1
|
Jiang S, He L, Cao L, Sun R, Dai Z, Liang YQ, Ren L, Sun S, Li C. Unraveling individual and combined toxicity of microplastics and tetracycline at environment-related concentrations to coral holobionts. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137823. [PMID: 40054197 DOI: 10.1016/j.jhazmat.2025.137823] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/14/2024] [Accepted: 03/01/2025] [Indexed: 04/16/2025]
Abstract
Coral holobionts constitute the foundational organisms of coral reef ecosystems. As an emerging pollutant, the projected accumulated levels of microplastics (MPs) are expected to continue increasing. Meanwhile, due to their properties, MPs can absorb multiple other marine pollutants, such as antibiotics (ATs). However, the co-toxicity mechanism of MPs and ATs to coral holobionts remains to be explored. Here, using Zoanthus sociatus as a model organism, we investigate the individual and combined toxicity of MPs and tetracycline (TC) at environment-related concentrations to coral holobionts. Microbiomics indicate that MPs and TC increase coral holobionts bacterial species richness while concurrently reducing the microbial community structure stability. The key metabolites and enzyme activity results demonstrated that the impacts of MPs and TC on corals encompassed antioxidant capacity, detoxification capability, immune function, and lipid metabolism. Transcriptomics shows that MPs and TC disrupt coral-algae relationships mainly through host nutrition limitation and inhibition of symbiotic algae carbon/nitrogen metabolism, respectively. A synergistic effect between MPs and TC has also been observed. In contrast, coral holobionts have shown adaptability through activating coral-symbiodiniaceae-bacteria interactions, mainly including: 1) enhancing the abundance of BMCs (beneficial microorganisms for corals); 2) enhancing host lipid accumulation; 3) immunoregulation; 4) symbiotic regulation. Overall, our findings provide new insights into the co-toxicity of MPs and TC, and highlight those MPs and TC at current environment concentration and predicted for most oceans in the coming decades, can ultimately cause coral bleaching.
Collapse
Affiliation(s)
- Shiqi Jiang
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Lei He
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Linglong Cao
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Ruikun Sun
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhenqing Dai
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Yan-Qiu Liang
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Lei Ren
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Shengli Sun
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Chengyong Li
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China; Analytical and Testing Center, Guangdong Ocean University, Zhanjiang 524088, PR China.
| |
Collapse
|
2
|
Avesani A, Auguste M, Doni L, Oliveri C, Azzola A, Bosi E, Montefalcone M, Vezzulli L. First insights into bacterial and microalgal endosymbiont communities of various coral morphotypes from Maldives. Sci Rep 2025; 15:17577. [PMID: 40399396 PMCID: PMC12095573 DOI: 10.1038/s41598-025-02416-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 05/13/2025] [Indexed: 05/23/2025] Open
Abstract
The Maldivian Archipelago is home to valuable coral reefs that have been extensively studied for their ecological diversity. However, the diversity of the microbiome in Maldivian corals remains largely unexplored. In this study, the microbiota compositions (including both algal endosymbionts and bacteria) were investigated for the first time across various coral morphotypes sampled in May 2022 from four Maldivian atolls (Ari, North Malé, South Malé, and Rasdhoo). Coral and gorgonian specimens were collected via scuba diving at reef sites located on both ocean-exposed reefs and lagoon sites, across various depths (0-40 m). Surface seawater samples were also collected near coral assemblages. Metabarcoding analyses were performed, targeting the 16S rRNA gene to assess bacterial composition, and the Internal Transcribed Spacer 2 (ITS2) rRNA region to evaluate microalgal endosymbiont diversity. Generally, the bacterial communities associated with corals exhibited significant diversity, which was primarily influenced by coral morphotype rather than depth or geographic location. These communities were also markedly different when compared to those found in seawater. The three most abundant bacterial taxa in coral samples were Proteobacteria (ranging from 10 to 95%), Bacillota (formerly known as Firmicutes, ranging from 5 to 10%), and Planctomycetota (ranging from < 1-30%). Most Symbiodiniaceae belonged to the genera Cladocopium-C and Durusdinium-D (> 90%), while host specificity was observed for variant types. Overall, this study provides first insights into the structure of Maldivian coral microbiota, which could be crucial for monitoring the health of local coral populations and predicting the potential impacts of changing environmental conditions in the region.
Collapse
Affiliation(s)
- Alessia Avesani
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, 16132, Italy
| | - Manon Auguste
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, 16132, Italy.
- NBFC, National Biodiversity Future Center, Palermo, 90133, Italy.
| | - Lapo Doni
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, 16132, Italy
- NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Caterina Oliveri
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, 16132, Italy
| | - Annalisa Azzola
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, 16132, Italy
- NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Emanuele Bosi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, 16132, Italy
| | - Monica Montefalcone
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, 16132, Italy
| | - Luigi Vezzulli
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, 16132, Italy.
- NBFC, National Biodiversity Future Center, Palermo, 90133, Italy.
| |
Collapse
|
3
|
Barak N, Brekhman V, Aharonovich D, Lotan T, Sher D. Jellyfish blooms through the microbial lens: temporal changes, cross-species and Jellyfish-water comparisons. ENVIRONMENTAL MICROBIOME 2025; 20:49. [PMID: 40346699 PMCID: PMC12063254 DOI: 10.1186/s40793-025-00714-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/22/2025] [Indexed: 05/11/2025]
Abstract
Jellyfish blooms have significant ecological and economic impacts, yet the microbial communities associated with these blooms remain poorly understood, despite their potential influence on host fitness and microbial communities in the surrounding water. In this study, we explored temporal and tissue-specific variations in the microbiota of Rhopilema nomadica, the dominant jellyfish species in the Eastern Mediterranean Sea, across winter and summer blooms. During late summer blooms, microbial richness declined, coinciding with an increase in Endozoicomonas and unclassified Rickettsiales, while Tenacibaculum predominantly characterized winter blooms. Tissue-specific analyses revealed bacterial groups that were more consistently associated with different jellyfish tissues (e.g., Bacteroides in the bell and Simkaniaceae in the gonads), suggesting different microbial niches within the host. Furthermore, some key bacteria associated with R. nomadica, including Endozoicomonas, unclassified Rickettsiales, and Bacteroides were detected in the surrounding bloom water but absent from remote seawater, suggesting potential localized transmission dynamics between jellyfish and their immediate marine environment. Finally, a comparative analysis with nine additional jellyfish species identified recurring microbial taxa, including Endozoicomonas, Mycoplasma, and Spiroplasma, though no universal core microbiota was observed. This study represents the first exploration of microbial dynamics within R. nomadica blooms and the most comprehensive analysis of jellyfish-associated microbiomes across bloom stages and tissues to date. Our findings reveal complex relationships between jellyfish species, bloom progression, their microbial communities, and the surrounding seawater.
Collapse
Affiliation(s)
- Noga Barak
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 3103301, Israel
| | - Vera Brekhman
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 3103301, Israel
| | - Dikla Aharonovich
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 3103301, Israel
| | - Tamar Lotan
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 3103301, Israel.
| | - Daniel Sher
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 3103301, Israel.
| |
Collapse
|
4
|
Raymundo LJ, Andersen MD, Rouzé H. Coral restoration in a stressful environment: Disease, bleaching, and dysbiosis in Acropora aspera in Guam, Micronesia. iScience 2025; 28:112244. [PMID: 40241745 PMCID: PMC12002618 DOI: 10.1016/j.isci.2025.112244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/15/2024] [Accepted: 03/14/2025] [Indexed: 04/18/2025] Open
Abstract
Despite advances in coral restoration science, challenges imposed by rapid environmental change impede progress. Here, we report mortality from disease and bleaching in an introduced nursery-reared population of the staghorn coral Acropora aspera, in Guam, Micronesia. We present disease progression, incidence, synergies between stressors, and response of the coral microbiome. Microbiome composition in nursery vs. outplanted corals indicated dysbiosis induced by the transition to poorer water quality. However, among outplants, there were no differences between diseased tissues, visually healthy tissues on the same infected colony and tissues from non-infected colonies, suggesting that outplanting into a stressful environment may have compromised coral immune response, increasing susceptibility to disease and bleaching. Our study highlights that outplanting is inherently physically stressful, thus underscoring the need for understanding the microbiome's role in the coral transplantation stress response. We suggest workflows to minimize stress and improve restoration in the face of environmental challenges.
Collapse
Affiliation(s)
- Laurie J. Raymundo
- University of Guam Marine Laboratory, Mangilao 96923, Guam
- James Cook University, Townsville, QLD 4810, Australia
| | | | - Héloïse Rouzé
- University of Guam Marine Laboratory, Mangilao 96923, Guam
| |
Collapse
|
5
|
Shao Z, Zhang J, Li J, Li J. Genomic insights into host -Endozoicomonadaceae cophylogeny. Microb Genom 2025; 11:001384. [PMID: 40178518 PMCID: PMC11968832 DOI: 10.1099/mgen.0.001384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 02/21/2025] [Indexed: 04/05/2025] Open
Abstract
The congruence between host and symbiont phylogenies reflects the evolutionary links among ecologically important interactions. As potential key symbionts, the members affiliated to the family Endozoicomonadaceae have previously been investigated for the cophylogenetic relationship with their hosts using their 16S rRNA gene sequences. However, this approach neglects the genomic features of symbionts that may influence the long-term associations between Endozoicomonadaceae members and their hosts. Here, we collected available high-quality genomes of Endozoicomonadaceae from diverse hosts and investigated their genomic features, including genome size, phages, insertion elements and the composition of functional genes. We also tested the host-Endozoicomonadaceae cophylogeny and examined the correlation between the cophylogenetic squared residuals and the genomic features of Endozoicomonadaceae members. Our results revealed a cophylogenetic pattern between members of the Endozoicomonadaceae family and their various hosts. Moreover, we found that the investigated genomes of Endozoicomonadaceae members were differentially eroded by phages and insertion elements. Additionally, Endozoicomonadaceae members with smaller, more eroded genomes tended to exhibit lower cophylogenetic residuals with their hosts. Gene function analysis further revealed that Endozoicomonadaceae members with closer associations with their hosts carried specific genes related to infection processes and host-symbiont interactions. This study suggests that the genomic features of Endozoicomonadaceae members may influence long-term host-Endozoicomonadaceae intimate associations.
Collapse
Affiliation(s)
- Zhuang Shao
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jian Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| | - Jiaxin Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jie Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| |
Collapse
|
6
|
Ghobashy MOI, Al-otaibi AS, Alharbi BM, Alshehri D, Ghabban H, Albalawi DA, Alenzi AM, Alatawy M, Alatawi FA, Algammal AM, Mir R, Mahrous YM. Metagenomic Characterization of Microbiome Taxa Associated with Coral Reef Communities in North Area of Tabuk Region, Saudia Arabia. Life (Basel) 2025; 15:423. [PMID: 40141768 PMCID: PMC11944186 DOI: 10.3390/life15030423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
The coral microbiome is highly related to the overall health and the survival and proliferation of coral reefs. The Red Sea's unique physiochemical characteristics, such a significant north-south temperature and salinity gradient, make it a very intriguing research system. However, the Red Sea is rather isolated, with a very diversified ecosystem rich in coral communities, and the makeup of the coral-associated microbiome remains little understood. Therefore, comprehending the makeup and dispersion of the endogenous microbiome associated with coral is crucial for understanding how the coral microbiome coexists and interacts, as well as its contribution to temperature tolerance and resistance against possible pathogens. Here, we investigate metagenomic sequencing targeting 16S rRNA using DNAs from the sediment samples to identify the coral microbiome and to understand the dynamics of microbial taxa and genes in the surface mucous layer (SML) microbiome of the coral communities in three distinct areas close to and far from coral communities in the Red Sea. These findings highlight the genomic array of the microbiome in three areas around and beneath the coral communities and revealed distinct bacterial communities in each group, where Pseudoalteromonas agarivorans (30%), Vibrio owensii (11%), and Pseudoalteromonas sp. Xi13 (10%) were the most predominant species in samples closer to coral (a coral-associated microbiome), with the domination of Pseudoalteromonas_agarivorans and Vibrio_owensii in Alshreah samples distant from coral, while Pseudoalteromonas_sp._Xi13 was more abundant in closer samples. Moreover, Proteobacteria such as Pseudoalteromonas, Pseudomonas and Cyanobacteria were the most prevalent phyla of the coral microbiome. Further, Saweehal showed the highest diversity far from corals (52.8%) and in Alshreah (7.35%) compared to Marwan (1.75%). The microbial community was less diversified in the samples from Alshreah Far (5.99%) and Marwan Far (1.75%), which had comparatively lower values for all indices. Also, Vibrio species were the most prevalent microorganisms in the coral mucus, and the prevalence of these bacteria is significantly higher than those found in the surrounding saltwater. These findings reveal that there is a notable difference in microbial diversity across the various settings and locales, revealing that geographic variables and coral closeness affect the diversity of microbial communities. There were significant differences in microbial community composition regarding the proximity to coral. In addition, there were strong positive correlations between genera Pseudoalteromonas and Vibrio in close-to-coral environments, suggesting that these bacteria may play a synergistic role in Immunizing coral, raising its tolerance towards environmental stress and overall coral health.
Collapse
Affiliation(s)
- Madeha O. I. Ghobashy
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.S.A.-o.); (B.M.A.); (D.A.); (H.G.); (D.A.A.); (A.M.A.); (M.A.); (F.A.A.)
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Amenah S. Al-otaibi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.S.A.-o.); (B.M.A.); (D.A.); (H.G.); (D.A.A.); (A.M.A.); (M.A.); (F.A.A.)
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Basmah M. Alharbi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.S.A.-o.); (B.M.A.); (D.A.); (H.G.); (D.A.A.); (A.M.A.); (M.A.); (F.A.A.)
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Dikhnah Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.S.A.-o.); (B.M.A.); (D.A.); (H.G.); (D.A.A.); (A.M.A.); (M.A.); (F.A.A.)
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Hanaa Ghabban
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.S.A.-o.); (B.M.A.); (D.A.); (H.G.); (D.A.A.); (A.M.A.); (M.A.); (F.A.A.)
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Doha A. Albalawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.S.A.-o.); (B.M.A.); (D.A.); (H.G.); (D.A.A.); (A.M.A.); (M.A.); (F.A.A.)
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Asma Massad Alenzi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.S.A.-o.); (B.M.A.); (D.A.); (H.G.); (D.A.A.); (A.M.A.); (M.A.); (F.A.A.)
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Marfat Alatawy
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.S.A.-o.); (B.M.A.); (D.A.); (H.G.); (D.A.A.); (A.M.A.); (M.A.); (F.A.A.)
