1
|
Valentin C, Brito Rodrigues P, Verce M, Delbauve S, La Palombara L, Demaret F, Allard J, Salmon I, Cani PD, Köhler A, Everard A, Flamand V. Maternal probiotic exposure enhances CD8 T cell protective neonatal immunity and modulates offspring metabolome to control influenza virus infection. Gut Microbes 2025; 17:2442526. [PMID: 39710590 DOI: 10.1080/19490976.2024.2442526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024] Open
Abstract
Maternal gut microbiota composition contributes to the status of the neonatal immune system and could influence the early life higher susceptibility to viral respiratory infections. Using a novel protocol of murine maternal probiotic supplementation, we report that perinatal exposure to Lacticaseibacillus rhamnosus (L.rh) or Bifidobacterium animalis subsp. lactis (B.lac) increases the influenza A/PR8 virus (IAV) clearance in neonates. Following either supplementation, type 1 conventional dendritic cells (cDC1) were amplified in the lymph nodes leading to an enhanced IAV antigen-experienced IFN-γ producing effector CD8 T cells in neonates and IAV-specific resident memory CD8 T cells in adulthood. This was compatible with a higher protection of the offspring upon a secondary infection. Interestingly, only mice born to L.rh supplemented mothers further displayed an increased activation of IFN-γ producing virtual memory CD8 T cells and a production of IL-10 by CD4 and CD8 T cells that could explain a better control of the lung damages upon infection. In the offspring and the mothers, no disturbance of the gut microbiota was observed but, as analyzed through an untargeted metabolomic approach, both exposures modified neonatal plasma metabolites. Among them, we further demonstrated that genistein and 3-(3-hydroxyphenyl)propionic acid recapitulate viral clearance or cDC1 activation in neonates exposed to IAV. We conclude that maternal L.rh or B.lac supplementation confers the neonates specific metabolomic modulations with a better CD8 T cell-mediated immune protection against IAV infection.
Collapse
Affiliation(s)
- Clara Valentin
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
- ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
| | - Patricia Brito Rodrigues
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
| | - Marko Verce
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
| | - Sandrine Delbauve
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
- ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
| | - Léa La Palombara
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
- ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
| | - Florine Demaret
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
- ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
| | - Justine Allard
- DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles, Gosselies, Belgium
| | - Isabelle Salmon
- DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles, Gosselies, Belgium
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
- Institute of Experimental and Clinical Research (IREC), UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Arnaud Köhler
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
- ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
| | - Amandine Everard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
| | - Véronique Flamand
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
- ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
| |
Collapse
|
2
|
Araujo NGR, Araujo-Lima CF, Oliveira RTD, Macedo AF, Felzenszwalb I. In vitro cytotoxicity and genotoxicity assessment of methanolic extracts of vanillas from Brazilian biodiversity with commercial potential. Toxicol Rep 2024; 13:101693. [PMID: 39131696 PMCID: PMC11314876 DOI: 10.1016/j.toxrep.2024.101693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/11/2024] [Indexed: 08/13/2024] Open
Abstract
The Vanilla genus is crucial for global production in food, perfume, and pharmaceutical industries. However, exploitation threatens some species, leading to extinction. Traditional communities use vanilla for medicinal purposes, and there are species like Vanilla chamissonis Klotzsch and Vanilla bahiana Hoehne with potential to occupy the market. For this, methanolic extraction of these two mentioned species was conducted alongside Vanilla planifolia. Analyzes of the cell viability, mutagenic and genotoxic potential were performed. In the Ames test, the assays were performed with concentrations from 0.5 and 5000 μg/ml and on five strains. Only Vanilla planifolia exhibited mutagenicity at the highest concentration in the TA98 strain. Viability tests were performed within a dose range of 0.05-5000 µg/ml and 24, 48, and 72-hour exposures. It was possible to observe a reduction in cell viability observed only at the highest concentration, for all three species and both cell types tested. Genotoxicity induction by the extracts was assessed at concentrations from 0.5 to 500 µg/ml through the cytokinesis-block micronucleus assay. No genotoxic damage or reduction in the Nucleus Division Index (NDI). The study found no mutagenicity, cytotoxicity, or genotoxicity in the species tested, indicating potential human use for food or pharmaceutical purposes.
Collapse
Affiliation(s)
| | - Carlos Fernando Araujo-Lima
- Laboratory of Environmental Mutagenesis (LABMUT), University of Rio de Janeiro State (UERJ), Rio de Janeiro, RJ, Brazil
- Laboratory of Pharmaceutical and Technological Innovation, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, RJ, Brazil
| | - Renatha Tavares de Oliveira
- Laboratory of Integrated Plant Biology (LIBV) - Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, RJ, Brazil
| | - Andrea Furtado Macedo
- Laboratory of Integrated Plant Biology (LIBV) - Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, RJ, Brazil
| | - Israel Felzenszwalb
- Laboratory of Environmental Mutagenesis (LABMUT), University of Rio de Janeiro State (UERJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
3
|
Chen P, Li C, Chen L, Li X, Zhu S. Citrus-derived flavanones as neuraminidase inhibitors: In vitro and in silico study. Eur J Med Chem 2024; 277:116758. [PMID: 39151273 DOI: 10.1016/j.ejmech.2024.116758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/28/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Neuraminidase (NA) has been well-studied as a therapeutic target for Influenza. However, resistance to the influenza virus has been observed recently. Out of special interest in the utilization of dietary antivirals from citrus, in vitro inhibition activity against NA and in silico studies including molecular docking, molecular dynamic simulation, and a predictive ADMET study, were performed on five citrus-derived flavanones. Encouragingly, citrus-derived flavanones displayed comparable or even more potent in vitro inhibitory activity than oseltamivir carboxylate against NA. Orange peel extract exhibited higher activity than hesperidin. Among the tested compounds, neohesperidin, forming strong hydrogen-bonding interactions with key arginine residues, exhibited the most effective inhibitory activity against NAs from C. perfringens, consistent with the results of molecular dynamics simulations. Although the molecular docking results were inconsistent with the in vitro activity, the binding energy was identical against the wild-type and mutant, suggesting a lower likelihood of developing drug resistance. Moreover, predictive ADMET studies showed favorable pharmacokinetic properties for the tested compounds. Overall, citrus fruit peel emerges as a promising dietary supplement for prevention and treatment of influenza. These findings elucidate the impact of flavanones on NA activity, and the analysis of their binding modes provides valuable insights into the mechanism of NA inhibition.
Collapse
Affiliation(s)
- Ping Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Chao Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Lin Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Xinpeng Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Siming Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China.
| |
Collapse
|
4
|
Deng L, Wei SL, Wang L, Huang JQ. Feruloylated Oligosaccharides Prevented Influenza-Induced Lung Inflammation via the RIG-I/MAVS/TRAF3 Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9782-9794. [PMID: 38597360 DOI: 10.1021/acs.jafc.3c09390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Uncontrolled inflammation contributes significantly to the mortality in acute respiratory infections. Our previous research has demonstrated that maize bran feruloylated oligosaccharides (FOs) possess notable anti-inflammatory properties linked to the NF-kB pathway regulation. In this study, we clarified that the oral administration of FOs moderately inhibited H1N1 virus infection and reduced lung inflammation in influenza-infected mice by decreasing a wide spectrum of cytokines (IFN-α, IFN-β, IL-6, IL-10, and IL-23) in the lungs. The mechanism involves FOs suppressing the transduction of the RIG-I/MAVS/TRAF3 signaling pathway, subsequently lowering the expression of NF-κB. In silico analysis suggests that FOs have a greater binding affinity for the RIG-I/MAVS signaling complex. This indicates that FOs have potential as promising targets for immune modulation. Moreover, in MAVS knockout mice, we confirmed that the anti-inflammatory function of FOs against influenza depends on MAVS. Comprehensive analysis using 16S rRNA gene sequencing and metabolite profiling techniques showed that FOs have the potential to restore immunity by modulating the gut microbiota. In conclusion, our study demonstrates that FOs are effective anti-inflammatory phytochemicals in inhibiting lung inflammation caused by influenza. This suggests that FOs could serve as a potential nutritional strategy for preventing the H1N1 virus infection and associated lung inflammation.
Collapse
Affiliation(s)
- Li Deng
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Shu-Lei Wei
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Lu Wang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Jun-Qing Huang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| |
Collapse
|
5
|
Almostafa MM, Mohamed ME, Younis NS. Ameliorative effects of vanillin against pentylenetetrazole-induced epilepsy and associated memory loss in mice: The role of Nrf2/HO-1/NQO1 and HMGB1/RAGE/TLR4/NFκB pathways. Int Immunopharmacol 2024; 129:111657. [PMID: 38335655 DOI: 10.1016/j.intimp.2024.111657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/21/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Epilepsy is a severe neurological disorder associated with substantial morbidity and mortality. Vanillin (Van) is a natural phenolic aldehyde with beneficial pharmacological properties. This study investigated the neuroprotective effects of Van in epilepsy and elucidated its mechanism of action. METHODS Swiss albino mice were divided into the following five groups: "normal group", 0.9 % saline; "pentylenetetrazole (PTZ) group", intraperitoneal administration of 35 mg/kg PTZ on alternate days up to 42 days; and "PTZ + Van 20", "PTZ + Van 40", and "PTZ + sodium valproate (Val)" groups received PTZ injections in conjunction withVan 20 mg, Van 40 mg/kg, and Val 300 mg/kg, respectively. Behavioural tests and hippocampal histopathological analysis were performed in all groups. The Nrf2/HO-1/NQO1 and HMGB1/RAGE/TLR4/NFκB pathways, oxidative stress, neuro-inflammation, and apoptotic markers were analysed. Furthermore, brain acetylcholinesterase (AChE) activity and levels of dopamine (DA), gamma-aminobutyric acid GABA, and serotonin 5-HT were assessed. RESULTS Van prolonged seizure manifestations and improved electroencephalogram (EEG)criteriain conjunction with 100 mg/kg PTZ once daily. Van administration increased Nrf2/HO-1/NQO1 levels, with subsequent attenuation of malondialdehyde (MDA) and nitric oxide (NO) levels with elevated glutathione (GSH) levels and intensified superoxide dismutase (SOD) and catalase activities. Van reduced the gene and protein expression of HMGB1/RAGE/TLR4/NFκB and decreased the levels of inflammatory and apoptotic markers. In addition, Van reduced AChE activity, and elevated glial fibrillary acidic proteins (GFAP) increased neurotransmitter and brain-derived neurotrophic factors (BDNF). CONCLUSION By increasing Nrf2/HO-1/NQO1 levels and downregulating the HMGB1/RAGE/TLR4/ NFκB pathway, Van offered protection in PTZ-kindled mice with subsequent attenuation in lipid peroxidation, upregulation in antioxidant enzyme activities, and reduction in inflammation and apoptosis.
