1
|
Dubrulle J, Kauffman K, Soarimalala V, Randriamoria T, Goodman SM, Herrera J, Nunn C, Tortosa P. Effect of Land-Use on Hantavirus Infection Among Introduced and Endemic Small Mammals of Madagascar. Ecol Evol 2025; 15:e70914. [PMID: 40196405 PMCID: PMC11975053 DOI: 10.1002/ece3.70914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 01/04/2025] [Accepted: 01/16/2025] [Indexed: 04/09/2025] Open
Abstract
Hantaviruses are globally distributed zoonotic pathogens capable of causing fatal disease in humans. Addressing the risk of hantavirus spillover from animal reservoirs to humans requires identifying the local reservoirs (usually rodents and other small mammals) and the predictors of infection, such as habitat characteristics and human exposure. We screened a collection of 1663 terrestrial small mammals and 227 bats for hantavirus RNA, comprised of native and non-native species from northeastern Madagascar, trapped over 5 successive years. We specifically investigated the influence of diverse habitat types: villages, agricultural fields, regrowth areas, secondary and semi-intact forests on infection with hantaviruses. We detected Hantavirus RNA closely related to the previously described Anjozorobe virus in 9.5% of Rattus rattus sampled, with an absence of detection in other species. Land-use had a complex impact on hantavirus infections: intensive land-use positively correlated with the abundance of R. rattus and the average R. rattus body size varied between habitats. Larger individuals had a higher probability of infection, regardless of sex. Thus, villages and pristine forests which host the smallest, and hence, least infected rats, represent the lowest risk for hantavirus exposure to people while flooded rice fields which were home to the largest rats, and subsequently most infected rats, represent the greatest exposure risk. These findings provide new insights into the relationship between rat ecology and the gradients of hantavirus exposure risk for farmers in northeastern Madagascar as they work in different land-use types.
Collapse
Affiliation(s)
- Jérémy Dubrulle
- Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (UMR PIMIT)Université de la Réunion, CNRS 9192, INSERM 1187, IRD 249Sainte‐ClotildeRéunion IslandFrance
| | - Kayla Kauffman
- Department of Evolutionary AnthropologyDuke UniversityDurhamNorth CarolinaUSA
- Department of Ecology, Evolution, and Marine BiologyUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | | | | | - Steven M. Goodman
- Association VahatraAntananarivoMadagascar
- Field Museum of Natural HistoryChicagoIllinoisUSA
| | - James Herrera
- Department of Evolutionary AnthropologyDuke UniversityDurhamNorth CarolinaUSA
| | - Charles Nunn
- Department of Evolutionary AnthropologyDuke UniversityDurhamNorth CarolinaUSA
- Duke Global Health Institute, Duke UniversityDurhamNorth CarolinaUSA
| | - Pablo Tortosa
- Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (UMR PIMIT)Université de la Réunion, CNRS 9192, INSERM 1187, IRD 249Sainte‐ClotildeRéunion IslandFrance
| |
Collapse
|
2
|
Park K, Kim J, Noh J, Kim SG, Cho HK, Kim K, Seo YR, Lim T, Lee S, Lee J, Lim SI, Joo YH, Lee B, Yun SH, Park C, Kim WK, Song JW. Epidemiological surveillance and phylogenetic diversity of Orthohantavirus hantanense using high-fidelity nanopore sequencing, Republic of Korea. PLoS Negl Trop Dis 2025; 19:e0012859. [PMID: 39919119 PMCID: PMC11828426 DOI: 10.1371/journal.pntd.0012859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 02/14/2025] [Accepted: 01/21/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Orthohantavirus hantanense (HTNV) poses a substantial global public health threat due to its role in causing hemorrhagic fever with renal syndrome (HFRS). HTNV outbreaks are particularly prevalent in the Gyeonggi and Gangwon Provinces of the Republic of Korea (ROK). This study aimed to evaluate the application of advanced nanopore sequencing and bioinformatics to generate complete genome sequences of HTNV, with the objective of accurately identifying infection sources and analyzing their genetic diversity. METHODOLOGY/PRINCIPAL FINDINGS In 2022 and 2023, we collected 579 small mammals from 11 distinct locations across Gyeonggi and Gangwon Provinces, as well as in Gwangju Metropolitan City, ROK. Among these, 498 Apodemus agrarius specimens were subjected to an epidemiological survey to investigate HTNV infections. The serological and molecular positivity of HTNV were found to be 65/498 (13.1%) and 17/65 (26.2%), respectively. Furthermore, 15 whole-genome sequences of HTNV were obtained from rodents in Gyeonggi and Gangwon Provinces. We developed a novel amplicon-based nanopore sequencing approach to acquire high-fidelity and precise genomic sequences of HTNV. Genome exchange analysis revealed three reassortant candidates, including heterogeneous L segments, from Paju-si and Yeoncheon-gun in Gyeonggi Province. CONCLUSION/SIGNIFICANCE Our findings enhance the resolution of the spatiotemporal genomic surveillance of HTNV by consistently providing new viral sequences and epidemiological data from HFRS-endemic regions in the ROK. This report signifies a notable advancement in nanopore sequencing techniques and bioinformatics, offering a robust platform for genome-based diagnostics and sophisticated phylogenetic analyses of orthohantaviruses, which are essential for public health strategies aimed at controlling HFRS.
Collapse
Affiliation(s)
- Kyungmin Park
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- Institute for Viral Diseases, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jongwoo Kim
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Graduate Program, Korea University College of Medicine, Seoul, Republic of Korea
| | - Juyoung Noh
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Graduate Program, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seong-Gyu Kim
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Graduate Program, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hee-Kyung Cho
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Graduate Program, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kijin Kim
- Faculty of Health Sciences, Centre for Infectious Disease Genomics and One Health, Simon Fraser University, Burnaby, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Ye-rin Seo
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Taehun Lim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Seonghyeon Lee
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jaeyeon Lee
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Graduate Program, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seung In Lim
- The Fifth Preventive Medicine Unit of Republic of Korea Army, Pocheon, Republic of Korea
| | - Young Hoon Joo
- The First Preventive Medicine Unit of Republic of Korea Army, Goyang, Republic of Korea
| | - Buddle Lee
- The Third Preventive Medicine Unit of Republic of Korea Army, Inje, Republic of Korea
| | - Seok Hyeon Yun
- The Second Preventive Medicine Unit of Republic of Korea Army, Chuncheon, Republic of Korea
| | - Changbo Park
- Republic of Korea Army Headquarters, Daejeon, Republic of Korea
| | - Won-Keun Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
- Institute of Medical Research, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jin-Won Song
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Graduate Program, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
3
|
Park K, No JS, Prayitno SP, Seo YR, Lee SH, Noh J, Kim J, Kim SG, Cho HK, Natasha A, Kim B, Park J, Kim WK, Song JW. Epidemiological Surveillance and Genomic Characterization of Soochong Virus From Apodemus Species Using Multiplex PCR-Based Next-Generation Sequencing, Republic of Korea. J Med Virol 2024; 96:e70077. [PMID: 39588784 DOI: 10.1002/jmv.70077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/10/2024] [Accepted: 11/04/2024] [Indexed: 11/27/2024]
Abstract
Orthohantavirus hantanense causes hemorrhagic fever with renal syndrome in Eurasia, posing a substantial public health threat. Although the Hantaan virus is the primary etiological agent in the Republic of Korea (ROK), evidence suggests the potential zoonotic transmission of the Amur virus (AMRV), closely related to the Soochong virus (SOOV), to humans in China and Russia. This study examined 31 Apodemus spp. captured from six regions in Gangwon Province, ROK, between 2015 and 2018. Of these, 5/31 (16.1%) tested positive for anti-SOOV immunoglobulin G and SOOV RNA, with 3/6 (50%) in Hongcheon-gun and 2/5 (40%) in Pyeongchang-gun. Utilizing a multiplex polymerase chain reaction-based next-generation sequencing approach, we achieved complete genomic sequencing of SOOV from rodent lung tissues, with coverage rates of 90.3%-98.2% for the S segment, 92.3%-98.1% for the M segment, and 88.1%-93.0% for the L segment. Five novel whole-genome sequences of SOOV were obtained from rodents in Hongcheon-gun and Pyeongchang-gun, representing the first documented SOOV in Pyeongchang-gun. The evolutionary rate analysis of SOOV tripartite genomes demonstrated lower divergence in the S segment. Phylogenetic analysis revealed a well-supported divergence of the SOOV and AMRV lineages across the ROK, China, and Russia, with incongruences suggesting differential segment evolution. Co-divergence analysis indicated the inter-species transmission of SOOV Aa18-104 from Apodemus agrarius in Pyeongchang-gun. The high zoonotic potential of all SOOV strains underscores the need for extensive monitoring and surveillance. This report provides crucial insights for the development of effective control strategies against hantaviral outbreaks in the ROK.
