1
|
Mone K, Garcia EJT, Abdullatif F, Rasquinha MT, Sur M, Hanafy M, Zinniel DK, Singh S, Thomas R, Barletta RG, Gebregiworgis T, Reddy J. Metabolic Reprogramming in Response to Freund's Adjuvants: Insights from Serum Metabolomics. Microorganisms 2025; 13:492. [PMID: 40142385 PMCID: PMC11944801 DOI: 10.3390/microorganisms13030492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
Freund's adjuvants have been used in vaccine and autoimmune settings, and their effects can be overlapping or unique to each. While both incomplete Freund's adjuvants (IFA) and complete Freund's adjuvants (CFA) influence antibody and T cell responses, the robust T helper 1 cytokines induced by the mycobacterial components make CFA the powerful immunostimulating adjuvant. In these studies, the adjuvant effects are investigated in a select population of cells, and the changes, if any, with the metabolic alterations in the systemic compartment are unclear. We investigated whether the effects of IFA and CFA can be influenced by the metabolic shifts in mice immunized with saline, IFA, or CFA using Mycobacterium tuberculosis var. bovis Bacillus Calmette-Guérin (BCG) as a positive control. After seven days of immunization, we analyzed the serum metabolite profiles using liquid chromatography coupled with high-resolution mass spectrometry and multivariate statistical analysis to identify metabolic features between the groups. The data revealed that, in the scores space, the CFA and BCG groups were more closely aligned compared to the saline group, while the IFA group displayed an intermediate profile. Furthermore, comparisons between the CFA and BCG groups showed more significant perturbations in lipid and amino acid metabolism, particularly involving glycerophospholipids, cysteine, and aromatic amino acids. In contrast, comparisons between the BCG and IFA groups indicated a more pronounced disruption in central energy metabolism pathways, such as the citric acid cycle and pyruvate metabolism. Together, the data suggest that the serum metabolite profiles in response to IFA and CFA might play a role in modulating the immune responses.
Collapse
Affiliation(s)
- Kiruthiga Mone
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (K.M.); (M.T.R.); (M.S.); (M.H.); (D.K.Z.); (S.S.); (R.G.B.)
| | - Eloy Jose Torres Garcia
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (E.J.T.G.); (F.A.)
| | - Fatema Abdullatif
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (E.J.T.G.); (F.A.)
| | - Mahima T. Rasquinha
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (K.M.); (M.T.R.); (M.S.); (M.H.); (D.K.Z.); (S.S.); (R.G.B.)
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Meghna Sur
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (K.M.); (M.T.R.); (M.S.); (M.H.); (D.K.Z.); (S.S.); (R.G.B.)
| | - Mostafa Hanafy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (K.M.); (M.T.R.); (M.S.); (M.H.); (D.K.Z.); (S.S.); (R.G.B.)
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Denise K. Zinniel
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (K.M.); (M.T.R.); (M.S.); (M.H.); (D.K.Z.); (S.S.); (R.G.B.)
| | - Shraddha Singh
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (K.M.); (M.T.R.); (M.S.); (M.H.); (D.K.Z.); (S.S.); (R.G.B.)
| | - Raymond Thomas
- Biotron Experimental Climate Change Research Centre, Department of Biology, Faculty of Science, University of Western Ontario, London, ON N6A 5B7, Canada;
| | - Raul G. Barletta
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (K.M.); (M.T.R.); (M.S.); (M.H.); (D.K.Z.); (S.S.); (R.G.B.)
| | - Teklab Gebregiworgis
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (E.J.T.G.); (F.A.)
- Department of Oncology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5W9, Canada
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (K.M.); (M.T.R.); (M.S.); (M.H.); (D.K.Z.); (S.S.); (R.G.B.)
| |
Collapse
|
2
|
Pellegrina D, Wilson HL, Mutwiri GK, Helmy M. Transcriptional Systems Vaccinology Approaches for Vaccine Adjuvant Profiling. Vaccines (Basel) 2025; 13:33. [PMID: 39852812 PMCID: PMC11768747 DOI: 10.3390/vaccines13010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/23/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025] Open
Abstract
Adjuvants are a diverse group of substances that can be added to vaccines to enhance antigen-specific immune responses and improve vaccine efficacy. The first adjuvants, discovered almost a century ago, were soluble crystals of aluminium salts. Over the following decades, oil emulsions, vesicles, oligodeoxynucleotides, viral capsids, and other complex organic structures have been shown to have adjuvant potential. However, the detailed mechanisms of how adjuvants enhance immune responses remain poorly understood and may be a barrier that reduces the rational selection of vaccine components. Previous studies on mechanisms of action of adjuvants have focused on how they activate innate immune responses, including the regulation of cell recruitment and activation, cytokine/chemokine production, and the regulation of some "immune" genes. This approach provides a narrow perspective on the complex events involved in how adjuvants modulate antigen-specific immune responses. A comprehensive and efficient way to investigate the molecular mechanism of action for adjuvants is to utilize systems biology approaches such as transcriptomics in so-called "systems vaccinology" analysis. While other molecular biology methods can verify if one or few genes are differentially regulated in response to vaccination, systems vaccinology provides a more comprehensive picture by simultaneously identifying the hundreds or thousands of genes that interact with complex networks in response to a vaccine. Transcriptomics tools such as RNA sequencing (RNA-Seq) allow us to simultaneously quantify the expression of practically all expressed genes, making it possible to make inferences that are only possible when considering the system as a whole. Here, we review some of the challenges in adjuvant studies, such as predicting adjuvant activity and toxicity when administered alone or in combination with antigens, or classifying adjuvants in groups with similar properties, while underscoring the significance of transcriptomics in systems vaccinology approaches to propel vaccine development forward.
Collapse
Affiliation(s)
- Diogo Pellegrina
- Vaccine and Infectious Diseases Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada; (D.P.); (H.L.W.); (G.K.M.)
| | - Heather L. Wilson
- Vaccine and Infectious Diseases Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada; (D.P.); (H.L.W.); (G.K.M.)
- Vaccinology and Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
| | - George K. Mutwiri
- Vaccine and Infectious Diseases Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada; (D.P.); (H.L.W.); (G.K.M.)
- Vaccinology and Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
| | - Mohamed Helmy
- Vaccine and Infectious Diseases Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada; (D.P.); (H.L.W.); (G.K.M.)
- Vaccinology and Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
- Department of Computer Science, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
- Department of Computer Science, Idaho State University, Pocatello, ID 83209, USA
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138632, Singapore
| |
Collapse
|
3
|
Fiore-Gartland A, Srivastava H, Seese A, Day T, Penn-Nicholson A, Luabeya AKK, Du Plessis N, Loxton AG, Bekker LG, Diacon A, Walzl G, Sagawa ZK, Reed SG, Scriba TJ, Hatherill M, Coler R. Co-regulation of innate and adaptive immune responses induced by ID93+GLA-SE vaccination in humans. Front Immunol 2024; 15:1441944. [PMID: 39381003 PMCID: PMC11458388 DOI: 10.3389/fimmu.2024.1441944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/02/2024] [Indexed: 10/10/2024] Open
Abstract
Introduction Development of an effective vaccine against tuberculosis is a critical step towards reducing the global burden of disease. A therapeutic vaccine might also reduce the high rate of TB recurrence and help address the challenges of drug-resistant strains. ID93+GLA-SE is a candidate subunit vaccine that will soon be evaluated in a phase 2b efficacy trial for prevention of recurrent TB among patients undergoing TB treatment. ID93+GLA-SE vaccination was shown to elicit robust CD4+ T cell and IgG antibody responses among recently treated TB patients in the TBVPX-203 Phase 2a study (NCT02465216), but the mechanisms underlying these responses are not well understood. Methods In this study we used specimens from TBVPX-203 participants to describe the changes in peripheral blood gene expression that occur after ID93+GLA-SE vaccination. Results Analyses revealed several distinct modules of co-varying genes that were either up- or down-regulated after vaccination, including genes associated with innate immune pathways at 3 days post-vaccination and genes associated with lymphocyte expansion and B cell activation at 7 days post-vaccination. Notably, the regulation of these gene modules was affected by the dose schedule and by participant sex, and early innate gene signatures were correlated with the ID93-specific CD4+ T cell response. Discussion The results provide insight into the complex interplay of the innate and adaptive arms of the immune system in developing responses to vaccination with ID93+GLA-SE and demonstrate how dosing and schedule can affect vaccine responses.
Collapse
Affiliation(s)
- Andrew Fiore-Gartland
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Himangi Srivastava
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Aaron Seese
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Tracey Day
- Infectious Diseases and Vaccines, Innovative Medicine, Johnson & Johnson, Leiden, Netherlands
| | | | - Angelique Kany Kany Luabeya
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease & Molecular Medicine and Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Nelita Du Plessis
- Department of Science and Technology/National Research Foundation (DST-NRF) Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Biomedical Research Institute, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Andre G. Loxton
- Department of Science and Technology/National Research Foundation (DST-NRF) Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Biomedical Research Institute, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Linda-Gail Bekker
- The Desmond Tutu Human Immunodeficiency Virus (HIV) Centre, University of Cape Town, Cape Town, South Africa
| | | | - Gerhard Walzl
- Department of Science and Technology/National Research Foundation (DST-NRF) Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Biomedical Research Institute, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | | | | | - Thomas J. Scriba
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease & Molecular Medicine and Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease & Molecular Medicine and Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Rhea Coler
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle Children’s, Seattle, WA, United States
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
| |
Collapse
|
4
|
Ardali R, Garcia-Nicolas O, Ollagnier C, Sánchez Carvajal JM, Levy M, Yvernault P, de Aboim Borges Fialho de Brito F, Summerfield A. Impact of Oil-in-Water Adjuvanted β-Glucan on Innate Immune Memory in Piglets. Vaccines (Basel) 2024; 12:982. [PMID: 39340014 PMCID: PMC11436110 DOI: 10.3390/vaccines12090982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/30/2024] Open
Abstract
The non-specific protective effects offered by the concept of "innate immune memory" might represent a promising strategy to tackle early-life threatening infections. Here we tested the potential of an in vitro selected β-glucan in inducing trained immunity using an in vivo porcine model. We assessed the leukocyte transcriptome using blood transcriptomic module (BTM), proinflammatory cytokines, and clinical scoring after a first "training" and a second "stimulation" phase. The possible induction of innate immune memory was tested during a "stimulation" by an LPS-adjuvanted Mycoplasma hyopneumoniae vaccine (Hyogen®) one day after weaning. Following the "training", no major group differences were found, with the exception of a plasma TNF that was only induced by Adj and Adj_BG treatment. After vaccination, all groups developed similar antibody responses. A significant induction of plasma TNF and IL-1β was found in groups that received Adj and Adj_BG. However, following vaccination, the expected early innate BTMs were only induced by the PBS group. In conclusion, the adjuvant alone, adjuvant-formulated β-glucan, or orally applied β-glucan were unable to enhance innate immune reactivity but rather appeared to promote innate immune tolerance. Such an immune status could have both positive and negative implications during this phase of the piglet's life.
Collapse
Affiliation(s)
- Razieh Ardali
- Institute of Virology and Immunology, 3147 Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Obdulio Garcia-Nicolas
- Institute of Virology and Immunology, 3147 Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | | | - José María Sánchez Carvajal
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, 14014 Córdoba, Spain
| | - Maria Levy
- Swine Research Unit, Agroscope, 1725 Posieux, Switzerland
| | | | - Francisco de Aboim Borges Fialho de Brito
- Institute of Virology and Immunology, 3147 Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Artur Summerfield
- Institute of Virology and Immunology, 3147 Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
5
|
Tomás-Cortázar J, Quinn C, Corcoran N, Blanco A, Christensen D, McClean S. BpOmpW antigen administered with CAF01 adjuvant stimulates comparable T cell responses to Sigma adjuvant system. Vaccine X 2024; 17:100438. [PMID: 38303776 PMCID: PMC10831100 DOI: 10.1016/j.jvacx.2024.100438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
There are no licensed vaccines to protect vulnerable populations from the potentially fatal tropical infection, melioidosis, despite its causative agent, Burkholderia pseudomallei, being endemic in tropical and subtropical regions. A promising vaccine candidate, BpOmpW protected mice from melioidosis infection for up to 81 days and stimulated robust interferon gamma responses in CD4+, CD8+, NK and NKT cells. In order to progress to human studies, selection of an adjuvant with an acceptable human safety profile that stimulates appropriate correlates of protection is essential. Here we demonstrate that the CAF01 vaccine adjuvant elicits optimal immune correlates of protection when administered with our BpOmpW vaccine. Specifically, we demonstrate that CAF01 administered with BpOmpW elicits robust Th1 responses, with potent IFN-γ responses in CD4+ and CD8+ T cells and NKT cells, in addition to Th17 and Th2 responses. This formulation will be particularly effective in protecting susceptible populations including people with type 2 diabetes from melioidosis.
