1
|
Ma C, Yang Z, Wang J, She H, Tan L, Mo X, Li T, Liu L. Interleukin-1β-stimulated macrophage-derived exosomes improve myocardial injury in sepsis via regulation of mitochondrial homeostasis: experimental research. Int J Surg 2025; 111:283-301. [PMID: 38967516 PMCID: PMC11745623 DOI: 10.1097/js9.0000000000001915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/23/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND The purpose of this study was to investigate the effects of interleukin-1β (IL-1β) stimulation on the protection of macrophage-derived exosomes miR-146a (M-IL-exo-146a) on sepsis-induced myocardial injury (SMI) in vitro and in vivo . MATERIALS AND METHODS Macrophage-derived exosomes (M-exo) and IL-1β-stimulated macrophage exosomes (M-IL-exo) were isolated from macrophages of sepsis with or without IL-1β. The expressions of miR-146a in M-exo and M-IL-exo were detected by fluorescence quantitative PCR. Related molecular biology technologies were used to evaluate the role and mechanism of M-exo-146a and M-IL-exo-146a on SMI and the enhancing effect of IL-1β. RESULTS Compared with M-exo, the expression of miR-146a in M-IL-exo was significantly increased. M-IL-exo-146a significantly alleviated SMI by decreasing the level of serum myocardial enzymes, serum and myocardial oxidative stress and cytokines, and improved myocardial mitochondrial imbalance. The mechanism responsible for IL-1β enhancing the production of IL-M-exo miR-146a was via JNK-1/2 signal pathway. The mechanism responsible for M-exo-IL-miR-146a protecting SMI was related to miR-146a inhibiting inflammatory response and mitochondrial function via MAPK4/Drp-1 signal pathway. CONCLUSIONS This study provides a new strategy for the treatment of SMI by delivering M-IL-exo.
Collapse
Affiliation(s)
- Chunhua Ma
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Research Department of Army Medical Center, Army Medical University, Chongqing
| | - Zhaocong Yang
- Children’s Hospital of Nanjing Medical University, Nanjing
| | - Jing Wang
- School of Biology and Food Engineering, Institute of Pharmaceutical Pharmacology Research Center, Suzhou University, Suzhou, Anhui, People’s Republic of China
| | - Han She
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Research Department of Army Medical Center, Army Medical University, Chongqing
| | - Lei Tan
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Research Department of Army Medical Center, Army Medical University, Chongqing
| | - Xuming Mo
- School of Biology and Food Engineering, Institute of Pharmaceutical Pharmacology Research Center, Suzhou University, Suzhou, Anhui, People’s Republic of China
| | - Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Research Department of Army Medical Center, Army Medical University, Chongqing
| | - Liangming Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Research Department of Army Medical Center, Army Medical University, Chongqing
| |
Collapse
|
2
|
Li Q, Feng Q, Zhou H, Lin C, Sun X, Ma C, Sun L, Guo G, Wang D. Mechanisms and therapeutic strategies of extracellular vesicles in cardiovascular diseases. MedComm (Beijing) 2023; 4:e454. [PMID: 38124785 PMCID: PMC10732331 DOI: 10.1002/mco2.454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Cardiovascular disease (CVD) significantly impacts global society since it is the leading cause of death and disability worldwide, and extracellular vesicle (EV)-based therapies have been extensively investigated. EV delivery is involved in mediating the progression of CVDs and has great potential to be biomarker and therapeutic molecular carrier. Besides, EVs from stem cells and cardiac cells can effectively protect the heart from various pathologic conditions, and then serve as an alternative treatment for CVDs. Moreover, the research of using EVs as delivery carriers of therapeutic molecules, membrane engineering modification of EVs, or combining EVs with biomaterials further improves the application potential of EVs in clinical treatment. However, currently there are only a few articles summarizing the application of EVs in CVDs. This review provides an overview of the role of EVs in the pathogenesis and diagnosis of CVDs. It also focuses on how EVs promote the repair of myocardial injury and therapeutic methods of CVDs. In conclusion, it is of great significance to review the research on the application of EVs in the treatment of CVDs, which lays a foundation for further exploration of the role of EVs, and clarifies the prospect of EVs in the treatment of myocardial injury.