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Faud A. Alatawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.S.A.-o.); (B.M.A.); (D.A.); (H.G.); (D.A.A.); (A.M.A.); (M.A.); (F.A.A.)
| | - Abdelazeem M. Algammal
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Rashid Mir
- Prince Fahd Bin Sultan Research Chair for Biomedical Research, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Yussri M. Mahrous
- Department of Science and Basic Studies, Applied College, University of Tabuk, Tabuk 71491, Saudi Arabia;
| |
Collapse
|
7
|
da Silva DMG, Marques M, Couceiro JF, Santos E, Baylina N, Costa R, Keller-Costa T. Endozoicomonas lisbonensis sp. nov., a novel marine bacterium isolated from the soft coral Litophyton sp. at Oceanário de Lisboa in Portugal. Int J Syst Evol Microbiol 2025; 75:006696. [PMID: 40042989 PMCID: PMC11883135 DOI: 10.1099/ijsem.0.006696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/13/2025] [Indexed: 03/09/2025] Open
Abstract
This study describes a Gram-stain-negative, rod-shaped, facultatively anaerobic bacterial species isolated from the octocoral Litophyton sp. inhabiting the live coral aquarium at Oceanário de Lisboa in Portugal. Four strains, NE35, NE40T, NE41 and NE43, were classified into the genus Endozoicomonas by means of 16S rRNA gene and whole-genome sequence homologies. We then performed phylogenetic, phylogenomic and biochemical analyses to examine their novel species status within the Endozoicomonas genus, based on comparisons with the designated novel type strain NE40T. The closest 16S rRNA gene relatives to strain NE40T are Endozoicomonas montiporae CL-33T (98.2%), Endozoicomonas euniceicola EF212T (97.6%) and Endozoicomonas gorgoniicola PS125T (97.2%). The four strains show genome-wide average nucleotide identity scores above the species level cut-off (95%) with one another and below the cut-off with all Endozoicomonas type strains with publicly available genomes. Digital DNA-DNA hybridization further supported the classification of the strains as a novel species, showing values below 70% when compared with other Endozoicomonas type strains. The DNA G+C content of NE40T was 49.0 mol%, and its genome size was 5.45 Mb. Strain NE40T grows from 15 to 37 °C, with 1-5% (w/v) NaCl, and between pH 6.0 and 8.0 in marine broth and shows optimal growth at 28-32 °C, 2-3% NaCl and pH 7.0-8.0. The predominant cellular fatty acids are summed feature 3 (C16 : 1 ω6c and/or C16 : 1 ω7c), summed feature 8 (C18 : 1 ω6c and/or C18 : 1 ω7c), C16 :0 and C14 :0. Strain NE40T presents oxidase, catalase and β-galactosidase activities and can reduce nitrates to nitrites and degrade cellulose, chitin, agarose and xylan. Based on the polyphasic approach employed in this study, we propose the novel species name Endozoicomonas lisbonensis sp. nov. (type strain NE40T=DSM 118084T=UCCCB 212T).
Collapse
Affiliation(s)
- Daniela M. G. da Silva
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
- Department of Bioengeneering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - Matilde Marques
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
- Department of Bioengeneering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - Joana F. Couceiro
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
- Department of Bioengeneering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - Elsa Santos
- Oceanário de Lisboa, Esplanada Dom Carlos I s/n°, 1990-005 Lisboa, Portugal
| | - Núria Baylina
- Oceanário de Lisboa, Esplanada Dom Carlos I s/n°, 1990-005 Lisboa, Portugal
| | - Rodrigo Costa
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
- Department of Bioengeneering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - Tina Keller-Costa
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
- Department of Bioengeneering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| |
Collapse
|
8
|
Epstein HE, Brown T, Akinrinade AO, McMinds R, Pollock FJ, Sonett D, Smith S, Bourne DG, Carpenter CS, Knight R, Willis BL, Medina M, Lamb JB, Thurber RV, Zaneveld JR. Evidence for microbially-mediated tradeoffs between growth and defense throughout coral evolution. Anim Microbiome 2025; 7:1. [PMID: 39754287 PMCID: PMC11697511 DOI: 10.1186/s42523-024-00370-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 12/21/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Evolutionary tradeoffs between life-history strategies are important in animal evolution. Because microbes can influence multiple aspects of host physiology, including growth rate and susceptibility to disease or stress, changes in animal-microbial symbioses have the potential to mediate life-history tradeoffs. Scleractinian corals provide a biodiverse, data-rich, and ecologically-relevant host system to explore this idea. RESULTS Using a comparative approach, we tested if coral microbiomes correlate with disease susceptibility across 425 million years of coral evolution by conducting a cross-species coral microbiome survey (the "Global Coral Microbiome Project") and combining the results with long-term global disease prevalence and coral trait data. Interpreting these data in their phylogenetic context, we show that microbial dominance predicts disease susceptibility, and traced this dominance-disease association to a single putatively beneficial symbiont genus, Endozoicomonas. Endozoicomonas relative abundance in coral tissue explained 30% of variation in disease susceptibility and 60% of variation in microbiome dominance across 40 coral genera, while also correlating strongly with high growth rates. CONCLUSIONS These results demonstrate that the evolution of Endozoicomonas symbiosis in corals correlates with both disease prevalence and growth rate, and suggest a mediating role. Exploration of the mechanistic basis for these findings will be important for our understanding of how microbial symbioses influence animal life-history tradeoffs.
Collapse
Affiliation(s)
- Hannah E Epstein
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK.
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA.
| | - Tanya Brown
- School of Science, Technology, Engineering, and Mathematics, Division of Biological Sciences, University of Washington Bothell, UWBB-277, Bothell, WA, 98011, USA
- Department of Biology, University of Texas, Tyler, TX, 75799, USA
| | - Ayọmikun O Akinrinade
- School of Science, Technology, Engineering, and Mathematics, Division of Biological Sciences, University of Washington Bothell, UWBB-277, Bothell, WA, 98011, USA
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | - Ryan McMinds
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
- Center for Global Health and Infectious Diseases Research, University of South Florida, 13201 Bruce B. Downs Blvd, MDC 56, Tampa, FL, 33612, USA
| | - F Joseph Pollock
- Department of Biology, Pennsylvania State University, 208 Mueller Lab, University Park, Philadelphia, PA, 16802, USA
- Hawai'i & Palmyra Program, The Nature Conservancy, Honolulu, HI, USA
| | - Dylan Sonett
- School of Pharmacy, University of Washington, Seattle, WA, 98195, USA
| | - Styles Smith
- Department of Biology, Pennsylvania State University, 208 Mueller Lab, University Park, Philadelphia, PA, 16802, USA
| | - David G Bourne
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
- Australian Institute of Marine Science, Townsville, QLD, 4810, Australia
| | - Carolina S Carpenter
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Rob Knight
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Bette L Willis
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| | - Mónica Medina
- Department of Biology, Pennsylvania State University, 208 Mueller Lab, University Park, Philadelphia, PA, 16802, USA
| | - Joleah B Lamb
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | - Rebecca Vega Thurber
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Jesse R Zaneveld
- School of Science, Technology, Engineering, and Mathematics, Division of Biological Sciences, University of Washington Bothell, UWBB-277, Bothell, WA, 98011, USA
| |
Collapse
|
9
|
Girija GK, Tseng LC, Muthu P, Chen YL, Ho YN, Hwang JS. Microbiome flexibility enhances the resilience of the potentially invasive coral Tubastraea aurea to abrupt environmental changes: Insights from a shallow water hydrothermal vent transplantation study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176792. [PMID: 39389143 DOI: 10.1016/j.scitotenv.2024.176792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/18/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
To comprehend the effects of potentially invasive coral Tubastraea aurea on marine ecosystems, it is crucial to understand their adaptive strategies to survive environmental changes and perturbations. Therefore, a cross-transplantation study was conducted to assess the microbiome's role in the resilience of T. aurea to sudden environmental changes.Hydrographic analyses revealed distinct ecological conditions at two sites: a hydrothermal vent (HV) site, characterized by harsh environmental conditions serving as a natural laboratory for future oceanic changes, and a regular coastal site Fulong (FU). Both sites showed significant differences in pH, temperature, and dissolved oxygen. Using Oxford Nanopore Technologies, we examined bacterial dynamics in coral tissue, mucus and ambient sediment samples following cross-transplantation experiments. We observed a rapid shift in dominant bacterial groups post-transplantation with transplanted corals acquiring microbiomes similar to native corals from their respective sites within 16 days. The bacteria Endozoicomonas euniceicola and Ruegeria profundi were dominant in both native and transplanted corals, suggesting their critical role in coral resilience. Furthermore, the enrichment of certain bacterial taxa post-transplantation suggests that opportunistic species also contribute to host acclimatization. Functional profiling data indicated that there was site-specific adaptation because corals had acquired beneficial bacterial assemblages to assist them cope with environmental stressors. More specifically, there was a switch towards sulfur and nitrogen metabolism in corals that moved to high sulfidic environments, while corals transplanted into normal coastal environments showed enriched photoautotrophic processes due to their symbionts. Our study underscored the highly flexible microbiome of T. aurea and its pivotal role in facilitating host resilience to environmental perturbations, particularly in the context of its potential invasiveness. Hence, these findings contribute to the understanding of coral-microbiome dynamics and emphasize the necessity of considering microbially-mediated resilience in managing potentially invasive coral species in marine ecosystems around the world, especially as ocean conditions continue to change.
Collapse
Affiliation(s)
- Gowri Krishna Girija
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Li-Chun Tseng
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Priyanka Muthu
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Yu-Ling Chen
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Ying-Ning Ho
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 202301, Taiwan; Centre of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan; Taiwan Ocean Genome Center, National Taiwan Ocean University, Keelung 202301, Taiwan.
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 202301, Taiwan; Centre of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan.
| |
Collapse
|
10
|
Prioux C, Ferrier-Pages C, Deter J, Tignat-Perrier R, Guilbert A, Ballesta L, Allemand D, van de Water JAJM. Insights into the occurrence of phylosymbiosis and co-phylogeny in the holobionts of octocorals from the Mediterranean Sea and Red Sea. Anim Microbiome 2024; 6:62. [PMID: 39497183 PMCID: PMC11533408 DOI: 10.1186/s42523-024-00351-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/24/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Corals are the foundational species of coral reefs and coralligenous ecosystems. Their success has been linked to symbioses with microorganisms, and a coral host and its symbionts are therefore considered a single entity, called the holobiont. This suggests that there may be evolutionary links between corals and their microbiomes. While there is evidence of phylosymbiosis in scleractinian hexacorals, little is known about the holobionts of Alcyonacean octocorals. RESULTS 16S rRNA gene amplicon sequencing revealed differences in the diversity and composition of bacterial communities associated with octocorals collected from the mesophotic zones of the Mediterranean and Red Seas. The low diversity and consistent dominance of Endozoicomonadaceae and/or Spirochaetaceae in the bacterial communities of Mediterranean octocorals suggest that these corals may have a shared evolutionary history with their microbiota. Phylosymbiotic signals were indeed detected and cophylogeny in associations between several bacterial strains, particularly those belonging to Endozoicomonadaceae or Spirochaetaceae, and coral species were identified. Conversely, phylosymbiotic patterns were not evident in Red Sea octocorals, likely due to the high bacterial taxonomic diversity in their microbiota, but cophylogeny in associations between certain coral and bacterial species was observed. Noteworthy were the associations with Endozoicomonadaceae, suggesting a plausible evolutionary link that warrants further investigations to uncover potential underlying patterns. CONCLUSIONS Overall, our findings emphasize the importance of Endozoicomonadaceae and Spirochaetaceae in coral symbiosis and the significance of exploring host-microbiome interactions in mesophotic ecosystems for a comprehensive understanding of coral-microbiome evolutionary history.
Collapse
Affiliation(s)
- C Prioux
- Unité de Recherche Sur La Biologie des Coraux Précieux CSM - CHANEL, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, MC, Principality of Monaco
- Coral Ecophysiology Team, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, MC, Principality of Monaco
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, MC, Principality of Monaco
| | - C Ferrier-Pages
- Coral Ecophysiology Team, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, MC, Principality of Monaco.
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, MC, Principality of Monaco.
| | - J Deter
- Andromède Océanologie, 7 place Cassan-Carnon plage, 34130, Mauguio, France
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Place Eugène Bataillon, 34095, Montpellier, France
| | - R Tignat-Perrier
- Unité de Recherche Sur La Biologie des Coraux Précieux CSM - CHANEL, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, MC, Principality of Monaco
- Coral Ecophysiology Team, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, MC, Principality of Monaco
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, MC, Principality of Monaco
| | - A Guilbert
- Andromède Océanologie, 7 place Cassan-Carnon plage, 34130, Mauguio, France
| | - L Ballesta
- Andromède Océanologie, 7 place Cassan-Carnon plage, 34130, Mauguio, France
| | - D Allemand
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, MC, Principality of Monaco
| | - J A J M van de Water
- Unité de Recherche Sur La Biologie des Coraux Précieux CSM - CHANEL, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, MC, Principality of Monaco.
- Coral Ecophysiology Team, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, MC, Principality of Monaco.
- Department of Estuarine Delta Systems, Royal Netherlands Institute for Sea Research, Korringaweg 7, 4401 NT, Yerseke, The Netherlands.
| |
Collapse
|
11
|
Gignoux-Wolfsohn S, Garcia Ruiz M, Portugal Barron D, Ruiz G, Lohan K. Bivalve microbiomes are shaped by host species, size, parasite infection, and environment. PeerJ 2024; 12:e18082. [PMID: 39399422 PMCID: PMC11468899 DOI: 10.7717/peerj.18082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/20/2024] [Indexed: 10/15/2024] Open
Abstract
Many factors affect an organism's microbiome including its environment, proximity to other organisms, and physiological condition. As filter feeders, bivalves have highly plastic microbiomes that are especially influenced by the surrounding seawater, yet they also maintain a unique core set of microbes. Using 16S ribosomal RNA sequencing, we characterized the bacterial microbiomes of four species of bivalves native to the Mid-Atlantic East Coast of North America: Crassostrea virginica, Macoma balthica, Ameritella mitchelli, and Ischadium recurvum and assessed the impact of their external environment, internal parasites, and size on their microbial communities. We found significant differences in bacterial amplicon sequence variants (ASVs) across species, with each species harboring a core ASV present across all individuals. We further found that some C. virginica co-cultured with I. recurvum had high abundances of the I. recurvum core ASV. We identified ASVs associated with infection by the parasites Perkinsus marinus and Zaops ostreum as well others associated with bivalve size. Several of these ASV are candidates for further investigation as potential probiotics, as they were found positively correlated with bivalve size and health. This research represents the first description of the microbiomes of A. mitchelli, I. recurvum, and M. balthica. We document that all four species have highly plastic microbiomes, while maintaining certain core bacteria, with important implications for growth, health, and adaptation to new environments.