Collapse
Affiliation(s)
- Kyungmin Park
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jin Sun No
- Division of High-Risk Pathogens, Bureau of Infectious Diseases Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Sara P Prayitno
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Ye-Rin Seo
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seung-Ho Lee
- Chem-Bio Technology Center, Agency for Defense Development, Daejeon, Republic of Korea
| | - Juyoung Noh
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jongwoo Kim
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seong-Gyu Kim
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hee-Kyung Cho
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Augustine Natasha
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Bohyeon Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jieun Park
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Won-Keun Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
- Institute of Medical Research, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jin-Won Song
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
4
|
Sarii RS, Kajihara M, Wei Z, Lokpathirage SMW, Muthusinghe DS, Mori-Kajihara A, Changula K, Qiu Y, Ndebe J, Hang'ombe BM, Kikuchi F, Hayashi A, Suzuki M, Kamiya H, Arai S, Takada A, Yoshimatsu K. Development of a seroepidemiological tool for bat-borne and shrew-borne hantaviruses and its application using samples from Zambia. PLoS Negl Trop Dis 2024; 18:e0012669. [PMID: 39570990 DOI: 10.1371/journal.pntd.0012669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/17/2024] [Accepted: 10/30/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Rodent-borne orthohantaviruses are the causative agents of hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome. Apart from the classic rodent-borne hantaviruses, numerous species of hantaviruses have been identified in shrews and bats; however, their antigenicity and pathogenicity are unknown. This study focused on developing a serological method to detect antibodies against bat- and shrew-borne hantaviruses. METHODOLOGY/PRINCIPAL FINDINGS Five bat-borne (Brno, Dakrong, Quezon, Robina, and Xuan Song) and 6 shrew-borne (Asama, Altai, Cao Bang, Nova, Seewis, and Thottapalayam) viruses were selected based on the phylogenetic differences in their N proteins. The recombinant N (rN) proteins of these viruses were expressed as antigens in Vero E6 and 293T cell lines using the pCAGGS/MCS vector. Antisera against the Nus-tagged rN fusion proteins of these viruses (mouse anti-Brno, Dakrong, Quezon, Robina, Xuan Song, Asama, Cao Bang, and Nova, while rabbit anti-Altai, Seewis and Thottapalayam) were also generated. Antigenic cross-reactivity was examined in antisera and rN-expressing Vero E6 cells. The rN proteins of almost all the tested viruses, except for the Quezon and Robina viruses, showed independent antigenicity. For serological screening of bat samples, 5 rNs of the bat-borne viruses were expressed together in a single transfection protocol. Similarly, 6 rNs of shrew-borne viruses were expressed. Reactivities of the mixed antigen system were also examined across the singly transfected Vero cell lines to ensure that all antigens were expressed. Using these antigens, bat serum samples collected from Zambia were screened using the indirect immunofluorescence antibody test (IFAT). Selected positive samples were individually tested for the respective antigens by IFAT and western blot assays using rN-expressing 293T cell lysates. Of the 1,764 bat serum samples tested, 11.4% and 17.4% were positive for bat and shrew mixed antigens, respectively. These samples showed positive reactions to the Brno, Dakrong, Quezon, Xuan Son, Robina, Asama, Altai, Cao Bang, or Thottapalayam virus antigens. CONCLUSIONS/SIGNIFICANCE These observations suggest that the mixed-antigen screening system is useful for serological screening For Orthohantavirus infections and that bats in Zambia are likely exposed to not only bat-borne hantaviruses but also to shrew-borne hantaviruses.
Collapse
Affiliation(s)
- Rakiiya Sikatarii Sarii
- Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
- Institute for Genetic Medicine, Laboratory for Animal Experimentation, Hokkaido University, Sapporo, Japan
| | - Masahiro Kajihara
- Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Zuoxing Wei
- Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
- Institute for Genetic Medicine, Laboratory for Animal Experimentation, Hokkaido University, Sapporo, Japan
| | - Sithumini M W Lokpathirage
- Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
- Institute for Genetic Medicine, Laboratory for Animal Experimentation, Hokkaido University, Sapporo, Japan
| | - Devinda S Muthusinghe
- Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
- Institute for Genetic Medicine, Laboratory for Animal Experimentation, Hokkaido University, Sapporo, Japan
| | - Akina Mori-Kajihara
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Katendi Changula
- The School of Veterinary Medicine, The University of Zambia, Lusaka, Zambia
| | - Yongjin Qiu
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Joseph Ndebe
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- The School of Veterinary Medicine, The University of Zambia, Lusaka, Zambia
| | | | - Fuka Kikuchi
- National Institute of Infectious Diseases, Tokyo, Japan
| | - Ai Hayashi
- National Institute of Infectious Diseases, Tokyo, Japan
| | - Motoi Suzuki
- National Institute of Infectious Diseases, Tokyo, Japan
| | - Hajime Kamiya
- National Institute of Infectious Diseases, Tokyo, Japan
| | - Satoru Arai
- National Institute of Infectious Diseases, Tokyo, Japan
| | - Ayato Takada
- Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Kumiko Yoshimatsu
- Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
- Institute for Genetic Medicine, Laboratory for Animal Experimentation, Hokkaido University, Sapporo, Japan
| |
Collapse
|
5
|
Natasha A, Pye SE, Cho SH, Pangestu HS, Park J, Park K, Prayitno SP, Kim B, Lee JS, Kim J, Budhathoki S, Oh Y, Song JW, López CB, Suh JG, Kim WK. Molecular detection and genomic characterization of Samak Micromys paramyxovirus-1 and -2 in Micromys minutus, Republic of Korea. Virol J 2024; 21:255. [PMID: 39407289 PMCID: PMC11481300 DOI: 10.1186/s12985-024-02532-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND The discovery of viruses in small mammalian populations, particularly rodents, has expanded the family Paramyxoviridae. The overlap in habitats between rodents and humans increases the risk of zoonotic events, underscoring the importance of active surveillance. Rodent species, such as Apodemus agrarius, are natural hosts for Paramyxoviridae in the Republic of Korea (ROK). However, it is unknown whether Paramyxoviridae is present in Micromys minutus, another common rodent. METHOD Here, we screened M. minutus collected from the Gangwon Province in the ROK for paramyxoviruses using nested polymerase chain reaction and confirm positive samples by next-generation metagenomic sequencing. Complete paramyxovirus genomes were further characterized by phylogenetic analysis, amino acid similarity, secondary structure, and cophylogeny. RESULT Overall, 57 of 145 (39.3%) M. minutus kidney samples tested positive for paramyxoviruses. Among them, four whole genome sequences were identified and clustered within the genus Jeilongvirus. One sequence was determined as Samak Micromys paramyxovirus 1 (SMPV-1; 19,911 nucleotides long) and three sequences as Samak Micromys paramyxovirus 2 (SMPV-2; 18,199 nucleotides long). SMPV-1 has a smaller hydrophobic gene and a longer glycoprotein gene than SMPV-2. Cophylogenetic analysis suggests that SMPV-1 evolved through co-divergence, whereas SMPV-2 was inferred to have undergone transfer events. CONCLUSION These findings highlight the prevalence of paramyxoviruses in the wild and the potential of M. minutus as a natural viral reservoir. The discovery of SMPV-1 and SMPV - 2 also reveals the genetic diversity and evolutionary history of the genus Jeilongvirus in the Paramyxoviridae.