Collapse
Affiliation(s)
- Qirong Li
- Department of CardiologyChina‐Japan Union Hospital of Jilin UniversityChangchunChina
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Qiang Feng
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Hengzong Zhou
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Chao Lin
- School of Grain Science and TechnologyJilin Business and Technology CollegeChangchunChina
| | - Xiaoming Sun
- School of Grain Science and TechnologyJilin Business and Technology CollegeChangchunChina
| | - Chaoyang Ma
- Hepatology Hospital of Jilin ProvinceChangchunChina
| | - Liqun Sun
- Department of PathogenobiologyJilin University Mycology Research CenterCollege of Basic Medical SciencesJilin UniversityChangchunChina
| | - Gongliang Guo
- Department of CardiologyChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Dongxu Wang
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| |
Collapse
|
3
|
Lang CI, Dahmen A, Vasudevan P, Lemcke H, Gäbel R, Öner A, Ince H, David R, Wolfien M. Cardiac cell therapies for the treatment of acute myocardial infarction in mice: systematic review and meta-analysis. Cytotherapy 2023; 25:640-652. [PMID: 36890093 DOI: 10.1016/j.jcyt.2023.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 03/08/2023]
Abstract
Backgound Aims: This meta-analysis aims at summarizing the whole body of research on cell therapies for acute myocardial infarction (MI) in the mouse model to bring forward ongoing research in this field of regenerative medicine. Despite rather modest effects in clinical trials, pre-clinical studies continue to report beneficial effects of cardiac cell therapies for cardiac repair following acute ischemic injury. Results: The authors' meta-analysis of data from 166 mouse studies comprising 257 experimental groups demonstrated a significant improvement in left ventricular ejection fraction of 10.21% after cell therapy compared with control animals. Subgroup analysis indicated that second-generation cell therapies such as cardiac progenitor cells and pluripotent stem cell derivatives had the highest therapeutic potential for minimizing myocardial damage post-MI. Conclusions: Whereas the vision of functional tissue replacement has been replaced by the concept of regional scar modulation in most of the investigated studies, rather basic methods for assessing cardiac function were most frequently used. Hence, future studies will highly benefit from integrating methods for assessment of regional wall properties to evolve a deeper understanding of how to modulate cardiac healing after acute MI.
Collapse
Affiliation(s)
| | - Anika Dahmen
- Department of Cardiac Surgery, Rostock University Medical Center, Rostock, Germany; Department of Life, Light and Matter, University of Rostock, Rostock, Germany
| | - Praveen Vasudevan
- Department of Cardiac Surgery, Rostock University Medical Center, Rostock, Germany; Department of Life, Light and Matter, University of Rostock, Rostock, Germany
| | - Heiko Lemcke
- Department of Cardiac Surgery, Rostock University Medical Center, Rostock, Germany; Department of Life, Light and Matter, University of Rostock, Rostock, Germany
| | - Ralf Gäbel
- Department of Cardiac Surgery, Rostock University Medical Center, Rostock, Germany; Department of Life, Light and Matter, University of Rostock, Rostock, Germany
| | - Alper Öner
- Department of Cardiology, Rostock University Medical Center, Rostock, Germany
| | - Hüseyin Ince
- Department of Cardiology, Rostock University Medical Center, Rostock, Germany
| | - Robert David
- Department of Cardiac Surgery, Rostock University Medical Center, Rostock, Germany; Department of Life, Light and Matter, University of Rostock, Rostock, Germany
| | - Markus Wolfien
- Institute of Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
4
|
Duan J, Liu X, Shen S, Tan X, Wang Y, Wang L, Kang L, Wang K, Wei Z, Qi Y, Hu L, Xu B, Gu R. Trophoblast Stem-Cell-Derived Exosomes Alleviate Cardiotoxicity of Doxorubicin via Improving Mfn2-Mediated Mitochondrial Fusion. Cardiovasc Toxicol 2023; 23:23-31. [PMID: 36609664 PMCID: PMC9859904 DOI: 10.1007/s12012-022-09774-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/04/2022] [Indexed: 01/09/2023]
Abstract
Doxorubicin (Dox) is an anticancer drug widely used in tumor chemotherapy, but it has the side-effect of cardiotoxicity, which is closely related to mitochondrial damage. Mitochondrial dynamics is a quality control mechanism that usually helps to maintain a healthy mitochondrial pool. Trophoblast stem cell-derived exosomes (TSC-Exos) have been shown to protect cardiomyocytes from DOX-induced cardiotoxicity. To explore whether the cardioprotective role is mediated by the regulation of mitochondrial dynamic mechanism, TSC-Exos were isolated from human trophoblast stem cells by ultracentrifugation and characterized by Western blot and transmission electron microscopy. Cellular experiments of H9c2 cardiomyocytes co-cultured with Dox and TSC-Exos were performed in vitro to determine the levels of reactive oxygen species generation and apoptosis level. An animal model of heart failure was established by intraperitoneal injection of Dox in vivo, therapy mice were received additional intracardiac injection of TSC-Exos, then, the cardiac function, cardiomyocyte apoptosis and mitochondrial fragmentation were ameliorated. Histology assays suggest that Dox caused an increased tendency of mitochondrial fission, which was manifested by a decrease in the average size of mitochondria. By receiving TSC-Exos treatment, this effect was eliminated. In summary, these results suggest that TSC-Exos alleviate DOX-induced cardiotoxicity through antiapoptotic effect and improving mitochondrial fusion with an increase in Mfn2 expression. This study is the first to provide a potential new treatment scheme for the treatment of heart failure from the perspective of the relationship between TSC-Exos and mitochondrial dynamics.