Collapse
Affiliation(s)
- Sarah Gignoux-Wolfsohn
- Biological Sciences, University of Massachusetts at Lowell, Lowell, MA, United States
- Coastal Disease Ecology Laboratory, Smithsonian Environmental Research Center, Edgewater, MD, United States
| | - Monserrat Garcia Ruiz
- Coastal Disease Ecology Laboratory, Smithsonian Environmental Research Center, Edgewater, MD, United States
| | - Diana Portugal Barron
- Coastal Disease Ecology Laboratory, Smithsonian Environmental Research Center, Edgewater, MD, United States
- Department of Neurology, Brain Research Institute, Mary S. Easton Center for Alzheimer’s Research and Care, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Gregory Ruiz
- Marine Invasions Laboratory, Smithsonian Environmental Research Center, Edgewater, MD, United States
| | - Katrina Lohan
- Coastal Disease Ecology Laboratory, Smithsonian Environmental Research Center, Edgewater, MD, United States
| |
Collapse
|
12
|
Xing Y, Cheng L, Zheng L, Wu H, Tan Q, Wang X, Tian Q. Brownification increases the abundance of microorganisms related to carbon and nitrogen cycling in shallow lakes. ENVIRONMENTAL RESEARCH 2024; 257:119243. [PMID: 38810820 DOI: 10.1016/j.envres.2024.119243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Brownification in aquatic ecosystems under global change has attracted attention. The composition and quantity of dissolved organic matter transported from various land use types to lakes differ significantly, causing varying ecological effects of lake brownification by region. Bacterial communities make a significant contribution to the material cycle of ecosystems and are sensitive to environmental changes. In this study, a series of mesocosm systems were used to simulate forest lakes and urban lakes with different degrees of brownification, and a high-throughput amplicon sequencing technique was used to explore the changes in the composition, structure, and function of bacterial communities in shallow lakes undergoing brownification. Principal coordinate analysis (PCoA) and Jensen‒Shannon distance typing analysis both indicated significant differences in bacterial communities between forest lakes and urban lakes. The α diversity of bacterial communities in urban lakes increased with the degree of brownification. However, whether forest lakes or urban lakes, brownification increased the abundance of carbon cycling-related bacterial phyla (Proteobacteria, Poribacteria, and Chloroflexi) and nitrogen cycling-related bacterial genera (Microbacteriaceae, Limnohabitans, Comamonadaceae, Bacillus, and Rhizobiales_Incertae_Sedis). Additionally, the carbon and nitrogen cycling functions of bacterial communities in forest lakes are dominant, while those in urban lakes are dominated by functions related to light. Our study has preliminarily revealed that lake brownification promotes the growth of carbon and nitrogen cycling microorganisms, providing a new paradigm for understanding the response of lake ecosystems in different catchment areas to environmental changes and the carbon and nitrogen cycling processes in shallow lake ecosystems.
Collapse
Affiliation(s)
- Yuzi Xing
- College of Water Science, Beijing Normal University, Beijing, 100875, China
| | - Lirong Cheng
- College of Water Science, Beijing Normal University, Beijing, 100875, China
| | - Lei Zheng
- College of Water Science, Beijing Normal University, Beijing, 100875, China.
| | - Haoming Wu
- College of Water Science, Beijing Normal University, Beijing, 100875, China
| | - Qiuyang Tan
- College of Water Science, Beijing Normal University, Beijing, 100875, China
| | - Xue Wang
- College of Water Science, Beijing Normal University, Beijing, 100875, China
| | - Qi Tian
- College of Water Science, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
13
|
Voolstra CR, Raina JB, Dörr M, Cárdenas A, Pogoreutz C, Silveira CB, Mohamed AR, Bourne DG, Luo H, Amin SA, Peixoto RS. The coral microbiome in sickness, in health and in a changing world. Nat Rev Microbiol 2024; 22:460-475. [PMID: 38438489 DOI: 10.1038/s41579-024-01015-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 03/06/2024]
Abstract
Stony corals, the engines and engineers of reef ecosystems, face unprecedented threats from anthropogenic environmental change. Corals are holobionts that comprise the cnidarian animal host and a diverse community of bacteria, archaea, viruses and eukaryotic microorganisms. Recent research shows that the bacterial microbiome has a pivotal role in coral biology. A healthy bacterial assemblage contributes to nutrient cycling and stress resilience, but pollution, overfishing and climate change can break down these symbiotic relationships, which results in disease, bleaching and, ultimately, coral death. Although progress has been made in characterizing the spatial-temporal diversity of bacteria, we are only beginning to appreciate their functional contribution. In this Review, we summarize the ecological and metabolic interactions between bacteria and other holobiont members, highlight the biotic and abiotic factors influencing the structure of bacterial communities and discuss the impact of climate change on these communities and their coral hosts. We emphasize how microbiome-based interventions can help to decipher key mechanisms underpinning coral health and promote reef resilience. Finally, we explore how recent technological developments may be harnessed to address some of the most pressing challenges in coral microbiology, providing a road map for future research in this field.
Collapse
Affiliation(s)
| | - Jean-Baptiste Raina
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales, Australia.
| | - Melanie Dörr
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Anny Cárdenas
- Department of Biology, American University, Washington, DC, USA
| | - Claudia Pogoreutz
- PSL Université Paris: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, Perpignan, France
| | | | - Amin R Mohamed
- Marine Microbiomics Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - David G Bourne
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Haiwei Luo
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, State Key Laboratory of Agrobiotechnology and Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shady A Amin
- Marine Microbiomics Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Raquel S Peixoto
- Red Sea Research Center (RSRC) and Computational Biology Research Center (CBRC), Biological, Environmental Sciences, and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
14
|
Kültz D, Gardell AM, DeTomaso A, Stoney G, Rinkevich B, Rinkevich Y, Qarri A, Dong W, Luu B, Lin M. Deep quantitative proteomics of North American Pacific coast star tunicate (Botryllus schlosseri). Proteomics 2024; 24:e2300628. [PMID: 38400697 DOI: 10.1002/pmic.202300628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/30/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
Botryllus schlosseri, is a model marine invertebrate for studying immunity, regeneration, and stress-induced evolution. Conditions for validating its predicted proteome were optimized using nanoElute® 2 deep-coverage LCMS, revealing up to 4930 protein groups and 20,984 unique peptides per sample. Spectral libraries were generated and filtered to remove interferences, low-quality transitions, and only retain proteins with >3 unique peptides. The resulting DIA assay library enabled label-free quantitation of 3426 protein groups represented by 22,593 unique peptides. Quantitative comparisons of single systems from a laboratory-raised with two field-collected populations revealed (1) a more unique proteome in the laboratory-raised population, and (2) proteins with high/low individual variabilities in each population. DNA repair/replication, ion transport, and intracellular signaling processes were distinct in laboratory-cultured colonies. Spliceosome and Wnt signaling proteins were the least variable (highly functionally constrained) in all populations. In conclusion, we present the first colonial tunicate's deep quantitative proteome analysis, identifying functional protein clusters associated with laboratory conditions, different habitats, and strong versus relaxed abundance constraints. These results empower research on B. schlosseri with proteomics resources and enable quantitative molecular phenotyping of changes associated with transfer from in situ to ex situ and from in vivo to in vitro culture conditions.
Collapse
Affiliation(s)
- Dietmar Kültz
- Department of Animal Sciences & Genome Center, University of California Davis, Meyer Hall, Davis, California, USA
| | - Alison M Gardell
- School of Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, Washington, USA
| | - Anthony DeTomaso
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Goleta, California, USA
| | - Greg Stoney
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Goleta, California, USA
| | - Baruch Rinkevich
- Israel Oceanography & Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Yuval Rinkevich
- Helmholtz Zentrum München, Regenerative Biology and Medicine Institute, Munich, Germany
| | - Andy Qarri
- Israel Oceanography & Limnological Research, National Institute of Oceanography, Haifa, Israel
- Helmholtz Zentrum München, Regenerative Biology and Medicine Institute, Munich, Germany
| | - Weizhen Dong
- Department of Animal Sciences & Genome Center, University of California Davis, Meyer Hall, Davis, California, USA
| | - Brenda Luu
- Department of Animal Sciences & Genome Center, University of California Davis, Meyer Hall, Davis, California, USA
| | - Mandy Lin
- Department of Animal Sciences & Genome Center, University of California Davis, Meyer Hall, Davis, California, USA
| |
Collapse
|
15
|
Pozas-Schacre C, Bischoff H, Clerissi C, Nugues MM. Negative parental and offspring environmental effects of macroalgae on coral recruitment are linked with alterations in the coral larval microbiome. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240187. [PMID: 39050726 PMCID: PMC11267239 DOI: 10.1098/rsos.240187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 07/27/2024]
Abstract
The persistence of reef-building corals is threatened by macroalgal competitors leading to a major demographic bottleneck in coral recruitment. Whether parental effects exist under coral-algal competition and whether they influence offspring performance via microbiome alterations represent major gaps in our understanding of the mechanisms by which macroalgae may hinder coral recovery. We investigated the diversity, variability and composition of the microbiome of adults and larvae of the coral Pocillopora acuta and surrounding benthic substrate on algal-removed and algal-dominated bommies. We then assessed the relative influence of parental and offspring environmental effects on coral recruitment processes by reciprocally exposing coral larvae from two parental origins (algal-removed and algal-dominated bommies) to algal-removed and algal-dominated environmental conditions. Dense macroalgal assemblages impacted the microbiome composition of coral larvae. Larvae produced by parents from algal-dominated bommies were depleted in putative beneficial bacteria and enriched in opportunistic taxa. These larvae had a significantly lower survival compared to larvae from algal-removed bommies regardless of environmental conditions. In contrast, algal-induced parental and offspring environmental effects interacted to reduce the survival of coral recruits. Together our results demonstrate negative algal-induced parental and offspring environmental effects on coral recruitment that could be mediated by alterations in the offspring microbiome.
Collapse
Affiliation(s)
- Chloé Pozas-Schacre
- PSL Université Paris: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, 66860 Perpignan, France
| | - Hugo Bischoff
- PSL Université Paris: EPHE-UPVD-CNRS, UAR 3278 CRIOBE BP 1013, 98729 Papetoai, Mo'orea, French Polynesia
| | - Camille Clerissi
- PSL Université Paris: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, 66860 Perpignan, France
- Laboratoire d'Excellence CORAIL, Perpignan, France
| | - Maggy M. Nugues
- PSL Université Paris: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, 66860 Perpignan, France
- Laboratoire d'Excellence CORAIL, Perpignan, France
| |
Collapse
|
16
|
Vohsen SA, Herrera S. Coral microbiomes are structured by environmental gradients in deep waters. ENVIRONMENTAL MICROBIOME 2024; 19:38. [PMID: 38858739 PMCID: PMC11165896 DOI: 10.1186/s40793-024-00579-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/02/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Coral-associated microbiomes vary greatly between colonies and localities with functional consequences on the host. However, the full extent of variability across the ranges of most coral species remains unknown, especially for corals living in deep waters which span greater ranges. Here, we characterized the microbiomes of four octocoral species from mesophotic and bathyal deep-sea habitats in the northern Gulf of Mexico, Muricea pendula, Swiftia exserta, Callogorgia delta, and Paramuricea biscaya, using 16S rRNA gene metabarcoding. We sampled extensively across their ranges to test for microbiome differentiation between and within species, examining the influence of environmental factors that vary with depth (53-2224 m) and geographic location (over 680 m) as well as the host coral's genotype using RAD-sequencing. RESULTS Coral microbiomes were often dominated by amplicon sequence variants whose abundances varied across their hosts' ranges, including symbiotic taxa: corallicolids, Endozoicomonas, members of the Mollicutes, and the BD1-7 clade. Coral species, depth, and geographic location significantly affected diversity, microbial community composition, and the relative abundance of individual microbes. Depth was the strongest environmental factor determining microbiome structure within species, which influenced the abundance of most dominant symbiotic taxa. Differences in host genotype, bottom temperature, and surface primary productivity could explain a significant part of the microbiome variation associated with depth and geographic location. CONCLUSIONS Altogether, this work demonstrates that the microbiomes of corals in deep waters vary substantially across their ranges in accordance with depth and other environmental conditions. It reveals that the influence of depth on the ecology of mesophotic and deep-sea corals extends to its effects on their microbiomes which may have functional consequences. This work also identifies the distributions of microbes including potential parasites which can be used to inform restoration plans in response to the Deepwater Horizon oil spill.
Collapse
Affiliation(s)
- Samuel A Vohsen
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA.
- Lehigh Oceans Research Center, Lehigh University, Bethlehem, PA, USA.
| | - Santiago Herrera
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA.
- Lehigh Oceans Research Center, Lehigh University, Bethlehem, PA, USA.
| |
Collapse
|
17
|
Galià-Camps C, Junkin L, Borrallo X, Carreras C, Pascual M, Turon X. Navigating spatio-temporal microbiome dynamics: Environmental factors and trace elements shape the symbiont community of an invasive marine species. MARINE POLLUTION BULLETIN 2024; 203:116477. [PMID: 38759466 DOI: 10.1016/j.marpolbul.2024.116477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
The proliferation of marine invasive species is a mounting concern. While the role of microbial communities in invasive ascidian species is recognized, the role of seasonal shifts in microbiome composition remains largely unexplored. We sampled five individuals of the invasive ascidian Styela plicata quarterly from January 2020 to October 2021 in two harbours, examining gills, tunics, and surrounding water. By analysing Amplicon Sequence Variants (ASVs) and seawater trace elements, we found that compartment (seawater, tunic, or gills) was the primary differentiating factor, followed by harbour. Clear seasonal patterns were evident in seawater bacteria, less so in gills, and absent in tunics. We identified compartment-specific bacteria, as well as seasonal indicator ASVs and ASVs correlated with trace element concentrations. Among these bacteria, we found that Endozoicomonas, Hepatoplasma and Rhodobacteraceae species had reported functions which might be necessary for overcoming seasonality and trace element shifts. This study contributes to understanding microbiome dynamics in invasive holobiont systems, and the patterns found indicate a potential role in adaptation and invasiveness.
Collapse
Affiliation(s)
- Carles Galià-Camps
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain; Department of Marine Ecology, Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Accés Cala Sant Francesc 14, 17300 Blanes, Spain.
| | - Liam Junkin
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain.
| | - Xavier Borrallo
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain
| | - Carlos Carreras
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain.
| | - Marta Pascual
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain.
| | - Xavier Turon
- Department of Marine Ecology, Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Accés Cala Sant Francesc 14, 17300 Blanes, Spain.
| |
Collapse
|
18
|
Pogoreutz C, Ziegler M. Frenemies on the reef? Resolving the coral-Endozoicomonas association. Trends Microbiol 2024; 32:422-434. [PMID: 38216372 DOI: 10.1016/j.tim.2023.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 01/14/2024]
Abstract
Stony corals are poster child holobionts due to their intimate association with diverse microorganisms from all domains of life. We are only beginning to understand the diverse functions of most of these microbial associates, including potential main contributors to holobiont health and resilience. Among these, bacteria of the elusive genus Endozoicomonas are widely perceived as beneficial symbionts based on their genomic potential and their high prevalence and ubiquitous presence in coral tissues. Simultaneously, evidence of pathogenic and parasitic Endozoicomonas lineages in other marine animals is emerging. Synthesizing the current knowledge on the association of Endozoicomonas with marine holobionts, we challenge the perception of a purely mutualistic coral-Endozoicomonas relationship and propose directions to elucidate its role along the symbiotic spectrum.