Collapse
Affiliation(s)
- Augustine Natasha
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Sarah E Pye
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Seung Hye Cho
- Department of Biomedical Science, College of Natural Sciences, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Haryo Seno Pangestu
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Jieun Park
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Kyungmin Park
- Department of Microbiology, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Sara P Prayitno
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Bohyeon Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Jong Sun Lee
- Department of Medical Genetics, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Jongwoo Kim
- Department of Microbiology, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Shailesh Budhathoki
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Yeonsu Oh
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jin-Won Song
- Department of Microbiology, Korea University College of Medicine, Seoul, 02841, Republic of Korea
- BK21 Graduate Program, Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Carolina B López
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Jun Gyo Suh
- Department of Medical Genetics, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea.
| | - Won-Keun Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea.
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea.
| |
Collapse
|
6
|
Salazar-Hamm PS, Johnson WL, Nofchissey RA, Salazar JR, Gonzalez P, Goodfellow SM, Dunnum JL, Bradfute SB, Armién B, Cook JA, Domman DB, Dinwiddie DL. Choclo virus (CHOV) recovered from deep metatranscriptomics of archived frozen tissues in natural history biorepositories. PLoS Negl Trop Dis 2024; 18:e0011672. [PMID: 38215158 PMCID: PMC10810438 DOI: 10.1371/journal.pntd.0011672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/25/2024] [Accepted: 01/03/2024] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Hantaviruses are negative-stranded RNA viruses that can sometimes cause severe disease in humans; however, they are maintained in mammalian host populations without causing harm. In Panama, sigmodontine rodents serve as hosts to transmissible hantaviruses. Due to natural and anthropogenic forces, these rodent populations are having increased contact with humans. METHODS We extracted RNA and performed Illumina deep metatranscriptomic sequencing on Orthohantavirus seropositive museum tissues from rodents. We acquired sequence reads mapping to Choclo virus (CHOV, Orthohantavirus chocloense) from heart and kidney tissue of a two-decade old frozen museum sample from a Costa Rican pygmy rice rat (Oligoryzomys costaricensis) collected in Panama. Reads mapped to the CHOV reference were assembled and then validated by visualization of the mapped reads against the assembly. RESULTS We recovered a 91% complete consensus sequence from a reference-guided assembly to CHOV with an average of 16X coverage. The S and M segments used in our phylogenetic analyses were nearly complete (98% and 99%, respectively). There were 1,199 ambiguous base calls of which 93% were present in the L segment. Our assembled genome varied 1.1% from the CHOV reference sequence resulting in eight nonsynonymous mutations. Further analysis of all publicly available partial S segment sequences support a clear relationship between CHOV clinical cases and O. costaricensis acquired strains. CONCLUSIONS Viruses occurring at extremely low abundances can be recovered from deep metatranscriptomics of archival tissues housed in research natural history museum biorepositories. Our efforts resulted in the second CHOV genome publicly available. This genomic data is important for future surveillance and diagnostic tools as well as understanding the evolution and pathogenicity of CHOV.
Collapse
Affiliation(s)
- Paris S. Salazar-Hamm
- Clinical and Translational Science Center, University of New Mexico, Albuquerque, New Mexico, United States of America
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - William L. Johnson
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Robert A. Nofchissey
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Jacqueline R. Salazar
- Department of Research in Emerging and Zoonotic Infectious Diseases, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Publio Gonzalez
- Department of Research in Emerging and Zoonotic Infectious Diseases, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Samuel M. Goodfellow
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Jonathan L. Dunnum
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Steven B. Bradfute
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Blas Armién
- Department of Research in Emerging and Zoonotic Infectious Diseases, Gorgas Memorial Institute of Health Studies, Panama City, Panama
- Sistema Nacional de Investigación (SNI), Secretaria Nacional de Ciencia, Tecnología e Innovacion (SENACYT), Panama City, Panama
| | - Joseph A. Cook
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Daryl B. Domman
- Clinical and Translational Science Center, University of New Mexico, Albuquerque, New Mexico, United States of America
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Darrell L. Dinwiddie
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| |
Collapse
|
7
|
Kim J, Park K, Kim K, Noh J, Kim SG, Yang E, Cho HK, Lee SH, No JS, Lee GY, Lee D, Song DH, Gu SH, Park MS, Cho NH, Jeong ST, Kim WK, Song JW. High-resolution phylogeographical surveillance of Hantaan orthohantavirus using rapid amplicon-based Flongle sequencing, Republic of Korea. J Med Virol 2024; 96:e29346. [PMID: 38178580 DOI: 10.1002/jmv.29346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024]
Abstract
Orthohantaviruses, etiological agents of hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome, pose a critical public health threat worldwide. Hantaan orthohantavirus (HTNV) outbreaks are particularly endemic in Gyeonggi Province in northern area of the Republic of Korea (ROK). Small mammals were collected from three regions in the Gyeonggi Province during 2017 and 2018. Serological and molecular prevalence of HTNV was 25/201 (12.4%) and 10/25 (40%), respectively. A novel nanopore-based diagnostic assay using a cost-efficient Flongle chip was developed to rapidly and sensitively detect HTNV infection in rodent specimens within 3 h. A rapid phylogeographical surveillance of HTNV at high-resolution phylogeny was established using the amplicon-based Flongle sequencing. In total, seven whole-genome sequences of HTNV were newly obtained from wild rodents collected in Paju-si (Gaekhyeon-ri) and Yeoncheon-gun (Hyeonga-ri and Wangnim-ri), Gyeonggi Province. Phylogenetic analyses revealed well-supported evolutionary divergence and genetic diversity, enhancing the resolution of the phylogeographic map of orthohantaviruses in the ROK. Incongruences in phylogenetic patterns were identified among HTNV tripartite genomes, suggesting differential evolution for each segment. These findings provide crucial insights into on-site diagnostics, genome-based surveillance, and the evolutionary dynamics of orthohantaviruses to mitigate hantaviral outbreaks in HFRS-endemic areas in the ROK.
