutes of Health, Baltimore, 21224, USA
| | - Jie Lian
- Division of Sleep Medicine/Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, 19104, USA
| | - Raymond J Galante
- Division of Sleep Medicine/Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, 19104, USA
| | - Gregory R Grant
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, 19104, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, 19104, USA
| | - Allan I Pack
- Division of Sleep Medicine/Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, 19104, USA.
| |
Collapse
|
35
|
Abstract
Sleep maintains the function of the entire body through homeostasis. Chronic sleep deprivation (CSD) is a prime health concern in the modern world. Previous reports have shown that CSD has profound negative effects on brain vasculature at both the cellular and molecular levels, and that this is a major cause of cognitive dysfunction and early vascular ageing. However, correlations among sleep deprivation (SD), brain vascular changes and ageing have barely been looked into. This review attempts to correlate the alterations in the levels of major neurotransmitters (acetylcholine, adrenaline, GABA and glutamate) and signalling molecules (Sirt1, PGC1α, FOXO, P66shc, PARP1) in SD and changes in brain vasculature, cognitive dysfunction and early ageing. It also aims to connect SD-induced loss in the number of dendritic spines and their effects on alterations in synaptic plasticity, cognitive disabilities and early vascular ageing based on data available in scientific literature. To the best of our knowledge, this is the first article providing a pathophysiological basis to link SD to brain vascular ageing.
Collapse
|
36
|
Squire T, Ryan A, Bernard S. Radioprotective effects of induced astronaut torpor and advanced propulsion systems during deep space travel. LIFE SCIENCES IN SPACE RESEARCH 2020; 26:105-113. [PMID: 32718676 DOI: 10.1016/j.lssr.2020.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Human metabolic suppression is not a new concept, with 1950s scientific literature and movies demonstrating its potential use for deep space travel (Hock, 1960). An artificially induced state of metabolic suppression in the form of torpor would improve the amount of supplies required and therefore lessen weight and fuel required for missions to Mars and beyond (Choukèr et al., 2019). Transfer habitats for human stasis to Mars have been conceived (Bradford et al., 2018). Evidence suggests that animals, when hibernating, demonstrate relative radioprotection compared to their awake state. Experiments have also demonstrated relative radioprotection in conditions of hypothermia as well as during sleep (Bellesi et al., 2016 and Andersen et al., 2009). Circadian rhythm disrupted cells also appear to be more susceptible to radiation damage compared to those that are under a rhythmic control (Dakup et al., 2018). An induced torpor state for astronauts on deep space missions may provide a biological radioprotective state due to a decreased metabolism and hypothermic conditions. A regular enforced circadian rhythm might further limit DNA damage from radiation. The As Low As Reasonably Achievable (A.L.A.R.A.) radiation protection concept defines time, distance and shielding as ways to decrease radiation exposure. Whilst distance cannot be altered in space and shielding either passively or actively may be beneficial, time of exposure may be drastically decreased with improved propulsion systems. Whilst chemical propulsion systems have superior thrust to other systems, they lack high changes in velocity and fuel efficiency which can be achieved with nuclear or electric based propulsion systems. Radiation toxicity could be limited by reduced transit times, combined with the radioprotective effects of enforced circadian rhythms during a state of torpor or hibernation. OBJECTIVES 1. Investigate how the circadian clock and body temperature may contribute to radioprotection during human torpor on deep space missions. 2. Estimate radiation dose received by astronauts during a transit to Mars with varying propulsion systems. METHODS We simulated three types of conditions to investigate the potential radioprotective effect of the circadian clock and decreased temperature on cells being exposed to radiation such that may be the case during astronaut torpor. These conditions were: - Circadian clock strength: strong vs weak. - Light exposure: dark-dark vs light-dark cycle - Body temperature: 37C vs hypothermia vs torpor. We estimated transit times for a mission to Mars from Earth utilizing chemical, nuclear and electrical propulsion systems. Transit times were generated using the General Mission Analysis Tool (GMAT) and Matlab. These times were then input into the National Aeronautics and Space Administration (NASA) Online Tool for the Assessment of Radiation In Space (OLTARIS) computer simulator to estimate doses received by an astronaut for the three propulsion methods. RESULTS Our simulation demonstrated an increase in radioprotection with decreasing temperature. The greatest degree of radioprotection was shown in cells that maintained a strong circadian clock during torpor. This was in contrast to relatively lower radioprotection in cells with a weak clock during normothermia. We were also able to demonstrate that if torpor weakened the circadian clock, a protective effect could be partially restored by an external drive such as lighting schedules to aid entrainment i.e.: Blue light exposure for periods of awake and no light for rest times For the propulsion simulation, estimated transit times from Earth to Mars were 258 days for chemical propulsion with 165.9mSv received, 209 days for nuclear propulsion with 134.4mSv received and 80 days for electrical propulsion with 51.4mSv received. CONCLUSION A state of torpor for astronauts on deep space missions may not only improve weight, fuel and storage requirements but also provide a potential biological radiation protection strategy. Moreover, maintaining a controlled circadian rhythm during torpor conditions may aid radioprotection. In the not too distant future, propulsion techniques will be improved to limit transit time and hence decrease radiation dose to astronauts. Limiting exposure time and enhancing physiological radioprotection during transit could provide superior radioprotection benefits compared with active and passive radiation shielding strategies alone.