Collapse
Affiliation(s)
- Claudia Pogoreutz
- EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France.
| | - Maren Ziegler
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32 (IFZ), 35392, Giessen, Germany.
| |
Collapse
|
19
|
Delgadillo-Ordoñez N, Garcias-Bonet N, Raimundo I, García FC, Villela H, Osman EO, Santoro EP, Curdia J, Rosado JGD, Cardoso P, Alsaggaf A, Barno A, Antony CP, Bocanegra C, Berumen ML, Voolstra CR, Benzoni F, Carvalho S, Peixoto RS. Probiotics reshape the coral microbiome in situ without detectable off-target effects in the surrounding environment. Commun Biol 2024; 7:434. [PMID: 38594357 PMCID: PMC11004148 DOI: 10.1038/s42003-024-06135-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/02/2024] [Indexed: 04/11/2024] Open
Abstract
Beneficial microorganisms for corals (BMCs), or probiotics, can enhance coral resilience against stressors in laboratory trials. However, the ability of probiotics to restructure the coral microbiome in situ is yet to be determined. As a first step to elucidate this, we inoculated putative probiotic bacteria (pBMCs) on healthy colonies of Pocillopora verrucosa in situ in the Red Sea, three times per week, during 3 months. pBMCs significantly influenced the coral microbiome, while bacteria of the surrounding seawater and sediment remained unchanged. The inoculated genera Halomonas, Pseudoalteromonas, and Bacillus were significantly enriched in probiotic-treated corals. Furthermore, the probiotic treatment also correlated with an increase in other beneficial groups (e.g., Ruegeria and Limosilactobacillus), and a decrease in potential coral pathogens, such as Vibrio. As all corals (treated and non-treated) remained healthy throughout the experiment, we could not track health improvements or protection against stress. Our data indicate that healthy, and therefore stable, coral microbiomes can be restructured in situ, although repeated and continuous inoculations may be required in these cases. Further, our study provides supporting evidence that, at the studied scale, pBMCs have no detectable off-target effects on the surrounding microbiomes of seawater and sediment near inoculated corals.
Collapse
Affiliation(s)
- Nathalia Delgadillo-Ordoñez
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Marine Science and Bioscience Programs, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Neus Garcias-Bonet
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Inês Raimundo
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Marine Science and Bioscience Programs, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Francisca C García
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Helena Villela
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Eslam O Osman
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Erika P Santoro
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Joao Curdia
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Joao G D Rosado
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Marine Science and Bioscience Programs, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Pedro Cardoso
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Marine Science and Bioscience Programs, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Ahmed Alsaggaf
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Marine Science and Bioscience Programs, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Adam Barno
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Marine Science and Bioscience Programs, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Chakkiath Paul Antony
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Carolina Bocanegra
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Michael L Berumen
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Marine Science and Bioscience Programs, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | - Francesca Benzoni
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Marine Science and Bioscience Programs, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Susana Carvalho
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Marine Science and Bioscience Programs, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Raquel S Peixoto
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
- Marine Science and Bioscience Programs, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
20
|
Estaque T, Basthard-Bogain S, Bianchimani O, Blondeaux V, Cheminée A, Fargetton M, Richaume J, Bally M. Investigating the outcomes of a threatened gorgonian in situ transplantation: Survival and microbiome diversity in Paramuricea clavata (Risso, 1827). MARINE ENVIRONMENTAL RESEARCH 2024; 196:106384. [PMID: 38320428 DOI: 10.1016/j.marenvres.2024.106384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/08/2024]
Abstract
Gorgonian octocorals are threatened by global and local stressors that can act synergistically to affect their health. In recent years, mass mortality events triggered by marine heatwaves have caused demographic declines in Mediterranean gorgonian populations that may lead to their collapse. Potential changes in microbiome composition under stressful conditions may further increase the susceptibility of the gorgonian holobiont to disease. Given the low recovery capacity of gorgonians, restoration approaches using transplantation are becoming an increasingly attractive option to counteract their decline. Here, we compared the survival and microbiome diversity of Paramuricea clavata colonies transplanted to sites differing in depth and local environmental conditions. Gorgonians sampled at a greater depth than the transplantation site were more likely to suffer necrosis after 1 year of monitoring. Gorgonian transplantation into environments disturbed by an anthropogenic source of pollution resulted in an imbalance of the microbiome with potential consequences on the success of restoration initiatives.
Collapse
Affiliation(s)
- Tristan Estaque
- Septentrion Environnement, Campus Nature Provence, Marseille, France.
| | | | | | - Vincent Blondeaux
- Septentrion Environnement, Campus Nature Provence, Marseille, France
| | - Adrien Cheminée
- Septentrion Environnement, Campus Nature Provence, Marseille, France
| | - Margaux Fargetton
- Septentrion Environnement, Campus Nature Provence, Marseille, France
| | - Justine Richaume
- Septentrion Environnement, Campus Nature Provence, Marseille, France
| | - Marc Bally
- Mediterranean Institute of Oceanography, Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| |
Collapse
|
21
|
Efremova J, Mazzella V, Mirasole A, Teixidó N, Núñez-Pons L. Divergent morphological and microbiome strategies of two neighbor sponges to cope with low pH in Mediterranean CO 2 vents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170171. [PMID: 38246375 DOI: 10.1016/j.scitotenv.2024.170171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/23/2023] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Ocean Acidification (OA) profoundly impacts marine biochemistry, resulting in a net loss of biodiversity. Porifera are often forecasted as winner taxa, yet the strategies to cope with OA can vary and may generate diverse fitness status. In this study, microbial shifts based on the V3-V4 16S rRNA gene marker were compared across neighboring Chondrosia reniformis sponges with high microbial abundance (HMA), and Spirastrella cunctatrix with low microbial abundance (LMA) microbiomes. Sponge holobionts co-occurred in a CO2 vent system with low pH (pHT ~ 7.65), and a control site with Ambient pH (pHT ~ 8.05) off Ischia Island, representing natural analogues to study future OA, and species' responses in the face of global environmental change. Microbial diversity and composition varied in both species across sites, yet at different levels. Increased numbers of core taxa were detected in S. cunctatrix, and a more diverse and flexible core microbiome was reported in C. reniformis under OA. Vent S. cunctatrix showed morphological impairment, along with signs of putative stress-induced dysbiosis, manifested by: 1) increases in alpha diversity, 2) shifts from sponge related microbes towards seawater microbes, and 3) high dysbiosis scores. Chondrosia reniformis in lieu, showed no morphological variation, low dysbiosis scores, and experienced a reduction in alpha diversity and less number of core taxa in vent specimens. Therefore, C. reniformis is hypothesized to maintain an state of normobiosis and acclimatize to OA, thanks to a more diverse, and likely metabolically versatile microbiome. A consortium of differentially abundant microbes was identified associated to either vent or control sponges, and chiefly related to carbon, nitrogen and sulfur-metabolisms for nutrient cycling and vitamin production, as well as probiotic symbionts in C. reniformis. Diversified symbiont associates supporting functional convergence could be the key behind resilience towards OA, yet specific acclimatization traits should be further investigated.
Collapse
Affiliation(s)
- Jana Efremova
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy.
| | - Valerio Mazzella
- NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy; Stazione Zoologica Anton Dohrn, National Institute of Marine Biology, Ecology and Biotechnology, Ischia Marine Centre, Ischia 80077, Naples, Italy.
| | - Alice Mirasole
- Stazione Zoologica Anton Dohrn, National Institute of Marine Biology, Ecology and Biotechnology, Ischia Marine Centre, Ischia 80077, Naples, Italy.
| | - Núria Teixidó
- NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy; Stazione Zoologica Anton Dohrn, National Institute of Marine Biology, Ecology and Biotechnology, Ischia Marine Centre, Ischia 80077, Naples, Italy; Laboratoire d'Océanographie de Villefranche, Sorbonne Université, CNRS, Villefranche-sur-mer, France.
| | - Laura Núñez-Pons
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy.
| |
Collapse
|
22
|
Maire J, Tsang Min Ching SJ, Damjanovic K, Epstein HE, Judd LM, Blackall LL, van Oppen MJH. Tissue-associated and vertically transmitted bacterial symbiont in the coral Pocillopora acuta. THE ISME JOURNAL 2024; 18:wrad027. [PMID: 38365239 PMCID: PMC10833068 DOI: 10.1093/ismejo/wrad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/07/2023] [Accepted: 12/09/2023] [Indexed: 02/18/2024]
Abstract
Coral microhabitats are colonized by a myriad of microorganisms, including diverse bacteria which are essential for host functioning and survival. However, the location, transmission, and functions of individual bacterial species living inside the coral tissues remain poorly studied. Here, we show that a previously undescribed bacterial symbiont of the coral Pocillopora acuta forms cell-associated microbial aggregates (CAMAs) within the mesenterial filaments. CAMAs were found in both adults and larval offspring, suggesting vertical transmission. In situ laser capture microdissection of CAMAs followed by 16S rRNA gene amplicon sequencing and shotgun metagenomics produced a near complete metagenome-assembled genome. We subsequently cultured the CAMA bacteria from Pocillopora acuta colonies, and sequenced and assembled their genomes. Phylogenetic analyses showed that the CAMA bacteria belong to an undescribed Endozoicomonadaceae genus and species, which we propose to name Candidatus Sororendozoicomonas aggregata gen. nov sp. nov. Metabolic pathway reconstruction from its genome sequence suggests this species can synthesize most amino acids, several B vitamins, and antioxidants, and participate in carbon cycling and prey digestion, which may be beneficial to its coral hosts. This study provides detailed insights into a new member of the widespread Endozoicomonadaceae family, thereby improving our understanding of coral holobiont functioning. Vertically transmitted, tissue-associated bacteria, such as Sororendozoicomonas aggregata may be key candidates for the development of microbiome manipulation approaches with long-term positive effects on the coral host.
Collapse
Affiliation(s)
- Justin Maire
- School of BioSciences, The University of Melbourne, Parkville, 3010 VIC, Australia
| | | | - Katarina Damjanovic
- School of BioSciences, The University of Melbourne, Parkville, 3010 VIC, Australia
- Australian Institute of Marine Science, PMB No 3, Townsville, 4810 QLD, Australia
| | - Hannah E Epstein
- Australian Institute of Marine Science, PMB No 3, Townsville, 4810 QLD, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, 4811 QLD, Australia
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, United Kingdom
| | - Louise M Judd
- Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, 3010 VIC, Australia
| | - Linda L Blackall
- School of BioSciences, The University of Melbourne, Parkville, 3010 VIC, Australia
| | - Madeleine J H van Oppen
- School of BioSciences, The University of Melbourne, Parkville, 3010 VIC, Australia
- Australian Institute of Marine Science, PMB No 3, Townsville, 4810 QLD, Australia
| |
Collapse
|
23
|
Chai G, Li J, Li Z. The interactive effects of ocean acidification and warming on bioeroding sponge Spheciospongia vesparium microbiome indicated by metatranscriptomics. Microbiol Res 2024; 278:127542. [PMID: 37979302 DOI: 10.1016/j.micres.2023.127542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/20/2023]
Abstract
Global climate change will cause coral reefs decline and is expected to increase the reef erosion potential of bioeroding sponges. Microbial symbionts are essential for the overall fitness and survival of sponge holobionts in changing ocean environments. However, we rarely know about the impacts of ocean warming and acidification on bioeroding sponge microbiome. Here, the structural and functional changes of the bioeroding sponge Spheciospongia vesparium microbiome, as well as its recovery potential, were investigated at the RNA level in a laboratory system simulating 32 °C and pH 7.7. Based on metatranscriptome analysis, acidification showed no significant impact, while warming or simultaneous warming and acidification disrupted the sponge microbiome. Warming caused microbial dysbiosis and recruited potentially opportunistic and pathogenic members of Nesiotobacter, Oceanospirillaceae, Deltaproteobacteria, Epsilonproteobacteria, Bacteroidetes and Firmicutes. Moreover, warming disrupted nutrient exchange and molecular interactions in the sponge holobiont, accompanied by stimulation of virulence activity and anaerobic metabolism including denitrification and dissimilatory reduction of nitrate and sulfate to promote sponge necrosis. Particularly, the interaction between acidification and warming alleviated the negative effects of warming and enhanced the Rhodobacteraceae-driven ethylmalonyl-CoA pathway and sulfur-oxidizing multienzyme system. The microbiome could not recover during the experiment period after warming or combined stress was removed. This study suggests that warming or combined warming and acidification will irreversibly destabilize the S. vesparium microbial community structure and function, and provides insight into the molecular mechanisms of the interactive effects of acidification and warming on the sponge microbiome.
Collapse
Affiliation(s)
- Guangjun Chai
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinlong Li
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiyong Li
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
24
|
Alsharif SM, Waznah MS, Ismaeil M, El-Sayed WS. 16S rDNA-based diversity analysis of bacterial communities associated with soft corals of the Red Sea, Al Rayyis, White Head, KSA. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2023. [DOI: 10.1080/16583655.2022.2156762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Sultan M. Alsharif
- Department of Biology, College of Science, Taibah University, Al-Madinah, Kingdom of Saudi Arabia
| | - Moayad S. Waznah
- Department of Biology, College of Science, Taibah University, Al-Madinah, Kingdom of Saudi Arabia
| | - Mohamed Ismaeil
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Wael S. El-Sayed
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
25
|
Chiou YJ, Chan YF, Yu SP, Lu CY, Hsiao SSY, Chiang PW, Hsu TC, Liu PY, Wada N, Lee Y, Jane WN, Lee DC, Huang YW, Tang SL. Similar but different: Characterization of dddD gene-mediated DMSP metabolism among coral-associated Endozoicomonas. SCIENCE ADVANCES 2023; 9:eadk1910. [PMID: 37992165 PMCID: PMC10664990 DOI: 10.1126/sciadv.adk1910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/20/2023] [Indexed: 11/24/2023]
Abstract
Endozoicomonas are often predominant bacteria and prominently important in coral health. Their role in dimethylsulfoniopropionate (DMSP) degradation has been a subject of discussion for over a decade. A previous study found that Endozoicomonas degraded DMSP through the dddD pathway. This process releases dimethyl sulfide, which is vital for corals coping with thermal stress. However, little is known about the related gene regulation and metabolic abilities of DMSP metabolism in Endozoicomonadaceae. In this study, we isolated a novel Endozoicomonas DMSP degrader and observed a distinct DMSP metabolic trend in two phylogenetically close dddD-harboring Endozoicomonas species, confirmed genetically by comparative transcriptomic profiling and visualization of the change of DMSP stable isotopes in bacterial cells using nanoscale secondary ion spectrometry. Furthermore, we found that DMSP cleavage enzymes are ubiquitous in coral Endozoicomonas with a preference for having DddD lyase. We speculate that harboring DMSP degrading genes enables Endozoicomonas to successfully colonize various coral species across the globe.