Collapse
Affiliation(s)
- Julen Tomás-Cortázar
- UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Conor Quinn
- UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Niamh Corcoran
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Alfonso Blanco
- UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dennis Christensen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen S, Denmark
| | - Siobhán McClean
- UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
6
|
Alonso-Rodríguez N, Vianello E, van Veen S, Jenum S, Tonby K, van Riessen R, Lai X, Mortensen R, Ottenhoff THM, Dyrhol-Riise AM. Whole blood RNA signatures in tuberculosis patients receiving H56:IC31 vaccine as adjunctive therapy. Front Immunol 2024; 15:1350593. [PMID: 38433842 PMCID: PMC10904528 DOI: 10.3389/fimmu.2024.1350593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/25/2024] [Indexed: 03/05/2024] Open
Abstract
Introduction Therapeutic vaccination in tuberculosis (TB) represents a Host Directed Therapy strategy which enhances immune responses in order to improve clinical outcomes and shorten TB treatment. Previously, we have shown that the subunit H56:IC31 vaccine induced both humoral and cellular immune responses when administered to TB patients adjunctive to standard TB treatment (TBCOX2 study, NCT02503839). Here we present the longitudinal whole blood gene expression patterns in H56:IC31 vaccinated TB patients compared to controls receiving standard TB treatment only. Methods The H56:IC31 group (N=11) and Control group (N=7) underwent first-line TB treatment for 182 days. The H56:IC31 group received 5 micrograms of the H56:IC31 vaccine (Statens Serum Institut; SSI, Valneva Austria GmbH) intramuscularly at day 84 and day 140. Total RNA was extracted from whole blood samples collected in PAXgene tubes on days 0, 84, 98, 140, 154, 182 and 238. The expression level of 183 immune-related genes was measured by high-throughput microfluidic qPCR (Biomark HD system, Standard BioTools). Results The targeted gene expression profiling unveiled the upregulation of modules such as interferon (IFN) signalling genes, pattern recognition receptors and small nucleotide guanosine triphosphate (GTP)-ases in the vaccinated group compared to controls two weeks after administration of the first H56:IC31 vaccine. Additionally, the longitudinal analysis of the Adolescent Cohort Study-Correlation of Risk (ACS-COR) signature showed a progressive downregulation in both study arms towards the end of TB treatment, in congruence with reported treatment responses and clinical improvements. Still, two months after the end of TB treatment, vaccinated patients, and especially those developing both cellular and humoral vaccine responses, showed a lower expression of the ACS-COR genes compared to controls. Discussion Our data report gene expression patterns following H56:IC31 vaccination which might be interpreted as a lower risk of relapse in therapeutically vaccinated patients. Further studies are needed to conclude if these gene expression patterns could be used as prognostic biosignatures for therapeutic TB vaccine responses.
Collapse
Affiliation(s)
| | - Eleonora Vianello
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Suzanne van Veen
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Synne Jenum
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Kristian Tonby
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Rosalie van Riessen
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Xiaoran Lai
- Oslo Centre for Biostatistics and Epidemiology, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Rasmus Mortensen
- Deptartment of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Anne Ma Dyrhol-Riise
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Christensen D. Head-to-Head Comparison of Novel Vaccine Technologies Comes with a Minefield of Challenges. Pharmaceutics 2023; 16:12. [PMID: 38276490 PMCID: PMC10819579 DOI: 10.3390/pharmaceutics16010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/10/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Modern vaccine development is having a golden period, with a variety of novel subunit technologies being introduced into clinical development in recent years. This opens the opportunity to find the best platform to use for novel vaccine antigen candidates through head-to-head comparative studies. Seldom appreciated is, however, the fact that these different technologies often do not have the same optimal antigen dose ratio, prime-boost regime and peak timepoint for measuring immunity. Instead, the preclinical studies that make the basis for platform selection use standard protocols not optimized for individual vaccines and fail to make selection on an informed basis. Here, I discuss the opportunities we have to optimize vaccine platform technologies through a better understanding of vaccine priming kinetics, the optimal antigen dose and sampling time and location.
Collapse
Affiliation(s)
- Dennis Christensen
- Adjuvant Systems Research & Development, Croda Pharma, 2800 Lyngby, Denmark
| |
Collapse
|
8
|
Hellfritzsch M, Christensen D, Foged C, Scherließ R, Thakur A. Reconstituted dry powder formulations of ZnO-adjuvanted ovalbumin induce equivalent antigen specific antibodies but lower T cell responses than ovalbumin adjuvanted with Alhydrogel® or cationic adjuvant formulation 01 (CAF®01). Int J Pharm 2023; 648:123581. [PMID: 37931728 DOI: 10.1016/j.ijpharm.2023.123581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/28/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Most licensed human vaccines are based on liquid dosage forms but have poor storage stability and require continuous and expensive cold-chain storage. In contrast, the use of solid vaccine dosage forms produced by for example spray drying, extends shelf life and eliminates the need for a cold chain. Zinc oxide (ZnO)-based nanoparticles display immunomodulatory properties, but their adjuvant effect as a dry powder formulation is unknown. Here, we show that reconstituted dry powder formulations of ZnO particles containing the model antigen ovalbumin (OVA) induce antigen-specific CD8+ T-cell and humoral responses. By systematically varying the ratio between ZnO and mannitol during spray drying, we manufactured dry powder formulations of OVA-containing ZnO particles that displayed: (i) a spherical or wrinkled surface morphology, (ii) an aerodynamic diameter and particle size distribution optimal for deep lung deposition, and (iii) aerosolization properties suitable for lung delivery. Reconstituted dry powder formulations of ZnO particles were well-tolerated by Calu-3 lung epithelial cells. Furthermore, almost equivalent OVA-specific serum antibody responses were stimulated by reconstituted ZnO particles, OVA adjuvanted with Alhydrogel®, and OVA adjuvanted with the cationic adjuvant formulation 01 (CAF®01). However, reconstituted dry powder ZnO particles and OVA adjuvanted with Alhydrogel® induced significantly lower OVA-specific CD8+CD44+ T-cell responses in the spleen than OVA adjuvanted with CAF®01. Similarly, reconstituted dry powder ZnO particles activated significantly lower percentages of follicular helper T cells and germinal center B cells in the draining lymph nodes than OVA adjuvanted with CAF®01. Overall, our results show that reconstituted dry powder formulations of ZnO nanoparticles can induce antigen-specific antibodies and can be used in vaccines to enhance antigen-specific humoral immune responses against subunit protein antigens.
Collapse
Affiliation(s)
- Marie Hellfritzsch
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, Grasweg 9a, 24118 Kiel, Germany
| | - Dennis Christensen
- Department of Infectious Disease Immunology, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Regina Scherließ
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, Grasweg 9a, 24118 Kiel, Germany.
| | - Aneesh Thakur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark.
| |
Collapse
|
9
|
Gupta NS, Kumar P. Perspective of artificial intelligence in healthcare data management: A journey towards precision medicine. Comput Biol Med 2023; 162:107051. [PMID: 37271113 DOI: 10.1016/j.compbiomed.2023.107051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/06/2023] [Accepted: 05/20/2023] [Indexed: 06/06/2023]
Abstract
Mounting evidence has highlighted the implementation of big data handling and management in the healthcare industry to improve the clinical services. Various private and public companies have generated, stored, and analyzed different types of big healthcare data, such as omics data, clinical data, electronic health records, personal health records, and sensing data with the aim to move in the direction of precision medicine. Additionally, with the advancement in technologies, researchers are curious to extract the potential involvement of artificial intelligence and machine learning on big healthcare data to enhance the quality of patient's lives. However, seeking solutions from big healthcare data requires proper management, storage, and analysis, which imposes hinderances associated with big data handling. Herein, we briefly discuss the implication of big data handling and the role of artificial intelligence in precision medicine. Further, we also highlighted the potential of artificial intelligence in integrating and analyzing the big data that offer personalized treatment. In addition, we briefly discuss the applications of artificial intelligence in personalized treatment, especially in neurological diseases. Lastly, we discuss the challenges and limitations imposed by artificial intelligence in big data management and analysis to hinder precision medicine.
Collapse
Affiliation(s)
- Nancy Sanjay Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India.
| |
Collapse
|
10
|
Matz HC, McIntire KM, Ellebedy AH. 'Persistent germinal center responses: slow-growing trees bear the best fruits'. Curr Opin Immunol 2023; 83:102332. [PMID: 37150126 PMCID: PMC10829534 DOI: 10.1016/j.coi.2023.102332] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 05/09/2023]
Abstract
Germinal centers (GCs) are key microanatomical sites in lymphoid organs where responding B cells mature and undergo affinity-based selection. The duration of the GC reaction has long been assumed to be relatively brief, but recent studies in humans, nonhuman primates, and mice indicate that GCs can last for weeks to months after initial antigen exposure. This review examines recent studies investigating the factors that influence GC duration, including antigen persistence, T-follicular helper cells, and mode of immunization. Potential mechanisms for how persistent GCs influence the B-cell repertoire are considered. Overall, these studies provide a blueprint for how to design better vaccines that elicit persistent GC responses.
Collapse
Affiliation(s)
- Hanover C Matz
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Katherine M McIntire
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA; Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, USA.
| |
Collapse
|
11
|
Vono M, Mastelic-Gavillet B, Mohr E, Östensson M, Persson J, Olafsdottir TA, Lemeille S, Pejoski D, Hartley O, Christensen D, Andersen P, Didierlaurent AM, Harandi AM, Lambert PH, Siegrist CA. C-type lectin receptor agonists elicit functional IL21-expressing Tfh cells and induce primary B cell responses in neonates. Front Immunol 2023; 14:1155200. [PMID: 37063899 PMCID: PMC10102809 DOI: 10.3389/fimmu.2023.1155200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/16/2023] [Indexed: 04/03/2023] Open
Abstract
IntroductionC-type lectin receptor (CLR) agonists emerged as superior inducers of primary B cell responses in early life compared with Toll-like receptor (TLR) agonists, while both types of adjuvants are potent in adults.MethodsHere, we explored the mechanisms accounting for the differences in neonatal adjuvanticity between a CLR-based (CAF®01) and a TLR4-based (GLA-SE) adjuvant administered with influenza hemagglutinin (HA) in neonatal mice, by using transcriptomics and systems biology analyses.ResultsOn day 7 after immunization, HA/CAF01 increased IL6 and IL21 levels in the draining lymph nodes, while HA/GLA-SE increased IL10. CAF01 induced mixed Th1/Th17 neonatal responses while T cell responses induced by GLA-SE had a more pronounced Th2-profile. Only CAF01 induced T follicular helper (Tfh) cells expressing high levels of IL21 similar to levels induced in adult mice, which is essential for germinal center (GC) formation. Accordingly, only CAF01- induced neonatal Tfh cells activated adoptively transferred hen egg lysozyme (HEL)-specific B cells to form HEL+ GC B cells in neonatal mice upon vaccination with HEL-OVA.DiscussionCollectively, the data show that CLR-based adjuvants are promising neonatal and infant adjuvants due to their ability to harness Tfh responses in early life.