Collapse
Affiliation(s)
- Mervt M Almostafa
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
| | - Maged E Mohamed
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Department of Pharmacognosy, College of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| | - Nancy S Younis
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Zagazig University Hospitals, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
6
|
Mohamed SK, Ahsin A, Rehman HM, Mohammed HH, Mague JT, Al-Salahi R, El Bakri Y, Hussein BRM. XRD/DFT, Hirshfeld surface analysis and molecular modelling simulations for unfolding reactivity of newly synthesized vanillin derivatives: excellent optical, NLO and protein binding efficiency. J Biomol Struct Dyn 2024:1-19. [PMID: 38305762 DOI: 10.1080/07391102.2024.2308774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/14/2024] [Indexed: 02/03/2024]
Abstract
New vanillin derivatives, namely, ethyl (4-formyl-2-methoxyphenoxy)acetate (2a) and 2-(4-formyl-2-methoxyphenoxy)-N-phenylacetamide (2b), respectively, were synthesized and characterized by NMR (1H and 13C), IR, mass spectra and confirmed by single-crystal X-ray analysis. Hirshfeld surface (HS) analysis was performed to probe intra- and intermolecular interactions and surface reactivity. 2D fingerprint plots (FP) were used to study the nature and percentage contribution of intermolecular interactions leading to the formation of the crystal unit. Density functional theory (DFT) simulations were used to obtain the electronic structure and reactivity of the new molecules. Natural population analysis (NPA) and frontier molecular orbital (FMO) calculations reveal significant charge transfer and a reduced HOMO-LUMO gap up to 4.34 eV for 2b. Bader's quantum theory of atoms in molecules (QTAIM) study is utilized to understand the surface topological and bonding nature of 2a and 2b. The performed molecular electrostatic potential (MESP) and density of states (DOS) study further suggest sites likely to be attractive to incoming reagents. At the same time, hyperpolarizability (βo) is used to characterize the nonlinear optical properties, and TD-DFT study shows the excitation energy and absorption behavior. In silico studies were performed, including docking, binding free energies (MMBGSA) and molecular dynamics simulations. Compounds 2a and 2b were docked with RdRp of SARS-Cov-2, and the MMBGSA for 2a and 2b were -30.70 and -28.47 kcal/mol, respectively, while MD simulation showed the stability of protein-ligand complexes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shaaban K Mohamed
- Chemistry and Environmental Division, Manchester Metropolitan University, Manchester, UK
| | - Atazaz Ahsin
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | - Hayam H Mohammed
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, Egypt
| | - Joel T Mague
- Department of Chemistry, Tulane University, New Orleans, LA, USA
| | - Rashad Al-Salahi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Youness El Bakri
- Department of Theoretical and Applied Chemistry, South Ural State University, Chelyabinsk, Russian Federation
| | - Bahgat R M Hussein
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, Egypt
| |
Collapse
|
7
|
Ortiz A, Sansinenea E. Phenylpropanoid Derivatives and Their Role in Plants' Health and as antimicrobials. Curr Microbiol 2023; 80:380. [PMID: 37864088 DOI: 10.1007/s00284-023-03502-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/24/2023] [Indexed: 10/22/2023]
Abstract
Phenylpropanoids belong to a wide group of compounds commonly secreted by plants and involved in different roles related with plant growth and development and the defense against plant pathogens. Some key intermediates from shikimate pathway are used to synthesize these compounds. In this way, by the phenylpropanoid pathway several building blocks are achieved to obtain flavonoids, isoflavonoids, coumarins, monolignols, phenylpropenes, phenolic acids, stilbenes and stilbenoids, and lignin, suberin and sporopollenin for plant-microbe interactions, structural support and mechanical strength, organ pigmentation, UV protection and acting against pathogens. Some reviews have revised phenylpropanoid biosynthesis and regulation of the biosynthetic pathways. In this review, the most important chemical structures about phenylpropanoid derivatives are summarized grouping them in different sections according to their structure. We have put special attention on their different roles in plants especially in plant health, growth and development and plant-environment interactions. Their interaction with microorganisms is discussed including their role as antimicrobials. We summarize all new findings about new developed structures and their involvement in plants health.
Collapse
Affiliation(s)
- Aurelio Ortiz
- Facultad De Ciencias Químicas, Benemérita Universidad Autónoma De Puebla, 72590, Puebla, Pue, Mexico
| | - Estibaliz Sansinenea
- Facultad De Ciencias Químicas, Benemérita Universidad Autónoma De Puebla, 72590, Puebla, Pue, Mexico.
| |
Collapse
|
8
|
Kurt M, Ercan S, Pirinccioglu N. Designing new drug candidates as inhibitors against wild and mutant type neuraminidases: molecular docking, molecular dynamics and binding free energy calculations. J Biomol Struct Dyn 2023; 41:7847-7861. [PMID: 36152997 DOI: 10.1080/07391102.2022.2125440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/12/2022] [Indexed: 10/14/2022]
Abstract
Influenza virus is the cause of the death of millions of people with about 3-4 pandemics every hundred years in history. It also turns into a seasonal disease, bringing about approximately 5-15% of the population to be infected and 290,000-650,000 people to die every year. These numbers reveal that it is necessary to be on the alert to work towards influenza in order to protect public health. There are FDA-approved antiviral drugs such as oseltamivir and zanamivir recommended by the World Center for Disease Prevention. However, after the recent outbreaks such as bird flu and swine flu, increasing studies have shown that the flu virus has gained resistance to these drugs. So, there is an urgent need to find new drugs effective against this virus. This study aims to investigate new drug candidates targeting neuraminidase (NA) for the treatment of influenza by using computer aided drug design approaches. They involve virtual scanning, de novo design, rational design, docking, MD, MMGB/PBSA. The investigation includes H1N1, H5N1, H2N2 and H3N2 neuraminidase proteins and their mutant variants possessing resistance to FDA-approved drugs. Virtual screening consists of approximately 30 thousand molecules while de novo and rational designs produced over a hundred molecules. These approaches produced three lead molecules with binding energies for both non-mutant (-34.84, -59.99 and -60.66 kcal/mol) and mutant (-40.40, -58.93, -76.19 kcal/mol) H2N2 NA calculated by MM-PBSA compared with those of oseltamivir -25.64 and -18.40 respectively. The results offer new drug candidates against influenza infection.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Murat Kurt
- Institute of Science, Dicle University, Diyarbakır, Turkey
| | - Selami Ercan
- Department of Chemistry, Batman University, Batman, Turkey
| | | |
Collapse
|
9
|
Hyun SW, Han S, Son JW, Song MS, Kim DA, Ha SD. Development and efficacy assessment of hand sanitizers and polylactic acid films incorporating caffeic acid and vanillin for enhanced antiviral properties against HCoV-229E. Virol J 2023; 20:194. [PMID: 37641064 PMCID: PMC10463313 DOI: 10.1186/s12985-023-02159-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Although three years after the outbreak of SARS-CoV-2, the virus is still having a significant impact on human health and the global economy. Infection through respiratory droplets is the main transmission route, but the transmission of the virus by surface contact cannot be ignored. Hand sanitizers and antiviral films can be applied to control SARS-CoV-2, but sanitizers and films show drawbacks such as resistance of the virus against ethanol and environmental problems including the overuse of plastics. Therefore, this study suggested applying natural substrates to hand sanitizers and antiviral films made of biodegradable plastic (PLA). This approach is expected to provide advantages for the easy control of SARS-CoV-2 through the application of natural substances. METHODS Antiviral disinfectants and films were manufactured by adding caffeic acid and vanillin to ethanol, isopropyl alcohol, benzalkonium chloride, and PLA. Antiviral efficacies were evaluated with slightly modified international standard testing methods EN 14,476 and ISO 21,702. RESULTS In suspension, all the hand sanitizers evaluated in this study showed a reduction of more than 4 log within 2 min against HCoV-229E. After natural substances were added to the hand sanitizers, the time needed to reach the detection limit of the viral titer was shortened both in suspension and porcine skin. However, no difference in the time needed to reach the detection limit of the viral titer was observed in benzalkonium chloride. In the case of antiviral films, those made using both PLA and natural substances showed a 1 log reduction of HCoV-229E compared to the neat PLA film for all treatment groups. Furthermore, the influence of the organic load was evaluated according to the number of contacts of the antiviral products with porcine skin. Ten rubs on the skin resulted in slightly higher antiviral activity than 50 rubs. CONCLUSION This study revealed that caffeic acid and vanillin can be effectively used to control HCoV-229E for hand sanitizers and antiviral films. In addition, it is recommended to remove organic matter from the skin for maintaining the antiviral activity of hand sanitizer and antiviral film as the antiviral activity decreased as the organic load increased in this study.
Collapse
Affiliation(s)
- Seok-Woo Hyun
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Sangha Han
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Jeong Won Son
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Min Su Song
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Dan Ah Kim
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Sang-Do Ha
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea.
| |
Collapse
|
10
|
Fredsgaard M, Kaniki SEK, Antonopoulou I, Chaturvedi T, Thomsen MH. Phenolic Compounds in Salicornia spp. and Their Potential Therapeutic Effects on H1N1, HBV, HCV, and HIV: A Review. Molecules 2023; 28:5312. [PMID: 37513186 PMCID: PMC10384198 DOI: 10.3390/molecules28145312] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Despite public health risk mitigation measures and regulation efforts by many countries, regions, and sectors, viral outbreaks remind the world of our vulnerability to biological hazards and the importance of mitigation actions. The saltwater-tolerant plants in the Salicornia genus belonging to the Amaranthaceae family are widely recognized and researched as producers of clinically applicable phytochemicals. The plants in the Salicornia genus contain flavonoids, flavonoid glycosides, and hydroxycinnamic acids, including caffeic acid, ferulic acid, chlorogenic acid, apigenin, kaempferol, quercetin, isorhamnetin, myricetin, isoquercitrin, and myricitrin, which have all been shown to support the antiviral, virucidal, and symptom-suppressing activities. Their potential pharmacological usefulness as therapeutic medicine against viral infections has been suggested in many studies, where recent studies suggest these phenolic compounds may have pharmacological potential as therapeutic medicine against viral infections. This study reviews the antiviral effects, the mechanisms of action, and the potential as antiviral agents of the aforementioned phenolic compounds found in Salicornia spp. against an influenza A strain (H1N1), hepatitis B and C (HBV/HCV), and human immunodeficiency virus 1 (HIV-1), as no other literature has described these effects from the Salicornia genus at the time of publication. This review has the potential to have a significant societal impact by proposing the development of new antiviral nutraceuticals and pharmaceuticals derived from phenolic-rich formulations found in the edible Salicornia spp. These formulations could be utilized as a novel strategy by which to combat viral pandemics caused by H1N1, HBV, HCV, and HIV-1. The findings of this review indicate that isoquercitrin, myricetin, and myricitrin from Salicornia spp. have the potential to exhibit high efficiency in inhibiting viral infections. Myricetin exhibits inhibition of H1N1 plaque formation and reverse transcriptase, as well as integrase integration and cleavage. Isoquercitrin shows excellent neuraminidase inhibition. Myricitrin inhibits HIV-1 in infected cells. Extracts of biomass in the Salicornia genus could contribute to the development of more effective and efficient measures against viral infections and, ultimately, improve public health.