Collapse
Affiliation(s)
- Yu-Jing Chiou
- Institute of Oceanography, National Taiwan University, Taipei 106, Taiwan
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Ya-Fan Chan
- Department of Microbiology, Soochow University, Taipei 111, Taiwan
| | - Sheng-Ping Yu
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chih-Ying Lu
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei 115, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | | | - Pei-Wen Chiang
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Ting-Chang Hsu
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Po-Yu Liu
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Naohisa Wada
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yu Lee
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Wann-Neng Jane
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan
| | - Der-Chuen Lee
- Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Wen Huang
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Sen-Lin Tang
- Institute of Oceanography, National Taiwan University, Taipei 106, Taiwan
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
26
|
Li J, Zou Y, Li Q, Zhang J, Bourne DG, Lyu Y, Liu C, Zhang S. A coral-associated actinobacterium mitigates coral bleaching under heat stress. ENVIRONMENTAL MICROBIOME 2023; 18:83. [PMID: 37996910 PMCID: PMC10668361 DOI: 10.1186/s40793-023-00540-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND The positive effects of exposing corals to microorganisms have been reported though how the benefits are conferred are poorly understood. Here, we isolated an actinobacterial strain (SCSIO 13291) from Pocillopora damicornis with capabilities to synthesize antioxidants, vitamins, and antibacterial and antiviral compounds supported with phenotypic and/or genomic evidence. Strain SCSIO 13291 was labeled with 5 (and - 6)-carboxytetramethylrhodamine, succinimidyl ester and the labeled cell suspension directly inoculated onto the coral polyp tissues when nubbins were under thermal stress in a mesocosm experiment. We then visualized the labelled bacterial cells and analyzed the coral physiological, transcriptome and microbiome to elucidate the effect this strain conferred on the coral holobiont under thermal stress. RESULTS Subsequent microscopic observations confirmed the presence of the bacterium attached to the coral polyps. Addition of the SCSIO 13291 strain reduced signs of bleaching in the corals subjected to heat stress. At the same time, alterations in gene expression, which were involved in reactive oxygen species and light damage mitigation, attenuated apoptosis and exocytosis in addition to metabolite utilization, were observed in the coral host and Symbiodiniaceae populations. In addition, the coral associated bacterial community altered with a more stable ecological network for samples inoculated with the bacterial strain. CONCLUSIONS Our results provide insights into the benefits of a putative actinobacterial probiotic strain that mitigate coral bleaching signs. This study suggests that the inoculation of bacteria can potentially directly benefit the coral holobiont through conferring metabolic activities or through indirect mechanisms of suppling additional nutrient sources.
Collapse
Affiliation(s)
- Jie Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China.
- Sanya National Marine Ecosystem Research Station, Chinese Academy of Sciences, Sanya, Hainan, China.
| | - Yiyang Zou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Qiqi Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Jian Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - David G Bourne
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Yuanjiao Lyu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Cong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Sanya National Marine Ecosystem Research Station, Chinese Academy of Sciences, Sanya, Hainan, China
| |
Collapse
|
27
|
Portas A, Carriot N, Ortalo-Magné A, Damblans G, Thiébaut M, Culioli G, Quillien N, Briand JF. Impact of hydrodynamics on community structure and metabolic production of marine biofouling formed in a highly energetic estuary. MARINE ENVIRONMENTAL RESEARCH 2023; 192:106241. [PMID: 37922705 DOI: 10.1016/j.marenvres.2023.106241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/02/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Biofouling is a specific lifestyle including both marine prokaryotic and eukaryotic communities. Hydrodynamics are poorly studied parameters affecting biofouling formation. This study aimed to investigate how water dynamics in the Etel Estuary (Northwest Atlantic coasts of France) influences the colonization of artificial substrates. Hydrodynamic conditions, mainly identified as shear stress, were characterized by measuring current velocity, turbulence intensity and energy using Acoustic Doppler Current Profiler (ADCP). One-month biofouling was analyzed by coupling metabarcoding (16S rRNA, 18S rRNA and COI genes), untargeted metabolomics (liquid chromatography coupled with high-resolution mass spectrometry, LC-HRMS) and characterization of the main biochemical components of the microbial exopolymeric matrix. A higher richness was observed for biofouling communities (prokaryotes and eukaryotes) exposed to the strongest currents. Ectopleura (Cnidaria) and its putative symbionts Endozoicomonas (Gammaproteobacteria) were dominant in the less dynamic conditions. Eukaryotes assemblages were specifically shaped by shear stress, leading to drastic changes in metabolite profiles. Under high hydrodynamic conditions, the exopolymeric matrix increased and was composed of 6 times more polysaccharides than proteins, these latter playing a crucial role in the adhesion and cohesion properties of biofilms. This original multidisciplinary approach demonstrated the importance of shear stress on both the structure of marine biofouling and the metabolic response of these complex communities.
Collapse
Affiliation(s)
- Aurélie Portas
- France Energies Marines, Plouzané, France; MAPIEM, EA 4323, Université de Toulon, France
| | | | | | | | | | - Gérald Culioli
- MAPIEM, EA 4323, Université de Toulon, France; IMBE, Aix-Marseille Université, Avignon Université, CNRS, IRD, Avignon, France
| | | | | |
Collapse
|
28
|
da Silva DMG, Pedrosa FR, Ângela Taipa M, Costa R, Keller-Costa T. Widespread occurrence of chitinase-encoding genes suggests the Endozoicomonadaceae family as a key player in chitin processing in the marine benthos. ISME COMMUNICATIONS 2023; 3:109. [PMID: 37838809 PMCID: PMC10576748 DOI: 10.1038/s43705-023-00316-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 09/24/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023]
Abstract
Chitin is the most abundant natural polymer in the oceans, where it is primarily recycled by chitin-degrading microorganisms. Endozoicomonadaceae (Oceanospirillales) bacteria are prominent symbionts of sessile marine animals, particularly corals, and presumably contribute to nutrient cycling in their hosts. To reveal the chitinolytic potential of this iconic, animal-dwelling bacterial family, we examined 42 publicly available genomes of cultured and uncultured Endozoicomonadaceae strains for the presence of chitinase-encoding genes. Thirty-two of 42 Endozoicomonadaceae genomes harbored endo-chitinase- (EC 3.2.1.14), 25 had exo-chitinase- (EC 3.2.1.52) and 23 polysaccharide deacetylase-encoding genes. Chitinases were present in cultured and uncultured Endozoicomonadaceae lineages associated with diverse marine animals, including the three formally described genera Endozoicomonas, Paraendozoicomonas and Kistimonas, the new genus Candidatus Gorgonimonas, and other, yet unclassified, groups of the family. Most endo-chitinases belonged to the glycoside hydrolase family GH18 but five GH19 endo-chitinases were also present. Many endo-chitinases harbored an active site and a signal peptide domain, indicating the enzymes are likely functional and exported to the extracellular environment where endo-chitinases usually act. Phylogenetic analysis revealed clade-specific diversification of endo-chitinases across the family. The presence of multiple, distinct endo-chitinases on the genomes of several Endozoicomonadaceae species hints at functional variation to secure effective chitin processing in diverse micro-niches and changing environmental conditions. We demonstrate that endo-chitinases and other genes involved in chitin degradation are widespread in the Endozoicomonadaceae family and posit that these symbionts play important roles in chitin turnover in filter- and suspension-feeding animals and in benthic, marine ecosystems at large.
Collapse
Affiliation(s)
- Daniela M G da Silva
- Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Filipa R Pedrosa
- Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - M Ângela Taipa
- Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Rodrigo Costa
- Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Tina Keller-Costa
- Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.
| |
Collapse
|
29
|
Alker AT, Farrell MV, Aspiras AE, Dunbar TL, Fedoriouk A, Jones JE, Mikhail SR, Salcedo GY, Moore BS, Shikuma NJ. A modular plasmid toolkit applied in marine bacteria reveals functional insights during bacteria-stimulated metamorphosis. mBio 2023; 14:e0150223. [PMID: 37530556 PMCID: PMC10470607 DOI: 10.1128/mbio.01502-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 08/03/2023] Open
Abstract
A conspicuous roadblock to studying marine bacteria for fundamental research and biotechnology is a lack of modular synthetic biology tools for their genetic manipulation. Here, we applied, and generated new parts for, a modular plasmid toolkit to study marine bacteria in the context of symbioses and host-microbe interactions. To demonstrate the utility of this plasmid system, we genetically manipulated the marine bacterium Pseudoalteromonas luteoviolacea, which stimulates the metamorphosis of the model tubeworm, Hydroides elegans. Using these tools, we quantified constitutive and native promoter expression, developed reporter strains that enable the imaging of host-bacteria interactions, and used CRISPR interference (CRISPRi) to knock down a secondary metabolite and a host-associated gene. We demonstrate the broader utility of this modular system for testing the genetic tractability of marine bacteria that are known to be associated with diverse host-microbe symbioses. These efforts resulted in the successful conjugation of 12 marine strains from the Alphaproteobacteria and Gammaproteobacteria classes. Altogether, the present study demonstrates how synthetic biology strategies enable the investigation of marine microbes and marine host-microbe symbioses with potential implications for environmental restoration and biotechnology. IMPORTANCE Marine Proteobacteria are attractive targets for genetic engineering due to their ability to produce a diversity of bioactive metabolites and their involvement in host-microbe symbioses. Modular cloning toolkits have become a standard for engineering model microbes, such as Escherichia coli, because they enable innumerable mix-and-match DNA assembly and engineering options. However, such modular tools have not yet been applied to most marine bacterial species. In this work, we adapt a modular plasmid toolkit for use in a set of 12 marine bacteria from the Gammaproteobacteria and Alphaproteobacteria classes. We demonstrate the utility of this genetic toolkit by engineering a marine Pseudoalteromonas bacterium to study their association with its host animal Hydroides elegans. This work provides a proof of concept that modular genetic tools can be applied to diverse marine bacteria to address basic science questions and for biotechnology innovations.
Collapse
Affiliation(s)
- Amanda T. Alker
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Morgan V. Farrell
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Alpher E. Aspiras
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Tiffany L. Dunbar
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Andriy Fedoriouk
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Jeffrey E. Jones
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Sama R. Mikhail
- Department of Biology, San Diego State University, San Diego, California, USA
| | | | - Bradley S. Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, California, USA
| | - Nicholas J. Shikuma
- Department of Biology, San Diego State University, San Diego, California, USA
| |
Collapse
|
30
|
McCauley M, Goulet TL, Jackson CR, Loesgen S. Systematic review of cnidarian microbiomes reveals insights into the structure, specificity, and fidelity of marine associations. Nat Commun 2023; 14:4899. [PMID: 37580316 PMCID: PMC10425419 DOI: 10.1038/s41467-023-39876-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 06/30/2023] [Indexed: 08/16/2023] Open
Abstract
Microorganisms play essential roles in the health and resilience of cnidarians. Understanding the factors influencing cnidarian microbiomes requires cross study comparisons, yet the plethora of protocols used hampers dataset integration. We unify 16S rRNA gene sequences from cnidarian microbiome studies under a single analysis pipeline. We reprocess 12,010 cnidarian microbiome samples from 186 studies, alongside 3,388 poriferan, 370 seawater samples, and 245 cultured Symbiodiniaceae, unifying ~6.5 billion sequence reads. Samples are partitioned by hypervariable region and sequencing platform to reduce sequencing variability. This systematic review uncovers an incredible diversity of 86 archaeal and bacterial phyla associated with Cnidaria, and highlights key bacteria hosted across host sub-phylum, depth, and microhabitat. Shallow (< 30 m) water Alcyonacea and Actinaria are characterized by highly shared and relatively abundant microbial communities, unlike Scleractinia and most deeper cnidarians. Utilizing the V4 region, we find that cnidarian microbial composition, richness, diversity, and structure are primarily influenced by host phylogeny, sampling depth, and ocean body, followed by microhabitat and sampling date. We identify host and geographical generalist and specific Endozoicomonas clades within Cnidaria and Porifera. This systematic review forms a framework for understanding factors governing cnidarian microbiomes and creates a baseline for assessing stress associated dysbiosis.
Collapse
Affiliation(s)
- M McCauley
- Department of Chemistry, Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA.
- Department of Biology, University of Mississippi, University, MS, USA.
- U.S. Geological Survey, Wetland and Aquatic Research Centre, Gainesville, FL, USA.
| | - T L Goulet
- Department of Biology, University of Mississippi, University, MS, USA
| | - C R Jackson
- Department of Biology, University of Mississippi, University, MS, USA
| | - S Loesgen
- Department of Chemistry, Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA
| |
Collapse
|
31
|
Hochart C, Paoli L, Ruscheweyh HJ, Salazar G, Boissin E, Romac S, Poulain J, Bourdin G, Iwankow G, Moulin C, Ziegler M, Porro B, Armstrong EJ, Hume BCC, Aury JM, Pogoreutz C, Paz-García DA, Nugues MM, Agostini S, Banaigs B, Boss E, Bowler C, de Vargas C, Douville E, Flores M, Forcioli D, Furla P, Gilson E, Lombard F, Pesant S, Reynaud S, Thomas OP, Troublé R, Wincker P, Zoccola D, Allemand D, Planes S, Thurber RV, Voolstra CR, Sunagawa S, Galand PE. Ecology of Endozoicomonadaceae in three coral genera across the Pacific Ocean. Nat Commun 2023; 14:3037. [PMID: 37264015 DOI: 10.1038/s41467-023-38502-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/26/2023] [Indexed: 06/03/2023] Open
Abstract
Health and resilience of the coral holobiont depend on diverse bacterial communities often dominated by key marine symbionts of the Endozoicomonadaceae family. The factors controlling their distribution and their functional diversity remain, however, poorly known. Here, we study the ecology of Endozoicomonadaceae at an ocean basin-scale by sampling specimens from three coral genera (Pocillopora, Porites, Millepora) on 99 reefs from 32 islands across the Pacific Ocean. The analysis of 2447 metabarcoding and 270 metagenomic samples reveals that each coral genus harbored a distinct new species of Endozoicomonadaceae. These species are composed of nine lineages that have distinct biogeographic patterns. The most common one, found in Pocillopora, appears to be a globally distributed symbiont with distinct metabolic capabilities, including the synthesis of amino acids and vitamins not produced by the host. The other lineages are structured partly by the host genetic lineage in Pocillopora and mainly by the geographic location in Porites. Millepora is more rarely associated to Endozoicomonadaceae. Our results show that different coral genera exhibit distinct strategies of host-Endozoicomonadaceae associations that are defined at the bacteria lineage level.
