1
|
Zhang B, Liang P, Deng Y, Ho CT, Lu M. Regulating Effect and Mechanisms of Piperine on Glucose Homeostasis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8101-8112. [PMID: 40167240 DOI: 10.1021/acs.jafc.4c11945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Glucose homeostasis is a fundamental physiological process critical for the maintenance of normal cellular functions and overall metabolic health, while disruption of this balance is closely associated with a spectrum of metabolic disorders. Black pepper, one of the world's most widely consumed spices, has been utilized extensively in both traditional medicine and culinary practices, with its bioactive compound piperine (PIP, 1-piperoyl-piperidine), the major alkaloid responsible for its characteristic pungency, emerging as a promising agent for the modulation of glucose metabolism. This Review aims to summarize the regulatory effects of PIP on glucose homeostasis in cell models, animal studies, and human clinical trials as well as the underlying biochemical pathways and molecular mechanisms. This Review highlights PIP as a potentially effective treatment for preventing and managing metabolic disorders associated with disrupted glucose balance, emphasizing its diverse role in influencing various biochemical pathways that control key aspects of glucose metabolism and overall metabolic function.
Collapse
Affiliation(s)
- Binxin Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Pulin Liang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yupei Deng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Muwen Lu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Thakur P, Baraskar K, Shrivastava VK, Medhi B. Cross-talk between adipose tissue and microbiota-gut-brain-axis in brain development and neurological disorder. Brain Res 2024; 1844:149176. [PMID: 39182900 DOI: 10.1016/j.brainres.2024.149176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/25/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
The gut microbiota is an important factor responsible for the physiological processes as well as pathogenesis of host. The communication between central nervous system (CNS) and microbiota occurs by different pathways i.e., chemical, neural, immune, and endocrine. Alteration in gut microbiota i.e., gut dysbiosis causes alteration in the bidirectional communication between CNS and gut microbiota and linked to the pathogenesis of neurological and neurodevelopmental disorder. Therefore, now-a-days microbiota-gut-brain-axis (MGBA) has emerged as therapeutic target for the treatment of metabolic disorder. But, experimental data available on MGBA from basic research has limited application in clinical study. In present study we first summarized molecular mechanism of microbiota interaction with brain physiology and pathogenesis via collecting data from different sources i.e., PubMed, Scopus, Web of Science. Furthermore, evidence shows that adipose tissue (AT) is active during metabolic activities and may also interact with MGBA. Hence, in present study we have focused on the relationship among MGBA, brown adipose tissue, and white adipose tissue. Along with this, we have also studied functional specificity of AT, and understanding heterogeneity among MGBA and different types of AT. Therefore, molecular interaction among them may provide therapeutic target for the treatment of neurological disorder.
Collapse
Affiliation(s)
- Pratibha Thakur
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh 462026, India.
| | - Kirti Baraskar
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh 462026, India
| | - Vinoy K Shrivastava
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh 462026, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, Punjab 160012, India.
| |
Collapse
|
3
|
Wang WF, Liu YX, Li CQ, Liu XY. Physical activity modified the association of blood cadmium and lead with Helicobacter pylori infection: A cross-sectional analysis with NHANES data. Medicine (Baltimore) 2024; 103:e39899. [PMID: 39465795 PMCID: PMC11479499 DOI: 10.1097/md.0000000000039899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/11/2024] [Indexed: 10/29/2024] Open
Abstract
Cadmium (Cd) and lead (Pb) exposure have been identified as risk factors for Helicobacter pylori seropositivity, possibly due to the immune suppression by Cd and Pb. Physical activity (PA) can induce an immune response. However, whether PA can reduce the effect of Cd and Pb on H pylori infection remains elusive. This study aims to investigate the association of blood Cd and Pb levels with H pylori infection and explore the intermediary effects of PA. This cross-sectional survey was conducted using the National Health and Nutrition Examination Survey (NHANES) of the 1999 to 2000 cycle (n = 9965). Participants without clear serological testing data, or absent in PA, blood Cd, and Pb information were excluded. Collinearity analysis was performed to remove the variables with high collinearity. Restricted cubic spline curve analysis was adopted to assess the nonlinear association of Cd and Pb with H pylori infection. The logistic regression analysis, generalized linear models, sensitivity analysis, and P for trend test were used to further analyze their relationship. Then, we analyzed the association of Cd and Pb with H pylori infection in 2 PA groups. Totally 3638 participants were divided into H pylori-negative (n = 2545) and H pylori-positive group (n = 1093). Pb exhibited a linear relationship but Cd had a nonlinear relationship with H pylori infection. Besides, the elevation of Cd and Pb both independently predicted H pylori infection after adjusting various variables (P < .05). The robust relationship was confirmed by the P for trend test (P for trend < .05). Under Cd exposure, the risk of H pylori infection was lower in the active PA group than in the inactive group (P < .05). A reverse result was found under the Pb exposure (P < .05). Exposure to Cd and Pb are positively linked to H pylori infection. PA may alleviate the effect of Cd on H pylori infection but may enhance H pylori infection under Pb exposure. Therefore, PA should be recommended in the appropriate season or region.
Collapse
Affiliation(s)
- Wei-Feng Wang
- Gastroenterology Department, Hangzhou Lin’an District Traditional Chinese Medicine Hospital, Hangzhou, Zhejiang, China
| | - Yu-Xiang Liu
- Gastroenterology Department, Hangzhou Lin’an District Traditional Chinese Medicine Hospital, Hangzhou, Zhejiang, China
| | - Chao-Qun Li
- Gastroenterology Department, Hangzhou Lin’an District Traditional Chinese Medicine Hospital, Hangzhou, Zhejiang, China
| | - Xian-Yong Liu
- Gastroenterology Department, Hangzhou Lin’an District Traditional Chinese Medicine Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Nouri-Vaskeh M, Hashemi P, Hataminia N, Yazdani Y, Nasirian M, Alizadeh L. The impact of piperine on the metabolic conditions of patients with NAFLD and early cirrhosis: a randomized double-blind controlled trial. Sci Rep 2024; 14:1053. [PMID: 38200253 PMCID: PMC10782007 DOI: 10.1038/s41598-024-51726-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/09/2024] [Indexed: 01/12/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a metabolic dysfunction of the liver defined as an abnormal accumulation of fat within the liver without secondary triggers like alcohol consumption or viral hepatitis. Piperine, the bio-active ingredient of black pepper, can exert a significant function in treatment of individuals with NAFLDand early cirrhosis. We investigated the impact of piperine consumption with a duration of 12 weeks on patients with NAFLD and early cirrhosis compared toplacebo consumption. In a double-blind study, patients with NAFLD and early stage of cirrhosis were haphazardly distributed into case and control groups. They were prescribed a placebo and 5 mg of piperine for 12 weeks, respectively. The demographic and laboratory parameters of individuals were assessed as the baseline and after the duration of piperine intake. Piperine with a daily dosage of 5 mg could significantly decrease hepatic enzymes and glucose, and alleviate dyslipidemia in the case arm rather than the control arm. Moreover, HOMA levels and insulin resistance were reduced in case participants compared to the control counterparts. In the absence of approved medicinal intervention for patients with NAFLD, and regarding the favorable impact of piperine on NAFLD more studies on this subject are warranted.
Collapse
Affiliation(s)
- Masoud Nouri-Vaskeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity, Universal Scientific Education and Research Network, Tehran, Iran
| | - Payam Hashemi
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Hataminia
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yalda Yazdani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahkameh Nasirian
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Alizadeh
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Li Z, Huang L, Luo Y, Yu B, Tian G. Effects and possible mechanisms of intermittent fasting on health and disease: a narrative review. Nutr Rev 2023; 81:1626-1635. [PMID: 36940184 DOI: 10.1093/nutrit/nuad026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
The imbalance between energy intake and expenditure in an environment of continuous food availability can lead to metabolic disturbances in the body and increase the risk of obesity and a range of chronic noncommunicable diseases. Intermittent fasting (IF) is one of the most popular nonpharmacological interventions to combat obesity and chronic noncommunicable diseases. The 3 most widely studied IF regimens are alternate-day fasting, time-restricted feeding, and the 5:2 diet. In rodents, IF helps optimize energy metabolism, prevent obesity, promote brain health, improve immune and reproductive function, and delay aging. In humans, IF's benefits are relevant for the aging global population and for increasing human life expectancy. However, the optimal model of IF remains unclear. In this review, the possible mechanisms of IF are summarized and its possible drawbacks are discussed on the basis of the results of existing research, which provide a new idea for nonpharmaceutical dietary intervention of chronic noncommunicable diseases.
Collapse
Affiliation(s)
- Zimei Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Liansu Huang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Yuheng Luo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Bing Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Gang Tian
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
6
|
Kim DS, Lee HY, Kim HJ, Lee GH, Lim YJ, Ko BM, Kim JH, Kim TW, Kim HK, Kim TY, Hwang DI, Choi HK, Ju SM, Chung MJ, Chae HJ. Combined Treatment of Mori folium and Mori Cortex Radicis Ameliorate Obesity in Mice via UCP-1 in Brown Adipocytes. Nutrients 2023; 15:3713. [PMID: 37686745 PMCID: PMC10489681 DOI: 10.3390/nu15173713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 09/10/2023] Open
Abstract
Mori Folium (Morus alba leaf, MF) and Mori Cortex Radicis (Morus alba root cortex, MR) have been studied for their anti-obesity effects by enhancing the browning process and inhibiting adipogenesis. However, important aspects of their protective mechanisms have not been thoroughly investigated, which could aid in developing functional food. Thus, this study aims to determine the synergistic effects of MF and MR against obesity and its associated mechanisms. In an in vitro cell culture model of brown adipocytes, a 1:1 mixture of MF and MR showed a synergistic effect on the expression of brown adipocyte-specific genes, including Ucp-1, Ppargc1a, Cbp/p300-interacting transactivator (Cited), Prdm16, Tbx1, and Fgf21 compared with either MF- or MR-treated conditions. Moreover, they demonstrated the involvement of cAMP and Ca2+ in induction of brown adipocyte-specific genes. In an in vivo model using HFD-fed mice, MF/MR significantly inhibited weight gain, plasma cholesterol, LDL, TG content, fat mass, and adipocyte size. Furthermore, MF/MR inhibited morphological alteration and the expressions of fatty acid synthesis genes such as Srebp1 and Fasn in the white adipose tissue. Thermogenesis genes were recovered in the brown adipose tissue with MF/MR supplementation, indicating that MF/MR regulated adipocytic dysmetabolism where AMPK signaling is involved. In conclusion, these results suggested that MF/MR regulates brown and beige adipocyte processes, providing one of the preventive functional food/herbal medicines against obesity and its associated metabolic diseases.