Collapse
Affiliation(s)
- Maria Vono
- Center for Vaccine Immunology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- *Correspondence: Maria Vono,
| | - Beatris Mastelic-Gavillet
- Center for Vaccine Immunology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Elodie Mohr
- Center for Vaccine Immunology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Malin Östensson
- Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - Josefine Persson
- Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | | | - Sylvain Lemeille
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - David Pejoski
- Center for Vaccine Immunology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Oliver Hartley
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Dennis Christensen
- Vaccine Adjuvant Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Peter Andersen
- Vaccine Adjuvant Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Arnaud M. Didierlaurent
- Center for Vaccine Immunology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Ali M. Harandi
- Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
- Vaccine Evaluation Center, British Columbia (BC) Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Paul-Henri Lambert
- Center for Vaccine Immunology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Claire-Anne Siegrist
- Center for Vaccine Immunology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
12
|
Verma SK, Mahajan P, Singh NK, Gupta A, Aggarwal R, Rappuoli R, Johri AK. New-age vaccine adjuvants, their development, and future perspective. Front Immunol 2023; 14:1043109. [PMID: 36911719 PMCID: PMC9998920 DOI: 10.3389/fimmu.2023.1043109] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/26/2023] [Indexed: 02/26/2023] Open
Abstract
In the present scenario, immunization is of utmost importance as it keeps us safe and protects us from infectious agents. Despite the great success in the field of vaccinology, there is a need to not only develop safe and ideal vaccines to fight deadly infections but also improve the quality of existing vaccines in terms of partial or inconsistent protection. Generally, subunit vaccines are known to be safe in nature, but they are mostly found to be incapable of generating the optimum immune response. Hence, there is a great possibility of improving the potential of a vaccine in formulation with novel adjuvants, which can effectively impart superior immunity. The vaccine(s) in formulation with novel adjuvants may also be helpful in fighting pathogens of high antigenic diversity. However, due to the limitations of safety and toxicity, very few human-compatible adjuvants have been approved. In this review, we mainly focus on the need for new and improved vaccines; the definition of and the need for adjuvants; the characteristics and mechanisms of human-compatible adjuvants; the current status of vaccine adjuvants, mucosal vaccine adjuvants, and adjuvants in clinical development; and future directions.
Collapse
Affiliation(s)
| | - Pooja Mahajan
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Nikhlesh K. Singh
- Integrative Biosciences Center, Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, School of Medicine, Detroit, MI, United States
| | - Ankit Gupta
- Microbiology Division, Defence Research and Development Establishment, Gwalior, India
| | - Rupesh Aggarwal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Atul Kumar Johri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
13
|
Müllertz OAO, Andersen P, Christensen D, Foged C, Thakur A. Pulmonary Administration of the Liposome-Based Adjuvant CAF01: Effect of Surface Charge on Mucosal Adjuvant Function. Mol Pharm 2023; 20:953-970. [PMID: 36583936 DOI: 10.1021/acs.molpharmaceut.2c00634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mucosal surfaces of the lungs represent a major site of entry for airborne pathogens, and pulmonary administration of vaccines is an attractive strategy to induce protective mucosal immunity in the airways. Recently, we demonstrated the potential of pulmonary vaccination with the tuberculosis subunit antigen H56 adjuvanted with the cationic liposomal adjuvant formulation CAF01, which consists of the cationic lipid dimethyldioctadecylammonium (DDA) bromide and the synthetic cord factor trehalose-6,6'-dibehenate. However, the cationic charge of DDA represents a major safety challenge. Hence, replacing DDA with a safer zwitterionic or anionic phospholipid is an attractive approach to improve vaccine safety, but the effect of liposomal surface charge on the induction of mucosal immunity after airway immunization is poorly understood. Here, we investigated the effect of surface charge by replacing the cationic DDA component of CAF01 with zwitterionic dipalmitoylphosphatidylcholine (DPPC) or anionic dipalmitoylphosphatidylglycerol (DPPG), and we show that charge modification enhances antigen-specific pulmonary T-cell responses against co-formulated H56. We systematically replaced DDA with either DPPC or DPPG and found that these modifications resulted in colloidally stable liposomes that have similar size and morphology to unmodified CAF01. DPPC- or DPPG-modified CAF01 displayed surface charge-dependent protein adsorption and induced slightly higher follicular helper T cells and germinal center B cells in the lung-draining lymph nodes than unmodified CAF01. In addition, modified CAF01 induced significantly higher levels of H56-specific Th17 cells and polyfunctional CD4+ T cells in the lungs, as compared to unmodified CAF01. However, the strong H56-specific humoral responses induced by CAF01 in the lungs and spleen were not influenced by surface charge. Hence, these results provide insights into the importance of surface charge for liposomal adjuvant function and can also guide the design of safe pulmonary subunit vaccines against other mucosal pathogens.
Collapse
Affiliation(s)
- Olivia Amanda Oest Müllertz
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen Ø2100, Denmark
| | - Peter Andersen
- Department of Infectious Disease Immunology, Statens Serum Institut, Artillerivej 5, Copenhagen S2300, Denmark
| | - Dennis Christensen
- Department of Infectious Disease Immunology, Statens Serum Institut, Artillerivej 5, Copenhagen S2300, Denmark
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen Ø2100, Denmark
| | - Aneesh Thakur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen Ø2100, Denmark
| |
Collapse
|
14
|
Naidu A, Lulu S S. Mucosal and systemic immune responses to Vibrio cholerae infection and oral cholera vaccines (OCVs) in humans: a systematic review. Expert Rev Clin Immunol 2022; 18:1307-1318. [PMID: 36255170 DOI: 10.1080/1744666x.2022.2136650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Cholera is an enteric disease caused by Vibrio cholerae, a water-borne pathogen, and characterized by severe diarrhea. Vaccines have been recommended for use by the WHO in resource-limited settings. Efficacies of the currently licensed cholera vaccines are not optimal in endemic settings and low in children below the age of five, a section of the population most susceptible to the disease. Development of next generation of cholera vaccines would require a detailed understanding of the required protective immune responses. AREA COVERED In this review, we revisit clinical trials which are focused on the early transcriptional mucosal responses elicited during Vibrio cholerae infection and upon vaccination along with summarizing various components of the effector immune response against Vibrio cholerae. EXPERT OPINION The inability of currently licensed killed/inactivated vaccines to elicit key inflammatory pathways locally may explain their restricted efficacy in endemic settings. More studies are required to understand the immunogenicity of the live attenuated cholera vaccine in these regions. Various extrinsic and intrinsic factors influence anti-cholera immunity and need to be considered to develop region-specific next generation vaccines.
Collapse
Affiliation(s)
- Akshayata Naidu
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Sajitha Lulu S
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
15
|
Desel C, Murray PJ, Lehmann CHK, Heger L, Christensen D, Andersen P, Mack M, Dudziak D, Lang R. Monocytes Elicit a Neutrophil-Independent Th1/Th17 Response Upon Immunization With a Mincle-Dependent Glycolipid Adjuvant. Front Immunol 2022; 13:880474. [PMID: 35585969 PMCID: PMC9108773 DOI: 10.3389/fimmu.2022.880474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/01/2022] [Indexed: 12/24/2022] Open
Abstract
Successful subunit vaccination with recombinant proteins requires adjuvants. The glycolipid trehalose-dibehenate (TDB), a synthetic analog of the mycobacterial cord factor, potently induces Th1 and Th17 immune responses and is a candidate adjuvant for human immunization. TDB binds to the C-type lectin receptor Mincle and triggers Syk-Card9-dependent APC activation. In addition, interleukin (IL)-1 receptor/MyD88-dependent signaling is required for TDB adjuvanticity. The role of different innate immune cell types in adjuvant-stimulated Th1/Th17 responses is not well characterized. We investigated cell recruitment to the site of injection (SOI) and to the draining lymph nodes (dLNs) after immunization with the TDB containing adjuvant CAF01 in a protein-based vaccine. Recruitment of monocytes and neutrophils to the SOI and the dramatic increase in lymph node cellularity was partially dependent on both Mincle and MyD88. Despite their large numbers at the SOI, neutrophils were dispensable for the induction of Th1/Th17 responses. In contrast, CCR2-dependent monocyte recruitment was essential for the induction of Th1/Th17 cells. Transport of adjuvant to the dLN did not require Mincle, MyD88, or CCR2. Together, adjuvanticity conferred by monocytes can be separated at the cellular level from potential tissue damage by neutrophils.
Collapse
Affiliation(s)
- Christiane Desel
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- *Correspondence: Christiane Desel, ; Roland Lang,
| | - Peter J. Murray
- Department of Infectious Disease, St. Jude Children’s Research Hospital, Memphis, TN, United States
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Christian H. K. Lehmann
- Department of Dermatology, Laboratory of Dendritic Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lukas Heger
- Department of Dermatology, Laboratory of Dendritic Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Dennis Christensen
- Department of Infectious Disease Immunology, Statens Serum Institute, Copenhagen, Denmark
| | - Peter Andersen
- Department of Infectious Disease Immunology, Statens Serum Institute, Copenhagen, Denmark
| | - Matthias Mack
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Diana Dudziak
- Department of Dermatology, Laboratory of Dendritic Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Roland Lang
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- *Correspondence: Christiane Desel, ; Roland Lang,
| |
Collapse
|
16
|
Larsen SE, Williams BD, Rais M, Coler RN, Baldwin SL. It Takes a Village: The Multifaceted Immune Response to Mycobacterium tuberculosis Infection and Vaccine-Induced Immunity. Front Immunol 2022; 13:840225. [PMID: 35359957 PMCID: PMC8960931 DOI: 10.3389/fimmu.2022.840225] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/08/2022] [Indexed: 11/18/2022] Open
Abstract
Despite co-evolving with humans for centuries and being intensely studied for decades, the immune correlates of protection against Mycobacterium tuberculosis (Mtb) have yet to be fully defined. This lapse in understanding is a major lag in the pipeline for evaluating and advancing efficacious vaccine candidates. While CD4+ T helper 1 (TH1) pro-inflammatory responses have a significant role in controlling Mtb infection, the historically narrow focus on this cell population may have eclipsed the characterization of other requisite arms of the immune system. Over the last decade, the tuberculosis (TB) research community has intentionally and intensely increased the breadth of investigation of other immune players. Here, we review mechanistic preclinical studies as well as clinical anecdotes that suggest the degree to which different cell types, such as NK cells, CD8+ T cells, γ δ T cells, and B cells, influence infection or disease prevention. Additionally, we categorically outline the observed role each major cell type plays in vaccine-induced immunity, including Mycobacterium bovis bacillus Calmette-Guérin (BCG). Novel vaccine candidates advancing through either the preclinical or clinical pipeline leverage different platforms (e.g., protein + adjuvant, vector-based, nucleic acid-based) to purposefully elicit complex immune responses, and we review those design rationales and results to date. The better we as a community understand the essential composition, magnitude, timing, and trafficking of immune responses against Mtb, the closer we are to reducing the severe disease burden and toll on human health inflicted by TB globally.
Collapse
Affiliation(s)
- Sasha E. Larsen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Brittany D. Williams
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,Department of Global Health, University of Washington, Seattle, WA, United States
| | - Maham Rais
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Rhea N. Coler
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,Department of Global Health, University of Washington, Seattle, WA, United States,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| | - Susan L. Baldwin
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,*Correspondence: Susan L. Baldwin,
| |
Collapse
|
17
|
O'Hagan DT, van der Most R, Lodaya RN, Coccia M, Lofano G. "World in motion" - emulsion adjuvants rising to meet the pandemic challenges. NPJ Vaccines 2021; 6:158. [PMID: 34934069 PMCID: PMC8692316 DOI: 10.1038/s41541-021-00418-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/23/2021] [Indexed: 02/06/2023] Open
Abstract
Emulsion adjuvants such as MF59 and AS03 have been used for more than two decades as key components of licensed vaccines, with over 100 million doses administered to diverse populations in more than 30 countries. Substantial clinical experience of effectiveness and a well-established safety profile, along with the ease of manufacturing have established emulsion adjuvants as one of the leading platforms for the development of pandemic vaccines. Emulsion adjuvants allow for antigen dose sparing, more rapid immune responses, and enhanced quality and quantity of adaptive immune responses. The mechanisms of enhancement of immune responses are well defined and typically characterized by the creation of an "immunocompetent environment" at the site of injection, followed by the induction of strong and long-lasting germinal center responses in the draining lymph nodes. As a result, emulsion adjuvants induce distinct immunological responses, with a mixed Th1/Th2 T cell response, long-lived plasma cells, an expanded repertoire of memory B cells, and high titers of cross-neutralizing polyfunctional antibodies against viral variants. Because of these various properties, emulsion adjuvants were included in pandemic influenza vaccines deployed during the 2009 H1N1 influenza pandemic, are still included in seasonal influenza vaccines, and are currently at the forefront of the development of vaccines against emerging SARS-CoV-2 pandemic variants. Here, we comprehensively review emulsion adjuvants, discuss their mechanism of action, and highlight their profile as a benchmark for the development of additional vaccine adjuvants and as a valuable tool to allow further investigations of the general principles of human immunity.
