1
|
Rorsman HO, Müller MA, Liu PZ, Sanchez LG, Kempf A, Gerbig S, Spengler B, Miesenböck G. Sleep pressure accumulates in a voltage-gated lipid peroxidation memory. Nature 2025; 641:232-239. [PMID: 40108451 PMCID: PMC12043502 DOI: 10.1038/s41586-025-08734-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 02/03/2025] [Indexed: 03/22/2025]
Abstract
Voltage-gated potassium (KV) channels contain cytoplasmically exposed β-subunits1-5 whose aldo-keto reductase activity6-8 is required for the homeostatic regulation of sleep9. Here we show that Hyperkinetic, the β-subunit of the KV1 channel Shaker in Drosophila7, forms a dynamic lipid peroxidation memory. Information is stored in the oxidation state of Hyperkinetic's nicotinamide adenine dinucleotide phosphate (NADPH) cofactor, which changes when lipid-derived carbonyls10-13, such as 4-oxo-2-nonenal or an endogenous analogue generated by illuminating a membrane-bound photosensitizer9,14, abstract an electron pair. NADP+ remains locked in the active site of KVβ until membrane depolarization permits its release and replacement with NADPH. Sleep-inducing neurons15-17 use this voltage-gated oxidoreductase cycle to encode their recent lipid peroxidation history in the collective binary states of their KVβ subunits; this biochemical memory influences-and is erased by-spike discharges driving sleep. The presence of a lipid peroxidation sensor at the core of homeostatic sleep control16,17 suggests that sleep protects neuronal membranes against oxidative damage. Indeed, brain phospholipids are depleted of vulnerable polyunsaturated fatty acyl chains after enforced waking, and slowing the removal of their carbonylic breakdown products increases the demand for sleep.
Collapse
Affiliation(s)
- H Olof Rorsman
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
| | - Max A Müller
- Institute of Inorganic and Analytical Chemistry, Justus-Liebig-Universität, Giessen, Germany
| | - Patrick Z Liu
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
| | | | - Anissa Kempf
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
- Biozentrum, Universität Basel, Basel, Switzerland
| | - Stefanie Gerbig
- Institute of Inorganic and Analytical Chemistry, Justus-Liebig-Universität, Giessen, Germany
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus-Liebig-Universität, Giessen, Germany
| | - Gero Miesenböck
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
Kaya SG, Hovan A, Fraaije MW. Engineering of LOV-domains for their use as protein tags. Arch Biochem Biophys 2025; 763:110228. [PMID: 39592071 DOI: 10.1016/j.abb.2024.110228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 11/28/2024]
Abstract
Light-Oxygen-Voltage (LOV) domains are the protein-based light switches used in nature to trigger and regulate various processes. They allow light signals to be converted into metabolic signaling cascades. Various LOV-domain proteins have been characterized in the last few decades and have been used to develop light-sensitive tools in cell biology research. LOV-based applications exploit the light-driven regulation of effector elements to activate signaling pathways, activate genes, or locate proteins within cells. A relatively new application of an engineered small LOV-domain protein called miniSOG (mini singlet oxygen generator) is based on the light-induced formation of reactive oxygen species (ROS). The first miniSOG was engineered from a LOV domain from Arabidopsis thaliana. This engineered 14 kDa light-responsive flavin-containing protein can be exploited as protein tag for the light-triggered localized production of ROS. Such tunable ROS production by miniSOG or similarly redesigned LOV-domains can be of use in studies focused on subcellular phenomena but may also allow new light-fueled catalytic processes. This review provides an overview of the discovery of LOV domains and their development into tools for cell biology. It also highlights recent advancements in engineering LOV domains for various biotechnological applications and cell biology studies.
Collapse
Affiliation(s)
- Saniye G Kaya
- Molecular Enzymology Group, University of Groningen, Nijenborgh 3, 9747AG, Groningen, the Netherlands
| | - Andrej Hovan
- The Extreme Light Infrastructure ERIC, ELI Beamlines Facility, Za Radnicí 835, 252 41, Dolní Břežany, Czech Republic; Department of Biophysics, Faculty of Science, P.J. Šafárik University in Košice, Jesenná 5, 041 54, Košice, Slovakia
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 3, 9747AG, Groningen, the Netherlands.
| |
Collapse
|
3
|
Marshall AG, Neikirk K, Stephens DC, Vang L, Vue Z, Beasley HK, Crabtree A, Scudese E, Lopez EG, Shao B, Krystofiak E, Rutledge S, Davis J, Murray SA, Damo SM, Katti P, Hinton A. Serial Block Face-Scanning Electron Microscopy as a Burgeoning Technology. Adv Biol (Weinh) 2023; 7:e2300139. [PMID: 37246236 PMCID: PMC10950369 DOI: 10.1002/adbi.202300139] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/09/2023] [Indexed: 05/30/2023]
Abstract
Serial block face scanning electron microscopy (SBF-SEM), also referred to as serial block-face electron microscopy, is an advanced ultrastructural imaging technique that enables three-dimensional visualization that provides largerx- and y-axis ranges than other volumetric EM techniques. While SEM is first introduced in the 1930s, SBF-SEM is developed as a novel method to resolve the 3D architecture of neuronal networks across large volumes with nanometer resolution by Denk and Horstmann in 2004. Here, the authors provide an accessible overview of the advantages and challenges associated with SBF-SEM. Beyond this, the applications of SBF-SEM in biochemical domains as well as potential future clinical applications are briefly reviewed. Finally, the alternative forms of artificial intelligence-based segmentation which may contribute to devising a feasible workflow involving SBF-SEM, are also considered.
