1
|
Han R, Wang T, Cheng X, Bing J, Li J, Deng Y, Shan X, Zhang X, Wang D, Sun S, Tan W. Immune Responses and Protection Profiles in Mice Induced by Subunit Vaccine Candidates Based on the Extracellular Domain Antigen of Respiratory Syncytial Virus G Protein Combined with Different Adjuvants. Vaccines (Basel) 2024; 12:686. [PMID: 38932414 PMCID: PMC11209252 DOI: 10.3390/vaccines12060686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Respiratory syncytial virus (RSV) is a leading cause of severe lower respiratory tract disease of infants and older people. There is an urgent need for safe and effective vaccines against RSV infection. In this study, we analyzed the effects of the immune response and protection with the RSV recombinant G protein extracellular domain (Gecto) combined with various adjuvants as novel subunit vaccines in mice. All groups receiving RSV Gecto combined with adjuvants exhibited robust humoral and cellular immunity compared to those receiving an adjuvant alone or inactivated RSV vaccine. The greatest effect was observed in mice receiving Gecto combined with a CpG ODN + Alum salt adjuvant, resulting in the highest production of neutralizing antibodies against both RSV A and B subtypes, G-specific IgG and IFN-γ production in splenocytes, and interleukin-2 and interferon-γ expression in CD4+ T cells. Significant humoral and cellular immune responses were observed in mice immunized with Gecto combined with AddaS03™ or cyclosporin A adjuvants. The vaccine containing the AddaS03™ adjuvant showed significantly high expression of interleukin-4 in CD4+ T cells. Cross-protection against a challenge with either RSV A or B subtypes was observed in the Gecto plus adjuvant groups, resulting in a significant decrease in viral load and reduced pathological damage in the mouse lungs. These findings offer valuable insights into the development and application of recombinant RSV G-subunit vaccines with adjuvants.
Collapse
Affiliation(s)
- Ruiwen Han
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; (R.H.); (T.W.); (J.L.)
| | - Tangqi Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; (R.H.); (T.W.); (J.L.)
| | - Xueting Cheng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, 155 Changbai Road, Beijing 102206, China; (X.C.); (Y.D.)
| | - Jialuo Bing
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China; (J.B.); (X.S.); (X.Z.)
| | - Jia Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; (R.H.); (T.W.); (J.L.)
| | - Yao Deng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, 155 Changbai Road, Beijing 102206, China; (X.C.); (Y.D.)
| | - Xuchang Shan
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China; (J.B.); (X.S.); (X.Z.)
| | - Xuejie Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China; (J.B.); (X.S.); (X.Z.)
| | - Donghong Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, 155 Changbai Road, Beijing 102206, China; (X.C.); (Y.D.)
| | - Shucai Sun
- Department of Nuclear Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang 050004, China;
| | - Wenjie Tan
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; (R.H.); (T.W.); (J.L.)
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, 155 Changbai Road, Beijing 102206, China; (X.C.); (Y.D.)
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China; (J.B.); (X.S.); (X.Z.)
- Department of Nuclear Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang 050004, China;
| |
Collapse
|
2
|
Nham E, Jang AY, Ji HJ, Ahn KB, Bae JY, Park MS, Yoon JG, Seong H, Noh JY, Cheong HJ, Kim WJ, Seo HS, Song JY. Development and Validation of an Enzyme-Linked Immunosorbent Assay-Based Protocol for Evaluation of Respiratory Syncytial Virus Vaccines. Viruses 2024; 16:952. [PMID: 38932244 PMCID: PMC11209066 DOI: 10.3390/v16060952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Recently, respiratory syncytial virus (RSV) vaccines based on the prefusion F (pre-F) antigen were approved in the United States. We aimed to develop an enzyme-linked immunosorbent assay (ELISA)-based protocol for the practical and large-scale evaluation of RSV vaccines. Two modified pre-F proteins (DS-Cav1 and SC-TM) were produced by genetic recombination and replication using an adenoviral vector. The protocol was established by optimizing the concentrations of the coating antigen (pre-F proteins), secondary antibodies, and blocking buffer. To validate the protocol, we examined its accuracy, precision, and specificity using serum samples from 150 participants across various age groups and the standard serum provided by the National Institute of Health. In the linear correlation analysis, coating concentrations of 5 and 2.5 μg/mL of DS-Cav1 and SC-TM showed high coefficients of determination (r > 0.90), respectively. Concentrations of secondary antibodies (alkaline phosphatase-conjugated anti-human immunoglobulin G, diluted 1:2000) and blocking reagents (5% skim milk/PBS-T) were optimized to minimize non-specific reactions. High accuracy was observed for DS-Cav1 (r = 0.90) and SC-TM (r = 0.86). Further, both antigens showed high precision (coefficient of variation < 15%). Inhibition ELISA revealed cross-reactivity of antibodies against DS-Cav1 and SC-TM, but not with the attachment (G) protein.
Collapse
Affiliation(s)
- Eliel Nham
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea; (E.N.); (A.-Y.J.); (J.G.Y.); (H.S.); (J.Y.N.); (H.J.C.); (W.J.K.)
- Vaccine Innovation Center-KU Medicine (VIC-K), Seoul 02841, Republic of Korea; (J.-Y.B.); (M.-S.P.)
| | - A-Yeung Jang
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea; (E.N.); (A.-Y.J.); (J.G.Y.); (H.S.); (J.Y.N.); (H.J.C.); (W.J.K.)
- Vaccine Innovation Center-KU Medicine (VIC-K), Seoul 02841, Republic of Korea; (J.-Y.B.); (M.-S.P.)
| | - Hyun Jung Ji
- Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; (H.J.J.); (K.B.A.)
| | - Ki Bum Ahn
- Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; (H.J.J.); (K.B.A.)
| | - Joon-Yong Bae
- Vaccine Innovation Center-KU Medicine (VIC-K), Seoul 02841, Republic of Korea; (J.-Y.B.); (M.-S.P.)
- Department of Microbiology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Man-Seong Park
- Vaccine Innovation Center-KU Medicine (VIC-K), Seoul 02841, Republic of Korea; (J.-Y.B.); (M.-S.P.)
- Department of Microbiology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Jin Gu Yoon
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea; (E.N.); (A.-Y.J.); (J.G.Y.); (H.S.); (J.Y.N.); (H.J.C.); (W.J.K.)
- Vaccine Innovation Center-KU Medicine (VIC-K), Seoul 02841, Republic of Korea; (J.-Y.B.); (M.-S.P.)
| | - Hye Seong
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea; (E.N.); (A.-Y.J.); (J.G.Y.); (H.S.); (J.Y.N.); (H.J.C.); (W.J.K.)
- Vaccine Innovation Center-KU Medicine (VIC-K), Seoul 02841, Republic of Korea; (J.-Y.B.); (M.-S.P.)
| | - Ji Yun Noh
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea; (E.N.); (A.-Y.J.); (J.G.Y.); (H.S.); (J.Y.N.); (H.J.C.); (W.J.K.)
- Vaccine Innovation Center-KU Medicine (VIC-K), Seoul 02841, Republic of Korea; (J.-Y.B.); (M.-S.P.)
| | - Hee Jin Cheong
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea; (E.N.); (A.-Y.J.); (J.G.Y.); (H.S.); (J.Y.N.); (H.J.C.); (W.J.K.)
- Vaccine Innovation Center-KU Medicine (VIC-K), Seoul 02841, Republic of Korea; (J.-Y.B.); (M.-S.P.)
| | - Woo Joo Kim
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea; (E.N.); (A.-Y.J.); (J.G.Y.); (H.S.); (J.Y.N.); (H.J.C.); (W.J.K.)
- Vaccine Innovation Center-KU Medicine (VIC-K), Seoul 02841, Republic of Korea; (J.-Y.B.); (M.-S.P.)
| | - Ho Seong Seo
- Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; (H.J.J.); (K.B.A.)
| | - Joon Young Song
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea; (E.N.); (A.-Y.J.); (J.G.Y.); (H.S.); (J.Y.N.); (H.J.C.); (W.J.K.)