Collapse
Affiliation(s)
- Jongwoo Kim
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyungmin Park
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kijin Kim
- Centre for Infectious Disease Genomics and One Health, Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Juyoung Noh
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seong-Gyu Kim
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Korea University College of Medicine, Seoul, Republic of Korea
| | - Eunyoung Yang
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hee-Kyung Cho
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seung-Ho Lee
- Chem-Bio Technology Center, Agency for Defense Development, Daejeon, Republic of Korea
| | - Jin Sun No
- Division of High-Risk Pathogens, Bureau of Infectious Diseases Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Geum-Young Lee
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Daesang Lee
- Chem-Bio Technology Center, Agency for Defense Development, Daejeon, Republic of Korea
| | - Dong-Hyun Song
- Chem-Bio Technology Center, Agency for Defense Development, Daejeon, Republic of Korea
| | - Se Hun Gu
- Chem-Bio Technology Center, Agency for Defense Development, Daejeon, Republic of Korea
| | - Man-Seong Park
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Seong Tae Jeong
- Chem-Bio Technology Center, Agency for Defense Development, Daejeon, Republic of Korea
| | - Won-Keun Kim
- Department of Microbiology, Hallym University, Chuncheon, Republic of Korea
- Institute of Medical Research, Hallym University, Chuncheon, Republic of Korea
| | - Jin-Won Song
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
8
|
Ning T, Huang W, Min L, Yang Y, Liu S, Xu J, Zhang N, Xie SA, Zhu S, Wang Y. Pseudotyped Viruses for Orthohantavirus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1407:229-252. [PMID: 36920700 DOI: 10.1007/978-981-99-0113-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Orthohantaviruses, members of the Orthohantavirus genus of Hantaviridae family of the Bunyavirales order, are enveloped, negative-sense, single-stranded, tripartite RNA viruses. They are emerging zoonotic pathogens carried by small mammals including rodents, moles, shrews, and bats and are the etiologic agents of hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS) among humans. With the characteristics of low biological risk but strong operability, a variety of pseudotyped viruses have been constructed as alternatives to authentic orthohantaviruses to help delineate the roles of host factors in viral entry and other virus-host interactions, to assist in deciphering mechanisms of immune response and correlates of protection, to enhance our understanding of viral antigenic property, to characterize viral entry inhibitors, and to be developed as vaccines. In this chapter, we will discuss the general property of orthohantavirus, construction of pseudotyped orthohantaviruses based on different packaging systems, and their current applications.
Collapse
Affiliation(s)
- Tingting Ning
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Weijin Huang
- Division of HIV/AIDS and Sexually Transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Yi Yang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Si Liu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Junxuan Xu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Nan Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Si-An Xie
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China.
| | - Youchun Wang
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming, China.
| |
Collapse
|
9
|
Koehler FC, Di Cristanziano V, Späth MR, Hoyer-Allo KJR, Wanken M, Müller RU, Burst V. OUP accepted manuscript. Clin Kidney J 2022; 15:1231-1252. [PMID: 35756741 PMCID: PMC9217627 DOI: 10.1093/ckj/sfac008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Indexed: 01/18/2023] Open
Abstract
Hantavirus-induced diseases are emerging zoonoses with endemic appearances and frequent outbreaks in different parts of the world. In humans, hantaviral pathology is characterized by the disruption of the endothelial cell barrier followed by increased capillary permeability, thrombocytopenia due to platelet activation/depletion and an overactive immune response. Genetic vulnerability due to certain human leukocyte antigen haplotypes is associated with disease severity. Typically, two different hantavirus-caused clinical syndromes have been reported: hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS). The primarily affected vascular beds differ in these two entities: renal medullary capillaries in HFRS caused by Old World hantaviruses and pulmonary capillaries in HCPS caused by New World hantaviruses. Disease severity in HFRS ranges from mild, e.g. Puumala virus-associated nephropathia epidemica, to moderate, e.g. Hantaan or Dobrava virus infections. HCPS leads to a severe acute respiratory distress syndrome with high mortality rates. Due to novel insights into organ tropism, hantavirus-associated pathophysiology and overlapping clinical features, HFRS and HCPS are believed to be interconnected syndromes frequently involving the kidneys. As there are no specific antiviral treatments or vaccines approved in Europe or the USA, only preventive measures and public awareness may minimize the risk of hantavirus infection. Treatment remains primarily supportive and, depending on disease severity, more invasive measures (e.g., renal replacement therapy, mechanical ventilation and extracorporeal membrane oxygenation) are needed.
Collapse
Affiliation(s)
- Felix C Koehler
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Veronica Di Cristanziano
- Institute of Virology, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Martin R Späth
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - K Johanna R Hoyer-Allo
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Manuel Wanken
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | | |
Collapse
|
10
|
Cho S, Kim WK, No JS, Lee SH, Jung J, Yi Y, Park HC, Lee GY, Park K, Kim JA, Kim J, Lee J, Lee D, Song DH, Gu SH, Jeong ST, Song JW. Urinary genome detection and tracking of Hantaan virus from hemorrhagic fever with renal syndrome patients using multiplex PCR-based next-generation sequencing. PLoS Negl Trop Dis 2021; 15:e0009707. [PMID: 34582439 PMCID: PMC8478167 DOI: 10.1371/journal.pntd.0009707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 08/05/2021] [Indexed: 11/18/2022] Open
Abstract
Background Hantavirus infection occurs through the inhalation of aerosolized excreta, including urine, feces, and saliva of infected rodents. The presence of Hantaan virus (HTNV) RNA or infectious particles in urine specimens of patient with hemorrhagic fever with renal syndrome (HFRS) remains to be investigated. Methodology/Principal findings We collected four urine and serum specimens of Republic of Korea Army (ROKA) patients with HFRS. We performed multiplex PCR-based next-generation sequencing (NGS) to obtain the genome sequences of clinical HTNV in urine specimens containing ultra-low amounts of viral genomes. The epidemiological and phylogenetic analyses of HTNV demonstrated geographically homogenous clustering with those in Apodemus agrarius captured in highly endemic areas, indicating that phylogeographic tracing of HTNV genomes reveals the potential infection sites of patients with HFRS. Genetic exchange analyses showed a genetic configuration compatible with HTNV L segment exchange in nature. Conclusion/Significance Our results suggest that whole or partial genome sequences of HTNV from the urine enabled to track the putative infection sites of patients with HFRS by phylogeographically linking to the zoonotic HTNV from the reservoir host captured at endemic regions. This report raises awareness among physicians for the presence of HTNV in the urine of patients with HFRS. Hantavirus transmission to humans occurs via inhalation of aerosolized excreta, including urine, feces, and saliva of infected rodents. Currently, no report for the etiological evidence associated with urinary Hantaan virus (HTNV) from patients with hemorrhagic fever with renal syndrome (HFRS) is available. Here, we conducted multiplex PCR-based next-generation sequencing (NGS) using urine and serum specimens from four Republic of Korea Army (ROKA) patients with HFRS. The epidemiological and phylogenetic analyses using whole or partial genome sequences of HTNV from urine and serum demonstrated homogenous genetic clustering with HTNV from clinical specimens, circulating at highly endemic sites of patient infection. Among the sequences from ROKA patients, the genomic configuration of ROKA16-10 demonstrated occurrences of the genetic reassortment. Our results suggest that whole or partial genome sequences of HTNV from the urine enabled to track the putative infection sites of patients with HFRS by phylogeographically linking to the zoonotic HTNV from the reservoir host captured at endemic regions. This result provides new insights into presence of HTNV in the urine of patients with HFRS among physicians.