Collapse
Affiliation(s)
- T Squire
- The Canberra Hospital, Department of Radiation Oncology. Garran. Australian Capital Territory, Australia; University of Notre Dame Australia, School of Medicine. Darlinghurst, New South Wales, Australia.
| | - A Ryan
- University of Sydney, Applied and Plasma Physics Research Group. School of Aerospace Mechanical and Mechatronic Engineering, Camperdown, NSW 2006. Australia
| | - S Bernard
- Université de Lyon. CNRS UMR5208 Institut Camille Jordan. Villeurbanne, France & Inria Grenoble, France
| |
Collapse
|
37
|
Thomas CW, Guillaumin MCC, McKillop LE, Achermann P, Vyazovskiy VV. Global sleep homeostasis reflects temporally and spatially integrated local cortical neuronal activity. eLife 2020; 9:e54148. [PMID: 32614324 PMCID: PMC7332296 DOI: 10.7554/elife.54148] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 06/19/2020] [Indexed: 12/16/2022] Open
Abstract
Sleep homeostasis manifests as a relative constancy of its daily amount and intensity. Theoretical descriptions define 'Process S', a variable with dynamics dependent on global sleep-wake history, and reflected in electroencephalogram (EEG) slow wave activity (SWA, 0.5-4 Hz) during sleep. The notion of sleep as a local, activity-dependent process suggests that activity history must be integrated to determine the dynamics of global Process S. Here, we developed novel mathematical models of Process S based on cortical activity recorded in freely behaving mice, describing local Process S as a function of the deviation of neuronal firing rates from a locally defined set-point, independent of global sleep-wake state. Averaging locally derived Processes S and their rate parameters yielded values resembling those obtained from EEG SWA and global vigilance states. We conclude that local Process S dynamics reflects neuronal activity integrated over time, and global Process S reflects local processes integrated over space.