- Vaccine Innovation Center-KU Medicine (VIC-K), Seoul 02841, Republic of Korea; (J.-Y.B.); (M.-S.P.)
| |
Collapse
|
3
|
Lee Y, Klenow L, Coyle EM, Grubbs G, Golding H, Khurana S. Monoclonal antibodies targeting sites in respiratory syncytial virus attachment G protein provide protection against RSV-A and RSV-B in mice. Nat Commun 2024; 15:2900. [PMID: 38575575 PMCID: PMC10994933 DOI: 10.1038/s41467-024-47146-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/20/2024] [Indexed: 04/06/2024] Open
Abstract
Currently, only Palivizumab and Nirsevimab that target the respiratory syncytical virus (RSV) fusion protein are licensed for pre-treatment of infants. Glycoprotein-targeting antibodies may also provide protection against RSV. In this study, we generate monoclonal antibodies from mice immunized with G proteins from RSV-A2 and RSV-B1 strains. These monoclonal antibodies recognize six unique antigenic classes (G0-G5). None of the anti-G monoclonal antibodies neutralize RSV-A2 or RSV-B1 in vitro. In mice challenged with either RSV-A2 line 19 F or RSV-B1, one day after treatment with anti-G monoclonal antibodies, all monoclonal antibodies reduce lung pathology and significantly reduce lung infectious viral titers by more than 2 logs on day 5 post-RSV challenge. RSV dissemination in the lungs was variable and correlated with lung pathology. We demonstrate new cross-protective anti-G monoclonal antibodies targeting multiple sites including conformation-dependent class G0 MAb 77D2, CCD-specific class G1 MAb 40D8, and carboxy terminus of CCD class G5 MAb 7H11, to support development of G-targeting monoclonal antibodies against RSV.
Collapse
Affiliation(s)
- Youri Lee
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, 20993, USA
| | - Laura Klenow
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, 20993, USA
| | - Elizabeth M Coyle
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, 20993, USA
| | - Gabrielle Grubbs
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, 20993, USA
| | - Hana Golding
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, 20993, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, 20993, USA.
| |
Collapse
|
4
|
Kawahara E, Shibata T, Hirai T, Yoshioka Y. Non-glycosylated G protein with CpG ODN provides robust protection against respiratory syncytial virus without inducing eosinophilia. Front Immunol 2023; 14:1282016. [PMID: 38169867 PMCID: PMC10758452 DOI: 10.3389/fimmu.2023.1282016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction Respiratory syncytial virus (RSV) vaccines targeting the fusion glycoprotein (F protein) are highly effective clinically in preventing RSV challenges. The attachment glycoprotein (G protein) is a potentially effective vaccine antigen candidate, as it is important for cell adhesion during infection. However, vaccine-associated enhanced diseases in mice, such as eosinophilic lung inflammation following RSV challenge, are a concern with G protein vaccines. This study aimed to design an effective G protein vaccine with enhanced safety and efficacy by evaluating the efficacy and adverse reactions of vaccines composed of different recombinant G proteins and adjuvants in mice. Methods Mice were subcutaneously immunized with glycosylated G protein expressed in mammalian cells (mG), non-glycosylated G protein expressed in Escherichia coli (eG), or F protein with or without aluminum salts (alum), CpG oligodeoxynucleotide (CpG ODN), or AddaVax. After vaccination, the levels of G-specific antibody and T-cell responses were measured. The immunized mice were challenged with RSV and examined for the viral load in the lungs and nasal turbinates, lung-infiltrating cells, and lung pathology. Results mG with any adjuvant was ineffective at inducing G-specific antibodies and had difficulty achieving both protection against RSV challenge and eosinophilia suppression. In particular, mG+CpG ODN induced G-specific T helper 1 (Th1) cells but only a few G-specific antibodies and did not protect against RSV challenge. However, eG+CpG ODN induced high levels of G-specific antibodies and Th1 cells and protected against RSV challenge without inducing pulmonary inflammation. Moreover, the combination vaccine of eG+F+CpG ODN showed greater protection against upper respiratory tract RSV challenge than using each single antigen vaccine alone. Discussion These results indicate that the efficacy of recombinant G protein vaccines can be enhanced without inducing adverse reactions by using appropriate antigens and adjuvants, and their efficacy is further enhanced in the combination vaccine with F protein. These data provide valuable information for the clinical application of G protein vaccines.
Collapse
Affiliation(s)
- Eigo Kawahara
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Vaccine Creation Group, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takehiko Shibata
- Department of Microbiology, Tokyo Medical University, Tokyo, Japan
| | - Toshiro Hirai
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Vaccine Creation Group, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| | - Yasuo Yoshioka
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Vaccine Creation Group, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
- Innovative Vaccine Research and Development Center, The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| |
Collapse
|
5
|
Tokunoh N, Tamiya S, Watanabe M, Okamoto T, Anindita J, Tanaka H, Ono C, Hirai T, Akita H, Matsuura Y, Yoshioka Y. A nasal vaccine with inactivated whole-virion elicits protective mucosal immunity against SARS-CoV-2 in mice. Front Immunol 2023; 14:1224634. [PMID: 37720231 PMCID: PMC10500122 DOI: 10.3389/fimmu.2023.1224634] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction Vaccinations are ideal for reducing the severity of clinical manifestations and secondary complications of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); however, SARS-CoV-2 continues to cause morbidity and mortality worldwide. In contrast to parenteral vaccines such as messenger RNA vaccines, nasal vaccines are expected to be more effective in preventing viral infections in the upper respiratory tract, the primary locus for viral infection and transmission. In this study, we examined the prospects of an inactivated whole-virion (WV) vaccine administered intranasally against SARS-CoV-2. Methods Mice were immunized subcutaneously (subcutaneous vaccine) or intranasally (nasal vaccine) with the inactivated WV of SARS-CoV-2 as the antigen. Results The spike protein (S)-specific IgA level was found to be higher upon nasal vaccination than after subcutaneous vaccination. The level of S-specific IgG in the serum was also increased by the nasal vaccine, although it was lower than that induced by the subcutaneous vaccine. The nasal vaccine exhibited a stronger defense against viral invasion in the upper respiratory tract than the subcutaneous vaccine and unimmunized control; however, both subcutaneous and nasal vaccines provided protection in the lower respiratory tract. Furthermore, we found that intranasally administered inactivated WV elicited robust production of S-specific IgA in the nasal mucosa and IgG in the blood of mice previously vaccinated with messenger RNA encoding the S protein. Discussion Overall, these results suggest that a nasal vaccine containing inactivated WV can be a highly effective means of protection against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Nagisa Tokunoh
- Innovative Vaccine Research and Development Center, The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Shigeyuki Tamiya
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Department of Microbiology and Immunology, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Wakayama, Japan
| | - Masato Watanabe
- Innovative Vaccine Research and Development Center, The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan
| | - Toru Okamoto
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| | - Jessica Anindita
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Science, Chiba University, Chiba-shi, Chiba, Japan
| | - Hiroki Tanaka
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Chikako Ono
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Toshiro Hirai
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Suita, Osaka, Japan
| | - Hidetaka Akita
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Yoshiharu Matsuura
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Suita, Osaka, Japan
| | - Yasuo Yoshioka
- Innovative Vaccine Research and Development Center, The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
- BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Suita, Osaka, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
6
|
Maina TW, Grego EA, Broderick S, Sacco RE, Narasimhan B, McGill JL. Immunization with a mucosal, post-fusion F/G protein-based polyanhydride nanovaccine protects neonatal calves against BRSV infection. Front Immunol 2023; 14:1186184. [PMID: 37359514 PMCID: PMC10289034 DOI: 10.3389/fimmu.2023.1186184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Human respiratory syncytial virus (HRSV) is a leading cause of death in young children and there are no FDA approved vaccines. Bovine RSV (BRSV) is antigenically similar to HRSV, and the neonatal calf model is useful for evaluation of HRSV vaccines. Here, we determined the efficacy of a polyanhydride-based nanovaccine encapsulating the BRSV post-fusion F and G glycoproteins and CpG, delivered prime-boost via heterologous (intranasal/subcutaneous) or homologous (intranasal/intranasal) immunization in the calf model. We compared the performance of the nanovaccine regimens to a modified-live BRSV vaccine, and to non-vaccinated calves. Calves receiving nanovaccine via either prime-boost regimen exhibited clinical and virological protection compared to non-vaccinated calves. The heterologous nanovaccine regimen induced both virus-specific cellular immunity and mucosal IgA, and induced similar clinical, virological and pathological protection as the commercial modified-live vaccine. Principal component analysis identified BRSV-specific humoral and cellular responses as important correlates of protection. The BRSV-F/G CpG nanovaccine is a promising candidate vaccine to reduce RSV disease burden in humans and animals.