Collapse
Affiliation(s)
- Junfeng Duan
- State Key Laboratory of Pharmaceutical Biotechnology Department of Cardiology, Medical School of Nanjing University, Nanjing Drum Tower Hospital, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Xiaoli Liu
- State Key Laboratory of Pharmaceutical Biotechnology Department of Cardiology, Medical School of Nanjing University, Nanjing Drum Tower Hospital, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Song Shen
- State Key Laboratory of Pharmaceutical Biotechnology Department of Cardiology, Medical School of Nanjing University, Nanjing Drum Tower Hospital, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Xi Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Yi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Lian Wang
- State Key Laboratory of Pharmaceutical Biotechnology Department of Cardiology, Medical School of Nanjing University, Nanjing Drum Tower Hospital, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Lina Kang
- State Key Laboratory of Pharmaceutical Biotechnology Department of Cardiology, Medical School of Nanjing University, Nanjing Drum Tower Hospital, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Kun Wang
- State Key Laboratory of Pharmaceutical Biotechnology Department of Cardiology, Medical School of Nanjing University, Nanjing Drum Tower Hospital, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Zhonghai Wei
- State Key Laboratory of Pharmaceutical Biotechnology Department of Cardiology, Medical School of Nanjing University, Nanjing Drum Tower Hospital, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Yu Qi
- State Key Laboratory of Pharmaceutical Biotechnology Department of Cardiology, Medical School of Nanjing University, Nanjing Drum Tower Hospital, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Lei Hu
- State Key Laboratory of Pharmaceutical Biotechnology Department of Cardiology, Medical School of Nanjing University, Nanjing Drum Tower Hospital, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Biao Xu
- State Key Laboratory of Pharmaceutical Biotechnology Department of Cardiology, Medical School of Nanjing University, Nanjing Drum Tower Hospital, No. 321 Zhongshan Road, Nanjing, 210008, China.
| | - Rong Gu
- State Key Laboratory of Pharmaceutical Biotechnology Department of Cardiology, Medical School of Nanjing University, Nanjing Drum Tower Hospital, No. 321 Zhongshan Road, Nanjing, 210008, China.
| |
Collapse
|
5
|
Lee CS, Cho HJ, Lee JW, Son HJ, Lee J, Kang M, Kim HS. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:332-342. [PMID: 35356977 PMCID: PMC8968580 DOI: 10.1093/stcltm/szab015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/13/2021] [Indexed: 11/29/2022] Open
Abstract
Discovering cell–surface markers based on a comprehensive understanding of development is utilized to isolate a particular cell type with high purity for therapeutic purposes. Given that latrophilin-2 (Lphn2) substantially contributes to cardiac differentiation, we examined whether Lphn2 regulates functional significance in heart development and repair. We performed whole-mount immunostaining followed by clearing technique of embryo, RNA sequencing related to Lphn2-knockout (KO) embryo, and in vivo functional analyses of Lphn2+ cells using echocardiography. After immunostaining the cleared embryo sample, Lphn2 was exclusively observed in cardiac cells expressing α-sarcomeric actinin at embryonic days E9.5 and E10.5. Homozygous Lphn2-KO mice were embryonically lethal and showed underdevelopment of the ventricular myocardium. However, Lphn2 was not required to develop vessels, including endothelial cells and smooth muscle cells. For the purpose of cardiac regeneration, we transplanted pluripotent stem cell (PSC)–derived Lphn2+ cells into the infarcted heart. PSC–derived Lphn2+ cells differentiated into cardiomyocytes and regenerated the myocardium when transplanted into the infarcted heart, unlike Lphn2− cells. Transplanted Lphn2+ cells improved left-ventricle systolic function and reduced infarct size. We demonstrated that Lphn2 exhibits potential as a cardiomyogenic marker to facilitate targeted stem cell therapy for heart repair in clinical practice.
Collapse
Affiliation(s)
- Choon-Soo Lee
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul, South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Hyun-Jai Cho
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
- Corresponding author: Hyun-Jai Cho, MD, Ph.D., Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, South Korea. Tel: +82 2 2072 3931; Fax: +82 2 3675 0805. E-mail: ;
| | - Jin-Woo Lee
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul, South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Hyun Ju Son
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul, South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Jaewon Lee
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul, South Korea
| | - Minjun Kang
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul, South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Hyo-Soo Kim
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul, South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, South Korea
| |
Collapse
|
6
|
Molecular Imaging of Human Skeletal Myoblasts (huSKM) in Mouse Post-Infarction Myocardium. Int J Mol Sci 2021; 22:ijms221910885. [PMID: 34639225 PMCID: PMC8509689 DOI: 10.3390/ijms221910885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022] Open
Abstract
Current treatment protocols for myocardial infarction improve the outcome of disease to some extent but do not provide the clue for full regeneration of the heart tissues. An increasing body of evidence has shown that transplantation of cells may lead to some organ recovery. However, the optimal stem cell population has not been yet identified. We would like to propose a novel pro-regenerative treatment for post-infarction heart based on the combination of human skeletal myoblasts (huSkM) and mesenchymal stem cells (MSCs). huSkM native or overexpressing gene coding for Cx43 (huSKMCx43) alone or combined with MSCs were delivered in four cellular therapeutic variants into the healthy and post-infarction heart of mice while using molecular reporter probes. Single-Photon Emission Computed Tomography/Computed Tomography (SPECT/CT) performed right after cell delivery and 24 h later revealed a trend towards an increase in the isotopic uptake in the post-infarction group of animals treated by a combination of huSkMCx43 with MSC. Bioluminescent imaging (BLI) showed the highest increase in firefly luciferase (fluc) signal intensity in post-infarction heart treated with combination of huSkM and MSCs vs. huSkM alone (p < 0.0001). In healthy myocardium, however, nanoluciferase signal (nanoluc) intensity varied markedly between animals treated with stem cell populations either alone or in combinations with the tendency to be simply decreased. Therefore, our observations seem to show that MSCs supported viability, engraftment, and even proliferation of huSkM in the post-infarction heart.