Collapse
Affiliation(s)
- Christopher W Thomas
- Department of Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
| | | | - Laura E McKillop
- Department of Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
| | - Peter Achermann
- Institute of Pharmacology and Toxicology, University of ZurichZurichSwitzerland
- The KEY Institute for Brain-Mind Research, Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of PsychiatryZurichSwitzerland
| | - Vladyslav V Vyazovskiy
- Department of Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
38
|
Vaccaro A, Kaplan Dor Y, Nambara K, Pollina EA, Lin C, Greenberg ME, Rogulja D. Sleep Loss Can Cause Death through Accumulation of Reactive Oxygen Species in the Gut. Cell 2020; 181:1307-1328.e15. [PMID: 32502393 DOI: 10.1016/j.cell.2020.04.049] [Citation(s) in RCA: 283] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 01/15/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023]
Abstract
The view that sleep is essential for survival is supported by the ubiquity of this behavior, the apparent existence of sleep-like states in the earliest animals, and the fact that severe sleep loss can be lethal. The cause of this lethality is unknown. Here we show, using flies and mice, that sleep deprivation leads to accumulation of reactive oxygen species (ROS) and consequent oxidative stress, specifically in the gut. ROS are not just correlates of sleep deprivation but drivers of death: their neutralization prevents oxidative stress and allows flies to have a normal lifespan with little to no sleep. The rescue can be achieved with oral antioxidant compounds or with gut-targeted transgenic expression of antioxidant enzymes. We conclude that death upon severe sleep restriction can be caused by oxidative stress, that the gut is central in this process, and that survival without sleep is possible when ROS accumulation is prevented. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Alexandra Vaccaro
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Yosef Kaplan Dor
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Keishi Nambara
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Cindy Lin
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Dragana Rogulja
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
39
|
Lopatina OL, Morgun AV, Gorina YV, Salmin VV, Salmina AB. Current approaches to modeling the virtual reality in rodents for the assessment of brain plasticity and behavior. J Neurosci Methods 2020; 335:108616. [PMID: 32007483 DOI: 10.1016/j.jneumeth.2020.108616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 11/17/2022]
Abstract
Virtual reality (VR) and augmented reality (AR) have become valuable tools to study brains and behaviors resulting in development of new methods of diagnostics and treatment. Neurodegenerаtion is one of the best examples demonstrating efficacy of VR/АR technologies in modern neurology. Development of novel VR systems for rodents and combination of VR tools with up-to-date imaging techniques (i.e. MRI, imaging of neural networks etc.), brain electrophysiology (EEG, patch-clamp), precise analytics (microdialysis) allowed implementing of VR protocols into the animal neurobiology to study brain plasticity, sensorimotor integration, spatial navigation, memory, and decision-making. VR/AR for rodents is а young field of experimental neuroscience and has already provided more consistent testing conditions, less human-animal interaction, opportunities to use a wider variety of experimental parameters. Here we discuss present and future perspectives of using VR/AR to assess brain plasticity, neurogenesis and complex behavior in rodent and human study, and their advantages for translational neuroscience.
Collapse
Affiliation(s)
- Olga L Lopatina
- Department of Biochemistry, Medical, Pharmaceutical, and Toxicological Chemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia; Laboratory for Social Brain Studies, Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.
| | - Andrey V Morgun
- Department of Biochemistry, Medical, Pharmaceutical, and Toxicological Chemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia; Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Yana V Gorina
- Department of Biochemistry, Medical, Pharmaceutical, and Toxicological Chemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia; Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Vladimir V Salmin
- Department of Biochemistry, Medical, Pharmaceutical, and Toxicological Chemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia; Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Alla B Salmina
- Department of Biochemistry, Medical, Pharmaceutical, and Toxicological Chemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia; Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| |
Collapse
|
40
|
Abstract
For many decades, sleep researchers have sought to determine which species 'have' rapid eye movement (REM) sleep. In doing so, they relied predominantly on a template derived from the expression of REM sleep in the adults of a small number of mammalian species. Here, we argue for a different approach that focuses less on a binary decision about haves and have nots, and more on the diverse expression of REM sleep components over development and across species. By focusing on the components of REM sleep and discouraging continued reliance on a restricted template, we aim to promote a richer and more biologically grounded developmental-comparative approach that spans behavioral, physiological, neural, and ecological domains.
Collapse
Affiliation(s)
- Mark S Blumberg
- Department of Psychological and Brain Sciences, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA.
| | - John A Lesku
- School of Life Sciences, La Trobe University, Melbourne 3086, Australia
| | - Paul-Antoine Libourel
- Neurosciences Research Center of Lyon, CNRS UMR5292, INSERM U1028, University Claude Bernard Lyon 1 Neurocampus, 95 Boulevard Pinel, 69675 BRON, France
| | - Markus H Schmidt
- Department of Neurology, Bern University Hospital (Inselspital), University of Bern, Freiburgstrasse 18, 3010 Bern, Switzerland; Ohio Sleep Medicine Institute, 4975 Bradenton Avenue, Dublin, OH 43017, USA
| | - Niels C Rattenborg
- Avian Sleep Group, Max Planck Institute for Ornithology, Haus 5, Seewiesen 82319, Germany.
| |
Collapse
|
41
|
Abstract
Sleep is a universal phenomenon occurring in all species studied thus far. Sleep loss results in adverse physiological effects at both the organismal and cellular levels suggesting an adaptive role for sleep in the maintenance of overall health. This review examines the bidirectional relationship between sleep and cellular stress. Cellular stress in this review refers to a shift in cellular homeostasis in response to an external stressor. Studies that illustrate the fact that sleep loss induces cellular stress and those that provide evidence that cellular stress in turn promotes sleep will be discussed.