Collapse
Affiliation(s)
- Seungchan Cho
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Won-Keun Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jin Sun No
- Division of High-risk Pathogens, Bureau of Infectious Diseases Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Seung-Ho Lee
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jaehun Jung
- Department of Preventive Medicine, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Yongjin Yi
- Division of Nephrology, Department of Internal Medicine, Dankook University Hospital, Cheonan, Republic of Korea
| | - Hayne Cho Park
- Department of Internal Medicine, Kangnam Sacred Heart Hospital, Seoul, Republic of Korea
| | - Geum-Young Lee
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyungmin Park
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jeong-Ah Kim
- Division of High-risk Pathogens, Bureau of Infectious Diseases Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Jongwoo Kim
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jingyeong Lee
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Daesang Lee
- 4th R&D Institute, Agency for Defense Development, Daejeon, Republic of Korea
| | - Dong Hyun Song
- 4th R&D Institute, Agency for Defense Development, Daejeon, Republic of Korea
| | - Se Hun Gu
- 4th R&D Institute, Agency for Defense Development, Daejeon, Republic of Korea
| | - Seong Tae Jeong
- 4th R&D Institute, Agency for Defense Development, Daejeon, Republic of Korea
| | - Jin-Won Song
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
11
|
Kim WK, No JS, Lee D, Jung J, Park H, Yi Y, Kim JA, Lee SH, Kim Y, Park S, Cho S, Lee GY, Song DH, Gu SH, Park K, Kim HC, Wiley MR, Chain PSG, Jeong ST, Klein TA, Palacios G, Song JW. Active Targeted Surveillance to Identify Sites of Emergence of Hantavirus. Clin Infect Dis 2021; 70:464-473. [PMID: 30891596 DOI: 10.1093/cid/ciz234] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 03/19/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Endemic outbreaks of hantaviruses pose a critical public health threat worldwide. Hantaan orthohantavirus (HTNV) causes hemorrhagic fever with renal syndrome (HFRS) in humans. Using comparative genomic analyses of partial and nearly complete sequences of HTNV from humans and rodents, we were able to localize, with limitations, the putative infection locations for HFRS patients. Partial sequences might not reflect precise phylogenetic positions over the whole-genome sequences; finer granularity of rodent sampling reflects more precisely the circulation of strains. METHODS Five HFRS specimens were collected. Epidemiological surveys were conducted with the patients during hospitalization. We conducted active surveillance at suspected HFRS outbreak areas. We performed multiplex polymerase chain reaction-based next-generation sequencing to obtain the genomic sequence of HTNV from patients and rodents. The phylogeny of human- and rodent-derived HTNV was generated using the maximum likelihood method. For phylogeographic analyses, the tracing of HTNV genomes from HFRS patients was defined on the bases of epidemiological interviews, phylogenetic patterns of the viruses, and geographic locations of HTNV-positive rodents. RESULTS The phylogeographic analyses demonstrated genetic clusters of HTNV strains from clinical specimens, with HTNV circulating in rodents at suspected sites of patient infections. CONCLUSIONS This study demonstrates a major shift in molecular epidemiological surveillance of HTNV. Active targeted surveillance was performed at sites of suspected infections, allowing the high-resolution phylogeographic analysis to reveal the site of emergence of HTNV. We posit that this novel approach will make it possible to identify infectious sources, perform disease risk assessment, and implement preparedness against vector-borne viruses.
Collapse
Affiliation(s)
- Won-Keun Kim
- Department of Microbiology, College of Medicine, Korea University, Seoul
| | - Jin Sun No
- Department of Microbiology, College of Medicine, Korea University, Seoul
| | - Daesang Lee
- 4th Research and Development Institute, Agency for Defense Development, Daejeon
| | | | | | | | - Jeong-Ah Kim
- Department of Microbiology, College of Medicine, Korea University, Seoul
| | - Seung-Ho Lee
- Department of Microbiology, College of Medicine, Korea University, Seoul
| | - Yujin Kim
- Armed Forces Medical Center, Seongnam
| | - Sunhye Park
- 4th Research and Development Institute, Agency for Defense Development, Daejeon
| | - Seungchan Cho
- Department of Microbiology, College of Medicine, Korea University, Seoul
| | - Geum-Young Lee
- Department of Microbiology, College of Medicine, Korea University, Seoul
| | - Dong Hyun Song
- 4th Research and Development Institute, Agency for Defense Development, Daejeon
| | - Se Hun Gu
- 4th Research and Development Institute, Agency for Defense Development, Daejeon
| | - Kkothanahreum Park
- Department of Microbiology, College of Medicine, Korea University, Seoul
| | | | - Michael R Wiley
- Center for Genome Sciences, US Army Medical Research Institute of Infectious Diseases, Maryland
| | | | - Seong Tae Jeong
- 4th Research and Development Institute, Agency for Defense Development, Daejeon
| | | | - Gustavo Palacios
- Center for Genome Sciences, US Army Medical Research Institute of Infectious Diseases, Maryland
| | - Jin-Won Song
- Department of Microbiology, College of Medicine, Korea University, Seoul
| |
Collapse
|
12
|
Maljkovic Berry I, Rutvisuttinunt W, Voegtly LJ, Prieto K, Pollett S, Cer RZ, Kugelman JR, Bishop-Lilly KA, Morton L, Waitumbi J, Jarman RG. A Department of Defense Laboratory Consortium Approach to Next Generation Sequencing and Bioinformatics Training for Infectious Disease Surveillance in Kenya. Front Genet 2020; 11:577563. [PMID: 33101395 PMCID: PMC7546821 DOI: 10.3389/fgene.2020.577563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/31/2020] [Indexed: 11/30/2022] Open
Abstract
Epidemics of emerging and re-emerging infectious diseases are a danger to civilian and military populations worldwide. Health security and mitigation of infectious disease threats is a priority of the United States Government and the Department of Defense (DoD). Next generation sequencing (NGS) and Bioinformatics (BI) enhances traditional biosurveillance by providing additional data to understand transmission, identify resistance and virulence factors, make predictions, and update risk assessments. As more and more laboratories adopt NGS and BI technologies they encounter challenges in building local capacity. In addition to choosing the right sequencing platform and approach, considerations must also be made for the complexity of bioinformatics analyses, data storage, as well as personnel and computational requirements. To address these needs, a comprehensive training program was developed covering wet lab and bioinformatics approaches to NGS. The program is meant to be modular and adaptive to meet both common and individualized needs of medical research and public health laboratories across the DoD. The training program was first deployed internationally to the Basic Science Laboratory of the US Army Medical Research Directorate-Africa in Kisumu, Kenya, which is an overseas Lab of the Walter Reed Army Institute of Research (WRAIR). A week-long workshop with intensive focus on targeted sequencing and the bioinformatics of genome assembly (n = 24 participants) was held. Post-workshop self-assessment (completed by 21 participants) noted significant median gains in knowledge domains related to NGS targeted sequencing, bioinformatics for genome assembly, and sequence quality assessment. The participants also reported that the information on study design, sample preparation, sequencing quality control, data quality assessment, reporting, and basic and advanced bioinformatics analysis were the most useful information presented in the training. While longer-term evaluations are planned, the training resulted in significant short-term improvement of a laboratory’s self-reported wet lab and bioinformatics capabilities. This framework can be used for future DoD laboratory development in the area of NGS and BI for infectious disease surveillance, ultimately enhancing this global DoD capability.