Collapse
Affiliation(s)
| | | | - Io Antonopoulou
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187 Luleå, Sweden
| | | | | |
Collapse
|
11
|
Zhai Y, Wang T, Fu Y, Yu T, Ding Y, Nie H. Ferulic Acid: A Review of Pharmacology, Toxicology, and Therapeutic Effects on Pulmonary Diseases. Int J Mol Sci 2023; 24:ijms24098011. [PMID: 37175715 PMCID: PMC10178416 DOI: 10.3390/ijms24098011] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/14/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Ferulic acid (FA), a prevalent dietary phytochemical, has many pharmacological effects, including anti-oxidation and anti-inflammation effects, and has been widely used in the pharmaceutical, food, and cosmetics industries. Many studies have shown that FA can significantly downregulate the expression of reactive oxygen species and activate nuclear factor erythroid-2-related factor-2/heme oxygenase-1 signaling, exerting anti-oxidative effects. The anti-inflammatory effect of FA is mainly related to the p38 mitogen-activated protein kinase and nuclear factor-kappaB signaling pathways. FA has demonstrated potential clinical applications in the treatment of pulmonary diseases. The transforming growth factor-β1/small mothers against decapentaplegic 3 signaling pathway can be blocked by FA, thereby alleviating pulmonary fibrosis. Moreover, in the context of asthma, the T helper cell 1/2 imbalance is restored by FA. Furthermore, FA ameliorates acute lung injury by inhibiting nuclear factor-kappaB and mitogen-activated protein kinase pathways via toll-like receptor 4, consequently decreasing the expression of downstream inflammatory mediators. Additionally, there is a moderate neuraminidase inhibitory activity showing a tendency to reduce the interleukin-8 level in response to influenza virus infections. Although the application of FA has broad prospects, more preclinical mechanism-based research should be carried out to test these applications in clinical settings. This review not only covers the literature on the pharmacological effects and mechanisms of FA, but also discusses the therapeutic role and toxicology of FA in several pulmonary diseases.
Collapse
Affiliation(s)
- Yiman Zhai
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Tingyu Wang
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Yunmei Fu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Tong Yu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| |
Collapse
|
12
|
Zhao W, Wang X, Yang B, Wang Y, Li Z, Bao X. Unravel the regulatory mechanism of Yrr1p phosphorylation in response to vanillin stress in Saccharomyces cerevisiae. Microb Cell Fact 2023; 22:48. [PMID: 36899374 PMCID: PMC10007725 DOI: 10.1186/s12934-023-02056-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Improving the resistance of Saccharomyces cerevisiae to vanillin, derived from lignin, will benefit the design of robust cell factories for lignocellulosic biorefining. The transcription factor Yrr1p mediates S. cerevisiae resistance to various compounds. In this study, eleven predicted phosphorylation sites were mutated, among which 4 mutants of Yrr1p, Y134A/E and T185A/E could improve vanillin resistance. Both dephosphorylated and phosphorylated mutations at Yrr1p 134 and 185 gathered in the nucleus regardless of the presence or absence of vanillin. However, the phosphorylated mutant Yrr1p inhibited target gene expression, while dephosphorylated mutants promoted expression. Transcriptomic analysis showed that the dephosphorylated Yrr1p T185 mutant, under vanillin stress, upregulated ribosome biogenesis and rRNA processing. These results demonstrate the mechanism by which Yrr1p phosphorylation regulates the expression of target genes. The identification of key phosphorylation sites in Yrr1p offers novel targets for the rational construction of Yrr1p mutants to improve resistance to other compounds.
Collapse
Affiliation(s)
- Weiquan Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology Shandong Academy of Sciences, Jinan, 250353, China
| | - Xinning Wang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology Shandong Academy of Sciences, Jinan, 250353, China. .,The Second Hospital of Shandong University, Shandong University Library, Jinan, 250100, China.
| | - Bolun Yang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology Shandong Academy of Sciences, Jinan, 250353, China
| | - Ying Wang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology Shandong Academy of Sciences, Jinan, 250353, China
| | - Zailu Li
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology Shandong Academy of Sciences, Jinan, 250353, China
| | - Xiaoming Bao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology Shandong Academy of Sciences, Jinan, 250353, China.
| |
Collapse
|
13
|
Shokry S, Hegazy A, Abbas AM, Mostafa I, Eissa IH, Metwaly AM, Yahya G, El-Shazly AM, Aboshanab KM, Mostafa A. Phytoestrogen β-Sitosterol Exhibits Potent In Vitro Antiviral Activity against Influenza A Viruses. Vaccines (Basel) 2023; 11:228. [PMID: 36851106 PMCID: PMC9964242 DOI: 10.3390/vaccines11020228] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Influenza is a contagious infection in humans that is caused frequently by low pathogenic seasonal influenza viruses and occasionally by pathogenic avian influenza viruses (AIV) of H5, H7, and H9 subtypes. Recently, the clinical sector in poultry and humans has been confronted with many challenges, including the limited number of antiviral drugs and the rapid evolution of drug-resistant variants. Herein, the anti-influenza activities of various plant-derived phytochemicals were investigated against highly pathogenic avian influenza A/H5N1 virus (HPAIV H5N1) and seasonal low pathogenic human influenza A/H1N1 virus (LPHIV H1N1). Out of the 22 tested phytochemicals, the steroid compounds β-sitosterol and β-sitosterol-O-glucoside have very potent activity against the predefined influenza A viruses (IAV). Both steroids could induce such activity by affecting multiple stages during IAV replication cycles, including viral adsorption and replication with a major and significant impact on the virus directly in a cell-free status "viricidal effect". On a molecular level, several molecular docking studies suggested that β-sitosterol and β-sitosterol-O-glucoside exhibited viricidal effects through blocking active binding sites of the hemagglutinin surface protein, as well as showing inhibitory effects against replication through the binding with influenza neuraminidase activity and blocking the active sites of the M2 proton channel activity. The phytoestrogen β-sitosterol has structural similarity with the active form of the female sex hormone estradiol, and this similarity is likely one of the molecular determinants that enables the phytoestrogen β-sitosterol and its derivative to control IAV infection in vitro. This promising anti-influenza activity of β-sitosterol and its O-glycoside derivative, according to both in vitro and cheminformatics studies, recommend both phytochemicals for further studies going through preclinical and clinical phases as efficient anti-influenza drug candidates.
Collapse
Affiliation(s)
- Sara Shokry
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Akram Hegazy
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Giza District, Giza 12613, Egypt
| | - Ahmad M. Abbas
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, King Salman International University (KSIU), Sinai 46612, Egypt
| | - Islam Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed M. Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Assem M. El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida 44813, Sharkia, Egypt
| | - Khaled M. Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| |
Collapse
|
14
|
Pasquereau S, Galais M, Bellefroid M, Pachón Angona I, Morot-Bizot S, Ismaili L, Van Lint C, Herbein G. Ferulic acid derivatives block coronaviruses HCoV-229E and SARS-CoV-2 replication in vitro. Sci Rep 2022; 12:20309. [PMID: 36434137 PMCID: PMC9700709 DOI: 10.1038/s41598-022-24682-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 11/18/2022] [Indexed: 11/27/2022] Open
Abstract
A novel coronavirus, SARS-CoV-2, emerged in China at the end of 2019 causing a large global outbreak. As treatments are of the utmost importance, drugs with broad anti-coronavirus activity embody a rich and rapid drug discovery landscape, where candidate drug compounds could be identified and optimized. To this end, we tested ten small-molecules with chemical structures close to ferulic acid derivatives (FADs) (n = 8), caffeic acid derivatives (CAFDs) (n = 1) and carboxamide derivatives (CAMDs) (n = 1) for their ability to reduce HCoV-229E replication, another member of the coronavirus family. Among these ten drugs tested, five of them namely MBA112, MBA33, MBA27-1, OS4-1 and MBA108-1 were highly cytotoxic and did not warrant further testing. In contrast, we observed a moderate cytotoxicity for two of them, MBA152 and 5c. Three drugs, namely MBA140, LIJ2P40, and MBA28 showed lower cytotoxicity. These candidates were then tested for their antiviral propreties against HCoV-229E and SARS-CoV2 replication. We first observed encouraging results in HCoV-229E. We then measured a reduction of the viral SARS-CoV2 replication by 46% with MBA28 (EC50 > 200 µM), by 58% with MBA140 (EC50 = 176 µM), and by 82% with LIJ2P40 (EC50 = 66.5 µM). Overall, the FAD LIJ2P40 showed a reduction of the viral titer on SARS-CoV-2 up to two logs with moderate cytotoxicity which opens the door to further evaluation to fight Covid-19.