Collapse
Affiliation(s)
- Andrea G Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Dominique C Stephens
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Larry Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Heather K Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Amber Crabtree
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Estevão Scudese
- Laboratory of Biosciences of Human Motricity (LABIMH) of the Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
- Sport Sciences and Exercise Laboratory (LaCEE), Catholic University of Petrópolis (UCP), Catholic, 25685-100, Brazil
| | - Edgar Garza Lopez
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Bryanna Shao
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Evan Krystofiak
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Sharifa Rutledge
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | - Jaimaine Davis
- Department of Biochemistry, Cancer Biology, Neuroscience, Pharmacology, Meharry Medical College, Nashville, TN, 37232, USA
| | - Sandra A Murray
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Steven M Damo
- Department of Life and Physical Sciences, Fisk University, Nashville, TN, 37208, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Prasanna Katti
- National Heart, Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
4
|
Czymmek KJ, Duncan KE, Berg H. Realizing the Full Potential of Advanced Microscopy Approaches for Interrogating Plant-Microbe Interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:245-255. [PMID: 36947723 DOI: 10.1094/mpmi-10-22-0208-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Microscopy has served as a fundamental tool for insight and discovery in plant-microbe interactions for centuries. From classical light and electron microscopy to corresponding specialized methods for sample preparation and cellular contrasting agents, these approaches have become routine components in the toolkit of plant and microbiology scientists alike to visualize, probe and understand the nature of host-microbe relationships. Over the last three decades, three-dimensional perspectives led by the development of electron tomography, and especially, confocal techniques continue to provide remarkable clarity and spatial detail of tissue and cellular phenomena. Confocal and electron microscopy provide novel revelations that are now commonplace in medium and large institutions. However, many other cutting-edge technologies and sample preparation workflows are relatively unexploited yet offer tremendous potential for unprecedented advancement in our understanding of the inner workings of pathogenic, beneficial, and symbiotic plant-microbe interactions. Here, we highlight key applications, benefits, and challenges of contemporary advanced imaging platforms for plant-microbe systems with special emphasis on several recently developed approaches, such as light-sheet, single molecule, super-resolution, and adaptive optics microscopy, as well as ambient and cryo-volume electron microscopy, X-ray microscopy, and cryo-electron tomography. Furthermore, the potential for complementary sample preparation methodologies, such as optical clearing, expansion microscopy, and multiplex imaging, will be reviewed. Our ultimate goal is to stimulate awareness of these powerful cutting-edge technologies and facilitate their appropriate application and adoption to solve important and unresolved biological questions in the field. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Kirk J Czymmek
- Donald Danforth Plant Science Center, Saint Louis, MO 63132, U.S.A
- Advanced Bioimaging Laboratory, Donald Danforth Plant Science Center, Saint Louis, MO 63132, U.S.A
| | - Keith E Duncan
- Donald Danforth Plant Science Center, Saint Louis, MO 63132, U.S.A
| | - Howard Berg
- Donald Danforth Plant Science Center, Saint Louis, MO 63132, U.S.A
| |
Collapse
|
5
|
Duncan KE, Czymmek KJ, Jiang N, Thies AC, Topp CN. X-ray microscopy enables multiscale high-resolution 3D imaging of plant cells, tissues, and organs. PLANT PHYSIOLOGY 2022; 188:831-845. [PMID: 34618094 PMCID: PMC8825331 DOI: 10.1093/plphys/kiab405] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/29/2021] [Indexed: 05/12/2023]
Abstract
Capturing complete internal anatomies of plant organs and tissues within their relevant morphological context remains a key challenge in plant science. While plant growth and development are inherently multiscale, conventional light, fluorescence, and electron microscopy platforms are typically limited to imaging of plant microstructure from small flat samples that lack a direct spatial context to, and represent only a small portion of, the relevant plant macrostructures. We demonstrate technical advances with a lab-based X-ray microscope (XRM) that bridge the imaging gap by providing multiscale high-resolution three-dimensional (3D) volumes of intact plant samples from the cell to the whole plant level. Serial imaging of a single sample is shown to provide sub-micron 3D volumes co-registered with lower magnification scans for explicit contextual reference. High-quality 3D volume data from our enhanced methods facilitate sophisticated and effective computational segmentation. Advances in sample preparation make multimodal correlative imaging workflows possible, where a single resin-embedded plant sample is scanned via XRM to generate a 3D cell-level map, and then used to identify and zoom in on sub-cellular regions of interest for high-resolution scanning electron microscopy. In total, we present the methodologies for use of XRM in the multiscale and multimodal analysis of 3D plant features using numerous economically and scientifically important plant systems.
Collapse
Affiliation(s)
- Keith E Duncan
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | - Kirk J Czymmek
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | - Ni Jiang
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | | | - Christopher N Topp
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
- Author for communication:
| |
Collapse
|
6
|
Mair A, Bergmann DC. Advances in enzyme-mediated proximity labeling and its potential for plant research. PLANT PHYSIOLOGY 2022; 188:756-768. [PMID: 34662401 PMCID: PMC8825456 DOI: 10.1093/plphys/kiab479] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/21/2021] [Indexed: 06/12/2023]
Abstract
Cellular processes rely on the intimate interplay of different molecules, including DNA, RNA, proteins, and metabolites. Obtaining and integrating data on their abundance and dynamics at high temporal and spatial resolution are essential for our understanding of plant growth and development. In the past decade, enzymatic proximity labeling (PL) has emerged as a powerful tool to study local protein and nucleotide ensembles, discover protein-protein and protein-nucleotide interactions, and resolve questions about protein localization and membrane topology. An ever-growing number and continuous improvement of enzymes and methods keep broadening the spectrum of possible applications for PL and make it more accessible to different organisms, including plants. While initial PL experiments in plants required high expression levels and long labeling times, recently developed faster enzymes now enable PL of proteins on a cell type-specific level, even with low-abundant baits, and in different plant species. Moreover, expanding the use of PL for additional purposes, such as identification of locus-specific gene regulators or high-resolution electron microscopy may now be in reach. In this review, we give an overview of currently available PL enzymes and their applications in mammalian cell culture and plants. We discuss the challenges and limitations of PL methods and highlight open questions and possible future directions for PL in plants.