Collapse
Affiliation(s)
- Do-Sung Kim
- Non-Clinical Evaluation Center Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (D.-S.K.); (H.-Y.L.); (H.-J.K.); (Y.J.L.); (B.M.K.); (J.-H.K.)
| | - Hwa-Young Lee
- Non-Clinical Evaluation Center Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (D.-S.K.); (H.-Y.L.); (H.-J.K.); (Y.J.L.); (B.M.K.); (J.-H.K.)
- Research Institute of Clinical Medicine, Biomedical Research Institute, Jeonbuk National University, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea;
| | - Hwa-Jin Kim
- Non-Clinical Evaluation Center Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (D.-S.K.); (H.-Y.L.); (H.-J.K.); (Y.J.L.); (B.M.K.); (J.-H.K.)
| | - Geum-Hwa Lee
- Research Institute of Clinical Medicine, Biomedical Research Institute, Jeonbuk National University, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea;
| | - Young Jae Lim
- Non-Clinical Evaluation Center Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (D.-S.K.); (H.-Y.L.); (H.-J.K.); (Y.J.L.); (B.M.K.); (J.-H.K.)
- School of Pharmacy, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Bo Mi Ko
- Non-Clinical Evaluation Center Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (D.-S.K.); (H.-Y.L.); (H.-J.K.); (Y.J.L.); (B.M.K.); (J.-H.K.)
- School of Pharmacy, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Ji-Hyun Kim
- Non-Clinical Evaluation Center Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (D.-S.K.); (H.-Y.L.); (H.-J.K.); (Y.J.L.); (B.M.K.); (J.-H.K.)
- School of Pharmacy, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Tae Won Kim
- College of Pharmacy, Kyungsung University, 309 Suyeong-ro, Busan 48434, Republic of Korea; (T.W.K.); (H.K.K.)
| | - Hye Kyung Kim
- College of Pharmacy, Kyungsung University, 309 Suyeong-ro, Busan 48434, Republic of Korea; (T.W.K.); (H.K.K.)
| | - Tae Young Kim
- Institute of Jinan Red Ginseng, Jinan-gun 55442, Republic of Korea; (T.Y.K.); (D.I.H.); (H.K.C.); (S.M.J.)
| | - Dae Il Hwang
- Institute of Jinan Red Ginseng, Jinan-gun 55442, Republic of Korea; (T.Y.K.); (D.I.H.); (H.K.C.); (S.M.J.)
| | - Ha Kyoung Choi
- Institute of Jinan Red Ginseng, Jinan-gun 55442, Republic of Korea; (T.Y.K.); (D.I.H.); (H.K.C.); (S.M.J.)
| | - Seon Min Ju
- Institute of Jinan Red Ginseng, Jinan-gun 55442, Republic of Korea; (T.Y.K.); (D.I.H.); (H.K.C.); (S.M.J.)
| | - Myung Ja Chung
- Department of Pathology, College of Medicine, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Han-Jung Chae
- Non-Clinical Evaluation Center Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (D.-S.K.); (H.-Y.L.); (H.-J.K.); (Y.J.L.); (B.M.K.); (J.-H.K.)
- School of Pharmacy, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
7
|
Molonia MS, Salamone FL, Muscarà C, Costa G, Vento G, Saija A, Speciale A, Cimino F. Regulation of mitotic clonal expansion and thermogenic pathway are involved in the antiadipogenic effects of cyanidin-3-O-glucoside. Front Pharmacol 2023; 14:1225586. [PMID: 37614314 PMCID: PMC10442822 DOI: 10.3389/fphar.2023.1225586] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/27/2023] [Indexed: 08/25/2023] Open
Abstract
Introduction: Obesity is a metabolic disease with an increase both in cell size (hypertrophy) and in cell number (hyperplasia) following differentiation of new adipocytes. Adipogenesis is a well-orchestrated program in which mitotic clonal expansion (MCE) occurs in the early step followed by the late terminal differentiation one. Methods: Aim of the study was to evaluate the in vitro effects of cyanidin-3-O-glucoside (C3G), an anthocyanin present in many fruits and vegetables, in the early or late phase of 3T3-L1 preadipocytes differentiation. Results: C3G exposure in the early phase of adipogenesis process induced a more marked reduction of CCAAT/enhancer-binding protein-β (C/EBPβ), peroxisome proliferator-activated receptor γ (PPAR-ɣ) and fatty acid synthase (Fasn) expression than late phase exposure and these effects were associated to a reduced MCE with cell cycle arrest at G0/G1 phase via p21 expression. Furthermore, C3G exposure during the early phase activated AMP-activated protein kinase (AMPK) pathway better than in the late phase promoting the enhancement of beige-like adipocytes. In fact, C3G induced thermogenic biomarkers uncoupling protein-1 (Ucp1) and peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (Pgc1) and these effects were more evident during early phase exposure. Conclusion: Our data demonstrate that C3G reduces the terminal adipogenic process affecting the early phase of differentiation and inducing a thermogenic program.
Collapse
Affiliation(s)
- Maria Sofia Molonia
- Department of Chemical Biological Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
- “Prof Antonio Imbesi” Foundation, University of Messina, Messina, Italy
| | - Federica Lina Salamone
- Department of Chemical Biological Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Claudia Muscarà
- Department of Chemical Biological Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Gregorio Costa
- Department of Human and Pediatric Pathology “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Grazia Vento
- Department of Experimental Medicine (DIMES), University of Genova, Genoa, Italy
| | - Antonella Saija
- Department of Chemical Biological Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Antonio Speciale
- Department of Chemical Biological Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Francesco Cimino
- Department of Chemical Biological Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
8
|
KIM SUJIN, PARK DONGHO, LEE SANGHYUN, KWAK HYOBUM, KANG JUHEE. Contribution of High-Intensity Interval Exercise in the Fasted State to Fat Browning: Potential Roles of Lactate and β-Hydroxybutyrate. Med Sci Sports Exerc 2023; 55:1160-1171. [PMID: 36790381 PMCID: PMC10242519 DOI: 10.1249/mss.0000000000003136] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
PURPOSE Fat browning contributes to energy consumption and may have metabolic benefits against obesity; however, the potential roles of lactate and β-hydroxybutyrate (β-HB) in fat browning remain unclear. We investigated the roles of a single bout of aerobic exercise that increases lactate and β-HB levels in the fasted state on the regulation of fat browning in rats and humans. METHODS Male Sprague-Dawley rats were exposed to 24-h fasting and/or a single bout moderate-intensity aerobic exercise (40 min): sedentary (CON), exercise (ND-EX), fasting (FAST), and exercise + fasting (F-EX). Adult men ( n = 13) were randomly assigned into control with food intake (CON), exercise with intensity at onset of blood lactate accumulation in the fasted state (F-OBLA), and high-intensity interval exercise in the fasted state (F-HIIE) until each participant expended 350 kcal of energy. For evaluating the effects of exercise intensity in rats, we conducted another set of animal experiment, including groups of sedentary fed control, fasting control, and exercise with moderate-intensity or HIIE for 40 min after a 24-h fasting. RESULTS Regardless of fasting, single bout of exercise increases the concentration of lactate and β-HB in rats, but the exercise in the fasted state increases the β-HB level more significantly in rats and humans. F-EX-activated fat browning (AMPK-SirT1-PGC1α pathway and PRDM16) and thermogenic factor (UCP1) in white fat of rats. In rats and humans, exercise in the fasted state increased the blood levels of fat browning-related adipomyokines. In particular, compared with F-OBLA, F-HIIE more efficiently increases free fatty acid as well as blood levels of fat browning adipomyokines in humans, which was correlated with blood levels of lactate and β-HB. In rats that performed exercise with different intensity, the higher plasma lactate and β-HB levels, and higher expression of p-AMPK, UCP1, and PRDM16 in white adipose tissue of HIIE group than those of moderate-intensity group, were observed. CONCLUSIONS A single bout of aerobic exercise in the fasted state significantly induced fat browning-related pathways, free fatty acid, and adipomyokines, particularly F-HIIE in human. Although further evidence for supporting our results is required in humans, aerobic exercise in the fasted state with high intensity that increase lactate and β-HB may be a modality of fat browning.
Collapse
Affiliation(s)
- SUJIN KIM
- Department of Pharmacology and Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, REPUBLIC OF KOREA
| | - DONG-HO PARK
- Department of Kinesiology, Inha University, Incheon, REPUBLIC OF KOREA
- Program in Biomedical Science and Engineering, Inha University, Incheon, REPUBLIC OF KOREA
| | - SANG-HYUN LEE
- Department of Kinesiology, Inha University, Incheon, REPUBLIC OF KOREA
| | - HYO-BUM KWAK
- Department of Kinesiology, Inha University, Incheon, REPUBLIC OF KOREA
- Program in Biomedical Science and Engineering, Inha University, Incheon, REPUBLIC OF KOREA
| | - JU-HEE KANG
- Department of Pharmacology and Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, REPUBLIC OF KOREA
- Program in Biomedical Science and Engineering, Inha University, Incheon, REPUBLIC OF KOREA
| |
Collapse
|
9
|
You Y, Chen Y, Li J, Zhang Q, Zhang Y, Yang P, Cao Q. Physical activity mitigates the influence of blood cadmium on memory function: a cross-sectional analysis in US elderly population. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:68809-68820. [PMID: 37131001 DOI: 10.1007/s11356-023-27053-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/12/2023] [Indexed: 05/04/2023]
Abstract
Current evidence showed that heavy metal exposure including cadmium (Cd) exposure might contribute to memory function impairment in youth, while this association has not been extensively explored in senior groups. Complementary therapy like physical activity (PA) is proved to enhance memory; however, the combined effects of Cd exposure and PA are interesting issues worth investigating. Cross-sectional data from the National Health and Nutrition Examination Survey (NHANES) 2011-2014 were analyzed. Multivariable weighted linear regression model and restricted cubic splines analysis were used to examine the association between blood Cd, PA, and memory function. Ultimately, 1884 samples were analyzed, and the weighted participants were 98,350,183. Results showed that in the immediate and delayed recall tests, a negative association was found between blood Cd and scores for the fully adjusted model, while a positive association was detected with PA on memory test scores. In subgroup analysis, for the delayed recall test, in lower Cd exposure (Cd = Q1), stronger effect size was found in the moderate level PA group than the higher level PA group (moderate level PA group, β = 1.133, 95% CI: 0.330, 1.936; high level PA group, β = 0.203, 95% CI: - 0.314, 0.719), and this finding also existed in higher (Cd = Q4) exposure (moderate level PA group, β = 0.988, 95% CI: 0.267, 1.708; high level PA group, β = 0.830, 95% CI: 0.261, 1.400). Moreover, the non-linear relationship between Cd exposure and performance of CERAD test under different levels of PA was reported, and the moderate level PA group performed best from lower to higher blood Cd. According to our research, the benefit of PA did not always expand with the PA intensity increment under different Cd exposure. Performing an appropriate level of physical exercise could alleviate the memory decline under Cd exposure in the elder groups. Further biological investigations are warranted to verify these findings.