Collapse
Affiliation(s)
- Teresia W. Maina
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Elizabeth A. Grego
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
| | - Scott Broderick
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, NY, United States
| | - Randy E. Sacco
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture (USDA), Ames, IA, United States
- Nanovaccine Institute, Iowa State University, Ames, IA, United States
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
- Nanovaccine Institute, Iowa State University, Ames, IA, United States
| | - Jodi L. McGill
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
- Nanovaccine Institute, Iowa State University, Ames, IA, United States
| |
Collapse
|
7
|
Soto JA, Galvez NMS, Rivera DB, Díaz FE, Riedel CA, Bueno SM, Kalergis AM. From animal studies into clinical trials: the relevance of animal models to develop vaccines and therapies to reduce disease severity and prevent hRSV infection. Expert Opin Drug Discov 2022; 17:1237-1259. [PMID: 36093605 DOI: 10.1080/17460441.2022.2123468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Human respiratory syncytial virus (hRSV) is an important cause of lower respiratory tract infections in the pediatric and the geriatric population worldwide. There is a substantial economic burden resulting from hRSV disease during winter. Although no vaccines have been approved for human use, prophylactic therapies are available for high-risk populations. Choosing the proper animal models to evaluate different vaccine prototypes or pharmacological treatments is essential for developing efficient therapies against hRSV. AREAS COVERED This article describes the relevance of using different animal models to evaluate the effect of antiviral drugs, pharmacological molecules, vaccine prototypes, and antibodies in the protection against hRSV. The animal models covered are rodents, mustelids, bovines, and nonhuman primates. Animals included were chosen based on the available literature and their role in the development of the drugs discussed in this manuscript. EXPERT OPINION Choosing the correct animal model is critical for exploring and testing treatments that could decrease the impact of hRSV in high-risk populations. Mice will continue to be the most used preclinical model to evaluate this. However, researchers must also explore the use of other models such as nonhuman primates, as they are more similar to humans, prior to escalating into clinical trials.
Collapse
Affiliation(s)
- J A Soto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - N M S Galvez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - D B Rivera
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - F E Díaz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - C A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - S M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - A M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
8
|
Nuñez Castrejon AM, O’Rourke SM, Kauvar LM, DuBois RM. Structure-Based Design and Antigenic Validation of Respiratory Syncytial Virus G Immunogens. J Virol 2022; 96:e0220121. [PMID: 35266806 PMCID: PMC9006937 DOI: 10.1128/jvi.02201-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/01/2022] [Indexed: 11/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a leading cause of severe lower respiratory tract disease of children, the elderly, and immunocompromised individuals. Currently, there are no FDA-approved RSV vaccines. The RSV G glycoprotein is used for viral attachment to host cells and impairment of host immunity by interacting with the human chemokine receptor CX3CR1. Antibodies that disrupt this interaction are protective against infection and disease. Nevertheless, development of an RSV G vaccine antigen has been hindered by its low immunogenicity and safety concerns. A previous study described three engineered RSV G proteins containing single-point mutations that induce higher levels of IgG antibodies and have improved safety profiles compared to wild-type RSV G (H. C. Bergeron, J. Murray, A. M. Nuñez Castrejon, et al., Viruses 13:352, 2021, https://doi.org/10.3390/v13020352). However, it is unclear if the mutations affect RSV G protein folding and display of its conformational epitopes. In this study, we show that the RSV G S177Q protein retains high-affinity binding to protective human and mouse monoclonal antibodies and has equal reactivity as wild-type RSV G protein to human reference immunoglobulin to RSV. Additionally, we determined the high-resolution crystal structure of RSV G S177Q protein in complex with the anti-RSV G antibody 3G12, further validating its antigenic structure. These studies show for the first time that an engineered RSV G protein with increased immunogenicity and safety retains conformational epitopes to high-affinity protective antibodies, supporting its further development as an RSV vaccine immunogen. IMPORTANCE Respiratory syncytial virus (RSV) causes severe lower respiratory diseases of children, the elderly, and immunocompromised populations. There currently are no FDA-approved RSV vaccines. Most vaccine development efforts have focused on the RSV F protein, and the field has generally overlooked the receptor-binding antigen RSV G due to its poor immunogenicity and safety concerns. However, single-point mutant RSV G proteins have been previously identified that have increased immunogenicity and safety. In this study, we investigate the antibody reactivities of three known RSV G mutant proteins. We show that one mutant RSV G protein retains high-affinity binding to protective monoclonal antibodies, is equally recognized by anti-RSV antibodies in human sera, and forms the same three-dimensional structure as the wild-type RSV G protein. Our study validates the structure-guided design of the RSV G protein as an RSV vaccine antigen.
Collapse
Affiliation(s)
- Ana M. Nuñez Castrejon
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Sara M. O’Rourke
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | | | - Rebecca M. DuBois
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| |
Collapse
|
9
|
Fourie KR, Choudhary P, Ng SH, Obradovic M, Brownlie R, Anand SK, Wilson HL. Evaluation of immunogenicity and protection mediated by Lawsonia intracellularis subunit vaccines. Vet Immunol Immunopathol 2021; 237:110256. [PMID: 33971523 DOI: 10.1016/j.vetimm.2021.110256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 02/06/2023]
Abstract
Lawsonia intracellularis is an economically important bacterium that causes ileitis in pigs. Current vaccines for L. intracellularis do not allow for differentiation between infected and vaccinated animals (DIVA), which is beneficial for disease tracking and surveillance. Previously, we identified five putative surface L. intracellularis proteins that were targeted by antibodies from pigs infected with L. intracellularis which could serve as antigens in a subunit vaccine. We conducted two trials to determine whether these antigens were immunogenic and provided protection against infectious challenge and whether truncated glycoprotein D could be used as a DIVA antigen. For Trial 1, 5 week-old piglets were administered intramuscular monovalent vaccines comprised of a recombinant (r) flagella subunit protein (rFliC,) and DIVA antigen (truncated glycoprotein D (TgD), a herpes virus antigen) both formulated with a combination adjuvant consisting of polyinosinic:polycytidylic acid(poly I:C), host defense peptide 1002 and polyphosphazene, referred to as Triple Adjuvant (TriAdj). Relative to control animals, animals vaccinated with rFliC and rTgD had significantly elevated antigen-specific humoral immunity in sera suggesting that rFliC and TgD are immunogenic. Control animals had negligible anti-TgD titres suggesting that TgD may be a suitable DIVA antigen for pigs. For Trial 2, piglets were immunized with a trivalent vaccine (FOG vaccine consisting of rFLiC, rOppA protein (a ABC Type dipeptide transport system) and rGroEL (a stress response protein)) and a divalent vaccine (CM vaccine consisting of rClpP (an ATP-dependent Clp protease proteolytic subunit) and rMetK (a S-adenosyl methionine synthase)) formulated with Emulsigen®. Relative to the control pigs, pigs immunized with the FOG vaccine produced robust and significantly higher serum IgG antibodies against rFliC and rGroEL, and significantly higher anti-FliC and anti-GroEL IgA antibodies in jejunal (GroEL only) and ileal intestinal mucosa. Pigs immunized with CM vaccine produced significantly higher serum antibodies against rClpP and rMetK and significantly higher anti-rClpP IgA antibodies in the ileum relative to the control pigs. Quantitative polymerase chain reaction (qPCR) analysis showed that 18 days after challenge with infectious L. intracellularis, challenged/control pigs and pigs that received the CM vaccine, but not the pigs vaccinated with the FOG vaccine, shed significantly more bacteria in feces than the unchallenged controls pigs. These data suggest that the FOG vaccinated pigs showed limited protection. While promising, more work is needed to enhance the efficiency of the intramuscular vaccine to show significant disease protection.
Collapse
Affiliation(s)
- Kezia R Fourie
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Pooja Choudhary
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Siew Hon Ng
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Milan Obradovic
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montréal, Montréal, Quebec, Canada
| | - Robert Brownlie
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - Heather L Wilson
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
10
|
Hamza A, Shafat Z, Parray ZA, Hisamuddin M, Khan WH, Ahmed A, Almajhdi FN, Farrag MA, Mohammed AA, Islam A, Parveen S. Structural Characterization and Binding Studies of the Ectodomain G Protein of Respiratory Syncytial Virus Reveal the Crucial Role of pH with Possible Implications in Host-Pathogen Interactions. ACS OMEGA 2021; 6:10403-10414. [PMID: 34056193 PMCID: PMC8153753 DOI: 10.1021/acsomega.1c00800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Respiratory syncytial virus (RSV) is a leading viral pathogen causing acute lower respiratory tract infection in children. The G protein of RSV is involved in attachment with the host cell. It is a neutralizing antigen and thus a vaccine candidate. Heparan sulfate is a type of glycosaminoglycan (GAG) present on the host cell membrane that is involved in attachment with the G protein of RSV. We describe a novel approach for efficient expression and purification of the ectodomain G protein in the prokaryotic system and its biophysical characterization. The native ectodomain G protein was purified using a two-step process by Ni-NTA and DEAE weak anion-exchange chromatography through the supernatant obtained after cell lysis. In addition, the denatured form of the protein was also purified from the solubilized inclusion bodies (IBs) by Ni-NTA affinity chromatography with a higher yield. Dynamic light scattering (DLS) was performed to confirm the homogeneity of the purified protein. The effect of pH on the stability and structure of the purified protein was studied by circular dichroism (CD), fluorescence, and absorbance spectroscopy techniques. Isothermal titration calorimetry (ITC) and microscale thermophoresis (MST) were exploited to demonstrate the interaction of heparan sulfate with the ectodomain G protein. The dynamic light scattering results showed that the purified protein was homogenic and had a well-folded native conformation. Biophysical characterization of the protein revealed that it was stable and had intact secondary and tertiary structures at pH 7.5. CD analysis revealed that the protein showed a loss in the secondary structure at pH values 5.5 and 3.5, while absorbance spectroscopy suggested a stable tertiary structure at pH values 7.5 and 5.5 with a probable aggregation pattern at pH 3.5. This loss in the structure of the ectodomain G protein at low pH can be correlated with its physiological activity. A slight change in pH might play a crucial role in host-pathogen interactions. The fluorescence intensity of the protein decreased on moving toward a lower pH with no spectral shift in emission maxima. In addition, isothermal titration calorimetry and microscale thermophoresis results showed strong binding affinity of the ectodomain G protein with heparan sulfate. The binding of heparan sulfate with protein was probably due to the electrostatic interaction of positively charged amino acid residues of the heparin-binding domain of the protein and the negatively charged group of GAGs. Future studies may involve the development of possible therapeutic agents interacting with the G protein and affecting the overall charge and pH that might hinder the host-pathogen interaction.
