1
|
Satarzadeh N, Saraee A, Hatif Mahdi Z, Sadeghi Dousari A, Armanpour M, Taati Moghadam M. Mechanisms in colistin-resistant superbugs transmissible from veterinary, livestock and animal food products to humans. IRANIAN JOURNAL OF VETERINARY RESEARCH 2025; 25:298-311. [PMID: 40386099 PMCID: PMC12085205 DOI: 10.22099/ijvr.2024.50497.7453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 12/18/2024] [Indexed: 05/20/2025]
Abstract
In the era of antibiotic resistance, where multidrug-resistant (MDR), extensively drug resistant (XDR), and pan-drug resistant (PDR) Gram-negative infections are prevalent, it is crucial to identify the primary sources of antibiotic resistance, understand resistant mechanisms, and develop strategies to combat these mechanisms. The emergence of resistance to last-resort antibiotics like colistin has sparked a war between humanity and resistant bacteria, leaving humanity struggling to find effective countermeasures. Although colistin is used as a highly toxic antibiotic in infections that are not treated with routine antibiotics, its widespread use in animal breeding and veterinary medicine has contributed to the spread of colistin-resistant bacteria, plasmid-borne colistin resistance genes (mcr), and antibiotic residues in livestock and animal-derived foods. These sources can potentially transmit colistin resistance to humans through various routes. Therefore, managing the use of colistin in livestock and animal foods, implementing strict monitoring, and establishing guidelines for its proper use are essential to prevent the escalation of colistin resistance. This review article discusses the latest mechanisms of colistin antibiotic resistance, particularly biofilm production as a public health threat, the livestock and animal food sources of this resistance, and the routes of transmission to humans.
Collapse
Affiliation(s)
- N. Satarzadeh
- Ph.D. in Pharmaceutical Biotechnology, Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
| | - A. Saraee
- Graduated from College of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Z. Hatif Mahdi
- Department of Pathological Analysis, College of Applied Medical Sciences, University of Karbala, Karbala, Iraq
| | - A. Sadeghi Dousari
- Ph.D. in Bacteriology, Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
| | - M. Armanpour
- Department of Pharmacy, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - M. Taati Moghadam
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
2
|
Deng L, Lv LC, Tu J, Yue C, Bai Y, He X, Liao M, Liu JH. Clonal spread of blaNDM-1-carrying Salmonella enterica serovar Typhimurium clone ST34 and wide spread of IncHI2/ST3-blaNDM-5 plasmid in China. J Antimicrob Chemother 2024; 79:1900-1909. [PMID: 38943539 DOI: 10.1093/jac/dkae178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/13/2024] [Indexed: 07/01/2024] Open
Abstract
OBJECTIVES To characterize blaNDM-carrying Salmonella recovered from a pig slaughterhouse. METHODS In this study, 46 environment samples were collected from a slaughterhouse in China, and screened for carbapenem-resistant Enterobacterales. WGS, antimicrobial susceptibility testing and conjugation experiments were carried out to identify the isolates' resistance phenotypes and genetic characteristics. The phylogenetic relatedness of the Salmonella isolates obtained in this study and Salmonella (ST34 and ST29) in GenBank was determined. RESULTS Two ST34 Salmonella Typhimurium and one ST29 Salmonella Stanley, recovered from three environmental samples (6.52%), were positive for blaNDM-1 and blaNDM-5, respectively. The two ST34 S. Typhimurium strains exhibited a close relationship (10-36 SNPs) with two human-derived blaNDM-1-bearing isolates from China (Hong Kong and Guangxi Province) and two blaNDM-negative ST34 Salmonella strains from the UK. The blaNDM-1 genes were located on IncHI2/ST3 plasmids. The capture of blaNDM-1 by the IncHI2/ST3 plasmid seems to be due to homologous recombination mediated by circular structures, as the genetic arrangements of the blaNDM-1 gene contain two IS26 elements of the same orientation. The blaNDM-5 gene was also carried by the IncHI2/ST3 plasmid, which shares highly similar structures with other blaNDM-5-bearing IncHI2/ST3 plasmids from other sources (fish, chicken, duck, human). CONCLUSIONS This is the first report of a blaNDM-5-carrying IncHI2/ST3 plasmid in Salmonella. The clonal spread of NDM-1-producing ST34 S. Typhimurium across human and animal-associated environments, and the widespread dissemination of epidemic blaNDM-5-carrying IncHI2/ST3 plasmids among Enterobacteriaceae in China indicate the potential of further dissemination of blaNDM among Salmonella, which poses a threat to public health.
Collapse
Affiliation(s)
- Limin Deng
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China
| | - Lu-Chao Lv
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China
| | - Jieying Tu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China
| | - Chao Yue
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China
| | - Yuman Bai
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China
| | - Xiaotong He
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China
| | - Min Liao
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China
| | - Jian-Hua Liu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China
| |
Collapse
|
3
|
Gómez-Baltazar A, Godínez-Oviedo A, Vázquez-Marrufo G, Vázquez-Garcidueñas MS, Hernández-Iturriaga M. Genomic analysis of the MLST population structure and antimicrobial resistance genes associated with Salmonella enterica in Mexico. Genome 2023; 66:319-332. [PMID: 37478495 DOI: 10.1139/gen-2023-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Salmonella enterica is one of the most commonly reported foodborne pathogens by public health agencies worldwide. In this study, the multilocus sequence typing (MLST) population structure and frequency of antimicrobial resistance (AMR) genes were evaluated in S. enterica strains from Mexico (n = 2561). The most common sources of isolation were food (44.28%), environment (27.41%), animal-related (24.83%), and human (3.48%). The most prevalent serovars were Newport (8.51%), Oranienburg (7.03%), Anatum (5.78%), Typhimurium (5.12%), and Infantis (4.57%). As determined by the 7-gene MLST scheme, the most frequent sequence types were ST23, ST64, and ST32. The core genome MLST scheme identified 132 HC2000 and 195 HC900 hierarchical clusters, with the HC2000_2 cluster being the most prevalent in Mexico (n = 256). A total of 78 different AMR genes belonging to 13 antimicrobial classes were detected in 638 genomic assemblies of S. enterica. The most frequent class was aminoglycosides (31.76%), followed by tetracyclines (12.53%) and sulfonamides (11.91%). These results can help public health agencies in Mexico prioritize their efforts and resources to increase the genomic sequencing of circulating Salmonella strains. Additionally, they provide valuable information for local and global public health efforts to reduce the impact of foodborne diseases and AMR.
Collapse
Affiliation(s)
- Adrián Gómez-Baltazar
- Departamento de Investigación y Posgrado en Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Santiago de Querétaro C.P. 76010, Querétaro, Mexico
| | - Angélica Godínez-Oviedo
- Departamento de Investigación y Posgrado en Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Santiago de Querétaro C.P. 76010, Querétaro, Mexico
| | - Gerardo Vázquez-Marrufo
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro C.P. 58893, Michoacán, Mexico
| | - Ma Soledad Vázquez-Garcidueñas
- División de Estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez," Universidad Michoacana de San Nicolás de Hidalgo, Morelia C.P. 58020, Michoacán, Mexico
| | - Montserrat Hernández-Iturriaga
- Departamento de Investigación y Posgrado en Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Santiago de Querétaro C.P. 76010, Querétaro, Mexico
| |
Collapse
|
4
|
Anyanwu MU, Jaja IF, Okpala COR, Njoga EO, Okafor NA, Oguttu JW. Mobile Colistin Resistance ( mcr) Gene-Containing Organisms in Poultry Sector in Low- and Middle-Income Countries: Epidemiology, Characteristics, and One Health Control Strategies. Antibiotics (Basel) 2023; 12:1117. [PMID: 37508213 PMCID: PMC10376608 DOI: 10.3390/antibiotics12071117] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/30/2023] Open
Abstract
Mobile colistin resistance (mcr) genes (mcr-1 to mcr-10) are plasmid-encoded genes that threaten the clinical utility of colistin (COL), one of the highest-priority critically important antibiotics (HP-CIAs) used to treat infections caused by multidrug-resistant and extensively drug-resistant bacteria in humans and animals. For more than six decades, COL has been used largely unregulated in the poultry sector in low- and middle-income countries (LMICs), and this has led to the development/spread of mcr gene-containing bacteria (MGCB). The prevalence rates of mcr-positive organisms from the poultry sector in LMICs between January 1970 and May 2023 range between 0.51% and 58.8%. Through horizontal gene transfer, conjugative plasmids possessing insertion sequences (ISs) (especially ISApl1), transposons (predominantly Tn6330), and integrons have enhanced the spread of mcr-1, mcr-2, mcr-3, mcr-4, mcr-5, mcr-7, mcr-8, mcr-9, and mcr-10 in the poultry sector in LMICs. These genes are harboured by Escherichia, Klebsiella, Proteus, Salmonella, Cronobacter, Citrobacter, Enterobacter, Shigella, Providencia, Aeromonas, Raoultella, Pseudomonas, and Acinetobacter species, belonging to diverse clones. The mcr-1, mcr-3, and mcr-10 genes have also been integrated into the chromosomes of these bacteria and are mobilizable by ISs and integrative conjugative elements. These bacteria often coexpress mcr with virulence genes and other genes conferring resistance to HP-CIAs, such as extended-spectrum cephalosporins, carbapenems, fosfomycin, fluoroquinolone, and tigecycline. The transmission routes and dynamics of MGCB from the poultry sector in LMICs within the One Health triad include contact with poultry birds, feed/drinking water, manure, poultry farmers and their farm workwear, farming equipment, the consumption and sale of contaminated poultry meat/egg and associated products, etc. The use of pre/probiotics and other non-antimicrobial alternatives in the raising of birds, the judicious use of non-critically important antibiotics for therapy, the banning of nontherapeutic COL use, improved vaccination, biosecurity, hand hygiene and sanitization, the development of rapid diagnostic test kits, and the intensified surveillance of mcr genes, among others, could effectively control the spread of MGCB from the poultry sector in LMICs.
Collapse
Affiliation(s)
| | - Ishmael Festus Jaja
- Department of Livestock and Pasture Science, University of Fort Hare, Alice 5700, South Africa
| | - Charles Odilichukwu R Okpala
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
- UGA Cooperative Extension, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Emmanuel Okechukwu Njoga
- Department of Veterinary Public Health and Preventive Medicine, University of Nigeria, Nsukka 400001, Nigeria
| | | | - James Wabwire Oguttu
- Department of Agriculture and Animal Health, Florida Campus, University of South Africa, Johannesburg 1709, South Africa
| |
Collapse
|
5
|
Carriage and Transmission of mcr-1 in Salmonella Typhimurium and Its Monophasic 1,4,[5],12:i:- Variants from Diarrheal Outpatients: a 10-Year Genomic Epidemiology in Guangdong, Southern China. Microbiol Spectr 2023; 11:e0311922. [PMID: 36629419 PMCID: PMC9927551 DOI: 10.1128/spectrum.03119-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The banning of colistin as a feed additive for food-producing animals in mainland China in 2017 caused the decline in the prevalence of Escherichia coli-mobilized colistin resistance (mcr-1) in China. Salmonella Typhimurium and its monophasic 1,4,[5],12:i:- variants are also the main species associated with the spread of mcr-1; however, the evidence of the prevalence and transmission of mcr-1 among Salmonella is lacking. Herein, the 5,354 Salmonella isolates recovered from fecal samples of diarrheal patients in Guangdong, Southern China, from 2009 to 2019 were screened for colistin resistance and mcr-1, and mcr-1-positive isolates were characterized based on whole-genome sequencing (WGS) data. Relatively high prevalence rates of colistin resistance and mcr-1 (4.05%/4.50%) were identified, and more importantly, the prevalence trends of colistin-resistant and mcr-1-positive Salmonella isolates had a similar dynamic profile, i.e., both were first detected in 2012 and rapidly increased during 2013 to 2016, followed by a sharp decrease since 2017. WGS and phylogenetic analysis indicate that, whether before or after the ban, the persistence and cross-hospital transmission of mcr-1 are primarily determined by IncHI2 plasmids with similar backbones and sequence type 34 (ST34) Salmonella in specific clades that are associated with a high prevalence of IncHI2 plasmids and clinically important antimicrobial resistance genes, including blaCTX-M-14-fosA3-oqxAB-floR genotypes. Our work reveals the difference in the prevalence rate of mcr-1 in clinical Salmonella before and after the Chinese colistin ban, whereas mcr-1 transmission was closely linked to multidrug-resistant IncHI2 plasmid and ST34 Salmonella across diverse hospitals over 10 years. Continued surveillance is required to explore the factors related to a sharp decrease in mcr-1 after the recent ban and determine whether the ban has affected the carriage of mcr-1 in Salmonella circulating in the health care system. IMPORTANCE Colistin is one of the last-line antibiotics for the clinical treatment of Enterobacteriaceae. However, the emergence of the mobilized colistin resistance (mcr-1) gene has spread throughout the entire human health system and largely threatens the usage of colistin in the clinical setting. In this study, we investigated the existence of mcr-1 in clinical Salmonella from a 10-year continuous surveillance and genomic study. Overall, the colistin resistance rate and mcr-1 carriage of Salmonella in tertiary hospitals in Guangdong (2009 to 2019) were relatively high and, importantly, rapidly increased from 2013 to 2016 and significantly decreased after the Chinese colistin withdrawal. However, before or after the ban, the MDR IncHI2 plasmid with a similar backbone and ST34 Salmonella were the main vectors involved in the spread of mcr-1. Interestingly, these Chinese mcr-1-carrying Salmonella obtain phylogenetically and phylogeographically distinct patterns compared with those from other continents and are frequently associated with clinically important ARGs including the extended-spectrum β-lactamases. Our data confirmed that the national stewardship intervention seems to be successful in blocking antibiotic resistance determinants and that continued surveillance of colistin resistance in clinical settings, farm animals, and related products is necessary.