Collapse
Affiliation(s)
- Corentin Hochart
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, 66650, Banyuls sur Mer, France
| | - Lucas Paoli
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, 8093, Zürich, Switzerland
| | - Hans-Joachim Ruscheweyh
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, 8093, Zürich, Switzerland
| | - Guillem Salazar
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, 8093, Zürich, Switzerland
| | - Emilie Boissin
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
| | - Sarah Romac
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Roscoff, France
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75000, Paris, France
| | | | - Guillaume Iwankow
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
| | | | - Maren Ziegler
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32 (IFZ), 35392, Giessen, Germany
| | - Barbara Porro
- CNRS, INSERM, Institute for Research on Cancer and Aging (IRCAN), Université Côte d'Azur, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Principality of Monaco
| | - Eric J Armstrong
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
| | - Benjamin C C Hume
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75000, Paris, France
| | - Claudia Pogoreutz
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - David A Paz-García
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, Baja California Sur, 23096, México
| | - Maggy M Nugues
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
| | - Sylvain Agostini
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka, Japan
| | - Bernard Banaigs
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
| | - Emmanuel Boss
- School of Marine Sciences, University of Maine, Orono, ME, 04469, USA
| | - Chris Bowler
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75000, Paris, France
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Colomban de Vargas
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Roscoff, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75000, Paris, France
| | - Eric Douville
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Michel Flores
- Weizmann Institute of Science, Department of Earth and Planetary Sciences, 76100, Rehovot, Israel
| | - Didier Forcioli
- CNRS, INSERM, Institute for Research on Cancer and Aging (IRCAN), Université Côte d'Azur, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Principality of Monaco
| | - Paola Furla
- CNRS, INSERM, Institute for Research on Cancer and Aging (IRCAN), Université Côte d'Azur, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Principality of Monaco
| | - Eric Gilson
- CNRS, INSERM, Institute for Research on Cancer and Aging (IRCAN), Université Côte d'Azur, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Principality of Monaco
- Department of Medical Genetics, CHU Nice, Nice, France
| | - Fabien Lombard
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75000, Paris, France
- Sorbonne Université, Institut de la Mer de Villefranche sur mer, Laboratoire d'Océanographie de Villefranche, 06230, Villefranche-sur-Mer, France
- Institut Universitaire de France, 75231, Paris, France
| | - Stéphane Pesant
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Stéphanie Reynaud
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Principality of Monaco
- Centre Scientifique de Monaco, Monaco, Principality of Monaco
| | - Olivier P Thomas
- School of Biological and Chemical Sciences, Ryan Institute, University of Galway, Galway, Ireland
| | - Romain Troublé
- Fondation Tara Océan, 8 rue de Prague, 75012, Paris, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75000, Paris, France
| | - Didier Zoccola
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Principality of Monaco
- Centre Scientifique de Monaco, Monaco, Principality of Monaco
| | - Denis Allemand
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Principality of Monaco
- Centre Scientifique de Monaco, Monaco, Principality of Monaco
| | - Serge Planes
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75000, Paris, France
| | | | | | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, 8093, Zürich, Switzerland
| | - Pierre E Galand
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, 66650, Banyuls sur Mer, France.
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75000, Paris, France.
| |
Collapse
|
32
|
Maire J, Tandon K, Collingro A, van de Meene A, Damjanovic K, Gotze CR, Stephenson S, Philip GK, Horn M, Cantin NE, Blackall LL, van Oppen MJ. Colocalization and potential interactions of Endozoicomonas and chlamydiae in microbial aggregates of the coral Pocillopora acuta. SCIENCE ADVANCES 2023; 9:eadg0773. [PMID: 37196086 PMCID: PMC11809670 DOI: 10.1126/sciadv.adg0773] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/13/2023] [Indexed: 05/19/2023]
Abstract
Corals are associated with a variety of bacteria, which occur in the surface mucus layer, gastrovascular cavity, skeleton, and tissues. Some tissue-associated bacteria form clusters, termed cell-associated microbial aggregates (CAMAs), which are poorly studied. Here, we provide a comprehensive characterization of CAMAs in the coral Pocillopora acuta. Combining imaging techniques, laser capture microdissection, and amplicon and metagenome sequencing, we show that (i) CAMAs are located in the tentacle tips and may be intracellular; (ii) CAMAs contain Endozoicomonas (Gammaproteobacteria) and Simkania (Chlamydiota) bacteria; (iii) Endozoicomonas may provide vitamins to its host and use secretion systems and/or pili for colonization and aggregation; (iv) Endozoicomonas and Simkania occur in distinct, but adjacent, CAMAs; and (v) Simkania may receive acetate and heme from neighboring Endozoicomonas. Our study provides detailed insight into coral endosymbionts, thereby improving our understanding of coral physiology and health and providing important knowledge for coral reef conservation in the climate change era.
Collapse
Affiliation(s)
- Justin Maire
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kshitij Tandon
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Astrid Collingro
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna 1030, Austria
| | - Allison van de Meene
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Katarina Damjanovic
- Australian Institute of Marine Science, PMB No 3, Townsville, QLD 4810, Australia
| | - Cecilie Ravn Gotze
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Australian Institute of Marine Science, PMB No 3, Townsville, QLD 4810, Australia
| | - Sophie Stephenson
- Australian Institute of Marine Science, PMB No 3, Townsville, QLD 4810, Australia
| | - Gayle K. Philip
- Melbourne Bioinformatics, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Matthias Horn
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna 1030, Austria
| | - Neal E. Cantin
- Australian Institute of Marine Science, PMB No 3, Townsville, QLD 4810, Australia
| | - Linda L. Blackall
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Madeleine J. H. van Oppen
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Australian Institute of Marine Science, PMB No 3, Townsville, QLD 4810, Australia
| |
Collapse
|
33
|
Zhu W, Liu X, Zhang J, Zhao H, Li Z, Wang H, Chen R, Wang A, Li X. Response of coral bacterial composition and function to water quality variations under anthropogenic influence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163837. [PMID: 37137368 DOI: 10.1016/j.scitotenv.2023.163837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/06/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023]
Abstract
Microbial communities play key roles in the adaptation of corals living in adverse environments, as the microbiome flexibility can enhance environmental plasticity of coral holobiont. However, the ecological association of coral microbiome and related function to locally deteriorating water quality remains underexplored. In this work, we used 16S rRNA gene sequencing and quantitative microbial element cycling (QMEC) to investigate the seasonal changes of bacterial communities, particularly their functional genes related to carbon (C), nitrogen (N), phosphorus (P) and sulfur (S) cycle, of the scleractinian coral Galaxea fascicularis from nearshore reefs exposed anthropogenic influence. We used nutrient concentrations as the indicator of anthropogenic activities in coastal reefs, and found a higher nutrient pressure in spring than summer. The bacterial diversity, community structure and dominant bacteria of coral shifted significantly due to seasonal variations dominated by nutrient concentrations. Additionally, the network structure and nutrient cycling gene profiles in summer under low nutrient stress was distinct from that under poor environmental conditions in spring, with lower network complexity and abundance of CNPS cycling genes in summer compared with spring. We further identified significant correlations between microbial community (taxonomic composition and co-occurrence network) and geochemical functions (abundance of multiple functional genes and functional community). Nutrient enrichment was proved to be the most important environmental fluctuation in controlling the diversity, community structure, interactional network and functional genes of the coral microbiome. These results highlight that seasonal shifts in coral-associated bacteria due to anthropogenic activities alter the functional potentials, and provide novel insight about the mechanisms of coral adaptation to locally deteriorating environments.
Collapse
Affiliation(s)
- Wentao Zhu
- College of Ecology and Environment, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Xiangbo Liu
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Junling Zhang
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - He Zhao
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Zhuoran Li
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Hao Wang
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Rouwen Chen
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Aimin Wang
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Xiubao Li
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China.
| |
Collapse
|
34
|
Reich HG, Camp EF, Roger LM, Putnam HM. The trace metal economy of the coral holobiont: supplies, demands and exchanges. Biol Rev Camb Philos Soc 2023; 98:623-642. [PMID: 36897260 DOI: 10.1111/brv.12922] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022]
Abstract
The juxtaposition of highly productive coral reef ecosystems in oligotrophic waters has spurred substantial interest and progress in our understanding of macronutrient uptake, exchange, and recycling among coral holobiont partners (host coral, dinoflagellate endosymbiont, endolithic algae, fungi, viruses, bacterial communities). By contrast, the contribution of trace metals to the physiological performance of the coral holobiont and, in turn, the functional ecology of reef-building corals remains unclear. The coral holobiont's trace metal economy is a network of supply, demand, and exchanges upheld by cross-kingdom symbiotic partnerships. Each partner has unique trace metal requirements that are central to their biochemical functions and the metabolic stability of the holobiont. Organismal homeostasis and the exchanges among partners determine the ability of the coral holobiont to adjust to fluctuating trace metal supplies in heterogeneous reef environments. This review details the requirements for trace metals in core biological processes and describes how metal exchanges among holobiont partners are key to sustaining complex nutritional symbioses in oligotrophic environments. Specifically, we discuss how trace metals contribute to partner compatibility, ability to cope with stress, and thereby to organismal fitness and distribution. Beyond holobiont trace metal cycling, we outline how the dynamic nature of the availability of environmental trace metal supplies can be influenced by a variability of abiotic factors (e.g. temperature, light, pH, etc.). Climate change will have profound consequences on the availability of trace metals and further intensify the myriad stressors that influence coral survival. Lastly, we suggest future research directions necessary for understanding the impacts of trace metals on the coral holobiont symbioses spanning subcellular to organismal levels, which will inform nutrient cycling in coral ecosystems more broadly. Collectively, this cross-scale elucidation of the role of trace metals for the coral holobiont will allow us to improve forecasts of future coral reef function.
Collapse
Affiliation(s)
- Hannah G Reich
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston, RI, 02881, USA
| | - Emma F Camp
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Liza M Roger
- Chemical & Life Science Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA, 23284, USA
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston, RI, 02881, USA
| |
Collapse
|
35
|
Elevated aerial temperature modulates digestive enzyme activities in Mytilus californianus. Comp Biochem Physiol B Biochem Mol Biol 2023; 265:110825. [PMID: 36572236 DOI: 10.1016/j.cbpb.2022.110825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The marine intertidal mussel Mytilus californianus aggregates to form beds along the Pacific shores of North America. As a sessile organism it must cope with fluctuations in temperature during low-tide aerial exposure, which elevates maintenance costs and negatively affects its overall energy budget. The function of its digestive gland is to release enzymes that break apart ingested polymers for subsequent nutrient absorption. The effects of elevated aerial warming acclimation on the functioning of digestive gland enzymes are not well studied. In this study we asked whether digestive gland carbohydases and proteases could be overstimulated in warm condition to possibly mitigate the costs related to the heat-shock response. We compared mussels acclimated to a + 9 °C heat-shock during daily low-tide aerial exposure to mussels acclimated to isothermal tidal conditions in a simulated intertidal system. The results showed fairly consistent activities of cellulase, trypsin, and amino-peptidase across tidal variation and between thermal treatments; however, amylase activity was lower in warmed versus cool mussels across low and high-tide. We also observed the expression of heat-shock genes in gill tissue during warm tidal conditions, suggestive that moderate temperatures during aerial exposure can induce a stress response.
Collapse
|
36
|
Genome Sequence of the Endosymbiont Endozoicomonas sp. Strain GU-1 ( Gammaproteobacteria), Isolated from the Staghorn Coral Acropora pulchra (Cnidaria: Scleractinia). Microbiol Resour Announc 2023; 12:e0135522. [PMID: 36809083 PMCID: PMC10019302 DOI: 10.1128/mra.01355-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Endozoicomonas sp. strain GU-1 was isolated from two separate staghorn coral (Acropora pulchra) colonies collected in Guam, Micronesia. Both isolates were grown in marine broth prior to DNA extraction and Oxford Nanopore Technologies (ONT) sequencing. Genomes were approximately 6.1 Mbp in size, containing highly similar gene content and matching sets of rRNA sequences.
Collapse
|
37
|
Mohamed AR, Ochsenkühn MA, Kazlak AM, Moustafa A, Amin SA. The coral microbiome: towards an understanding of the molecular mechanisms of coral-microbiota interactions. FEMS Microbiol Rev 2023; 47:fuad005. [PMID: 36882224 PMCID: PMC10045912 DOI: 10.1093/femsre/fuad005] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/09/2023] Open
Abstract
Corals live in a complex, multipartite symbiosis with diverse microbes across kingdoms, some of which are implicated in vital functions, such as those related to resilience against climate change. However, knowledge gaps and technical challenges limit our understanding of the nature and functional significance of complex symbiotic relationships within corals. Here, we provide an overview of the complexity of the coral microbiome focusing on taxonomic diversity and functions of well-studied and cryptic microbes. Mining the coral literature indicate that while corals collectively harbour a third of all marine bacterial phyla, known bacterial symbionts and antagonists of corals represent a minute fraction of this diversity and that these taxa cluster into select genera, suggesting selective evolutionary mechanisms enabled these bacteria to gain a niche within the holobiont. Recent advances in coral microbiome research aimed at leveraging microbiome manipulation to increase coral's fitness to help mitigate heat stress-related mortality are discussed. Then, insights into the potential mechanisms through which microbiota can communicate with and modify host responses are examined by describing known recognition patterns, potential microbially derived coral epigenome effector proteins and coral gene regulation. Finally, the power of omics tools used to study corals are highlighted with emphasis on an integrated host-microbiota multiomics framework to understand the underlying mechanisms during symbiosis and climate change-driven dysbiosis.