Collapse
Affiliation(s)
- Yanwei You
- Division of Sports Science & Physical Education, Tsinghua University, Beijing, 100084, China
| | - Yuquan Chen
- Institute of Medical Information/Medical Library, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100020, China
| | - Jinwei Li
- Department of Neurosurgery, The Fourth Affliated Hospital of Guangxi Medical University, Liuzhou, 545000, China
| | - Qi Zhang
- Undergraduate Department, Taishan University, Taian, 250111, China
| | - Yang Zhang
- Department of General Surgery, the First Affiliated Hospital of Dali University, Dali, 671000, China
| | - Ping Yang
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21202, USA
| | - Qiang Cao
- School of Pharmacy, Macau University of Science and Technology, Macau, 999078, China.
| |
Collapse
|
10
|
Ma Z, Wang S, Miao W, Zhang Z, Yu L, Liu S, Luo Z, Liang H, Yu J, Huang T, Li M, Gao J, Su S, Li Y, Zhou L. The Roles of Natural Alkaloids and Polyphenols in Lipid Metabolism: Therapeutic Implications and Potential Targets in Metabolic Diseases. Curr Med Chem 2023; 30:3649-3667. [PMID: 36345246 DOI: 10.2174/0929867330666221107095646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/05/2022] [Accepted: 09/30/2022] [Indexed: 11/10/2022]
Abstract
The prevalence of obesity and its associated diseases has increased dramatically, and they are major threats to human health worldwide. A variety of approaches, such as physical training and drug therapy, can be used to reduce weight and reverse associated diseases; however, the efficacy and the prognosis are often unsatisfactory. It has been reported that natural food-based small molecules can prevent obesity and its associated diseases. Among them, alkaloids and polyphenols have been demonstrated to regulate lipid metabolism by enhancing energy metabolism, promoting lipid phagocytosis, inhibiting adipocyte proliferation and differentiation, and enhancing the intestinal microbial community to alleviate obesity. This review summarizes the regulatory mechanisms and metabolic pathways of these natural small molecules and reveals that the binding targets of most of these molecules are still undefined, which limits the study of their regulatory mechanisms and prevents their further application. In this review, we describe the use of Discovery Studio for the reverse docking of related small molecules and provide new insights for target protein prediction, scaffold hopping, and mechanistic studies in the future. These studies will provide a theoretical basis for the modernization of anti-obesity drugs and promote the discovery of novel drugs.
Collapse
Affiliation(s)
- Zeqiang Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Shengnan Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Shaanxi, China
| | - Weiwei Miao
- Institute of Oncology, Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, 530021, China
| | - Zhiwang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Lin Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Siqi Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Zupeng Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Huanjie Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jingsu Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Tengda Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Mingming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jiayi Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Songtao Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yixing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Lei Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
11
|
Jayaprakash R, Ramzan F, Miles-Chan JL, Foster M, Mithen RF, Pook C. Exploring the Chemical Space of Kawakawa Leaf ( Piper excelsum). Nutrients 2022; 14:nu14235168. [PMID: 36501198 PMCID: PMC9741024 DOI: 10.3390/nu14235168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
The chemical profiles of kawakawa (Piper excelsum) leaves were analysed through targeted and non-targeted LC-MS/MS. The phytochemical profile was obtained for both aqueous extracts representative of kawakawa tea and methanolic extracts. Sixty-four compounds were identified from eight leaf sources including phenylpropanoids, lignans, flavonoids, alkaloids and amides. Eight of these compounds were absolutely quantified. The chemical content varied significantly by leaf source, with two commercially available sources of dried kawakawa leaves being relatively high in phenylpropanoids and flavonoids compared with field-collected fresh samples that were richer in amides, alkaloids and lignans. The concentrations of pharmacologically active metabolites ingested from the traditional consumption of kawakawa leaf as an aqueous infusion, or from novel use as a seasoning, are well below documented toxicity thresholds.
Collapse
Affiliation(s)
- Ramya Jayaprakash
- Liggins Institute, Waipapa Taumata Rau—The University of Auckland, 85 Park Road, Private Bag 92019, Auckland 1142, New Zealand
| | - Farha Ramzan
- Liggins Institute, Waipapa Taumata Rau—The University of Auckland, 85 Park Road, Private Bag 92019, Auckland 1142, New Zealand
| | - Jennifer L. Miles-Chan
- Human Nutrition Unit, Waipapa Taumata Rau, The University of Auckland, 85 Park Road, Private Bag 92019, Auckland 1142, New Zealand
| | - Meika Foster
- Liggins Institute, Waipapa Taumata Rau—The University of Auckland, 85 Park Road, Private Bag 92019, Auckland 1142, New Zealand
- Edible Research Ltd., Ohoko 7475, New Zealand
- AuOra Ltd., Wakatū Incorporation, Nelson 7010, New Zealand
| | - Richard F. Mithen
- Liggins Institute, Waipapa Taumata Rau—The University of Auckland, 85 Park Road, Private Bag 92019, Auckland 1142, New Zealand
| | - Chris Pook
- Liggins Institute, Waipapa Taumata Rau—The University of Auckland, 85 Park Road, Private Bag 92019, Auckland 1142, New Zealand
- Correspondence: ; Tel.: +64-9923-6691
| |
Collapse
|
12
|
Piperine Attenuates Cigarette Smoke-Induced Oxidative Stress, Lung Inflammation, and Epithelial-Mesenchymal Transition by Modulating the SIRT1/Nrf2 Axis. Int J Mol Sci 2022; 23:ijms232314722. [PMID: 36499047 PMCID: PMC9740588 DOI: 10.3390/ijms232314722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Piperine (PIP) is a major phytoconstituent in black pepper which is responsible for various pharmacological actions such as anti-inflammatory, antioxidant, and antitumor activity. To investigate the effects and mechanisms of PIP on cigarette smoke (CS)-induced lung pathology using both in-vitro and in-vivo models. BEAS-2B and A549 cells were exposed to CS extract (CSE) for 48 h; BALB/c mice were exposed to CS (9 cigarettes/day, 4 days) to induce features of airway disease. PIP at doses of (0.25, 1.25, and 6.25 µM, in vitro; 1 and 10 mg/kg, in vivo, i.n) and DEX (1 µM, in vitro; 1 mg/kg, in vivo, i.n) were used to assess cytotoxicity, oxidative stress, epithelial−mesenchymal transition (EMT), Sirtuin1 (SIRT1), inflammation-related cellular signaling, and lung function. PIP treatment protects cells from CSE-induced lung epithelial cell death. PIP treatment restores the epithelial marker (p < 0.05) and decreases the mesenchymal, inflammatory markers (p < 0.05) in both in vitro and in vivo models. The PIP treatment improves the altered lung function (p < 0.05) in mice induced by CS exposure. Mechanistically, PIP treatment modulates SIRT1 thereby reducing the inflammatory markers such as IL-1β, IL-6 and TNF-α (p < 0.05) and enhancing the epigenetic marker HDAC2 (p < 0.05) and antioxidant marker Nrf2 (p < 0.05) expressions. Thus, PIP alleviates pulmonary inflammation by modulating the SIRT1-mediated inflammatory cascade, inhibits EMT, and activates Nrf2 signaling.
Collapse
|
13
|
Lee DY, Kim JY, Ahn E, Hyeon JS, Kim GH, Park KJ, Jung Y, Lee YJ, Son MK, Kim SW, Han SY, Kim JH, Roh GS, Cha DR, Hwang GS, Kim WH. Associations between local acidosis induced by renal LDHA and renal fibrosis and mitochondrial abnormalities in patients with diabetic kidney disease. Transl Res 2022; 249:88-109. [PMID: 35788054 DOI: 10.1016/j.trsl.2022.06.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/23/2022] [Accepted: 06/22/2022] [Indexed: 10/31/2022]
Abstract
During the progression of diabetic kidney disease (DKD), renal lactate metabolism is rewired. The relationship between alterations in renal lactate metabolism and renal fibrosis in patients with diabetes has only been partially established due to a lack of biopsy tissues from patients with DKD and the intricate mechanism of lactate homeostasis. The role of lactate dehydrogenase A (LDHA)-mediated lactate generation in renal fibrosis and dysfunction in human and animal models of DKD was explored in this study. Measures of lactate metabolism (urinary lactate levels and LDHA expression) and measures of DKD progression (estimated glomerular filtration rate and Wilms' tumor-1 expression) were strongly negatively correlated in patients with DKD. Experiments with streptozotocin-induced DKD rat models and the rat renal mesangial cell model confirmed our findings. We found that the pathogenesis of DKD is linked to hypoxia-mediated lactic acidosis, which leads to fibrosis and mitochondrial abnormalities. The pathogenic characteristics of DKD were significantly reduced when aerobic glycolysis or LDHA expression was inhibited. Further studies will aim to investigate whether local acidosis caused by renal LDHA might be exploited as a therapeutic target in patients with DKD.