Collapse
|
6
|
Emergence of coexistence of a novel bla NDM-5-harbouring IncI1-I plasmid and an mcr-1.1-harbouring IncHI2 plasmid in a clinical Escherichia coli isolate in China. J Infect Public Health 2022; 15:1363-1369. [PMID: 36334462 DOI: 10.1016/j.jiph.2022.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/18/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Co-harbouring of carbapenem and colistin resistance genes in multidrug-resistant Enterobacterales strains poses a serious public health problem. In this study, an MCR-1.1 and NDM-5 coproducing Escherichia coli strain named EC6563 was isolated and characterized. OBJECTIVES This study aimed to characterize a clinical carbapenem-resistant E. coli isolate which co-harbours mcr-1.1 and blaNDM-5 on separate plasmids, and explored the phenotypic and genotypic characteristics of the mcr-1.1- and blaNDM-5-harbouring plasmids. METHODS E. coli isolate EC6563 was subjected to antimicrobial susceptibility testing, conjugation assay, stability of the plasmid and growth rate determination. In addition, the whole genome sequence of this strain was obtained and the genetic characteristics of the mcr-1.1- and blaNDM-5-harbouring plasmids were analyzed. RESULTS Carbapenem-resistant E. coli isolate EC6563 was resistant to all the tested antibiotics except tigecycline. Bioinformatic analysis confirmed that the IncHI2 plasmid carrying mcr-1.1 was highly similar to the previously reported mcr-1.1-harbouring plasmid pGDP37-4, and carried multiple drug resistance genes and the IncI1-I plasmid carrying blaNDM-5 had low similarity to the published blaNDM-5-carrying IncI1-I plasmid pEC-16-10-NDM-5. The pEC6563-NDM5 plasmid was capable of conjugation with an efficiency of 1.34 × 10-2 in a filter mating experiment. The transconjugant J53/pEC6563-NDM5 was able to be stably inherited after 12 days of passage. CONCLUSIONS To the best of our knowledge, this is the first time that an IncHI2 plasmid carrying mcr-1.1 and an IncI1-I plasmid carrying blaNDM-5 is found to coexist in an E. coli isolate. Our research expands the known diversity of plasmids in NDM-5-producing Enterobacterales strains. Meanwhile, effective measures should be taken to prevent the spread of these plasmids.
Collapse
|
7
|
The Occurrence and Genomic Characteristics of mcr-1-Harboring Salmonella from Retail Meats and Eggs in Qingdao, China. Foods 2022; 11:foods11233854. [PMID: 36496661 PMCID: PMC9739812 DOI: 10.3390/foods11233854] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/15/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022] Open
Abstract
Salmonella are widely distributed foodborne pathogens and are often associated with food animal products. Colistin resistance mediated by mcr-1 is an increasing threat; however, data on the characteristics of mcr-1-harboring Salmonella among retail foods are still lacking. In this study, retail meats from 24 supermarkets and eggs from nine markets in Qingdao city were investigated to determine the presence and genomic characteristics of mcr-1-harboring Salmonella. We found the retail meats and eggs were highly contaminated by Salmonella, with detection rates of 17.5% (31/177) and 12.3% (16/130), respectively. A total of 76 Salmonella isolates were obtained in this study, and 77.6% showed multidrug resistance (MDR). The MDR proportion of egg isolates (97.5%) was significantly higher than that in meat isolates (55.6%) (p < 0.05). The most prevalent Salmonella serotypes were Typhimurium (56.6%) and Enteritidis (17.1%). Of the 76 Salmonella isolates, 40 possessed mcr-1. All 40 mcr-1-positive isolates were ST34 S. Typhimurium and were from eggs of eight brands. Different mcr-1-harboring isolates existed in the same egg, and some isolates from different egg samples or brands showed clonal relationships. The mcr-1 was located on similar IncHI2/HI2A MDR non-conjugative plasmids lacking transfer region, resulting in the failure of conjugation. The phylogenetic tree using genome sequences showed that the mcr-1-positive isolates from eggs clustered together with mcr-1-positive isolates from chicken and humans in China, revealing that mcr-1-positive egg-borne Salmonella might be derived from chicken and could potentially trigger outbreaks in humans. The high occurrence of mcr-1-harboring Salmonella in fresh eggs is alarming, and there is an urgent need to monitor mcr-1-harboring Salmonella in retail meats and eggs. We report for the first time the role of retail eggs in disseminating mcr-1-positive Salmonella and the risk of transmission of these MDR pathogens from retail food to humans should be evaluated comprehensively.
Collapse
|
8
|
Khuntayaporn P, Thirapanmethee K, Chomnawang MT. An Update of Mobile Colistin Resistance in Non-Fermentative Gram-Negative Bacilli. Front Cell Infect Microbiol 2022; 12:882236. [PMID: 35782127 PMCID: PMC9248837 DOI: 10.3389/fcimb.2022.882236] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/16/2022] [Indexed: 12/14/2022] Open
Abstract
Colistin, the last resort for multidrug and extensively drug-resistant bacterial infection treatment, was reintroduced after being avoided in clinical settings from the 1970s to the 1990s because of its high toxicity. Colistin is considered a crucial treatment option for Acinetobacter baumannii and Pseudomonas aeruginosa, which are listed as critical priority pathogens for new antibiotics by the World Health Organization. The resistance mechanisms of colistin are considered to be chromosomally encoded, and no horizontal transfer has been reported. Nevertheless, in November 2015, a transmissible resistance mechanism of colistin, called mobile colistin resistance (MCR), was discovered. Up to ten families with MCR and more than 100 variants of Gram-negative bacteria have been reported worldwide. Even though few have been reported from Acinetobacter spp. and Pseudomonas spp., it is important to closely monitor the epidemiology of mcr genes in these pathogens. Therefore, this review focuses on the most recent update on colistin resistance and the epidemiology of mcr genes among non-fermentative Gram-negative bacilli, especially Acinetobacter spp. and P. aeruginosa.
Collapse
Affiliation(s)
- Piyatip Khuntayaporn
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
- *Correspondence: Piyatip Khuntayaporn,
| | - Krit Thirapanmethee
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Mullika Traidej Chomnawang
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| |
Collapse
|
9
|
Holohan N, Wallat M, Hai Yen Luu T, Clark E, Truong DTQ, Xuan SD, Vu HTK, Van Truong D, Tran Huy H, Nguyen-Viet H, Unger F, Thi Thanh Dang S, Stabler RA. Analysis of Antimicrobial Resistance in Non-typhoidal Salmonella Collected From Pork Retail Outlets and Slaughterhouses in Vietnam Using Whole Genome Sequencing. Front Vet Sci 2022; 9:816279. [PMID: 35425826 PMCID: PMC9002014 DOI: 10.3389/fvets.2022.816279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/09/2022] [Indexed: 12/03/2022] Open
Abstract
Non-typhoidal salmonella (TS) remains a significant health burden worldwide. In Vietnam, pork accounts for 70% of the total meat consumed, and contamination with Salmonella is high. High levels of antimicrobial resistance (AMR) have emerged among porcine NTS and of particular concern is the emergence of colistin resistance, a “last defense” antibioic against multi-drug resistant (MDR) Gram-negative pathogens. This study aimed to investigate the antibiotic susceptibility of 69 NTS isolates collected from the pork retail outlets and slaughterhouses in Vietnam during 2014 a nd 2018/19. Phenotypic testing and whole genome sequencing was used to assess the serotype and AMR gene profiles of the 69 NTS isolates. Seventeen different serotypes were identified, of which S. enterica subsp enterica serotype Typhimurium was the most common followed by S. ser. Rissen, S. ser. London, S. ser. Anatum, and S. ser. Derby. Phenotype AMR was common with 41 (59.4%) isolates deemed MDR. MDR strains were most common in slaughterhouses (83%) and supermarkets (75%) and lowest in traditional markets (38%) and convenience stores (40%). Colistin resistance was identified in 18 strains (15 resistant, three intermediate) with mcr-1 identified in seven isolates (S. ser. Meleagridis, S. Rissen, S. Derby) and mcr-3 in two isolates (S. Typhimurium). This includes the first mcr positive S. Meleagridis to our knowledge. Surprisingly, boutique stores had high levels (60%) of MDR isolates including 5/20 isolates with mcr-1. This study demonstrates that pork from modern retail stores classed as supermarkets or boutique (with pork claiming to be high quality, traceable, environmentally friendly marketed toward higher income consumers) still contained NTS with high levels of AMR.
Collapse
Affiliation(s)
- Niamh Holohan
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Maximilian Wallat
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Thi Hai Yen Luu
- Department of Bacteriology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| | - Eleanor Clark
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Duong Thi Quy Truong
- Department of Bacteriology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| | - Sinh Dang Xuan
- International Livestock Research Institute, Regional Office for East and Southeast Asia, Hanoi, Vietnam
| | - Hue Thi Kim Vu
- Department of Veterinary Hygiene, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| | - Dung Van Truong
- Department of Veterinary Hygiene, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| | - Hoang Tran Huy
- Department of Bacteriology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Hung Nguyen-Viet
- International Livestock Research Institute, Regional Office for East and Southeast Asia, Hanoi, Vietnam
| | - Fred Unger
- International Livestock Research Institute, Regional Office for East and Southeast Asia, Hanoi, Vietnam
| | - Son Thi Thanh Dang
- Department of Veterinary Hygiene, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| | - Richard A. Stabler
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
- *Correspondence: Richard A. Stabler
| |
Collapse
|
10
|
Patil S, Liu X, Chen H, Francisco NM, Wen F, Chen Y. Genetic Characterization of Colistin-Resistant Salmonella enterica ST34 Co-Harbouring Plasmid-Borne mcr-1, bla CTX-M-15 and bla KPC-2 Recovered from a Paediatric Patient in Shenzhen, China. Infect Drug Resist 2022; 15:757-763. [PMID: 35264859 PMCID: PMC8899097 DOI: 10.2147/idr.s349585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/21/2022] [Indexed: 12/15/2022] Open
Abstract
Background Since 2015, plasmid-borne mcr-1 has been reported in various bacterial strains in the clinical setting globally. However, the transmission mechanisms of this gene in Salmonella are not well defined. This study aimed to characterize the genomic features of a Salmonella enterica ST34 isolate, which carried a mcr-1, mapped to a carbapenemase and extended spectrum β-lactamase encoding gene located on the IncX4 plasmid. Methods Salmonella enterica was recovered from a diarrheal paediatric patient in Shenzhen, China. Antimicrobial susceptibility testing was performed by using the VITEK 2 system. Drug resistance genes were identified using targeted primers and Sanger sequencing. The transferability and genome location of mcr-1 was determined by performing conjugation, S1-PFGE and Southern blot hybridization analysis. WGS was performed by Illumina MiSeq sequencing and was assembled using the A5-Miseq pipeline, and gene annotation was performed using RAST 2.0. The database Centre for Genomic Epidemiology's website was used to identify resistance genes and sequence types (STs). Results We found that the isolate was extensively drug resistant and belonging to ST34, carrying an IncX4 plasmid with mcr-1, bla KPC-2 and bla CTX-M-15. We also noticed that genes bla PAO, fosA, catB, the mutation in oprD and mexT (MexEF-OprN efflux regulator), and exotoxin-encoding genes (exoS, exoY and exoT) were associated with resistance and virulence in the genome. In addition, heavy metal resistance genes as silP and silE were determined. Conclusion This study highlights the potential risk of ST34 of Salmonella enterica serotype Typhimurium carrying multiple drug resistance encoding genes in a single IncX4 plasmid.
Collapse
Affiliation(s)
- Sandip Patil
- Department of Haematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, 518038, People’s Republic of China
- Paediatric Research Institute, Shenzhen Children’s Hospital, Shenzhen, Guangdong, 518038, People’s Republic of China
| | - Xiaorong Liu
- Paediatric Research Institute, Shenzhen Children’s Hospital, Shenzhen, Guangdong, 518038, People’s Republic of China
| | - Hongyu Chen
- Department of Laboratory Medicine, Shenzhen Children’s Hospital, Shenzhen, Guangdong, 518038, People’s Republic of China
| | - Ngiambudulu M Francisco
- Grupo de Investigação Microbiana e Imunológica, Instituto Nacional de Investigação em Saúde (National Institute for Health Research), Luanda, 3635, Angola
| | - Feiqiu Wen
- Department of Haematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, 518038, People’s Republic of China
- Paediatric Research Institute, Shenzhen Children’s Hospital, Shenzhen, Guangdong, 518038, People’s Republic of China
| | - Yixin Chen
- Department of Oncology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, 518000, People’s Republic of China
- Department of Oncology, The First Affiliated Hospital, Southern University of Sciences and Technology, Shenzhen, Guangdong, 518000, People’s Republic of China
| |
Collapse
|
11
|
Low Level of Colistin Resistance and mcr Genes Presence in Salmonella spp.: Evaluation of Isolates Collected between 2000 and 2020 from Animals and Environment. Antibiotics (Basel) 2022; 11:antibiotics11020272. [PMID: 35203874 PMCID: PMC8868313 DOI: 10.3390/antibiotics11020272] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 12/10/2022] Open
Abstract
Salmonellosis is one of the most important zoonoses in Europe and the world. Human infection may evolve in severe clinical diseases, with the need for hospitalization and antimicrobial treatment. Colistin is now considered an important antimicrobial to treat infections from multidrug- resistant Gram-negative bacteria, but the spreading of mobile colistin-resistance (mcr) genes has limited this option. We aimed to evaluate colistin minimum inhibitory concentration and the presence of mcr (mcr-1 to mcr-9) genes in 236 Salmonella isolates previously collected from different animals and the environment between 2000 and 2020. Overall, 17.79% of isolates were resistant to colistin; no differences were observed in relation to years of isolation (2000–2005, 2009–2014, and 2015–2020), Salmonella enterica subspecies (enterica, salamae, diarizonae, and houtenae), origin of samples (domestic animals, wildlife, and environment), or animal category (birds, mammals, and reptiles); only recently isolated strains from houseflies showed the most resistance. Few isolates (5.93%) scored positive for mcr genes, in particular for mcr-1, mcr-2, mcr-4, mcr-6, and mcr-8; furthermore, only 2.54% of isolates were mcr-positive and colistin-resistant. Detected resistance to colistin was equally distributed among all examined Salmonella isolates and not always related to the presence of mcr genes.