Collapse
Affiliation(s)
- Julie A Williams
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Nirinjini Naidoo
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Division of Sleep Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
42
|
Sengupta A, Weljie AM. Metabolism of sleep and aging: Bridging the gap using metabolomics. NUTRITION AND HEALTHY AGING 2019; 5:167-184. [PMID: 31984245 PMCID: PMC6971829 DOI: 10.3233/nha-180043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sleep is a conserved behavior across the evolutionary timescale. Almost all known animal species demonstrate sleep or sleep like states. Despite extensive study, the mechanistic aspects of sleep need are not very well characterized. Sleep appears to be needed to generate resources that are utilized during the active stage/wakefulness as well as clearance of waste products that accumulate during wakefulness. From a metabolic perspective, this means sleep is crucial for anabolic activities. Decrease in anabolism and build-up of harmful catabolic waste products is also a hallmark of aging processes. Through this lens, sleep and aging processes are remarkably parallel- for example behavioral studies demonstrate an interaction between sleep and aging. Changes in sleep behavior affect neurocognitive phenotypes important in aging such as learning and memory, although the underlying connections are largely unknown. Here we draw inspiration from the similar metabolic effects of sleep and aging and posit that large scale metabolic phenotyping, commonly known as metabolomics, can shed light to interleaving effects of sleep, aging and progression of diseases related to aging. In this review, data from recent sleep and aging literature using metabolomics as principal molecular phenotyping methods is collated and compared. The present data suggests that metabolic effects of aging and sleep also demonstrate similarities, particularly in lipid metabolism and amino acid metabolism. Some of these changes also overlap with metabolomic data available from clinical studies of Alzheimer's disease. Together, metabolomic technologies show promise in elucidating interleaving effects of sleep, aging and progression of aging disorders at a molecular level.
Collapse
Affiliation(s)
- Arjun Sengupta
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, Philadelphia, PA, USA
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Aalim M. Weljie
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, Philadelphia, PA, USA
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
43
|
Guo X, Keenan BT, Sarantopoulou D, Lim DC, Lian J, Grant GR, Pack AI. Age attenuates the transcriptional changes that occur with sleep in the medial prefrontal cortex. Aging Cell 2019; 18:e13021. [PMID: 31549781 PMCID: PMC6826131 DOI: 10.1111/acel.13021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/13/2019] [Accepted: 07/14/2019] [Indexed: 12/29/2022] Open
Abstract
Sleep abnormalities are common with aging. Studies show that sleep plays important roles in brain functions, and loss of sleep is associated with increased risks for neurological diseases. Here, we used RNA sequencing to explore effects of age on transcriptome changes between sleep and sleep deprivation (SD) in medial prefrontal cortex and found that transcriptional changes with sleep are attenuated in old. In particular, old mice showed a 30% reduction in the number of genes significantly altered between sleep/wake and, in general, had smaller magnitudes of changes in differentially expressed genes compared to young mice. Gene ontology analysis revealed differential age effects on certain pathways. Compared to young mice, many of the wake‐active functions were similarly induced by SD in old mice, whereas many of the sleep‐active pathways were attenuated in old mice. We found similar magnitude of changes in synaptic homeostasis genes (Fos, Arc, and Bdnf) induced by SD, suggesting intact synaptic upscaling on the transcript level during extended wakefulness with aging. However, sleep‐activated processes, such as DNA repair, synaptogenesis, and axon guidance, were sensitive to the effect of aging. Old mice expressed elevated levels of immune response genes when compared to young mice, and enrichment analysis using cell‐type‐specific markers indicated upregulation of microglia and oligodendrocyte genes in old mice. Moreover, gene sets of the two cell types showed age‐specific sleep/wake regulation. Ultimately, this study enhances understanding of the transcriptional changes with sleep and aging, providing potential molecular targets for future studies of age‐related sleep abnormalities and neurological disorders.