Collapse
Affiliation(s)
- Amin R Mohamed
- Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Michael A Ochsenkühn
- Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Ahmed M Kazlak
- Systems Genomics Laboratory, American University in Cairo, New Cairo 11835, Egypt
- Biotechnology Graduate Program, American University in Cairo, New Cairo 11835, Egypt
| | - Ahmed Moustafa
- Systems Genomics Laboratory, American University in Cairo, New Cairo 11835, Egypt
- Biotechnology Graduate Program, American University in Cairo, New Cairo 11835, Egypt
- Department of Biology, American University in Cairo, New Cairo 11835, Egypt
| | - Shady A Amin
- Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| |
Collapse
|
38
|
Rodríguez-Barreras R, Dominicci-Maura A, Tosado-Rodríguez EL, Godoy-Vitorino F. The Epibiotic Microbiota of Wild Caribbean Sea Urchin Spines Is Species Specific. Microorganisms 2023; 11:391. [PMID: 36838357 PMCID: PMC9966300 DOI: 10.3390/microorganisms11020391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Caribbean sea urchins are marine invertebrates that have experienced a decline over the years. Studies on sea urchins have focused primarily on the microbiome of the coelomic fluid or the gut microbiota. In this study, the epibiota community associated with four wild Caribbean sea urchin species, Lytechinus variegatus, Echinometra lucunter, Tripneustes ventricosus, and Diadema antillarum, was characterized for the first time. Using 57 sea urchin animal samples, we evaluated the influence of animal species, trophic niches, and geographical location on the composition of the epibiotic microbiota. We found significant differences in the bacterial biota among species and trophic niches, but not among geographical locations. L. variegatus exhibited the highest alpha diversity with high dominance of Fusobacteria, Planctomycetes, and Cyanobacteria, whereas T. ventricosus and D. antillarum were dominated by Firmicutes. T. ventricosus inhabiting the seagrass biotope dominated by Thalassia testudinum meadows had mostly Endozoicomonas. In contrast, samples located in the reef (dominated by corals and other reef builders) had a higher abundance of Kistimonas and Photobacterium. Our findings confirm that the epibiotic microbiota is species-specific, but also niche-dependent, revealing the trophic networks emerging from the organic matter being recycled in the seagrass and reef niches. As echinoids are important grazers of benthic communities, their microbiota will likely influence ecosystem processes.
Collapse
Affiliation(s)
- Ruber Rodríguez-Barreras
- Department of Biology, University of Puerto Rico, Mayagüez Campus, P.O. Box 9000, Mayagüez 00681-9000, Puerto Rico
| | - Anelisse Dominicci-Maura
- Department of Microbiology, University of Puerto Rico School of Medicine, Guillermo Arbona Main Building, San Juan 00936-5067, Puerto Rico
| | - Eduardo L. Tosado-Rodríguez
- Department of Microbiology, University of Puerto Rico School of Medicine, Guillermo Arbona Main Building, San Juan 00936-5067, Puerto Rico
| | - Filipa Godoy-Vitorino
- Department of Microbiology, University of Puerto Rico School of Medicine, Guillermo Arbona Main Building, San Juan 00936-5067, Puerto Rico
| |
Collapse
|
39
|
Mohamed HF, Abd‐Elgawad A, Cai R, Luo Z, Xu C. The bacterial signature offers vision into the machinery of coral fitness across high-latitude coral reef in the South China Sea. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:13-30. [PMID: 36054576 PMCID: PMC10103774 DOI: 10.1111/1758-2229.13119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/15/2022] [Indexed: 05/20/2023]
Abstract
Coral-bacterial interaction is a major driver in coral acclimatization to the stressful environment. 16S rRNA High-throughput sequencing was used to classify the role of different coral reef compartments; sediment, water, and tissue; in the South China Sea (SCS), as well as different locations in shaping the microbial community. The majority of OTUs significantly shifted at impacted sites and indicated distinction in the relative abundance of bacteria compartment/site-wise. Richness and diversity were higher, and more taxa were enriched in the sediment communities. Proteobacteria dominated sediment samples, while Cyanobacteria dominated water samples. Coral tissue showed a shift among different sites with Proteobacteria remaining the dominant Phylum. Moreover, we report a dominance of Chlorobium genus in the healthy coral tissue sample collected from the severely damaged Site B, suggesting a contribution to tolerance and adaptation to the disturbing environment. Thus, revealing the complex functionally diverse microbial patterns associated with biotic and abiotic disturbed coral reefs will deliver understanding of the symbiotic connections and competitive benefit inside the hosts niche and can reveal a measurable footprint of the environmental impacts on coral ecosystems. We hence, urge scientists to draw more attention towards using coral microbiome as a self-sustaining tool in coral restoration.
Collapse
Affiliation(s)
- Hala F. Mohamed
- Third Institute of OceanographyMinistry of Natural ResourcesXiamenPeople's Republic of China
- Al‐Azhar University (Girls Branch)Faculty of Science, Botany & Microbiology DepartmentCairoEgypt
| | - Amro Abd‐Elgawad
- Third Institute of OceanographyMinistry of Natural ResourcesXiamenPeople's Republic of China
- Tourism Developing AuthorityCentral Adminstration for Environmental AffairsCairoEgypt
| | - Rongshuo Cai
- Third Institute of OceanographyMinistry of Natural ResourcesXiamenPeople's Republic of China
| | - Zhaohe Luo
- Third Institute of OceanographyMinistry of Natural ResourcesXiamenPeople's Republic of China
| | - Changan Xu
- Third Institute of OceanographyMinistry of Natural ResourcesXiamenPeople's Republic of China
| |
Collapse
|
40
|
Kanisan DP, Quek ZBR, Oh RM, Afiq-Rosli L, Lee JN, Huang D, Wainwright BJ. Diversity and Distribution of Microbial Communities Associated with Reef Corals of the Malay Peninsula. MICROBIAL ECOLOGY 2023; 85:37-48. [PMID: 35043221 DOI: 10.1007/s00248-022-01958-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Coral-associated bacteria play critical roles in the regulation of coral health and function. Environmental perturbations that alter the bacterial community structure can render the coral holobiont more susceptible and less resilient to disease. Understanding the natural variation of the coral microbiome across space and host species provides a baseline that can be used to distinguish shifts in community structure. Using a 16S rRNA gene metabarcoding approach, this study examines bacterial community structure across three scleractinian coral hosts. Our results show that corals of three regions-eastern and western Peninsular Malaysia and Singapore-host distinct bacterial communities; despite these differences, we were able to identify a core microbiome shared across all three species. This core microbiome was also present in samples previously collected in Thailand, suggesting that these core microbes play an important role in promoting and maintaining host health. For example, several have been identified as dimethylsulfoniopropionate (DMSP) metabolizers that have roles in sulfur cycling and the suppression of bacterial pathogens. Pachyseris speciosa has the most variable microbiome, followed by Porites lutea, with the composition of the Diploastrea heliopora microbiome the least variable throughout all locations. Microbial taxa associated with each region or site are likely shaped by local environmental conditions. Taken together, host identity is a major driver of differences in microbial community structure, while environmental heterogeneity shapes communities at finer scales.
Collapse
Affiliation(s)
- Dhivya P Kanisan
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Z B Randolph Quek
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
- Yale-NUS College, National University of Singapore, 16 College Avenue West, 138527, Singapore
| | - Ren Min Oh
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Lutfi Afiq-Rosli
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
- Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, 119227, Singapore
| | - Jen Nie Lee
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, 21030, Malaysia
| | - Danwei Huang
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
- Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, 119227, Singapore
- Centre for Nature-Based Climate Solutions, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Benjamin J Wainwright
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore.
- Yale-NUS College, National University of Singapore, 16 College Avenue West, 138527, Singapore.
| |
Collapse
|
41
|
Almeida JF, Marques M, Oliveira V, Egas C, Mil-Homens D, Viana R, Cleary DFR, Huang YM, Fialho AM, Teixeira MC, Gomes NCM, Costa R, Keller-Costa T. Marine Sponge and Octocoral-Associated Bacteria Show Versatile Secondary Metabolite Biosynthesis Potential and Antimicrobial Activities against Human Pathogens. Mar Drugs 2022; 21:md21010034. [PMID: 36662207 PMCID: PMC9860996 DOI: 10.3390/md21010034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/15/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Marine microbiomes are prolific sources of bioactive natural products of potential pharmaceutical value. This study inspected two culture collections comprising 919 host-associated marine bacteria belonging to 55 genera and several thus-far unclassified lineages to identify isolates with potentially rich secondary metabolism and antimicrobial activities. Seventy representative isolates had their genomes mined for secondary metabolite biosynthetic gene clusters (SM-BGCs) and were screened for antimicrobial activities against four pathogenic bacteria and five pathogenic Candida strains. In total, 466 SM-BGCs were identified, with antimicrobial peptide- and polyketide synthase-related SM-BGCs being frequently detected. Only 38 SM-BGCs had similarities greater than 70% to SM-BGCs encoding known compounds, highlighting the potential biosynthetic novelty encoded by these genomes. Cross-streak assays showed that 33 of the 70 genome-sequenced isolates were active against at least one Candida species, while 44 isolates showed activity against at least one bacterial pathogen. Taxon-specific differences in antimicrobial activity among isolates suggested distinct molecules involved in antagonism against bacterial versus Candida pathogens. The here reported culture collections and genome-sequenced isolates constitute a valuable resource of understudied marine bacteria displaying antimicrobial activities and potential for the biosynthesis of novel secondary metabolites, holding promise for a future sustainable production of marine drug leads.
Collapse
Affiliation(s)
- João F. Almeida
- iBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Matilde Marques
- iBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Vanessa Oliveira
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Conceição Egas
- Center for Neuroscience and Cell Biology (CNC), Rua Larga—Faculdade de Medicina, University of Coimbra, 3004-504 Coimbra, Portugal
- Biocant—Transfer Technology Association, BiocantPark, 3060-197 Cantanhede, Portugal
| | - Dalila Mil-Homens
- iBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Romeu Viana
- iBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Daniel F. R. Cleary
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Yusheng M. Huang
- Department of Marine Recreation, National Penghu University of Science and Technology, Magong City 880-011, Taiwan
| | - Arsénio M. Fialho
- iBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Miguel C. Teixeira
- iBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Newton C. M. Gomes
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rodrigo Costa
- iBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Centre of Marine Sciences (CCMAR/CIMAR LA), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Correspondence: (R.C.); (T.K.-C.); Tel.: +351-21-841-7339 (R.C.); +351-21-841-3167 (T.K.-C.)
| | - Tina Keller-Costa
- iBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Correspondence: (R.C.); (T.K.-C.); Tel.: +351-21-841-7339 (R.C.); +351-21-841-3167 (T.K.-C.)
| |
Collapse
|
42
|
Ide K, Nishikawa Y, Maruyama T, Tsukada Y, Kogawa M, Takeda H, Ito H, Wagatsuma R, Miyaoka R, Nakano Y, Kinjo K, Ito M, Hosokawa M, Yura K, Suda S, Takeyama H. Targeted single-cell genomics reveals novel host adaptation strategies of the symbiotic bacteria Endozoicomonas in Acropora tenuis coral. MICROBIOME 2022; 10:220. [PMID: 36503599 PMCID: PMC9743535 DOI: 10.1186/s40168-022-01395-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/13/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Endozoicomonas bacteria symbiosis with various marine organisms is hypothesized as a potential indicator of health in corals. Although many amplicon analyses using 16S rRNA gene have suggested the diversity of Endozoicomonas species, genome analysis has been limited due to contamination of host-derived sequences and difficulties in culture and metagenomic analysis. Therefore, the evolutionary and functional potential of individual Endozoicomonas species symbiotic with the same coral species remains unresolved. RESULTS In this study, we applied a novel single-cell genomics technique using droplet microfluidics to obtain single-cell amplified genomes (SAGs) for uncultured coral-associated Endozoicomonas spp. We obtained seven novel Endozoicomonas genomes and quantitative bacterial composition from Acropora tenuis corals at four sites in Japan. Our quantitative 16S rRNA gene and comparative genomic analysis revealed that these Endozoicomonas spp. belong to different lineages (Clade A and Clade B), with widely varying abundance among individual corals. Furthermore, each Endozoicomonas species possessed various eukaryotic-like genes in clade-specific genes. It was suggested that these eukaryotic-like genes might have a potential ability of different functions in each clade, such as infection of the host coral or suppression of host immune pathways. These Endozoicomonas species may have adopted different host adaptation strategies despite living symbiotically on the same coral. CONCLUSIONS This study suggests that coral-associated Endozoicomonas spp. on the same species of coral have different evolutional strategies and functional potentials in each species and emphasizes the need to analyze the genome of each uncultured strain in future coral-Endozoicomonas relationships studies. Video Abstract.
Collapse
Affiliation(s)
- Keigo Ide
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
| | - Yohei Nishikawa
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
| | - Toru Maruyama
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Yuko Tsukada
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Masato Kogawa
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
| | - Hiroki Takeda
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Haruka Ito
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Ryota Wagatsuma
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Rimi Miyaoka
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Yoshikatsu Nakano
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
- Marine Science Section, Research Support Division, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | | | - Michihiro Ito
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Masahito Hosokawa
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Tokyo, Japan
| | - Kei Yura
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Shoichiro Suda
- Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Haruko Takeyama
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan.
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, Tokyo, Japan.
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan.
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Tokyo, Japan.
| |
Collapse
|
43
|
Delgadillo-Ordoñez N, Raimundo I, Barno AR, Osman EO, Villela H, Bennett-Smith M, Voolstra CR, Benzoni F, Peixoto RS. Red Sea Atlas of Coral-Associated Bacteria Highlights Common Microbiome Members and Their Distribution across Environmental Gradients-A Systematic Review. Microorganisms 2022; 10:microorganisms10122340. [PMID: 36557593 PMCID: PMC9787610 DOI: 10.3390/microorganisms10122340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/12/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
The Red Sea is a suitable model for studying coral reefs under climate change due to its strong environmental gradient that provides a window into future global warming scenarios. For instance, corals in the southern Red Sea thrive at temperatures predicted to occur at the end of the century in other biogeographic regions. Corals in the Red Sea thrive under contrasting thermal and environmental regimes along their latitudinal gradient. Because microbial communities associated with corals contribute to host physiology, we conducted a systematic review of the known diversity of Red Sea coral-associated bacteria, considering geographic location and host species. Our assessment comprises 54 studies of 67 coral host species employing cultivation-dependent and cultivation-independent techniques. Most studies have been conducted in the central and northern Red Sea, while the southern and western regions remain largely unexplored. Our data also show that, despite the high diversity of corals in the Red Sea, the most studied corals were Pocillopora verrucosa, Dipsastraea spp., Pleuractis granulosa, and Stylophora pistillata. Microbial diversity was dominated by bacteria from the class Gammaproteobacteria, while the most frequently occurring bacterial families included Rhodobacteraceae and Vibrionaceae. We also identified bacterial families exclusively associated with each of the studied coral orders: Scleractinia (n = 125), Alcyonacea (n = 7), and Capitata (n = 2). This review encompasses 20 years of research in the Red Sea, providing a baseline compendium for coral-associated bacterial diversity.