Collapse
Affiliation(s)
- Andrea Mair
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Dominique C Bergmann
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
7
|
Li X, Kuai B, Yu B, Tu X. A LED light for photo-inducible cell ablation by miniSOG. OPTICAL AND QUANTUM ELECTRONICS 2021; 53:659. [DOI: 10.1007/s11082-021-03315-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/16/2021] [Indexed: 01/02/2025]
|
8
|
Schifferer M, Snaidero N, Djannatian M, Kerschensteiner M, Misgeld T. Niwaki Instead of Random Forests: Targeted Serial Sectioning Scanning Electron Microscopy With Reimaging Capabilities for Exploring Central Nervous System Cell Biology and Pathology. Front Neuroanat 2021; 15:732506. [PMID: 34720890 PMCID: PMC8548362 DOI: 10.3389/fnana.2021.732506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/24/2021] [Indexed: 11/13/2022] Open
Abstract
Ultrastructural analysis of discrete neurobiological structures by volume scanning electron microscopy (SEM) often constitutes a "needle-in-the-haystack" problem and therefore relies on sophisticated search strategies. The appropriate SEM approach for a given relocation task not only depends on the desired final image quality but also on the complexity and required accuracy of the screening process. Block-face SEM techniques like Focused Ion Beam or serial block-face SEM are "one-shot" imaging runs by nature and, thus, require precise relocation prior to acquisition. In contrast, "multi-shot" approaches conserve the sectioned tissue through the collection of serial sections onto solid support and allow reimaging. These tissue libraries generated by Array Tomography or Automated Tape Collecting Ultramicrotomy can be screened at low resolution to target high resolution SEM. This is particularly useful if a structure of interest is rare or has been predetermined by correlated light microscopy, which can assign molecular, dynamic and functional information to an ultrastructure. As such approaches require bridging mm to nm scales, they rely on tissue trimming at different stages of sample processing. Relocation is facilitated by endogenous or exogenous landmarks that are visible by several imaging modalities, combined with appropriate registration strategies that allow overlaying images of various sources. Here, we discuss the opportunities of using multi-shot serial sectioning SEM approaches, as well as suitable trimming and registration techniques, to slim down the high-resolution imaging volume to the actual structure of interest and hence facilitate ambitious targeted volume SEM projects.
Collapse
Affiliation(s)
- Martina Schifferer
- Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Nicolas Snaidero
- Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
- Hertie Institute for Clinical Brain Research, Tübingen, Germany
| | - Minou Djannatian
- Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| | - Martin Kerschensteiner
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
- Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Thomas Misgeld
- Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| |
Collapse
|
9
|
Shih CT, Chen NY, Wang TY, He GW, Wang GT, Lin YJ, Lee TK, Chiang AS. NeuroRetriever: Automatic Neuron Segmentation for Connectome Assembly. Front Syst Neurosci 2021; 15:687182. [PMID: 34366800 PMCID: PMC8342815 DOI: 10.3389/fnsys.2021.687182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/21/2021] [Indexed: 11/15/2022] Open
Abstract
Segmenting individual neurons from a large number of noisy raw images is the first step in building a comprehensive map of neuron-to-neuron connections for predicting information flow in the brain. Thousands of fluorescence-labeled brain neurons have been imaged. However, mapping a complete connectome remains challenging because imaged neurons are often entangled and manual segmentation of a large population of single neurons is laborious and prone to bias. In this study, we report an automatic algorithm, NeuroRetriever, for unbiased large-scale segmentation of confocal fluorescence images of single neurons in the adult Drosophila brain. NeuroRetriever uses a high-dynamic-range thresholding method to segment three-dimensional morphology of single neurons based on branch-specific structural features. Applying NeuroRetriever to automatically segment single neurons in 22,037 raw brain images, we successfully retrieved 28,125 individual neurons validated by human segmentation. Thus, automated NeuroRetriever will greatly accelerate 3D reconstruction of the single neurons for constructing the complete connectomes.