Collapse
Affiliation(s)
- Sébastien Pasquereau
- grid.7459.f0000 0001 2188 3779Pathogens and Inflammation/EPILAB Laboratory, EA 4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), Besançon, France
| | - Mathilde Galais
- grid.4989.c0000 0001 2348 0746Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| | - Maxime Bellefroid
- grid.4989.c0000 0001 2348 0746Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| | - Irene Pachón Angona
- grid.493090.70000 0004 4910 6615Neurosciences Intégratives et Cliniques EA 481, Pôle de Chimie Organique et Thérapeutique, Univ. Bourgogne Franche-Comté, UFR Santé, Besançon, France
| | | | - Lhassane Ismaili
- grid.493090.70000 0004 4910 6615Neurosciences Intégratives et Cliniques EA 481, Pôle de Chimie Organique et Thérapeutique, Univ. Bourgogne Franche-Comté, UFR Santé, Besançon, France
| | - Carine Van Lint
- grid.4989.c0000 0001 2348 0746Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| | - Georges Herbein
- grid.7459.f0000 0001 2188 3779Pathogens and Inflammation/EPILAB Laboratory, EA 4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), Besançon, France ,grid.411158.80000 0004 0638 9213Department of Virology, CHU Besançon, Besançon, France
| |
Collapse
|
15
|
Antonopoulou I, Sapountzaki E, Rova U, Christakopoulos P. The Inhibitory Potential of Ferulic Acid Derivatives against the SARS-CoV-2 Main Protease: Molecular Docking, Molecular Dynamics, and ADMET Evaluation. Biomedicines 2022; 10:biomedicines10081787. [PMID: 35892687 PMCID: PMC9329733 DOI: 10.3390/biomedicines10081787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
The main protease (Mpro) of SARS-CoV-2 is an appealing target for the development of antiviral compounds, due to its critical role in the viral life cycle and its high conservation among different coronaviruses and the continuously emerging mutants of SARS-CoV-2. Ferulic acid (FA) is a phytochemical with several health benefits that is abundant in plant biomass and has been used as a basis for the enzymatic or chemical synthesis of derivatives with improved properties, including antiviral activity against a range of viruses. This study tested 54 reported FA derivatives for their inhibitory potential against Mpro by in silico simulations. Molecular docking was performed using Autodock Vina, resulting in comparable or better binding affinities for 14 compounds compared to the known inhibitors N3 and GC376. ADMET analysis showed limited bioavailability but significantly improved the solubility for the enzymatically synthesized hits while better bioavailability and druglikeness properties but higher toxicity were observed for the chemically synthesized ones. MD simulations confirmed the stability of the complexes of the most promising compounds with Mpro, highlighting FA rutinoside and compound e27 as the best candidates from each derivative category.
Collapse
|
16
|
Darwish RS, El-Banna AA, Ghareeb DA, El-Hosseny MF, Seadawy MG, Dawood HM. Chemical profiling and unraveling of anti-COVID-19 biomarkers of red sage (Lantana camara L.) cultivars using UPLC-MS/MS coupled to chemometric analysis, in vitro study and molecular docking. JOURNAL OF ETHNOPHARMACOLOGY 2022; 291:115038. [PMID: 35151836 PMCID: PMC8830149 DOI: 10.1016/j.jep.2022.115038] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/13/2022] [Accepted: 01/23/2022] [Indexed: 05/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Red sage (Lantana camara L.) (Verbenaceae) is a widely spread plant that was traditionally used in Brazil, India, Kenya, Thailand, Mexico, Nigeria, Australia and Southeast Asia for treating several ailments including rheumatism and leprosy. Despite its historical role in relieving respiratory diseases, limited studies progressed to the plant's probable inhibition to respiratory viruses especially after the striking spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. AIM OF THE STUDY This study aimed to investigate the inhibitory activity of different L. camara cultivars to SARS-CoV-2, that was not previously inspected, and clarify their mechanisms of action in the metabolomics viewpoint, and to determine the biomarkers that are related to such activity using UPLC-MS/MS coupled to in vitro-studies and chemometric analysis. MATERIALS AND METHODS Chemical profiling of different cultivars was accomplished via UPLC-MS/MS. Principle component analysis (PCA) and orthogonal projection to latent structures (OPLS) models were built using SIMCA® (multivariate data analysis software). Cytotoxicity and COVID-19 inhibitory activity testing were done followed by TaqMan Real-time RT-PCR (Reverse transcription polymerase chain reaction) assay that aimed to study extracts' effects on RNA-dependent RNA polymerase (RdRp) and E-genes expression levels. Detected biomarkers from OPLS analysis were docked into potential targets pockets to investigate their possible interaction patterns using Schrodinger® suite. RESULTS UPLC-MS/MS analysis of different cultivars yielded 47 metabolites, most of them are triterpenoids and flavonoids. PCA plots revealed that inter-cultivar factor has no pronounced effect on the chemical profiles of extracts except for L. camara, cultivar Drap d'or flowers and leaves extracts as well as for L. camara cv Chelsea gem leaves extract. Among the tested extracts, flowers and leaves extracts of L. camara cv Chelsea gem, flowers extracts of L. camara cv Spreading sunset and L. camara cv Drap d'or showed the highest selectivity indices scoring 12.3, 10.1, 8.6 and 7.8, respectively, indicating their relative high safety and efficacy. Leaves and flowers extracts of L. camara cv Chelsea gem, flowers extracts of L. camara cv Spreading sunset and L. camara cv Drap d'or were the most promising inhibitors to viral plaques exhibiting IC50 values of 3.18, 3.67, 4.18 and 5.01 μg/mL, respectively. This was incremented by OPLS analysis that related their promising COVID-19 inhibitory activities to the presence of twelve biomarkers. Inhibiting the expression of RdRp gene is the major mechanism behind the antiviral activity of most extracts at almost all concentration levels. Molecular docking of the active biomarkers against RdRp revealed that isoverbascoside, luteolin-7,4'-O-diglucoside, camarolic acid and lantoic acid exhibited higher docking scores of -11.378, -10.64, -6.72 and -6.07 kcal/mol, respectively, when compared to remdesivir (-5.75 kcal/mol), thus these four compounds can serve as promising anti-COVID-19 candidates. CONCLUSION Flowers and leaves extracts of four L. camara cultivars were recognized as rich sources of phytoconstituents possessing anti-COVID-19 activity. Combination of UPLC-MS/MS and chemometrics is a promising approach to detect chemical composition differences among the cultivars and correlate them to COVID-19 inhibitory activities allowing to pinpoint possible biomarkers. Further in-vitro and in-vivo studies are required to verify their activity.
Collapse
Affiliation(s)
- Reham S Darwish
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Alaa A El-Banna
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Doaa A Ghareeb
- Biological Screening and Preclinical Trial Laboratory, Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt; Pharmaceutical and Fermentation Industries Development Centre, City of Scientific Research and Technological Applications (SRTA-City), Borg Al-Arab, Alexandria, Egypt
| | | | | | - Hend M Dawood
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
17
|
Antonopoulou I, Sapountzaki E, Rova U, Christakopoulos P. Ferulic Acid From Plant Biomass: A Phytochemical With Promising Antiviral Properties. Front Nutr 2022; 8:777576. [PMID: 35198583 PMCID: PMC8860162 DOI: 10.3389/fnut.2021.777576] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022] Open
Abstract
Plant biomass is a magnificent renewable resource for phytochemicals that carry bioactive properties. Ferulic acid (FA) is a hydroxycinnamic acid that is found widespread in plant cell walls, mainly esterified to polysaccharides. It is well known of its strong antioxidant activity, together with numerous properties, such as antimicrobial, anti-inflammatory and neuroprotective effects. This review article provides insights into the potential for valorization of FA as a potent antiviral agent. Its pharmacokinetic properties (absorption, metabolism, distribution and excretion) and the proposed mechanisms that are purported to provide antiviral activity are presented. Novel strategies on extraction and derivatization routes, for enhancing even further the antiviral activity of FA and potentially favor its metabolism, distribution and residence time in the human body, are discussed. These routes may lead to novel high-added value biorefinery pathways to utilize plant biomass toward the production of nutraceuticals as functional foods with attractive bioactive properties, such as enhancing immunity toward viral infections.
Collapse
Affiliation(s)
- Io Antonopoulou
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| | - Eleftheria Sapountzaki
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| |
Collapse
|
18
|
Kaur R, Sood A, Lang DK, Arora R, Kumar N, Diwan V, Saini B. Natural Products as Sources of Multitarget Compounds: Advances in the Development of Ferulic Acid as Multitarget Therapeutic. Curr Top Med Chem 2022; 22:347-365. [PMID: 35040403 DOI: 10.2174/1568026622666220117105740] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/25/2021] [Accepted: 12/27/2021] [Indexed: 11/22/2022]
Abstract
Nature has provided therapeutic substances for millennia, with many valuable medications derived from plant sources. Multitarget drugs become essential in the management of various disorders including hepatic disorders, neurological disorders, diabetes, and carcinomas. Ferulic acid is a significant potential therapeutic agent, which is easily available at low cost, possesses a low toxicity profile, and has minimum side effects. Ferulic acid exhibits various therapeutic actions by modulation of various signal transduction pathways such as Nrf2, p38, and mTOR. The actions exhibited by ferulic acid include anti-apoptosis, antioxidant, anti-inflammatory, antidiabetic, anticarcinogenic, hepatoprotection, cardioprotection, activation of transcriptional factors, expression of genes, regulation of enzyme activity, and neuroprotection, which further help in treating various pathophysiological conditions such as cancer, skin diseases, brain disorders, diabetes, Parkinson's disease, Alzheimer's disease, hypoxia, hepatic disorders, H1N1 flu, and viral infections. The current review focuses on the significance of natural products as sources of multitarget compounds and a primary focus has been made on ferulic acid and its mechanism, role, and protective action in various ailments.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Ankita Sood
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Rashmi Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neeraj Kumar
- National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Vishal Diwan
- Centre for Chronic Disease, The University of Queensland, Australia
| | - Balraj Saini
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
19
|
Hariyono P, Kotta JC, Adhipandito CF, Aprilianto E, Candaya EJ, Wahab HA, Hariono M. A study on catalytic and non-catalytic sites of H5N1 and H1N1 neuraminidase as the target for chalcone inhibitors. APPLIED BIOLOGICAL CHEMISTRY 2021; 64:69. [PMID: 34549099 PMCID: PMC8445792 DOI: 10.1186/s13765-021-00639-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED The H1N1 pandemic in 2009 and the H5N1 outbreak in 2005 have shocked the world as millions of people were infected and hundreds of thousands died due to the infections by the influenza virus. Oseltamivir, the most common drug to block the viral life cycle by inhibiting neuraminidase (NA) enzyme, has been less effective in some resistant cases due to the virus mutation. Presently, the binding of 10 chalcone derivatives towards H5N1 and H1N1 NAs in the non-catalytic and catalytic sites was studied using molecular docking. The in silico study was also conducted for its drug-like likeness such as Lipinski Rule, mutagenicity, toxicity and pharmacokinetic profiles. The result demonstrates that two chalcones (1c and 2b) have the potential for future NA inhibitor development. Compound 1c inhibits H5N1 NA and H1N1 NA with IC50 of 27.63 µM and 28.11 µM, respectively, whereas compound 2b inhibits NAs with IC50 of 87.54 µM and 73.17 µM for H5N1 and H1N1, respectively. The in silico drug-like likeness prediction reveals that 1c is 62% better than 2b (58%) in meeting the criteria. The results suggested that 1c and 2b have potencies to be developed as non-competitive inhibitors of neuraminidase for the future development of anti-influenza drugs. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1186/s13765-021-00639-w.