Collapse
Affiliation(s)
- Abu Hamza
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Zoya Shafat
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Zahoor Ahmad Parray
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Malik Hisamuddin
- Interdisciplinary
Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Wajihul Hasan Khan
- Kusuma
School of Biological Sciences, Indian Institute
of Technology Delhi, New Delhi 110016, India
| | - Anwar Ahmed
- Centre
of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahad N. Almajhdi
- Department
of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Centre
of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed A. Farrag
- Department
of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Arif Ahmed Mohammed
- Centre
of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Asimul Islam
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Shama Parveen
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
11
|
Immunogenicity and inflammatory properties of respiratory syncytial virus attachment G protein in cotton rats. PLoS One 2021; 16:e0246770. [PMID: 33600439 PMCID: PMC7891763 DOI: 10.1371/journal.pone.0246770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/25/2021] [Indexed: 12/25/2022] Open
Abstract
Human respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infection in infants and young children worldwide. The attachment (G) protein of RSV is synthesized by infected cells in both a membrane bound (mG) and secreted form (sG) and uses a CX3C motif for binding to its cellular receptor. Cell culture and mouse studies suggest that the G protein mimics the cytokine CX3CL1 by binding to CX3CR1 on immune cells, which is thought to cause increased pulmonary inflammation in vivo. However, because these studies have used RSV lacking its G protein gene or blockade of the G protein with a G protein specific monoclonal antibody, the observed reduction in inflammation may be due to reduced virus replication and spread, and not to a direct role for G protein as a viral chemokine. In order to more directly determine the influence of the soluble and the membrane-bound forms of G protein on the immune system independent of its attachment function for the virion, we expressed the G protein in cotton rat lungs using adeno-associated virus (AAV), a vector system which does not itself induce inflammation. We found no increase in pulmonary inflammation as determined by histology and bronchoalveolar lavage after inoculation of AAVs expressing the membrane bound G protein, the secreted G protein or the complete G protein gene which expresses both forms. The long-term low-level expression of AAV-G did, however, result in the induction of non-neutralizing antibodies, CD8 T cells and partial protection from challenge with RSV. Complete protection was accomplished through co-immunization with AAV-G and an AAV expressing cotton rat interferon α.
Collapse
|
12
|
Lambkin‐Williams R, DeVincenzo JP. A COVID-19 human viral challenge model. Learning from experience. Influenza Other Respir Viruses 2020; 14:747-756. [PMID: 32790065 PMCID: PMC7578316 DOI: 10.1111/irv.12797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 01/15/2023] Open
Abstract
The controlled human infection model and specifically the human viral challenge model are not dissimilar to standard clinical trials while adding another layer of complexity and safety considerations. The models deliberately infect volunteers, with an infectious challenge agent to determine the effect of the infection and the potential benefits of the experimental interventions. The human viral challenge model studies can shorten the time to assess the efficacy of a new vaccine or treatment by combining this with the assessment of safety. The newly emerging SARS-CoV-2 virus is highly contagious, and an urgent race is on to develop a new vaccine against this virus in a timeframe never attempted before. The use of the human viral challenge model has been proposed to accelerate the development of the vaccine. In the early 2000s, the authors successfully developed a pathogenic human viral challenge model for another virus for which there was no effective treatment and established it to evaluate potential therapies and vaccines against respiratory syncytial virus. Experience gained in the development of that model can help with the development of a COVID-19 HVCM and the authors describe it here.
Collapse
|
13
|
Soler M, Estevez MC, Cardenosa-Rubio M, Astua A, Lechuga LM. How Nanophotonic Label-Free Biosensors Can Contribute to Rapid and Massive Diagnostics of Respiratory Virus Infections: COVID-19 Case. ACS Sens 2020; 5:2663-2678. [PMID: 32786383 PMCID: PMC7447078 DOI: 10.1021/acssensors.0c01180] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/07/2020] [Indexed: 12/23/2022]
Abstract
The global sanitary crisis caused by the emergence of the respiratory virus SARS-CoV-2 and the COVID-19 outbreak has revealed the urgent need for rapid, accurate, and affordable diagnostic tests to broadly and massively monitor the population in order to properly manage and control the spread of the pandemic. Current diagnostic techniques essentially rely on polymerase chain reaction (PCR) tests, which provide the required sensitivity and specificity. However, its relatively long time-to-result, including sample transport to a specialized laboratory, delays massive detection. Rapid lateral flow tests (both antigen and serological tests) are a remarkable alternative for rapid point-of-care diagnostics, but they exhibit critical limitations as they do not always achieve the required sensitivity for reliable diagnostics and surveillance. Next-generation diagnostic tools capable of overcoming all the above limitations are in demand, and optical biosensors are an excellent option to surpass such critical issues. Label-free nanophotonic biosensors offer high sensitivity and operational robustness with an enormous potential for integration in compact autonomous devices to be delivered out-of-the-lab at the point-of-care (POC). Taking the current COVID-19 pandemic as a critical case scenario, we provide an overview of the diagnostic techniques for respiratory viruses and analyze how nanophotonic biosensors can contribute to improving such diagnostics. We review the ongoing published work using this biosensor technology for intact virus detection, nucleic acid detection or serological tests, and the key factors for bringing nanophotonic POC biosensors to accurate and effective COVID-19 diagnosis on the short term.
Collapse
Affiliation(s)
| | | | - Maria Cardenosa-Rubio
- Nanobiosensors and Bioanalytical Applications (NanoB2A),
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST and
CIBER-BBN, 08193 Bellaterra, Barcelona, Spain
| | - Alejandro Astua
- Nanobiosensors and Bioanalytical Applications (NanoB2A),
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST and
CIBER-BBN, 08193 Bellaterra, Barcelona, Spain
| | - Laura M. Lechuga
- Nanobiosensors and Bioanalytical Applications (NanoB2A),
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST and
CIBER-BBN, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
14
|
Fuentes S, Hahn M, Chilcote K, Chemaly RF, Shah DP, Ye X, Avadhanula V, Piedra PA, Golding H, Khurana S. Antigenic Fingerprinting of Respiratory Syncytial Virus (RSV)-A-Infected Hematopoietic Cell Transplant Recipients Reveals Importance of Mucosal Anti-RSV G Antibodies in Control of RSV Infection in Humans. J Infect Dis 2020; 221:636-646. [PMID: 31745552 DOI: 10.1093/infdis/jiz608] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/15/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV) infection causes significant morbidity in hematopoietic cell transplant (HCT) recipients. However, antibody responses that correlate with recovery from RSV disease are not fully understood. METHODS In this study, antibody repertoire in paired serum and nasal wash samples from acutely RSV-A-infected HCT recipients who recovered early (<14 days of RSV shedding) were compared with late-recovered patients (≥14 days of shedding) using gene fragment phage display libraries and surface plasmon resonance. RESULTS Anti-F serum responses were similar between these 2 groups for antibody repertoires, neutralization titers, anti-F binding antibodies (prefusion and postfusion proteins), antibody avidity, and binding to specific antigenic sites. In contrast, nasal washes from early-recovered individuals demonstrated higher binding to F peptide containing p27. While the serum RSV G antibody repertoires in the 2 groups were similar, the strongest difference between early-recovered and late-recovered patients was observed in the titers of nasal wash antibodies, especially binding to the central conserved domain. Most importantly, a significantly higher antibody affinity to RSV G was observed in nasal washes from early-recovered individuals compared with late-recovered HCT recipients. CONCLUSIONS These findings highlight the importance of mucosal antibodies in resolution of RSV-A infection in the upper respiratory tract.