Collapse
Affiliation(s)
- Xiaofeng Guo
- Division of Sleep Medicine Department of Medicine University of Pennsylvania Philadelphia Pennsylvania
| | - Brendan T. Keenan
- Division of Sleep Medicine Department of Medicine University of Pennsylvania Philadelphia Pennsylvania
| | - Dimitra Sarantopoulou
- Institute for Translational Medicine and Therapeutics University of Pennsylvania Philadelphia Pennsylvania
| | - Diane C. Lim
- Division of Sleep Medicine Department of Medicine University of Pennsylvania Philadelphia Pennsylvania
| | - Jie Lian
- Division of Sleep Medicine Department of Medicine University of Pennsylvania Philadelphia Pennsylvania
| | - Gregory R. Grant
- Institute for Translational Medicine and Therapeutics University of Pennsylvania Philadelphia Pennsylvania
- Department of Genetics University of Pennsylvania Philadelphia Pennsylvania
| | - Allan I. Pack
- Division of Sleep Medicine Department of Medicine University of Pennsylvania Philadelphia Pennsylvania
| |
Collapse
|
44
|
A randomized, double-blind, placebo-controlled trial of blue wavelength light exposure on sleep and recovery of brain structure, function, and cognition following mild traumatic brain injury. Neurobiol Dis 2019; 134:104679. [PMID: 31751607 DOI: 10.1016/j.nbd.2019.104679] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/20/2019] [Accepted: 11/15/2019] [Indexed: 01/17/2023] Open
Abstract
Sleep and circadian rhythms are among the most powerful but least understood contributors to cognitive performance and brain health. Here we capitalize on the circadian resetting effect of blue-wavelength light to phase shift the sleep patterns of adult patients (aged 18-48 years) recovering from mild traumatic brain injury (mTBI), with the aim of facilitating recovery of brain structure, connectivity, and cognitive performance. During a randomized, double-blind, placebo-controlled trial of 32 adults with a recent mTBI, we compared 6-weeks of daily 30-min pulses of blue light (peak λ = 469 nm) each morning versus amber placebo light (peak λ = 578 nm) on neurocognitive and neuroimaging outcomes, including gray matter volume (GMV), resting-state functional connectivity, directed connectivity using Granger causality, and white matter integrity using diffusion tensor imaging (DTI). Relative to placebo, morning blue light led to phase-advanced sleep timing, reduced daytime sleepiness, and improved executive functioning, and was associated with increased volume of the posterior thalamus (i.e., pulvinar), greater thalamo-cortical functional connectivity, and increased axonal integrity of these pathways. These findings provide insight into the contributions of the circadian and sleep systems in brain repair and lay the groundwork for interventions targeting the retinohypothalamic system to facilitate injury recovery.
Collapse
|
45
|
|
46
|
On the cause of sleep: Protein fragments, the concept of sentinels, and links to epilepsy. Proc Natl Acad Sci U S A 2019; 116:10773-10782. [PMID: 31085645 DOI: 10.1073/pnas.1904709116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The molecular-level cause of sleep is unknown. In 2012, we suggested that the cause of sleep stems from cumulative effects of numerous intracellular and extracellular protein fragments. According to the fragment generation (FG) hypothesis, protein fragments (which are continually produced through nonprocessive cleavages by intracellular, intramembrane, and extracellular proteases) can be beneficial but toxic as well, and some fragments are eliminated slowly during wakefulness. We consider the FG hypothesis and propose that, during wakefulness, the degradation of accumulating fragments is delayed within natural protein aggregates such as postsynaptic densities (PSDs) in excitatory synapses and in other dense protein meshworks, owing to an impeded diffusion of the ∼3,000-kDa 26S proteasome. We also propose that a major function of sleep involves a partial and reversible expansion of PSDs, allowing an accelerated destruction of PSD-localized fragments by the ubiquitin/proteasome system. Expansion of PSDs would alter electrochemistry of synapses, thereby contributing to a decreased neuronal firing during sleep. If so, the loss of consciousness, a feature of sleep, would be the consequence of molecular processes (expansions of protein meshworks) that are required for degradation of protein fragments. We consider the concept of FG sentinels, which signal to sleep-regulating circuits that the levels of fragments are going up. Also discussed is the possibility that protein fragments, which are known to be overproduced during an epileptic seizure, may contribute to postictal sleep and termination of seizures. These and related suggestions, described in the paper, are compatible with current evidence about sleep and lead to testable predictions.