Collapse
Affiliation(s)
- Pandu Hariyono
- Faculty of Pharmacy, Sanata Dharma University, Campus III, Paingan, Maguwoharjo, Depok, Sleman, 55282 Yogyakarta Indonesia
| | - Jasvidianto Chriza Kotta
- Faculty of Pharmacy, Sanata Dharma University, Campus III, Paingan, Maguwoharjo, Depok, Sleman, 55282 Yogyakarta Indonesia
| | - Christophorus Fideluno Adhipandito
- Faculty of Pharmacy, Sanata Dharma University, Campus III, Paingan, Maguwoharjo, Depok, Sleman, 55282 Yogyakarta Indonesia
- Faculty of Biomedical Engineering, Taipei Medical University, Wuxing Street No. 250, Xinyi District, Taipei City, 110 Taiwan
| | - Eko Aprilianto
- Faculty of Pharmacy, Sanata Dharma University, Campus III, Paingan, Maguwoharjo, Depok, Sleman, 55282 Yogyakarta Indonesia
- PT. Dankos Farma, Jalan Rawagatel Blok IIIS Kav 35-39, Jatinegara, Cakung, Jakarta Timur, 13930 DKI Jakarta Indonesia
| | - Evan Julian Candaya
- Faculty of Pharmacy, Sanata Dharma University, Campus III, Paingan, Maguwoharjo, Depok, Sleman, 55282 Yogyakarta Indonesia
- Apotek Kimia Farma Sempidi Unit Bisnis Nusa Dua, Jalan Raya Sempidi No. 12, Mengwi, Badung, 80351 Bali Indonesia
| | - Habibah A. Wahab
- Pharmaceutical Technology Department, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, 11800 Pulau Pinang Malaysia
| | - Maywan Hariono
- Faculty of Pharmacy, Sanata Dharma University, Campus III, Paingan, Maguwoharjo, Depok, Sleman, 55282 Yogyakarta Indonesia
| |
Collapse
|
20
|
Wang LY, Niu YY, Zhao MY, Yu YM, Li YT, Wu ZY, Yan CW. Supramolecular self-assembly of amantadine hydrochloride with ferulic acid via dual optimization strategy establishes a precedent of synergistic antiviral drug-phenolic acid nutraceutical cocrystal. Analyst 2021; 146:3988-3999. [PMID: 34013306 DOI: 10.1039/d1an00478f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
To display the capability of the phenolic acid nutraceutical ferulic acid (FLA) in optimizing the in vitro/in vivo properties of the antiviral drug amantadine hydrochloride (AMH) and achieve synergistically enhanced antiviral effects, thereby gaining some new insights into pharmaceutical cocrystals of antiviral drugs with phenolic acid nutraceuticals, a cocrystallization strategy of dual optimization was created. Based on this strategy, the first drug-phenolic acid nutraceutical cocrystal of AMH with FLA, namely AMH-FLA-H2O, was successfully assembled and completely characterized by employing single-crystal X-ray diffraction and other analytical techniques. The cocrystal was revealed to be composed of AMH, FLA, and water molecules in the ratio of 3 : 1 : 1.5, and charge-assisted hydrogen bonds containing chloride ions crucially maintained the crystal lattice together with water molecules. The in vitro/in vivo properties of the cocrystal were systematically evaluated via both theoretical and experimental methods, and the results indicate that the dissolubility of AMH is down-regulated by two-thirds in the cocrystal, resulting in its potential for sustained pharmacokinetic release and the elimination of the adverse effects of AMH. More importantly, the enhanced antiviral effects of the current cocrystal were proven against four viral strains, and the pharmaceutical synergy between AMH and FLA was realized with a combination index (CI) of less than 1. Thus, the present work provides a novel crystalline product with bright commercial prospect for the classical antiviral drug AMH and also establishes an avenue for the synergetic antiviral application of nutraceutical phenolic acids via the cocrystallization strategy of dual optimization.
Collapse
Affiliation(s)
- Ling-Yang Wang
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China.
| | - Yuan-Yuan Niu
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China.
| | - Ming-Yu Zhao
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China.
| | - Yue-Ming Yu
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China.
| | - Yan-Tuan Li
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China. and Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science. Qingdao, Shandong, PR China
| | - Zhi-Yong Wu
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China.
| | - Cui-Wei Yan
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China.
| |
Collapse
|
21
|
Decaffeination and Neuraminidase Inhibitory Activity of Arabica Green Coffee ( Coffea arabica) Beans: Chlorogenic Acid as a Potential Bioactive Compound. Molecules 2021; 26:molecules26113402. [PMID: 34199752 PMCID: PMC8200017 DOI: 10.3390/molecules26113402] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 11/17/2022] Open
Abstract
Coffee has been studied for its health benefits, including prevention of several chronic diseases, such as type 2 diabetes mellitus, cancer, Parkinson’s, and liver diseases. Chlorogenic acid (CGA), an important component in coffee beans, was shown to possess antiviral activity against viruses. However, the presence of caffeine in coffee beans may also cause insomnia and stomach irritation, and increase heart rate and respiration rate. These unwanted effects may be reduced by decaffeination of green bean Arabica coffee (GBAC) by treatment with dichloromethane, followed by solid-phase extraction using methanol. In this study, the caffeine and chlorogenic acid (CGA) level in the coffee bean from three different areas in West Java, before and after decaffeination, was determined and validated using HPLC. The results showed that the levels of caffeine were reduced significantly, with an order as follows: Tasikmalaya (2.28% to 0.097% (97 ppm), Pangalengan (1.57% to 0.049% (495 ppm), and Garut (1.45% to 0.00002% (0.2 ppm). The CGA levels in the GBAC were also reduced as follows: Tasikmalaya (0.54% to 0.001% (118 ppm), Pangalengan (0.97% to 0.0047% (388 ppm)), and Garut (0.81% to 0.029% (282 ppm). The decaffeinated samples were then subjected to the H5N1 neuraminidase (NA) binding assay to determine its bioactivity as an anti-influenza agent. The results show that samples from Tasikmalaya, Pangalengan, and Garut possess NA inhibitory activity with IC50 of 69.70, 75.23, and 55.74 μg/mL, respectively. The low level of caffeine with a higher level of CGA correlates with their higher levels of NA inhibitory, as shown in the Garut samples. Therefore, the level of caffeine and CGA influenced the level of NA inhibitory activity. This is supported by the validation of CGA-NA binding interaction via molecular docking and pharmacophore modeling; hence, CGA could potentially serve as a bioactive compound for neuraminidase activity in GBAC.
Collapse
|
22
|
Design, synthesis, and bioassay of 4-thiazolinone derivatives as influenza neuraminidase inhibitors. Eur J Med Chem 2021; 213:113161. [PMID: 33540229 DOI: 10.1016/j.ejmech.2021.113161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/13/2020] [Accepted: 01/03/2021] [Indexed: 01/09/2023]
Abstract
A series of 4-thiazolinone derivatives (D1-D58) were designed and synthesized. All of the derivatives were evaluated in vitro for neuraminidase (NA) inhibitory activities against influenza virus A (H1N1), and the inhibitory activities of the five most potent compounds were further evaluated on NA from two different influenza viral subtypes (H3N2 and B), and then their in vitro anti-viral activities were evaluated using the cytopathic effect (CPE) reduction assay. The results showed that the majority of the target compounds exhibited moderate to good NA inhibitory activity. Compound D18 presented the most potent inhibitory activity with IC50 values of 13.06 μM against influenza H1N1 subtype. Among the selected compounds, D18 and D41 turned out to be the most potent inhibitors against influenza virus H3N2 subtype (IC50 = 15.00 μM and IC50 = 14.97 μM, respectively). D25 was the most potent compound against influenza B subtype (IC50 = 16.09 μM). In addition, D41 showed low toxicity and greater potency than reference compounds Oseltamivir and Amantadine against N1-H275Y variant in cellular assays. The structure-activity relationship (SAR) analysis showed that introducing 4-CO2H, 4-OH, 3-OCH3-4-OH substituted benzyl methylene can greatly improve the activity of 4-thiazolinones. Further SAR analysis indicated that 4-thiazolinone and ferulic acid fragments are necessary fragments of target compounds for inhibiting NA. Molecular docking was performed to study the interaction between compound D41 and the active site of NA. This study may providing important information for new drug development for anti-influenza virus including mutant influenza virus.
Collapse
|
23
|
Arya SS, Rookes JE, Cahill DM, Lenka SK. Vanillin: a review on the therapeutic prospects of a popular flavouring molecule. ADVANCES IN TRADITIONAL MEDICINE 2021. [PMCID: PMC7790484 DOI: 10.1007/s13596-020-00531-w] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract Graphic abstract
Collapse
Affiliation(s)
- Sagar S. Arya
- TERI-Deakin NanoBiotechnology Centre, The Energy and Resources Institute, Gurugram, Haryana 122001 India
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC 3216 Australia
| | - James E. Rookes
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC 3216 Australia
| | - David M. Cahill
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC 3216 Australia
| | - Sangram K. Lenka
- TERI-Deakin NanoBiotechnology Centre, The Energy and Resources Institute, Gurugram, Haryana 122001 India
| |
Collapse
|
24
|
Niu YY, Wang LY, Yu YM, Li YT, Wu ZY, Yan CW. Molecular adduct of amantadine ferulate presents a pathway for slowing in vitro/ vivo releases and raising synergistic antiviral effects via dual optimization salification strategy. CrystEngComm 2021. [DOI: 10.1039/d1ce00382h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first synthesized antiviral drug-nutriment molecular salt demonstrating simultaneous slowed-release and synergistically enhanced antiviral effects is studied theoretically and experimentally.