Collapse
|
12
|
Li P, Zhan LI, Wang H, Gao W, Gao L, Lv S, Zhang X, Zhu G, Yan Y. First Identification and Limited Dissemination of mcr-1 Colistin Resistance in Salmonella Isolates from Jiaxing. J Food Prot 2022; 85:213-219. [PMID: 34648627 DOI: 10.4315/jfp-21-069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 10/09/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Salmonella, a major foodborne pathogen, causes severe gastrointestinal disease in people and animals worldwide. Plasmid-borne mcr-1, which confers colistin resistance in Salmonella, has significant epidemiological interest for public health safety. Here, we report the first evidence of mcr-1-mediated colistin resistance in one multidrug-resistant strain, 16062, from 355 Salmonella isolates collected for Jiaxing foodborne pathogen monitoring in Zhejiang Province from 2015 to 2019. In addition to colistin, 16062 displayed multidrug resistance to various antimicrobials (β-lactams, quinolone, sulfonamide, florfenicol, ampicillin, streptomycin, nalidixic acid, aminoglycoside, and trimethoprim-sulfamethoxazole). The mcr-1-carrying IncX4 plasmid (p16062-MCR) in this study shares a conserved structure with other mcr-IncX4 plasmids. We found that other antimicrobial-resistance genes (aac(6')-Ib-cr, aadA1, aadA2, aph(3')-Ia, oqxA, oqxB, sul1, and cmlA1) are located on p16062-cmlA, an atypical IncHI2 plasmid, in isolate 16062. This is the first identification of transferable colistin resistance in a foodborne Salmonella isolate collected in Jiaxing City, the 5-year monitoring of which revealed limited dissemination. By determining the genetic features of the plasmid vehicle, the characteristics of transferable mcr genes circulating in isolates from Jiaxing are now clearer. HIGHLIGHTS
Collapse
Affiliation(s)
- Ping Li
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing 314050, China; and
| | - L I Zhan
- Institute of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Henghui Wang
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing 314050, China; and
| | - Wenjie Gao
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing 314050, China; and
| | - Lei Gao
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing 314050, China; and
| | - Shencong Lv
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing 314050, China; and
| | - Xiaofei Zhang
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing 314050, China; and
| | - Guoying Zhu
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing 314050, China; and
| | - Yong Yan
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing 314050, China; and
| |
Collapse
|
13
|
Portes AB, Rodrigues G, Leitão MP, Ferrari R, Conte Junior CA, Panzenhagen P. Global distribution of plasmid-mediated colistin resistance mcr gene in Salmonella: A systematic review. J Appl Microbiol 2021; 132:872-889. [PMID: 34480840 DOI: 10.1111/jam.15282] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 08/04/2021] [Accepted: 08/31/2021] [Indexed: 11/28/2022]
Abstract
This systematic review focuses on obtaining the most relevant information from multiple studies that detected a mobilized colistin resistance mcr gene in Salmonella for a better comprehension of its global distribution. A group of strategic and systematic keywords were combined to retrieve research data on the detection frequency of the mcr gene globally from four database platforms (Google Scholar, Science Direct, PubMed and Scielo). Forty-eight studies attended all the eligibility criteria and were selected. China was the country with the highest frequency of Salmonella strains with the mcr gene, and Europe exhibited a wide diversity of countries with positive mcr strains. In addition, animals and humans carried the highest frequency of positive strains for the mcr gene. Salmonella Typhimurium was the most frequent serovar carrying the mcr gene. Apparently, colistin overuse in animal husbandry has increased the selective pressure of antimicrobial resistance, resulting in the emergence of a plasmid-mediated colistin resistance mcr gene in China. The mcr-positive Salmonella strains are recently predominant worldwide, which is probably due to the capacity of this gene to be swiftly horizontally transmissible. The transmission ability of mcr-positive Salmonella strains to humans through the consumption of contaminated animal-based food is a public health concern.
Collapse
Affiliation(s)
- Ana Beatriz Portes
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Grazielle Rodrigues
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Mylenna Palma Leitão
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Rafaela Ferrari
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Carlos Adam Conte Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ, Brazil.,Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil.,Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Pedro Panzenhagen
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
14
|
Occurrence of mcr-mediated colistin resistance in Salmonella clinical isolates in Thailand. Sci Rep 2021; 11:14170. [PMID: 34238964 PMCID: PMC8266838 DOI: 10.1038/s41598-021-93529-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/25/2021] [Indexed: 01/01/2023] Open
Abstract
Nontyphoidal Salmonella, an important zoonotic pathogen and a major cause of foodborne illnesses, could be a potential reservoir of plasmids harbouring mobile colistin resistance gene (mcr). This study reported, for the first time, a high rate of mcr-carrying Salmonella clinical isolates (3.3%, 24/724) in Thailand, associated with mcr-3 gene (3.0%, 22/724) in S. 4,[5],12:i:-(15.4%, 4/26), S. Typhimurium (8.8%, 5/57), and S. Choleraesuis (5.6%, 13/231). Remarkably, the increasing trends of colistin and extended-spectrum cephalosporin resistances have displayed a high agreement over the years, with a dramatic rise in the mcr-carrying Salmonella from 1.1% (6/563) during 2005–2007 to 11.2% (18/161) during 2014–2018 when CTX-M-55 became abundant. Clonal and plasmid analysis revealed that the self-transferable IncA/C and a novel hybrid IncA/C-FIIs MDR plasmids were the major vehicles to disseminate both mcr-3 and blaCTX-M55 genes among diverse Salmonella strains, from as early as 2007. To our knowledge the occurrence of mcr-3 and the co-existence of it with blaCTX-M-55 in S. Choleraesuis are reported here for the first time, leading to clinical concern over the treatment of the invasive salmonellosis. This study provides evidence of the potential reservoirs and vectors in the dissemination of the mcr and highlights the co-selection by colistin and/or cephalosporins.
Collapse
|
15
|
Hu Y, Fanning S, Nguyen SV, Wang W, Liu C, Cui X, Dong Y, Gan X, Xu J, Li F. Emergence of a Salmonella enterica serovar Typhimurium ST34 isolate, CFSA629, carrying a novel mcr-1.19 variant cultured from egg in China. J Antimicrob Chemother 2021; 76:1776-1785. [PMID: 33822965 DOI: 10.1093/jac/dkab090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/26/2021] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES This study aimed to characterize the genomic features of a Salmonella enterica serovar Typhimurium ST34 isolate, CFSA629, which carried a novel mcr-1 variant, designated as mcr-1.19, mapped to an ESBL-encoding IncHI2 plasmid. METHODS Antimicrobial susceptibility assays as well as WGS were carried out on isolate CFSA629. The complete closed genome was obtained and then explored to obtain genomic features. Plasmid sequence comparison was performed for pCFSA629 with similar plasmids and the mcr-1 genetic environment was analysed. RESULTS S. Typhimurium ST34 CFSA629 expressed an MDR phenotype to six classes of compound and consisted of a single circular chromosome and one plasmid. It possessed 11 resistance genes including 2 ESBL genes that mapped to the chromosome and the plasmid; an IS26-flanked composite-like transposon was identified. A novel mcr-1 variant (mcr-1.19) was identified, which had a unique SNP (G1534A) that gave rise to a novel MCR-1 protein containing a Val512Ile amino acid substitution. Plasmid pCFSA629 possessed a conjugative plasmid transfer gene cluster as well as an antimicrobial resistance-encoding gene cluster-containing region that contained two IS26 composite-like transposonal modules, but was devoid of any plasmid-mediated quinolone resistance genes. The background of mcr-1.19 consisted of an ISApl1-mcr-1-PAP2-ter module. CONCLUSIONS We report on an MDR S. Typhimurium ST34 CFSA629 isolate cultured from egg in China, harbouring an mcr-1.19 variant mapped to an IncHI2 plasmid. This highlights the importance of surveillance to mitigate dissemination of mcr-encoding genes among foodborne Salmonella. Improved surveillance is important for tackling the dissemination of mcr genes among foodborne Salmonella around the world.
Collapse
Affiliation(s)
- Yujie Hu
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, China.,UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, University College Dublin, Belfield, Dublin, Ireland
| | - Séamus Fanning
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, China.,UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, University College Dublin, Belfield, Dublin, Ireland.,Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Chlorine Gardens, Belfast, UK
| | - Scott V Nguyen
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, University College Dublin, Belfield, Dublin, Ireland
| | - Wei Wang
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Chang Liu
- Food Science and Engineering College, Beijing University of Agriculture, Beijing, China
| | - Xinnan Cui
- Food Science and Engineering College, Beijing University of Agriculture, Beijing, China.,China Center of Industrial Culture Collection, China National Research Institute of Food and Fermentation Industries, Beijing, China
| | - Yinping Dong
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, China.,UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, University College Dublin, Belfield, Dublin, Ireland
| | - Xin Gan
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Jin Xu
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Fengqin Li
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, China
| |
Collapse
|
16
|
Arai N, Sekizuka T, Tamamura-Andoh Y, Barco L, Hinenoya A, Yamasaki S, Iwata T, Watanabe-Yanai A, Kuroda M, Akiba M, Kusumoto M. Identification of a Recently Dominant Sublineage in Salmonella 4,[5],12:i:- Sequence Type 34 Isolated From Food Animals in Japan. Front Microbiol 2021; 12:690947. [PMID: 34276624 PMCID: PMC8281233 DOI: 10.3389/fmicb.2021.690947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/09/2021] [Indexed: 12/03/2022] Open
Abstract
Salmonella enterica subsp. enterica serovar Typhimurium sequence type 34 (ST34) and its monophasic variant (Salmonella 4,[5],12:i:-) are among the most frequently isolated clones from both humans and animals worldwide. Our previous study demonstrated that Salmonella Typhimurium/4,[5],12:i:- strains isolated in Japan could be classified into nine clades and that clade 9 consisted of ST34 strains. In Japan, ST34/clade 9 was first found in the 1990s and has become predominant among food animals in recent years. In the present study, we analyzed the whole genome-based phylogenetic relationships and temporal information of 214 Salmonella Typhimurium/4,[5],12:i:- ST34/clade 9 strains isolated from 1998 to 2017 in Japan. The 214 strains were classified into two sublineages: the newly identified clade 9–2 diverged from clade 9 in the early 2000s and has predominated in recent years. Clonally expanding subclades in clades 9–1 or 9–2 lacked Gifsy-1 or HP1 prophages, respectively, and some strains in these subclades acquired plasmids encoding antimicrobial resistance genes. Additional genome reduction around the fljB gene encoding the phase 2-H antigen was generated by an IS26-mediated deletion adjacent to the transposon in clade 9–2. Although most of the clade 9 strains were isolated from cattle in Japan, the clonally expanding subclades in clade 9–2 (i.e., all and 24% strains of subclades 9–2a and 9–2b, respectively) were isolated from swine. The spread of clade 9 in recent years among food animals in Japan was responsible for the emergence of multiple host-adapted sublineages involving the clonally expanding subclades generated by mobile genetic element-mediated microevolution.
Collapse
Affiliation(s)
- Nobuo Arai
- National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki, Japan.,Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yukino Tamamura-Andoh
- National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Lisa Barco
- Reference Laboratory for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, Padua, Italy
| | - Atsushi Hinenoya
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Shinji Yamasaki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Taketoshi Iwata
- National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Ayako Watanabe-Yanai
- National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masato Akiba
- National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki, Japan.,Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Masahiro Kusumoto
- National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki, Japan
| |
Collapse
|
17
|
Sun RY, Ke BX, Fang LX, Guo WY, Li XP, Yu Y, Zheng SL, Jiang YW, He DM, Sun J, Ke CW, Liu YH, Liao XP. Global clonal spread of mcr-3-carrying MDR ST34 Salmonella enterica serotype Typhimurium and monophasic 1,4,[5],12:i:- variants from clinical isolates. J Antimicrob Chemother 2021; 75:1756-1765. [PMID: 32274508 DOI: 10.1093/jac/dkaa115] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES To investigate the prevalence and transmission of mcr-3 among Salmonella enterica serotype Typhimurium and 1,4,[5],12:i:-. METHODS A total of 4724 clinical Salmonella isolates were screened for the presence of mcr-3 in China during 2014-19. The clonal relationship of the mcr-3-positive isolates and their plasmid contents and complete sequence were also characterized based on WGS data from the Illumina and MinION platforms. RESULTS We identified 10 mcr-3-positive isolates, and all were MDR, mostly resistant to colistin, cefotaxime, ciprofloxacin, doxycycline and florfenicol. mcr-3 was co-present with blaCTX-M-55-qnrS1 on hybrid ST3-IncC-FII conjugatable plasmids (n = 6) and an ST3-IncC non-conjugatable plasmid (n = 1) and embedded into a pCHL5009T-like IncFII plasmid on the Salmonella chromosome (n = 3). Four distinctive genetic contexts surrounded mcr-3 and all but one were closely related to each other and to the corresponding region of IncFII plasmid pCHL5009T. IS15DI was most likely the vehicle for integration of mcr-3-carrying IncFII plasmids into ST3-IncC plasmids and the chromosome and for shaping the MDR regions. In addition, a phylogenetic tree based on the core genome revealed a unique Salmonella lineage (≤665 SNPs) that contained these 10 mcr-3-positive isolates and another 38 (33 from patients) mcr-3-positive Salmonella from five countries. In particular, most of the 51 mcr-3-positive isolates belonged to ST34 and harboured diverse antibiotic resistance genes (ARGs), including mcr-3-blaCTX-M-55-qnrS1, and possessed similar ARG profiles. CONCLUSIONS Our findings revealed global clonal spread of MDR ST34 Salmonella from clinical isolates co-harbouring mcr-3 with blaCTX-M-55 and qnrS1 and a flexibility of mcr-3 co-transmittance with other ARGs mediated by mobile genetic elements.
Collapse
Affiliation(s)
- Ruan-Yang Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Bi-Xia Ke
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, P. R. China
| | - Liang-Xing Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Wen-Ying Guo
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Xing-Ping Li
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Yang Yu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Si-Lin Zheng
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Yu-Wei Jiang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Dong-Mei He
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, P. R. China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Chang-Wen Ke
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, P. R. China
| | - Ya-Hong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Xiao-Ping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
| |
Collapse
|
18
|
Hu Y, Nguyen SV, Wang W, Gan X, Dong Y, Liu C, Cui X, Xu J, Li F, Fanning S. Antimicrobial Resistance and Genomic Characterization of Two mcr-1-Harboring Foodborne Salmonella Isolates Recovered in China, 2016. Front Microbiol 2021; 12:636284. [PMID: 34211439 PMCID: PMC8239406 DOI: 10.3389/fmicb.2021.636284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/06/2021] [Indexed: 12/16/2022] Open
Abstract
The mcr-1 gene mediating mobile colistin resistance in Escherichia coli was first reported in China in 2016 followed by reports among different species worldwide, especially in E. coli and Klebsiella. However, data on its transmission in Salmonella are still lacking. This study analyzed the antimicrobial resistance (AMR) profiles and the mcr-1 gene presence in 755 foodborne Salmonella from 26 provinces of mainland, China in 2016. Genomic features of two mcr-1-carrying isolates, genome sequencing, serotypes and further resistance profiles were studied. Among the 755 Salmonella tested, 72.6% were found to be resistant to at least one antimicrobial agent and 10% were defined as multi-drug resistant (MDR). Salmonella Derby CFSA231 and Salmonella Typhimurium CFSA629 were mcr-1-harboring isolates. Both expressed an MDR phenotype and included a single circular chromosome and one plasmid. Among the 22 AMR genes identified in S. Derby CFSA231, only the mcr-1 gene was localized on the IncX4 type plasmid pCFSA231 while 20 chromosomal AMR genes, including four plasmid-mediated quinolone resistance (PMQR) genes, were mapped within a 64 kb Salmonella genomic island (SGI) like region. S. Typhimurium CFSA629 possessed 11 resistance genes including an mcr-1.19 variant and two ESBL genes. Two IS26-flanked composite-like transposons were identified. Additionally, 153 and 152 virulence factors were separately identified in these two isolates with secretion system and fimbrial adherence determinants as the dominant virulence classes. Our study extends our concern on mcr-1-carrying Salmonella in regards to antimicrobial resistance and virulence factors, and highlight the importance of surveillance to mitigate dissemination of mcr-encoding genes among foodborne Salmonella.