Collapse
|
18
|
Li H, Monslow MA, Freed DC, Chang D, Li F, Gindy M, Wang D, Vora K, Espeseth AS, Petrovsky N, Fu TM. Novel adjuvants enhance immune responses elicited by a replication-defective human cytomegalovirus vaccine in nonhuman primates. Vaccine 2021; 39:7446-7456. [PMID: 34852943 DOI: 10.1016/j.vaccine.2021.10.075] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/13/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022]
Abstract
Adjuvants have long been explored to enhance vaccine efficacy. Current adjuvants approved for human vaccines are mostly studied for their ability to improve antibody responses. There remains a need for development of novel adjuvants, especially those able to enhance cell-mediated immunity (CMI). In this preclinical study we assessed the effect of two novel adjuvants, a delta inulin microparticle Advax formulated with or without a toll-like receptor 9 (TLR9) agonist CpG oligonucleotide, and a Merck & Co., Inc., Kenilworth, NJ, USA proprietary lipid nanoparticle (LNP), on immune responses elicited by V160, an experimental replication-defective human cytomegalovirus vaccine. Adult rhesus macaques were immunized with a low dose of V160 (10 units) either alone or in combination with the adjuvants as compared to those immunized with a high dose of V160 alone (100 units). While neither adjuvant conferred a significant benefit to vaccine-elicited humoral immune responses at the dose tested, both enhanced cellular immune responses to V160, where Advax promoted both CD4+ and CD8+ T cells and LNP predominantly impacted the CD4+ T cell response. Transcriptome analyses of peripheral blood samples demonstrated different modes of action for these adjuvants. One day post vaccination, LNP induced upregulation of a large number of genes involved in the innate immune response similar to those triggered by viral infection. In contrast, Advax did not activate any known inflammatory pathways and did not significantly impact gene expression pattern until day 7 post administration, suggesting a unique, non-inflammatory mechanism. These data warrant further exploration of Advax and LNP as adjuvants in clinical trials for vaccines desiring to elicit both humoral and T cell responses.
Collapse
Affiliation(s)
- Hualin Li
- Merck & Co., Inc., Kenilworth, NJ, USA.
| | | | | | - Dan Chang
- Merck & Co., Inc., Kenilworth, NJ, USA
| | | | | | - Dai Wang
- Merck & Co., Inc., Kenilworth, NJ, USA
| | | | | | - Nikolai Petrovsky
- Vaxine Pty Ltd, Flinders University, Bedford Park SA 5042, Australia
| | | |
Collapse
|
19
|
Alameh MG, Tombácz I, Bettini E, Lederer K, Sittplangkoon C, Wilmore JR, Gaudette BT, Soliman OY, Pine M, Hicks P, Manzoni TB, Knox JJ, Johnson JL, Laczkó D, Muramatsu H, Davis B, Meng W, Rosenfeld AM, Strohmeier S, Lin PJC, Mui BL, Tam YK, Karikó K, Jacquet A, Krammer F, Bates P, Cancro MP, Weissman D, Luning Prak ET, Allman D, Locci M, Pardi N. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity 2021; 54:2877-2892.e7. [PMID: 34852217 PMCID: PMC8566475 DOI: 10.1016/j.immuni.2021.11.001] [Citation(s) in RCA: 399] [Impact Index Per Article: 99.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 07/29/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022]
Abstract
Adjuvants are critical for improving the quality and magnitude of adaptive immune responses to vaccination. Lipid nanoparticle (LNP)-encapsulated nucleoside-modified mRNA vaccines have shown great efficacy against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but the mechanism of action of this vaccine platform is not well-characterized. Using influenza virus and SARS-CoV-2 mRNA and protein subunit vaccines, we demonstrated that our LNP formulation has intrinsic adjuvant activity that promotes induction of strong T follicular helper cell, germinal center B cell, long-lived plasma cell, and memory B cell responses that are associated with durable and protective antibodies in mice. Comparative experiments demonstrated that this LNP formulation outperformed a widely used MF59-like adjuvant, AddaVax. The adjuvant activity of the LNP relies on the ionizable lipid component and on IL-6 cytokine induction but not on MyD88- or MAVS-dependent sensing of LNPs. Our study identified LNPs as a versatile adjuvant that enhances the efficacy of traditional and next-generation vaccine platforms.
Collapse
Affiliation(s)
| | - István Tombácz
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Emily Bettini
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katlyn Lederer
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chutamath Sittplangkoon
- Center of Excellence in Vaccine Research and Development, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Joel R Wilmore
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian T Gaudette
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ousamah Y Soliman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew Pine
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Philip Hicks
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tomaz B Manzoni
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James J Knox
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John L Johnson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dorottya Laczkó
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hiromi Muramatsu
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin Davis
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wenzhao Meng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aaron M Rosenfeld
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Ying K Tam
- Acuitas Therapeutics, Vancouver, BC, Canada
| | - Katalin Karikó
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA; BioNTech RNA Pharmaceuticals, Mainz, Germany
| | - Alain Jacquet
- Center of Excellence in Vaccine Research and Development, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul Bates
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael P Cancro
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eline T Luning Prak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Allman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michela Locci
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Norbert Pardi
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
20
|
Sheerin D, Dold C, O'Connor D, Pollard AJ, Rollier CS. Distinct patterns of whole blood transcriptional responses are induced in mice following immunisation with adenoviral and poxviral vector vaccines encoding the same antigen. BMC Genomics 2021; 22:777. [PMID: 34717548 PMCID: PMC8556829 DOI: 10.1186/s12864-021-08061-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 09/21/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Viral vectors, including adenovirus (Ad) and modified vaccinia Ankara (MVA), have gained increasing attention as vaccine platforms in recent years due to their capacity to express antigens from a wide array of pathogens, their rapid induction of humoral and cellular protective immune responses, and their relatively low production costs. In particular, the chimpanzee Ad vector, ChAdOx1, has taken centre stage as a leading COVID-19 vaccine candidate. However, despite mounting data, both clinical and pre-clinical, demonstrating effective induction of adaptive immune responses, the innate immune signals that precede the protective responses that make these vectors attractive vaccine platforms remain poorly understood. RESULTS In this study, a mouse immunisation model was used to evaluate whole blood gene expression changes 24 h after either a single dose or heterologous prime-boost regimen of an Ad and/or MVA vaccine. We demonstrate through comparative analysis of Ad vectors encoding different antigens that a transgene product-specific gene signature can be discerned from the vector-induced transcriptional response. Expression of genes involved in TLR2 stimulation and γδ T cell and natural killer cell activation were induced after a single dose of Ad, while MVA led to greater expression of type I interferon genes. The order of prime-boost combinations was found to influence the magnitude of the gene expression changes, with MVA/Ad eliciting greater transcriptional perturbation than Ad/MVA. Contrasting the two regimens revealed significant enrichment of epigenetic regulation pathways and augmented expression of MHC class I and II molecules associated with MVA/Ad. CONCLUSION These data demonstrate that the order in which vaccines from heterologous prime-boost regimens are administered leads to distinct transcriptional responses and may shape the immune response induced by such combinations. The characterisation of early vaccine-induce responses strengthens our understanding of viral vector vaccine mechanisms of action ahead of their characterisation in human clinical trials and are a valuable resource to inform the pre-clinical design of appropriate vaccine constructs for emerging infectious diseases.
Collapse
Affiliation(s)
- Dylan Sheerin
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK.
- Infectious Diseases and Immune Defence Division, The Walter & Eliza Hall Institute of Medical Research (WEHI), Melbourne, Victoria, 3052, Australia.
| | - Christina Dold
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Daniel O'Connor
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Christine S Rollier
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
| |
Collapse
|
21
|
Immune Responses to Pandemic H1N1 Influenza Virus Infection in Pigs Vaccinated with a Conserved Hemagglutinin HA1 Peptide Adjuvanted with CAF ®01 or CDA/αGalCerMPEG. Vaccines (Basel) 2021; 9:vaccines9070751. [PMID: 34358167 PMCID: PMC8310093 DOI: 10.3390/vaccines9070751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 01/03/2023] Open
Abstract
This study aimed to evaluate the immune response and protection correlates against influenza virus (IV) infection in pigs vaccinated with the novel NG34 HA1 vaccine candidate adjuvanted with either CAF®01 or CDA/αGalCerMPEG (αGCM). Two groups of six pigs each were vaccinated intramuscularly twice with either NG34 + CAF®01 or NG34 + CDA/αGCM. As controls, groups of animals (n = 6 or 4) either non-vaccinated or vaccinated with human seasonal trivalent influenza vaccine or NG34 + Freund’s adjuvant were included in the study. All animal groups were challenged with the 2009 pandemic (pdm09) strain of H1N1 (total amount of 7 × 106 TCID50/mL) via intranasal and endotracheal routes 21 days after second vaccination. Reduced consolidated lung lesions were observed both on days three and seven post-challenge in the animals vaccinated with NG34 + CAF®01, whereas higher variability with relatively more severe lesions in pigs of the NG34 + CDA/αGCM group on day three post-infection. Among groups, animals vaccinated with NG34 + CDA/αGCM showed higher viral loads in the lung at seven days post infection whereas animals from NG34 + CAF®01 completely abolished virus from the lower respiratory tract. Similarly, higher IFNγ secretion and stronger IgG responses against the NG34 peptide in sera was observed in animals from the NG34 + CAF®01 group as compared to the NG34 + CDA/αGCM. NG34-vaccinated pigs with adjuvanted CAF®01 or CDA/αGCM combinations resulted in different immune responses as well as outcomes in pathology and viral shedding.
Collapse
|
22
|
Van Tilbeurgh M, Lemdani K, Beignon AS, Chapon C, Tchitchek N, Cheraitia L, Marcos Lopez E, Pascal Q, Le Grand R, Maisonnasse P, Manet C. Predictive Markers of Immunogenicity and Efficacy for Human Vaccines. Vaccines (Basel) 2021; 9:579. [PMID: 34205932 PMCID: PMC8226531 DOI: 10.3390/vaccines9060579] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
Vaccines represent one of the major advances of modern medicine. Despite the many successes of vaccination, continuous efforts to design new vaccines are needed to fight "old" pandemics, such as tuberculosis and malaria, as well as emerging pathogens, such as Zika virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Vaccination aims at reaching sterilizing immunity, however assessing vaccine efficacy is still challenging and underscores the need for a better understanding of immune protective responses. Identifying reliable predictive markers of immunogenicity can help to select and develop promising vaccine candidates during early preclinical studies and can lead to improved, personalized, vaccination strategies. A systems biology approach is increasingly being adopted to address these major challenges using multiple high-dimensional technologies combined with in silico models. Although the goal is to develop predictive models of vaccine efficacy in humans, applying this approach to animal models empowers basic and translational vaccine research. In this review, we provide an overview of vaccine immune signatures in preclinical models, as well as in target human populations. We also discuss high-throughput technologies used to probe vaccine-induced responses, along with data analysis and computational methodologies applied to the predictive modeling of vaccine efficacy.