Collapse
Affiliation(s)
- Dae-Yeon Lee
- Division of Cardiovascular Disease Research, Korea National Institute of Health, Cheongju, Republic of Korea; Department of Anatomy and Convergence Medical Science, Bio Anti-aging Medical Research Center, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Ji-Yeon Kim
- Division of Cardiovascular Disease Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Eunyong Ahn
- Western Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Jin Seong Hyeon
- Western Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Gyu-Hee Kim
- Division of Metabolic Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Keon-Jae Park
- Division of Metabolic Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Youngae Jung
- Western Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Yoo-Jeong Lee
- Division of Metabolic Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Mi Kyoung Son
- Division of Cardiovascular Disease Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Seung Woo Kim
- Division of Cardiovascular Disease Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Sang Youb Han
- Department of Internal Medicine, Inje University Ilsan Paik Hospital, Goyang, Republic of Korea
| | - Jae-Hong Kim
- Division of Life Sciences, College of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Science, Bio Anti-aging Medical Research Center, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Dae Ryong Cha
- Department of Internal Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea.
| | - Geum-Sook Hwang
- Western Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea.
| | - Won-Ho Kim
- Division of Cardiovascular Disease Research, Korea National Institute of Health, Cheongju, Republic of Korea.
| |
Collapse
|
14
|
Zhu Y, Qi Z, Ding S. Exercise-Induced Adipose Tissue Thermogenesis and Browning: How to Explain the Conflicting Findings? Int J Mol Sci 2022; 23:13142. [PMID: 36361929 PMCID: PMC9657384 DOI: 10.3390/ijms232113142] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 07/25/2023] Open
Abstract
Brown adipose tissue (BAT) has been widely studied in targeting against metabolic diseases such as obesity, type 2 diabetes and insulin resistance due to its role in nutrient metabolism and energy regulation. Whether exercise promotes adipose tissue thermogenesis and browning remains controversial. The results from human and rodent studies contradict each other. In our opinion, fat thermogenesis or browning promoted by exercise should not be a biomarker of health benefits, but an adaptation under the stress between body temperature regulation and energy supply and expenditure of multiple organs. In this review, we discuss some factors that may contribute to conflicting experimental results, such as different thermoneutral zones, gender, training experience and the heterogeneity of fat depots. In addition, we explain that a redox state in cells potentially causes thermogenesis heterogeneity and different oxidation states of UCP1, which has led to the discrepancies noted in previous studies. We describe a network by which exercise orchestrates the browning and thermogenesis of adipose tissue with total energy expenditure through multiple organs (muscle, brain, liver and adipose tissue) and multiple pathways (nerve, endocrine and metabolic products), providing a possible interpretation for the conflicting findings.
Collapse
Affiliation(s)
- Yupeng Zhu
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai 200241, China
- School of Physical Education and Health, East China Normal University, Shanghai 200241, China
- Sino-French Joint Research Center of Sport Science, East China Normal University, Shanghai 200241, China
| | - Zhengtang Qi
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai 200241, China
- School of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Shuzhe Ding
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai 200241, China
- Sino-French Joint Research Center of Sport Science, East China Normal University, Shanghai 200241, China
| |
Collapse
|
15
|
Piperine Derivatives Enhance Fusion and Axonal Transport of Mitochondria by Activating Mitofusins. CHEMISTRY 2022. [DOI: 10.3390/chemistry4030047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Piperine (1-piperoylpiperidine) is the major pungent component of black pepper (Piper nigrum) and exhibits a spectrum of pharmacological activities. The molecular bases for many of piperine’s biological effects are incompletely defined. We noted that the chemical structure of piperine generally conforms to a pharmacophore model for small bioactive molecules that activate mitofusin (MFN)-mediated mitochondrial fusion. Piperine, but not its isomer chavicine, stimulated mitochondrial fusion in MFN-deficient cells with EC50 of ~8 nM. We synthesized piperine analogs having structural features predicted to optimize mitofusin activation and defined structure-activity relationships (SAR) in live-cell mitochondrial elongation assays. When optimal spacing was maintained between amide and aromatic groups the derivatives were potent mitofusin activators. Compared to the prototype phenylhexanamide mitofusin activator, 2, novel molecules containing the piperidine structure of piperine exhibited markedly enhanced passive membrane permeability with no loss of fusogenic potency. Lead compounds 5 and 8 enhanced mitochondrial motility in cultured murine Charcot-Marie-Tooth disease type 2A (CMT2A) neurons, but only 8 improved mitochondrial transport in sciatic nerve axons of CMT2A mice. Piperine analogs represent a new chemical class of mitofusin activators with potential pharmaceutical advantages.
Collapse
|
16
|
Piperine Improves Lipid Dysregulation by Modulating Circadian Genes Bmal1 and Clock in HepG2 Cells. Int J Mol Sci 2022; 23:ijms23105611. [PMID: 35628429 PMCID: PMC9144199 DOI: 10.3390/ijms23105611] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 01/27/2023] Open
Abstract
Metabolic disorders are closely associated with the dysregulation of circadian rhythms. Many bioactive components with lipid metabolism-regulating effects have been reported to function through circadian clock-related mechanisms. As the main pungent principle of black pepper, piperine (PIP) has been demonstrated to possess anti-obesity bioactivity by affecting hepatic lipid metabolism-related factors. However, whether the circadian clock genes Bmal1 and Clock are involved in the protective effect of PIP against lipid metabolism disorders remains unknown. In this work, oleic acid (OA) induced lipid accumulation in HepG2 cells. The effect of PIP on redox status, mitochondrial functions, and circadian rhythms of core clock genes were evaluated. Results revealed that PIP alleviated circadian desynchrony, ROS overproduction, and mitochondrial dysfunction. A mechanism study showed that PIP could activate the SREBP-1c/PPARγ and AMPK/AKT-mTOR signaling pathways in a Bmal1/Clock-dependent manner in HepG2 cells. These results indicated that Bmal1 and Clock played important roles in the regulating effect of PIP on hepatic lipid homeostasis.
Collapse
|
17
|
Cai H, Wang X, Zhang Z, Chen J, Wang F, Wang L, Liu J. Moderate l-lactate administration suppresses adipose tissue macrophage M1 polarization to alleviate obesity-associated insulin resistance. J Biol Chem 2022; 298:101768. [PMID: 35218776 PMCID: PMC8941214 DOI: 10.1016/j.jbc.2022.101768] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/11/2022] Open
Abstract
As a crucial metabolic intermediate, l-lactate is involved in redox balance, energy balance, and acid-base balance in organisms. Moderate exercise training transiently elevates plasma l-lactate levels and ameliorates obesity-associated type 2 diabetes. However, whether moderate l-lactate administration improves obesity-associated insulin resistance remains unclear. In this study, we defined 800 mg/kg/day as the dose of moderate l-lactate administration. In mice fed with a high-fat diet (HFD), moderate l-lactate administration for 12 weeks was shown to alleviate weight gain, fat accumulation, and insulin resistance. Along with the phenotype alterations, white adipose tissue thermogenesis was also found to be elevated in HFD-fed mice. Meanwhile, moderate l-lactate administration suppressed the infiltration and proinflammatory M1 polarization of adipose tissue macrophages (ATMs) in HFD-fed mice. Furthermore, l-lactate treatment suppressed the lipopolysaccharide-induced M1 polarization of bone marrow-derived macrophages (BMDMs). l-lactate can bind to the surface receptor GPR132, which typically drives the downstream cAMP-PKA signaling. As a nutrient sensor, AMP-activated protein kinase (AMPK) critically controls macrophage inflammatory signaling and phenotype. Thus, utilizing inhibitors of the kinases PKA and AMPK as well as siRNA against GPR132, we demonstrated that GPR132-PKA-AMPKα1 signaling mediated the suppression caused by l-lactate treatment on BMDM M1 polarization. Finally, l-lactate addition remarkably resisted the impairment of lipopolysaccharide-treated BMDM conditional media on adipocyte insulin sensitivity. In summary, moderate l-lactate administration suppresses ATM proinflammatory M1 polarization through activation of the GPR132-PKA-AMPKα1 signaling pathway to improve insulin resistance in HFD-fed mice, suggesting a new therapeutic and interventional approach to obesity-associated type 2 diabetes.
Collapse
Affiliation(s)
- Hao Cai
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Xin Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Zhixin Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Juan Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Fangbin Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Lu Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Jian Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China; Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei, Anhui, China.
| |
Collapse
|
18
|
Curcumin and Weight Loss: Does It Work? Int J Mol Sci 2022; 23:ijms23020639. [PMID: 35054828 PMCID: PMC8775659 DOI: 10.3390/ijms23020639] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 01/27/2023] Open
Abstract
Obesity is a global health problem needing urgent research. Synthetic anti-obesity drugs show side effects and variable effectiveness. Thus, there is a tendency to use natural compounds for the management of obesity. There is a considerable body of knowledge, supported by rigorous experimental data, that natural polyphenols, including curcumin, can be an effective and safer alternative for managing obesity. Curcumin is a is an important compound present in Curcuma longa L. rhizome. It is a lipophilic molecule that rapidly permeates cell membrane. Curcumin has been used as a pharmacological traditional medicinal agent in Ayurvedic medicine for ∼6000 years. This plant metabolite doubtless effectiveness has been reported through increasingly detailed in vitro, in vivo and clinical trials. Regarding its biological effects, multiple health-promoting, disease-preventing and even treatment attributes have been remarkably highlighted. This review documents the status of research on anti-obesity mechanisms and evaluates the effectiveness of curcumin for management of obesity. It summarizes different mechanisms of anti-obesity action, associated with the enzymes, energy expenditure, adipocyte differentiation, lipid metabolism, gut microbiota and anti-inflammatory potential of curcumin. However, there is still a need for systematic and targeted clinical studies before curcumin can be used as the mainstream therapy for managing obesity.
Collapse
|
19
|
Jung TW, Hwang EJ, Pyun DH, Kim TJ, Lee HJ, Abd El-Aty AM, Bang JS, Kim HC, Jeong JH. 3-hydroxymorphinan enhances mitochondrial biogenesis and adipocyte browning through AMPK-dependent pathway. Biochem Biophys Res Commun 2021; 577:17-23. [PMID: 34487960 DOI: 10.1016/j.bbrc.2021.08.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 08/27/2021] [Indexed: 11/24/2022]
Abstract
3-hydroxymorphinan (3-HM), a metabolite of dextromethorphan, has previously been reported to have anti-inflammatory, anti-oxidative stress, and neuroprotective effects. However, its effect on energy metabolism in adipocytes remains unclear. Herein, we investigated 3-hydroxymorphinan (3-HM) effects on mitochondrial biogenesis, oxidative stress, and lipid accumulation in 3T3-L1 adipocytes. Further, we explored 3-HM-associated molecular mechanisms. Mouse adipocyte 3T3-L1 cells were treated with 3-HM, and various protein expression levels were determined by western blotting analysis. Mitochondria accumulation and lipid accumulation were measured by staining methods. Cell toxicity was assessed by cell viability assay. We found that treatment of 3T3-L1 adipocytes with 3-HM increased expression of brown adipocyte markers, such as uncoupling protein-1 (UCP-1) and peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α). 3-HM promotes mitochondrial biogenesis and its-mediated gene expression. Additionally, 3-HM treatment suppressed mitochondrial ROS generation and superoxide along with improved mitochondrial complex I activity. We found that treatment of 3-HM enhanced AMPK phosphorylation. siRNA-mediated suppression of AMPK reversed all these changes in 3T3-L1 adipocytes. In sum, 3-HM promotes mitochondrial biogenesis and browning and attenuates oxidative stress and lipid accumulation in 3T3-L1 adipocytes via AMPK signaling. Thus, 3-HM-mediated AMPK activation can be considered a therapeutic approach for treating obesity and related diseases.