Collapse
Affiliation(s)
- Yuan-Yuan Niu
- School of Medicine and Pharmacy
- College of Marine Life Science
- Ocean University of China
- Qingdao
- P.R. China
| | - Ling-Yang Wang
- School of Medicine and Pharmacy
- College of Marine Life Science
- Ocean University of China
- Qingdao
- P.R. China
| | - Yue-Ming Yu
- School of Medicine and Pharmacy
- College of Marine Life Science
- Ocean University of China
- Qingdao
- P.R. China
| | - Yan-Tuan Li
- School of Medicine and Pharmacy
- College of Marine Life Science
- Ocean University of China
- Qingdao
- P.R. China
| | - Zhi-Yong Wu
- School of Medicine and Pharmacy
- College of Marine Life Science
- Ocean University of China
- Qingdao
- P.R. China
| | - Cui-Wei Yan
- School of Medicine and Pharmacy
- College of Marine Life Science
- Ocean University of China
- Qingdao
- P.R. China
| |
Collapse
|
25
|
Pendyala B, Patras A, Dash C. Phycobilins as Potent Food Bioactive Broad-Spectrum Inhibitors Against Proteases of SARS-CoV-2 and Other Coronaviruses: A Preliminary Study. Front Microbiol 2021; 12:645713. [PMID: 34177827 PMCID: PMC8222545 DOI: 10.3389/fmicb.2021.645713] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/07/2021] [Indexed: 01/12/2023] Open
Abstract
In the 21st century, we have witnessed three coronavirus outbreaks: SARS in 2003, MERS in 2012, and the ongoing pandemic coronavirus disease 2019 (COVID-19). The search for efficient vaccines and development and repurposing of therapeutic drugs are the major approaches in the COVID-19 pandemic research area. There are concerns about the evolution of mutant strains (e.g., VUI - 202012/01, a mutant coronavirus in the United Kingdom), which can potentially reduce the impact of the current vaccine and therapeutic drug development trials. One promising approach to counter the mutant strains is the "development of effective broad-spectrum antiviral drugs" against coronaviruses. This study scientifically investigates potent food bioactive broad-spectrum antiviral compounds by targeting main protease (Mpro) and papain-like protease (PLpro) proteases of coronaviruses (CoVs) using in silico and in vitro approaches. The results reveal that phycocyanobilin (PCB) shows potential inhibitor activity against both proteases. PCB had the best binding affinity to Mpro and PLpro with IC50 values of 71 and 62 μm, respectively. Also, in silico studies with Mpro and PLpro enzymes of other human and animal CoVs indicate broad-spectrum inhibitor activity of the PCB. As with PCB, other phycobilins, such as phycourobilin (PUB), phycoerythrobilin (PEB), and phycoviolobilin (PVB) show similar binding affinity to SARS-CoV-2 Mpro and PLpro.
Collapse
Affiliation(s)
- Brahmaiah Pendyala
- Department of Agricultural and Environmental Sciences, Food Science Program, College of Agriculture, Tennessee State University, Nashville, TN, United States
| | - Ankit Patras
- Department of Agricultural and Environmental Sciences, Food Science Program, College of Agriculture, Tennessee State University, Nashville, TN, United States
| | | |
Collapse
|
26
|
Khalil A, Tazeddinova D. The upshot of Polyphenolic compounds on immunity amid COVID-19 pandemic and other emerging communicable diseases: An appraisal. NATURAL PRODUCTS AND BIOPROSPECTING 2020; 10:411-429. [PMID: 33057955 PMCID: PMC7558243 DOI: 10.1007/s13659-020-00271-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/06/2020] [Indexed: 05/15/2023]
Abstract
Polyphenols are a large family of more than 10,000 naturally occurring compounds, which exert countless pharmacological, biological and physiological benefits for human health including several chronic diseases such as cancer, diabetes, cardiovascular, and neurological diseases. Their role in traditional medicine, such as the use of a wide range of remedial herbs (thyme, oregano, rosemary, sage, mint, basil), has been well and long known for treating common respiratory problems and cold infections. This review reports on the most highlighted polyphenolic compounds present in up to date literature and their specific antiviral perceptive properties that might enhance the body immunity facing COVID-19, and other viral infectious diseases. In fact, several studies and clinical trials increasingly proved the role of polyphenols in controlling numerous human pathogens including SARS and MERS, which are quite similar to COVID-19 through the enhancement of host immune response against viral infections by different biological mechanisms. Thus, polyphenols ought to be considered as a potential and valuable source for designing new drugs that could be used effectively in the combat against COVID-19 and other rigorous diseases.
Collapse
Affiliation(s)
- Ayman Khalil
- Department of Food Technology, South Ural State University, Chelyabinsk, Russian Federation
| | - Diana Tazeddinova
- Department of Food Technology, South Ural State University, Chelyabinsk, Russian Federation
| |
Collapse
|
27
|
Rekha UV, Anita M, Bhuminathan S, Sadhana K. Molecular docking analysis of human JAK2 with compounds from tomatoes. Bioinformation 2020; 16:742-747. [PMID: 34675459 PMCID: PMC8503773 DOI: 10.6026/97320630016742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/15/2020] [Accepted: 10/04/2020] [Indexed: 11/27/2022] Open
Abstract
Janus kinase 2 (JAK2) is a tyrosine kinase receptor that belongs to the JAK family kinases is linked to oral cancer. We describe the molecular binding analysis of JAK2 with 23 compounds from tomotoes. Docking data shows five compounds (rutin, qucertin, narigenin, chlrogenia acid & kaempferol) with optimal binding features with JAK2 for further consideration.
Collapse
Affiliation(s)
- Umapathy Vidhya Rekha
- Department of Public Health Dentistry, Sree Balaji Dental College and Hospital, Pallikaranai, Chennai 600 100, India
| | - M Anita
- Department of Public Health Dentistry, Sree Balaji Dental College and Hospital, Pallikaranai, Chennai 600 100, India
| | - S Bhuminathan
- Department of Prosthodontics, Sree Balaji Dental College and Hospital, BIHER, Pallikaranai, Chennai 600 100, India
| | - K Sadhana
- Department of Public Health Dentistry, Sree Balaji Dental College and Hospital, Pallikaranai, Chennai 600 100, India
| |
Collapse
|
28
|
Zulkipli NN, Zakaria R, Long I, Abdullah SF, Muhammad EF, Wahab HA, Sasongko TH. In Silico Analyses and Cytotoxicity Study of Asiaticoside and Asiatic Acid from Malaysian Plant as Potential mTOR Inhibitors. Molecules 2020; 25:molecules25173991. [PMID: 32887218 PMCID: PMC7504803 DOI: 10.3390/molecules25173991] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
Natural products remain a popular alternative treatment for many ailments in various countries. This study aimed to screen for potential mammalian target of rapamycin (mTOR) inhibitors from Malaysian natural substance, using the Natural Product Discovery database, and to determine the IC50 of the selected mTOR inhibitors against UMB1949 cell line. The crystallographic structure of the molecular target (mTOR) was obtained from Protein Data Bank, with Protein Data Bank (PDB) ID: 4DRI. Everolimus, an mTOR inhibitor, was used as a standard compound for the comparative analysis. Computational docking approach was performed, using AutoDock Vina (screening) and AutoDock 4.2.6 (analysis). Based on our analysis, asiaticoside and its derivative, asiatic acid, both from Centella asiatica, revealed optimum-binding affinities with mTOR that were comparable to our standard compound. The effect of asiaticoside and asiatic acid on mTOR inhibition was validated with UMB1949 cell line, and their IC50 values were 300 and 60 µM, respectively, compared to everolimus (29.5 µM). Interestingly, this is the first study of asiaticoside and asiatic acid against tuberous sclerosis complex (TSC) disease model by targeting mTOR. These results, coupled with our in silico findings, should prompt further studies, to clarify the mode of action, safety, and efficacy of these compounds as mTOR inhibitors.
Collapse
Affiliation(s)
- Ninie Nadia Zulkipli
- School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia;
| | - Rahimah Zakaria
- School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia;
- Correspondence: (R.Z.); (H.A.W.); Tel.: +60-9-7676156 (R.Z.)
| | - Idris Long
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia;
| | - Siti Fadilah Abdullah
- School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia;
| | - Erma Fatiha Muhammad
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia;
| | - Habibah A. Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia;
- Correspondence: (R.Z.); (H.A.W.); Tel.: +60-9-7676156 (R.Z.)
| | - Teguh Haryo Sasongko
- School of Medicine, Perdana University-RCSI, Jalan MAEPS Perdana, Serdang 43400, Malaysia;
| |
Collapse
|
29
|
Bhowmik D, Nandi R, Jagadeesan R, Kumar N, Prakash A, Kumar D. Identification of potential inhibitors against SARS-CoV-2 by targeting proteins responsible for envelope formation and virion assembly using docking based virtual screening, and pharmacokinetics approaches. INFECTION GENETICS AND EVOLUTION 2020; 84:104451. [PMID: 32640381 PMCID: PMC7335633 DOI: 10.1016/j.meegid.2020.104451] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
WHO has declared the outbreak of COVID-19 as a public health emergency of international concern. The ever-growing new cases have called for an urgent emergency for specific anti-COVID-19 drugs. Three structural proteins (Membrane, Envelope and Nucleocapsid protein) play an essential role in the assembly and formation of the infectious virion particles. Thus, the present study was designed to identify potential drug candidates from the unique collection of 548 anti-viral compounds (natural and synthetic anti-viral), which target SARS-CoV-2 structural proteins. High-end molecular docking analysis was performed to characterize the binding affinity of the selected drugs-the ligand, with the SARS-CoV-2 structural proteins, while high-level Simulation studies analyzed the stability of drug-protein interactions. The present study identified rutin, a bioflavonoid and the antibiotic, doxycycline, as the most potent inhibitor of SARS-CoV-2 envelope protein. Caffeic acid and ferulic acid were found to inhibit SARS-CoV-2 membrane protein while the anti-viral agent's simeprevir and grazoprevir showed a high binding affinity for nucleocapsid protein. All these compounds not only showed excellent pharmacokinetic properties, absorption, metabolism, minimal toxicity and bioavailability but were also remain stabilized at the active site of proteins during the MD simulation. Thus, the identified lead compounds may act as potential molecules for the development of effective drugs against SARS-CoV-2 by inhibiting the envelope formation, virion assembly and viral pathogenesis.