Collapse
Affiliation(s)
- Matthieu Van Tilbeurgh
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Katia Lemdani
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Anne-Sophie Beignon
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Catherine Chapon
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Nicolas Tchitchek
- Unité de Recherche i3, Inserm UMR-S 959, Bâtiment CERVI, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France;
| | - Lina Cheraitia
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Ernesto Marcos Lopez
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Quentin Pascal
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Roger Le Grand
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Pauline Maisonnasse
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Caroline Manet
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| |
Collapse
|
23
|
Win Z, Weiner Rd J, Listanco A, Patel N, Sharma R, Greenwood A, Maertzdorf J, Mollenkopf HJ, Pizzoferro K, Cole T, Bodinham CL, Kaufmann SHE, Denoel P, Del Giudice G, Lewis DJM. Systematic Evaluation of Kinetics and Distribution of Muscle and Lymph Node Activation Measured by 18F-FDG- and 11C-PBR28-PET/CT Imaging, and Whole Blood and Muscle Transcriptomics After Immunization of Healthy Humans With Adjuvanted and Unadjuvanted Vaccines. Front Immunol 2021; 11:613496. [PMID: 33613536 PMCID: PMC7893084 DOI: 10.3389/fimmu.2020.613496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/24/2020] [Indexed: 12/11/2022] Open
Abstract
Systems vaccinology has been applied to detect signatures of human vaccine induced immunity but its ability, together with high definition in vivo clinical imaging is not established to predict vaccine reactogenicity. Within two European Commission funded high impact programs, BIOVACSAFE and ADITEC, we applied high resolution positron emission tomography/computed tomography (PET/CT) scanning using tissue-specific and non-specific radioligands together with transcriptomic analysis of muscle biopsies in a clinical model systematically and prospectively comparing vaccine-induced immune/inflammatory responses. 109 male participants received a single immunization with licensed preparations of either AS04-adjuvanted hepatitis B virus vaccine (AHBVV); MF59C-adjuvanted (ATIV) or unadjuvanted seasonal trivalent influenza vaccine (STIV); or alum-OMV-meningococcal B protein vaccine (4CMenB), followed by a PET/CT scan (n = 54) or an injection site muscle biopsy (n = 45). Characteristic kinetics was observed with a localized intramuscular focus associated with increased tissue glycolysis at the site of immunization detected by 18F-fluorodeoxyglucose (FDG) PET/CT, peaking after 1–3 days and strongest and most prolonged after 4CMenB, which correlated with clinical experience. Draining lymph node activation peaked between days 3–5 and was most prominent after ATIV. Well defined uptake of the immune cell-binding radioligand 11C-PBR28 was observed in muscle lesions and draining lymph nodes. Kinetics of muscle gene expression module upregulation reflected those seen previously in preclinical models with a very early (~6hrs) upregulation of monocyte-, TLR- and cytokine/chemokine-associated modules after AHBVV, in contrast to a response on day 3 after ATIV, which was bracketed by whole blood responses on day 1 as antigen presenting, inflammatory and innate immune cells trafficked to the site of immunization, and on day 5 associated with activated CD4+ T cells. These observations confirm the use of PET/CT, including potentially tissue-, cell-, or cytokine/chemokine-specific radioligands, is a safe and ethical quantitative technique to compare candidate vaccine formulations and could be safely combined with biopsy to guide efficient collection of samples for integrated whole blood and tissue systems vaccinology in small-scale but intensive human clinical models of immunization and to accelerate clinical development and optimisation of vaccine candidates, adjuvants, and formulations.
Collapse
Affiliation(s)
- Zarni Win
- Department of Nuclear Medicine and Radiological Sciences Unit, Imperial College Healthcare NHS Trust (ICHNT), London, United Kingdom
| | - January Weiner Rd
- Department for Immunology, Max Planck Institute for Infection Biology, Berlin, Germany.,Core Unit for Bioinformatics (CUBI), Berlin Institute of Health, Berlin, Germany
| | - Allan Listanco
- National Institute for Health Research (NIHR) Imperial Clinical Research Facility (NICRF), Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Neva Patel
- Department of Nuclear Medicine and Radiological Sciences Unit, Imperial College Healthcare NHS Trust (ICHNT), London, United Kingdom
| | - Rohini Sharma
- Department of Surgery & Cancer, Imperial College London (ICL), London, United Kingdom
| | - Aldona Greenwood
- Surrey Clinical Research Centre, University of Surrey, Guildford, United Kingdom
| | - Jeroen Maertzdorf
- Department for Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | | | - Kat Pizzoferro
- Surrey Clinical Research Centre, University of Surrey, Guildford, United Kingdom
| | - Thomas Cole
- National Institute for Health Research (NIHR) Imperial Clinical Research Facility (NICRF), Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Caroline L Bodinham
- Surrey Clinical Research Centre, University of Surrey, Guildford, United Kingdom
| | - Stefan H E Kaufmann
- Department for Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | | | | | - David J M Lewis
- National Institute for Health Research (NIHR) Imperial Clinical Research Facility (NICRF), Imperial College Healthcare NHS Trust, London, United Kingdom.,Surrey Clinical Research Centre, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
24
|
De Mot L, Bechtold V, Bol V, Callegaro A, Coccia M, Essaghir A, Hasdemir D, Ulloa-Montoya F, Siena E, Smilde A, van den Berg RA, Didierlaurent AM, Burny W, van der Most RG. Transcriptional profiles of adjuvanted hepatitis B vaccines display variable interindividual homogeneity but a shared core signature. Sci Transl Med 2020; 12:12/569/eaay8618. [DOI: 10.1126/scitranslmed.aay8618] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/23/2020] [Indexed: 12/19/2022]
Abstract
The current routine use of adjuvants in human vaccines provides a strong incentive to increase our understanding of how adjuvants differ in their ability to stimulate innate immunity and consequently enhance vaccine immunogenicity. Here, we evaluated gene expression profiles in cells from whole blood elicited in naive subjects receiving the hepatitis B surface antigen formulated with different adjuvants. We identified a core innate gene signature emerging 1 day after the second vaccination and that was shared by the recipients of vaccines formulated with adjuvant systems AS01B, AS01E, or AS03. This core signature associated with the magnitude of the hepatitis B surface-specific antibody response and was characterized by positive regulation of genes associated with interferon-related responses or the innate cell compartment and by negative regulation of natural killer cell–associated genes. Analysis at the individual subject level revealed that the higher immunogenicity of AS01B-adjuvanted vaccine was linked to its ability to induce this signature in most vaccinees even after the first vaccination. Therefore, our data suggest that adjuvanticity is not strictly defined by the nature of the receptors or signaling pathways it activates but by the ability of the adjuvant to consistently induce a core inflammatory signature across individuals.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dicle Hasdemir
- Bioinformatics Laboratory, University of Amsterdam, 1012 WX Amsterdam, Netherlands
- Biosystems Data Analysis Group, University of Amsterdam, 1012 WX Amsterdam, Netherlands
| | | | | | - Age Smilde
- Biosystems Data Analysis Group, University of Amsterdam, 1012 WX Amsterdam, Netherlands
| | | | | | | | | |
Collapse
|
25
|
Creighton R, Schuch V, Urbanski AH, Giddaluru J, Costa-Martins AG, Nakaya HI. Network vaccinology. Semin Immunol 2020; 50:101420. [PMID: 33162295 DOI: 10.1016/j.smim.2020.101420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/31/2020] [Indexed: 01/21/2023]
Abstract
The structure and function of the immune system is governed by complex networks of interactions between cells and molecular components. Vaccination perturbs these networks, triggering specific pathways to induce cellular and humoral immunity. Systems vaccinology studies have generated vast data sets describing the genes related to vaccination, motivating the use of new approaches to identify patterns within the data. Here, we describe a framework called Network Vaccinology to explore the structure and function of biological networks responsible for vaccine-induced immunity. We demonstrate how the principles of graph theory can be used to identify modules of genes, proteins, and metabolites that are associated with innate and adaptive immune responses. Network vaccinology can be used to assess specific and shared molecular mechanisms of different types of vaccines, adjuvants, and routes of administration to direct rational design of the next generation of vaccines.
Collapse
Affiliation(s)
- Rachel Creighton
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Viviane Schuch
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alysson H Urbanski
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jeevan Giddaluru
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Scientific Platform Pasteur USP, São Paulo, Brazil
| | - Andre G Costa-Martins
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Scientific Platform Pasteur USP, São Paulo, Brazil
| | - Helder I Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Scientific Platform Pasteur USP, São Paulo, Brazil.
| |
Collapse
|
26
|
McElhaney JE, Verschoor CP, Andrew MK, Haynes L, Kuchel GA, Pawelec G. The immune response to influenza in older humans: beyond immune senescence. Immun Ageing 2020; 17:10. [PMID: 32399058 PMCID: PMC7204009 DOI: 10.1186/s12979-020-00181-1] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 04/13/2020] [Indexed: 01/18/2023]
Abstract
Despite widespread influenza vaccination programs, influenza remains a major cause of morbidity and mortality in older adults. Age-related changes in multiple aspects of the adaptive immune response to influenza have been well-documented including a decline in antibody responses to influenza vaccination and changes in the cell-mediated response associated with immune senescence. This review will focus on T cell responses to influenza and influenza vaccination in older adults, and how increasing frailty or coexistence of multiple (≥2) chronic conditions contributes to the loss of vaccine effectiveness for the prevention of hospitalization. Further, dysregulation of the production of pro- and anti-inflammatory mediators contributes to a decline in the generation of an effective CD8 T cell response needed to clear influenza virus from the lungs. Current influenza vaccines provide only a weak stimulus to this arm of the adaptive immune response and rely on re-stimulation of CD8 T cell memory related to prior exposure to influenza virus. Efforts to improve vaccine effectiveness in older adults will be fruitless until CD8 responses take center stage.
Collapse
Affiliation(s)
- Janet E. McElhaney
- Health Sciences North Research Institute, 41 Ramsey Lake Road, Sudbury, ON P3E 5J1 Canada
| | - Chris P. Verschoor
- Health Sciences North Research Institute, 41 Ramsey Lake Road, Sudbury, ON P3E 5J1 Canada
| | - Melissa K. Andrew
- Department of Medicine and Canadian Centre for Vaccinology, Dalhousie University, Halifax, NS Canada
| | - Laura Haynes
- University of Connecticut Center on Aging, UConn Health Center, Farmington, CT USA
| | - George A. Kuchel
- University of Connecticut Center on Aging, UConn Health Center, Farmington, CT USA
| | - Graham Pawelec
- Health Sciences North Research Institute, 41 Ramsey Lake Road, Sudbury, ON P3E 5J1 Canada
- Department of Immunology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
27
|
Innate and secondary humoral responses are improved by increasing the time between MVA vaccine immunizations. NPJ Vaccines 2020; 5:24. [PMID: 32218996 PMCID: PMC7081268 DOI: 10.1038/s41541-020-0175-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
Comprehending the mechanisms behind the impact of vaccine regimens on immunity is critical for improving vaccines. Indeed, the time-interval between immunizations may influence B and T cells, as well as innate responses. We compared two vaccine schedules using cynomolgus macaques immunized with an attenuated vaccinia virus. Two subcutaneous injections 2 weeks apart led to an impaired secondary antibody response and similar innate myeloid responses to both immunizations. In contrast, a delayed boost (2 months) improved the quality of the antibody response and involved more activated/mature innate cells, induced late after the prime and responding to the recall. The magnitude and quality of the secondary antibody response correlated with the abundance of these neutrophils, monocytes, and dendritic cells that were modified phenotypically and enriched prior to revaccination at 2 months, but not 2 weeks. These late phenotypic modifications were associated with an enhanced ex vivo cytokine production (including IL-12/23 and IL-1β) by PBMCs short after the second immunization, linking phenotype and functions. This integrated analysis reveals a deep impact of the timing between immunizations, and highlights the importance of early but also late innate responses involving phenotypical changes, in shaping humoral immunity.
Collapse
|
28
|
Khoomrung S, Nookaew I, Sen P, Olafsdottir TA, Persson J, Moritz T, Andersen P, Harandi AM, Nielsen J. Metabolic Profiling and Compound-Class Identification Reveal Alterations in Serum Triglyceride Levels in Mice Immunized with Human Vaccine Adjuvant Alum. J Proteome Res 2020; 19:269-278. [PMID: 31625748 DOI: 10.1021/acs.jproteome.9b00517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Alum has been widely used as an adjuvant for human vaccines; however, the impact of Alum on host metabolism remains largely unknown. Herein, we applied mass spectrometry (MS) (liquid chromatography-MS)-based metabolic and lipid profiling to monitor the effects of the Alum adjuvant on mouse serum at 6, 24, 72, and 168 h post-vaccination. We propose a new strategy termed subclass identification and annotation for metabolomics for class-wise identification of untargeted metabolomics data generated from high-resolution MS. Using this approach, we identified and validated the levels of several lipids in mouse serum that were significantly altered following Alum administration. These lipids showed a biphasic response even 168 h after vaccination. The majority of the lipids were triglycerides (TAGs), where TAGs with long-chain unsaturated fatty acids (FAs) decreased at 24 h and TAGs with short-chain FAs decreased at 168 h. To our knowledge, this is the first report on the impact of human vaccine adjuvant Alum on the host metabolome, which may provide new insights into the mechanism of action of Alum.