Collapse
Affiliation(s)
- Chi-Tin Shih
- Department of Applied Physics, Tunghai University, Taichung, Taiwan.,Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Nan-Yow Chen
- National Center for High-Performance Computing, National Applied Research Laboratories, Hsinchu, Taiwan
| | - Ting-Yuan Wang
- Institute of Biotechnology and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Guan-Wei He
- Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Guo-Tzau Wang
- National Center for High-Performance Computing, National Applied Research Laboratories, Hsinchu, Taiwan
| | - Yen-Jen Lin
- National Center for High-Performance Computing, National Applied Research Laboratories, Hsinchu, Taiwan
| | - Ting-Kuo Lee
- Institute of Physics, Academia Sinica, Taipei, Taiwan.,Department of Physics, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ann-Shyn Chiang
- Department of Applied Physics, Tunghai University, Taichung, Taiwan.,Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan.,Institute of Physics, Academia Sinica, Taipei, Taiwan.,Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.,Kavli Institute for Brain and Mind, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
10
|
Kuan AT, Phelps JS, Thomas LA, Nguyen TM, Han J, Chen CL, Azevedo AW, Tuthill JC, Funke J, Cloetens P, Pacureanu A, Lee WCA. Dense neuronal reconstruction through X-ray holographic nano-tomography. Nat Neurosci 2020; 23:1637-1643. [PMID: 32929244 PMCID: PMC8354006 DOI: 10.1038/s41593-020-0704-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/05/2020] [Indexed: 12/21/2022]
Abstract
Imaging neuronal networks provides a foundation for understanding the nervous system, but resolving dense nanometer-scale structures over large volumes remains challenging for light microscopy (LM) and electron microscopy (EM). Here we show that X-ray holographic nano-tomography (XNH) can image millimeter-scale volumes with sub-100-nm resolution, enabling reconstruction of dense wiring in Drosophila melanogaster and mouse nervous tissue. We performed correlative XNH and EM to reconstruct hundreds of cortical pyramidal cells and show that more superficial cells receive stronger synaptic inhibition on their apical dendrites. By combining multiple XNH scans, we imaged an adult Drosophila leg with sufficient resolution to comprehensively catalog mechanosensory neurons and trace individual motor axons from muscles to the central nervous system. To accelerate neuronal reconstructions, we trained a convolutional neural network to automatically segment neurons from XNH volumes. Thus, XNH bridges a key gap between LM and EM, providing a new avenue for neural circuit discovery.
Collapse
Affiliation(s)
- Aaron T Kuan
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Jasper S Phelps
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Program in Neuroscience, Harvard University, Boston, MA, USA
| | - Logan A Thomas
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Tri M Nguyen
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Julie Han
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Chiao-Lin Chen
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Anthony W Azevedo
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - John C Tuthill
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Jan Funke
- HHMI Janelia Research Campus, Ashburn, VA, USA
| | | | - Alexandra Pacureanu
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
- ESRF, The European Synchrotron, Grenoble, France.
| | - Wei-Chung Allen Lee
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Bayguinov PO, Fisher MR, Fitzpatrick JAJ. Assaying three-dimensional cellular architecture using X-ray tomographic and correlated imaging approaches. J Biol Chem 2020; 295:15782-15793. [PMID: 32938716 PMCID: PMC7667966 DOI: 10.1074/jbc.rev120.009633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/15/2020] [Indexed: 12/16/2022] Open
Abstract
Much of our understanding of the spatial organization of and interactions between cellular organelles and macromolecular complexes has been the result of imaging studies utilizing either light- or electron-based microscopic analyses. These classical approaches, while insightful, are nonetheless limited either by restrictions in resolution or by the sheer complexity of generating multidimensional data. Recent advances in the use and application of X-rays to acquire micro- and nanotomographic data sets offer an alternative methodology to visualize cellular architecture at the nanoscale. These new approaches allow for the subcellular analyses of unstained vitrified cells and three-dimensional localization of specific protein targets and have served as an essential tool in bridging light and electron correlative microscopy experiments. Here, we review the theory, instrumentation details, acquisition principles, and applications of both soft X-ray tomography and X-ray microscopy and how the use of these techniques offers a succinct means of analyzing three-dimensional cellular architecture. We discuss some of the recent work that has taken advantage of these approaches and detail how they have become integral in correlative microscopy workflows.
Collapse
Affiliation(s)
- Peter O Bayguinov
- Washington University Center for Cellular Imaging, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Max R Fisher
- Washington University Center for Cellular Imaging, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - James A J Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University School of Medicine, Saint Louis, Missouri, USA; Departments of Cell Biology and Physiology and Neuroscience, Washington University School of Medicine, Saint Louis, Missouri, USA; Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, Missouri, USA.
| |
Collapse
|
12
|
Abstract
Insects thrive in diverse ecological niches in large part because of their highly sophisticated olfactory systems. Over the last two decades, a major focus in the study of insect olfaction has been on the role of olfactory receptors in mediating neuronal responses to environmental chemicals. In vivo, these receptors operate in specialized structures, called sensilla, which comprise neurons and non-neuronal support cells, extracellular lymph fluid and a precisely shaped cuticle. While sensilla are inherent to odour sensing in insects, we are only just beginning to understand their construction and function. Here, we review recent work that illuminates how odour-evoked neuronal activity is impacted by sensillar morphology, lymph fluid biochemistry, accessory signalling molecules in neurons and the physiological crosstalk between sensillar cells. These advances reveal multi-layered molecular and cellular mechanisms that determine the selectivity, sensitivity and dynamic modulation of odour-evoked responses in insects.
Collapse
Affiliation(s)
- Hayden R Schmidt
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| |
Collapse
|
13
|
Schoborg TA, Smith SL, Smith LN, Morris HD, Rusan NM. Micro-computed tomography as a platform for exploring Drosophila development. Development 2019; 146:dev.176685. [PMID: 31722883 DOI: 10.1242/dev.176685] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022]
Abstract
Understanding how events at the molecular and cellular scales contribute to tissue form and function is key to uncovering the mechanisms driving animal development, physiology and disease. Elucidating these mechanisms has been enhanced through the study of model organisms and the use of sophisticated genetic, biochemical and imaging tools. Here, we present an accessible method for non-invasive imaging of Drosophila melanogaster at high resolution using micro-computed tomography (µ-CT). We show how rapid processing of intact animals, at any developmental stage, provides precise quantitative assessment of tissue size and morphology, and permits analysis of inter-organ relationships. We then use µ-CT imaging to study growth defects in the Drosophila brain through the characterization of a bnormal spindle (asp) and WD repeat domain 62 (W dr62), orthologs of the two most commonly mutated genes in human microcephaly patients. Our work demonstrates the power of combining µ-CT with traditional genetic, cellular and developmental biology tools available in model organisms to address novel biological mechanisms that control animal development and disease.