Collapse
Affiliation(s)
- Nathalia Delgadillo-Ordoñez
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Inês Raimundo
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Adam R. Barno
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Eslam O. Osman
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Helena Villela
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Morgan Bennett-Smith
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Christian R. Voolstra
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Francesca Benzoni
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Raquel S. Peixoto
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
- Correspondence:
| |
Collapse
|
44
|
Roik A, Reverter M, Pogoreutz C. A roadmap to understanding diversity and function of coral reef-associated fungi. FEMS Microbiol Rev 2022; 46:fuac028. [PMID: 35746877 PMCID: PMC9629503 DOI: 10.1093/femsre/fuac028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 01/09/2023] Open
Abstract
Tropical coral reefs are hotspots of marine productivity, owing to the association of reef-building corals with endosymbiotic algae and metabolically diverse bacterial communities. However, the functional importance of fungi, well-known for their contribution to shaping terrestrial ecosystems and global nutrient cycles, remains underexplored on coral reefs. We here conceptualize how fungal functional traits may have facilitated the spread, diversification, and ecological adaptation of marine fungi on coral reefs. We propose that functions of reef-associated fungi may be diverse and go beyond their hitherto described roles of pathogens and bioeroders, including but not limited to reef-scale biogeochemical cycles and the structuring of coral-associated and environmental microbiomes via chemical mediation. Recent technological and conceptual advances will allow the elucidation of the physiological, ecological, and chemical contributions of understudied marine fungi to coral holobiont and reef ecosystem functioning and health and may help provide an outlook for reef management actions.
Collapse
Affiliation(s)
- Anna Roik
- Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg, Ammerländer Heerstraße 231, 26129 Oldenburg, Germany
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, 26046, Germany
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Miriam Reverter
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, 26046, Germany
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, United Kingdom
| | - Claudia Pogoreutz
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
45
|
Cárdenas A, Raina JB, Pogoreutz C, Rädecker N, Bougoure J, Guagliardo P, Pernice M, Voolstra CR. Greater functional diversity and redundancy of coral endolithic microbiomes align with lower coral bleaching susceptibility. THE ISME JOURNAL 2022; 16:2406-2420. [PMID: 35840731 PMCID: PMC9478130 DOI: 10.1038/s41396-022-01283-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/14/2022] [Accepted: 06/28/2022] [Indexed: 04/14/2023]
Abstract
The skeleton of reef-building coral harbors diverse microbial communities that could compensate for metabolic deficiencies caused by the loss of algal endosymbionts, i.e., coral bleaching. However, it is unknown to what extent endolith taxonomic diversity and functional potential might contribute to thermal resilience. Here we exposed Goniastrea edwardsi and Porites lutea, two common reef-building corals from the central Red Sea to a 17-day long heat stress. Using hyperspectral imaging, marker gene/metagenomic sequencing, and NanoSIMS, we characterized their endolithic microbiomes together with 15N and 13C assimilation of two skeletal compartments: the endolithic band directly below the coral tissue and the deep skeleton. The bleaching-resistant G. edwardsi was associated with endolithic microbiomes of greater functional diversity and redundancy that exhibited lower N and C assimilation than endoliths in the bleaching-sensitive P. lutea. We propose that the lower endolithic primary productivity in G. edwardsi can be attributed to the dominance of chemolithotrophs. Lower primary production within the skeleton may prevent unbalanced nutrient fluxes to coral tissues under heat stress, thereby preserving nutrient-limiting conditions characteristic of a stable coral-algal symbiosis. Our findings link coral endolithic microbiome structure and function to bleaching susceptibility, providing new avenues for understanding and eventually mitigating reef loss.
Collapse
Affiliation(s)
- Anny Cárdenas
- Department of Biology, University of Konstanz, Konstanz, 78457, Germany.
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| | - Jean-Baptiste Raina
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Claudia Pogoreutz
- Department of Biology, University of Konstanz, Konstanz, 78457, Germany
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Nils Rädecker
- Department of Biology, University of Konstanz, Konstanz, 78457, Germany
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Jeremy Bougoure
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA, 6009, Australia
| | - Paul Guagliardo
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA, 6009, Australia
| | - Mathieu Pernice
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Christian R Voolstra
- Department of Biology, University of Konstanz, Konstanz, 78457, Germany.
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| |
Collapse
|
46
|
Ide K, Nakano Y, Ito M, Nishikawa Y, Fujimura H, Takeyama H. The Effect of Co-Culture of Two Coral Species on Their Bacterial Composition Under Captive Environments. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:871-881. [PMID: 35997836 DOI: 10.1007/s10126-022-10149-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Coral symbionts are important members of the coral holobiont, and coral bacterial flora are essential in host health maintenance and coral conservation. Coral symbionts are affected by various environmental factors, such as seawater temperature, pH, and salinity. Although physicochemical and chemical factors have been highlighted as possible causes of these effects, the effects of water flow and the co-culture of different species corals have not been elucidated. In this study, we designed an artificial rearing environment to examine the impact of environmental and biological factors on Acropora tenuis, one of the major coral species in Okinawa, and Montipora digitata, during their co-culture. We intervened with the water flow to reveal that the movement of the rearing environment alters the bacterial flora of A. tenuis. During the rearing under captive environment, the alpha diversity of the coral microbiota increased, suggesting the establishment of rare bacteria from the ocean. No differences in the bacterial composition between the control and water flow groups were observed under the rearing conditions. However, the structure of the bacterial flora was significantly different in the co-culture group. Comparison of bacterial community succession strongly suggested that the differences observed were due to the suppressed transmission of bacteria from the ocean in the co-culture group. These results enhance our understanding of interactions between corals and shed light on the importance of regional differences and bacterial composition of coral flora.
Collapse
Affiliation(s)
- Keigo Ide
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Yoshikatsu Nakano
- Tropical Biosphere Research Center, University of the Ryukyus, Tokyo, Japan
- Marine Science Section, Research Support Division, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Michihiro Ito
- Tropical Biosphere Research Center, University of the Ryukyus, Tokyo, Japan
| | - Yohei Nishikawa
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
| | - Hiroyuki Fujimura
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa, Japan
| | - Haruko Takeyama
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan.
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, Tokyo, Japan.
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan.
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Tokyo, Japan.
| |
Collapse
|
47
|
Full-Length Transcriptome Maps of Reef-Building Coral Illuminate the Molecular Basis of Calcification, Symbiosis, and Circa-Dian Genes. Int J Mol Sci 2022; 23:ijms231911135. [PMID: 36232445 PMCID: PMC9570262 DOI: 10.3390/ijms231911135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Coral transcriptomic data largely rely on short-read sequencing, which severely limits the understanding of coral molecular mechanisms and leaves many important biological questions unresolved. Here, we sequence the full-length transcriptomes of four common and frequently dominant reef-building corals using the PacBio Sequel II platform. We obtain information on reported gene functions, structures, and expression profiles. Among them, a comparative analysis of biomineralization-related genes provides insights into the molecular basis of coral skeletal density. The gene expression profiles of the symbiont Symbiodiniaceae are also isolated and annotated from the holobiont sequence data. Finally, a phylogenetic analysis of key circadian clock genes among 40 evolutionarily representative species indicates that there are four key members in early metazoans, including cry genes; Clock or Npas2; cyc or Arntl; and tim, while per, as the fifth member, occurs in Bilateria. In summary, this work provides a foundation for further work on the manipulation of skeleton production or symbiosis to promote the survival of these important organisms.
Collapse
|
48
|
Keller-Costa T, Kozma L, Silva SG, Toscan R, Gonçalves J, Lago-Lestón A, Kyrpides NC, Nunes da Rocha U, Costa R. Metagenomics-resolved genomics provides novel insights into chitin turnover, metabolic specialization, and niche partitioning in the octocoral microbiome. MICROBIOME 2022; 10:151. [PMID: 36138466 PMCID: PMC9502895 DOI: 10.1186/s40168-022-01343-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/03/2022] [Indexed: 05/31/2023]
Abstract
BACKGROUND The role of bacterial symbionts that populate octocorals (Cnidaria, Octocorallia) is still poorly understood. To shed light on their metabolic capacities, we examined 66 high-quality metagenome-assembled genomes (MAGs) spanning 30 prokaryotic species, retrieved from microbial metagenomes of three octocoral species and seawater. RESULTS Symbionts of healthy octocorals were affiliated with the taxa Endozoicomonadaceae, Candidatus Thioglobaceae, Metamycoplasmataceae, unclassified Pseudomonadales, Rhodobacteraceae, unclassified Alphaproteobacteria and Ca. Rhabdochlamydiaceae. Phylogenomics inference revealed that the Endozoicomonadaceae symbionts uncovered here represent two species of a novel genus unique to temperate octocorals, here denoted Ca. Gorgonimonas eunicellae and Ca. Gorgonimonas leptogorgiae. Their genomes revealed metabolic capacities to thrive under suboxic conditions and high gene copy numbers of serine-threonine protein kinases, type 3-secretion system, type-4 pili, and ankyrin-repeat proteins, suggesting excellent capabilities to colonize, aggregate, and persist inside their host. Contrarily, MAGs obtained from seawater frequently lacked symbiosis-related genes. All Endozoicomonadaceae symbionts harbored endo-chitinase and chitin-binging protein-encoding genes, indicating that they can hydrolyze the most abundant polysaccharide in the oceans. Other symbionts, including Metamycoplasmataceae and Ca. Thioglobaceae, may assimilate the smaller chitin oligosaccharides resulting from chitin breakdown and engage in chitin deacetylation, respectively, suggesting possibilities for substrate cross-feeding and a role for the coral microbiome in overall chitin turnover. We also observed sharp differences in secondary metabolite production potential between symbiotic lineages. Specific Proteobacteria taxa may specialize in chemical defense and guard other symbionts, including Endozoicomonadaceae, which lack such capacity. CONCLUSION This is the first study to recover MAGs from dominant symbionts of octocorals, including those of so-far unculturable Endozoicomonadaceae, Ca. Thioglobaceae and Metamycoplasmataceae symbionts. We identify a thus-far unanticipated, global role for Endozoicomonadaceae symbionts of corals in the processing of chitin, the most abundant natural polysaccharide in the oceans and major component of the natural zoo- and phytoplankton feed of octocorals. We conclude that niche partitioning, metabolic specialization, and adaptation to low oxygen conditions among prokaryotic symbionts likely contribute to the plasticity and adaptability of the octocoral holobiont in changing marine environments. These findings bear implications not only for our understanding of symbiotic relationships in the marine realm but also for the functioning of benthic ecosystems at large. Video Abstract.
Collapse
Affiliation(s)
- Tina Keller-Costa
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Lydia Kozma
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
- École Polytechnique Fédérale de Lausanne, Écublens, Switzerland
| | - Sandra G. Silva
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Rodolfo Toscan
- Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Jorge Gonçalves
- Centro de Ciências Do Mar, Universidade Do Algarve, Faro, Portugal
| | - Asunción Lago-Lestón
- Centro de Investigación Científica Y de Educación Superior de Ensenada, Ensenada, Mexico
| | - Nikos C. Kyrpides
- Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | | | - Rodrigo Costa
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
- Centro de Ciências Do Mar, Universidade Do Algarve, Faro, Portugal
| |
Collapse
|
49
|
Li J, Zou Y, Yang J, Li Q, Bourne DG, Sweet M, Liu C, Guo A, Zhang S. Cultured Bacteria Provide Insight into the Functional Potential of the Coral-Associated Microbiome. mSystems 2022; 7:e0032722. [PMID: 35695425 PMCID: PMC9426491 DOI: 10.1128/msystems.00327-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/20/2022] [Indexed: 01/07/2023] Open
Abstract
Improving the availability of representative isolates from the coral microbiome is essential for investigating symbiotic mechanisms and applying beneficial microorganisms to improve coral health. However, few studies have explored the diversity of bacteria which can be isolated from a single species. Here, we isolated a total of 395 bacterial strains affiliated with 49 families across nine classes from the coral Pocillopora damicornis. Identification results showed that most of the strains represent potential novel bacterial species or genera. We also sequenced and assembled the genomes of 118 of these isolates, and then the putative functions of these isolates were identified based on genetic signatures derived from the genomes and this information was combined with isolate-specific phenotypic data. Genomic information derived from the isolates identified putative functions including nitrification and denitrification, dimethylsulfoniopropionate transformation, and supply of fixed carbon, amino acids, and B vitamins which may support their eukaryotic partners. Furthermore, the isolates contained genes associated with chemotaxis, biofilm formation, quorum sensing, membrane transport, signal transduction, and eukaryote-like repeat-containing and cell-cell attachment proteins, all of which potentially help the bacterium establish association with the coral host. Our work expands on the existing culture collection of coral-associated bacteria and provides important information on the metabolic potential of these isolates which can be used to refine understanding of the role of bacteria in coral health and are now available to be applied to novel strategies aimed at improving coral resilience through microbiome manipulation. IMPORTANCE Microbes underpin the health of corals which are the building blocks of diverse and productive reef ecosystems. Studying the culturable fraction of coral-associated bacteria has received less attention in recent times than using culture-independent molecular methods. However, the genomic and phenotypic characterization of isolated strains allows assessment of their functional role in underpinning coral health and identification of beneficial microbes for microbiome manipulation. Here, we isolated 395 bacterial strains from tissues of Pocillopora damicornis with many representing potentially novel taxa and therefore providing a significant contribution to coral microbiology through greatly enlarging the existing cultured coral-associated bacterial bank. Through analysis of the genomes obtained in this study for the coral-associated bacteria and coral host, we elucidate putative metabolic linkages and symbiotic establishment. The results of this study will help to elucidate the role of specific isolates in coral health and provide beneficial microbes for efforts aimed at improving coral health.
Collapse
Affiliation(s)
- Jie Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Sanya National Marine Ecosystem Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Yiyang Zou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Jian Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Sanya National Marine Ecosystem Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Qiqi Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - David G. Bourne
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Michael Sweet
- Aquatic Research Facility, Environmental Sustainability Research Centre, University of Derby, Derby, United Kingdom
| | - Cong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Anjie Guo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Sanya National Marine Ecosystem Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
50
|
Coral holobiont cues prime Endozoicomonas for a symbiotic lifestyle. THE ISME JOURNAL 2022; 16:1883-1895. [PMID: 35444262 PMCID: PMC9296628 DOI: 10.1038/s41396-022-01226-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/23/2022] [Accepted: 03/14/2022] [Indexed: 12/11/2022]
Abstract
Endozoicomonas are prevalent, abundant bacterial associates of marine animals, including corals. Their role in holobiont health and functioning, however, remains poorly understood. To identify potential interactions within the coral holobiont, we characterized the novel isolate Endozoicomonas marisrubri sp. nov. 6c and assessed its transcriptomic and proteomic response to tissue extracts of its native host, the Red Sea coral Acropora humilis. We show that coral tissue extracts stimulated differential expression of genes putatively involved in symbiosis establishment via the modulation of the host immune response by E. marisrubri 6c, such as genes for flagellar assembly, ankyrins, ephrins, and serpins. Proteome analyses revealed that E. marisrubri 6c upregulated vitamin B1 and B6 biosynthesis and glycolytic processes in response to holobiont cues. Our results suggest that the priming of Endozoicomonas for a symbiotic lifestyle involves the modulation of host immunity and the exchange of essential metabolites with other holobiont members. Consequently, Endozoicomonas may play an important role in holobiont nutrient cycling and may therefore contribute to coral health, acclimatization, and adaptation.
Collapse
|