Collapse
Affiliation(s)
- Deep Bhowmik
- Department of Microbiology, Assam University, Silchar 788011, Assam, India
| | - Rajat Nandi
- Department of Microbiology, Assam University, Silchar 788011, Assam, India
| | - Rahul Jagadeesan
- CAS in Crystallography and Biophysics, Guindy Campus, University of Madras, Chennai 600025, India
| | - Niranjan Kumar
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Amresh Prakash
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurgaon 122413, India
| | - Diwakar Kumar
- Department of Microbiology, Assam University, Silchar 788011, Assam, India.
| |
Collapse
|
30
|
Mahalapbutr P, Sangkhawasi M, Kammarabutr J, Chamni S, Rungrotmongkol T. Rosmarinic Acid as a Potent Influenza Neuraminidase Inhibitor: In Vitro and In Silico Study. Curr Top Med Chem 2020; 20:2046-2055. [PMID: 31738149 DOI: 10.2174/1568026619666191118110155] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/08/2020] [Accepted: 07/09/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Neuraminidase (NA), a major glycoprotein found on the surface of the influenza virus, is an important target for the prophylaxis and treatment of influenza virus infections. Recently, several plant-derived polyphenols, especially caffeic acid analogs, have been reported to exert the inhibitory activity against NA. OBJECTIVE Herein, we aimed to investigate the anti-influenza NA activity of caffeic acid and its hydroxycinnamate analogues, rosmarinic acid and salvianolic acid A, in comparison to a known NA inhibitor, oseltamivir. METHODS In vitro MUNANA-based NA inhibitory assay was used to evaluate the inhibitory activity of the three interested hydroxycinnamic compounds towards the influenza NA enzyme. Subsequently, allatom molecular dynamics (MD) simulations and binding free energy calculations were employed to elucidate the structural insights into the protein-ligand complexations. RESULTS Rosmarinic acid showed the highest inhibitory activity against NA with the IC50 of 0.40 μM compared to caffeic acid (IC50 of 0.81 μM) and salvianolic acid A (IC50 of >1 μM). From 100-ns MD simulations, the binding affinity, hot-spot residues, and H-bond formations of rosmarinic acid/NA complex were higher than those of caffeic acid/NA model, in which their molecular complexations was driven mainly by electrostatic attractions and H-bond formations from several charged residues (R118, E119, D151, R152, E227, E277, and R371). Notably, the two hydroxyl groups on both phenyl and phenylacetic rings of rosmarinic acid play a crucial role in stabilizing NA through a strongly formed Hbond( s). CONCLUSION Our findings shed light on the potentiality of rosmarinic acid as a lead compound for further development of a potential influenza NA inhibitor.
Collapse
Affiliation(s)
- Panupong Mahalapbutr
- Structural and Computational Biology Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Mattanun Sangkhawasi
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jirayu Kammarabutr
- Structural and Computational Biology Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Supakarn Chamni
- Natural Products and Nanoparticles Research Unit (NP2), Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Thanyada Rungrotmongkol
- Structural and Computational Biology Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
31
|
Cui MY, Xiao MW, Xu LJ, Chen Y, Liu AL, Ye J, Hu AX. Bioassay of ferulic acid derivatives as influenza neuraminidase inhibitors. Arch Pharm (Weinheim) 2019; 353:e1900174. [PMID: 31657061 DOI: 10.1002/ardp.201900174] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 01/08/2023]
Abstract
Four series of ferulic acid derivatives were designed, synthesized, and evaluated for their neuraminidase (NA) inhibitory activities against influenza virus H1N1 in vitro. The pharmacological results showed that the majority of the target compounds exhibited moderate influenza NA inhibitory activity, which was also better than that of ferulic acid. The two most potent compounds were 1m and 4a with IC50 values of 12.77 ± 0.47 and 12.96 ± 1.34 μg/ml, respectively. On the basis of the biological results, a preliminary structure-activity relationship (SAR) was derived and discussed. Besides, molecular docking was performed to study the possible interactions of compounds 1p, 2d, 3b, and 4a with the active site of NA. It was found that the 4-OH-3-OMe group and the amide group (CON) of ferulic acid amide derivatives were two key pharmacophores for NA inhibitory activity. It is meaningful to further modify the natural product ferulic acid to improve its influenza NA inhibitory activity.
Collapse
Affiliation(s)
- Man-Ying Cui
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Meng-Wu Xiao
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Lv-Jie Xu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yun Chen
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Ai-Lin Liu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiao Ye
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Ai-Xi Hu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| |
Collapse
|
32
|
Neelam, Khatkar A, Sharma KK. Phenylpropanoids and its derivatives: biological activities and its role in food, pharmaceutical and cosmetic industries. Crit Rev Food Sci Nutr 2019; 60:2655-2675. [PMID: 31456411 DOI: 10.1080/10408398.2019.1653822] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Phenylpropanoids and their derivatives are plant secondary metabolites widely present in fruits, vegetables, cereal grains, beverages, spices and herbs. They are known to have multifaceted effects which include antimicrobial, antioxidant, anti-inflammatory, antidiabetic, anticancer activities and as well as exhibits renoprotective, neuroprotective, cardioprotective and hepatoprotective effects. Owing to their antioxidant, antimicrobial and photoprotective properties, these compounds have wide application in the food (preservation, packaging films and edible coating), pharmaceutical, cosmetic and other industries such as textile (colorant), biofuel (antioxidant additive) and sensors (sensing biologically relevant molecules). Phenylpropanoids are present in commercially available dietary supplements and skin care products. In this review, we have presented the current knowledge on the biosynthesis, occurrence, biological activities of phenylpropanoids and their derivatives, along with the mechanism of action and their potential applications in various industries.
Collapse
Affiliation(s)
- Neelam
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Anurag Khatkar
- Department of Pharmaceutical sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Krishna Kant Sharma
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
33
|
Arya SS, Sharma MM, Das RK, Rookes J, Cahill D, Lenka SK. Vanillin mediated green synthesis and application of gold nanoparticles for reversal of antimicrobial resistance in Pseudomonas aeruginosa clinical isolates. Heliyon 2019; 5:e02021. [PMID: 31312733 PMCID: PMC6609825 DOI: 10.1016/j.heliyon.2019.e02021] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/24/2019] [Accepted: 06/27/2019] [Indexed: 11/30/2022] Open
Abstract
Antimicrobial resistance (AMR) is a serious concern in pathogenic bacteria. As a new approach to addressing AMR, we report here the green synthesis of vanillin capped gold nanoparticles (VAuNPs) using the popular flavouring molecule vanillin (C8H8O3) as a reducing and capping agent. Physicochemical characterization revealed that the synthesised VAuNPs were stable and crystalline in nature. VAuNPs were non-bactericidal even at high concentration (>2000 μg/ml). The antibiotic potentiation activity was studied in combination with seven widely used antibiotics against extremely drug resistant (XDR) Pseudomonas aeruginosa. Major reductions in minimum inhibitory concentrations (MIC, 10–14-folds) of the antibiotics meropenem (10 fold) and trimethoprim (14 fold) were observed in the presence of VAuNPs (50 μg/ml). Furthermore, it was found that VAuNPs in combination with meropenem or trimethoprim provided 1.5–3-fold better potentiation effects than that of vanillin alone. Use of an ethidium bromide agar cart wheel assay indicated that VAuNPs can block the activity of efflux pumps. High reduction in the MIC of antibiotics was therefore attributed to the efflux pump repression activity of VAuNPs. Further, RT-qPCR of clinically relevant MexAB-OprM efflux pump components showed down-regulation in mexB and OprM transcripts in VAuNPs treated P. aeruginosa clinical isolates. Our results reveal that VAuNPs impart susceptibility to the last line antibiotics meropenem, trimethoprim and few widely used antibiotics in XDR P. aeruginosa clinical isolates that display resistance to these antibiotics. Therefore, this study indicate the ability of VAuNPs and vanillin to be used as antibiotic adjuvants for inhibiting bacterial efflux pumps to potentiate antibiotics for addressing AMR problem affecting human health and environment.
Collapse
Affiliation(s)
- Sagar S. Arya
- TERI-Deakin Nanobiotechnology Centre, Gurgaon, Haryana, 122001, India
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds Campus, Geelong, Victoria, 3216, Australia
| | - Mansi M. Sharma
- Center for Innovation Research and Consultancy, Pune, 411018, India
| | - Ratul K. Das
- TERI-Deakin Nanobiotechnology Centre, Gurgaon, Haryana, 122001, India
| | - James Rookes
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds Campus, Geelong, Victoria, 3216, Australia
| | - David Cahill
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds Campus, Geelong, Victoria, 3216, Australia
| | - Sangram K. Lenka
- TERI-Deakin Nanobiotechnology Centre, Gurgaon, Haryana, 122001, India
- Corresponding author.
| |
Collapse
|
34
|
Identification of the Components in a Vaccinium oldhamii Extract Showing Inhibitory Activity against Influenza Virus Adsorption. Foods 2019; 8:foods8050172. [PMID: 31137514 PMCID: PMC6560511 DOI: 10.3390/foods8050172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 02/06/2023] Open
Abstract
We previously reported that extracts from plants of the Ericaceae genus Vaccinium, commonly known as the kind of blueberry, inhibited the early steps of influenza virus (IFV) infection to host cells, and that the activity was correlated with the total polyphenol content. Particularly potent inhibitory activity was observed for Vaccinium oldhamii. In this study, we identified the active components in Vaccinium oldhamii involved in the inhibition of IFV infection. We sequentially fractionated the Vaccinium oldhamii extract using a synthetic adsorbent resin column. High inhibitory activity was observed for the fractions eluted with 30%, 40%, and 50% ethanol, and three peaks (peak A, B, and C) considered to represent polyphenols were identified in the fractions by HPLC analysis. Among these peaks, high inhibitory activity was detected for peak A and B, but not for peak C. These peaks were analyzed by LC/MS, which revealed that peak A contained procyanidin B2 and ferulic acid derivatives, whereas peak B contained two ferulic acid O-hexosides, and peak C contained quercetin-3-O-rhamnoside and quercetin-O-pentoside-O-rhamnoside. It is already known that these polyphenols have anti-IFV activity, but we speculate that ferulic acid derivatives are the major contributors to the inhibition of the early steps of IFV replication, such as either adsorption or entry, observed for Vaccinium oldhamii.