Collapse
|
7
|
Han J, Li G, Hou M, Ng J, Kwon MY, Xiong K, Liang X, Taglauer E, Shi Y, Mitsialis SA, Kourembanas S, El-Chemaly S, Lederer JA, Rosas IO, Perrella MA, Liu X. Intratracheal transplantation of trophoblast stem cells attenuates acute lung injury in mice. Stem Cell Res Ther 2021; 12:487. [PMID: 34461993 PMCID: PMC8404310 DOI: 10.1186/s13287-021-02550-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/08/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Acute lung injury (ALI) is a common lung disorder that affects millions of people every year. The infiltration of inflammatory cells into the lungs and death of the alveolar epithelial cells are key factors to trigger a pathological cascade. Trophoblast stem cells (TSCs) are immune privileged, and demonstrate the capability of self-renewal and multipotency with differentiation into three germ layers. We hypothesized that intratracheal transplantation of TSCs may alleviate ALI. METHODS ALI was induced by intratracheal delivery of bleomycin (BLM) in mice. After exposure to BLM, pre-labeled TSCs or fibroblasts (FBs) were intratracheally administered into the lungs. Analyses of the lungs were performed for inflammatory infiltrates, cell apoptosis, and engraftment of TSCs. Pro-inflammatory cytokines/chemokines of lung tissue and in bronchoalveolar lavage fluid (BALF) were also assessed. RESULTS The lungs displayed a reduction in cellularity, with decreased CD45+ cells, and less thickening of the alveolar walls in ALI mice that received TSCs compared with ALI mice receiving PBS or FBs. TSCs decreased infiltration of neutrophils and macrophages, and the expression of interleukin (IL) 6, monocyte chemoattractant protein-1 (MCP-1) and keratinocyte-derived chemokine (KC) in the injured lungs. The levels of inflammatory cytokines in BALF, particularly IL-6, were decreased in ALI mice receiving TSCs, compared to ALI mice that received PBS or FBs. TSCs also significantly reduced BLM-induced apoptosis of alveolar epithelial cells in vitro and in vivo. Transplanted TSCs integrated into the alveolar walls and expressed aquaporin 5 and prosurfactant protein C, markers for alveolar epithelial type I and II cells, respectively. CONCLUSION Intratracheal transplantation of TSCs into the lungs of mice after acute exposure to BLM reduced pulmonary inflammation and cell death. Furthermore, TSCs engrafted into the alveolar walls to form alveolar epithelial type I and II cells. These data support the use of TSCs for the treatment of ALI.
Collapse
Affiliation(s)
- Junwen Han
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Gu Li
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Minmin Hou
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | - Julie Ng
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | - Min-Young Kwon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | - Kevin Xiong
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | - Xiaoliang Liang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX, 77024, USA
| | - Elizabeth Taglauer
- Department of Pediatrics, Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Yuanyuan Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - S Alex Mitsialis
- Department of Pediatrics, Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Stella Kourembanas
- Department of Pediatrics, Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Souheil El-Chemaly
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | - James A Lederer
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Ivan O Rosas
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX, 77024, USA
| | - Mark A Perrella
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Xiaoli Liu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
8
|
Pushp P, Nogueira DES, Rodrigues CAV, Ferreira FC, Cabral JMS, Gupta MK. A Concise Review on Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Personalized Regenerative Medicine. Stem Cell Rev Rep 2021; 17:748-776. [PMID: 33098306 DOI: 10.1007/s12015-020-10061-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2020] [Indexed: 02/07/2023]
Abstract
The induced pluripotent stem cells (iPSCs) are derived from somatic cells by using reprogramming factors such as Oct4, Sox2, Klf4, and c-Myc (OSKM) or Oct4, Sox2, Nanog and Lin28 (OSNL). They resemble embryonic stem cells (ESCs) and have the ability to differentiate into cell lineage of all three germ-layer, including cardiomyocytes (CMs). The CMs can be generated from iPSCs by inducing embryoid bodies (EBs) formation and treatment with activin A, bone morphogenic protein 4 (BMP4), and inhibitors of Wnt signaling. However, these iPSC-derived CMs are a heterogeneous population of cells and require purification and maturation to mimic the in vivo CMs. The matured CMs can be used for various therapeutic purposes in regenerative medicine by cardiomyoplasty or through the development of tissue-engineered cardiac patches. In recent years, significant advancements have been made in the isolation of iPSC and their differentiation, purification, and maturation into clinically usable CMs. Newer small molecules have also been identified to substitute the reprogramming factors for iPSC generation as well as for direct differentiation of somatic cells into CMs without an intermediary pluripotent state. This review provides a concise update on the generation of iPSC-derived CMs and their application in personalized cardiac regenerative medicine. It also discusses the current limitations and challenges in the application of iPSC-derived CMs. Graphical abstract.