Collapse
Affiliation(s)
- Irina Maljkovic Berry
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Wiriya Rutvisuttinunt
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States.,Office of Genomics and Advanced Technologies National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Logan J Voegtly
- Genomics & Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Fort Detrick, MD, United States.,Leidos, Reston, VA, United States
| | - Karla Prieto
- College of Public Health, University of Nebraska Medical Center, Omaha, NE, United States.,Center for Genomic Studies, United States Army Medical Research Institute for Infectious Diseases, Frederick, MD, United States
| | - Simon Pollett
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Regina Z Cer
- Genomics & Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Fort Detrick, MD, United States.,Leidos, Reston, VA, United States
| | - Jeffrey R Kugelman
- Center for Genomic Studies, United States Army Medical Research Institute for Infectious Diseases, Frederick, MD, United States
| | - Kimberly A Bishop-Lilly
- Genomics & Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Fort Detrick, MD, United States
| | - Lindsay Morton
- Global Emerging Infections Surveillance, Armed Forces Health Surveillance Branch, Silver Spring, MD, United States
| | - John Waitumbi
- Basic Science Laboratory, US Army Medical Research Directorate-Africa/Kenya Medical Research Institute, Kisumu, Kenya
| | - Richard G Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
13
|
Kabwe E, Davidyuk Y, Shamsutdinov A, Garanina E, Martynova E, Kitaeva K, Malisheni M, Isaeva G, Savitskaya T, Urbanowicz RA, Morzunov S, Katongo C, Rizvanov A, Khaiboullina S. Orthohantaviruses, Emerging Zoonotic Pathogens. Pathogens 2020; 9:E775. [PMID: 32971887 PMCID: PMC7558059 DOI: 10.3390/pathogens9090775] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 12/23/2022] Open
Abstract
Orthohantaviruses give rise to the emerging infections such as of hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS) in Eurasia and the Americas, respectively. In this review we will provide a comprehensive analysis of orthohantaviruses distribution and circulation in Eurasia and address the genetic diversity and evolution of Puumala orthohantavirus (PUUV), which causes HFRS in this region. Current data indicate that the geographical location and migration of the natural hosts can lead to the orthohantaviruses genetic diversity as the rodents adapt to the new environmental conditions. The data shows that a high level of diversity characterizes the genome of orthohantaviruses, and the PUUV genome is the most divergent. The reasons for the high genome diversity are mainly caused by point mutations and reassortment, which occur in the genome segments. However, it still remains unclear whether this diversity is linked to the disease's severity. We anticipate that the information provided in this review will be useful for optimizing and developing preventive strategies of HFRS, an emerging zoonosis with potentially very high mortality rates.
Collapse
Affiliation(s)
- Emmanuel Kabwe
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.K.); (Y.D.); (A.S.); (E.G.); (E.M.); (K.K.); (A.R.)
- Kazan Research Institute of Epidemiology and Microbiology, 420012 Kazan, Russia; (G.I.); (T.S.)
| | - Yuriy Davidyuk
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.K.); (Y.D.); (A.S.); (E.G.); (E.M.); (K.K.); (A.R.)
| | - Anton Shamsutdinov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.K.); (Y.D.); (A.S.); (E.G.); (E.M.); (K.K.); (A.R.)
| | - Ekaterina Garanina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.K.); (Y.D.); (A.S.); (E.G.); (E.M.); (K.K.); (A.R.)
| | - Ekaterina Martynova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.K.); (Y.D.); (A.S.); (E.G.); (E.M.); (K.K.); (A.R.)
| | - Kristina Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.K.); (Y.D.); (A.S.); (E.G.); (E.M.); (K.K.); (A.R.)
| | | | - Guzel Isaeva
- Kazan Research Institute of Epidemiology and Microbiology, 420012 Kazan, Russia; (G.I.); (T.S.)
| | - Tatiana Savitskaya
- Kazan Research Institute of Epidemiology and Microbiology, 420012 Kazan, Russia; (G.I.); (T.S.)
| | - Richard A. Urbanowicz
- Wolfson Centre for Global Virus Infections, University of Nottingham, Nottingham NG7 2UH, UK;
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Sergey Morzunov
- Department of Pathology, School of Medicine, University of Nevada, Reno, NV 89557, USA
| | - Cyprian Katongo
- Department of Biological Sciences, University of Zambia, Lusaka 10101, Zambia;
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.K.); (Y.D.); (A.S.); (E.G.); (E.M.); (K.K.); (A.R.)
| | - Svetlana Khaiboullina
- Department of Microbiology and Immunology, University of Nevada, Reno, NV 89557, USA;
| |
Collapse
|
14
|
Li N, Li A, Liu Y, Wu W, Li C, Yu D, Zhu Y, Li J, Li D, Wang S, Liang M. Genetic diversity and evolution of Hantaan virus in China and its neighbors. PLoS Negl Trop Dis 2020; 14:e0008090. [PMID: 32817670 PMCID: PMC7462299 DOI: 10.1371/journal.pntd.0008090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 09/01/2020] [Accepted: 07/08/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Hantaan virus (HTNV; family Hantaviridae, order Bunyavirales) causes hemorrhagic fever with renal syndrome (HFRS), which has raised serious concerns in Eurasia, especially in China, Russia, and South Korea. Previous studies reported genetic diversity and phylogenetic features of HTNV in different parts of China, but the analyses from the holistic perspective are rare. METHODOLOGY AND PRINCIPAL FINDINGS To better understand HTNV genetic diversity and gene evolution, we analyzed all available complete sequences derived from the small (S) and medium (M) segments with bioinformatic tools. Eleven phylogenetic groups were defined and showed geographic clustering; 42 significant amino acid variant sites were found, and 19 of them were located in immune epitopes; nine recombinant events and eight reassortments with highly divergent sequences were found and analyzed. We found that sequences from Guizhou showed high genetic divergence, contributing to multiple lineages of the phylogenetic tree and also to the recombination and reassortment events. Bayesian stochastic search variable selection analysis revealed that Heilongjiang, Shaanxi, and Guizhou played important roles in HTNV evolution and migration; the virus may originate from Zhejiang Province in the eastern part of China; and the virus population size expanded from the 1980s to 1990s. CONCLUSIONS/SIGNIFICANCE These findings revealed the original and evolutionary features of HTNV, which will help to illustrate hantavirus epidemic trends, thus aiding in disease control and prevention.