Collapse
Affiliation(s)
- Todd A Schoborg
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Samantha L Smith
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lauren N Smith
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - H Douglas Morris
- Mouse Imaging Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nasser M Rusan
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
14
|
Golovin RM, Vest J, Vita DJ, Broadie K. Activity-Dependent Remodeling of Drosophila Olfactory Sensory Neuron Brain Innervation during an Early-Life Critical Period. J Neurosci 2019; 39:2995-3012. [PMID: 30755492 PMCID: PMC6468095 DOI: 10.1523/jneurosci.2223-18.2019] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/07/2019] [Accepted: 02/03/2019] [Indexed: 12/12/2022] Open
Abstract
Critical periods are windows of development when the environment has a pronounced effect on brain circuitry. Models of neurodevelopmental disorders, including autism spectrum disorders, intellectual disabilities, and schizophrenia, are linked to disruption of critical period remodeling. Critical periods open with the onset of sensory experience; however, it remains unclear exactly how sensory input modifies brain circuits. Here, we examine olfactory sensory neuron (OSN) innervation of the Drosophila antennal lobe of both sexes as a genetic model of this question. We find that olfactory sensory experience during an early-use critical period drives loss of OSN innervation of antennal lobe glomeruli and subsequent axon retraction in a dose-dependent mechanism. This remodeling does not result from olfactory receptor loss or OSN degeneration, but rather from rapid synapse elimination and axon pruning in the target olfactory glomerulus. Removal of the odorant stimulus only during the critical period leads to OSN reinnervation, demonstrating that remodeling is transiently reversible. We find that this synaptic refinement requires the OSN-specific olfactory receptor and downstream activity. Conversely, blocking OSN synaptic output elevates glomeruli remodeling. We find that GABAergic neurotransmission has no detectable role, but that glutamatergic signaling via NMDA receptors is required for OSN synaptic refinement. Together, these results demonstrate that OSN inputs into the brain manifest robust, experience-dependent remodeling during an early-life critical period, which requires olfactory reception, OSN activity, and NMDA receptor signaling. This work reveals a pathway linking initial olfactory sensory experience to glutamatergic neurotransmission in the activity-dependent remodeling of brain neural circuitry in an early-use critical period.SIGNIFICANCE STATEMENT Neurodevelopmental disorders manifest symptoms at specific developmental milestones that suggest an intersection between early sensory experience and brain neural circuit remodeling. One classic example is Fragile X syndrome caused by loss of an RNA-binding translation regulator of activity-dependent synaptic refinement. As a model, Drosophila olfactory circuitry is well characterized, genetically tractable, and rapidly developing, and thus ideally suited to probe underlying mechanisms. Here, we find olfactory sensory neurons are dramatically remodeled by heightened sensory experience during an early-life critical period. We demonstrate removing the olfactory stimulus during the critical period can reverse the connectivity changes. We find that this remodeling requires neural activity and NMDA receptor-mediated glutamatergic transmission. This improved understanding may help us design treatments for neurodevelopmental disorders.
Collapse
Affiliation(s)
| | | | | | - Kendal Broadie
- Vanderbilt Brain Institute,
- Department of Biological Sciences, and
- Department of Cell and Developmental Biology, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
| |
Collapse
|
15
|
A potassium channel β-subunit couples mitochondrial electron transport to sleep. Nature 2019; 568:230-234. [PMID: 30894743 DOI: 10.1038/s41586-019-1034-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 02/19/2019] [Indexed: 12/31/2022]
Abstract
The essential but enigmatic functions of sleep1,2 must be reflected in molecular changes sensed by the brain's sleep-control systems. In the fruitfly Drosophila, about two dozen sleep-inducing neurons3 with projections to the dorsal fan-shaped body (dFB) adjust their electrical output to sleep need4, via the antagonistic regulation of two potassium conductances: the leak channel Sandman imposes silence during waking, whereas increased A-type currents through Shaker support tonic firing during sleep5. Here we show that oxidative byproducts of mitochondrial electron transport6,7 regulate the activity of dFB neurons through a nicotinamide adenine dinucleotide phosphate (NADPH) cofactor bound to the oxidoreductase domain8,9 of Shaker's KVβ subunit, Hyperkinetic10,11. Sleep loss elevates mitochondrial reactive oxygen species in dFB neurons, which register this rise by converting Hyperkinetic to the NADP+-bound form. The oxidation of the cofactor slows the inactivation of the A-type current and boosts the frequency of action potentials, thereby promoting sleep. Energy metabolism, oxidative stress, and sleep-three processes implicated independently in lifespan, ageing, and degenerative disease6,12-14-are thus mechanistically connected. KVβ substrates8,15,16 or inhibitors that alter the ratio of bound NADPH to NADP+ (and hence the record of sleep debt or waking time) represent prototypes of potential sleep-regulatory drugs.