Collapse
Affiliation(s)
- Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Eui Jin Hwang
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Do Hyeon Pyun
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Tae Jin Kim
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Hyun Jung Lee
- Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, China; Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey.
| | - Joon Seok Bang
- College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea.
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Insights into the Phytochemical and Multifunctional Biological Profile of Spices from the Genus Piper. Antioxidants (Basel) 2021; 10:antiox10101642. [PMID: 34679776 PMCID: PMC8533580 DOI: 10.3390/antiox10101642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/16/2021] [Accepted: 10/17/2021] [Indexed: 01/26/2023] Open
Abstract
Piper spices represent an inexhaustible reservoir of bioactive compounds that may act as drug leads in natural product research. The aim of this study was to investigate a series of methanolic fruit extracts obtained from P. nigrum (black, green, white and red), P. longum and P. retrofractum in comparative phytochemical and multi-directional biological (antimicrobial, antioxidant, anti-enzymatic and anti-melanogenic) assays. The metabolite profiling revealed the presence of 17 piperamides, with a total content of 247.75-591.42 mg piperine equivalents/g. Among the 22 tested microorganism strains, Piper spices were significantly active (MIC < 0.1 mg/mL) against the anaerobes Actinomyces israelii and Fusobacterium nucleatum. The antioxidant and anti-enzymatic activities were evidenced in DPPH (10.64-82.44 mg TE/g) and ABTS (14.20-77.60 mg TE/g) radical scavenging, CUPRAC (39.94-140.52 mg TE/g), FRAP (16.05-77.00 mg TE/g), chelating (0-34.80 mg EDTAE/g), anti-acetylcholinesterase (0-2.27 mg GALAE/g), anti-butyrylcholinesterase (0.60-3.11 mg GALAE/g), anti-amylase (0.62-1.11 mmol ACAE/g) and anti-glucosidase (0-1.22 mmol ACAE/g) assays. Several Piper extracts (10 μg/mL) inhibited both melanin synthesis (to 32.05-60.65% of αMSH+ cells) and release (38.06-45.78% of αMSH+ cells) in αMSH-stimulated B16F10 cells, partly explained by their tyrosinase inhibitory properties. Our study uncovers differences between Piper spices and sheds light on their potential use as nutraceuticals or cosmeceuticals for the management of different diseases linked to bacterial infections, Alzheimer's dementia, type 2 diabetes mellitus or hyperpigmentation.
Collapse
|
21
|
Zhang Z, Yang D, Xiang J, Zhou J, Cao H, Che Q, Bai Y, Guo J, Su Z. Non-shivering Thermogenesis Signalling Regulation and Potential Therapeutic Applications of Brown Adipose Tissue. Int J Biol Sci 2021; 17:2853-2870. [PMID: 34345212 PMCID: PMC8326120 DOI: 10.7150/ijbs.60354] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/23/2021] [Indexed: 12/25/2022] Open
Abstract
In mammals, thermogenic organs exist in the body that increase heat production and enhance energy regulation. Because brown adipose tissue (BAT) consumes energy and generates heat, increasing energy expenditure via BAT might be a potential strategy for new treatments for obesity and obesity-related diseases. Thermogenic differentiation affects normal adipose tissue generation, emphasizing the critical role that common transcriptional regulation factors might play in common characteristics and sources. An understanding of thermogenic differentiation and related factors could help in developing ways to improve obesity indirectly or directly through targeting of specific signalling pathways. Many studies have shown that the active components of various natural products promote thermogenesis through various signalling pathways. This article reviews recent major advances in this field, including those in the cyclic adenosine monophosphate-protein kinase A (cAMP-PKA), cyclic guanosine monophosphate-GMP-dependent protein kinase G (cGMP-AKT), AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), transforming growth factor-β/bone morphogenic protein (TGF-β/BMP), transient receptor potential (TRP), Wnt, nuclear factor-κ-light-chain-enhancer of activated B cells (NF-κΒ), Notch and Hedgehog (Hh) signalling pathways in brown and brown-like adipose tissue. To provide effective information for future research on weight-loss nutraceuticals or drugs, this review also highlights the natural products and their active ingredients that have been reported in recent years to affect thermogenesis and thus contribute to weight loss via the above signalling pathways.
Collapse
Affiliation(s)
- Zhengyan Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Di Yang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Junwei Xiang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jingwen Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hua Cao
- Guangdong Cosmetics Engineering & Technology Research Center, School of Chemistry and Chemical Engneering, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd., Guangzhou 510663, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
22
|
Jin H, Oh HJ, Kim J, Lee KP, Han X, Lee OH, Lee BY. Effects of Ecklonia stolonifera extract on the obesity and skeletal muscle regeneration in high-fat diet-fed mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
23
|
Lagarde D, Jeanson Y, Portais JC, Galinier A, Ader I, Casteilla L, Carrière A. Lactate Fluxes and Plasticity of Adipose Tissues: A Redox Perspective. Front Physiol 2021; 12:689747. [PMID: 34276410 PMCID: PMC8278056 DOI: 10.3389/fphys.2021.689747] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/09/2021] [Indexed: 12/18/2022] Open
Abstract
Lactate, a metabolite produced when the glycolytic flux exceeds mitochondrial oxidative capacities, is now viewed as a critical regulator of metabolism by acting as both a carbon and electron carrier and a signaling molecule between cells and tissues. In recent years, increasing evidence report its key role in white, beige, and brown adipose tissue biology, and highlights new mechanisms by which lactate participates in the maintenance of whole-body energy homeostasis. Lactate displays a wide range of biological effects in adipose cells not only through its binding to the membrane receptor but also through its transport and the subsequent effect on intracellular metabolism notably on redox balance. This study explores how lactate regulates adipocyte metabolism and plasticity by balancing intracellular redox state and by regulating specific signaling pathways. We also emphasized the contribution of adipose tissues to the regulation of systemic lactate metabolism, their roles in redox homeostasis, and related putative physiopathological repercussions associated with their decline in metabolic diseases and aging.
Collapse
Affiliation(s)
- Damien Lagarde
- Goodman Cancer Research Center, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada.,Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| | - Yannick Jeanson
- Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| | - Jean-Charles Portais
- Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France.,MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Anne Galinier
- Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France.,Institut Fédératif de Biologie, CHU Purpan, Toulouse, France
| | - Isabelle Ader
- Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| | - Louis Casteilla
- Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| | - Audrey Carrière
- Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
24
|
Huang P, Wang Z, Cai K, Wei L, Chu Y, Guo M, Fan E. Targeting Bacterial Membrane Proteins to Explore the Beneficial Effects of Natural Products: New Antibiotics against Drug Resistance. Curr Med Chem 2021; 29:2109-2126. [PMID: 34126882 DOI: 10.2174/0929867328666210614121222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 11/22/2022]
Abstract
Antibiotic resistance is currently a world health crisis that urges the development of new antibacterial substances. To this end, natural products, including flavonoids, alkaloids, terpenoids, steroids, peptides and organic acids that play a vital role in the development of medicines and thus constitute a rich source in clinical practices, provide an important source of drugs directly or for the screen of lead compounds for new antibiotic development. Because membrane proteins, which comprise more than 60% of the current clinical drug targets, play crucial roles in signal transduction, transport, bacterial pathogenicity and drug resistance, as well as immunogenicity, it is our aim to summarize those natural products with different structures that target bacterial membrane proteins, such as efflux pumps and enzymes, to provide an overview for the development of new antibiotics to deal with antibiotic resistance.
Collapse
Affiliation(s)
- Piying Huang
- State Key Laboratory of Medical Molecular Biology, Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Zhe Wang
- State Key Laboratory of Medical Molecular Biology, Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Kun Cai
- State Key Laboratory of Medical Molecular Biology, Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Liangwan Wei
- State Key Laboratory of Medical Molecular Biology, Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yindi Chu
- State Key Laboratory of Medical Molecular Biology, Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Enguo Fan
- State Key Laboratory of Medical Molecular Biology, Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| |
Collapse
|
25
|
Adiponectin/SIRT1 Axis Induces White Adipose Browning After Vertical Sleeve Gastrectomy of Obese Rats with Type 2 Diabetes. Obes Surg 2021; 30:1392-1403. [PMID: 31781938 DOI: 10.1007/s11695-019-04295-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE White adipose tissue (WAT) browning plays a crucial role in energy metabolism. However, it remains unclear whether WAT browning is involved in the adipose reduction following sleeve gastrectomy (SG). Adiponectin is upregulated after Roux-en-Y gastric bypass surgery. The role of adiponectin in SG was further investigated in the current study. MATERIALS AND METHODS Diabetic Sprague Dawley rats were randomly divided into control, sham + libitum, sham + food restriction, and sleeve groups. Browning markers, including uncoupling protein 1 (UCP1), peroxisome proliferator-activated receptor (PPAR) γ, and PPARγ coactivator-1 alpha (PGC-1α), were examined 4 weeks after the operation. RESULTS UCP1, PPARγ, and PGC-1α expression were significantly higher in the sleeve group compared to the other study groups. The adipose tissue of the sleeve group exhibited tissue weight loss and additional morphological browning features. In addition, adiponectin expression in the sleeve group was significantly increased. Adiponectin upregulated the expression of the browning genes and sirtuin 1 (SIRT1) in 3T3-L1 adipocytes. SIRT1 could increase the WAT browning levels, revealing that adiponectin induced the browning process via the upregulation of SIRT1. Furthermore, SIRT1 represented a positive regulatory feedback loop for adiponectin. SIRT1 activated adenosine monophosphate-activated protein kinase (AMPK), which can mediate WAT browning. Inhibition of the AMPK signaling pathway by dorsomorphin decreased UCP1, PPARγ, and PGC-1α expression. However, additional studies are needed to understand the relationship between adiponectin and glucose homeostasis. CONCLUSIONS Sleeve gastrectomy increased adiponectin levels, which in turn upregulated SIRT1. Thus, SIRT1 may function as an endocrine signal to mediate WAT browning.