Collapse
|
35
|
Rahman Y, Afrin S, Alhaji Isa M, Ahmed S, Tabish M. Elucidating the molecular interaction of serum albumin with nizatidine and the role of β-cyclodextrin: multi-spectroscopic and computational approach. J Biomol Struct Dyn 2019; 38:1375-1387. [DOI: 10.1080/07391102.2019.1604265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yusra Rahman
- Department of Biochemistry, Faculty of Life Sciences, A. M. University, Aligarh, Uttar Pradesh, India
| | - Shumaila Afrin
- Department of Biochemistry, Faculty of Life Sciences, A. M. University, Aligarh, Uttar Pradesh, India
| | - Mustafa Alhaji Isa
- Department of Microbiology, Faculty of Sciences, University of Maiduguri, Maiduguri, Nigeria
| | - Shahbaz Ahmed
- Department of Biochemistry, Faculty of Life Sciences, A. M. University, Aligarh, Uttar Pradesh, India
| | - Mohammad Tabish
- Department of Biochemistry, Faculty of Life Sciences, A. M. University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
36
|
Kwon JJ, Choi WS, Jeong JH, Kim EH, Lee OJ, Yoon SW, Hwang J, Webby RJ, Govorkova EA, Choi YK, Baek YH, Song MS. An I436N substitution confers resistance of influenza A(H1N1)pdm09 viruses to multiple neuraminidase inhibitors without affecting viral fitness. J Gen Virol 2019; 99:292-302. [PMID: 29493493 DOI: 10.1099/jgv.0.001029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The resistance of influenza viruses to neuraminidase (NA) inhibitors (NAIs; i.e. oseltamivir, zanamivir, peramivir and laninamivir) can be associated with several NA substitutions, with differing effects on viral fitness. To identify novel molecular markers conferring multi-NAI resistance, the NA gene of oseltamivir-resistant (H275Y, N1 numbering) 2009 pandemic influenza [A(H1N1)pdm09] virus was enriched with random mutations. This randomly mutated viral library was propagated in Madin-Darby canine kidney (MDCK) cells under zanamivir pressure and gave rise to additional changes within NA, including an I436N substitution located outside the NA enzyme active site. We generated four recombinant A(H1N1)pdm09 viruses containing either wild-type NA or NA with single (I436N or H275Y) or double (H275Y-I436N) substitutions. The double H275Y-I436N mutation significantly reduced inhibition by oseltamivir and peramivir and reduced inhibition by zanamivir and laninamivir. I436N alone reduced inhibition by all NAIs, suggesting that it is a multi-NAI resistance marker. I436N did not affect viral fitness in vitro or in a murine model; however, H275Y and I436N together had a negative impact on viral fitness. Further, I436N alone did not have an appreciable impact on viral replication in the upper respiratory tract or transmissibility in ferrets. However, the rg-H275Y-I436N double mutant transmitted less efficiently than either single mutant via the direct contact and respiratory droplet routes in ferrets. Overall, these results highlight the usefulness of a random mutagenesis approach for identifying potential molecular markers of resistance and the importance of I436N NA substitution in A(H1N1)pdm09 virus as a marker for multi-NAI resistance.
Collapse
Affiliation(s)
- Jin Jung Kwon
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Won-Suk Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Ju Hwan Jeong
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Eun-Ha Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Ok-Jun Lee
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Sun-Woo Yoon
- Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jungwon Hwang
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Richard J Webby
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Elena A Govorkova
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Young Ki Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Yun Hee Baek
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Min-Suk Song
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
37
|
Rong HJ, Yang CF, Chen T, Xu ZG, Su TD, Wang YQ, Ning BK. Iodine-catalyzed guanylation of amines withN,N′-di-Boc-thiourea. Org Biomol Chem 2019; 17:9280-9283. [DOI: 10.1039/c9ob02014d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Iodine-catalyzed guanylation of amines withN,N′-di-Boc-thiourea is especially useful for both electronically and sterically deactivated primary anilines.
Collapse
Affiliation(s)
- Hao-Jie Rong
- Modern Chemistry Research Institute of Xi'an
- Xi'an 710065
- China
- Department of Chemistry & Materials Science
- Northwest University
| | - Cui-Feng Yang
- Modern Chemistry Research Institute of Xi'an
- Xi'an 710065
- China
| | - Tao Chen
- Modern Chemistry Research Institute of Xi'an
- Xi'an 710065
- China
| | - Ze-Gang Xu
- Modern Chemistry Research Institute of Xi'an
- Xi'an 710065
- China
| | - Tian-Duo Su
- Modern Chemistry Research Institute of Xi'an
- Xi'an 710065
- China
| | - Yong-Qiang Wang
- Department of Chemistry & Materials Science
- Northwest University
- Xi'an 710069
- China
| | - Bin-Ke Ning
- Modern Chemistry Research Institute of Xi'an
- Xi'an 710065
- China
- State Key Laboratory of Fluorine & Nitrogen Chemicals
- Xi'an 710065
| |
Collapse
|
38
|
Afriza D, Suriyah WH, Ichwan SJA. In silicoanalysis of molecular interactions between the anti-apoptotic protein survivin and dentatin, nordentatin, and quercetin. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1742-6596/1073/3/032001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
39
|
Ali Y, Muhamad Bunnori N, Susanti D, Muhammad Alhassan A, Abd Hamid S. Synthesis, in-Vitro and in Silico Studies of Azo-Based Calix[4]arenes as Antibacterial Agent and Neuraminidase Inhibitor: A New Look Into an Old Scaffold. Front Chem 2018; 6:210. [PMID: 29946538 PMCID: PMC6005842 DOI: 10.3389/fchem.2018.00210] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/23/2018] [Indexed: 01/29/2023] Open
Abstract
Calixarene derivatives are reported as potential therapeutic agents. Azo derivatives of calixarenes have not been given much consideration to explore their biomedical applications. In the present study, some azo-based derivatives of calix[4]arene were synthesized and characterized and their antibacterial and antiviral potentials were studied. The mono azo products of sulphanilamide, sulfaguanidine and 2-methyl-4-aminobenzoic acid showed good activity against bacterial strains with minimum inhibition concentration values ranging from 0.97 to 62.5 μg/mL. For mono azo products, the diazotized salt was applied as a limiting reagent. The use of calix[4]arene and sodium acetate trihydrate in 1:3 (molar ratio) helped in partial substitution. Molecular docking was performed to see the interaction of the designed compounds with two bacterial and one viral (neuraminidase) receptor. Some of the derivatives showed good interaction with the active site of bacterial and neuraminidase enzymes through hydrogen, hydrophobic and pi-pi interactions, and could inhibit the activity of the selected enzymes.
Collapse
Affiliation(s)
- Yousaf Ali
- Department of Chemistry, Sarhad University of Science and Information Technology, Peshawar, Pakistan.,Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Malaysia
| | | | - Deny Susanti
- Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Malaysia
| | | | - Shafida Abd Hamid
- Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Malaysia
| |
Collapse
|
40
|
Jusoh N, Zainal H, Abdul Hamid AA, Bunnori NM, Abd Halim KB, Abd Hamid S. In silico study of carvone derivatives as potential neuraminidase inhibitors. J Mol Model 2018; 24:93. [PMID: 29546582 DOI: 10.1007/s00894-018-3619-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 02/11/2018] [Indexed: 10/17/2022]
Abstract
Recent outbreaks of highly pathogenic influenza strains have highlighted the need to develop new anti-influenza drugs. Here, we report an in silico study of carvone derivatives to analyze their binding modes with neuraminidase (NA) active sites. Two proposed carvone analogues, CV(A) and CV(B), with 36 designed ligands were predicted to inhibit NA (PDB ID: 3TI6) using molecular docking. The design is based on structural resemblance with the commercial inhibitor, oseltamivir (OTV), ligand polarity, and amino acid residues in the NA active sites. Docking simulations revealed that ligand A18 has the lowest energy binding (∆Gbind) value of -8.30 kcal mol-1, comparable to OTV with ∆Gbind of -8.72 kcal mol-1. A18 formed seven hydrogen bonds (H-bonds) at residues Arg292, Arg371, Asp151, Trp178, Glu227, and Tyr406, while eight H-bonds were formed by OTV with amino acids Arg118, Arg292, Arg371, Glu119, Asp151, and Arg152. Molecular dynamics (MD) simulation was conducted to compare the stability between ligand A18 and OTV with NA. Our simulation study showed that the A18-NA complex is as stable as the OTV-NA complex during the MD simulation of 50 ns through the analysis of RMSD, RMSF, total energy, hydrogen bonding, and MM/PBSA free energy calculations.
Collapse
Affiliation(s)
- Noorakmar Jusoh
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, 25200, Bandar Indera Mahkota Kuantan, Pahang, Malaysia
| | - Hasanuddin Zainal
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, 25200, Bandar Indera Mahkota Kuantan, Pahang, Malaysia
| | - Azzmer Azzar Abdul Hamid
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, 25200, Bandar Indera Mahkota Kuantan, Pahang, Malaysia
| | - Noraslinda M Bunnori
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, 25200, Bandar Indera Mahkota Kuantan, Pahang, Malaysia
| | - Khairul Bariyyah Abd Halim
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, 25200, Bandar Indera Mahkota Kuantan, Pahang, Malaysia
| | - Shafida Abd Hamid
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, 25200, Bandar Indera Mahkota Kuantan, Pahang, Malaysia.
| |
Collapse
|
41
|
Ghosh S, Basak P, Dutta S, Chowdhury S, Sil PC. New insights into the ameliorative effects of ferulic acid in pathophysiological conditions. Food Chem Toxicol 2017; 103:41-55. [PMID: 28237775 DOI: 10.1016/j.fct.2017.02.028] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/16/2017] [Accepted: 02/20/2017] [Indexed: 12/21/2022]
Abstract
Ferulic acid, a natural phytochemical has gained importance as a potential therapeutic agent by virtue of its easy commercial availability, low cost and minimal side-effects. It is a derivative of curcumin and possesses the necessary pharmacokinetic properties to be retained in the general circulation for several hours. The therapeutic effects of ferulic acid are mediated through its antioxidant and anti-inflammatory properties. It exhibits different biological activities such as anti-inflammatory, anti-apoptotic, anti-carcinogenic, anti-diabetic, hepatoprotective, cardioprotective, neuroprotective actions, etc. The current review addresses its therapeutic effects under different pathophysiological conditions (eg. cancer, cardiomyopathy, skin disorders, brain disorders, viral infections, diabetes etc.).
Collapse
Affiliation(s)
- Sumit Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Priyanka Basak
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Sayanta Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Sayantani Chowdhury
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India.
| |
Collapse
|
42
|
Sharma G, Vasanth Kumar S, Wahab HA. Molecular docking, synthesis, and biological evaluation of naphthoquinone as potential novel scaffold for H5N1 neuraminidase inhibition. J Biomol Struct Dyn 2017; 36:233-242. [DOI: 10.1080/07391102.2016.1274271] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Garima Sharma
- Department of Chemistry, Karunya University, Coimbatore, India
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | | | - Habibah A. Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|