Collapse
Affiliation(s)
- Yujie Hu
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, China.,UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, University College Dublin, Dublin, Ireland
| | - Scott V Nguyen
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, University College Dublin, Dublin, Ireland.,Public Health Laboratory, District of Columbia Department of Forensic Sciences, Washington, DC, United States
| | - Wei Wang
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Xin Gan
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Yinping Dong
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, China.,UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, University College Dublin, Dublin, Ireland
| | - Chang Liu
- Food Science and Engineering College, Beijing University of Agriculture, Beijing, China
| | - Xinnan Cui
- Food Science and Engineering College, Beijing University of Agriculture, Beijing, China.,China Center of Industrial Culture Collection, China National Research Institute of Food and Fermentation Industries, Beijing, China
| | - Jin Xu
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Fengqin Li
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Séamus Fanning
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, China.,UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, University College Dublin, Dublin, Ireland.,Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
19
|
Luo Q, Wan F, Yu X, Zheng B, Chen Y, Gong C, Fu H, Xiao Y, Li L. MDR Salmonella enterica serovar Typhimurium ST34 carrying mcr-1 isolated from cases of bloodstream and intestinal infection in children in China. J Antimicrob Chemother 2021; 75:92-95. [PMID: 31580437 DOI: 10.1093/jac/dkz415] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/20/2019] [Accepted: 09/05/2019] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Children are vulnerable to Salmonella infection due to their immature immune system. Cases of infection with mcr-1-harbouring Salmonella in child inpatients have not been reported in China before. METHODS Salmonella isolates from gastroenteritis and bacteraemia were screened using primers targeting mcr-1. Complete genome sequences of mcr-1-harbouring isolates were determined using the PacBio RS II platform. The transferability of mcr-1-harbouring plasmids was verified by conjugation. RESULTS We investigated two mcr-1-carrying polymyxin-resistant Salmonella enterica serovar Typhimurium ST34 isolates, S61394 and S44712, from bloodstream and intestinal Salmonella infection of two child inpatients, respectively. Both isolates were non-susceptible to commonly used antibiotics for children that compromised the success of clinical treatment and infection control. The mcr-1-harbouring plasmids pLS61394-MCR and pLS44712-MCR (from S61394 and S44712, respectively) were both conjugative pHNSHP45-2-like IncHI2-type epidemic plasmids carrying multiple resistance genes. Compared with pHNSHP45-2, a ∼33 kb insertion region encoding Tn7 transposition protein and heavy metal resistance proteins was identified in pLS61394-MCR, which might enhance adaptation of bacteria carrying this plasmid to various ecological niches. The phylogenetic tree of worldwide mcr-harbouring Salmonella indicated a host preference of mcr and a worldwide and cross-sectoral prevalence of the mcr-positive Salmonella ST34 clone. CONCLUSIONS To our knowledge, for the first time we report completed whole genomes of mcr-1-positive MDR Salmonella Typhimurium ST34 isolated from infected children in China, suggesting that improved surveillance is imperative for tackling the dissemination of mcr-harbouring MDR Salmonella Typhimurium ST34.
Collapse
Affiliation(s)
- Qixia Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Fen Wan
- College of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
| | - Xiao Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yunbo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chenhui Gong
- Bingjiang College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hao Fu
- Bingjiang College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Gong L, Tang F, Liu E, Liu X, Xu H, Wang Y, Song Y, Liang J. Development of a loop-mediated isothermal amplification assay combined with a nanoparticle-based lateral flow biosensor for rapid detection of plasmid-mediated colistin resistance gene mcr-1. PLoS One 2021; 16:e0249582. [PMID: 33857193 PMCID: PMC8049234 DOI: 10.1371/journal.pone.0249582] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/19/2021] [Indexed: 11/18/2022] Open
Abstract
A loop-mediated isothermal amplification assay combined with a nanoparticle-based lateral flow biosensor (LAMP-LFB) was established for the rapid and accurate detection of the mobilized colistin resistance gene (mcr-1), which causes the loss of colistin antibacterial efficacy in clinical treatments. The amplification stage of the assay was completed in 60 min at 63°C, and the reaction products could be visually detected by employing the LFB, which provided a fast (within 2 min) and objective method to evaluate the amplification results. The LAMP assay amplified the target sequences of mcr-1 with high specificity. In pure strains, the detection limit of the LAMP-LFB assay was 360 fg plasmid DNA/reaction, and in spiked feces samples the value was approximately 6.3×103 CFU/mL (~6.3 CFU/reaction), which was tenfold more sensitive than the PCR assay. The results show that the developed LAMP-LFB assay will be a worthy tool for the simple, rapid, specific, and sensitive detection of mcr-1 gene in clinical settings and resource-limited areas.
Collapse
Affiliation(s)
- Lin Gong
- Department of Disinfection and Pest Control, Wuhan Center for Disease Control and Prevention, Wuhan, People’s Republic of China
| | - Fei Tang
- MOE Key Laboratory of Environment and Health, Institute of Environmental Medicine, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Ernan Liu
- Department of Disinfection and Pest Control, Wuhan Center for Disease Control and Prevention, Wuhan, People’s Republic of China
| | - Xiaoli Liu
- Department of Disinfection and Pest Control, Wuhan Center for Disease Control and Prevention, Wuhan, People’s Republic of China
| | - Huiqiong Xu
- Department of Disinfection and Pest Control, Wuhan Center for Disease Control and Prevention, Wuhan, People’s Republic of China
| | - Yimei Wang
- Department of Disinfection and Pest Control, Wuhan Center for Disease Control and Prevention, Wuhan, People’s Republic of China
| | - Yadong Song
- Department of Disinfection and Pest Control, Wuhan Center for Disease Control and Prevention, Wuhan, People’s Republic of China
| | - Jiansheng Liang
- Department of Disinfection and Pest Control, Wuhan Center for Disease Control and Prevention, Wuhan, People’s Republic of China
- * E-mail:
| |
Collapse
|
21
|
Mthembu TP, Zishiri OT, El Zowalaty ME. Genomic Characterization of Antimicrobial Resistance in Food Chain and Livestock-Associated Salmonella Species. Animals (Basel) 2021; 11:872. [PMID: 33803844 PMCID: PMC8003163 DOI: 10.3390/ani11030872] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
The rising trend of antimicrobial resistance (AMR) by foodborne bacteria is a public health concern as these pathogens are easily transmitted to humans through the food chain. Non-typhoid Salmonella spp. is one of the leading foodborne pathogens which infect humans worldwide and is associated with food and livestock. Due to the lack of discovery of new antibiotics and the pressure exerted by antimicrobial resistance in the pharmaceutical industry, this review aimed to address the issue of antibiotic use in livestock which leads to AMR in Salmonella. Much attention was given to resistance to carbapenems and colistin which are the last-line antibiotics used in cases of multi drug resistant bacterial infections. In the present review, we highlighted data published on antimicrobial resistant Salmonella species and serovars associated with livestock and food chain animals. The importance of genomic characterization of carbapenem and colistin resistant Salmonella in determining the relationship between human clinical isolates and food animal isolates was also discussed in this review. Plasmids, transposons, and insertion sequence elements mediate dissemination of not only AMR genes but also genes for resistance to heavy metals and disinfectants, thus limiting the therapeutic options for treatment and control of Salmonella. Genes for resistance to colistin (mcr-1 to mcr-9) and carbapenem (blaVIM-1, blaDNM-1, and blaNDM-5) have been detected from poultry, pig, and human Salmonella isolates, indicating food animal-associated AMR which is a threat to human public health. Genotyping, plasmid characterization, and phylogenetic analysis is important in understanding the epidemiology of livestock-related Salmonella so that measures of preventing foodborne threats to humans can be improved.
Collapse
Affiliation(s)
- Thobeka P. Mthembu
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (T.P.M.); (O.T.Z.)
| | - Oliver T. Zishiri
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (T.P.M.); (O.T.Z.)
| | - Mohamed E. El Zowalaty
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala SE 751 23, Sweden
| |
Collapse
|
22
|
Luo Q, Wang Y, Fu H, Yu X, Zheng B, Chen Y, Berglund B, Xiao Y. Serotype Is Associated With High Rate of Colistin Resistance Among Clinical Isolates of Salmonella. Front Microbiol 2020; 11:592146. [PMID: 33391208 PMCID: PMC7775366 DOI: 10.3389/fmicb.2020.592146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
To investigate the prevalence, probable mechanisms and serotype correlation of colistin resistance in clinical isolates of Salmonella from patients in China, Salmonella isolates were collected from fecal and blood samples of patients. In this study, 42.8% (136/318) clinical isolated Salmonella were resistant to colistin. MIC distribution for colistin at serotype level among the two most prevalent serotypes originating from humans in China indicated that Salmonella Enteritidis (83.9% resistance, 125/149) were significantly less susceptible than Salmonella Typhimurium (15.3% resistance, 9/59, P < 0.01). mcr genes and mutations in PmrAB confer little for rate of colistin resistant Salmonella isolated from human patients. Phylogenetic tree based on core-genome single nucleotide polymorphisms (SNPs) was separately by the serotypes and implied a diffused distribution of MICs in the same serotype isolates. Relatvie expression levels of colistin resistant related pmr genes were significantly higher in non-mcr colistin resistant S. Typhimurium than in colistin sensitive S. Typhimurium, but no discernable differences between colistin resistant and sensitive S. Enteritidis, indicating a different mechanism between colistin resistant S. Typhimurium and S. Enteritidis. In conclusion, colistin susceptibility and colistin resistant mechanism of clinical isolated Salmonella were closely associated with specific serotypes, at least in the two most prevalent serotype Enteritidis and Typhimurium. We suggest clinical microbiology laboratory interpreting Salmonella colistin MIC results in the serotype level.
Collapse
Affiliation(s)
- Qixia Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yuan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Fu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yunbo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Björn Berglund
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Wang Z, Xu H, Tang Y, Li Q, Jiao X. A Multidrug-resistant Monophasic Salmonella Typhimurium Co-harboring mcr-1, fosA3, bla CTX-M-14 in a Transferable IncHI2 Plasmid from a Healthy Catering Worker in China. Infect Drug Resist 2020; 13:3569-3574. [PMID: 33116676 PMCID: PMC7568597 DOI: 10.2147/idr.s272272] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/29/2020] [Indexed: 01/23/2023] Open
Abstract
Background Polymyxins are currently regarded as a possible last-resort therapy to eradicate multidrug-resistant (MDR) gram-negative bacteria. Meanwhile, the old antimicrobial agent fosfomycin has recently been reintroduced into clinical use for the treatment of extended-spectrum β-lactamase (ESBL)-producing and carbapenem-resistant Enterobacteriaceae. This study investigated a multidrug-resistant Salmonella 4,[5],12:i:- strain from a food catering handler, which had the potential to act as a vehicle for transmitting MDR foodborne pathogens. Methods A Salmonella 4,[5],12:i:- YZU1189 strain was isolated from the fecal sample of a food catering worker according to the standard protocol of the Salmonella detection method from World Health Organization in 2003. Serotyping of YZU1189 was performed according to the Kauffmann-White scheme. The antimicrobial resistance phenotype of the strain was determined by the agar dilution method according to the instruction from Clinical and Laboratory Standards Institute (CLSI). Plasmid conjugation was performed between the donor strain Salmonella 4,[5],12:i:- YZU1189 and the recipient strain Escherichia coli C600. The genetic locations of mcr-1, bla CTX-M-14 and fosA3 genes were determined by the whole genome sequence analysis. Results Salmonella 4,[5],12:i:- YZU1189 was an ESBL-producing stain isolated from a healthy catering worker. The strain displayed resistance to aminoglycosides, beta-lactams, polymyxins, fosfomycins, phenicols, trimethoprims, sulfonamides, tetracyclines and fluoroquinolones. Whole genome sequence analysis and plasmid conjugation revealed that the strain had a transferable IncHI2 plasmid carrying the mcr-1, bla CTX-M-14 and fosA3 genes. Sequence homology analysis showed that this plasmid possessed high sequence similarity to previously reported mcr-1, bla CTX-M-14 and fosA3 positive plasmids in China. Conclusion This study reported a the multidrug-resistant Salmonella 4,[5],12:i:- isolate harboring mcr-1, bla CTX-M-14 and fosA3 from human for the first time in China. The occurrence of mcr-1 and fosA3 genes in the transferable IncHI2 plasmid pYZU1189 from the ESBL-producing Salmonella 4,[5],12:i:- isolate showed a potential threat to public health. Great concern should be taken for the spread of multidrug-resistant ESBL-producing Salmonella isolates from food catering workers to consumers.
Collapse
Affiliation(s)
- Zhenyu Wang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, People's Republic of China.,Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, People's Republic of China
| | - Haiyan Xu
- Nantong Center for Disease Control and Prevention, Nantong, People's Republic of China
| | - Yuanyue Tang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, People's Republic of China.,Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, People's Republic of China
| | - Qiuchun Li
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, People's Republic of China.,Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, People's Republic of China
| | - Xinan Jiao
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, People's Republic of China.,Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, People's Republic of China
| |
Collapse
|
24
|
Sarichai P, Buddhasiri S, Walters GE, Khantawa B, Kaewsakhorn T, Chantarasakha K, Tepaamorndech S, Thiennimitr P. Pathogenicity of clinical Salmonella enterica serovar Typhimurium isolates from Thailand in a mouse colitis model. Microbiol Immunol 2020; 64:679-693. [PMID: 32803887 DOI: 10.1111/1348-0421.12837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/14/2020] [Accepted: 08/11/2020] [Indexed: 11/30/2022]
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium [STM]) is a leading cause of nontyphoidal salmonellosis (NTS) worldwide. The pathogenesis of NTS has been studied extensively using a streptomycin-pretreated mouse colitis model with the limited numbers of laboratory STM strains. However, the pathogenicity of the clinically isolated STM (STMC) strains endemic in Thailand in mice has not been explored. The aim of this study was to compare the pathogenicity of STMC strains collected from Northern Thailand with the laboratory STM (IR715) in mice. Five STMC isolates were obtained from the stool cultures of patients with acute NTS admitted to Maharaj Nakorn Chiang Mai Hospital in 2016 and 2017. Detection of virulence genes and sequence type (ST) of the strains was performed. Female C57BL/6 mice were pretreated with streptomycin sulfate 1 day prior to oral infection with STM. On Day 4 postinfection, mice were euthanized, and tissues were collected to analyze the bacterial numbers, tissue inflammation, and cecal histopathological score. We found that all five STMC strains are ST34 and conferred the same or reduced pathogenicity compared with that of IR715 in mice. A strain-specific effect of ST34 on mouse gut colonization was also observed. Thailand STM ST34 exhibited a significant attenuated systemic infection in mice possibly due to the lack of spvABC-containing virulence plasmid.