Collapse
|
26
|
Dietary restrictions modulate the gut microbiota: Implications for health and disease. Nutr Res 2021; 89:10-22. [PMID: 33878569 DOI: 10.1016/j.nutres.2021.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/12/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
The health benefits of carefully restricting the energy intake in a strategic manner whilst avoiding malnutrition are widely discussed. In the recent years, the great impact of the gut microbiota on its host has been clarified more and more. Since the gut microbiota produces a number of metabolites and molecules that can affect host metabolism, modulating it with dietary restriction can influence the health and the progression of disease of its host on various levels. This review comprises 15 studies investigating the effect of different variants of fasting and caloric restriction on the gastrointestinal microbiome and its metabolites. The data suggest that changing the gut microbiota composition by dietary restriction has the potential to positively influence the progression of several diseases such as obesity, diabetes, neurological diseases or inflammatory bowel disease. Finally, the relevance of the findings for clinical practice is evaluated and approaches for future research are proposed.
Collapse
|
27
|
Liu X, Zhang Y, Chu Y, Zhao X, Mao L, Zhao S, Lin S, Hui X, Gu P, Xu Y, Loomes K, Tang S, Nie T, Wu D. The natural compound rutaecarpine promotes white adipocyte browning through activation of the AMPK-PRDM16 axis. Biochem Biophys Res Commun 2021; 545:189-194. [PMID: 33561654 DOI: 10.1016/j.bbrc.2021.01.080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 12/21/2022]
Abstract
The prevalence of obesity is increasing globally and is associated with many metabolic disorders, such as type 2 diabetes and cardiovascular diseases. In recent years, a number of studies suggest that promotion of white adipose browning represents a promising strategy to combat obesity and its related metabolic disorders. The aim of this study was to identify compounds that induce adipocyte browning and elucidate their mechanism of action. Among the 500 natural compounds screened, a small molecule named Rutaecarpine, was identified as a positive regulator of adipocyte browning both in vitro and in vivo. KEGG pathway analysis from RNA-seq data suggested that the AMPK signaling pathway was regulated by Rutaecarpine, which was validated by Western blot analysis. Furthermore, inhibition of AMPK signaling mitigated the browning effect of Rutaecaripine. The effect of Rutaecaripine on adipocyte browning was also abolished upon deletion of Prdm16, a downstream target of AMPK pathway. In collusion, Rutaecarpine is a potent chemical agent to induce adipocyte browning and may serve as a potential drug candidate to treat obesity.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/metabolism
- Adipocytes, Beige/cytology
- Adipocytes, Beige/drug effects
- Adipocytes, Beige/metabolism
- Adipocytes, White/cytology
- Adipocytes, White/drug effects
- Adipocytes, White/metabolism
- Animals
- Biological Products/pharmacology
- DNA-Binding Proteins/metabolism
- Disease Models, Animal
- Drug Evaluation, Preclinical
- In Vitro Techniques
- Indole Alkaloids/pharmacology
- Male
- Mice
- Mice, Transgenic
- Models, Biological
- Obesity/drug therapy
- Obesity/genetics
- Obesity/metabolism
- Oxygen Consumption/drug effects
- Quinazolines/pharmacology
- Signal Transduction/drug effects
- Thermogenesis/drug effects
- Thermogenesis/genetics
- Thermogenesis/physiology
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Xiaomin Liu
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yuwei Zhang
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yi Chu
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xuemei Zhao
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Liufeng Mao
- Clinical Department of Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Shiting Zhao
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Shaoqiang Lin
- Clinical Department of Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaoyan Hui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, China
| | - Ping Gu
- Department of Endocrinology, Jinling Hospital, Nanjing University, School of Medicine, Nanjing, China
| | - Yong Xu
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Kerry Loomes
- School of Biological Sciences and Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| | - Shibing Tang
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.
| | - Tao Nie
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.
| | - Donghai Wu
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, China.
| |
Collapse
|
28
|
Luca SV, Minceva M, Gertsch J, Skalicka-Woźniak K. LC-HRMS/MS-based phytochemical profiling of Piper spices: Global association of piperamides with endocannabinoid system modulation. Food Res Int 2021; 141:110123. [DOI: 10.1016/j.foodres.2021.110123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/09/2020] [Accepted: 01/06/2021] [Indexed: 12/29/2022]
|
29
|
Lagarde D, Jeanson Y, Barreau C, Moro C, Peyriga L, Cahoreau E, Guissard C, Arnaud E, Galinier A, Bouzier-Sore AK, Pellerin L, Chouchani ET, Pénicaud L, Ader I, Portais JC, Casteilla L, Carrière A. Lactate fluxes mediated by the monocarboxylate transporter-1 are key determinants of the metabolic activity of beige adipocytes. J Biol Chem 2021; 296:100137. [PMID: 33268383 PMCID: PMC7949083 DOI: 10.1074/jbc.ra120.016303] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/19/2022] Open
Abstract
Activation of energy-dissipating brown/beige adipocytes represents an attractive therapeutic strategy against metabolic disorders. While lactate is known to induce beiging through the regulation of Ucp1 gene expression, the role of lactate transporters on beige adipocytes' ongoing metabolic activity remains poorly understood. To explore the function of the lactate-transporting monocarboxylate transporters (MCTs), we used a combination of primary cell culture studies, 13C isotopic tracing, laser microdissection experiments, and in situ immunofluorescence of murine adipose fat pads. Dissecting white adipose tissue heterogeneity revealed that the MCT1 is expressed in inducible beige adipocytes as the emergence of uncoupling protein 1 after cold exposure was restricted to a subpopulation of MCT1-expressing adipocytes suggesting MCT1 as a marker of inducible beige adipocytes. We also observed that MCT1 mediates bidirectional and simultaneous inward and outward lactate fluxes, which were required for efficient utilization of glucose by beige adipocytes activated by the canonical β3-adrenergic signaling pathway. Finally, we demonstrated that significant lactate import through MCT1 occurs even when glucose is not limiting, which feeds the oxidative metabolism of beige adipocytes. These data highlight the key role of lactate fluxes in finely tuning the metabolic activity of beige adipocytes according to extracellular metabolic conditions and reinforce the emerging role of lactate metabolism in the control of energy homeostasis.
Collapse
Affiliation(s)
- Damien Lagarde
- STROMALab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France; Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| | - Yannick Jeanson
- STROMALab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France; Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| | - Corinne Barreau
- STROMALab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France; Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| | - Cedric Moro
- Institute of Metabolic and Cardiovascular Diseases, INSERM UMR1048, Paul Sabatier University, Toulouse, France
| | - Lindsay Peyriga
- Toulouse Biotechnology Institute TBI - INSA de Toulouse INSA/CNRS 5504 - UMR INSA/INRA 7924, Toulouse, France; MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Edern Cahoreau
- Toulouse Biotechnology Institute TBI - INSA de Toulouse INSA/CNRS 5504 - UMR INSA/INRA 7924, Toulouse, France; MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Christophe Guissard
- STROMALab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France; Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| | - Emmanuelle Arnaud
- STROMALab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France; Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| | - Anne Galinier
- STROMALab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France; Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France; Institut Fédératif de Biologie, CHU Purpan, Toulouse, France
| | | | - Luc Pellerin
- INSERM U1082, Université de Poitiers, Poitiers Cedex, France
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Luc Pénicaud
- STROMALab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France; Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| | - Isabelle Ader
- STROMALab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France; Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| | - Jean-Charles Portais
- STROMALab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France; Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France; Toulouse Biotechnology Institute TBI - INSA de Toulouse INSA/CNRS 5504 - UMR INSA/INRA 7924, Toulouse, France; MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Louis Casteilla
- STROMALab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France; Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| | - Audrey Carrière
- STROMALab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France; Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France.
| |
Collapse
|
30
|
Resveratrol, Curcumin and Piperine Alter Human Glyoxalase 1 in MCF-7 Breast Cancer Cells. Int J Mol Sci 2020; 21:ijms21155244. [PMID: 32721999 PMCID: PMC7432303 DOI: 10.3390/ijms21155244] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is the leading cause of cancer mortality in women worldwide. Conventional cancer treatment is costly and results in many side effects. Dietary bioactive compounds may be a potential source for breast cancer prevention and treatment. In this scenario, the aim of this study was to investigate the effects of the bioactive compounds resveratrol, curcumin and piperine (R-C-P) on MCF-7 breast cancer cells and to associate them to Glyoxalase 1 (GLO1) activity. The findings indicate that R-C-P exhibits cytotoxicity towards MCF-7 cells. R-C-P decreased mitochondrial membrane potential (ΔΨm) by 1.93-, 2.04- and 1.17-fold, respectively. Glutathione and N-acetylcysteine were able to reverse the cytotoxicity of the assessed bioactive compounds in MCF-7 cells. R-C-P reduced GLO1 activity by 1.36-, 1.92- and 1.31-fold, respectively. R-C-P in the presence of antimycin A led to 1.98-, 1.65- and 2.16-fold decreases in D-lactate levels after 2 h of treatment, respectively. Glyoxal and methylglyoxal presented cytotoxic effects on MCF-7 cells, with IC50 values of 2.8 and 2.7 mM and of 1.5 and 1.4 mM after 24 and 48 h of treatment, respectively. In conclusion, this study demonstrated that R-C-P results in cytotoxic effects in MCF-7 cells and that this outcome is associated with decreasing GLO1 activity and mitochondrial dysfunction.
Collapse
|
31
|
A phytoestrogen secoisolariciresinol diglucoside induces browning of white adipose tissue and activates non-shivering thermogenesis through AMPK pathway. Pharmacol Res 2020; 158:104852. [PMID: 32438038 DOI: 10.1016/j.phrs.2020.104852] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/30/2020] [Accepted: 04/20/2020] [Indexed: 01/07/2023]
Abstract
Secoisolariciresinol diglucoside (SDG) is the main phytoestrogen component of flaxseed known as an antioxidant. Current study focused on the effect of SDG in white adipose tissue (WAT) browning. Browning of WAT is considered as a promising treatment strategy for metabolic diseases. To demonstrate the effect of SDG as an inducer of browning, brown adipocyte markers were investigated in inguinal WAT (iWAT) of high fat diet-fed obese mice and genetically obese db/db mice after SDG administration. SDG increased thermogenic factors such as uncoupling protein 1, peroxisome proliferator-activated receptor gamma coactivator 1 alpha and PR domain containing 16 in iWAT and brown adipose tissue (BAT) of mice. Similar results were shown in beige-induced 3T3-L1 adipocytes and primary cultured brown adipocytes. Furthermore, SDG increased factors of mitochondrial biogenesis and activation. We also observed SDG-induced alteration of AMP-activated protein kinase α (AMPKα). As AMPKα is closely related in the regulation of adipogenesis and thermogenesis, we then evaluated the effect of SDG in AMPKα-inhibited conditions. Genetic or chemical inhibition of AMPKα demonstrated that the role of SDG on browning and thermogenesis was dependent on AMPKα signaling. In conclusion, our data suggest SDG as a potential candidate for improvement of obesity and other metabolic disorders.