Collapse
Affiliation(s)
- Sakda Khoomrung
- Systems and Synthetic Biology, Department of Biology and Biological Engineering , Chalmers University of Technology , Gothenburg SE-412 96 , Sweden.,Department of Biochemistry and Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital , Mahidol University , Bangkok 10700 , Thailand.,Center for Innovation in Chemistry (PERCH-CIC), Faculty of Science , Mahidol University , Rama 6 Road , Bangkok 10400 , Thailand
| | - Intawat Nookaew
- Systems and Synthetic Biology, Department of Biology and Biological Engineering , Chalmers University of Technology , Gothenburg SE-412 96 , Sweden.,Department of Biomedical Informatics, College of Medicine , University of Arkansas for Medical Sciences , Little Rock 72205 , United States
| | - Partho Sen
- Systems and Synthetic Biology, Department of Biology and Biological Engineering , Chalmers University of Technology , Gothenburg SE-412 96 , Sweden
| | - Thorunn A Olafsdottir
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy , University of Gothenburg , Gothenburg SE-405 30 , Sweden
| | - Josefine Persson
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy , University of Gothenburg , Gothenburg SE-405 30 , Sweden
| | - Thomas Moritz
- Swedish Metabolomics Centre, Department of Forest Genetics and Plant Physiology , Swedish University of Agricultural Sciences , Umeå 750 07 , Sweden
| | | | - Ali M Harandi
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy , University of Gothenburg , Gothenburg SE-405 30 , Sweden.,Vaccine Evaluation Center, BC Children's Hospital Research Institute , The University of British Columbia , 950 West 28th Avenue , Vancouver , BC V5Z 4H4 , Canada
| | - Jens Nielsen
- Systems and Synthetic Biology, Department of Biology and Biological Engineering , Chalmers University of Technology , Gothenburg SE-412 96 , Sweden
| |
Collapse
|
29
|
Sharma M, Krammer F, García-Sastre A, Tripathi S. Moving from Empirical to Rational Vaccine Design in the 'Omics' Era. Vaccines (Basel) 2019; 7:vaccines7030089. [PMID: 31416125 PMCID: PMC6789792 DOI: 10.3390/vaccines7030089] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/11/2022] Open
Abstract
An ideal vaccine provides long lasting protection against a pathogen by eliciting a well-rounded immune response which engages both innate and adaptive immunity. However, we have a limited understanding of how components of innate immunity, antibody and cell-mediated adaptive immunity interact and function together at a systems level. With advances in high-throughput ‘Omics’ methodologies it has become possible to capture global changes in the host, at a cellular and molecular level, that are induced by vaccination and infection. Analysis of these datasets has shown the promise of discovering mechanisms behind vaccine mediated protection, immunological memory, adverse effects as well as development of more efficient antigens and adjuvants. In this review, we will discuss how systems vaccinology takes advantage of new technology platforms and big data analysis, to enable the rational development of better vaccines.
Collapse
Affiliation(s)
- Mansi Sharma
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bengaluru 560012, India
- Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru 560012, India
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shashank Tripathi
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bengaluru 560012, India.
- Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru 560012, India.
| |
Collapse
|
30
|
Crooke SN, Ovsyannikova IG, Poland GA, Kennedy RB. Immunosenescence: A systems-level overview of immune cell biology and strategies for improving vaccine responses. Exp Gerontol 2019; 124:110632. [PMID: 31201918 DOI: 10.1016/j.exger.2019.110632] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/30/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023]
Abstract
Immunosenescence contributes to a decreased capacity of the immune system to respond effectively to infections or vaccines in the elderly. The full extent of the biological changes that lead to immunosenescence are unknown, but numerous cell types involved in innate and adaptive immunity exhibit altered phenotypes and function as a result of aging. These manifestations of immunosenescence at the cellular level are mediated by dysregulation at the genetic level, and changes throughout the immune system are, in turn, propagated by numerous cellular interactions. Environmental factors, such as nutrition, also exert significant influence on the immune system during aging. While the mechanisms that govern the onset of immunosenescence are complex, systems biology approaches allow for the identification of individual contributions from each component within the system as a whole. Although there is still much to learn regarding immunosenescence, systems-level studies of vaccine responses have been highly informative and will guide the development of new vaccine candidates, novel adjuvant formulations, and immunotherapeutic drugs to improve vaccine responses among the aging population.
Collapse
Affiliation(s)
- Stephen N Crooke
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA.
| | | | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA.
| | - Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
31
|
Hill DL, Pierson W, Bolland DJ, Mkindi C, Carr EJ, Wang J, Houard S, Wingett SW, Audran R, Wallin EF, Jongo SA, Kamaka K, Zand M, Spertini F, Daubenberger C, Corcoran AE, Linterman MA. The adjuvant GLA-SE promotes human Tfh cell expansion and emergence of public TCRβ clonotypes. J Exp Med 2019; 216:1857-1873. [PMID: 31175140 PMCID: PMC6683991 DOI: 10.1084/jem.20190301] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/08/2019] [Accepted: 05/14/2019] [Indexed: 11/09/2022] Open
Abstract
A rational strategy to achieve optimal vaccine responses is to potentiate Tfh cells and the germinal center response. This work shows the adjuvant GLA-SE enhances circulating Tfh cells and enduring antibody responses to a malaria vaccine in Tanzanian adults. The generation of protective humoral immunity after vaccination relies on the productive interaction between antigen-specific B cells and T follicular helper (Tfh) cells. Despite the central role of Tfh cells in vaccine responses, there is currently no validated way to enhance their differentiation in humans. From paired human lymph node and blood samples, we identify a population of circulating Tfh cells that are transcriptionally and clonally similar to germinal center Tfh cells. In a clinical trial of vaccine formulations, circulating Tfh cells were expanded in Tanzanian volunteers when an experimental malaria vaccine was adjuvanted in GLA-SE but not when formulated in Alum. The GLA-SE–formulated peptide was associated with an increase in the extrafollicular antibody response, long-lived antibody production, and the emergence of public TCRβ clonotypes in circulating Tfh cells. We demonstrate that altering vaccine adjuvants is a rational approach for enhancing Tfh cells in humans, thereby supporting the long-lived humoral immunity that is required for effective vaccines.
Collapse
Affiliation(s)
- Danika L Hill
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, UK
| | - Wim Pierson
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, UK
| | - Daniel J Bolland
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, UK
| | | | - Edward J Carr
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, UK.,Department of Medicine, University of Cambridge, Cambridge, UK
| | - Jiong Wang
- Division of Nephrology, Department of Medicine and Clinical and Translational Science Institute, University of Rochester Medical Center, Rochester, NY
| | | | - Steven W Wingett
- Babraham Bioinformatics Facility, Babraham Institute, Cambridge, UK
| | - Regine Audran
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | | | | | | | - Martin Zand
- Division of Nephrology, Department of Medicine and Clinical and Translational Science Institute, University of Rochester Medical Center, Rochester, NY
| | - Francois Spertini
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Claudia Daubenberger
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Anne E Corcoran
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, UK
| | - Michelle A Linterman
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, UK
| |
Collapse
|
32
|
Ciabattini A, Nardini C, Santoro F, Garagnani P, Franceschi C, Medaglini D. Vaccination in the elderly: The challenge of immune changes with aging. Semin Immunol 2019; 40:83-94. [PMID: 30501873 DOI: 10.1016/j.smim.2018.10.010] [Citation(s) in RCA: 276] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/13/2022]
Abstract
The unprecedented increase of life expectancy challenges society to protect the elderly from morbidity and mortality making vaccination a crucial mean to safeguard this population. Indeed, infectious diseases, such as influenza and pneumonia, are among the top killers of elderly people in the world. Elderly individuals are more prone to severe infections and less responsive to vaccination prevention, due to immunosenescence combined with the progressive increase of a proinflammatory status characteristic of the aging process (inflammaging). These factors are responsible for most age-related diseases and correlate with poor response to vaccination. Therefore, it is of utmost interest to deepen the knowledge regarding the role of inflammaging in vaccination responsiveness to support the development of effective vaccination strategies designed for elderly. In this review we analyse the impact of age-associated factors such as inflammaging, immunosenescence and immunobiography on immune response to vaccination in the elderly, and we consider systems biology approaches as a mean for integrating a multitude of data in order to rationally design vaccination approaches specifically tailored for the elderly.
Collapse
Affiliation(s)
- Annalisa Ciabattini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Viale Bracci 16, 53100, Siena, Italy
| | - Christine Nardini
- Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, SE-171 77, Stockholm, Sweden; Personal Genomics S.r.l., Via Roveggia, 43B, 37134, Verona, Italy; CNR IAC "Mauro Picone", Via dei Taurini, 19, 00185, Roma, Italy
| | - Francesco Santoro
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Viale Bracci 16, 53100, Siena, Italy
| | - Paolo Garagnani
- Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, SE-171 77, Stockholm, Sweden; Interdepartmental Centre 'L. Galvani' (CIG), University of Bologna, Via G. Petroni 26, 40139, Bologna, Italy; Department of Experimental, Diagnostic and Specialty Medicine (DIMES) - University of Bologna,40139, Bologna, Italy
| | - Claudio Franceschi
- IRCCS, Institute of Neurological Sciences of Bologna, Via Altura 3, 40139, Bologna, Italy.
| | - Donata Medaglini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Viale Bracci 16, 53100, Siena, Italy.
| |
Collapse
|
33
|
Gage E, Van Hoeven N, Dubois Cauwelaert N, Larsen SE, Erasmus J, Orr MT, Coler RN. Memory CD4 + T cells enhance B-cell responses to drifting influenza immunization. Eur J Immunol 2018; 49:266-276. [PMID: 30548475 DOI: 10.1002/eji.201847852] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/13/2018] [Accepted: 12/11/2018] [Indexed: 12/14/2022]
Abstract
Influenza A annually infects 5-10% of the world's human population resulting in one million deaths. Influenza causes annual epidemics and reinfects previously exposed individuals because of antigenic drift in the glycoprotein hemagglutinin. Due to antigenic drift, the immune system is simultaneously exposed to novel and conserved parts of the influenza virus via vaccination and/or infection throughout life. Preexisting immunity has long been known to augment subsequent hemagglutination inhibitory antibody (hAb) responses. However, the preexisting immunological contributors that influence hAb responses are not understood. Therefore, we adapted and developed sequential infection and immunization mouse models using drifted influenza strains to show that MHC Class II haplotype and T-cell reactivity influences subsequent hAb responses. We found that CB6F1 mice infected with A/CA followed by immunization with A/PR8 have increased hAb responses to A/PR8 compared to C57BL/6 mice. Increased hAb responses in CB6F1 mice were CD4+ T-cell and B-cell dependent and corresponded to increased germinal center A/PR8-specific B and T-follicular helper cells. These results suggest conserved MHC Class II restricted epitopes within HA are essential for B cells to respond to drifting influenza and could be leveraged to boost hAb responses.
Collapse
Affiliation(s)
- Emily Gage
- Infectious Disease Research Institute, Seattle, WA, USA.,Department of Global Health, University of Washington, Seattle, WA, USA
| | - Neal Van Hoeven
- Infectious Disease Research Institute, Seattle, WA, USA.,Department of Global Health, University of Washington, Seattle, WA, USA.,PAI Life Sciences, Seattle, WA, USA
| | | | | | - Jesse Erasmus
- Infectious Disease Research Institute, Seattle, WA, USA
| | - Mark T Orr
- Infectious Disease Research Institute, Seattle, WA, USA.,Department of Global Health, University of Washington, Seattle, WA, USA
| | - Rhea N Coler
- Infectious Disease Research Institute, Seattle, WA, USA.,Department of Global Health, University of Washington, Seattle, WA, USA.,PAI Life Sciences, Seattle, WA, USA
| |
Collapse
|
34
|
Raeven RHM, van Riet E, Meiring HD, Metz B, Kersten GFA. Systems vaccinology and big data in the vaccine development chain. Immunology 2018; 156:33-46. [PMID: 30317555 PMCID: PMC6283655 DOI: 10.1111/imm.13012] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/03/2018] [Indexed: 02/06/2023] Open
Abstract
Systems vaccinology has proven a fascinating development in the last decade. Where traditionally vaccine development has been dominated by trial and error, systems vaccinology is a tool that provides novel and comprehensive understanding if properly used. Data sets retrieved from systems‐based studies endorse rational design and effective development of safe and efficacious vaccines. In this review we first describe different omics‐techniques that form the pillars of systems vaccinology. In the second part, the application of systems vaccinology in the different stages of vaccine development is described. Overall, this review shows that systems vaccinology has become an important tool anywhere in the vaccine development chain.