Collapse
Affiliation(s)
- Pallavi Pushp
- Department of Biotechnology, Institute of Engineering and Technology (IET), Bundelkhand University, Jhansi, Uttar Pradesh, 284128, India
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769 008, India
| | - Diogo E S Nogueira
- Department of Bioengineering, and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Carlos A V Rodrigues
- Department of Bioengineering, and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Frederico C Ferreira
- Department of Bioengineering, and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Joaquim M S Cabral
- Department of Bioengineering, and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| | - Mukesh Kumar Gupta
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769 008, India.
| |
Collapse
|
9
|
Yanar K, Molbay M, Özaydın-Goksu E, Unek G, Cetindağ E, Unal A, Korgun ET. Contribution of Human Trophoblast Progenitor Cells to Neurogenesis in Rat Focal Cerebral Ischemia Model. Brain Inj 2021; 35:850-862. [PMID: 33780298 DOI: 10.1080/02699052.2021.1906948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE : A decrease in the blood flow below a current level in the brain results in ischemia. Studies demonstrated that human trophoblast progenitor cells (hTPCs) contribute to the treatment of many diseases. Therefore, hTPCs might be a promising source to repair ischemia in cerebral ischemia models. For this purpose, we evaluated the expression of many neurogenesis markers by performing hTPC transplantation after focal cerebral ischemia in rats. METHODS : hTPCs, isolated from the term placentae, were characterized by immunofluorescent staining and differentiated into neuron-like cells. Differentiation was confirmed with immunostaining of GFAP and NeuN proteins. Cerebral ischemia models were generated in rats via middle cerebral artery occlusion and, after 24 hours, hTPCs were injected via the tail vein. Animals were sacrificed on day 3 or day 11. Immunohistochemical analysis was performed with proteins associated with neurogenesis and neuronal development, such as DLX2, DLX5, LHX6, NGN1, and NGN2, Olig1, Olig2, and PDGFRα. RESULTS : According to our results, hTPCs may alleviate ischemic damage in the brain and contribute to the neurogenesis after ischemia. CONCLUSIONS : Based on our findings, this topic should be further investigated as the hTPC-based therapies may be a reliable source that can be used in the treatment of stroke and ischemia.
Collapse
Affiliation(s)
- Kerem Yanar
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Muge Molbay
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Eylem Özaydın-Goksu
- Department of Neurology, Antalya Research and Training Hospital, Neurology Clinic, Antalya, Turkey
| | - Gozde Unek
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Emre Cetindağ
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Ali Unal
- Department of Neurology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Emin Turkay Korgun
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| |
Collapse
|
10
|
Ni J, Liu Y, Kang L, Wang L, Han Z, Wang K, Xu B, Gu R. Human trophoblast-derived exosomes attenuate doxorubicin-induced cardiac injury by regulating miR-200b and downstream Zeb1. J Nanobiotechnology 2020; 18:171. [PMID: 33218341 PMCID: PMC7678329 DOI: 10.1186/s12951-020-00733-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022] Open
Abstract
Human trophoblast stem cells (TSCs) have been confirmed to play a cardioprotective role in heart failure. However, whether trophoblast stem cell-derived exosomes (TSC-Exos) can protect cardiomyocytes from doxorubicin (Dox)-induced injury remains unclear. In the present study, TSC-Exos were isolated from the supernatants of human trophoblasts using the ultracentrifugation method and characterized by transmission electron microscopy and western blotting. In vitro, primary cardiomyocytes were subjected to Dox and treated with TSC-Exos, miR-200b mimic or miR-200b inhibitor. Cellular apoptosis was observed by flow cytometry and immunoblotting. In vivo, mice were intraperitoneally injected into Dox to establish a heart failure model. Then, different groups of mice were administered either PBS, adeno-associated virus (AAV)-vector, AAV-miR-200b-inhibitor or TSC-Exos via tail vein injection. Then, the cardiac function, cardiac fibrosis and cardiomyocyte apoptosis in each group were evaluated, and the downstream molecular mechanism was explored. TSC-Exos and miR-200b inhibitor both decreased primary cardiomyocyte apoptosis. Similarly, mice receiving TSC-Exos and AAV-miR-200b inhibitor exhibited improved cardiac function, accompanied by reduced apoptosis and inflammation. The bioinformatic prediction and luciferase reporter results confirmed that Zeb1 was a downstream target of miR-200b and had an antiapoptotic effect. TSC-Exos attenuated doxorubicin-induced cardiac injury by playing antiapoptotic and anti-inflammatory roles. The underlying mechanism could be an increase in Zeb1 expression by the inhibition of miR-200b expression. In summary, this study sheds new light on the application of TSC-Exos as a potential therapeutic tool for heart failure.![]()
Collapse
Affiliation(s)
- Jie Ni
- Department of Cardiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Yihai Liu
- Department of Cardiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Lina Kang
- Department of Cardiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Lian Wang
- Department of Cardiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Zhonglin Han
- Department of Cardiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Kun Wang
- Department of Cardiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, Jiangsu, People's Republic of China.