Collapse
Affiliation(s)
- Phinitphong Sarichai
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Songphon Buddhasiri
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Georgia E Walters
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Biology, Health and Medicine, University of Manchester, Manchester, UK
| | - Banyong Khantawa
- Diagnostic Laboratory, Maharaj Nakorn Chiang Mai Hospital, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Thattawan Kaewsakhorn
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kanittha Chantarasakha
- Division of Food Biotechnology, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, Thailand
| | - Surapun Tepaamorndech
- Division of Food Biotechnology, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, Thailand
| | - Parameth Thiennimitr
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
25
|
Elbediwi M, Beibei W, Pan H, Jiang Z, Biswas S, Li Y, Yue M. Genomic Characterization of mcr-1-carrying Salmonella enterica Serovar 4,[5],12:i:- ST 34 Clone Isolated From Pigs in China. Front Bioeng Biotechnol 2020; 8:663. [PMID: 32714906 PMCID: PMC7344297 DOI: 10.3389/fbioe.2020.00663] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/28/2020] [Indexed: 12/31/2022] Open
Abstract
Salmonella enterica serovar 4,[5],12:i:-, so-called Typhimurium monophasic variant, has become one of the most frequently isolated serovars both in humans and in animals all over the world. The increasing prevalence of mcr-1-carrying Salmonella poses significant global health concerns. However, the potential role of Salmonella 4,[5],12:i:- in mcr-1 gene migration through the food chain to the human remains obscure. Here, we investigated 337 Salmonella isolates from apparently healthy finishing pigs, which is rarely studied, obtained from pig farms and slaughterhouses in China. The mcr-1 gene was found in four colistin-resistant S. enterica 4,[5],12:i:- isolates. Notably, all four isolates belonged to sequence type 34 (ST34) with multidrug resistance phenotype. Further genomic sequencing and antimicrobial resistance characterization confirmed that mcr was responsible for the colistin resistance, and the conjugation assay demonstrated that three of four isolates carried mcr-1 in IncHI2 plasmid. Importantly, mcr-1 and class-1 integron were found to co-localize in two strains with IncHI2 plasmid. By collecting all the mcr-1-carrying Typhimurium and monophasic variant strains across the food chain (farm animals, animal-origin food, and humans), our phylogenomic analysis of available 66 genomes, including four strains in this study, demonstrated an independent phylogenetic cluster of all eight Chinese swine-originated isolates and one human isolate. Together, this study provides direct evidence for clonal and pork-borne transmission of mcr-1 by Salmonella 4,[5],12:i:- ST34 in China and highlighted a domestication pathway by acquisition of additional antimicrobial resistance determinants in Chinese ST34 isolates.
Collapse
Affiliation(s)
- Mohammed Elbediwi
- Institute of Preventive Veterinary Sciences, Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Wu Beibei
- Zhejiang Province Center for Disease Control and Prevention, Hangzhou, China
| | - Hang Pan
- Institute of Preventive Veterinary Sciences, Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zenghai Jiang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Silpak Biswas
- Institute of Preventive Veterinary Sciences, Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yan Li
- Institute of Preventive Veterinary Sciences, Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Min Yue
- Institute of Preventive Veterinary Sciences, Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Lei T, Zhang J, Jiang F, He M, Zeng H, Chen M, Pang R, Wu H, Wu S, Wang J, Ding Y, Wu Q. Characterization of class 1 integrons harboring bla VEB-1 in Vibrio parahaemolyticus isolated from ready-to-eat foods in China. Int J Food Microbiol 2020; 318:108473. [PMID: 31863965 DOI: 10.1016/j.ijfoodmicro.2019.108473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/26/2019] [Accepted: 12/06/2019] [Indexed: 01/22/2023]
Abstract
The aim of this study is to investigate the prevalence of integrons and integron-associated antibiotic resistance in V. parahaemolyticus strains collected from RTE foods in China, and to carry out a comprehensive analysis on the molecular characterization of V. parahaemolyticus strains carrying blaVEB-1-positive class 1 integron. Of the 51 V. parahaemolyticus strains isolated from RTE food samples, none of the isolates was found to carry integrase genes intI2 and IntI3. However, all 51 strains were positive to integrase gene intI1, and only 2 of 51 (3.92%) intI1-positive isolates yielded polymerase chain reaction (PCR) products of gene cassette amplification. Sequence data and BLAST analysis indicated the gene cassette arrays of class 1 integron in VP007 is dfrA14-blaVEB-1-aadB, while the gene cassette arrays of class 1 integron in V187 is blaVEB-1-aadB-arr2-cmlA-blaOXA-10-aadA1. Antimicrobial susceptibility testing showed that the two V. parahaemolyticus isolates harboring class 1 integrons exhibited multi-drug resistance to various antibiotics. S1-PFGE and Southern blot analysis confirmed the class 1 integron harboring blaVEB-1 gene in V187 was located on the plasmid of ~175 kb and transferrable to the recipient strain by conjugation. This is the first detection of class 1 integrons harboring the ESBL gene blaVEB-1 in V. parahaemolyticus. To the best of our knowledge, this is also the first report of VEB-producing V. parahaemolyticus from RTE foods. Our findings revealed that class 1 integron on conjugative plasmid contributes significantly to the dissemination of VEB-producing V. parahaemolyticus, which warrants further investigation because of the public health threat it poses.
Collapse
Affiliation(s)
- Tao Lei
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong Province 510070, China; State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, Guangdong Province 510070, China
| | - Jumei Zhang
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong Province 510070, China; State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, Guangdong Province 510070, China
| | - Fufeng Jiang
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong Province 510070, China; State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, Guangdong Province 510070, China; School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province 710021, China
| | - Min He
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong Province 510070, China; School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province 710021, China; School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, Guangdong Province 510006, China
| | - Haiyan Zeng
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong Province 510070, China; State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, Guangdong Province 510070, China
| | - Moutong Chen
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong Province 510070, China; State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, Guangdong Province 510070, China
| | - Rui Pang
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong Province 510070, China; State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, Guangdong Province 510070, China
| | - Haoming Wu
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong Province 510070, China; State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, Guangdong Province 510070, China
| | - Shi Wu
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong Province 510070, China; State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, Guangdong Province 510070, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong Province 510642, China
| | - Yu Ding
- Department of Food Science and Technology, Jinan University, Guangzhou, Guangdong Province 510632, China
| | - Qingping Wu
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong Province 510070, China; State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, Guangdong Province 510070, China.
| |
Collapse
|
27
|
Ragupathi NKD, Sethuvel DPM, Anandan S, Murugan D, Asokan K, Neethi Mohan RG, Vasudevan K, D TK, C GPD, Veeraraghavan B. First hybrid complete genome of Aeromonas veronii reveals chromosome-mediated novel structural variant mcr-3.30 from a human clinical sample. Access Microbiol 2020; 2:acmi000103. [PMID: 33005867 PMCID: PMC7523623 DOI: 10.1099/acmi.0.000103] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/13/2020] [Indexed: 01/16/2023] Open
Abstract
Recent findings demonstrate the origin of the plasmid-mediated colistin resistance gene mcr-3 from aeromonads. The present study aimed to screen for plasmid-mediated colistin resistance among 30 clinical multidrug-resistant (MDR) Aeromonas spp. PCR was used to screen for the presence of mcr-1, mcr-2, mcr-3 and mcr-4, which revealed mcr-3 in a colistin-susceptible isolate (FC951). All other isolates were negative for mcr. Sequencing of FC951 revealed that the mcr-3 (mcr-3.30) identified was different from previously reported variants and had 95.62 and 95.28 % nucleotide similarity with mcr-3.3 and mcr-3.10. Hybrid assembly using IonTorrent and MinION reads revealed structural genetic information for mcr-3.30 with an insertion of ISAs18 within the gene. Due to this, mcr-3.30 was non-expressive, which makes FC951 susceptible to colistin. Further, in silico sequence and protein structural analysis confirmed the new variant. To the best of our knowledge, this is the first report on a novel mcr-3 variant from India. The significant role of mcr-like genes in different Aeromonas species remains unknown and requires additional investigation to obtains insights into the mechanism of colistin resistance.
Collapse
Affiliation(s)
| | | | - Shalini Anandan
- Department of Clinical Microbiology, Christian Medical College, Vellore – 632004, India
| | - Dhivya Murugan
- Department of Clinical Microbiology, Christian Medical College, Vellore – 632004, India
| | - Kalaiarasi Asokan
- Department of Clinical Microbiology, Christian Medical College, Vellore – 632004, India
| | | | - Karthick Vasudevan
- Department of Clinical Microbiology, Christian Medical College, Vellore – 632004, India
| | - Thirumal Kumar D
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore – 632014, India
| | - George Priya Doss C
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore – 632014, India
| | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College, Vellore – 632004, India
| |
Collapse
|
28
|
International lineages of Salmonella enterica serovars isolated from chicken farms, Wakiso District, Uganda. PLoS One 2020; 15:e0220484. [PMID: 31990938 PMCID: PMC6986767 DOI: 10.1371/journal.pone.0220484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/06/2020] [Indexed: 12/19/2022] Open
Abstract
The growing occurrence of multidrug-resistant (MDR) Salmonella enterica in poultry has been reported with public health concern worldwide. We reported, recently, the occurrence of Escherichia coli and Salmonella enterica serovars carrying clinically relevant resistance genes in dairy cattle farms in the Wakiso District, Uganda, highlighting an urgent need to monitor food-producing animal environments. Here, we present the prevalence, antimicrobial resistance, and sequence type of 51 Salmonella isolates recovered from 379 environmental samples from chicken farms in Uganda. Among the Salmonella isolates, 32/51 (62.7%) were resistant to at least one antimicrobial, and 10/51 (19.6%) displayed multiple drug resistance. Through PCR, five replicon plasmids were identified among chicken Salmonella isolates including IncFIIS 17/51 (33.3%), IncI1α 12/51 (23.5%), IncP 8/51 (15.7%), IncX1 8/51 (15.7%), and IncX2 1/51 (2.0%). In addition, we identified two additional replicons through WGS (Whole Genome Sequencing; ColpVC and IncFIB). A significant seasonal difference between chicken sampling periods was observed (p = 0.0017). We conclude that MDR Salmonella highlights the risks posed to animals and humans. Implementing a robust, integrated surveillance system will aid in monitoring MDR zoonotic threats.
Collapse
|
29
|
Gharaibeh MH, Shatnawi SQ. An overview of colistin resistance, mobilized colistin resistance genes dissemination, global responses, and the alternatives to colistin: A review. Vet World 2019; 12:1735-1746. [PMID: 32009752 PMCID: PMC6925059 DOI: 10.14202/vetworld.2019.1735-1746] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/24/2019] [Indexed: 11/16/2022] Open
Abstract
Colistin, also known as polymyxin E, is an antimicrobial agent that is effective against a variety of Gram-negative bacilli, especially the Enterobacteriaceae family. Recently, the wide dissemination of colistin-resistance has brought strong attention to the scientific society because of its importance as the last resort for the treatment of carbapenem-resistant Enterobacteriaceae infections and its possible horizontal transmission. The mobilized colistin resistance (mcr) gene was identified as the gene responsible for unique colistin resistance. Indeed, despite many studies that have revealed a pan variation in the existence of this gene, not only for the mcr genes main group but also for its many subgroups, the problem is growing and worsening day after day. In this regard, this review paper is set to review the updated data that has been published up to the end of 2019 third quarter, especially when related to colistin resistance by the mcr genes. It will include the present status of colistin resistance worldwide, the mcr gene dissemination in different sectors, the discovery of the mcr variants, and the global plan to deal with the threat of antimicrobial resistance. In line with global awareness, and to stop antibiotic misuse and overuse, especially in agricultural animals, the study will further discuss in detail the latest alternatives to colistin use in animals, which may contribute to the elimination of inappropriate antibiotic use and to the help in preventing infections. This review will advance our understanding of colistin resistance, while supporting the efforts toward better stewardship, for the proper usage of antimicrobial drugs in humans, animals, and in the environment.
Collapse
Affiliation(s)
- Mohammad H Gharaibeh
- Department of Basic Veterinary Medical Science, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110 Jordan
| | - Shoroq Q Shatnawi
- Department of Basic Veterinary Medical Science, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110 Jordan
| |
Collapse
|
30
|
Rau RB, de Lima-Morales D, Wink PL, Ribeiro AR, Barth AL. Salmonella enterica mcr-1 Positive from Food in Brazil: Detection and Characterization. Foodborne Pathog Dis 2019; 17:202-208. [PMID: 31556704 DOI: 10.1089/fpd.2019.2700] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mcr-1 gene has been identified in bacterial isolates obtained from humans, animals, environment, and food, including Salmonella spp., which is one of the major foodborne pathogens worldwide. The aim of this study was to evaluate the presence of mcr-1 gene in Salmonella spp. from food produced in Brazil and to characterize the isolates harboring this gene. A total of 490 Salmonella spp. isolates from the Brazilian National Program for the Control of Foodborne Pathogens were screened for the presence of mcr-1 gene by polymerase chain reaction (PCR). Whole genome sequencing (WGS) was performed in positive isolates to characterize the sequence type (ST), plasmid families and resistance genes. Antimicrobial susceptibility tests were performed by broth microdilution. Selected isolates were submitted to conjugation experiments using the Escherichia coli J53 as a receptor. We detected eight isolates harboring the mcr-1 gene; seven belonged to Salmonella enterica serovar Typhimurium and its monophasic variant 4,[5],12:i:-, and one belonged to serovar Saintpaul. Seven of the mcr-1 positive isolates displayed a high rate of resistance to other antibiotics in addition to colistin. Analysis of the WGS indicated that the ST 19 was the most common ST among the mcr-1 positive isolates. The mcr-1 gene was located in an IncX4 plasmid of ∼33 kb, with no additional resistance genes and with high identity with a plasmid obtained from a clinical isolate of E. coli mcr-1 positive in Brazil. All plasmids harboring the mcr-1 gene were able to conjugate. Our results suggest the spread of a single plasmid type in Brazil harboring the mcr-1 among Salmonella spp. The horizontal transfer of this mobile element has been contributing to the spread of the colistin resistance in the country.