Collapse
Affiliation(s)
- Sandra Fuentes
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Megan Hahn
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Katarina Chilcote
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Roy F Chemaly
- University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Dimpy P Shah
- University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Xunyan Ye
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Vasanthi Avadhanula
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Pedro A Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Hana Golding
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
15
|
Soler M, Scholtz A, Zeto R, Armani AM. Engineering photonics solutions for COVID-19. APL PHOTONICS 2020; 5:090901. [PMID: 33015361 PMCID: PMC7523711 DOI: 10.1063/5.0021270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/17/2020] [Indexed: 05/04/2023]
Abstract
As the impact of COVID-19 on society became apparent, the engineering and scientific community recognized the need for innovative solutions. Two potential roadmaps emerged: developing short-term solutions to address the immediate needs of the healthcare communities and developing mid/long-term solutions to eliminate the over-arching threat. However, in a truly global effort, researchers from all backgrounds came together in tackling this challenge. Short-term efforts have focused on re-purposing existing technologies and leveraging additive manufacturing techniques to address shortages in personal protective equipment and disinfection. More basic research efforts with mid-term and long-term impact have emphasized developing novel diagnostics and accelerating vaccines. As a foundational technology, photonics has contributed directly and indirectly to all efforts. This perspective will provide an overview of the critical role that the photonics field has played in efforts to combat the immediate COVID-19 pandemic as well as how the photonics community could anticipate contributing to future pandemics of this nature.
Collapse
Affiliation(s)
- Maria Soler
- Nanobiosensors and Bioanalytical Applications
Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST
and CIBER-BBN, Barcelona, Spain
| | - Alexis Scholtz
- Department of Biomedical Engineering, University
of Southern California, Los Angeles, California 90089,
USA
| | - Rene Zeto
- Mork Family Department of Chemical Engineering and
Materials Science, University of Southern California, Los Angeles,
California 90089, USA
| | | |
Collapse
|
16
|
Kalergis AM, Soto JA, Gálvez NMS, Andrade CA, Fernandez A, Bohmwald K, Bueno SM. Pharmacological management of human respiratory syncytial virus infection. Expert Opin Pharmacother 2020; 21:2293-2303. [PMID: 32808830 DOI: 10.1080/14656566.2020.1806821] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Human respiratory syncytial virus (hRSV) is the primary viral cause of respiratory diseases, leading to bronchiolitis and pneumonia in vulnerable populations. The only current treatment against this virus is palliative, and no efficient and specific vaccine against this pathogen is available. AREAS COVERED The authors describe the disease symptoms caused by hRSV, the economic and social impact of this infection worldwide, and how this infection can be modulated using pharmacological treatments, preventing and limiting its dissemination. The authors discuss the use of antibodies as prophylactic tools -such as palivizumab- and the use of nonspecific drugs to decrease the symptoms associated with the infection -such as bronchodilators, corticoids, and antivirals. They also discuss current vaccine candidates, new prophylactic treatments, and new antivirals options, which are currently being tested. EXPERT OPINION Today, many researchers are focused on developing different strategies to modulate the symptoms induced by hRSV. However, to achieve this, understanding how current treatments are working and their shortcomings needs to be further elucidated.
Collapse
Affiliation(s)
- Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento De Genética Molecular Y Microbiología, Facultad De Ciencias Biológicas, Pontificia Universidad Católica De Chile , Santiago, Chile.,Departamento De Endocrinología, Facultad De Medicina, Pontificia Universidad Católica De Chile , Santiago, Chile
| | - Jorge A Soto
- Millennium Institute on Immunology and Immunotherapy, Departamento De Genética Molecular Y Microbiología, Facultad De Ciencias Biológicas, Pontificia Universidad Católica De Chile , Santiago, Chile
| | - Nicolás M S Gálvez
- Millennium Institute on Immunology and Immunotherapy, Departamento De Genética Molecular Y Microbiología, Facultad De Ciencias Biológicas, Pontificia Universidad Católica De Chile , Santiago, Chile
| | - Catalina A Andrade
- Millennium Institute on Immunology and Immunotherapy, Departamento De Genética Molecular Y Microbiología, Facultad De Ciencias Biológicas, Pontificia Universidad Católica De Chile , Santiago, Chile
| | - Ayleen Fernandez
- Millennium Institute on Immunology and Immunotherapy, Departamento De Genética Molecular Y Microbiología, Facultad De Ciencias Biológicas, Pontificia Universidad Católica De Chile , Santiago, Chile
| | - Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy, Departamento De Genética Molecular Y Microbiología, Facultad De Ciencias Biológicas, Pontificia Universidad Católica De Chile , Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento De Genética Molecular Y Microbiología, Facultad De Ciencias Biológicas, Pontificia Universidad Católica De Chile , Santiago, Chile
| |
Collapse
|
17
|
Borochova K, Niespodziana K, Stenberg Hammar K, van Hage M, Hedlin G, Söderhäll C, Focke-Tejkl M, Valenta R. Features of the Human Antibody Response against the Respiratory Syncytial Virus Surface Glycoprotein G. Vaccines (Basel) 2020; 8:vaccines8020337. [PMID: 32630611 PMCID: PMC7350215 DOI: 10.3390/vaccines8020337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/14/2020] [Accepted: 06/18/2020] [Indexed: 11/18/2022] Open
Abstract
Respiratory syncytial virus (RSV) infections are a major cause of serious respiratory disease in infants. RSV occurs as two major subgroups A and B, which mainly differ regarding the surface glycoprotein G. The G protein is important for virus attachment and G-specific antibodies can protect against infection. We expressed the surface-exposed part of A2 strain-derived G (A2-G) in baculovirus-infected insect cells and synthesized overlapping peptides spanning complete A2-G. The investigation of the natural IgG response of adult subjects during a period of one year showed that IgG antibodies (i) recognize G significantly stronger than the fusion protein F0, (ii) target mainly non-conformational, sequential peptide epitopes from the exposed conserved region but also buried peptides, and (iii) exhibit a scattered but constant recognition profile during the observation period. The IgG subclass reactivity profile (IgG1 > IgG2 > IgG4 = IgG3) was indicative of a mixed Th1/Th2 response. Two strongly RSV-neutralizing sera including the 1st WHO standard contained high IgG anti-G levels. G-specific IgG increased strongly in children after wheezing attacks suggesting RSV as trigger factor. Our study shows that RSV G and G-derived peptides are useful for serological diagnosis of RSV-triggered exacerbations of respiratory diseases and underlines the importance of G for development of RSV-neutralizing vaccines.
Collapse
Affiliation(s)
- Kristina Borochova
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (K.B.); (K.N.); (M.F.-T.)
| | - Katarzyna Niespodziana
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (K.B.); (K.N.); (M.F.-T.)
| | - Katarina Stenberg Hammar
- Department of Women’s and Children’s Health, Karolinska Institutet, 171 77 Stockholm, Sweden; (K.S.H.); (G.H.); (C.S.)
- Astrid Lindgren Children’s Hospital, Karolinska University Hospital, 14186 Stockholm, Sweden
- Centre of Allergy Research, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Marianne van Hage
- Division of Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, 171 77 Stockholm, Sweden;
| | - Gunilla Hedlin
- Department of Women’s and Children’s Health, Karolinska Institutet, 171 77 Stockholm, Sweden; (K.S.H.); (G.H.); (C.S.)
- Astrid Lindgren Children’s Hospital, Karolinska University Hospital, 14186 Stockholm, Sweden
- Centre of Allergy Research, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Cilla Söderhäll
- Department of Women’s and Children’s Health, Karolinska Institutet, 171 77 Stockholm, Sweden; (K.S.H.); (G.H.); (C.S.)
- Astrid Lindgren Children’s Hospital, Karolinska University Hospital, 14186 Stockholm, Sweden
- Centre of Allergy Research, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Margarete Focke-Tejkl
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (K.B.); (K.N.); (M.F.-T.)
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (K.B.); (K.N.); (M.F.-T.)