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, People's Republic of China. .,Department of Cardiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, Jiangsu, People's Republic of China.
| | - Rong Gu
- Department of Cardiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, Jiangsu, People's Republic of China.
| |
Collapse
|
11
|
Zhao J, Li X, Hu J, Chen F, Qiao S, Sun X, Gao L, Xie J, Xu B. Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization. Cardiovasc Res 2020; 115:1205-1216. [PMID: 30753344 PMCID: PMC6529919 DOI: 10.1093/cvr/cvz040] [Citation(s) in RCA: 530] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 01/13/2019] [Accepted: 02/07/2019] [Indexed: 12/12/2022] Open
Abstract
AIMS Mesenchymal stromal cells (MSCs) gradually become attractive candidates for cardiac inflammation modulation, yet understanding of the mechanism remains elusive. Strikingly, recent studies indicated that exosomes secreted by MSCs might be a novel mechanism for the beneficial effect of MSCs transplantation after myocardial infarction. We therefore explored the role of MSC-derived exosomes (MSC-Exo) in the immunomodulation of macrophages after myocardial ischaemia/reperfusion (I/R) and its implications in cardiac injury repair. METHODS AND RESULTS Exosomes were isolated from the supernatant of MSCs using gradient centrifugation method. Administration of MSC-Exo to mice through intramyocardial injection after myocardial I/R reduced infarct size and alleviated inflammation level in heart and serum. Systemic depletion of macrophages with clodronate liposomes abolished the curative effects of MSC-Exo. MSC-Exo modified the polarization of M1 macrophages to M2 macrophages both in vivo and in vitro. miRNA sequencing of MSC-Exo and bioinformatics analysis implicated miR-182 as a potent candidate mediator of macrophage polarization and toll-like receptor 4 (TLR4) as a downstream target. Diminishing miR-182 in MSC-Exo partially attenuated its modulation of macrophage polarization. Likewise, knock down of TLR4 also conferred cardioprotective efficacy and reduced inflammation level in a mouse model of myocardial I/R. CONCLUSION Our data indicate that MSC-Exo attenuates myocardial I/R injury in mice via shuttling miR-182 that modifies the polarization status of macrophages. This study sheds new light on the application of MSC-Exo as a potential therapeutic tool for myocardial I/R injury.
Collapse
Affiliation(s)
- Jinxuan Zhao
- Department of Cardiology, Drum Tower Hospital, Medical School of Nanjing University, No. 321 Zhongshan Road, Nanjing, China
| | - Xueling Li
- Department of Cardiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, China
| | - Jiaxin Hu
- Department of Cardiology, Drum Tower Hospital, Medical School of Nanjing University, No. 321 Zhongshan Road, Nanjing, China
| | - Fu Chen
- Department of Cardiology, Drum Tower Hospital, Medical School of Nanjing University, No. 321 Zhongshan Road, Nanjing, China
| | - Shuaihua Qiao
- Department of Cardiology, Drum Tower Hospital, Medical School of Nanjing University, No. 321 Zhongshan Road, Nanjing, China
| | - Xuan Sun
- Department of Cardiology, Drum Tower Hospital, Medical School of Nanjing University, No. 321 Zhongshan Road, Nanjing, China
| | - Ling Gao
- Department of Cardiology, Drum Tower Hospital, Medical School of Nanjing University, No. 321 Zhongshan Road, Nanjing, China
| | - Jun Xie
- Department of Cardiology, Drum Tower Hospital, Medical School of Nanjing University, No. 321 Zhongshan Road, Nanjing, China
| | - Biao Xu
- Department of Cardiology, Drum Tower Hospital, Medical School of Nanjing University, No. 321 Zhongshan Road, Nanjing, China
| |
Collapse
|
12
|
Wang BJ, Alvarez R, Muliono A, Sengphanith S, Monsanto MM, Weeks J, Sacripanti R, Sussman MA. Adaptation within embryonic and neonatal heart environment reveals alternative fates for adult c-kit + cardiac interstitial cells. Stem Cells Transl Med 2020; 9:620-635. [PMID: 31891237 PMCID: PMC7180292 DOI: 10.1002/sctm.19-0277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/12/2019] [Accepted: 12/06/2019] [Indexed: 12/28/2022] Open
Abstract
Cardiac interstitial cells (CICs) perform essential roles in myocardial biology through preservation of homeostasis as well as response to injury or stress. Studies of murine CIC biology reveal remarkable plasticity in terms of transcriptional reprogramming and ploidy state with important implications for function. Despite over a decade of characterization and in vivo utilization of adult c-Kit+ CIC (cCIC), adaptability and functional responses upon delivery to adult mammalian hearts remain poorly understood. Limitations of characterizing cCIC biology following in vitro expansion and adoptive transfer into the adult heart were circumvented by delivery of the donated cells into early cardiogenic environments of embryonic, fetal, and early postnatal developing hearts. These three developmental stages were permissive for retention and persistence, enabling phenotypic evaluation of in vitro expanded cCICs after delivery as well as tissue response following introduction to the host environment. Embryonic blastocyst environment prompted cCIC integration into trophectoderm as well as persistence in amniochorionic membrane. Delivery to fetal myocardium yielded cCIC perivascular localization with fibroblast-like phenotype, similar to cCICs introduced to postnatal P3 heart with persistent cell cycle activity for up to 4 weeks. Fibroblast-like phenotype of exogenously transferred cCICs in fetal and postnatal cardiogenic environments is consistent with inability to contribute directly toward cardiogenesis and lack of functional integration with host myocardium. In contrast, cCICs incorporation into extra-embryonic membranes is consistent with fate of polyploid cells in blastocysts. These findings provide insight into cCIC biology, their inherent predisposition toward fibroblast fates in cardiogenic environments, and remarkable participation in extra-embryonic tissue formation.