Collapse
Affiliation(s)
- René H M Raeven
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands
| | - Elly van Riet
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands
| | - Hugo D Meiring
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands
| | - Bernard Metz
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands
| | - Gideon F A Kersten
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands.,Leiden Academic Center for Drug Research, Division of Biotherapeutics, Leiden University, Leiden, The Netherlands
| |
Collapse
|
35
|
Grapov D, Fahrmann J, Wanichthanarak K, Khoomrung S. Rise of Deep Learning for Genomic, Proteomic, and Metabolomic Data Integration in Precision Medicine. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 22:630-636. [PMID: 30124358 PMCID: PMC6207407 DOI: 10.1089/omi.2018.0097] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Machine learning (ML) is being ubiquitously incorporated into everyday products such as Internet search, email spam filters, product recommendations, image classification, and speech recognition. New approaches for highly integrated manufacturing and automation such as the Industry 4.0 and the Internet of things are also converging with ML methodologies. Many approaches incorporate complex artificial neural network architectures and are collectively referred to as deep learning (DL) applications. These methods have been shown capable of representing and learning predictable relationships in many diverse forms of data and hold promise for transforming the future of omics research and applications in precision medicine. Omics and electronic health record data pose considerable challenges for DL. This is due to many factors such as low signal to noise, analytical variance, and complex data integration requirements. However, DL models have already been shown capable of both improving the ease of data encoding and predictive model performance over alternative approaches. It may not be surprising that concepts encountered in DL share similarities with those observed in biological message relay systems such as gene, protein, and metabolite networks. This expert review examines the challenges and opportunities for DL at a systems and biological scale for a precision medicine readership.
Collapse
Affiliation(s)
- Dmitry Grapov
- CDS-Creative Data Solutions LLC, Ballwin, Missouri, www.createdatasol.com
| | - Johannes Fahrmann
- Department of Clinical Cancer Prevention, University of Texas MD Anderson, Houston, Texas
| | - Kwanjeera Wanichthanarak
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sakda Khoomrung
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
36
|
Abstract
The discovery and wide spread use of vaccines have saved millions of lives in the past few decades. Vaccine adjuvants represent an integral part of the modern vaccines. Despite numerous efforts, however, only a handful of vaccine adjuvants is currently available for human use. A comprehensive understanding of the mechanisms of action of adjuvants is pivotal to harness the potential of existing and new adjuvants in mounting desirable immune responses to counter human pathogens. Decomposing the host response to vaccines and its components at systems level has recently been made possible owing to the recent advancements in Omics technology and cutting edge immunological assays powered by systems biology approaches. This approach has begun to shed light on the molecular signatures of several human vaccines and adjuvants. This review is an attempt to provide an overview of the recent efforts in systems analysis of vaccine adjuvants that are currently in clinic.
Collapse
Affiliation(s)
- Ali M Harandi
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden.
| |
Collapse
|
37
|
Santoro F, Pettini E, Kazmin D, Ciabattini A, Fiorino F, Gilfillan GD, Evenroed IM, Andersen P, Pozzi G, Medaglini D. Transcriptomics of the Vaccine Immune Response: Priming With Adjuvant Modulates Recall Innate Responses After Boosting. Front Immunol 2018; 9:1248. [PMID: 29922291 PMCID: PMC5996052 DOI: 10.3389/fimmu.2018.01248] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/18/2018] [Indexed: 12/17/2022] Open
Abstract
Transcriptomic profiling of the immune response induced by vaccine adjuvants is of critical importance for the rational design of vaccination strategies. In this study, transcriptomics was employed to profile the effect of the vaccine adjuvant used for priming on the immune response following re-exposure to the vaccine antigen alone. Mice were primed with the chimeric vaccine antigen H56 of Mycobacterium tuberculosis administered alone or with the CAF01 adjuvant and boosted with the antigen alone. mRNA sequencing was performed on blood samples collected 1, 2, and 7 days after priming and after boosting. Gene expression analysis at day 2 after priming showed that the CAF01 adjuvanted vaccine induced a stronger upregulation of the innate immunity modules compared with the unadjuvanted formulation. The immunostimulant effect of the CAF01 adjuvant, used in the primary immunization, was clearly seen after a booster immunization with a low dose of antigen alone. One day after boost, we observed a strong upregulation of multiple genes in blood of mice primed with H56 + CAF01 compared with mice primed with the H56 alone. In particular, blood transcription modules related to innate immune response, such as monocyte and neutrophil recruitment, activation of antigen-presenting cells, and interferon response were activated. Seven days after boost, differential expression of innate response genes faded while a moderate differential expression of T cell activation modules was appreciable. Indeed, immunological analysis showed a higher frequency of H56-specific CD4+ T cells and germinal center B cells in draining lymph nodes, a strong H56-specific humoral response and a higher frequency of antibody-secreting cells in spleen of mice primed with H56 + CAF01. Taken together, these data indicate that the adjuvant used for priming strongly reprograms the immune response that, upon boosting, results in a stronger recall innate response essential for shaping the downstream adaptive response.
Collapse
Affiliation(s)
- Francesco Santoro
- Laboratorio di Microbiologia Molecolare e Biotecnologia (LA.M.M.B.), Dipartimento di Biotecnologie Mediche, Università di Siena, Siena, Italy
| | - Elena Pettini
- Laboratorio di Microbiologia Molecolare e Biotecnologia (LA.M.M.B.), Dipartimento di Biotecnologie Mediche, Università di Siena, Siena, Italy
| | - Dmitri Kazmin
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Annalisa Ciabattini
- Laboratorio di Microbiologia Molecolare e Biotecnologia (LA.M.M.B.), Dipartimento di Biotecnologie Mediche, Università di Siena, Siena, Italy
| | - Fabio Fiorino
- Laboratorio di Microbiologia Molecolare e Biotecnologia (LA.M.M.B.), Dipartimento di Biotecnologie Mediche, Università di Siena, Siena, Italy
| | - Gregor D Gilfillan
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Ida M Evenroed
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Peter Andersen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Gianni Pozzi
- Laboratorio di Microbiologia Molecolare e Biotecnologia (LA.M.M.B.), Dipartimento di Biotecnologie Mediche, Università di Siena, Siena, Italy
| | - Donata Medaglini
- Laboratorio di Microbiologia Molecolare e Biotecnologia (LA.M.M.B.), Dipartimento di Biotecnologie Mediche, Università di Siena, Siena, Italy
| |
Collapse
|
38
|
Seydoux E, Liang H, Dubois Cauwelaert N, Archer M, Rintala ND, Kramer R, Carter D, Fox CB, Orr MT. Effective Combination Adjuvants Engage Both TLR and Inflammasome Pathways To Promote Potent Adaptive Immune Responses. THE JOURNAL OF IMMUNOLOGY 2018; 201:98-112. [PMID: 29769270 DOI: 10.4049/jimmunol.1701604] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/24/2018] [Indexed: 11/19/2022]
Abstract
The involvement of innate receptors that recognize pathogen- and danger-associated molecular patterns is critical to programming an effective adaptive immune response to vaccination. The synthetic TLR4 agonist glucopyranosyl lipid adjuvant (GLA) synergizes with the squalene oil-in-water emulsion (SE) formulation to induce strong adaptive responses. Although TLR4 signaling through MyD88 and TIR domain-containing adapter inducing IFN-β are essential for GLA-SE activity, the mechanisms underlying the synergistic activity of GLA and SE are not fully understood. In this article, we demonstrate that the inflammasome activation and the subsequent release of IL-1β are central effectors of the action of GLA-SE, as infiltration of innate cells into the draining lymph nodes and production of IFN-γ are reduced in ASC-/- animals. Importantly, the early proliferation of Ag-specific CD4+ T cells was completely ablated after immunization in ASC-/- animals. Moreover, numbers of Ag-specific CD4+ T and B cells as well as production of IFN-γ, TNF-α, and IL-2 and Ab titers were considerably reduced in ASC-/-, NLRP3-/-, and IL-1R-/- mice compared with wild-type mice and were completely ablated in TLR4-/- animals. Also, extracellular ATP, a known trigger of the inflammasome, augments Ag-specific CD4+ T cell responses, as hydrolyzing it with apyrase diminished adaptive responses induced by GLA-SE. These data thus demonstrate that GLA-SE adjuvanticity acts through TLR4 signaling and NLRP3 inflammasome activation to promote robust Th1 and B cell responses to vaccine Ags. The findings suggest that engagement of both TLR and inflammasome activators may be a general paradigm for induction of robust CD4 T cell immunity with combination adjuvants such as GLA-SE.
Collapse
Affiliation(s)
- Emilie Seydoux
- Infectious Disease Research Institute, Seattle, WA 98102; and
| | - Hong Liang
- Infectious Disease Research Institute, Seattle, WA 98102; and
| | | | - Michelle Archer
- Infectious Disease Research Institute, Seattle, WA 98102; and
| | | | - Ryan Kramer
- Infectious Disease Research Institute, Seattle, WA 98102; and
| | - Darrick Carter
- Infectious Disease Research Institute, Seattle, WA 98102; and.,Department of Global Health, University of Washington, Seattle, WA 98195
| | - Christopher B Fox
- Infectious Disease Research Institute, Seattle, WA 98102; and.,Department of Global Health, University of Washington, Seattle, WA 98195
| | - Mark T Orr
- Infectious Disease Research Institute, Seattle, WA 98102; and .,Department of Global Health, University of Washington, Seattle, WA 98195
| |
Collapse
|
39
|
Weinberger B. Adjuvant strategies to improve vaccination of the elderly population. Curr Opin Pharmacol 2018; 41:34-41. [PMID: 29677646 DOI: 10.1016/j.coph.2018.03.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/30/2018] [Indexed: 10/17/2022]
Abstract
Immunosenescence contributes to increased incidence and severity of many infections in old age and is responsible for impaired immunogenicity and efficacy of vaccines. Adjuvants are one strategy to enhance immunogenicity of vaccines. The oil-in-water emulsions MF59TM and AS03, as well as a virosomal vaccine have been licensed in seasonal or pandemic influenza vaccines and are/were used successfully in the elderly. AS01, a liposome-based adjuvant comprising two immunostimulants has recently been approved in a recombinant protein vaccine for older adults, which showed very high efficacy against herpes zoster in clinical trials. Several adjuvants for use in the older population are in clinical and preclinical development and will hopefully improve vaccines for this age group in the future.
Collapse
Affiliation(s)
- Birgit Weinberger
- Institute for Biomedical Aging Research, Universität Innsbruck, Innsbruck, Austria.
| |
Collapse
|
40
|
Vono M, Eberhardt CS, Mohr E, Auderset F, Christensen D, Schmolke M, Coler R, Meinke A, Andersen P, Lambert PH, Mastelic-Gavillet B, Siegrist CA. Overcoming the Neonatal Limitations of Inducing Germinal Centers through Liposome-Based Adjuvants Including C-Type Lectin Agonists Trehalose Dibehenate or Curdlan. Front Immunol 2018. [PMID: 29541075 PMCID: PMC5835515 DOI: 10.3389/fimmu.2018.00381] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Neonates and infants are more vulnerable to infections and show reduced responses to vaccination. Consequently, repeated immunizations are required to induce protection and early life vaccines against major pathogens such as influenza are yet unavailable. Formulating antigens with potent adjuvants, including immunostimulators and delivery systems, is a demonstrated approach to enhance vaccine efficacy. Yet, adjuvants effective in adults may not meet the specific requirements for activating the early life immune system. Here, we assessed the neonatal adjuvanticity of three novel adjuvants including TLR4 (glucopyranosyl lipid adjuvant-squalene emulsion), TLR9 (IC31®), and Mincle (CAF01) agonists, which all induce germinal centers (GCs) and potent antibody responses to influenza hemagglutinin (HA) in adult mice. In neonates, a single dose of HA formulated into each adjuvant induced T follicular helper (TFH) cells. However, only HA/CAF01 elicited significantly higher and sustained antibody responses, engaging neonatal B cells to differentiate into GCs already after a single dose. Although antibody titers remained lower than in adults, HA-specific responses induced by a single neonatal dose of HA/CAF01 were sufficient to confer protection against influenza viral challenge. Postulating that the neonatal adjuvanticity of CAF01 may result from the functionality of the C-type lectin receptor (CLR) Mincle in early life we asked whether other C-type lectin agonists would show a similar neonatal adjuvanticity. Replacing the Mincle agonist trehalose 6,6′-dibehenate by Curdlan, which binds to Dectin-1, enhanced antibody responses through the induction of similar levels of TFH, GCs and bone marrow high-affinity plasma cells. Thus, specific requirements of early life B cells may already be met after a single vaccine dose using CLR-activating agonists, identified here as promising B cell immunostimulators for early life vaccines when included into cationic liposomes.