Collapse
Affiliation(s)
- Naizhe Li
- Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of People's Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Aqian Li
- Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of People's Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yang Liu
- Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of People's Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wei Wu
- Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of People's Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chuan Li
- Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of People's Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dongyang Yu
- Department of Microbiology, Anhui Medical University, Hefei, China
| | - Yu Zhu
- Department of Microbiology, Anhui Medical University, Hefei, China
| | - Jiandong Li
- Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of People's Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dexin Li
- Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of People's Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shiwen Wang
- Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of People's Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- China CDC-WIV Joint Research Center for Emerging Diseases and Biosafety, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, P. R. China
- * E-mail: (SW); (ML)
| | - Mifang Liang
- Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of People's Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- China CDC-WIV Joint Research Center for Emerging Diseases and Biosafety, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, P. R. China
- * E-mail: (SW); (ML)
| |
Collapse
|
15
|
Lee SH, Kim WK, Park K, No JS, Lee GY, Kim HC, Klein TA, Min MS, Lee SJ, Hwang J, Park MS, Song JW. Genetic diversity and phylogeography of Jeju Orthohantavirus (Hantaviridae) in the Republic of Korea. Virology 2020; 543:13-19. [PMID: 32056842 DOI: 10.1016/j.virol.2020.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/26/2020] [Accepted: 01/26/2020] [Indexed: 11/16/2022]
Abstract
Orthohantaviruses are negative-sense, single-stranded RNA viruses harbored by rodents, shrews, moles, and bats. Of the shrew-borne orthohantaviruses in the Republic of Korea (ROK), Jeju orthohantavirus (Jeju virus, JJUV) was found on Jeju Island. This small-scale epidemiologic survey investigated the geographic distribution and molecular phylogeny of JJUV in the ROK. In 32 trapping sites, tissues of 84 Crocidura shantungensis were analyzed for JJUV RNA. JJUV RNA was detected in seven (8.3%) shrews captured on the Korean peninsula. The molecular epidemiologic survey demonstrated the prevalence of JJUV by geographic distribution. The RNA loads of JJUV were evaluated in various tissues. Entire coding sequences of tripartite genomes were recovered from two JJUV strains on the mainland. Phylogenetic relationships of the JJUV revealed a distinct geographic lineage of mainland strains from the strains on Jeju Island. This study sheds light on the molecular epidemiology, phylogeographic diversity, and virus-host co-divergence of JJUV, ROK.
Collapse
Affiliation(s)
- Seung-Ho Lee
- Department of Microbiology, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Won-Keun Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea; Center for Medical Science Research, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Kyungmin Park
- Department of Microbiology, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Jin Sun No
- Department of Microbiology, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Geum-Young Lee
- Department of Microbiology, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Heung-Chul Kim
- 5th Medical Detachment, 168th Multifunctional Medical Battalion, 65th Medical Brigade, Unit 15247, APO AP 96205-5247, USA
| | - Terry A Klein
- Public Health Command District-Korea (Provisional), 65th Medical Brigade, Unit 15281, APO AP 96205-5281, USA
| | - Mi-Sook Min
- Conservation Genome Resource Bank for Korean Wildlife, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seo-Jin Lee
- Conservation Genome Resource Bank for Korean Wildlife, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jusun Hwang
- Wildlife Ecology & Genomics Lab, College of Forest & Environmental Science, Kangwon National University, Chuncheon, Republic of Korea; Wildlife Conservation Society-Vietnam, Wildlife Health Program, Hanoi, Viet Nam
| | - Man-Seong Park
- Department of Microbiology, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Jin-Won Song
- Department of Microbiology, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
16
|
Su Q, Chen Y, Li M, Ma J, Wang B, Luo J, He H. Genetic Characterization and Molecular Evolution of Urban Seoul Virus in Southern China. Viruses 2019; 11:v11121137. [PMID: 31835357 PMCID: PMC6950471 DOI: 10.3390/v11121137] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 01/03/2023] Open
Abstract
Seoul virus (SEOV), which causes hemorrhagic fever with renal syndrome (HFRS) in humans, has spread all over the world, especially in mainland China. Understanding basic mechanisms of SEOV evolution is essential to better combat and prevent viral diseases. Here, we examined SEOV prevalence and evolution in the residential area of four districts in Guangzhou city, China. The carriage of SEOV was observed in 33.33% of the sampled rodents, with 35.96% of the sampled Rattus norvegicus and 13.33% of R. tanezumi. Based on the comprehensive analyses of large (L), medium (M), and small (S) segments, our study first demonstrated that the genetic characterization of urban SEOV was shaped by high nucleotide substitution rates, purifying selection, and recombination. Additionally, we detected mutational saturation in the S segment of SEOV, which may lead to the biases of genetic divergence and substitution rates in our study. Importantly, we have filled the gap of SEOV evolution in the urban area. The genetic variation of SEOV may highlight the risk of HFRS, which merits further investigation.
Collapse
Affiliation(s)
- Qianqian Su
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (Q.S.); (M.L.); (J.M.); (B.W.); (J.L.)
- University of Chinese Academy of Sciences, Beijing 100101, China;
| | - Yi Chen
- University of Chinese Academy of Sciences, Beijing 100101, China;
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng Li
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (Q.S.); (M.L.); (J.M.); (B.W.); (J.L.)
| | - Jiajun Ma
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (Q.S.); (M.L.); (J.M.); (B.W.); (J.L.)
| | - Bo Wang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (Q.S.); (M.L.); (J.M.); (B.W.); (J.L.)
- University of Chinese Academy of Sciences, Beijing 100101, China;
| | - Jing Luo
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (Q.S.); (M.L.); (J.M.); (B.W.); (J.L.)
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (Q.S.); (M.L.); (J.M.); (B.W.); (J.L.)
- Correspondence:
| |
Collapse
|
17
|
Kang HJ, Gu SH, Yashina LN, Cook JA, Yanagihara R. Highly Divergent Genetic Variants of Soricid-Borne Altai Virus ( Hantaviridae) in Eurasia Suggest Ancient Host-Switching Events. Viruses 2019; 11:E857. [PMID: 31540127 PMCID: PMC6783933 DOI: 10.3390/v11090857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/08/2019] [Accepted: 09/12/2019] [Indexed: 12/31/2022] Open
Abstract
With the recent discovery of genetically distinct hantaviruses (family Hantaviridae) in shrews (order Eulipotyphla, family Soricidae), the once-conventional view that rodents (order Rodentia) served as the primordial reservoir hosts now appears improbable. The newly identified soricid-borne hantaviruses generally demonstrate well-resolved lineages organized according to host taxa and geographic origin. However, beginning in 2007, we detected sequences that did not conform to the prototypic hantaviruses associated with their soricid host species and/or geographic locations. That is, Eurasian common shrews (Sorexaraneus), captured in Hungary and Russia, were found to harbor hantaviruses belonging to two separate and highly divergent lineages. We have since accumulated additional examples of these highly distinctive hantavirus sequences in the Laxmann's shrew (Sorexcaecutiens), flat-skulled shrew (Sorexroboratus) and Eurasian least shrew (Sorexminutissimus), captured at the same time and in the same location in the Sakha Republic in Far Eastern Russia. Pair-wise alignment and phylogenetic analysis of partial and full-length S-, M- and/or L-segment sequences indicate that a distinct hantavirus species related to Altai virus (ALTV), first reported in a Eurasian common shrew from Western Siberia, was being maintained in these closely related syntopic soricine shrew species. These findings suggest that genetic variants of ALTV might have resulted from ancient host-switching events with subsequent diversification within the Soricini tribe in Eurasia.