Collapse
Affiliation(s)
- Renata Batista Rau
- Laboratório Federal de Defesa Agropecuária-RS (LFDA-RS), Ministério da Agricultura, Pecuária e Abastecimento (MAPA), Porto Alegre, Brazil.,Laboratório de Pesquisa em Resistência Bacteriana (LABRESIS), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Daiana de Lima-Morales
- Laboratório de Pesquisa em Resistência Bacteriana (LABRESIS), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Priscila Lamb Wink
- Laboratório de Pesquisa em Resistência Bacteriana (LABRESIS), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Aldemir Reginato Ribeiro
- Laboratório Federal de Defesa Agropecuária-RS (LFDA-RS), Ministério da Agricultura, Pecuária e Abastecimento (MAPA), Porto Alegre, Brazil
| | - Afonso Luis Barth
- Laboratório de Pesquisa em Resistência Bacteriana (LABRESIS), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
31
|
Sun H, Wan Y, Du P, Bai L. The Epidemiology of Monophasic Salmonella Typhimurium. Foodborne Pathog Dis 2019; 17:87-97. [PMID: 31532231 DOI: 10.1089/fpd.2019.2676] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Salmonella enterica remains an important foodborne pathogen in all regions of the world, with Typhimurium as one of the most frequent serotypes causing foodborne disease. However, the past two decades have seen a rapid worldwide emergence of a new Salmonella serotype, namely monophasic variant of S. Typhimurium, whose antigenic formula is 1,4,[5],12:i:-. It has become one of the 2-5 most common Salmonella serotypes responsible for animal and human infections in different regions. The global epidemic of monophasic S. 1,4,[5],12:i:- has mainly been characterized by an increase in multidrug-resistant S. 1,4,[5],12:i:- isolated in Europe since 1997. The unexpected link to swine has escalated monophasic S. Typhimurium infections to the status of a global public health emergency. The large-scale application of whole genome sequencing (WGS) in the last 10 years has revealed the phylogenetic associations of the bacterium and its antimicrobial resistance (AMR) genes. Local and global transmission reconstructed by WGS have shown that different clones have emerged following multiple independent events worldwide, and have elucidated the role of this zoonotic pathogen in the spread of AMR. This article discusses our current knowledge of the global ecology, epidemiology, transmission, bacterial adaptation, and evolution of this emerging Salmonella serotype.
Collapse
Affiliation(s)
- Honghu Sun
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China, China National Center for Food Safety Risk Assessment, Beijing, China.,Chengdu Institute for Food and Drug Control, Chengdu, China
| | - Yuping Wan
- Chengdu Institute for Food and Drug Control, Chengdu, China
| | - Pengcheng Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Li Bai
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China, China National Center for Food Safety Risk Assessment, Beijing, China
| |
Collapse
|
32
|
Li XP, Sun RY, Song JQ, Fang LX, Zhang RM, Lian XL, Liao XP, Liu YH, Lin J, Sun J. Within-host heterogeneity and flexibility of mcr-1 transmission in chicken gut. Int J Antimicrob Agents 2019; 55:105806. [PMID: 31533074 DOI: 10.1016/j.ijantimicag.2019.09.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/27/2019] [Accepted: 09/11/2019] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To characterize the colistin-resistant bacterial population in the gut and assess diversity of mcr-1 transmission within a single individual. METHODS Large numbers of isolates (>100 colonies/chicken cecum sample) were collected from nine randomly selected mcr-1-positive chickens in China and used for comprehensive microbiological, molecular and comparative genomics analyses. RESULTS Of 1273 colonies, 968 were mcr-1 positive (962 Escherichia coli, two Escherichia fergusonii, two Klebsiella pneumoniae and two Klebsiella quasipneumoniae). One to six colistin-resistant species and three to 10 E. coli pulsed-field gel electrophoresis (PFGE) clusters could be identified from each sample. Whole-genome sequencing (WGS) analysis of the representative E. coli strains revealed three to nine sequence types observed in a single chicken host. The mcr-1 genes are located in either chromosomes or plasmids of different types, including IncI2 (n=30), IncHI2 (n=14), IncX4 (n=4), p0111(n=2) and IncHI1(n=1). Strikingly, in single cecum samples, one to five Inc type plasmids harbouring mcr-1 could be identified. Great diversity was also observed for the same IncI2 plasmid within a single chicken host. In addition, up to eight genetic contexts of the mcr-1 gene occurred within a single chicken. CONCLUSIONS There is extensive heterogeneity and flexibility of mcr-1 transmission in chicken gut due to bacterial species differences, distant clonal relatedness of isolates, many types and variations of mcr-positive plasmids, and the flexible genetic context of the mcr-1 gene. These compelling findings indicate that the gut is a 'melting pot' for active horizontal transfer of the mcr-1 gene.
Collapse
Affiliation(s)
- Xing-Ping Li
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, P. R. China; Department of Animal Science, The University of Tennessee, Knoxville, TN, USA
| | - Ruan-Yang Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, P. R. China
| | - Jia-Qi Song
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, P. R. China
| | - Liang-Xing Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, P. R. China
| | - Rong-Min Zhang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, P. R. China
| | - Xin-Lei Lian
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, P. R. China
| | - Xiao-Ping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, P. R. China
| | - Ya-Hong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, P. R. China
| | - Jun Lin
- Department of Animal Science, The University of Tennessee, Knoxville, TN, USA.
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, P. R. China.
| |
Collapse
|
33
|
Biswas S, Li Y, Elbediwi M, Yue M. Emergence and Dissemination of mcr-Carrying Clinically Relevant Salmonella Typhimurium Monophasic Clone ST34. Microorganisms 2019; 7:E298. [PMID: 31466338 PMCID: PMC6780495 DOI: 10.3390/microorganisms7090298] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 02/07/2023] Open
Abstract
Antibiotic resistance in bacteria is one of the urgent threats to both public and global health. The Salmonella Typhimurium monophasic sequence type 34 (ST34) clone, with its rapid dissemination and resistance to numerous critical antimicrobials, has raised global concerns. Here, we present an updated overview on the emerging infections caused by mobile colistin resistance (mcr)-carrying colistin-resistant ST34 isolates, covering their global dissemination and virulence-associated efficacy. The higher rates of mcr-1-positive ST34 in children in China highlights the increasing threat caused by this pathogen. Most of the ST34 isolates carrying the mcr-1 gene were isolated from animals and food products, indicating the role of foodborne transmission of mcr-1. The emergence of multidrug resistance genes along with various virulence factors and many heavy metal resistance genes on the chromosome and plasmid from ST34 isolates will challenge available therapeutic options. The presence of the colistin resistance gene (mcr-1, mcr-3, and mcr-5) with the multidrug-resistant phenotype in ST34 has spread across different countries, and most of the mcr-1 genes in ST34 isolates were detected in plasmid type IncHI2 followed by IncI2, and IncX4. Together, mcr-carrying S. Typhimurium ST34 may become a new pandemic clone. The fast detection and active surveillance in community, hospital, animal herds, food products and environment are urgently warranted.
Collapse
Affiliation(s)
- Silpak Biswas
- CATG Microbiology & Food Safety Laboratory, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Yan Li
- CATG Microbiology & Food Safety Laboratory, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Mohammed Elbediwi
- CATG Microbiology & Food Safety Laboratory, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Min Yue
- CATG Microbiology & Food Safety Laboratory, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou 310058, China.
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China.
| |
Collapse
|
34
|
Cui M, Zhang P, Li J, Sun C, Song L, Zhang C, Zhao Q, Wu C. Prevalence and Characterization of Fluoroquinolone Resistant Salmonella Isolated From an Integrated Broiler Chicken Supply Chain. Front Microbiol 2019; 10:1865. [PMID: 31456779 PMCID: PMC6700324 DOI: 10.3389/fmicb.2019.01865] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 07/29/2019] [Indexed: 11/23/2022] Open
Abstract
The objectives of this study were to investigate the prevalence and fluoroquinolone resistant Salmonella isolated from an integrated broiler chicken supply chain and their molecular characterization. In total, 73 Salmonella isolates were recovered from a broiler chicken supply chain in Shanghai. Salmonella isolates were tested for susceptibility to 11 antimicrobial agents using the broth dilution method and were characterized using pulsed-field gel electrophoresis (PFGE). Then, the Salmonella isolates were examined for mutations in quinolone resistance-determining region (QRDR) of gyrA, gyrB, parC, and parE, and were screened for plasmid-mediated quinolone resistance (PMQR) genes. Lastly, we sequenced the plasmids carrying qnrS1 in six Salmonella isolates from three sources (two isolated per source). Among 73 Salmonella isolates, 45 isolates were identified as S. Indiana, 24 were S. Schwarzengrund, 2 were S. Enteritidis, and 2 were S. Stanleyville. In addition, high rates of resistance were detected for nalidixic acid (41.1%) and ciprofloxacin (37.0%), while resistance to other test agents was diverse (2.0-100%). S. Indiana and S. Schwarzengrund isolates from different sources exhibited the same PFGE pattern, suggesting that the Salmonella isolates possessed high potential to spread along the broiler chicken supply chain. gyrA and parC exhibited frequent missense mutations. Moreover, qnrS1 was the most prevalent PMQR gene in the 73 Salmonella isolates, and it was found about a new hybrid plasmid. This study concludes a high prevalence of fluoroquinolone resistant Salmonella in chicken supply chain, threatening the treatment of Salmonella foodborne diseases. In particular, the emergence of a new hybrid plasmid carrying qnrS1 indicates that the recombination of plasmid carrying resistance gene might be a potential risk factor for the prevention and control strategies of drug resistance.
Collapse
Affiliation(s)
- Mingquan Cui
- China Institute of Veterinary Drug Control, Beijing, China
| | - Peng Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Detection for Veterinary Drug Residue and Illegal Additive, MOA, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiyun Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Detection for Veterinary Drug Residue and Illegal Additive, MOA, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chengtao Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Detection for Veterinary Drug Residue and Illegal Additive, MOA, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Li Song
- China Institute of Veterinary Drug Control, Beijing, China
| | - Chunping Zhang
- China Institute of Veterinary Drug Control, Beijing, China
| | - Qi Zhao
- China Institute of Veterinary Drug Control, Beijing, China
| | - Congming Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Detection for Veterinary Drug Residue and Illegal Additive, MOA, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
35
|
Complete Genome and Plasmid Sequences of Seven Isolates of Salmonella enterica subsp. enterica Harboring the mcr-1 Gene Obtained from Food in China. Microbiol Resour Announc 2019; 8:8/31/e00114-19. [PMID: 31371529 PMCID: PMC6675977 DOI: 10.1128/mra.00114-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Seven Salmonella enterica subsp. enterica isolates were identified as carrying the mcr-1 gene, by using a real-time fluorescence quantitative PCR method, from a total of 2,558 isolates which were cultured from various food origins in China between 2011 and 2016. Few complete genomes of Salmonella strains harboring the mcr-1 gene have been reported to date, so we report here the complete genome and plasmid sequences of all of these isolates to provide useful references for understanding the prevalence of foodborne Salmonella enterica subsp. enterica isolates carrying mcr-1.
Collapse
|
36
|
Monte DF, Lincopan N, Berman H, Cerdeira L, Keelara S, Thakur S, Fedorka-Cray PJ, Landgraf M. Genomic Features of High-Priority Salmonella enterica Serovars Circulating in the Food Production Chain, Brazil, 2000-2016. Sci Rep 2019; 9:11058. [PMID: 31363103 PMCID: PMC6667439 DOI: 10.1038/s41598-019-45838-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/11/2019] [Indexed: 11/09/2022] Open
Abstract
Multidrug-resistant (MDR) Salmonella enterica has been deemed a high-priority pathogen by the World Health Organization. Two hundred and sixty-four Salmonella enterica isolates recovered over a 16-year period (2000 to 2016) from the poultry and swine production chains, in Brazil, were investigated by whole-genome sequencing (WGS). Most international lineages belonging to 28 serovars, including, S. enterica serovars S. Schwarzengrund ST96, S. Typhimurium ST19, S. Minnesota ST548, S. Infantis ST32, S. Heidelberg ST15, S. Newport ST45, S. Brandenburg ST65 and S. Kentucky ST198 displayed MDR and virulent genetic backgrounds. In this regard, resistome analysis revealed presence of qnrE1 (identified for the first time in S. Typhimurium from food chain), qnrB19, qnrS1, blaCTX-M-8, blaCTX-M-2 and blaCMY-2 genes, as well as gyrA mutations; whereas ColpVC, IncHI2A, IncHI2, IncFIA, Incl1, IncA/C2, IncR, IncX1 and po111 plasmids were detected. In addition, phylogenetic analysis revealed multiple independent lineages such as S. enterica serovars S. Infantis, S. Schwarzengrund, S. Minnesota, S. Kentucky and S. Brandenburg. In brief, ocurrence and persistence of international lineages of S. enterica serovars in food production chain is supported by conserved genomes and wide virulome and resistome.
Collapse
Affiliation(s)
- Daniel F Monte
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Food Research Center, University of São Paulo, São Paulo, Brazil. .,Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina, USA.
| | - Nilton Lincopan
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Hanna Berman
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina, USA
| | - Louise Cerdeira
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Shivaramu Keelara
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina, USA
| | - Siddhartha Thakur
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina, USA
| | - Paula J Fedorka-Cray
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina, USA
| | - Mariza Landgraf
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Food Research Center, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
37
|
Abstract
Polymyxins are important lipopeptide antibiotics that serve as the last-line defense against multidrug-resistant (MDR) Gram-negative bacterial infections. Worryingly, the clinical utility of polymyxins is currently facing a serious threat with the global dissemination of mcr, plasmid-mediated polymyxin resistance. The first plasmid-mediated polymyxin resistance gene, termed as mcr-1 was identified in China in November 2015. Following its discovery, isolates carrying mcr, mainly mcr-1 and less commonly mcr-2 to -7, have been reported across Asia, Africa, Europe, North America, South America and Oceania. This review covers the epidemiological, microbiological and genomics aspects of this emerging threat to global human health. The mcr has been identified in various species of Gram-negative bacteria including Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, Salmonella enterica, Cronobacter sakazakii, Kluyvera ascorbata, Shigella sonnei, Citrobacter freundii, Citrobacter braakii, Raoultella ornithinolytica, Proteus mirabilis, Aeromonas, Moraxella and Enterobacter species from animal, meat, food product, environment and human sources. More alarmingly is the detection of mcr in extended-spectrum-β-lactamases- and carbapenemases-producing bacteria. The mcr can be carried by different plasmids, demonstrating the high diversity of mcr plasmid reservoirs. Our review analyses the current knowledge on the emergence of mcr-mediated polymyxin resistance.
Collapse
Affiliation(s)
- Sue C Nang
- a Department of Microbiology, Monash Biomedicine Discovery Institute , Monash University , Melbourne , Australia
| | - Jian Li
- a Department of Microbiology, Monash Biomedicine Discovery Institute , Monash University , Melbourne , Australia
| | - Tony Velkov
- b Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences , The University of Melbourne , Parkville , Australia
| |
Collapse
|
38
|
Li J, Zhang H, Ning J, Sajid A, Cheng G, Yuan Z, Hao H. The nature and epidemiology of OqxAB, a multidrug efflux pump. Antimicrob Resist Infect Control 2019; 8:44. [PMID: 30834112 PMCID: PMC6387526 DOI: 10.1186/s13756-019-0489-3] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 02/03/2019] [Indexed: 01/03/2023] Open
Abstract
Background OqxAB efflux pump has been found to mediate multidrug resistance (MDR) in various bacteria over the past decades. The updates on the nature and epidemiology of OqxAB efflux pump need to be fully reviewed to broaden our understanding of this MDR determinant. Methods A literature search using the keyword of "oqxAB" was conducted in the online databases of Pubmed and ISI Web of Science with no restriction on the date of publication. The 87 publications were included into this review as references due to their close relevance to the nature and/or epidemiology of OqxAB efflux pump. Results The oqxAB gene generally locates on chromosome and/or plasmids flanked by IS26-like elements in clinical isolates of Enterobacteriaceae and Klebsiella pneumoniae, conferring low to intermediated resistance to quinoxalines, quinolones tigecycline, nitrofurantoin, several detergents and disinfectants (benzalkonium chloride, triclosan and SDS). It could co-spread with other antimicrobial resistance genes (bla CTX-M, rmtB and aac(6')-Ib etc.), virulence genes and heavy metal resistance genes (pco and sil operons). Both RarA (activator) and OqxR (repressor) play important roles on regulation of the expression of OqxAB. Conclusions The dissemination of oqxAB gene may pose a great risk on food safety and public health. Further investigation and understanding of the natural functions, horizontal transfer, and regulation mechanism of the OqxAB efflux pump will aid in future strategies of antimicrobial usage.