- NRC Institute of Immunology FMBA of Russia, 115478 Moscow, Russia
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow 119991, Russia
- Karl Landsteiner University of Health Sciences, 3500 Krems, Austria
- Correspondence: ; Tel.: +431-40400-51130; Fax: +431-40400-51300
| |
Collapse
|
18
|
Ogonczyk Makowska D, Hamelin MÈ, Boivin G. Engineering of Live Chimeric Vaccines against Human Metapneumovirus. Pathogens 2020; 9:E135. [PMID: 32093057 PMCID: PMC7168645 DOI: 10.3390/pathogens9020135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
Human metapneumovirus (HMPV) is an important human pathogen that, along with respiratory syncytial virus (RSV), is a major cause of respiratory tract infections in young infants. Development of an effective vaccine against Pneumoviruses has proven to be particularly difficult; despite over 50 years of research in this field, no vaccine against HMPV or RSV is currently available. Recombinant chimeric viruses expressing antigens of other viruses can be generated by reverse genetics and used for simultaneous immunization against more than one pathogen. This approach can result in the development of promising vaccine candidates against HMPV, and several studies have indeed validated viral vectors expressing HMPV antigens. In this review, we summarize current efforts in generating recombinant chimeric vaccines against HMPV, and we discuss their potential optimization based on the correspondence with RSV studies.
Collapse
Affiliation(s)
| | | | - Guy Boivin
- Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, Québec, QC G1V 4G2, Canada; (D.O.M.); (M.-È.H.)
| |
Collapse
|
19
|
Espeseth AS, Cejas PJ, Citron MP, Wang D, DiStefano DJ, Callahan C, Donnell GO, Galli JD, Swoyer R, Touch S, Wen Z, Antonello J, Zhang L, Flynn JA, Cox KS, Freed DC, Vora KA, Bahl K, Latham AH, Smith JS, Gindy ME, Ciaramella G, Hazuda D, Shaw CA, Bett AJ. Modified mRNA/lipid nanoparticle-based vaccines expressing respiratory syncytial virus F protein variants are immunogenic and protective in rodent models of RSV infection. NPJ Vaccines 2020; 5:16. [PMID: 32128257 PMCID: PMC7021756 DOI: 10.1038/s41541-020-0163-z] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/17/2020] [Indexed: 12/31/2022] Open
Abstract
The RSV Fusion (F) protein is a target for neutralizing antibody responses and is a focus for vaccine discovery; however, the process of RSV entry requires F to adopt a metastable prefusion form and transition to a more stable postfusion form, which displays less potent neutralizing epitopes. mRNA vaccines encode antigens that are translated by host cells following vaccination, which may allow conformational transitions similar to those observed during natural infection to occur. Here we evaluate a panel of chemically modified mRNA vaccines expressing different forms of the RSV F protein, including secreted, membrane associated, prefusion-stabilized, and non-stabilized structures, for conformation, immunogenicity, protection, and safety in rodent models. Vaccination with mRNA encoding native RSV F elicited antibody responses to both prefusion- and postfusion-specific epitopes, suggesting that this antigen may adopt both conformations in vivo. Incorporating prefusion stabilizing mutations further shifts the immune response toward prefusion-specific epitopes, but does not impact neutralizing antibody titer. mRNA vaccine candidates expressing either prefusion stabilized or native forms of RSV F protein elicit robust neutralizing antibody responses in both mice and cotton rats, similar to levels observed with a comparable dose of adjuvanted prefusion stabilized RSV F protein. In contrast to the protein subunit vaccine, mRNA-based vaccines elicited robust CD4+ and CD8+ T-cell responses in mice, highlighting a potential advantage of the technology for vaccines requiring a cellular immune response for efficacy.
Collapse
Affiliation(s)
- Amy S. Espeseth
- ID/Vaccines Discovery, Merck & Co., Inc., Kenilworth, NJ USA
| | - Pedro J. Cejas
- ID/Vaccines Discovery, Merck & Co., Inc., Kenilworth, NJ USA
| | | | - Dai Wang
- ID/Vaccines Discovery, Merck & Co., Inc., Kenilworth, NJ USA
| | | | - Cheryl Callahan
- ID/Vaccines Discovery, Merck & Co., Inc., Kenilworth, NJ USA
| | | | | | - Ryan Swoyer
- ID/Vaccines Discovery, Merck & Co., Inc., Kenilworth, NJ USA
| | - Sinoeun Touch
- ID/Vaccines Discovery, Merck & Co., Inc., Kenilworth, NJ USA
| | - Zhiyun Wen
- ID/Vaccines Discovery, Merck & Co., Inc., Kenilworth, NJ USA
| | | | - Lan Zhang
- ID/Vaccines Discovery, Merck & Co., Inc., Kenilworth, NJ USA
| | | | - Kara S. Cox
- ID/Vaccines Discovery, Merck & Co., Inc., Kenilworth, NJ USA
| | - Daniel C. Freed
- ID/Vaccines Discovery, Merck & Co., Inc., Kenilworth, NJ USA
| | - Kalpit A. Vora
- ID/Vaccines Discovery, Merck & Co., Inc., Kenilworth, NJ USA
| | | | | | | | - Marian E. Gindy
- Pharmaceutical Science, Merck & Co., Inc., Kenilworth, NJ USA
| | | | - Daria Hazuda
- ID/Vaccines Discovery, Merck & Co., Inc., Kenilworth, NJ USA
| | | | - Andrew J. Bett
- ID/Vaccines Discovery, Merck & Co., Inc., Kenilworth, NJ USA
| |
Collapse
|
20
|
Coultas JA, Smyth R, Openshaw PJ. Respiratory syncytial virus (RSV): a scourge from infancy to old age. Thorax 2019; 74:986-993. [PMID: 31383776 DOI: 10.1136/thoraxjnl-2018-212212] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/19/2019] [Accepted: 06/14/2019] [Indexed: 01/02/2023]
Abstract
Respiratory syncytial virus (RSV) is the most common single cause of respiratory hospitalisation of infants and is the second largest cause of lower respiratory infection mortality worldwide. In adults, RSV is an under-recognised cause of deterioration in health, particularly in frail elderly persons. Infection rates typically rise in late autumn and early winter causing bronchiolitis in infants, common colds in adults and insidious respiratory illness in the elderly. Virus detection methods optimised for use in children have low detection rate in adults, highlighting the need for better diagnostic tests. There are many vaccines under development, mostly based on the surface glycoprotein F which exists in two conformations (prefusion and postfusion). Much of the neutralising antibody appears to be to the prefusion form. Vaccines being developed include live attenuated, subunit, particle based and live vectored agents. Different vaccine strategies may be appropriate for different target populations: at-risk infants, school-age children, adult caregivers and the elderly. Antiviral drugs are in clinical trial and may find a place in disease management. RSV disease is one of the major remaining common tractable challenges in infectious diseases and the era of vaccines and antivirals for RSV is on the near horizon.
Collapse
Affiliation(s)
| | - Rosalind Smyth
- Director of the Insitute and Professor of Child Health, Great Ormond Street Institute for Child Health, UCL, London, UK
| | | |
Collapse
|
21
|
Boukhvalova MS, Yim KC, Blanco J. Cotton rat model for testing vaccines and antivirals against respiratory syncytial virus. Antivir Chem Chemother 2019; 26:2040206618770518. [PMID: 29768937 PMCID: PMC5987903 DOI: 10.1177/2040206618770518] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Respiratory syncytial virus is the leading cause of pneumonia and bronchiolitis in infants and is a serious health risk for elderly and immunocompromised individuals. No vaccine has yet been approved to prevent respiratory syncytial virus infection and the only available treatment is immunoprophylaxis of severe respiratory syncytial virus disease in high-risk infants with Palivizumab (Synagis®). The development of respiratory syncytial virus vaccine has been hampered by the phenomenon of enhanced respiratory syncytial virus disease observed during trials of a formalin-inactivated respiratory syncytial virus in 1960s. A search for effective respiratory syncytial virus therapeutics has been complicated by the fact that some of the most advanced respiratory syncytial virus antivirals, while highly effective in a prophylactic setting, had not demonstrated clinical efficacy when given after infection. A number of respiratory syncytial virus vaccines and antivirals are currently under development, including several vaccines proposed for maternal immunization. The cotton rat Sigmodon hispidus is an animal model of respiratory syncytial virus infection with demonstrated translational value. Special cohort scenarios, such as infection under conditions of immunosuppression and maternal immunization have been modeled in the cotton rat and are summarized here. In this review, we focus on the recent use of the cotton rat model for testing respiratory syncytial virus vaccine and therapeutic candidates in preclinical setting, including the use of special cohort models. An overview of published studies spanning the period of the last three years is provided. The emphasis, where possible, is made on candidates in the latest stages of preclinical development or currently in clinical trials.