Collapse
Affiliation(s)
- Maria Vono
- WHO Collaborative Center for Vaccine Immunology, Department of Pathology-Immunology, University of Geneva, Geneva, Switzerland
| | - Christiane Sigrid Eberhardt
- WHO Collaborative Center for Vaccine Immunology, Department of Pathology-Immunology, University of Geneva, Geneva, Switzerland.,WHO Collaborative Center for Vaccine Immunology, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| | - Elodie Mohr
- WHO Collaborative Center for Vaccine Immunology, Department of Pathology-Immunology, University of Geneva, Geneva, Switzerland
| | - Floriane Auderset
- WHO Collaborative Center for Vaccine Immunology, Department of Pathology-Immunology, University of Geneva, Geneva, Switzerland
| | - Dennis Christensen
- Vaccine Adjuvant Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Mirco Schmolke
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Rhea Coler
- Infectious Disease Research Institute, Seattle, WA, United States
| | | | - Peter Andersen
- Vaccine Adjuvant Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Paul-Henri Lambert
- WHO Collaborative Center for Vaccine Immunology, Department of Pathology-Immunology, University of Geneva, Geneva, Switzerland
| | - Beatris Mastelic-Gavillet
- WHO Collaborative Center for Vaccine Immunology, Department of Pathology-Immunology, University of Geneva, Geneva, Switzerland
| | - Claire-Anne Siegrist
- WHO Collaborative Center for Vaccine Immunology, Department of Pathology-Immunology, University of Geneva, Geneva, Switzerland.,WHO Collaborative Center for Vaccine Immunology, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| |
Collapse
|
41
|
Anderson J, Olafsdottir TA, Kratochvil S, McKay PF, Östensson M, Persson J, Shattock RJ, Harandi AM. Molecular Signatures of a TLR4 Agonist-Adjuvanted HIV-1 Vaccine Candidate in Humans. Front Immunol 2018. [PMID: 29535712 PMCID: PMC5834766 DOI: 10.3389/fimmu.2018.00301] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Systems biology approaches have recently provided new insights into the mechanisms of action of human vaccines and adjuvants. Here, we investigated early transcriptional signatures induced in whole blood of healthy subjects following vaccination with a recombinant HIV-1 envelope glycoprotein subunit CN54gp140 adjuvanted with the TLR4 agonist glucopyranosyl lipid adjuvant-aqueous formulation (GLA-AF) and correlated signatures to CN54gp140-specific serum antibody responses. Fourteen healthy volunteers aged 18–45 years were immunized intramuscularly three times at 1-month intervals and whole blood samples were collected at baseline, 6 h, and 1, 3, and 7 days post first immunization. Subtle changes in the transcriptomic profiles were observed following immunization, ranging from over 300 differentially expressed genes (DEGs) at day 1 to nearly 100 DEGs at day 7 following immunization. Functional pathway analysis revealed blood transcription modules (BTMs) related to general cell cycle activation, and innate immune cell activation at early time points, as well as BTMs related to T cells and B cell activation at the later time points post-immunization. Diverse CN54gp140-specific serum antibody responses of the subjects enabled their categorization into high or low responders, at early (<1 month) and late (up to 6 months) time points post vaccination. BTM analyses revealed repression of modules enriched in NK cells, and the mitochondrial electron chain, in individuals with high or sustained antigen-specific antibody responses. However, low responders showed an enhancement of BTMs associated with enrichment in myeloid cells and monocytes as well as integrin cell surface interactions. Flow cytometry analysis of peripheral blood mononuclear cells obtained from the subjects revealed an enhanced frequency of CD56dim NK cells in the majority of vaccines 14 days after vaccination as compared with the baseline. These results emphasize the utility of a systems biology approach to enhance our understanding on the mechanisms of action of TLR4 adjuvanted human vaccines.
Collapse
Affiliation(s)
- Jenna Anderson
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thorunn A Olafsdottir
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sven Kratochvil
- Department of Medicine, Mucosal Infection and Immunity Group, Section of Virology, Imperial College London, London, United Kingdom
| | - Paul F McKay
- Department of Medicine, Mucosal Infection and Immunity Group, Section of Virology, Imperial College London, London, United Kingdom
| | - Malin Östensson
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Josefine Persson
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Robin J Shattock
- Department of Medicine, Mucosal Infection and Immunity Group, Section of Virology, Imperial College London, London, United Kingdom
| | - Ali M Harandi
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
42
|
Medaglini D, De Azero MR, Leroy O, Bietrix F, Denoel P. Innovation Partnership for a Roadmap on Vaccines in Europe (IPROVE): A vision for the vaccines of tomorrow. Vaccine 2018; 36:1136-1145. [PMID: 29395517 DOI: 10.1016/j.vaccine.2017.11.069] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/22/2017] [Indexed: 12/21/2022]
Abstract
A clear vision for vaccines research and development (R&D) is needed if Europe is to continue to lead the discovery of next generation vaccines. Innovation Partnership for a Roadmap on Vaccines in Europe (IPROVE) is a collaboration between leading vaccine experts to develop a roadmap setting out how Europe can best invest in the science and technology essential for vaccines innovation. This FP7 project, started in December 2013, brought together more than 130 key public and private stakeholders from academia, public health institutes, regulators, industry and small and medium-sized enterprises to determine and prioritise the gaps and challenges to be addressed to bolster innovation in vaccines and vaccination in Europe. The IPROVE consultation process was structured around seven themes: vaccine R&D, manufacturing and quality control, infrastructure, therapeutic vaccines, needs of small and medium-sized enterprises, vaccines acceptance and training needs. More than 80 recommendations were made by the consultation groups, mainly focused on the need for a multidisciplinary research approach to stimulate innovation, accelerated translation of scientific knowledge into technological innovation, and fostering of real collaboration within the European vaccine ecosystem. The consultation also reinforced the fact that vaccines are only as good as their vaccine implementation programmes, and that more must be done to understand and address vaccination hesitancy of both the general public and healthcare professionals. Bringing together a wide range of stakeholders to work on the IPROVE roadmap has increased mutual understanding of their different perspectives, needs and priorities. IPROVE is a first attempt to develop such a comprehensive view of the vaccine sector. This prioritisation effort, aims to help policy-makers and funders identify those vaccine-related areas and technologies where key investment is needed for short and medium-long term success.
Collapse
Affiliation(s)
- Donata Medaglini
- University of Siena, Department of Medical Biotechnologies, Viale Bracci, 53100 Siena, Italy; Sclavo Vaccines Association, Via Fiorentina 1, 53100 Siena, Italy.
| | | | - Odile Leroy
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Voßstraße 2, Geb. 4040, 69115 Heidelberg, Germany
| | - Florence Bietrix
- EATRIS ERIC, De Boelelaan 1118, 1081 HZ Amsterdam, The Netherlands
| | - Philippe Denoel
- GSK Vaccines, Rue de l'Institut 89, 1330 Rixensart, Belgium(1)
| |
Collapse
|
43
|
Younis SY, Barnier-Quer C, Heuking S, Sommandas V, Brunner L, Vd Werff N, Dubois P, Friede M, Kocken C, Collin N, Remarque E. Down selecting adjuvanted vaccine formulations: a comparative method for harmonized evaluation. BMC Immunol 2018; 19:6. [PMID: 29386070 PMCID: PMC5793412 DOI: 10.1186/s12865-018-0245-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 01/24/2018] [Indexed: 11/16/2022] Open
Abstract
Background The need for rapid and accurate comparison of panels of adjuvanted vaccine formulations and subsequent rational down selection, presents several challenges for modern vaccine development. Here we describe a method which may enable vaccine and adjuvant developers to compare antigen/adjuvant combinations in a harmonized fashion. Three reference antigens: Plasmodium falciparum apical membrane antigen 1 (AMA1), hepatitis B virus surface antigen (HBsAg), and Mycobacterium tuberculosis antigen 85A (Ag85A), were selected as model antigens and were each formulated with three adjuvants: aluminium oxyhydroxide, squalene-in-water emulsion, and a liposome formulation mixed with the purified saponin fraction QS21. Results The nine antigen/adjuvant formulations were assessed for stability and immunogenicity in mice in order to provide benchmarks against which other formulations could be compared, in order to assist subsequent down selection of adjuvanted vaccines. Furthermore, mouse cellular immune responses were analyzed by measuring IFN-γ and IL-5 production in splenocytes by ELISPOT, and humoral responses were determined by antigen-specific ELISA, where levels of total IgG, IgG1, IgG2b and IgG2c in serum samples were determined. Conclusions The reference antigens and adjuvants described in this study, which span a spectrum of immune responses, are of potential use as tools to act as points of reference in vaccine development studies. The harmonized methodology described herein may be used as a tool for adjuvant/antigen comparison studies.
Collapse
Affiliation(s)
- Sumera Y Younis
- Biomedical Primate Research Centre, Department of Parasitology, Rijswijk, The Netherlands
| | | | - Simon Heuking
- Vaccine Formulation Laboratory, University of Lausanne, Epalinges, Switzerland
| | - Vinod Sommandas
- Biomedical Primate Research Centre, Department of Parasitology, Rijswijk, The Netherlands
| | - Livia Brunner
- Vaccine Formulation Laboratory, University of Lausanne, Epalinges, Switzerland
| | - Nicole Vd Werff
- Biomedical Primate Research Centre, Department of Parasitology, Rijswijk, The Netherlands
| | - Patrice Dubois
- Vaccine Formulation Laboratory, University of Lausanne, Epalinges, Switzerland
| | | | - Clemens Kocken
- Biomedical Primate Research Centre, Department of Parasitology, Rijswijk, The Netherlands
| | - Nicolas Collin
- Vaccine Formulation Laboratory, University of Lausanne, Epalinges, Switzerland
| | - Ed Remarque
- Biomedical Primate Research Centre, Department of Parasitology, Rijswijk, The Netherlands.
| |
Collapse
|
44
|
Sen P, Kemppainen E, Orešič M. Perspectives on Systems Modeling of Human Peripheral Blood Mononuclear Cells. Front Mol Biosci 2018; 4:96. [PMID: 29376056 PMCID: PMC5767226 DOI: 10.3389/fmolb.2017.00096] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 12/21/2017] [Indexed: 12/12/2022] Open
Abstract
Human peripheral blood mononuclear cells (PBMCs) are the key drivers of the immune responses. These cells undergo activation, proliferation and differentiation into various subsets. During these processes they initiate metabolic reprogramming, which is coordinated by specific gene and protein activities. PBMCs as a model system have been widely used to study metabolic and autoimmune diseases. Herein we review various omics and systems-based approaches such as transcriptomics, epigenomics, proteomics, and metabolomics as applied to PBMCs, particularly T helper subsets, that unveiled disease markers and the underlying mechanisms. We also discuss and emphasize several aspects of T cell metabolic modeling in healthy and disease states using genome-scale metabolic models.
Collapse
Affiliation(s)
- Partho Sen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Esko Kemppainen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Matej Orešič
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.,School of Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
45
|
O'Hagan DT, Friedland LR, Hanon E, Didierlaurent AM. Towards an evidence based approach for the development of adjuvanted vaccines. Curr Opin Immunol 2017; 47:93-102. [PMID: 28755542 DOI: 10.1016/j.coi.2017.07.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/12/2017] [Indexed: 01/29/2023]
Abstract
In the last two decades, several vaccines formulated with a new generation of adjuvants have been licensed or approved to target diseases such as influenza, hepatitis B, cervical cancer, and malaria. These new generation adjuvants appear to work by delivering a localized activation signal to the innate immune system, which in turn promotes antigen-specific adaptive immunity. Advances in understanding of the innate immune system together with high-throughput discovery of synthetic immune potentiators are now expanding the portfolio of new generation adjuvants available for evaluation. Meanwhile, omics and systems biology are providing molecular benchmarks or signatures to assess vaccine safety and effectiveness. This accumulating knowledge and experience raises the prospect that the future selection of the right antigen/adjuvant combination can be more evidence based and can speed up the clinical development program for new adjuvanted vaccines.
Collapse
Affiliation(s)
- Derek T O'Hagan
- GSK Vaccines, 14200 Shady Grove Road, Rockville, MD, USA. derek.t.o'
| | | | - Emmanuel Hanon
- GSK Vaccines, Rue de l'Institut 89, 1330 Rixensart, Belgium
| | | |
Collapse
|
46
|
Kaufmann SH, Weiner J, Maertzdorf J. Accelerating tuberculosis vaccine trials with diagnostic and prognostic biomarkers. Expert Rev Vaccines 2017; 16:845-853. [DOI: 10.1080/14760584.2017.1341316] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Stefan H.E. Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - January Weiner
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Jeroen Maertzdorf
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|