Collapse
Affiliation(s)
- Jun Li
- 1National Reference Laboratory of Veterinary Drug Residues (HZAU) and Key Laboratory of the Detection for Veterinary Drug Residues, Wuhan, 430070 Hubei China.,2Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 Jiangsu China
| | - Heying Zhang
- 1National Reference Laboratory of Veterinary Drug Residues (HZAU) and Key Laboratory of the Detection for Veterinary Drug Residues, Wuhan, 430070 Hubei China
| | - Jianan Ning
- 1National Reference Laboratory of Veterinary Drug Residues (HZAU) and Key Laboratory of the Detection for Veterinary Drug Residues, Wuhan, 430070 Hubei China
| | - Abdul Sajid
- 1National Reference Laboratory of Veterinary Drug Residues (HZAU) and Key Laboratory of the Detection for Veterinary Drug Residues, Wuhan, 430070 Hubei China.,4College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University Mardan, Mardan, KP Pakistan
| | - Guyue Cheng
- 3Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products (Wuhan), Ministry of Agriculture, P.R China, Wuhan, 430070 Hubei China
| | - Zonghui Yuan
- 1National Reference Laboratory of Veterinary Drug Residues (HZAU) and Key Laboratory of the Detection for Veterinary Drug Residues, Wuhan, 430070 Hubei China.,3Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products (Wuhan), Ministry of Agriculture, P.R China, Wuhan, 430070 Hubei China
| | - Haihong Hao
- 1National Reference Laboratory of Veterinary Drug Residues (HZAU) and Key Laboratory of the Detection for Veterinary Drug Residues, Wuhan, 430070 Hubei China.,3Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products (Wuhan), Ministry of Agriculture, P.R China, Wuhan, 430070 Hubei China
| |
Collapse
|
39
|
Plasmid-Mediated Colistin Resistance in Salmonella enterica: A Review. Microorganisms 2019; 7:microorganisms7020055. [PMID: 30791454 PMCID: PMC6406434 DOI: 10.3390/microorganisms7020055] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 11/16/2022] Open
Abstract
Colistin is widely used in food-animal production. Salmonella enterica is a zoonotic pathogen, which can pass from animal to human microbiota through the consumption of contaminated food, and cause disease, often severe, especially in young children, elderly and immunocompromised individuals. Recently, plasmid-mediated colistin resistance was recognised; mcr-like genes are being identified worldwide. Colistin is not an antibiotic used to treat Salmonella infections, but has been increasingly used as one of the last treatment options for carbapenem resistant Enterobacteria in human infections. The finding of mobilizable mcr-like genes became a global concern due to the possibility of horizontal transfer of the plasmid that often carry resistance determinants to beta-lactams and/or quinolones. An understanding of the origin and dissemination of mcr-like genes in zoonotic pathogens such as S. enterica will facilitate the management of colistin use and target interventions to prevent further spread. The main objective of this review was to collect epidemiological data about mobilized colistin resistance in S. enterica, describing the mcr variants, identified serovars, origin of the isolate, country and other resistance genes located in the same genetic platform.
Collapse
|
40
|
Arnott A, Wang Q, Bachmann N, Sadsad R, Biswas C, Sotomayor C, Howard P, Rockett R, Wiklendt A, Iredell JR, Sintchenko V. Multidrug-Resistant Salmonella enterica 4,[5],12:i:- Sequence Type 34, New South Wales, Australia, 2016-2017. Emerg Infect Dis 2019; 24:751-753. [PMID: 29553318 PMCID: PMC5875280 DOI: 10.3201/eid2404.171619] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Multidrug- and colistin-resistant Salmonella enterica serotype 4,[5],12:i:- sequence type 34 is present in Europe and Asia. Using genomic surveillance, we determined that this sequence type is also endemic to Australia. Our findings highlight the public health benefits of genome sequencing–guided surveillance for monitoring the spread of multidrug-resistant mobile genes and isolates.
Collapse
|
41
|
Campos J, Mourão J, Peixe L, Antunes P. Non-typhoidal Salmonella in the Pig Production Chain: A Comprehensive Analysis of Its Impact on Human Health. Pathogens 2019; 8:E19. [PMID: 30700039 PMCID: PMC6470815 DOI: 10.3390/pathogens8010019] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 11/17/2022] Open
Abstract
Salmonellosis remains one of the most frequent foodborne zoonosis, constituting a worldwide major public health concern. The most frequent sources of human infections are food products of animal origin, being pork meat one of the most relevant. Currently, particular pig food production well-adapted and persistent Salmonella enterica serotypes (e.g., Salmonella Typhimurium, Salmonella 1,4,[5],12:i:-, Salmonella Derby and Salmonella Rissen) are frequently reported associated with human infections in diverse industrialized countries. The dissemination of those clinically-relevant Salmonella serotypes/clones has been related to the intensification of pig production chain and to an increase in the international trade of pigs and pork meat. Those changes that occurred over the years along the food chain may act as food chain drivers leading to new problems and challenges, compromising the successful control of Salmonella. Among those, the emergence of antibiotic resistance in non-typhoidal Salmonella associated with antimicrobials use in the pig production chain is of special concern for public health. The transmission of pig-related multidrug-resistant Salmonella serotypes, clones and/or genetic elements carrying clinically-relevant antibiotic resistance genes, frequently associated with metal tolerance genes, from pigs and pork meat to humans, has been reported and highlights the contribution of different drivers to the antibiotic resistance burden. Gathered data strengthen the need for global mandatory interventions and strategies for effective Salmonella control and surveillance across the pig production chain. The purpose of this review was to provide an overview of the role of pig and pork meat in human salmonellosis at a global scale, highlighting the main factors contributing to the persistence and dissemination of clinically-relevant pig-related Salmonella serotypes and clones.
Collapse
Affiliation(s)
- Joana Campos
- UCIBIO@REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal; Rua de Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal.
| | - Joana Mourão
- UCIBIO@REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal; Rua de Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal.
| | - Luísa Peixe
- UCIBIO@REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal; Rua de Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal.
| | - Patrícia Antunes
- UCIBIO@REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal; Rua de Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal.
- Faculdade de Ciências da Nutrição e Alimentação, Universidade do Porto, Portugal; Rua Dr. Roberto Frias, 4200 Porto, Portugal.
| |
Collapse
|
42
|
Lu J, Quan J, Zhao D, Wang Y, Yu Y, Zhu J. Prevalence and molecular characteristics of mcr-1 gene in Salmonella typhimurium in a tertiary hospital of Zhejiang Province. Infect Drug Resist 2018; 12:105-110. [PMID: 30643438 PMCID: PMC6312689 DOI: 10.2147/idr.s190269] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objectives mcr-1 gene has been widely reported in the world. This study aimed to analyze the prevalence and molecular characteristics of mcr-1 gene in Salmonella typhimurium from Quzhou People’s Hospital. Materials and methods A total of 62 S. typhimurium isolates were isolated and preserved in our laboratory from 2007 to 2016. PCR was used to screen plasmid-mediated colistin resistance gene, mcr-1. For mcr-1-positive isolates, susceptibilities to colistin and other antibiotics were assessed using broth microdilution or agar dilution methods. The genetic location of mcr-1 was determined by analysis of pulsed-field gel electrophoresis profiles of S1-digested genomic DNA and subsequent Southern blot hybridization. The multi-locus sequence type and other drug resistance genes found in the mcr-1-positive isolates were analyzed by performing whole genome sequencing. Genetic environment of mcr-1 gene was analyzed by RAST and Easyfig. Results A total of three S. typhimurium isolates were identified to be mcr-1 positive, with the prevalence rate of 4.8% (3/62). The minimum inhibitory concentration values of colistin for all these isolates were 8 µg/mL. The three mcr-1-positive isolates carried mcr-1 gene on two different types of plasmids having the sizes of ~54.7–78.2 kb and 310.1 kb, respectively. All the three isolates belonged to ST34 and carried various resistant genes. Conclusion Colistin-resistant, mcr-1-positive S. typhimurium isolates belonging to ST34 have been isolated from Quzhou People’s Hospital. Surveillance needs to be strengthened to identify colistin resistance and prevent the spread of drug-resistant bacteria in the hospital.
Collapse
Affiliation(s)
- Jun Lu
- Department of Laboratory, Quzhou People's Hospital, Quzhou, Zhejiang, China,
| | - Jingjing Quan
- Department of Infectious Diseases, College of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Dongdong Zhao
- Department of Infectious Diseases, College of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yanfei Wang
- Department of Infectious Diseases, College of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yunsong Yu
- Department of Infectious Diseases, College of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jin Zhu
- Department of Laboratory, Quzhou People's Hospital, Quzhou, Zhejiang, China,
| |
Collapse
|
43
|
Wang J, Huang XY, Xia YB, Guo ZW, Ma ZB, Yi MY, Lv LC, Lu PL, Yan JC, Huang JW, Zeng ZL, Liu JH. Clonal Spread of Escherichia coli ST93 Carrying mcr-1-Harboring IncN1-IncHI2/ST3 Plasmid Among Companion Animals, China. Front Microbiol 2018; 9:2989. [PMID: 30564223 PMCID: PMC6288184 DOI: 10.3389/fmicb.2018.02989] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/19/2018] [Indexed: 11/25/2022] Open
Abstract
The purpose of this study was to investigate the occurrence of plasmid-mediated colistin resistance gene mcr-1 in Enterobacteriaceae isolates from companion animals in Guangzhou, China. Enterobacteriaceae isolated from 180 samples collected from cats and dogs were screened for mcr-1 by PCR and sequencing. MCR-1-producing isolates were further characterized by multilocus sequence typing and pulsed-field gel electrophoresis (PFGE). Plasmid characterization was performed by conjugation, replicon typing, S1-PFGE, and Southern blot hybridization. Plasmid pHN6DS2 as a representative IncN1-IncHI2/ST3 plasmid from ST93 E. coli was fully sequenced. pHN6DS2-like plasmids were screened by PCR-mapping and sequencing. The mcr-1 gene was detected in 6.25% (8/128) Escherichia coli isolates, of which, five belonged to E. coli ST93 and had identical PFGE patterns, resistance profiles and resistance genes. mcr-1 genes were located on ∼244.4 kb plasmids (n = 6), ∼70 kb plasmids, and ∼60 kb plasmids, respectively. Among them, five mcr-1-carrying plasmids were successfully transferred to recipient by conjugation experiments, and were classified as IncN1-IncHI2/ST3 (∼244.4 kb, n = 4, all obtained from E. coli ST93), and IncI2 (∼70 kb, n = 1), respectively. Plasmid pHN6DS2 contained a typical IncHI2-type backbone, with IncN1 segment (ΔrepA-Iterons I-gshB-ΔIS1294) inserted into the multiresistance region, and was similar to other mcr-1-carrying IncHI2/ST3 plasmids from Enterobacteriaceae isolates of various origins in China. The remaining five mcr-1-bearing plasmids with sizes of ∼244.4 kb were identified to be pHN6DS2-like plasmids. In conclusion, clonal spread of ST93 E. coli isolates was occurred in companion animals in Guangzhou, China.
Collapse
Affiliation(s)
- Jing Wang
- College of Veterinary Medicine, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Xin-Yi Huang
- College of Veterinary Medicine, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Ying-Bi Xia
- College of Veterinary Medicine, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Ze-Wen Guo
- College of Veterinary Medicine, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Zhen-Bao Ma
- College of Veterinary Medicine, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Meng-Ying Yi
- College of Veterinary Medicine, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Lu-Chao Lv
- College of Veterinary Medicine, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Pei-Lan Lu
- College of Veterinary Medicine, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Jie-Cong Yan
- College of Veterinary Medicine, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Jia-Wei Huang
- College of Veterinary Medicine, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Zhen-Ling Zeng
- College of Veterinary Medicine, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Jian-Hua Liu
- College of Veterinary Medicine, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, South China Agricultural University, Guangzhou, China
| |
Collapse
|
44
|
Tyson GH, Bodeis-Jones S, Caidi H, Cook K, Dessai U, Haro J, McCullough AE, Meng J, Morales CA, Lawrence JP, Tillman GE, Winslow A, Miller RA. Proposed Epidemiological Cutoff Values for Ceftriaxone, Cefepime, and Colistin in Salmonella. Foodborne Pathog Dis 2018; 15:701-704. [PMID: 30153043 PMCID: PMC11555753 DOI: 10.1089/fpd.2018.2490] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We tested a diverse set of 500 isolates of nontyphoidal Salmonella enterica subsp. enterica from various animal, food, and human clinical sources for susceptibility to antimicrobials currently lacking epidemiological cutoff values (ECOFFs) set by the European Committee on Antimicrobial Susceptibility Testing. A consortium of five different laboratories each tested 100 isolates, using broth microdilution panels containing twofold dilutions of ceftriaxone, cefepime, and colistin to determine the minimum inhibitory concentrations of each drug when tested against the Salmonella isolates. Based on the resulting data, new ECOFFs of 0.25 μg/mL for ceftriaxone, 0.12 μg/mL for cefepime, and 2 μg/mL for colistin have been proposed. These thresholds will aid in the identification of Salmonella that have phenotypically detectable resistance mechanisms to these important antimicrobials.