Collapse
|
16
|
Zhang Q, Lee WCA, Paul DL, Ginty DD. Multiplexed peroxidase-based electron microscopy labeling enables simultaneous visualization of multiple cell types. Nat Neurosci 2019; 22:828-839. [PMID: 30886406 PMCID: PMC6555422 DOI: 10.1038/s41593-019-0358-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/07/2019] [Indexed: 01/06/2023]
Abstract
Electron microscopy (EM) is a powerful tool for circuit mapping, but identifying specific cell types in EM datasets remains a major challenge. Here we describe a technique enabling simultaneous visualization of multiple, genetically identified neuronal populations so that synaptic interactions between them can be unequivocally defined. We present 15 AAV constructs and six mouse reporter lines for multiplexed EM labeling in the mammalian nervous system. These reporters feature dAPEX2, which exhibits dramatically improved signal compared to previously described ascorbate peroxidases. By targeting this enhanced peroxidase to different subcellular compartments, multiple orthogonal reporters can be simultaneously visualized and distinguished under EM using a protocol compatible with existing EM pipelines. Proof-of-principle double and triple EM labeling experiments demonstrated synaptic connections between primary afferents, descending cortical inputs, and inhibitory interneurons in the spinal cord dorsal horn. Our multiplexed peroxidase-based EM labeling system should therefore greatly facilitate analysis of connectivity in the nervous system.
Collapse
Affiliation(s)
- Qiyu Zhang
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Wei-Chung A Lee
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - David L Paul
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| | - David D Ginty
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA. .,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Pende M, Becker K, Wanis M, Saghafi S, Kaur R, Hahn C, Pende N, Foroughipour M, Hummel T, Dodt HU. High-resolution ultramicroscopy of the developing and adult nervous system in optically cleared Drosophila melanogaster. Nat Commun 2018; 9:4731. [PMID: 30413688 PMCID: PMC6226481 DOI: 10.1038/s41467-018-07192-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 10/13/2018] [Indexed: 11/21/2022] Open
Abstract
The fruit fly, Drosophila melanogaster, is an important experimental model to address central questions in neuroscience at an organismic level. However, imaging of neural circuits in intact fruit flies is limited due to structural properties of the cuticle. Here we present a novel approach combining tissue clearing, ultramicroscopy, and data analysis that enables the visualisation of neuronal networks with single-cell resolution from the larval stage up to the adult Drosophila. FlyClear, the signal preserving clearing technique we developed, stabilises tissue integrity and fluorescence signal intensity for over a month and efficiently removes the overall pigmentation. An aspheric ultramicroscope set-up utilising an improved light-sheet generator allows us to visualise long-range connections of peripheral sensory and central neurons in the visual and olfactory system. High-resolution 3D reconstructions with isotropic resolution from entire GFP-expressing flies are obtained by applying image fusion from orthogonal directions. This methodological integration of novel chemical, optical, and computational techniques allows a major advance in the analysis of global neural circuit organisation.
Collapse
Affiliation(s)
- Marko Pende
- Department for Bioelectronics, FKE, Vienna University of Technology, Gußhausstraße 25-25A, Building CH, 1040, Vienna, Austria.
- Section of Bioelectronics, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria.
| | - Klaus Becker
- Department for Bioelectronics, FKE, Vienna University of Technology, Gußhausstraße 25-25A, Building CH, 1040, Vienna, Austria
- Section of Bioelectronics, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Martina Wanis
- Department for Bioelectronics, FKE, Vienna University of Technology, Gußhausstraße 25-25A, Building CH, 1040, Vienna, Austria
- Department of Neurobiology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Saiedeh Saghafi
- Department for Bioelectronics, FKE, Vienna University of Technology, Gußhausstraße 25-25A, Building CH, 1040, Vienna, Austria
| | - Rashmit Kaur
- Department of Neurobiology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Christian Hahn
- Department for Bioelectronics, FKE, Vienna University of Technology, Gußhausstraße 25-25A, Building CH, 1040, Vienna, Austria
- Section of Bioelectronics, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Nika Pende
- Department of Ecogenomics and Systems Biology, Archaeal Biology and Ecogenomics Division, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Massih Foroughipour
- Section of Bioelectronics, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Thomas Hummel
- Department of Neurobiology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Hans-Ulrich Dodt
- Department for Bioelectronics, FKE, Vienna University of Technology, Gußhausstraße 25-25A, Building CH, 1040, Vienna, Austria.
- Section of Bioelectronics, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria.
| |
Collapse
|
18
|
Cruz-Lopez D, Ramos D, Castilloveitia G, Schikorski T. Quintuple labeling in the electron microscope with genetically encoded enhanced horseradish peroxidase. PLoS One 2018; 13:e0200693. [PMID: 30011315 PMCID: PMC6047818 DOI: 10.1371/journal.pone.0200693] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/02/2018] [Indexed: 11/25/2022] Open
Abstract
Genetic encoded multilabeling is essential for modern cell biology. In fluorescence microscopy this need has been satisfied by the development of numerous color-variants of the green fluorescent protein. In electron microscopy, however, true genetic encoded multilabeling is currently not possible. Here, we introduce combinatorial cell organelle type-specific labeling as a strategy for multilabeling. First, we created a reliable and high sensitive label by evolving the catalytic activity of horseradish peroxidase (HRP). We then built fusion proteins that targeted our new enhanced HRP (eHRP) to three cell organelles whose labeling pattern did not overlap with each other. The labeling of the endoplasmic reticulum, synaptic vesicles and the plasma membrane consequently allowed for triple labeling in the EM. The combinatorial expression of the three organelle-specific constructs increased the number of clearly distinguishable labels to seven. This strategy of multilabeling for EM closes a significant gap in our tool set and has a broad application range in cell biology.