Collapse
Affiliation(s)
| | - K C Yim
- Sigmovir Biosystems, Inc., Rockville, MD, USA
| | - Jcg Blanco
- Sigmovir Biosystems, Inc., Rockville, MD, USA
| |
Collapse
|
22
|
Altamirano-Lagos MJ, Díaz FE, Mansilla MA, Rivera-Pérez D, Soto D, McGill JL, Vasquez AE, Kalergis AM. Current Animal Models for Understanding the Pathology Caused by the Respiratory Syncytial Virus. Front Microbiol 2019; 10:873. [PMID: 31130923 PMCID: PMC6510261 DOI: 10.3389/fmicb.2019.00873] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 04/04/2019] [Indexed: 12/14/2022] Open
Abstract
The human respiratory syncytial virus (hRSV) is the main etiologic agent of severe lower respiratory tract infections that affect young children throughout the world, associated with significant morbidity and mortality, becoming a serious public health problem globally. Up to date, no licensed vaccines are available to prevent severe hRSV-induced disease, and the generation of safe-effective vaccines has been a challenging task, requiring constant biomedical research aimed to overcome this ailment. Among the difficulties presented by the study of this pathogen, it arises the fact that there is no single animal model that resembles all aspects of the human pathology, which is due to the specificity that this pathogen has for the human host. Thus, for the study of hRSV, different animal models might be employed, depending on the goal of the study. Of all the existing models, the murine model has been the most frequent model of choice for biomedical studies worldwide and has been of great importance at contributing to the development and understanding of vaccines and therapies against hRSV. The most notable use of the murine model is that it is very useful as a first approach in the development of vaccines or therapies such as monoclonal antibodies, suggesting in this way the direction that research could have in other preclinical models that have higher maintenance costs and more complex requirements in its management. However, several additional different models for studying hRSV, such as other rodents, mustelids, ruminants, and non-human primates, have been explored, offering advantages over the murine model. In this review, we discuss the various applications of animal models to the study of hRSV-induced disease and the advantages and disadvantages of each model, highlighting the potential of each model to elucidate different features of the pathology caused by the hRSV infection.
Collapse
Affiliation(s)
- María José Altamirano-Lagos
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fabián E. Díaz
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Miguel Andrés Mansilla
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniela Rivera-Pérez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniel Soto
- Sección Biotecnología, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Jodi L. McGill
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Abel E. Vasquez
- Sección Biotecnología, Instituto de Salud Pública de Chile, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago, Chile
| | - Alexis M. Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
23
|
Sarkar I, Garg R, van Drunen Littel-van den Hurk S. Selection of adjuvants for vaccines targeting specific pathogens. Expert Rev Vaccines 2019; 18:505-521. [PMID: 31009255 PMCID: PMC7103699 DOI: 10.1080/14760584.2019.1604231] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Adjuvants form an integral component in most of the inactivated and subunit vaccine formulations. Careful and proper selection of adjuvants helps in promoting appropriate immune responses against target pathogens at both innate and adaptive levels such that protective immunity can be elicited. Areas covered: Herein, we describe the recent progress in our understanding of the mode of action of adjuvants that are licensed for use in human vaccines or in clinical or pre-clinical stages at both innate and adaptive levels. Different pathogens have distinct characteristics, which require the host to mount an appropriate immune response against them. Adjuvants can be selected to elicit a tailor-made immune response to specific pathogens based on their unique properties. Identification of biomarkers of adjuvanticity for several candidate vaccines using omics-based technologies can unravel the mechanism of action of modern and experimental adjuvants. Expert opinion: Adjuvant technology has been revolutionized over the last two decades. In-depth understanding of the role of adjuvants in activating the innate immune system, combined with systems vaccinology approaches, have led to the development of next-generation, novel adjuvants that can be used in vaccines against challenging pathogens and in specific target populations.
Collapse
Affiliation(s)
- Indranil Sarkar
- a VIDO-InterVac , University of Saskatchewan , Saskatoon , Canada.,b Microbiology and Immunology , University of Saskatchewan , Saskatoon , Canada
| | - Ravendra Garg
- a VIDO-InterVac , University of Saskatchewan , Saskatoon , Canada
| | | |
Collapse
|
24
|
Muralidharan A, Russell M, Larocque L, Gravel C, Li C, Chen W, Cyr T, Lavoie JR, Farnsworth A, Rosu-Myles M, Wang L, Li X. Targeting CD40 enhances antibody- and CD8-mediated protection against respiratory syncytial virus infection. Sci Rep 2018; 8:16648. [PMID: 30413743 PMCID: PMC6226510 DOI: 10.1038/s41598-018-34999-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/24/2018] [Indexed: 01/01/2023] Open
Abstract
Respiratory Syncytial Virus (RSV) infects almost all children under the age of one and is the leading cause of hospitalization among infants. Despite several decades of research with dozens of candidate vaccines being vigorously evaluated in pre-clinical and clinical studies, there is no licensed vaccine available to date. Here, the RSV fusion protein (F) was fused with CD40 ligand and delivered by an adenoviral vector into BALB/c mice where the CD40 ligand serves two vital functions as a molecular adjuvant and an antigen-targeting molecule. In contrast to a formaldehyde-inactivated vaccine, the vectored vaccine effectively protected animals against RSV without inducing enhanced respiratory disease. This protection involved a robust induction of neutralizing antibodies and memory CD8 T cells, which were not observed in the inactivated vaccine group. Finally, the vectored vaccine was able to elicit long-lasting protection against RSV, one of the most challenging issues in RSV vaccine development. Further studies indicate that the long lasting protection elicited by the CD40 ligand targeted vaccine was mediated by increased levels of effector memory CD8 T cell 3 months post-vaccination.
Collapse
Affiliation(s)
- Abenaya Muralidharan
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Marsha Russell
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Louise Larocque
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Caroline Gravel
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Changgui Li
- National Institute for Food and Drug Control and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Wangxue Chen
- Human Therapeutics Portfolio, National Research Council of Canada, Ottawa, ON, Canada
| | - Terry Cyr
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Jessie R Lavoie
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Aaron Farnsworth
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Michael Rosu-Myles
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Xuguang Li
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada.
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
25
|
Lee J, Klenow L, Coyle EM, Golding H, Khurana S. Protective antigenic sites in respiratory syncytial virus G attachment protein outside the central conserved and cysteine noose domains. PLoS Pathog 2018; 14:e1007262. [PMID: 30142227 PMCID: PMC6126872 DOI: 10.1371/journal.ppat.1007262] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 09/06/2018] [Accepted: 08/06/2018] [Indexed: 11/18/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the major cause of lower respiratory tract disease in infants. Previously, we elucidated the antibody repertoire following primary RSV infection in infants. Whole genome-fragment phage display libraries (GFPDL) expressing linear and conformational epitopes from RSV bound 100-fold more phages within attachment protein (G) following primary RSV infection. The G-reactive epitopes spanned the N- and C-termini of G ectodomain, in addition to the central conserved domain (CCD). In the current study, we examined the contribution of antigenic regions of G outside of the CCD to RSV-specific immunity. We evaluated the immunogenicity, neutralization and protective efficacy of all RSV-G antigenic sites identified following primary RSV infection using recombinant E. coli expressed G ectodomain (REG), CCD-deleted G ectodomain (REG ΔCCD), N- and C-terminal G subdomains, and antigenic site peptides. The REG ΔCCD, N- and C-terminal subdomains and peptides generated antibody titers in rabbits and mice that bound fully glycosylated Recombinant Mammalian expressed G ectodomain (RMG) and intact RSV virion particles but minimal in vitro neutralization titers compared with the intact G ectodomain. Vaccinated mice were challenged intranasally with RSV-A2 Line 19F. Viral replication in nasal cavity and lungs was significantly reduced in vaccinated animals compared to unimmunized controls. Control of viral loads post-RSV challenge correlated with serum antibody binding to the virus particles. In addition, very low Th2/Th1 cytokine ratios were found in the lungs of REG ΔCCD vaccinated mice after challenge. These data demonstrate the presence of multiple protective sites in RSV G protein outside of the CCD that could contribute to the development of a bacterially produced unglycosylated G protein as safe and protective vaccine against RSV disease. A vaccine against RSV that provides protection without potential for disease enhancement is required. The G attachment protein represents an important candidate for inclusion in an effective RSV vaccine. However, the contribution of different antigenic sites to protection against RSV is not completely understood. We evaluated the protective efficacy of recombinant unglycosylated RSV-G protein vaccine produced in E. coli (REG) vs. CCD-deletion (REG ΔCCD). We also investigated immunogenicity and protective efficacy of all antigenic sites identified in post-primary infection infant sera using GFPDL that includes N- and C-terminal G subdomains, and linear peptides. The REG ΔCCD, N- and C-terminal subdomains and peptides generated antibody titers in rabbits and mice. Vaccinated mice challenged intranasally with RSV demonstrated significant reduction of viral replication in the nasal cavity and lungs. Our study highlights the safety and immunogenicity of recombinant G protein as economical protective vaccine against RSV disease.