Collapse
Affiliation(s)
- Bingyan J. Wang
- SDSU Heart Institute and Department of BiologySan Diego State UniversitySan DiegoCalifornia
| | - Roberto Alvarez
- SDSU Heart Institute and Department of BiologySan Diego State UniversitySan DiegoCalifornia
| | - Alvin Muliono
- SDSU Heart Institute and Department of BiologySan Diego State UniversitySan DiegoCalifornia
| | - Sharon Sengphanith
- SDSU Heart Institute and Department of BiologySan Diego State UniversitySan DiegoCalifornia
| | - Megan M. Monsanto
- SDSU Heart Institute and Department of BiologySan Diego State UniversitySan DiegoCalifornia
| | - Joi Weeks
- SDSU Heart Institute and Department of BiologySan Diego State UniversitySan DiegoCalifornia
| | - Roberto Sacripanti
- SDSU Heart Institute and Department of BiologySan Diego State UniversitySan DiegoCalifornia
| | - Mark A. Sussman
- SDSU Heart Institute and Department of BiologySan Diego State UniversitySan DiegoCalifornia
| |
Collapse
|
13
|
Vasanthan V, Fatehi Hassanabad A, Pattar S, Niklewski P, Wagner K, Fedak PWM. Promoting Cardiac Regeneration and Repair Using Acellular Biomaterials. Front Bioeng Biotechnol 2020; 8:291. [PMID: 32363184 PMCID: PMC7180212 DOI: 10.3389/fbioe.2020.00291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/19/2020] [Indexed: 12/11/2022] Open
Abstract
Ischemic heart disease is a common cause of end-stage heart failure and has persisted as one of the main causes of end stage heart failure requiring transplantation. Maladaptive myocardial remodeling due to ischemic injury involves multiple cell types and physiologic mechanisms. Pathogenic post-infarct remodeling involves collagen deposition, chamber dilatation and ventricular dysfunction. There have been significant improvements in medication and revascularization strategies. However, despite medical optimization and opportunities to restore blood flow, physicians lack therapies that directly access and manipulate the heart to promote healthy post-infarct myocardial remodeling. Strategies are now arising that use bioactive materials to promote cardiac regeneration by promoting angiogenesis and inhibiting cardiac fibrosis; and many of these strategies leverage the unique advantage of cardiac surgery to directly visualize and manipulate the heart. Although cellular-based strategies are emerging, multiple barriers exist for clinical translation. Acellular materials have also demonstrated preclinical therapeutic potential to promote angiogenesis and attenuate fibrosis and may be able to surmount these translational barriers. Within this review we outline various acellular biomaterials and we define epicardial infarct repair and intramyocardial injection, which focus on administering bioactive materials to the cardiac epicardium and myocardium respectively to promote cardiac regeneration. In conjunction with optimized medical therapy and revascularization, these techniques show promise to upregulate pathways of cardiac regeneration to preserve heart function.
Collapse
Affiliation(s)
- Vishnu Vasanthan
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ali Fatehi Hassanabad
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Simranjit Pattar
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Paul Niklewski
- MDP Solutions, Cincinnati, OH, United States
- Department of Pharmacology & Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
- Health Economics and Clinical Outcomes Research, Xavier University, Cincinnati, OH, United States
| | - Karl Wagner
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Paul W. M. Fedak
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
14
|
Nisar S, Roberson J, Carney B, Alkhalil A, Moffatt L, Shupp J. Further Histological and Cellular Characterization of Hidradenitis Suppurativa in 11 Patients. EPLASTY 2019; 19:e21. [PMID: 31885764 PMCID: PMC6916621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Background: Hidradenitis suppurativa is a chronic inflammatory skin disease, with significant morbidity secondary to its recurrent painful and exudative lesions. Given limited research on the cytoarchitecture of hidradenitis suppurativa, this study describes the microscopic structure and cell surface markers present in hidradenitis suppurativa tissue to better understand the disease and identify potential therapeutic targets. Methods: Skin biopsies of hidradenitis suppurativa lesions from patients who underwent surgical excision (n = 11) were compared with grossly normal-appearing perilesional skin (n = 5) and normal skin biopsies from unaffected individuals (n = 4). Histopathology and epidermal thickness were assessed using hematoxylin and eosin and picrosirius red staining, and CD3, a T-cell marker, and CD31 (PECAM), a vascular endothelial cell marker, were assayed using immunofluorescence. Data were analyzed and compared using analysis of variance and Student's t test. Results: Histological examination showed that hidradenitis suppurativa samples had a significantly thicker epidermal layer than normal skin (335.23 ± 165.01 µm vs 57.24 ± 18.43 µm, P = .005), extending into and engulfing the dermis. The hidradenitis suppurativa dermis had extensive cellular infiltration and aggregation as well as disorganized collagen. Immunofluorescence analysis revealed that, at the dermal level, hidradenitis suppurativa lesions had a significantly greater quantity of CD3+ (324.29 ± 139.28 vs 14.93 ±16.32, P < .0001) and CD31+ (322.15 ± 155.46 vs 2.84 ± 5.56, P < .0001) cells/mm2 compared with normal skin samples. Conclusions: Hidradenitis suppurativa lesions have thicker epidermal layers, more dermal cellular infiltrate, and disorganized collagen fibers compared with normal skin. Furthermore, hidradenitis suppurativa dermis has a greater quantity of CD3+ and CD31+ cells than normal skin.