Collapse
Affiliation(s)
- Didiana Cruz-Lopez
- Department of Neuroscience, Universidad Central del Caribe, Bayamon, Puerto Rico, United States of America
| | - Dianne Ramos
- Department of Neuroscience, Universidad Central del Caribe, Bayamon, Puerto Rico, United States of America
| | - Gloria Castilloveitia
- Department of Neuroscience, Universidad Central del Caribe, Bayamon, Puerto Rico, United States of America
| | - Thomas Schikorski
- Department of Neuroscience, Universidad Central del Caribe, Bayamon, Puerto Rico, United States of America
| |
Collapse
|
19
|
Katchalski T, Case T, Kim KY, Ramachandra R, Bushong EA, Deerinck TJ, Haberl MG, Mackey MR, Peltier S, Castillon GA, Fujikawa N, Lawrence AR, Ellisman MH. Iron-specific Signal Separation from within Heavy Metal Stained Biological Samples Using X-Ray Microtomography with Polychromatic Source and Energy-Integrating Detectors. Sci Rep 2018; 8:7553. [PMID: 29765060 PMCID: PMC5953933 DOI: 10.1038/s41598-018-25099-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 04/12/2018] [Indexed: 11/09/2022] Open
Abstract
Biological samples are frequently stained with heavy metals in preparation for examining the macro, micro and ultra-structure using X-ray microtomography and electron microscopy. A single X-ray microtomography scan reveals detailed 3D structure based on staining density, yet it lacks both material composition and functional information. Using a commercially available polychromatic X-ray source, energy integrating detectors and a two-scan configuration labelled by their energy- "High" and "Low", we demonstrate how a specific element, here shown with iron, can be detected from a mixture with other heavy metals. With proper selection of scan configuration, achieving strong overlap of source characteristic emission lines and iron K-edge absorption, iron absorption was enhanced enabling K-edge imaging. Specifically, iron images were obtained by scatter plot material analysis, after selecting specific regions within scatter plots generated from the "High" and "Low" scans. Using this method, we identified iron rich regions associated with an iron staining reaction that marks the nodes of Ranvier along nerve axons within mouse spinal roots, also stained with osmium metal commonly used for electron microscopy.
Collapse
Affiliation(s)
- Tsvi Katchalski
- National Center for Microscopy and Imaging Research (NCMIR), University of California San Diego, 9500 Gilman Dr. MC 0608, La Jolla, CA, 92093-0608, USA.
| | - Tom Case
- Carl Zeiss X-Ray Microscopy, 4385 Hopyard Road, Suite 100, Pleasanton, CA, 94588, USA
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research (NCMIR), University of California San Diego, 9500 Gilman Dr. MC 0608, La Jolla, CA, 92093-0608, USA
| | - Ranjan Ramachandra
- National Center for Microscopy and Imaging Research (NCMIR), University of California San Diego, 9500 Gilman Dr. MC 0608, La Jolla, CA, 92093-0608, USA
| | - Eric A Bushong
- National Center for Microscopy and Imaging Research (NCMIR), University of California San Diego, 9500 Gilman Dr. MC 0608, La Jolla, CA, 92093-0608, USA
| | - Thomas J Deerinck
- National Center for Microscopy and Imaging Research (NCMIR), University of California San Diego, 9500 Gilman Dr. MC 0608, La Jolla, CA, 92093-0608, USA
| | - Matthias G Haberl
- National Center for Microscopy and Imaging Research (NCMIR), University of California San Diego, 9500 Gilman Dr. MC 0608, La Jolla, CA, 92093-0608, USA
| | - Mason R Mackey
- National Center for Microscopy and Imaging Research (NCMIR), University of California San Diego, 9500 Gilman Dr. MC 0608, La Jolla, CA, 92093-0608, USA
| | - Steven Peltier
- National Center for Microscopy and Imaging Research (NCMIR), University of California San Diego, 9500 Gilman Dr. MC 0608, La Jolla, CA, 92093-0608, USA
| | - Guillaume A Castillon
- National Center for Microscopy and Imaging Research (NCMIR), University of California San Diego, 9500 Gilman Dr. MC 0608, La Jolla, CA, 92093-0608, USA
| | - Nobuko Fujikawa
- Carl Zeiss X-Ray Microscopy, 4385 Hopyard Road, Suite 100, Pleasanton, CA, 94588, USA
| | - Albert R Lawrence
- National Center for Microscopy and Imaging Research (NCMIR), University of California San Diego, 9500 Gilman Dr. MC 0608, La Jolla, CA, 92093-0608, USA
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research (NCMIR), University of California San Diego, 9500 Gilman Dr. MC 0608, La Jolla, CA, 92093-0608, USA. .,Departments of Neurosciences and Bioengineering, University of California San Diego, 9500 Gilman Dr. MC 0608, La Jolla, CA, 92093-0608, USA.
| |
Collapse
|
20
|
Tsang TK, Bushong EA, Boassa D, Hu J, Romoli B, Phan S, Dulcis D, Su CY, Ellisman MH. High-quality ultrastructural preservation using cryofixation for 3D electron microscopy of genetically labeled tissues. eLife 2018; 7:35524. [PMID: 29749931 PMCID: PMC5988420 DOI: 10.7554/elife.35524] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/09/2018] [Indexed: 02/06/2023] Open
Abstract
Electron microscopy (EM) offers unparalleled power to study cell substructures at the nanoscale. Cryofixation by high-pressure freezing offers optimal morphological preservation, as it captures cellular structures instantaneously in their near-native state. However, the applicability of cryofixation is limited by its incompatibility with diaminobenzidine labeling using genetic EM tags and the high-contrast en bloc staining required for serial block-face scanning electron microscopy (SBEM). In addition, it is challenging to perform correlated light and electron microscopy (CLEM) with cryofixed samples. Consequently, these powerful methods cannot be applied to address questions requiring optimal morphological preservation. Here, we developed an approach that overcomes these limitations; it enables genetically labeled, cryofixed samples to be characterized with SBEM and 3D CLEM. Our approach is broadly applicable, as demonstrated in cultured cells, Drosophila olfactory organ and mouse brain. This optimization exploits the potential of cryofixation, allowing for quality ultrastructural preservation for diverse EM applications.