Collapse
Affiliation(s)
- Hae Ji Kang
- John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA.
| | - Se Hun Gu
- John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA.
| | - Liudmila N Yashina
- State Research Center of Virology and Biotechnology, "Vector", Koltsovo 630559, Russia.
| | - Joseph A Cook
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| | - Richard Yanagihara
- John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA.
| |
Collapse
|
18
|
Fei D, Guo Y, Fan Q, Wang H, Wu J, Li M, Ma M. Phylogenetic and recombination analyses of two deformed wing virus strains from different honeybee species in China. PeerJ 2019; 7:e7214. [PMID: 31293837 PMCID: PMC6601602 DOI: 10.7717/peerj.7214] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/25/2019] [Indexed: 12/22/2022] Open
Abstract
Background Deformed wing virus (DWV) is one of many viruses that infect honeybees and has been extensively studied because of its close association with honeybee colony collapse that is induced by Varroa destructor. However, virus genotypes, sequence characteristics, and genetic variations of DWV remain unknown in China. Methods Two DWV strains were isolated from Jinzhou and Qinhuangdao cities in China, and were named China1-2017 (accession number: MF770715) and China2-2018 (accession number: MH165180), respectively, and their complete genome sequences were analyzed. To investigate the phylogenetic relationships of the DWV isolates, a phylogenetic tree of the complete open reading frame (ORF), structural protein VP1, and non-structural protein 3C+RdRp of the DWV sequences was constructed using the MEGA 5.0 software program. Then, the similarity and recombinant events of the DWV isolated strains were analyzed using recombination detection program (RDP4) software and genetic algorithm for recombination detection (GARD). Results The complete genomic analysis showed that the genomes of the China1-2017 and China2-2018 DWV strains consisted of 10,141 base pairs (bp) and 10,105 bp, respectively, and contained a single, large ORF (China1-2017: 1,146–9,827 bp; China2-2018: 1,351–9,816 bp) that encoded 2,894 amino acids. The sequences were compared with 20 previously reported DWV sequences from different countries and with sequences of two closely related viruses, Kakugo virus (KV) and V. destructor virus-1. Multiple sequence comparisons revealed a nucleotide identity of 84.3–96.7%, and identity of 94.7–98.6% in amino acids between the two isolate strains and 20 reference strains. The two novel isolates showed 96.7% nucleotide identity and 98.1% amino acid identity. The phylogenetic analyses showed that the two isolates belonged to DWV Type A and were closely related to the KV-2001 strain from Japan. Based on the RDP4 and GARD analyses, the recombination of the China2-2018 strain was located at the 4,266–7,507 nt region, with Korea I-2012 as an infer unknown parent and China-2017 as a minor parent, which spanned the entire helicase ORF. To the best of our knowledge, this is the first study to the complete sequence of DWV isolated from Apis cerana and the possible DWV recombination events in China. Our findings are important for further research of the phylogenetic relationship of DWVs in China with DWV strains from other countries and also contribute to the understanding of virological properties of these complex DWV recombinants.
Collapse
Affiliation(s)
- Dongliang Fei
- Institute of Biological Sciences, Jinzhou Medical University, Jinzhou, Liaoning, China.,College of Veterinary Medicine, Northeast Agricultural University, Haerbin, Heilongjiang, China
| | - Yaxi Guo
- Institute of Biological Sciences, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Qiong Fan
- Jinzhou Animal Disease Prevention and Control Center, Jinzhou, Liaoning, China
| | - Haoqi Wang
- Institute of Biological Sciences, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Jiadi Wu
- Institute of Biological Sciences, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Ming Li
- Institute of Biological Sciences, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Mingxiao Ma
- Institute of Biological Sciences, Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
19
|
Kim WK, No JS, Lee SH, Song DH, Lee D, Kim JA, Gu SH, Park S, Jeong ST, Kim HC, Klein TA, Wiley MR, Palacios G, Song JW. Multiplex PCR-Based Next-Generation Sequencing and Global Diversity of Seoul Virus in Humans and Rats. Emerg Infect Dis 2019; 24:249-257. [PMID: 29350137 PMCID: PMC5782898 DOI: 10.3201/eid2402.171216] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Seoul virus (SEOV) poses a worldwide public health threat. This virus, which is harbored by Rattus norvegicus and R. rattus rats, is the causative agent of hemorrhagic fever with renal syndrome (HFRS) in humans, which has been reported in Asia, Europe, the Americas, and Africa. Defining SEOV genome sequences plays a critical role in development of preventive and therapeutic strategies against the unique worldwide hantavirus. We applied multiplex PCR-based next-generation sequencing to obtain SEOV genome sequences from clinical and reservoir host specimens. Epidemiologic surveillance of R. norvegicus rats in South Korea during 2000-2016 demonstrated that the serologic prevalence of enzootic SEOV infections was not significant on the basis of sex, weight (age), and season. Viral loads of SEOV in rats showed wide dissemination in tissues and dynamic circulation among populations. Phylogenetic analyses showed the global diversity of SEOV and possible genomic configuration of genetic exchanges.
Collapse
|
20
|
Klempa B. Reassortment events in the evolution of hantaviruses. Virus Genes 2018; 54:638-646. [PMID: 30047031 PMCID: PMC6153690 DOI: 10.1007/s11262-018-1590-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/17/2018] [Indexed: 12/24/2022]
Abstract
Hantaviruses (order Bunyavirales, family Hantaviridae), known as important zoonotic human pathogens, possess the capacity to exchange genome segments via genetic reassortment due to their tri-segmented genome. Although not as frequent as in the arthropod-borne bunyaviruses, reports indicating reassortment events in the evolution of hantaviruses have been recently accumulating. The intra- and inter-lineage reassortment between closely related variants has been repeatedly reported for several hantaviruses including the rodent-borne human pathogens such as Sin Nombre virus, Puumala virus, Dobrava-Belgrade virus, or Hantaan virus as well as for the more recently recognized shrew-borne hantaviruses, Imjin and Seewis. Reassortment between more distantly related viruses was rarely found but seems to play a beneficial role in the process of crossing the host species barriers. Besides the findings based on phylogenetic studies of naturally occurring strains, hantavirus reassortants were generated also in in vitro studies. Interestingly, only reassortants with exchanged M segments could be generated suggesting that a high degree of genetic compatibility is required for the S and L segments while the exchange of M segment is better tolerated or is particularly beneficial. Altogether, the numerous reports on hantavirus reassortment, summarized in this review, clearly demonstrate that reassortment events play a significant role in hantavirus evolution and contributed to the currently recognized hantavirus diversity.
Collapse
Affiliation(s)
- Boris Klempa
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia. .,Institute of Virology, Charité University Hospital, Helmut-Ruska-Haus, Berlin, Germany.
| |
Collapse
|
21
|
Abstract
Reproduction of RNA viruses is typically error-prone due to the infidelity of their replicative machinery and the usual lack of proofreading mechanisms. The error rates may be close to those that kill the virus. Consequently, populations of RNA viruses are represented by heterogeneous sets of genomes with various levels of fitness. This is especially consequential when viruses encounter various bottlenecks and new infections are initiated by a single or few deviating genomes. Nevertheless, RNA viruses are able to maintain their identity by conservation of major functional elements. This conservatism stems from genetic robustness or mutational tolerance, which is largely due to the functional degeneracy of many protein and RNA elements as well as to negative selection. Another relevant mechanism is the capacity to restore fitness after genetic damages, also based on replicative infidelity. Conversely, error-prone replication is a major tool that ensures viral evolvability. The potential for changes in debilitated genomes is much higher in small populations, because in the absence of stronger competitors low-fit genomes have a choice of various trajectories to wander along fitness landscapes. Thus, low-fit populations are inherently unstable, and it may be said that to run ahead it is useful to stumble. In this report, focusing on picornaviruses and also considering data from other RNA viruses, we review the biological relevance and mechanisms of various alterations of viral RNA genomes as well as pathways and mechanisms of rehabilitation after loss of fitness. The relationships among mutational robustness, resilience, and evolvability of viral RNA genomes are discussed.
Collapse
|