Collapse
Affiliation(s)
- Gregory H. Tyson
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Laurel, Maryland
| | - Sonya Bodeis-Jones
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Laurel, Maryland
| | - Hayat Caidi
- Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, Georgia
| | - Kimberly Cook
- U.S. Department of Agriculture, Agricultural Research Service, Athens, Georgia
| | - Uday Dessai
- U.S. Department of Agriculture, Food Safety and Inspection Service, Washington, District of Columbia
| | - Jovita Haro
- U.S. Department of Agriculture, Food Safety and Inspection Service, Athens, Georgia
| | - Andre E. McCullough
- Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, Georgia
| | - Jianghong Meng
- Joint Institute for Food Safety and Applied Nutrition, College Park, Maryland
| | - Cesar A. Morales
- U.S. Department of Agriculture, Food Safety and Inspection Service, Athens, Georgia
| | | | - Glenn E. Tillman
- U.S. Department of Agriculture, Food Safety and Inspection Service, Athens, Georgia
| | - Angela Winslow
- Joint Institute for Food Safety and Applied Nutrition, College Park, Maryland
| | - Ron A. Miller
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Rockville, Maryland
| |
Collapse
|
45
|
Apostolakos I, Piccirillo A. A review on the current situation and challenges of colistin resistance in poultry production. Avian Pathol 2018; 47:546-558. [DOI: 10.1080/03079457.2018.1524573] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Ilias Apostolakos
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Alessandra Piccirillo
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| |
Collapse
|
46
|
Zhang Z, Cao C, Liu B, Xu X, Yan Y, Cui S, Chen S, Meng J, Yang B. Comparative Study on Antibiotic Resistance and DNA Profiles of Salmonella enterica Serovar Typhimurium Isolated from Humans, Retail Foods, and the Environment in Shanghai, China. Foodborne Pathog Dis 2018; 15:481-488. [PMID: 29741928 DOI: 10.1089/fpd.2017.2414] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We characterized antibiotic resistance profiles, antibiotic resistance-associated genes, and pulsed-field gel electrophoresis (PFGE) patterns of 145 Salmonella enterica serotype Typhimurium isolates from human infections and retail foods that were possibly responsible for salmonellosis outbreaks from 2008 to 2012 in Shanghai, China. Resistance to at least three antibiotics was found in 66.7% of chicken isolates, 76.5% of duck isolates, 77.8% of pork isolates, and 80.5% of human isolates. Seven antibiotic resistance phenotypes were detected in chicken isolates, 16 in pork isolates, 17 in duck isolates, and 50 in human isolates. No significant difference (p > 0.05) was found between Salmonella isolates derived from human salmonellosis and from retail foods in terms of the percent resistance of ampicillin, amoxicillin/clavulanic acid, ceftiofur, ceftriaxone, nalidixic acid, chloramphenicol, gentamicin, kanamycin, streptomycin, tetracycline, sulfisoxazole, and sulfamethoxazole/trimethoprim. PFGE using XbaI and BlnI showed that some Salmonella isolates recovered from human infections and retail foods had same or highly similar genetic profile. Same or similar antibiotic resistance profiles, antibiotic resistance associated genes (i.e., qnrA, qnrB, qnrS, aac(6')-Ib, and oqxAB), gene cassettes (i.e., aadA2, dfrA12-aadA2, and aadA1), and mutations were detected in those isolates that exhibited high genetic similarities. These findings highlighted the frequent presence of Salmonella Typhimurium in retail chicken, pork, duck, and humans.
Collapse
Affiliation(s)
- Zengfeng Zhang
- 1 College of Food Science and Engineering, Northwest A&F University , Yangling, China
| | - Chenyang Cao
- 1 College of Food Science and Engineering, Northwest A&F University , Yangling, China
| | - Bin Liu
- 1 College of Food Science and Engineering, Northwest A&F University , Yangling, China
| | - Xuebin Xu
- 2 Shanghai Municipal Center for Disease Control and Prevention , Shanghai, China
| | - Yanfei Yan
- 1 College of Food Science and Engineering, Northwest A&F University , Yangling, China
| | - Shenghui Cui
- 3 National Institutes for Food and Drug Control , Beijing, China
| | - Sheng Chen
- 4 State Key Laboratory of Chirosciences, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University , Hung Hom, Hong Kong
| | - Jianghong Meng
- 1 College of Food Science and Engineering, Northwest A&F University , Yangling, China .,5 Joint Institute for Food Safety and Applied Nutrition, Department of Nutrition and Food Science, University of Maryland , College Park, Maryland
| | - Baowei Yang
- 1 College of Food Science and Engineering, Northwest A&F University , Yangling, China
| |
Collapse
|
47
|
Wang W, Baloch Z, Zou M, Dong Y, Peng Z, Hu Y, Xu J, Yasmeen N, Li F, Fanning S. Complete Genomic Analysis of a Salmonella enterica Serovar Typhimurium Isolate Cultured From Ready-to-Eat Pork in China Carrying One Large Plasmid Containing mcr-1. Front Microbiol 2018; 9:616. [PMID: 29755416 PMCID: PMC5934421 DOI: 10.3389/fmicb.2018.00616] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/16/2018] [Indexed: 11/24/2022] Open
Abstract
One mcr-1-carrying ST34-type Salmonella Typhimurium WW012 was cultured from 3,200 ready-to-eat (RTE) pork samples in 2014 in China. Broth dilution method was applied to obtain the antimicrobial susceptibility of Salmonella Typhimurium WW012. Broth matting assays were carried out to detect transferability of this phenotype and whole-genome sequencing was performed to analyze its genomic characteristic. Thirty out of 3,200 RTE samples were positive for Salmonella and the three most frequent serotypes were identified as S. Derby (n = 8), S. Typhimurium (n = 6), and S. Enteritidis (n = 6). One S. Typhimurium isolate (S. Typhimurium WW012) cultured from RTE prepared pork was found to contain the mcr-1 gene. S. Typhimurium WW012 expressed a level of high resistance to seven different antimicrobial compounds in addition to colistin (MIC = 8 mg/L). A single plasmid, pWW012 (151,609-bp) was identified and found to be of an IncHI2/HI2A type that encoded a mcr-1 gene along with six additional antimicrobial resistance genes. Plasmid pWW012 contained an IS30-mcr-1-orf-orf-IS30 composite transposon that can be successfully transferred to Escherichia coli J53. When assessed further, the latter demonstrated considerable similarity to three plasmids pHYEC7-mcr-1, pSCC4, and pHNSHP45-2, respectively. Furthermore, plasmid pWW012 also contained a multidrug resistance (MDR) genetic structure IS26-aadA2-cmlA2-aadA1-IS406-sul3-IS26-dfrA12-aadA2-IS26, which showed high similarity to two plasmids, pHNLDF400 and pHNSHP45-2, respectively. Moreover, genes mapping to the chromosome (4,991,167-bp) were found to carry 28 mutations, related to two component regulatory systems (pmrAB, phoPQ) leading to modifications of lipid A component of the lipopolysaccharide structure. Additionally, one mutation (D87N) in the quinolone resistance determining region (QRDR) gene of gyrA was identified in this mcr-1 harboring S. Typhimurium. In addition, various virulence factors and heavy metal resistance-encoding genes were also identified on the genome of S. Typhimurium WW012. This is the first report of the complete nucleotide sequence of mcr-1-carrying MDR S. Typhimurium strain from RTE pork in China.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Zulqarnain Baloch
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Mingyuan Zou
- Heilongjiang Provincial Center for Disease Control and Prevention, Harbin, China
| | - Yinping Dong
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Zixin Peng
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Yujie Hu
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Jin Xu
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Nafeesa Yasmeen
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Fengqin Li
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Séamus Fanning
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, Ireland
| |
Collapse
|
48
|
Plasmid-mediated colistin resistance in animals: current status and future directions. Anim Health Res Rev 2018; 18:136-152. [DOI: 10.1017/s1466252317000111] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
AbstractColistin, a peptide antibiotic belonging to the polymyxin family, is one of the last effective drugs for the treatment of multidrug resistant Gram-negative infections. Recent discovery of a novel mobile colistin resistance gene,mcr-1, from people and food animals has caused a significant public health concern and drawn worldwide attention. Extensive usage of colistin in food animals has been proposed as a major driving force for the emergence and transmission ofmcr-1; thus, there is a worldwide trend to limit colistin usage in animal production. However, despite lack of colistin usage in food animals in the USA,mcr-1-positiveEscherichia coliisolates were still isolated from swine. In this paper, we provided an overview of colistin usage and epidemiology ofmcr-1in food animals, and summarized the current status of mechanistic and evolutionary studies of the plasmid-mediated colistin resistance. Based on published information, we further discussed several non-colistin usage risk factors that may contribute to the persistence, transmission, and emergence of colistin resistance in an animal production system. Filling the knowledge gaps identified in this review is critical for risk assessment and risk management of colistin resistance, which will facilitate proactive and effective strategies to mitigate colistin resistance in future animal production systems.
Collapse
|
49
|
Sun J, Li XP, Fang LX, Sun RY, He YZ, Lin J, Liao XP, Feng Y, Liu YH. Co-occurrence of mcr-1 in the chromosome and on an IncHI2 plasmid: persistence of colistin resistance in Escherichia coli. Int J Antimicrob Agents 2018; 51:842-847. [PMID: 29371103 DOI: 10.1016/j.ijantimicag.2018.01.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 01/08/2018] [Accepted: 01/13/2018] [Indexed: 12/31/2022]
Abstract
Two colistin-resistant Escherichia coli strains (FS13Z2S and FS3Z6C) possessing chromosomally encoded mcr-1 isolated from swine were characterised. Whole-genome sequencing revealed that in strain FS13Z2S mcr-1 occurred in triplicate in the chromosome with another copy encoded on a pHNSHP45-2-like IncHI2 plasmid, whereas in strain FS3Z6C only one copy mcr-1 was inserted in the chromosome. It seems likely that the triplication of chromosomal copies of mcr-1 in FS13Z2S is due to intramolecular transposition events via a composite transposon containing an mcr-1 cassette bracketed by two copies of insertion sequence ISApl1, and the pap2 gene at the insertion site was truncated by an IS1294-like element. In plasmid pFS13Z2S and the chromosome of strain FS3Z6C, only a single copy of ISApl1 was present upstream of the mcr-1 cassette. The two strains exhibited similar colistin minimum inhibitory concentrations (MICs) and featured phosphoethanolamine addition to lipid A, without regard to the copy number of mcr-1. The mcr-1-harbouring plasmid was unstable in wild-type strain FS13Z2S and was quickly lost after 7 days of passage on colistin-free Luria-Bertani broth containing 0.5% SDS, but the mcr-1 copies on the chromosome persisted. These results reveal that the single copy of mcr-1 could result in modification of lipopolysaccharide (LPS) and cause colistin resistance in E. coli. Acquisition of multiple copies of mcr-1, especially on the chromosome, would facilitate stable persistence of colistin resistance in the host strain.
Collapse
Affiliation(s)
- Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xing-Ping Li
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Liang-Xing Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Ruan-Yang Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Yu-Zhang He
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Jingxia Lin
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Ping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Youjun Feng
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China; Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China.
| | - Ya-Hong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; Jiangsu Co-Innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.
| |
Collapse
|
50
|
Saavedra SY, Diaz L, Wiesner M, Correa A, Arévalo SA, Reyes J, Hidalgo AM, de la Cadena E, Perenguez M, Montaño LA, Ardila J, Ríos R, Ovalle MV, Díaz P, Porras P, Villegas MV, Arias CA, Beltrán M, Duarte C. Genomic and Molecular Characterization of Clinical Isolates of Enterobacteriaceae Harboring mcr-1 in Colombia, 2002 to 2016. Antimicrob Agents Chemother 2017; 61:e00841-17. [PMID: 28893788 PMCID: PMC5700323 DOI: 10.1128/aac.00841-17] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/11/2017] [Indexed: 12/20/2022] Open
Abstract
Polymyxins are last-resort antimicrobial agents used to treat infections caused by carbapenem-resistant Enterobacteriaceae Due to the worldwide dissemination of polymyxin resistance in animal and human isolates, we aimed to characterize polymyxin resistance associated with the presence of mcr-1 in Enterobacteriaceae and nonfermenter Gram-negative bacilli, using isolates collected retrospectively in Colombia from 2002 to 2016. A total of 5,887 Gram-negative clinical isolates were studied, and 513 were found to be resistant to the polymyxins. Susceptibility to colistin was confirmed by broth microdilution for all mcr-1-positive isolates, and these were further subjected to whole-genome sequencing (WGS). The localization of mcr-1 was confirmed by S1 pulsed-field gel electrophoresis (S1-PFGE) and CeuI-PFGE hybridization. Transferability was evaluated by mating assays. A total of 12 colistin-resistant isolates recovered after 2013 harbored mcr-1, including 8 Escherichia coli, 3 Salmonella enterica serovar Typhimurium, and 1 Klebsiella pneumoniae isolate. E. coli isolates were unrelated by PFGE and belonged to 7 different sequence types (STs) and phylogroups. S Typhimurium and K. pneumoniae isolates belonged to ST34 and ST307, respectively. The mcr-1 gene was plasmid borne in all isolates but two E. coli isolates which harbored it on the chromosome. Conjugation of mcr-1 was successful in 8 of 10 isolates (8.2 × 10-5 to 2.07 × 10-1 cell per recipient). Plasmid sequences showed that the mcr-1 plasmids belonged to four different Inc groups (a new IncP-1 variant and the IncFII, IncHI1, and IncH families). Our results indicate that mcr-1 is circulating in clinical isolates of colistin-resistant Enterobacteriaceae in Colombia and is mainly harbored in transferable plasmids.
Collapse
Affiliation(s)
| | - Lorena Diaz
- Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Bogotá, Colombia
- Center for Antimicrobial Resistance and Microbial Genomics, University of Texas Health Science Center, McGovern Medical School, Houston, Texas, USA
| | - Magdalena Wiesner
- Grupo de Microbiología, Instituto Nacional de Salud (INS), Bogotá, Colombia
| | - Adriana Correa
- Grupo de Resistencia Bacteriana y Epidemiología Hospitalaria, International Center for Medical Research and Training (CIDEIM), Cali, Colombia
| | | | - Jinnethe Reyes
- Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Bogotá, Colombia
- Center for Antimicrobial Resistance and Microbial Genomics, University of Texas Health Science Center, McGovern Medical School, Houston, Texas, USA
| | | | - Elsa de la Cadena
- Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Bogotá, Colombia
- Grupo de Resistencia Bacteriana y Epidemiología Hospitalaria, International Center for Medical Research and Training (CIDEIM), Cali, Colombia
| | - Marcela Perenguez
- Grupo de Resistencia Bacteriana y Epidemiología Hospitalaria, International Center for Medical Research and Training (CIDEIM), Cali, Colombia
| | | | - Javier Ardila
- Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Bogotá, Colombia
| | - Rafael Ríos
- Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Bogotá, Colombia
| | | | - Paula Díaz
- Grupo de Microbiología, Instituto Nacional de Salud (INS), Bogotá, Colombia
| | - Paola Porras
- Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Bogotá, Colombia
| | - Maria V Villegas
- Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Bogotá, Colombia
- Grupo de Resistencia Bacteriana y Epidemiología Hospitalaria, International Center for Medical Research and Training (CIDEIM), Cali, Colombia
| | - Cesar A Arias
- Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Bogotá, Colombia
- Center for Antimicrobial Resistance and Microbial Genomics, University of Texas Health Science Center, McGovern Medical School, Houston, Texas, USA
| | - Mauricio Beltrán
- Dirección de Redes en Salud Pública y LNR, Instituto Nacional de Salud (INS), Bogotá, Colombia
| | - Carolina Duarte
- Grupo de Microbiología, Instituto Nacional de Salud (INS), Bogotá, Colombia
| |
Collapse
|