Collapse
Affiliation(s)
- Jeehyun Lee
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, United States of America
| | - Laura Klenow
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, United States of America
| | - Elizabeth M. Coyle
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, United States of America
| | - Hana Golding
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, United States of America
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, United States of America
- * E-mail:
| |
Collapse
|
26
|
Boukhvalova MS, Mbaye A, Kovtun S, Yim KC, Konstantinova T, Getachew T, Khurana S, Falsey AR, Blanco JCG. Improving ability of RSV microneutralization assay to detect G-specific and cross-reactive neutralizing antibodies through immortalized cell line selection. Vaccine 2018; 36:4657-4662. [PMID: 29960801 DOI: 10.1016/j.vaccine.2018.06.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/08/2018] [Accepted: 06/16/2018] [Indexed: 11/29/2022]
Abstract
Respiratory syncytial virus (RSV) is a significant cause of bronchiolitis and pneumonia. Protection against RSV is associated with neutralizing antibodies against the fusion (F) and attachment (G) glycoproteins. Several RSV vaccine candidates are in development, but their immunogenicity is hard to compare due to the little-understood differences between multiple RSV neutralizing antibody assays used. Existing assays utilize primarily Vero or HEp-2 cells, but their ability to detect G-neutralizing antibodies or antibodies against specific RSV strains is unclear. In this work, we developed an RSV microneutralization assay (MNA) using unmodified RSV and immortalized cell line derived from human airway epithelial cells (A549). Performance of A549-, HEp-2- and Vero-based MNA was compared under the same assay conditions (fixed amount of virus and cells) with regards to detection of neutralizing antibodies against RSV A or B viruses, G-reactive neutralizing antibodies, and effect of complement. Our results indicate that A549 cells yield the highest MNA titers, particularly in the RSV A/A2 MNA, are least susceptible to complement-enhancing effect of neutralizing titer readout and are superior to Vero or HEp-2 MNA at recognizing G-reactive neutralizing antibodies when no complement is used. Vero cells, however, can be more consistent at recognizing neutralizing antibodies against multiple RSV strains. The choice of substrate cells thus affects the outcome of MNA, as some immortalized cells better support detection of broader range of neutralizing antibodies, while others facilitate detection of G-targeting neutralizing antibodies, a long-thought prerogative of primary airway epithelial cells.
Collapse
Affiliation(s)
- M S Boukhvalova
- Sigmovir Biosystems, Inc, 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, USA.
| | - A Mbaye
- Sigmovir Biosystems, Inc, 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, USA
| | - S Kovtun
- Sigmovir Biosystems, Inc, 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, USA
| | - K C Yim
- Sigmovir Biosystems, Inc, 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, USA
| | - T Konstantinova
- Sigmovir Biosystems, Inc, 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, USA
| | - T Getachew
- Sigmovir Biosystems, Inc, 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, USA
| | - S Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - A R Falsey
- University of Rochester Medical Center, Rochester General Hospital, 1425 Portland Avenue, Infectious Diseases Unit, Rochester, NY 14621, USA
| | - J C G Blanco
- Sigmovir Biosystems, Inc, 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, USA
| |
Collapse
|
27
|
Lambkin-Williams R, Noulin N, Mann A, Catchpole A, Gilbert AS. The human viral challenge model: accelerating the evaluation of respiratory antivirals, vaccines and novel diagnostics. Respir Res 2018; 19:123. [PMID: 29929556 PMCID: PMC6013893 DOI: 10.1186/s12931-018-0784-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 04/19/2018] [Indexed: 12/15/2022] Open
Abstract
The Human Viral Challenge (HVC) model has, for many decades, helped in the understanding of respiratory viruses and their role in disease pathogenesis. In a controlled setting using small numbers of volunteers removed from community exposure to other infections, this experimental model enables proof of concept work to be undertaken on novel therapeutics, including vaccines, immunomodulators and antivirals, as well as new diagnostics.Crucially, unlike conventional phase 1 studies, challenge studies include evaluable efficacy endpoints that then guide decisions on how to optimise subsequent field studies, as recommended by the FDA and thus licensing studies that follow. Such a strategy optimises the benefit of the studies and identifies possible threats early on, minimising the risk to subsequent volunteers but also maximising the benefit of scarce resources available to the research group investing in the research. Inspired by the principles of the 3Rs (Replacement, Reduction and Refinement) now commonly applied in the preclinical phase, HVC studies allow refinement and reduction of the subsequent development phase, accelerating progress towards further statistically powered phase 2b studies. The breadth of data generated from challenge studies allows for exploration of a wide range of variables and endpoints that can then be taken through to pivotal phase 3 studies.We describe the disease burden for acute respiratory viral infections for which current conventional development strategies have failed to produce therapeutics that meet clinical need. The Authors describe the HVC model's utility in increasing scientific understanding and in progressing promising therapeutics through development.The contribution of the model to the elucidation of the virus-host interaction, both regarding viral pathogenicity and the body's immunological response is discussed, along with its utility to assist in the development of novel diagnostics.Future applications of the model are also explored.
Collapse
Affiliation(s)
- Rob Lambkin-Williams
- hVIVO Services Limited, Queen Mary BioEnterprises Innovation Centre, 42 New Road, London, England, E1 2AX, UK.
| | - Nicolas Noulin
- hVIVO Services Limited, Queen Mary BioEnterprises Innovation Centre, 42 New Road, London, England, E1 2AX, UK
| | - Alex Mann
- hVIVO Services Limited, Queen Mary BioEnterprises Innovation Centre, 42 New Road, London, England, E1 2AX, UK
| | - Andrew Catchpole
- hVIVO Services Limited, Queen Mary BioEnterprises Innovation Centre, 42 New Road, London, England, E1 2AX, UK
| | - Anthony S Gilbert
- hVIVO Services Limited, Queen Mary BioEnterprises Innovation Centre, 42 New Road, London, England, E1 2AX, UK
| |
Collapse
|
28
|
Respiratory Syncytial Virus: Targeting the G Protein Provides a New Approach for an Old Problem. J Virol 2018; 92:JVI.01302-17. [PMID: 29118126 DOI: 10.1128/jvi.01302-17] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of lower respiratory tract infection (LRTI) annually affecting >2 million children in the United States <5 years old. In the elderly (>65 years old), RSV results in ∼175,000 hospitalizations annually in the United States with a worldwide incidence of ∼34 million. There is no approved RSV vaccine, and treatments are limited. Recently, a phase 3 trial in the elderly using a recombinant RSV F protein vaccine failed to meet its efficacy objectives, namely, prevention of moderate-to-severe RSV-associated LRTI and reduced incidence of acute respiratory disease. Moreover, a recent phase 3 trial evaluating suptavumab (REGN2222), an antibody to RSV F protein, did not meet its primary endpoint of preventing medically attended RSV infections in preterm infants. Despite these setbacks, numerous efforts targeting the RSV F protein with vaccines, antibodies, and small molecules continue based on the commercial success of a monoclonal antibody (MAb) against the RSV F protein (palivizumab). As the understanding of RSV biology has improved, the other major coat protein, the RSV G protein, has reemerged as an alternative target reflecting progress in understanding its roles in infecting bronchial epithelial cells and in altering the host immune response. In mouse models, a high-affinity, strain-independent human MAb to the RSV G protein has shown potent direct antiviral activity combined with the alleviation of virus-induced immune system effects that contribute to disease pathology. This MAb, being prepared for clinical trials, provides a qualitatively new approach to managing RSV for populations not eligible for prophylaxis with palivizumab.
Collapse
|
29
|
Clark CM, Guerrero-Plata A. Respiratory Syncytial Virus Vaccine Approaches: a Current Overview. CURRENT CLINICAL MICROBIOLOGY REPORTS 2017; 4:202-207. [PMID: 30009126 PMCID: PMC6040676 DOI: 10.1007/s40588-017-0074-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE OF REVIEW Respiratory syncytial virus (RSV) is a global human pathogen responsible for lower respiratory tract infections (LRTI). While RSV infection is innocuous in healthy adults, it is the leading cause of infant hospitalization for respiratory tract infection. Nearly everyone shows evidence of an RSV infection by the age of 3. However, there is still not a vaccine commercially available. This review will provide an update on the clinical and preclinical vaccine studies and different approaches to prevent RSV infection. RECENT FINDINGS Novel vaccine approaches that induce protection against RSV without enhancement of respiratory tract disease. SUMMARY Recent technological approaches have led to generation of different strategies to prevent RSV infection, including live attenuated, chimeric, and subunit vaccines, virus-like particles, and nanoparticles. These vaccine approaches represent promising candidates towards an efficient RSV vaccine that effectively protects infants, children, and adults.
Collapse
Affiliation(s)
- Carolyn M Clark
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Antonieta Guerrero-Plata
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
- Center for Experimental Infectious Disease Research, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|