Collapse
Affiliation(s)
- Tin Ki Tsang
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Eric A Bushong
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California, San Diego, La Jolla, United States
| | - Daniela Boassa
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California, San Diego, La Jolla, United States
| | - Junru Hu
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California, San Diego, La Jolla, United States
| | - Benedetto Romoli
- Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, United States
| | - Sebastien Phan
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California, San Diego, La Jolla, United States
| | - Davide Dulcis
- Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, United States
| | - Chih-Ying Su
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California, San Diego, La Jolla, United States.,Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, United States
| |
Collapse
|
21
|
Schlegel P, Costa M, Jefferis GS. Learning from connectomics on the fly. CURRENT OPINION IN INSECT SCIENCE 2017; 24:96-105. [PMID: 29208230 DOI: 10.1016/j.cois.2017.09.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
Parallels between invertebrates and vertebrates in nervous system development, organisation and circuits are powerful reasons to use insects to study the mechanistic basis of behaviour. The last few years have seen the generation in Drosophila melanogaster of very large light microscopy data sets, genetic driver lines and tools to report or manipulate neural activity. These resources in conjunction with computational tools are enabling large scale characterisation of neuronal types and their functional properties. These are complemented by 3D electron microscopy, providing synaptic resolution data. A whole brain connectome of the fly larva is approaching completion based on manual reconstruction of electron-microscopy data. An adult whole brain dataset is already publicly available and focussed reconstruction is under way, but its 40× greater volume would require ∼500-5000 person-years of manual labour. Nevertheless rapid technical improvements in imaging and especially automated segmentation will likely deliver a complete adult connectome in the next 5 years. To enhance our understanding of the circuit basis of behaviour, light and electron microscopy outputs must be integrated with functional and physiological information into comprehensive databases. We review presently available data, tools and opportunities in Drosophila. We then consider the limits and potential of future progress and how this may impact neuroscience in rich model systems provided by larger insects and vertebrates.
Collapse
Affiliation(s)
- Philipp Schlegel
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Marta Costa
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| | - Gregory Sxe Jefferis
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK; Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| |
Collapse
|
22
|
Dyer EL, Gray Roncal W, Prasad JA, Fernandes HL, Gürsoy D, De Andrade V, Fezzaa K, Xiao X, Vogelstein JT, Jacobsen C, Körding KP, Kasthuri N. Quantifying Mesoscale Neuroanatomy Using X-Ray Microtomography. eNeuro 2017; 4:ENEURO.0195-17.2017. [PMID: 29085899 PMCID: PMC5659258 DOI: 10.1523/eneuro.0195-17.2017] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/02/2017] [Accepted: 08/23/2017] [Indexed: 11/21/2022] Open
Abstract
Methods for resolving the three-dimensional (3D) microstructure of the brain typically start by thinly slicing and staining the brain, followed by imaging numerous individual sections with visible light photons or electrons. In contrast, X-rays can be used to image thick samples, providing a rapid approach for producing large 3D brain maps without sectioning. Here we demonstrate the use of synchrotron X-ray microtomography (µCT) for producing mesoscale (∼1 µm 3 resolution) brain maps from millimeter-scale volumes of mouse brain. We introduce a pipeline for µCT-based brain mapping that develops and integrates methods for sample preparation, imaging, and automated segmentation of cells, blood vessels, and myelinated axons, in addition to statistical analyses of these brain structures. Our results demonstrate that X-ray tomography achieves rapid quantification of large brain volumes, complementing other brain mapping and connectomics efforts.
Collapse
Affiliation(s)
- Eva L. Dyer
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332
| | - William Gray Roncal
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, 20723
- Dept. of Computer Science, The Johns Hopkins University, Baltimore, MD, 21218
| | - Judy A. Prasad
- Dept. of Neurobiology, University of Chicago, Chicago, IL, 60637
| | - Hugo L. Fernandes
- Dept. of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, 60611
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL, 60611
| | - Doga Gürsoy
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439
| | | | - Kamel Fezzaa
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439
| | - Xianghui Xiao
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439
| | - Joshua T. Vogelstein
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, 21205
- Institute of Computational Medicine, The Johns Hopkins University, Baltimore, MD, 21218
| | - Chris Jacobsen
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439
- Department of Physics and Astronomy, Northwestern University, Chicago, IL, 60208
| | - Konrad P. Körding
- Department of Biomedical Engineering, University of Pennsylvania, Philadelphia, PA, 19104
| | - Narayanan Kasthuri
- Dept. of Neurobiology, University of Chicago, Chicago, IL, 60637
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, 60439
| |
Collapse
|
23
|
Shigemoto R, Joesch M. The genetic encoded toolbox for electron microscopy and connectomics. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 6. [DOI: 10.1002/wdev.288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/02/2017] [Accepted: 07/05/2017] [Indexed: 11/08/2022]
|