Collapse
|
32
|
Lee K, Jin H, Chei S, Oh HJ, Lee JY, Lee BY. Effect of Dietary Silk Peptide on Obesity, Hyperglycemia, and Skeletal Muscle Regeneration in High-Fat Diet-Fed Mice. Cells 2020; 9:E377. [PMID: 32041272 PMCID: PMC7072146 DOI: 10.3390/cells9020377] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/18/2022] Open
Abstract
Obesity is associated with excess body fat accumulation that can cause hyperglycemia and reduce skeletal muscle function and strength, which characterize the development of sarcopenic obesity. In this study, we aimed to determine the mechanism whereby acid-hydrolyzed silk peptide (SP) prevents high-fat diet (HFD)-induced obesity and whether it regulates glucose uptake and muscle differentiation using in vivo and in vitro approaches. Our findings demonstrate that SP inhibits body mass gain and the expression of adipogenic transcription factors in visceral adipose tissue (VAT). SP also had an anti-diabetic effect in VAT and skeletal muscle because it upregulated glucose transporter type 4 (GLUT4) and uncoupling protein 3 (UCP3) expression. Furthermore, SP reduced ubiquitin proteasome and promoted myoblast determination protein 1 (MyoD)/myogenic factor 4 (myogenin) expression, implying that it may have potential for the treatment of obesity-induced hyperglycemia and obesity-associated sarcopenia.
Collapse
Affiliation(s)
- Kippeum Lee
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Kyonggi-do 13488, Korea; (K.L.); (H.J.); (S.C.); (H.-J.O.)
| | - Heegu Jin
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Kyonggi-do 13488, Korea; (K.L.); (H.J.); (S.C.); (H.-J.O.)
| | - Sungwoo Chei
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Kyonggi-do 13488, Korea; (K.L.); (H.J.); (S.C.); (H.-J.O.)
| | - Hyun-Ji Oh
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Kyonggi-do 13488, Korea; (K.L.); (H.J.); (S.C.); (H.-J.O.)
| | - Jeong-Yong Lee
- Worldway Co., Ltd., Sanda-gil, Jeonul-myeon, Sejong-si 30003, Korea;
| | - Boo-Yong Lee
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Kyonggi-do 13488, Korea; (K.L.); (H.J.); (S.C.); (H.-J.O.)
| |
Collapse
|
33
|
The emerging roles of lactate as a redox substrate and signaling molecule in adipose tissues. J Physiol Biochem 2020; 76:241-250. [PMID: 31898016 DOI: 10.1007/s13105-019-00723-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022]
Abstract
Thermogenic (brown and beige) adipose tissues improve glucose and lipid homeostasis and therefore represent putative targets to cure obesity and related metabolic diseases including type II diabetes. Beside decades of research and the very well-described role of noradrenergic signaling, mechanisms underlying adipocytes plasticity and activation of thermogenic adipose tissues remain incompletely understood. Recent studies show that metabolites such as lactate control the oxidative capacity of thermogenic adipose tissues. Long time viewed as a metabolic waste product, lactate is now considered as an important metabolic substrate largely feeding the oxidative metabolism of many tissues, acting as a signaling molecule and as an inter-cellular and inter-tissular redox carrier. In this review, we provide an overview of the recent findings highlighting the importance of lactate in adipose tissues, from its production to its role as a browning inducer and its metabolic links with brown adipose tissue. We also discuss additional function(s) than thermogenesis ensured by brown and beige adipose tissues, i.e., their ability to dissipate high redox pressure and oxidative stress thanks to the activity of the uncoupling protein-1, helping to maintain tissue and whole organism redox homeostasis and integrity.
Collapse
|
34
|
Ostrakhovitch EA, Akakura S, Sanokawa-Akakura R, Tabibzadeh S. 3-Mercaptopyruvate sulfurtransferase disruption in dermal fibroblasts facilitates adipogenic trans-differentiation. Exp Cell Res 2019; 385:111683. [DOI: 10.1016/j.yexcr.2019.111683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 10/13/2019] [Accepted: 10/17/2019] [Indexed: 12/17/2022]
|
35
|
Moreno-Navarrete JM, Fernandez-Real JM. The gut microbiota modulates both browning of white adipose tissue and the activity of brown adipose tissue. Rev Endocr Metab Disord 2019; 20:387-397. [PMID: 31776853 DOI: 10.1007/s11154-019-09523-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Given the increasing worldwide prevalence of obesity and associated metabolic disturbances, novel therapeutic strategies are imperatively required. A plausible manner to increase energy expenditure is the enhancement of thermogenic pathways in white (WAT) and brown adipose tissue (BAT). In the last 15 years, the identification of novel endogenous mechanisms to promote BAT activity or browning of WAT has pointed at gut microbiota as an important modulator of host metabolic homeostasis and energy balance. In this review, we focused on the relationship between gut microbiota composition and adipose tissue thermogenic program (including BAT activity and browning of WAT) in both physiological and stress conditions. Specifically, we reviewed the effects of fasting, caloric restriction, cold stress and metabolic endotoxemia on both browning and gut microbiota shifts. Mechanistically speaking, processes related to bile acid metabolism and the endocannabinoid system seem to play an important role. In summary, the gut microbiota seems to impact WAT and BAT physiology at multiple levels.
Collapse
Affiliation(s)
- José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain.
- Department of Medicine, Universitat de Girona, Girona, Spain.
| | - José Manuel Fernandez-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
- Department of Medicine, Universitat de Girona, Girona, Spain
| |
Collapse
|
36
|
Stojanović-Radić Z, Pejčić M, Dimitrijević M, Aleksić A, V. Anil Kumar N, Salehi B, C. Cho W, Sharifi-Rad J. Piperine-A Major Principle of Black Pepper: A Review of Its Bioactivity and Studies. APPLIED SCIENCES 2019; 9:4270. [DOI: 10.3390/app9204270] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Piperine is the main compound present in black pepper, and is the carrier of its specific pungent taste, which is responsible for centuries of human dietary utilization and worldwide popularity as a food ingredient. Along with the application as a food ingredient and food preservative, it is used in traditional medicine for many purposes, which has in most cases been justified by modern scientific studies on its biological effects. It has been confirmed that piperine has many bioactive effects, such as antimicrobial action, as well as many physiological effects that can contribute to general human health, including immunomodulatory, hepatoprotective, antioxidant, antimetastatic, antitumor, and many other activities. Clinical studies demonstrated remarkable antioxidant, antitumor, and drug availability-enhancing characteristics of this compound, together with immunomodulatory potential. All these facts point to the therapeutic potential of piperine and the need to incorporate this compound into general health-enhancing medical formulations, as well as into those that would be used as adjunctive therapy in order to enhance the bioavailability of various (chemo)therapeutic drugs.
Collapse
Affiliation(s)
- Zorica Stojanović-Radić
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia
| | - Milica Pejčić
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia
| | - Marina Dimitrijević
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia
| | - Ana Aleksić
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia
| | - Nanjangud V. Anil Kumar
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Javad Sharifi-Rad
- Department of Pharmacology, Faculty of Medicine, Jiroft University of Medical Sciences, Jiroft 7861756447, Iran
| |
Collapse
|
37
|
Liu M, Zheng M, Cai D, Xie J, Jin Z, Liu H, Liu J. Zeaxanthin promotes mitochondrial biogenesis and adipocyte browning via AMPKα1 activation. Food Funct 2019; 10:2221-2233. [PMID: 30950462 DOI: 10.1039/c8fo02527d] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Zeaxanthin (ZEA), a type of oxygenated carotenoid with strong antioxidant activity, has previously been found to exhibit an anti-lipogenesis effect. In the present study, we investigated the effect of ZEA on brown-like adipocyte formation and mitochondrial biogenesis in 3T3-L1 adipocytes. Brown adipocyte-specific markers, mitochondrial biogenesis and oxidative stress, and the involvement of AMP-activated protein kinase (AMPK) α1 were assessed. ZEA treated adipocytes demonstrated a brown-like pattern, with upregulated expression of uncoupling protein 1 (UCP1) and other brown adipocyte markers. In addition, ZEA intervention induced a dramatic increase in mitochondrial DNA (mtDNA) content and in the mRNA levels of genes associated with mitochondrial biogenesis. Furthermore, ZEA attenuated mitochondrial oxidative damage caused by lipid peroxidation in adipocytes, significantly improved the mitochondrial membrane potential (MMP), and scavenged intracellular reactive oxygen species (ROS) and mitochondrial superoxide. Finally, we concluded that AMPKα1 mediated the ZEA-caused inhibition of lipid accumulation and promotion of brown and beige adipocyte-biomarker expression, as the positive effects of ZEA were diminished by Prkaa1 (AMPKα1) knockdown. These findings demonstrated that ZEA promoted the expression of brown and beige adipogenesis markers and mitochondrial biogenesis, which involved AMPKα1 activation, thus contributing to the anti-obesity effects of ZEA.
Collapse
Affiliation(s)
- Meihong Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China.
| | | | | | | | | | | | | |
Collapse
|
38
|
Wang S, Pan MH, Hung WL, Tung YC, Ho CT. From white to beige adipocytes: therapeutic potential of dietary molecules against obesity and their molecular mechanisms. Food Funct 2019; 10:1263-1279. [PMID: 30735224 DOI: 10.1039/c8fo02154f] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The global incidence of obesity and its complications continue to rise along with a demand for novel therapeutic approaches. In addition to classic brown adipose tissue (BAT), the formation of brown-like adipocytes called beige adipocytes, within white adipose tissue (WAT), has attracted much attention as a therapeutic target due to its inducible features when stimulated, resulting in the dissipation of extra energy as heat. There are various dietary agents that are able to modulate the beige-development process by interacting with critical molecular signaling cascades, leading to the enhancement of thermogenesis. Although challenges still remain regarding the origin of the beige adipocytes, the crosstalk with activation of BAT and induction of the beiging of white fat may provide attractive potential strategies for management of obesity.