Collapse
|
47
|
Zada D, Bronshtein I, Lerer-Goldshtein T, Garini Y, Appelbaum L. Sleep increases chromosome dynamics to enable reduction of accumulating DNA damage in single neurons. Nat Commun 2019; 10:895. [PMID: 30837464 PMCID: PMC6401120 DOI: 10.1038/s41467-019-08806-w] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/30/2019] [Indexed: 11/09/2022] Open
Abstract
Sleep is essential to all animals with a nervous system. Nevertheless, the core cellular function of sleep is unknown, and there is no conserved molecular marker to define sleep across phylogeny. Time-lapse imaging of chromosomal markers in single cells of live zebrafish revealed that sleep increases chromosome dynamics in individual neurons but not in two other cell types. Manipulation of sleep, chromosome dynamics, neuronal activity, and DNA double-strand breaks (DSBs) showed that chromosome dynamics are low and the number of DSBs accumulates during wakefulness. In turn, sleep increases chromosome dynamics, which are necessary to reduce the amount of DSBs. These results establish chromosome dynamics as a potential marker to define single sleeping cells, and propose that the restorative function of sleep is nuclear maintenance.
Collapse
Affiliation(s)
- D Zada
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - I Bronshtein
- Department of Physics and the Institute for Nanotechnology, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - T Lerer-Goldshtein
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Y Garini
- Department of Physics and the Institute for Nanotechnology, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - L Appelbaum
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
| |
Collapse
|
48
|
Fuller PM, Eikermann M. Genomic consequences of sleep restriction: the devil is in the details. Anaesthesia 2019; 74:417-419. [PMID: 30383307 DOI: 10.1111/anae.14479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2018] [Indexed: 11/28/2022]
Affiliation(s)
- P M Fuller
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - M Eikermann
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
49
|
|
50
|
Cheung V, Yuen VM, Wong GTC, Choi SW. The effect of sleep deprivation and disruption on DNA damage and health of doctors. Anaesthesia 2018; 74:434-440. [PMID: 30675716 DOI: 10.1111/anae.14533] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2018] [Indexed: 01/25/2023]
Abstract
Observational studies have highlighted the detrimental health effects of shift work. The mechanisms through which acute sleep deprivation may lead to chronic disease have not been elucidated, but it is thought that increased DNA damage or decreased repair can lead to disease. The objective of this study was to examine the effects of acute sleep deprivation on DNA damage. This was a cross-sectional observational study on 49 healthy, full-time doctors. Baseline blood was sampled from each participant after three consecutive days of adequate sleep. Participants (n = 24) who were required to work overnight on-site had additional blood sampled on a morning after acute sleep deprivation. DNA damage and expression of DNA repair genes were quantified. Information on health, working patterns and sleep diaries were collected. Independent t-tests were used to compare differences between groups and standardised mean differences expressed as Cohen's d. Overnight on-site call participants had lower baseline DNA repair gene expression and more DNA breaks than participants who did not work overnight (d = 1.47, p = 0.0001; and 1.48, p = 0.0001, respectively). In overnight on-site call participants, after acute sleep deprivation, DNA repair gene expression was decreased (d = 0.90, p = 0.0001) and DNA breaks were increased (d = 0.87, p = 0.0018). Sleep deprivation in shift workers is associated with adverse health consequences. Increased DNA damage has been linked to the development of chronic disease. This study demonstrates that disrupted sleep is associated with DNA damage. Furthermore, larger prospective studies looking at relationships between DNA damage and chronic disease development are warranted, and methods to relieve, or repair, DNA damage linked to sleep deprivation should be investigated.
Collapse
Affiliation(s)
- V Cheung
- Department of Anaesthesia, Pamela Youde Nethersole Eastern Hospital, Hong Kong, Hong Kong SAR
| | - V M Yuen
- Department of Anaesthesiology, Queen Mary Hospital, Hong Kong, Hong Kong SAR
| | - G T C Wong
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong SAR
| | - S W Choi
- Department of Anaesthesiology, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| |
Collapse
|