Collapse
Affiliation(s)
- Saira Nisar
- aFirefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC,bThe Burn Center, MedStar Washington Hospital Center, Washington, DC
| | - Jeffrey L. Roberson
- aFirefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC,cDepartment of Surgery, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Bonnie C. Carney
- aFirefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC,dDepartment of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, DC
| | - Abdulnaser Alkhalil
- aFirefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC
| | - Lauren T. Moffatt
- aFirefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC,dDepartment of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, DC
| | - Jeffrey W. Shupp
- aFirefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC,bThe Burn Center, MedStar Washington Hospital Center, Washington, DC,dDepartment of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, DC,eDepartment of Surgery, MedStar Georgetown University Hospital, Washington, DC,Correspondence:
| |
Collapse
|
15
|
Abstract
There is a critical need to identify accessible stem cells that can form spontaneously beating cardiomyocytes (CMs) and enable regeneration. Here, we establish that intravenous delivery of placental Cdx2 cells resulted in directed homing, sustained engraftment, and differentiation into CMs and vascular cells in damaged hearts, significantly improving cardiac function. This study unveils a distinctive functional significance of Cdx2 beyond its established role in embryonic patterning. Therapeutic use of Cdx2 cells may represent a vital advance, as these cells are multipotent and immunologically naive, with a unique proteome, compared with embryonic stem cells. Moreover, they exhibit the ability to selectively home to sites of injury. These characteristics pave the way for novel allogeneic stem cell therapy for cardiac disease. The extremely limited regenerative potential of adult mammalian hearts has prompted the need for novel cell-based therapies that can restore contractile function in heart disease. We have previously shown the regenerative potential of mixed fetal cells that were naturally found migrating to the injured maternal heart. Exploiting this intrinsic mechanism led to the current hypothesis that Caudal-type homeobox-2 (Cdx2) cells in placenta may represent a novel cell type for cardiac regeneration. Using a lineage-tracing strategy, we specifically labeled fetal-derived Cdx2 cells with enhanced green fluorescent protein (eGFP). Cdx2-eGFP cells from end-gestation placenta were assayed for cardiac differentiation in vitro and in vivo using a mouse model of myocardial infarction. We observed that these cells differentiated into spontaneously beating cardiomyocytes (CMs) and vascular cells in vitro, indicating multipotentiality. When administered via tail vein to infarcted wild-type male mice, they selectively and robustly homed to the heart and differentiated to CMs and blood vessels, resulting in significant improvement in contractility as noted by MRI. Proteomics and immune transcriptomics studies of Cdx2-eGFP cells compared with embryonic stem (ES) cells reveal that they appear to retain “stem”-related functions of ES cells but exhibit unique signatures supporting roles in homing and survival, with an ability to evade immune surveillance, which is critical for cell-based therapy. Cdx2-eGFP cells may potentially represent a therapeutic advance in allogeneic cell therapy for cardiac repair.
Collapse
|
16
|
Li B, Meng X, Zhang L. microRNAs and cardiac stem cells in heart development and disease. Drug Discov Today 2018; 24:233-240. [PMID: 29852125 DOI: 10.1016/j.drudis.2018.05.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/24/2018] [Accepted: 05/22/2018] [Indexed: 12/20/2022]
Abstract
Cumulative evidence has proven that proliferation, differentiation and migration of cardiac stem cells (CSCs) dominate early heart development and contribute to the later occurrence of heart disease. Among other mechanisms, microRNAs work as the 'fine-tuning' to modulate the levels of target genes in a specific cell type. The distinct microRNA signatures in CSCs reveal the stages and functions of CSCs. The focus of this review is to summarize recent knowledge advances in CSC proliferation, differentiation and migration and to discuss how microRNAs regulate these processes during heart development and in heart disease. Better understanding of microRNA regulation on CSCs under different situations will enable the unveiling of the mechanisms of heart disease and open new avenues in the therapeutic potentials of microRNA modulation to treat heart disease.
Collapse
Affiliation(s)
- Bo Li
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Xianmei Meng
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| |
Collapse
|