Collapse
Affiliation(s)
- Siyu Wang
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA.
| | | | | | | | | |
Collapse
|
39
|
Mechanisms underlying the metabolic beneficial effect of curcumin intervention: Beyond anti-inflammation and anti-oxidative stress. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.obmed.2018.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
40
|
Han L, Yang Q, Ma W, Li J, Qu L, Wang M. Protocatechuic Acid Ameliorated Palmitic-Acid-Induced Oxidative Damage in Endothelial Cells through Activating Endogenous Antioxidant Enzymes via an Adenosine-Monophosphate-Activated-Protein-Kinase-Dependent Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10400-10409. [PMID: 30220205 DOI: 10.1021/acs.jafc.8b03414] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Protocatechuic acid (PCA, 3,4-dihydroxybenzoic acid), the main metabolite of anthocyanins, is widely distributed in fruits and vegetables and has been reported to possess a strong antioxidant activity. Herein, we aimed to investigate the protective effect of PCA against high palmitic-acid (PA)-induced oxidative damage and the underling molecular mechanisms in human umbilical vein endothelial cells (HUVECs). PCA reduced the levels of intracellular reactive oxygen species and malondialdehyde and increased the activities of endogenous antioxidant enzymes, including superoxide dismutase, glutathione peroxidase 1, and heme oxygenase 1 (HO-1). Metabolomic analysis showed that PCA affected numerous metabolites, especially some of which were related with energy metabolism. PCA also upregulated the phosphorylation of adenosine-monophosphate-activated protein kinase (AMPK) at Thr172 through activating liver kinase B1 and then promoted the expression of p-Nrf2 and HO-1. Moreover, PCA reversed the decreased expression of peroxisome proliferator-activated receptor γ coactivator 1α and significantly increased the mitochondrial density. Collectively, these results demonstrated that PCA attenuated PA-induced oxidative damage in HUVECs via an AMPK-dependent pathway.
Collapse
Affiliation(s)
- Lin Han
- The Chongqing Engineering Laboratory for Green Cultivation and Deep Processing of the Three Gorges Reservoir Area's Medicinal Herbs, College of Biology and Food Engineering , Chongqing Three Gorges University , Chongqing 404100 , People's Republic of China
| | | | | | | | - Liuzhu Qu
- The Chongqing Engineering Laboratory for Green Cultivation and Deep Processing of the Three Gorges Reservoir Area's Medicinal Herbs, College of Biology and Food Engineering , Chongqing Three Gorges University , Chongqing 404100 , People's Republic of China
| | | |
Collapse
|
41
|
Cerda‐Kohler H, Henríquez‐Olguín C, Casas M, Jensen TE, Llanos P, Jaimovich E. Lactate administration activates the ERK1/2, mTORC1, and AMPK pathways differentially according to skeletal muscle type in mouse. Physiol Rep 2018; 6:e13800. [PMID: 30230254 PMCID: PMC6144450 DOI: 10.14814/phy2.13800] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle is described as an endocrine organ, constitutively or intermittently secreting bioactive molecules. The signaling pathways by which these molecules mediate changes in skeletal muscle and regulate interorgan crosstalk are only partly understood. Lactate is widely described as a signaling molecule in different cells, but the role of lactate as a signaling molecule in mature skeletal muscle has not been fully unveiled. The aim of this study was to determine the role of lactate on activation of signaling pathways in adult mouse skeletal muscle. Male mice were injected intraperitoneally with lactate or saline, and tissues were dissected after 40 min. Phosphorylation levels of relevant proteins in muscle were assessed by Western blotting. After lactate administration, we found an increase in p-ERK1/2Thr202/Tyr204 (3.5-fold; P = 0.004) and p-p70S6KThr389 (1.9-fold; P = 0.01) in quadriceps; and an increase in p-rpS6Ser235/236 in both quadriceps (6.3-fold; P = 0.01) and EDL (2.3-fold; P = 0.01), without changes in soleus. There was a tendency toward an increase in p-AMPKThr172 (1.7-fold; P = 0.08), with a significant increase in p-ACCSer79 (1.5-fold; P = 0.04) in soleus, without changes in quadriceps and EDL. These results support the hypothesis that lactate plays a role in the molecular signaling related to hypertrophy and to oxidative metabolism on adult skeletal muscle and suggest that this activation depends on the skeletal muscle type. The mechanisms that underlie the effect of lactate in mature skeletal muscles remain to be established.
Collapse
Affiliation(s)
- Hugo Cerda‐Kohler
- Faculty of MedicineCenter for Exercise, Metabolism and CancerICBMUniversidad de ChileSantiagoChile
- Laboratory of Exercise ScienceClínica MEDSSantiagoChile
| | - Carlos Henríquez‐Olguín
- Faculty of MedicineCenter for Exercise, Metabolism and CancerICBMUniversidad de ChileSantiagoChile
- Laboratory of Exercise ScienceClínica MEDSSantiagoChile
- Department of Nutrition, Exercise and SportsMolecular Physiology GroupFaculty of ScienceUniversity of CopenhagenCopenhagenDenmark
| | - Mariana Casas
- Faculty of MedicineCenter for Exercise, Metabolism and CancerICBMUniversidad de ChileSantiagoChile
- Physiology and Biophysics ProgramICBMFaculty of MedicineUniversidad de ChileSantiagoChile
| | - Thomas E. Jensen
- Department of Nutrition, Exercise and SportsMolecular Physiology GroupFaculty of ScienceUniversity of CopenhagenCopenhagenDenmark
| | - Paola Llanos
- Faculty of MedicineCenter for Exercise, Metabolism and CancerICBMUniversidad de ChileSantiagoChile
- Institute for Research in Dental SciencesFacultad de OdontologíaUniversidad de ChileSantiagoChile
| | - Enrique Jaimovich
- Faculty of MedicineCenter for Exercise, Metabolism and CancerICBMUniversidad de ChileSantiagoChile
| |
Collapse
|
42
|
Maeda A, Shirao T, Shirasaya D, Yoshioka Y, Yamashita Y, Akagawa M, Ashida H. Piperine Promotes Glucose Uptake through ROS-Dependent Activation of the CAMKK/AMPK Signaling Pathway in Skeletal Muscle. Mol Nutr Food Res 2018; 62:e1800086. [DOI: 10.1002/mnfr.201800086] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/06/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Ayumi Maeda
- Department of Agrobioscience; Graduate School of Agricultural Science; Kobe University; Kobe 657-8501 Japan
| | - Takeshi Shirao
- Department of Agrobioscience; Graduate School of Agricultural Science; Kobe University; Kobe 657-8501 Japan
| | - Daishi Shirasaya
- Department of Agrobioscience; Graduate School of Agricultural Science; Kobe University; Kobe 657-8501 Japan
| | - Yasukiyo Yoshioka
- Graduate School of Science; Technology and Innovation; Kobe University; Kobe 657-8501 Japan
| | - Yoko Yamashita
- Department of Agrobioscience; Graduate School of Agricultural Science; Kobe University; Kobe 657-8501 Japan
| | - Mitsugu Akagawa
- Deparatment of Biological Chemistry; Division of Applied Life Science; Graduate School of Life and Environmental Sciences; Osaka Prefecture University; Sakai 599-8531 Japan
| | - Hitoshi Ashida
- Department of Agrobioscience; Graduate School of Agricultural Science; Kobe University; Kobe 657-8501 Japan
| |
Collapse
|
43
|
Li G, Xie C, Lu S, Nichols RG, Tian Y, Li L, Patel D, Ma Y, Brocker CN, Yan T, Krausz KW, Xiang R, Gavrilova O, Patterson AD, Gonzalez FJ. Intermittent Fasting Promotes White Adipose Browning and Decreases Obesity by Shaping the Gut Microbiota. Cell Metab 2017; 26:672-685.e4. [PMID: 28918936 PMCID: PMC5668683 DOI: 10.1016/j.cmet.2017.08.019] [Citation(s) in RCA: 422] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/10/2017] [Accepted: 08/17/2017] [Indexed: 12/20/2022]
Abstract
While activation of beige thermogenesis is a promising approach for treatment of obesity-associated diseases, there are currently no known pharmacological means of inducing beiging in humans. Intermittent fasting is an effective and natural strategy for weight control, but the mechanism for its efficacy is poorly understood. Here, we show that an every-other-day fasting (EODF) regimen selectively stimulates beige fat development within white adipose tissue and dramatically ameliorates obesity, insulin resistance, and hepatic steatosis. EODF treatment results in a shift in the gut microbiota composition leading to elevation of the fermentation products acetate and lactate and to the selective upregulation of monocarboxylate transporter 1 expression in beige cells. Microbiota-depleted mice are resistance to EODF-induced beiging, while transplantation of the microbiota from EODF-treated mice to microbiota-depleted mice activates beiging and improves metabolic homeostasis. These findings provide a new gut-microbiota-driven mechanism for activating adipose tissue browning and treating metabolic diseases.
Collapse
Affiliation(s)
- Guolin Li
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China.
| | - Cen Xie
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Siyu Lu
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Robert G Nichols
- Department of Molecular Toxicology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yuan Tian
- Department of Molecular Toxicology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Licen Li
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Daxeshkumar Patel
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yinyan Ma
- Mouse Metabolism Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chad N Brocker
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tingting Yan
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kristopher W Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rong Xiang
- The State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha, Hunan 41001, China
| | - Oksana Gavrilova
- Mouse Metabolism Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew D Patterson
- Department of Molecular Toxicology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
44
|
Beale PK, Marsh KJ, Foley WJ, Moore BD. A hot lunch for herbivores: physiological effects of elevated temperatures on mammalian feeding ecology. Biol Rev Camb Philos Soc 2017; 93:674-692. [DOI: 10.1111/brv.12364] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/25/2017] [Accepted: 08/09/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Phillipa K. Beale
- Research School of Biology The Australian National University Canberra Australian Capital Territory 2601 Australia
| | - Karen J. Marsh
- Research School of Biology The Australian National University Canberra Australian Capital Territory 2601 Australia
| | - William J. Foley
- Research School of Biology The Australian National University Canberra Australian Capital Territory 2601 Australia
- Animal Ecology and Conservation University of Hamburg, Martin‐Luther‐King‐Platz 3 20146 Hamburg Germany
| | - Ben D. Moore
- Hawkesbury Institute for the Environment Western Sydney University, Locked bag 1797 Penrith New South Wales 2751 Australia
| |
Collapse
|